
Charge transport modelling of perovskite solar cells accounting for non-Boltzmann
statistics in organic and highly-doped transport layers

Will Clarke,1 Matthew Wolf,2, 3 Alison Walker,3 and Giles Richardson1

1Mathematical Sciences, University of Southampton, UK
2Institute of Physical Chemistry, RWTH Aachen, Germany

3Department of Physics, University of Bath, UK
(Dated: March 16, 2023)

We present a drift-diffusion model of a perovskite solar cell (PSC) in which carrier transport
in the charge transport layers is not based on the Boltzmann approximation to the Fermi-Dirac
statistical distribution, in contrast to previously studied models. At sufficiently high carrier densities
the Boltzmann approximation breaks down and the precise form of the density of states function
(often assumed to be parabolic) has a significant influence on carrier transport. In particular,
parabolic, Kane and Gaussian models of the density of states are discussed in depth and it is shown
that the discrepancies between the Boltzmann approximation and the full Fermi-Dirac statistical
model are particularly marked for the Gaussian model, which is typically used to describe organic
semiconducting transport layers. Comparison is made between full device models, using parameter
values taken from the literature, in which carrier motion in the transport layers is described using (I)
the full Fermi-Dirac statistical model and (II) the Boltzmann approximation. For a representative
TiO2/MAPI/Spiro device the behaviour of the PSC predicted by the Boltzmann-based model shows
significant differences compared to that predicted by the Fermi-Dirac-based model. This holds both
at steady-state, where the Boltzmann treatment overestimates the power conversion efficiency by a
factor of 27%, compared to the Fermi-Dirac treatment, and in dynamic simulations of current-voltage
hysteresis and electrochemical impedance spectroscopy. This suggests that the standard approach, in
which carrier transport in the transport layers is modelled based on the Boltzmann approximation,
is inadequate. Furthermore, we show that the full Fermi-Dirac treatment gives a more accurate
representation of the steady-state performance, compared to the standard Boltzmann treatment, as
measured against experimental data reported in the literature for typical TiO2/MAPI/Spiro devices.
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I. INTRODUCTION

Over the past decade, perovskite solar cells (PSCs)
have seen rapid developments, in both efficiency and sta-
bility, to an extent that they are now viewed as a re-
alistic prospective next-generation photovoltaic technol-
ogy. However despite the impressive efficiency of mod-
ern PSCs (the current record for certified power con-
version efficiency (PCE) is 25.7% [1]), challenges remain
that must be overcome to enable large-scale commercial
manufacture of perovskite solar panels, the chief amongst
these being their relatively poor long-term stability and
the presence of lead in the perovskite structure. An
increased understanding of the fundamental materials
and device physics governing their properties and per-
formance will be key to the further development of PSC
technology. In this context, modelling plays a central role
in elucidating the basic physical processes underlying the
performance of PSCs. In particular, drift-diffusion mod-
elling, which provides a macroscopic description of an en-
tire cell, and directly links to the properties of the materi-
als from which it is constructed, has proven to be a pow-
erful tool to understand PSC device physics [2–4]. PSCs
typically use a planar architecture in which a perovskite
absorber layer is sandwiched between a highly n-doped
electron transport layer (ETL) and a highly p-doped hole
transport layer (HTL). While some drift-diffusion mod-

els comprising only electrons and holes continue to be
published [5–7], it has repeatedly been shown that migra-
tion of ion vacancies is not only present in the perovskite
layer but vital to understanding their operation [8–10].
These simplistic models, which omit ion migration, are
incapable of replicating the dynamic current-voltage or
impedance responses of PSCs [2, 8, 11–14]. The transport
layers are chosen such that light can enter through one
of them, either the ETL (standard architecture) [15] or
the HTL (inverted architecture) [16]. While early drift-
diffusion models of PSCs omitted the transport layers,
focusing on the interplay between electronic and ionic
conduction in the perovskite layer [8, 17–19], state of
the art models include an explicit description of all three
layers [12, 20–22], enabling a number of studies of the
important role played by the transport layers, and their
interplay with the perovskite layer. Such studies have
included investigations of the role of intrinsic materials
properties, such as band alignment, carrier mobility [23]
and dielectric constants [20], as well as extrinsic proper-
ties such as layer thickness [24] and doping densities [20],
in determining both steady state [23, 24] and transient
[20] cell characteristics.

As with any mathematical model, there are a number
of assumptions and approximations that are made in the
derivation of the drift–diffusion equations (see, e.g. Ref.
[25]). In particular, and as will be discussed in detail in
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§II, it is typically assumed that the diffusion coefficient
(D) is related to the mobility (µ) via the classical Einstein
relation (CER):

qD = µkBT ;

this assumption is equivalent to the assumption that the
carrier density is sufficiently low that the Fermi–Dirac
statistical distribution is well approximated by a Boltz-
mann distribution (see Section II). When this is not the
case, the generalised Einstein relation (GER) must be
used instead [26, 27]:

qDn = µnn
∂Efn

∂n
, qDp = −µpp

∂Efp

∂p
,

in which Efn and Efp are the electron and hole quasi-
Fermi levels, respectively. This leads to more complex
versions of the drift–diffusion equations, the functional
forms of which depend on the density of states of the
material, and which are, in general, no longer analytic.
Physically, this results in an enhancement of the diffu-
sion coefficient relative to the value from the CER, that
increases with the local carrier density [27, 28]. Addition-
ally, it is often assumed implicitly that the mobilities (µn

and µp) do not depend on the carrier density. Some stud-
ies [29, 30] contradict this but the functional form of the
dependence of mobility on carrier density is still debated
[31]. Henceforth, for simplicity, we treat the mobilities
as constants.

Tessler and Vaynzof have investigated the validity of
the Boltzmann approximation in describing electronic
carriers in the perovskite layer of a PSC, assuming a den-
sity of states function derived from a parabolic dispersion
model, and concluded that, while the approximation is
warranted in many scenarios, it can lead to appreciable
errors in others [2]. However, conditions under which it
is valid are likely to be more limited for the transport
layers than the perovskite layer for at least the following
three reasons: (i) while the perovskite layer is undoped,
the transport layers tend to be heavily doped in order to
increase their equilibrium carrier density (and hence also
conductivity); (ii) even if the equilibrium carrier density
in the bulk of the transport layer is sufficiently low for
the Boltzmann approximation to be valid, much higher
carrier densities can arise in the regions close to the in-
terfaces between layers [20], or when the device is out of
equilibrium; and (iii) as will be discussed in Section III,
the range of carrier densities for which the Boltzmann
approximation is valid depends strongly on the density
of states (DoS) function of the material in question. The
physical processes occurring at the material interfaces be-
tween the perovskite and the transport layers have been
shown to be highly important in explaining the dynamic
behaviour of the cell, such as current-voltage hysteresis
[32–35] and electrochemical impedance spectroscopy [32].
Point (ii) therefore leads us to conjecture that models
based on the Boltzmann approximation in the transport
layers are not always appropriate when investigating the

dynamic behaviour of PSCs. With reference to point
(iii), disordered organic semiconductors, which are often
used as one of the transport layers in PSCs, are best
described by a Gaussian DoS [36, 37], which is only ac-
curately approximated by the Boltzmann distribution in
a far smaller domain than inorganic materials with band
structures described by a parabolic DoS [38]. The poten-
tial inaccuracies arising from the assumption of the CER
have also been recognised by Abdel et al. [39, 40] but
only addressed for ion vacancies in the perovskite layer,
rather than the carriers in the transport layers.

In light of the above discussion, the purpose of this con-
tribution is to investigate the effects of full Fermi-Dirac
(FD) statistics in drift–diffusion models of PSC devices,
with a particular focus on the transport layers. We note
that the three-layer drift-diffusion model is sufficiently
complex that it is difficult to predict, without the aid
of a full numerical solution of the model, exactly how
errors associated with employing the Boltzmann approx-
imation in one of the TLs might manifest themselves in
the predicted device behaviour in any particular scenario.
For example, the accumulation of carriers near the per-
ovskite interface is dependent on the distribution of ion
vacancies in the perovskite, which itself is dependent on
many material parameters as well as external conditions,
such as temperature, light intensity, and applied voltage
[20]. Here we shall present example numerical results
for a typical three layer device. In particular, we com-
pare the prediction made using a model in which carrier
transport in the transport layers is described using full
Fermi-Dirac statistics to one in which carrier transport
in the transport layers is described using the Boltzmann
approximation. Since we consider only a single typical
device there remains room for further investigation for
other device configurations.

The remainder of the paper is organised as follows. We
begin, in §II by discussing the drift-diffusion equations in
which carrier transport is modelled using (i) the Boltz-
mann approximation and (ii) full FD statistics. We fur-
ther show that the application of full FD statistics causes
a density-dependent diffusivity enhancement (equivalent
to the generalised Einstein relation), the form of which
is determined by the DoS function. Then, in §III, we
consider the form of the density of states function for
both ordered inorganic and disordered organic materi-
als, and show that the choice of DoS function must be
carefully considered in scenarios for which the Boltzmann
approximation does not hold. The range of carrier den-
sities for which Boltzmann statistics accurately approxi-
mate full FD statistics is discussed for a variety of rele-
vant transport layer materials in §IV. In §V, comparisons
are made between the predictions of a device-level model
of a PSC in which charge carrier motion in the trans-
port layers is modelled by (i) the Boltzmann approxi-
mation and (ii) full FD statistics. The results obtained
using these two different descriptions of the transport lay-
ers are compared for both steady state performance and
transient measurements, namely current-voltage hystere-
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sis and impedance spectroscopy. Finally, we draw our
conclusions in §VI.

II. THE DRIFT–DIFFUSION EQUATIONS AND
THE GENERALISED EINSTEIN RELATION

The basis of the drift–diffusion model is a set of conser-
vation equations, one for each particle species, in which
the change in the particle number density is driven by
the net flux into a region and contributions from volume
source and sink terms. In most photovoltaic devices the
only particle species modelled by the drift-diffusion equa-
tions are the charge carriers, i.e. electrons in the conduc-
tion band (volume density n) and holes in the valence
band (volume density p). The source and sink terms
in the corresponding conservation equations model pho-
togeneration and recombination, respectively. In halide
perovskites it is also necessary to model the transport of
one or more mobile point defect species, such as charged
anion or cation vacancies [8]. However, it is usually as-
sumed that any defects/dopants in the charge transport
layers, which are our focus here, are static and homoge-
neously distributed.

In one dimension, the case to which we restrict our-
selves here, the electron and hole conservation equations
take the form

∂n

∂t
=

1

q

∂jn

∂x
+G(x, t)−R(n, p), (1a)

∂p

∂t
= −1

q

∂jp

∂x
+G(x, t)−R(n, p), (1b)

in which G(x, t) and R(n, p) are the rates of generation
and recombination of electron-hole pairs per unit vol-
ume, respectively, and jn and jp are the electron and
hole current densities, respectively. The latter are calcu-
lated from the carrier densities and the quasi-Fermi levels
via the relations

jn = µnn
∂Efn

∂x
, (2a)

jp = µpp
∂Efp

∂x
, (2b)

where µn and µp are the electron and hole mobilities,
while Efn and Efp are the quasi-Fermi levels of the elec-
trons in the conduction band and holes in the valence
band, respectively. The implicit assumption made in
using quasi-Fermi levels to characterise the state of the
semiconductor is that the valence band electrons are (lo-
cally) in thermal equilibrium with each other and that the
conduction band electrons are (locally) in thermal equi-
librium with each other, but that valence and conduction
band electrons are not necessarily in thermal equilibrium
with each other. Constitutive equations that relate the
quasi-Fermi levels to n, p and ϕ, and which derive from
the statistical distributions of the electrons in the va-
lence and conduction bands, must also be specified. The

system of drift-diffusion equations is closed by Poisson’s
equation for the electric potential ϕ,

∂2ϕ

∂x2
= −ρ

ε
, (3)

where ρ = q(p− n) is the net charge density and ε is the
permittivity of the material.
The quasi-Fermi levels depend on the carrier density

and the electric potential as follows:

Efn = Fn(n, T )− qϕ, (4a)

Efp = Fp(p, T )− qϕ, (4b)

where Fn,p are functions that depend on both the band
structure and the statistical distribution, the forms of
which shall be derived below. The current densities (2)
can thus be split into a diffusion term and a drift term,
as follows:

jn = µnn
∂Efn

∂n

∂n

∂x
− qµnn

∂ϕ

∂x
, (5a)

jp = µpp
∂Efp

∂p

∂p

∂x
− qµpp

∂ϕ

∂x
. (5b)

We define the chemical diffusivities of electrons and holes,
respectively, according to Fick’s law,

qDn = µnn
∂Efn

∂n
, (6a)

qDp = −µpp
∂Efp

∂p
, (6b)

where the change in sign between the electron and hole
diffusivities is due to the sign of their respective charges.
This result, referred to as the generalised Einstein rela-
tion (GER) [26, 27], allows the current equations to be
written as

jn = qDn
∂n

∂x
− qµnn

∂ϕ

∂x
, (7a)

jp = −qDp
∂p

∂x
− qµpp

∂ϕ

∂x
. (7b)

When the conduction electrons and valence holes sat-
isfy Boltzmann statistics (as is frequently assumed in
semiconductor modelling [2, 41–45]), the dependencies
of the QFLs on carrier density (i.e. the Fn,p functions
in equations (4)) are logarithmic (a result that will be
derived in the following sections). In such scenarios it is
straightforward to show that the GER is replaced by the
classical Einstein relation,

qDn,p = µn,pkBT, (8)

in which the ratio of diffusivity to mobility is constant,
i.e. not dependent on the local carrier concentration.
While this approximation greatly simplifies the model,
the accuracy of the CER is often poor (as will be shown).
In such scenarios the full GER is required.
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FIG. 1. The filling of electron states. The solid black
line shows the density of states (DoS) function ĝ(E), solid
coloured lines show the density of filled states per unit en-
ergy (specifically, ĝ(E)f(E;Efn) for conduction electrons and
ĝ(E)[1−f(E;Efp)] for valence holes), and shaded areas show
the total carrier density, integrated over all energies. Here the
electron QFL is closer to the band edge than the hole QFL,
meaning a higher density of electrons than holes.

A. Statistical integrals and the Fermi level

In order to determine equations for the electron and
hole current currents from (2), expressions for the quasi-
Fermi levels in terms of the carrier densities are required.
In thermal equilibrium, the probability (f) that an elec-
tronic state with energy E is occupied in a material with
Fermi level Ef is given by the Fermi–Dirac statistical
distribution,

f(E;Ef ) =
1

exp
(

E−Ef

kBT

)
+ 1

. (9)

where T is temperature and kB is Boltzmann’s constant.
The density (per unit volume) of electrons lying in the
conduction band with energies between E and E+ dE is
therefore given by the product of the Fermi–Dirac distri-
bution, f , and the density of states (per unit volume), or
DoS, ĝ(E)dE. The corresponding density of holes in the
valence band is given by the product of (1− f) with the
DoS in the valence band ĝ(E)dE.
Under the assumption that the material is a semicon-

ductor, we first split the density of states (DoS) ĝ(E)
into that pertaining to the valence band ĝv(E) and that
pertaining to the conduction band ĝc(E) (see Figure 1)
and write

ĝ(E) = ĝv(E) + ĝc(E). (10)

It is usually assumed that the bands are perfectly dis-
tinct, meaning there exists a finite range of energies be-
tween the highest occupied state and the lowest unoc-
cupied state at absolute zero in which the DoS is zero.
However, in the case of organic semiconductors the bands
do not have well-defined edges (see Figure 2) and this can
lead to definitions of ĝv(E) and ĝc(E) which are conve-
nient, but for which there is some overlap of the tails of
both functions. We assume that the bands have suffi-
cient separation that any overlap in the DoS functions is
negligible and note that any material that violates this

would be a poor semiconductor. The total electron and
hole densities (per unit volume) are thus

n =

∫ ∞

−∞
f(E;Efn)ĝc(E)dE, (11a)

p =

∫ ∞

−∞

[
1− f(E;Efp)

]
ĝv(E)dE, (11b)

where the Fermi level Ef in the Fermi–Dirac statistical
distribution (9) is replaced by the QFL in the conduc-
tion/valence band in the expression for the electron/hole
density.
For convenience, it is also assumed that the conduc-

tion and valence band DoS functions can each be cast in
terms of (at least) two dimensional constants, an effec-
tive DoS (gc or gv) and reference energies Ec or Ev, cor-
responding to the conduction and valence band edges (in
the case of inorganic semiconductors) and to the LUMO
and HOMO (in the case of organic semiconductors). The

dimensionless functions N̂c and N̂v are used to describe
the general shape of the density of states function in the
vicinity of the reference energies Ec and Ev, respectively.
This allows us to write:

ĝc(E) =
gc

kBT
N̂c

(
E − Ec

kBT

)
, (12a)

ĝv(E) =
gv
kBT

N̂v

(
−E − Ev

kBT

)
, (12b)

where N̂c and N̂v are here referred to as reduced densities
of states. These reduced DoS functions can be obtained
from the DoS functions defined in (10) by inverting (12)
to obtain

N̂c(η) =
kBT

gc
ĝc (Ec + kBTη) , (13a)

N̂v(η) =
kBT

gv
ĝv (Ev − kBTη) , (13b)

in which η can be interpreted as a dimensionless state
energy level. With these DoS functions, and substituting
the Fermi-Dirac distribution (9), the electron and hole
densities (11) become

n = gc

∫ ∞

−∞

1

kBT

N̂c

(
E−Ec

kBT

)
1 + exp

(
E−Efn

kBT

)dE, (14a)

p = gv

∫ ∞

−∞

1

kBT

N̂v

(
−E−Ev

kBT

)
1 + exp

(
Efp−E

kBT

)dE. (14b)

Carrier densities and quasi-Fermi levels are therefore re-
lated by an integral dependent on the reduced DoS.
Specifically, the carrier densities are given by the expres-
sions

n = gcSc

(
Efn − Ec

kBT

)
, (15a)

p = gvSv

(
−
Efp − Ev

kBT

)
, (15b)
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where the statistical integrals, Sc and Sv, are the func-
tions defined by the relations

Sc(ξ) =

∫ ∞

−∞

N̂c(η)

1 + exp (η − ξ)
dη, (16a)

Sv(ξ) =

∫ ∞

−∞

N̂v(η)

1 + exp (η − ξ)
dη, (16b)

in which ξ may be interpreted as a dimensionless QFL.
We note that, in practice, ξ will almost always be neg-
ative, meaning both QFLs lie between the two reference
energies, Ec and Ev, in the band gap. We invert these
expressions (15) for the carrier densities to obtain expres-
sions for the QFLs in terms of the densities. Substituting
for the conduction band and valence band reference en-
ergies using Ec = −Ea − qϕ and Ev = −Ea − Eg − qϕ,
leads to the following expressions for the QFLs:

Efn = kBTS−1
c

(
n

gc

)
− Ea − qϕ, (17)

Efp = −kBTS−1
v

(
p

gv

)
− Ea − Eg − qϕ, (18)

where S−1 is the inverse of S. Here Ea denotes the elec-
tron affinity, the difference between the conduction band
reference energy and the vacuum level, and Eg = Ec−Ev

is the gap between the two bands’ reference energies.
Note that energies are defined relative to the vacuum
level at E = 0 eV. In turn, the diffusion coefficients can
be calculated as functions of mobility and carrier density
from the generalised Einstein relations (6):

qDn = µnkBTn
∂

∂n

(
S−1
c

(
n

gc

))
, (19a)

qDp = µpkBTp
∂

∂p

(
S−1
v

(
p

gv

))
. (19b)

Equivalently, the expressions for the QFLs (17)-(18) can
be substituted directly into the current density equations
(2) to obtain the following expressions for the currents:

jn = µnkBT

(
∆n(n)

∂n

∂x
− qn

kBT

∂ϕ

∂x

)
, (20a)

jp = −µpkBT

(
∆p(p)

∂p

∂x
+

qp

kBT

∂ϕ

∂x

)
, (20b)

in which

∆n (n) = n
∂

∂n

(
S−1
c

(
n

gc

))
, (21a)

∆p (p) = p
∂

∂p

(
S−1
v

(
p

gv

))
. (21b)

are carrier density-dependent diffusion enhancement func-
tions that approach 1 in the limit of low carrier density
[46–50], as will be shown below.

B. The Boltzmann approximation and the classical
Einstein relation

It is well known that the Fermi-Dirac distribution (9)
approaches the Boltzmann distribution,

f(E;Ef ) ∼ exp

(
−E − Ef

kBT

)
, (22)

for energies significantly greater than the Fermi level,
(E−Ef )/kBT ≫ 1. Thus, for Fermi energies sufficiently
far away from the reference energy of the DoS, the Fermi-
Dirac distribution (9) in the statistical integral can be
approximated by a Boltzmann distribution (22), and the
statistical integral (16) becomes

S(ξ) ≈
∫ ∞

−∞
N̂(η) exp (ξ − η) dη, (23)

which can be evaluated as

S(ξ) ≈ A exp(ξ), (24)

where

A =

∫ ∞

−∞
N̂(η) exp (−η) dη (25)

is a scaling constant determined by the reduced DoS,
which can readily be reabsorbed into an effective DoS
constant. Specifically, this scaling constant is large if
there is a high density of states at energies below the
reference energy, i.e. the DoS has a tail, decaying into
the band gap. This approximation, often referred to as
the Boltzmann approximation, is valid when the QFL lies
far inside the band gap, i.e. ξ ≪ −1.

Thus, Boltzmann distributed carriers have an exponen-
tial statistical integral, regardless of DoS function, with
inverse S−1(x) = ln( x

A ). This function can be differenti-
ated exactly, leading to

∂

∂n

(
S−1
c

(
n

gc

))
=

1

n
, (26a)

∂

∂p

(
S−1
v

(
p

gv

))
=

1

p
, (26b)

and the diffusion enhancement functions (21) therefore
become ∆ ≡ 1, thus recovering the classical Einstein re-
lation from the generalised form.

This result is independent of the value of the constant
A. The choice of DoS function is therefore unimportant
when the Boltzmann approximation holds. If the approx-
imation does not hold, however, the functional form of
the DoS becomes significant and must be carefully con-
sidered. Furthermore, the choice of DoS affects the do-
main of carrier densities for which the Boltzmann ap-
proximation does hold, as will be discussed in §IV.
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FIG. 2. The filling of electron states in (top) parabolic and
(bottom) Gaussian DoS functions.

III. DENSITY OF STATES FUNCTIONS AND
STATISTICAL INTEGRALS

A number of different materials have been used as
transport layers in PSCs, both inorganic and organic.
Charge carrier conduction occurs via different basic
mechanisms in the two classes of material (viz. inorganic
and organic), which, in the present context, is impor-
tant because it determines the model for the DoS that is
appropriate for a given transport layer material.

Inorganic semiconductors are typically
(poly)crystalline with electrons inhabiting delocalised
Bloch (travelling) wave states, and the density of states
is derived from the (quantum mechanical) dispersion
relations of the bands of states. In contrast, electrons
in organic materials occupy localised molecular orbitals,
and their motion occurs via thermally activated hopping
between molecules. In the latter case, a continuous
density of states function arises from the (classical)
disorder in the molecular arrangements, which causes
variations in the energy of the molecular orbitals1.

As we shall see, in the present context the most im-
portant distinction between the two scenarios is that the
DoS in a crystalline (inorganic, in this case) material has
a well defined minimum, while this is not the case for the
amorphous (organic) materials. In this section, we will
consider appropriate choices of the DoS function for both
crystalline inorganic and amorphous organic materials.

1 The scenarios described here are, of course, idealisations. Both
organic and inorganic materials can exhibit varying degrees of
disorder, and intermediate or mixed modes of transport and DoS
functions [51–54].

A. Crystalline inorganic materials – Parabolic and
simplified Kane Models

As mentioned above, the dispersion relation in an in-
organic material has a well defined minimum and max-
imum. The energy (E) of an electron in a state with
wavevector (k) near to the conduction band minimum
(with energy Ec and wavevector kc) can be approximated
by an expansion in powers of |k − kc| (see for example
[27, 55]). Furthermore, we assume the band structure to
be isotropic about this minimum, meaning the expansion
depends only on the magnitude k = |k− kc|, so that

E(k) = Ec + k
∂E

∂k

∣∣∣
k=0

+
k2

2

∂2E

∂k2

∣∣∣
k=0

+O(k3). (27)

As k = 0 is the point at which the conduction band has
a minimum, the first derivative in this expansion is nec-
essarily zero. Furthermore, on defining the conduction
band effective mass by

m∗
c =

ℏ2
∂2E
∂k2

∣∣
k=0

, (28)

the following expression for the electron energy is ob-
tained:

E − Ec =
ℏ2

2m∗
c

k2. (29a)

This is referred to as the parabolic band approximation
[55]. Similarly, the dispersion relation in the vicinity of
the valence band maximum is

E − Ev = − ℏ2

2m∗
v

k2. (29b)

Note that this approximation is based upon a band
structure with well-defined valence and conduction band
edges that is not found in disordered systems, hence its
use is limited to crystalline inorganic materials. The DoS
function is then derived according to [27]

g(E) =
1

π2
k2

dk

dE
(30)

to obtain the DoS functions (as defined in (10)),

ĝc(E) =
2gc√
π

(
1

kBT

) 3
2 √

E − Ec for E > Ec, (31a)

near the conduction band minimum, and

ĝv(E) =
2gv√
π

(
1

kBT

) 3
2 √

Ev − E for E < Ev, (31b)

near the valence band maximum. Thus the reduced DoS
functions (N̂c and N̂v, as defined in (13)) have the same
form, i.e.

N̂(η) =

{
0 η < 0
2√
π

√
η η ≥ 0.

(32)
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FIG. 3. Reduced densities of state (top) and statistical integrals (bottom) derived from the simplified Kane dispersion (left)
and Gaussian disorder (right) models. Solid lines in the bottom plots correspond to full Fermi-Dirac distributions and dashed
lines to Boltzmann distributions. Here, F ,K, and G denote the Fermi–Dirac (33), Kane–Fermi (37), and Gauss–Fermi (41)
integrals, α∗ is the dimensionless non-parabolicity parameter of the Kane model and s is the dimensionless standard deviation
of the Gaussian.

The statistical integral corresponding to this reduced
DoS function is Sc,v(ξ) = F(ξ), where F follows from
(16), and is

F(ξ) =

∫ ∞

0

2√
π

√
η

1 + exp(η − ξ)
dη, (33)

and is referred to as the Fermi-Dirac integral2.
Further away from the band extrema, the parabolic

approximation becomes increasingly inaccurate. States
further from the band edge can be modelled by the sim-
plified form of Kane’s model for dispersion in III–V semi-
conductors [57–59], in which (29a) and (29b) are replaced

by

(E − Ec) (1 + αc(E − Ec)) =
ℏ2

2m∗
c

k2 (34a)

(E − Ev) (1− αv(E − Ev)) = − ℏ2

2m∗
c

k2 (34b)

where αc and αv are two parameters that determine the
degree of non-parabolicity. We note that the Kane model
reduces to the parabolic model in the limit that α goes
to zero. Once again, the DoS functions can be derived
from (30) to obtain

2 Specifically, this is the Fermi-Dirac integral of order 1/2 [56]. Note that some definitions omit the prefactor
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ĝc(E) =
2gc√
π

(
1

kBT

) 3
2 √

(E − Ec) (1 + αc(E − Ec)) (1 + 2αc(E − Ec)) , (35a)

ĝv(E) =
2gv√
π

(
1

kBT

) 3
2 √

(Ev − E) (1 + αc(Ev − E)) (1 + 2αc(Ev − E)) . (35b)

These Kane DoS functions lead to an altered reduced
DoS function taking the place of (32):

N̂(η) =

{
0 η < 0
2√
π

√
η(1 + α∗η)(1 + 2α∗η) η ≥ 0,

(36)

where α∗ = αkBT is the dimensionless non-parabolicity
parameter. The statistical integrals for non-parabolic
bands are therefore Sc(ξ) = K(ξ;α∗

c) for conduction elec-
trons and Sv(ξ) = K(ξ;α∗

v) for valence holes, where K
(which follows from (16)) is

K(ξ;α∗) =

∫ ∞

0

2√
π

√
η(1 + α∗η)(1 + 2α∗η)

1 + exp(η − ξ)
dη, (37)

and is referred to here as the Kane-Fermi integral. The
non-parabolic DoS function (including the parabolic limit
α → 0) and the resulting Kane–Fermi integral are plotted
in Figure 3. We note once again that the Kane model
reduces to the parabolic model in the limit that α∗ → 0,
and that therefore the Kane–Fermi integral approaches
the Fermi–Dirac integral in the same limit,

lim
α∗→0

K(ξ;α∗) = F(ξ). (38)

B. Amorphous organic materials – Gaussian model

The discrete transport sites in disordered organic ma-
terials are typically modelled by Gaussian DoS functions
[36, 38], as represented in Figure 2(b), of the form

ĝc(E) =
gc

σc

√
2π

exp

(
−1

2

(
E − Ec

σc

)2
)
, (39a)

ĝv(E) =
gv

σv

√
2π

exp

(
−1

2

(
Ev − E

σv

)2
)
, (39b)

where the degree of disorder is represented by the stan-
dard deviation, σ. Once again the reduced DoS functions
(N̂c and N̂v) can be obtained using (13) and have the
form

N̂(η, s) =
1

s
√
2π

exp

(
−1

2

(η
s

)2)
, (40)

where s = σ
kBT is the dimensionless disorder parameter,

which in general differs between the ‘conduction states’
(for which the reduced DoS is N̂(η; sc) and and ‘valence

states’ (for which the reduced DoS is N̂(η; sv). The cru-
cial difference from the parabolic model is that the Gaus-
sian band has no defined edge, meaning the reference en-
ergies Ec and Ev are now the band centres, the LUMO
and HOMO energies, respectively. The statistical inte-
grals (16) resulting from the Gaussian DoS are Sc(ξ) =
G(ξ; sc) for conduction electrons and Sv(ξ) = G(ξ; sv) for
valence holes, where G follows from (16):

G(ξ; s) = 1

s
√
2π

∫ ∞

−∞

exp
(
− 1

2

(
η
s

)2)
1 + exp(η − ξ)

dη, (41)

and is referred to as the Gauss–Fermi integral [60]. The
Gaussian DoS function and the resulting Gauss–Fermi in-
tegral are plotted in Figure 3. Note that greater standard
deviation effectively shifts the onset of the band further
away from the reference energy, resulting in a shift in the
statistical integral.

IV. ACCURACY OF THE BOLTZMANN
APPROXIMATION FOR COMMON
TRANSPORT LAYER MATERIALS

As discussed in §II B, the classical Einstein relation
(CER) is recovered from the general Einstein relation
(GER) when carrier densities are sufficiently low so that
the Fermi-Dirac distribution (9) can be approximated by
the Boltzmann distribution (22). Under this approxima-
tion, the statistical integrals take the form

S(ξ) ≈ A exp(ξ), (24 repeated)

where A is some constant determined by the functional
form of the reduced DoS (25). For the Kane model (36),
this constant is

A =
1√
πα∗

e
1

2α∗ K2

(
1

2α∗

)
(42)

where K2 is the second order modified Bessel function
of the second kind (note that in the limit α∗ → 0, the
band becomes perfectly parabolic and A → 1). The cor-
responding result in the Gaussian band model (40) is

A = exp

(
s2

2

)
. (43)

Notably, the CER is unaffected by the value of this con-
stant, meaning that the choice of DoS is unimpor-
tant when the Boltzmann approximation holds.
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However, the functional form of the DoS does signifi-
cantly affect the range of carrier densities in which the
Boltzmann approximation holds. Furthermore, as the
statistical integrals are not, in general, analytically in-
vertible, the validity of the Boltzmann approximation for
each band model usually has to be investigated numeri-
cally. In what follows, we conduct such an investigation
for a number of different transport layer materials. In
particular, we compute the diffusion enhancement factor
∆ for some of the more commonly used transport layer
materials in PSCs, noting that a value of ∆ close to 1
implies that both the CER and the Boltzmann approxi-
mation accurately model the material’s charge transport
properties.

We consider the following inorganic transport layer
materials: TiO2, ZnO and SnO2 (for the ETL) [61–
65], and NiO (for the HTL) [66, 67]. In addition, we
consider the following organic transport layer materials:
spiro-MeOTAD [68, 69], PEDOT:PSS [70–72] and P3HT
[73, 74] (for the HTL), and PCBM [75, 76] (for the ETL).
More comprehensive lists of transport layer materials can
be found in [77, 78] or through the Perovskite Database
Project [79]. The relevant parameters for these transport
layer materials, taken from the literature, are shown in
Table I. We note that measurements of band nonparabol-
icity parameters in the literature are rare and, to the au-
thors’ knowledge, have not been reported for these ma-
terials, possibly because oxides are typically used as in-
sulators in semiconductor applications. In the absence of
measured values for inorganic transport layer materials,
their bands will be assumed to be perfectly parabolic (i.e.
α∗ = 0).

It is generally agreed that the Boltzmann approxima-
tion is sufficiently accurate for carriers in parabolic bands
when the QFL is at least three thermal voltages from
the band edge (ξ < −3), corresponding to carrier con-
centrations less than 0.05gc,v. At this carrier density, the
diffusion enhancement function, ∆, computed from from
full FD statistics (and the GER), is approximately 1.018
and so is within 2% of the value given by the Boltzmann
approximation (and the CER). For ξ > −3, however,
the Boltzmann approximation to the Fermi-Dirac inte-
gral begins to overestimate the carrier density, effectively
allowing multiple carriers to occupy the same low-energy
states. This can be seen in Figure 3, where the Fermi-
Dirac integral is plotted with its Boltzmann approxima-
tion. The result is that the diffusion enhancement rapidly
diverges from 1 as the carrier density exceeds 0.05gc,v, as
shown in Figure 4.

Perhaps unexpectedly, the Boltzmann approximation
to the Kane-Fermi integral is accurate over a wider range
of densities for greater nonparabolicity. This is because
the form of the reduced DoS means nonparabolicity in-
creases the density of higher energy states, far away from
the QFL, for the same effective DoS (shown in Figure
3). Despite this, the deviation is minor and the classical
Einstein relation can be considered accurate in the same
domain as for perfectly parabolic bands.

FIG. 4. Diffusion enhancement functions according to the
generalised Einstein relation for (top) inorganic and (bottom)
organic transport layer materials. ∆ is (21a) for ETL mate-
rials and (21b) for HTL materials. Similarly, carrier density
is n for ETL materials and p for HTL materials. Parameters
taken from Table I.

Gaussian bands possess a tail of states extending into
the band gap, as shown in Figure 3. These states have
energies closer to the QFL, meaning the Boltzmann ap-
proximation performs poorly. This is exacerbated by
greater disorder [108], as seen in the dependence of the
scaling constant for Gaussian bands (43) on the disorder,
s. Consequently, the diffusion enhancement function, ∆,
predicted by the Gauss-Fermi statistical integral (and the
equivalent GER) quickly diverges from 1 (i.e. from the
value predicted by the Boltzmann approximation and the
CER), as shown in Figure 21. The greater the disorder of
the material (i.e. the larger s is) the more rapid the diver-
gence of ∆ away from 1 as the concentration of electrons
(or holes) is increased [28].

Measurements of the disorder parameter, s, for com-
mon organic PSC transport layer materials taken from
the literature are shown in Table I. Values range from
1.04 to 5.38. The corresponding diffusion enhancement
functions under the generalised Einstein relation are plot-
ted in Figure 4. Even for the material with the least
disorder (P3HT), the GER prediction of ∆ has strongly
diverged from 1 by the time the carrier density has in-
creased to the typical transport layer doping density.
This divergence is far more pronounced for the more
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Material Layer Record PCE / % gc,v / m−3 Ec,v / eV α∗

Inorganic
NiO HTL 20.68 [80] 1.1×1025 [81] -5.41 [82] N/A
TiO2 ETL 24.8 [83] 2×1023 [81] -4.13 [84] N/A
ZnO ETL 20.09 [85] 2.2× 1024 [86] -4.03 [87] N/A
SnO2 ETL 25.2 [88] 4.36× 1024 [89] -3.91 [90] N/A

Organic s
spiro-MeOTAD HTL 25.2 [88] 1× 1026 [91] -5.09 [92] 3.38-4.08 [93–95]
PEDOT:PSS HTL 21.15 [96] 1× 1026 [97] -5.13 [98] 4.09-5.08 [97, 99]

P3HT HTL 23.9 [100] 4.2× 1025 [101] -4.7 [102] 1.04-3.12 [99, 101]
PCBM ETL 21.43 [103] 0.1− 2× 1025 [104–106] -3.95 [107] 2.81-5.38 [104, 105]

TABLE I. Density of states parameters for common PSC transport layer materials. s is the dimensionless width of the Gaussian
DoS, s = σ

kBT
.

disordered materials (such as PEDOT:PSS and PCBM)
where it begins at relatively low carrier concentrations.

V. EFFECTS OF FULL FERMI-DIRAC
STATISTICS ON DEVICE-LEVEL MODELS

As discussed in the previous section, the diffusion en-
hancement predicted by charge transport models based
upon a full description of the charge carrier statistics
(i.e. using a full FD statistical model) is often signifi-
cant in the materials commonly employed as transport
layers for PSCs over the range of carrier densities rel-
evant to device operation. In this section, we examine
the effect that this more complete physical description
of the transport layers has on the predictions of both
steady-state and time-dependent device behaviour. In
order to do this, we augment the widely-used model of
the three-layer planar PSC [2, 12, 13, 19–21, 39, 109],
with a model of carrier transport in the transport layers
based upon full FD statistics (i.e. (20)-(21)), to account
for the fact that carrier densities are sufficiently high that
the standard Boltzmann approximation breaks down in
these layers. We define the statistical integrals as SE in
the conduction band of the ETL and as SH in the valence
band of the HTL, and note that the minority carriers in
the transport layers (i.e. holes in the ETL and electrons
in the HTL) typically occur at such low densities that
they do not significantly affect device behaviour, and so
can be neglected. Since only a single significant carrier
species is modelled in each transport layer, we drop the
subscripts c and v that distinguish between conduction
and valence bands.

The principle change to the standard device model, in
which Boltzmann statistics are assumed accurate for all
carriers, is that electron and hole current densities in the
transport layers are now computed with generalised Ein-
stein relations (GER), via (20)-(21), with an appropriate
statistical model and material parameters. The changes
to the statistical integrals also lead to minor alterations
to the continuity and boundary conditions. These are de-
scribed in more detail in [110] but the full drift-diffusion

model solved here is also stated in Appendix A.
The numerical results presented here are obtained us-

ing a recently released version of the open-source PSC
simulation software, IonMonger [18, 21, 110], which en-
ables the user to simulate a variety of measurement pro-
tocols, including current-voltage sweeps and impedance
spectroscopy. Details of the numerical methods used for
adapting the discretised, non-dimensional charge trans-
port model to account for the GER can be found in [110],
along with a discussion of the challenges of implement-
ing statistical integrals, which are neither analytically in-
vertible nor differentiable, without significantly impact-
ing the computation time.
The charge transport model of a PSC discussed here is

too complex to easily predict how changes to the statisti-
cal models of the transport layers affect the predictions of
the cell’s response to particular experimental protocols,
but appropriate numerical solutions to the model allow
us to investigate these changes on a case by case basis. In
particular, they offer insight into the scenarios in which
the error made by assuming Boltzmann statistics (and
correspondingly the CER) leads to significant error in the
predicted device behaviour. In order to illustrate our hy-
potheses we compute solutions based on a representative
data set for a TiO2/MAPI/Spiro-MeOTAD cell (given in
Appendix B), with transport layer DoS parameters taken
from Table I. We note that, while we construct the pa-
rameter set using material parameters taken from inde-
pendent measurements, simulations using our parameter
set may exhibit differences from the behaviour of a real
device of this form as a consequence of device construc-
tion (e.g. material deposition method and architecture).
The device considered here is intended to be representa-
tive, and a full parameter sweep lies outside the scope of
this work.

A. Steady-state performance

Here the effect of the Boltzmann approximation in
the transport layers on four key performance parame-
ters is investigated by computing numerical solutions to
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FIG. 5. Measured steady state performance parameters of
TiO2/MAPI/Spiro-MeOTAD cells. Red circles were taken
from The Perovskite Database Project [79]. Crosses were ob-
tained through simulations using IonMonger, based on the
parameter set given in Appendix B. The band shapes in the
TiO2 and in the Spiro-MeOTAD were taken to be parabolic
and Gaussian, respectively, using the parameters given in
Table I. Significant differences can be observed between the
predictions made using the Boltzmann approximation (blue
crosses) and full Fermi-Dirac statistics (green crosses).

the drift-diffusion device model.
Steady-state results are shown in Figures 5 and 6, in

which direct comparison is made between the predictions
of four key performance parameters (VOC , JSC , fill factor
(FF), and power conversion efficiency (PCE)) obtained
using full FD statistics in the transport layers (i.e. the
GER), and those obtained using the Boltzmann approx-
imation (i.e. the CER). The short-circuit current (JSC)
shows the least sensitivity to the change in the statistical
model of the transport layer carriers, a consequence of the
low carrier densities in the transport layers at this low
voltage. Conversely, the predicted open-circuit voltage
(VOC) found using Boltzmann statistics is 9.43% greater
than that found using the full statistical models of the
TLs. This is a consequence of the Boltzmann approxi-
mation being far less accurate at open-circuit, where the
large applied voltage leads to large carriers concentra-
tions in the TLs. Combined with an increase in the fill
factor (FF), the increase in VOC leads the model based
on the Boltzmann approximation to significantly over-
estimate the PCE of the cell (by a factor of 27.04%).
As shown in Figure 5, where simulations are compared
to data from the Perovskite Database Project [79], the
simulated steady-state performance parameters obtained

FIG. 6. Sensitivity of key performance parameters to
the Boltzmann approximation in the transport layers of a
TiO2/MAPI/Spiro-MeOTAD cell. Obtained through simu-
lation using IonMonger. The parameter set is listed in Ap-
pendix B. The band shapes in the TiO2 and Spiro-MeOTAD
were parabolic and Gaussian, respectively, with parameters
taken from Table I.

using simulations based on full FD statistics in the trans-
port layers are more representative of the experimen-
tal results found in the literature than those predictions
made using simulations based on Boltzmann statistics for
this particular device configuration.
The importance of these results lies in the fact that,

owing to the difficulty in obtaining accurate estimates
of material properties, many parameters are commonly
fitted by comparing simulations to experiment, for val-
ues such as the short-circuit current and the open-circuit
voltage. Thus, if the model predicts these values incor-
rectly (as seen here), material parameter estimates ob-
tained through fitting will also be incorrect, leading to di-
vergence between fitted parameter values obtained from
the same material using different experimental protocols.
This is likely to create confusion in the field and lead to
difficulty in obtaining reliable and accurate material pa-
rameters estimates.

B. Current–voltage hysteresis

Differences in the predictions of PSC behaviour be-
tween models based on Boltzmann statistics in the TLs
and those based on full FD statistics are not restricted to
steady state behaviour. As shown in Figures 7 and 8, sim-
ulations of J-V hysteresis and impedance spectroscopy
both show significant differences depending on which of
these two modelling assumptions is applied.
A 180mVs−1 scan of the TiO2/MAPI/Spiro-MeOTAD

parameter set shows that the use of Boltzmann statistics
in the transport layers leads not only to a different open-
circuit voltage to that predicted by FD statistics, but also
to qualitative differences in the shape of the hysteresis
curve and the fill factor obtained from each direction of
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FIG. 7. The effect of the Boltzmann approximation vs. full
Fermi-Dirac statistics for current-voltage hysteresis for the
parameter set listed in Appendix B. The scan rates showing
maximum hysteresis factor under the Boltzmann approxima-
tion and Fermi-Dirac statistics are plotted in the top-left and
top-right panels respectively.

the scan. It has long been understood that the observed
performance of a PSC during a current-voltage sweep is
highly influenced by the preconditioning procedure [8],
where the cell is held to equilibrate at a high applied
voltage. Changes to the statistical integrals strongly in-
fluence the preconditioned state of the cell, and thus have
a knock-on effect on the predicted performance observed
during the sweep. Once again, the shape of the hysteresis
curve is highly sensitive to many material parameters and
subtleties of the drift-diffusion model and the effects seen
for this parameter set cannot be assumed to be uniform
across all other parameter sets.

C. Impedance spectroscopy

Current-voltage sweeps constitute only one of many
dynamic characterisation techniques commonly simu-
lated by drift-diffusion models. Another is impedance
spectroscopy (IS), in which the steady state is perturbed
by a small-amplitude oscillating voltage at varying fre-
quencies and the amplitude and phase of the current
response is measured as a function of frequency. This
technique can be used to diagnose performance losses
and degradation as well as probe the timescales on which
the physical processes within the cell operate [13, 111–
113]. Recent additions of FD statistics and an IS simula-
tion capability to IonMonger [110] provide the first PSC
modelling software capable of exploring the interdepen-
dent effects of the two. As shown in Figure 8, predicted

FIG. 8. The effect of the Boltzmann approximation vs. full
Fermi-Dirac statistics on impedance spectra for the parameter
set listed in Appendix B. The DC voltages were 0.3V (top)
and 1.0V (bottom).

impedance spectra are highly sensitive to changes in the
statistical integrals. The discrepancies between the sim-
ulations employing the Boltzmann approximation in the
transport layers and those based on FD statistics in the
transport layers are exacerbated for larger values of the
DC voltage, the value about which the voltage is per-
turbed, and particularly impact the low-frequency arc,
caused by the charging and discharging of the Debye lay-
ers and mediated by the mobile ions in the perovskite
[13].

VI. CONCLUSION

While the Boltzmann approximation (from which the
classical Einstein relation, or CER, is derived) has been
widely employed in semiconductor modelling, it has of-
ten been used without due consideration of the validity
of the approximation in the scenario in which it is be-
ing employed. Specifically, the use of organic materials
to fabricate PSC transport layers, and the high doping
levels in these structures, suggest that the Boltzmann ap-
proximation (22) to the Fermi–Dirac statistical distribu-
tion (9) (and thus also the CER) is frequently inaccurate
in the transport layers. This, in turn, can lead to signif-
icant errors in the predictions made by perovskite solar
cell charge transport models.
Incorporating a full statistical treatment of the charge

carrier dynamics in the transport layers (equivalent to us-
ing the generalised Einstein relation) leads to a density-
dependent diffusion enhancement function, ∆, that is de-
termined by the density of states (DoS) function. For
cases in which the Boltzmann approximation is accurate,
the diffusion enhancement function reduces to ∆ = 1.
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Crucially, however, the function is highly sensitive to the
choice of DoS function. In particular, the region of valid-
ity of the Boltzmann approximation depends sensitively
on the exact DoS employed by the model. Of the common
PSC transport layer materials, disordered organic mate-
rials, which are usually modelled by a Gaussian DoS func-
tion, are those for which the Boltzmann approximation is
least accurate, due to the diffuse nature of the Gaussian.
The accuracy is particularly poor for the materials with
greatest disorder, such as PCBM and PEDOT:PSS.

In order to test the sensitivity of drift-diffusion mod-
els of a typical TiO2/MAPI/Spiro-MeOTAD PSC to
changes in the description of carrier transport in the
transport layers of the device, comparison was made be-
tween predicted device behaviour obtained from (I) a
PSC model in which carrier transport in the transport
layers was described using the Boltzmann approximation
and (II) a PSC model in which full Fermi-Dirac statistics
were employed.

Numerical solutions show that the the full statistical
treatment of carrier transport in the TLs leads to signif-
icantly different predictions of four key steady state per-
formance parameters (VOC , JSC , FF and PCE) in com-
parison to the predictions made by the model in which
carrier transport in the TLs is described by the Boltz-
mann approximation. The most notable is between the
predictions of the PCE, the value of which was overesti-
mated by the model based upon the Boltzmann approxi-
mation by 27%. This leads us to conclude that the steady
state performance of the cell is not well-described by the
standard planar perovskite solar cell model (i.e. one in
which the Boltzmann approximation is employed in the
transport layers). Due to the large number of material
parameters in the PSC model and the difficulty in obtain-
ing accurate estimates of their values, it is common to fit
some parameters to match experimental data, particu-
larly the four performance parameters considered here.
It is clear that fitting these parameters to the standard
model (based on the Boltzmann approximation) can eas-
ily lead to incorrect predictions of these parameters, and
a misleading description of the cell.

In addition to steady state performance, two common
dynamic measurements, namely current-voltage hystere-
sis and impedance spectroscopy, were simulated using
PSC models based on (I) a Boltzmann description of the
transport layers (TLs) and (II) a full Fermi-Dirac descrip-
tion of the TLs. For this representative parameter set,
the model based on the Boltzmann approximation incor-
rectly predicts both the maximum hysteresis factor and
the scan rate at which this maximum appears (Figure
7). Furthermore, the Boltzmann model produces quali-
tative errors in the shape of the J-V curve across a wide

range of physically relevant scan rates. Similar errors
were observed in the Boltzmann model when simulating
impedance spectroscopy, dependent on the DC voltage.
At low voltages, carrier densities in the transport lay-
ers near the perovskite interfaces are lower, meaning the
Boltzmann approximation is more likely to be accurate.
For greater DC voltages, however, carriers in the trans-
port layers accumulate near the perovskite interfaces, af-
fecting the ion vacancy accumulation/depletion occurring
on the perovskite side of the interfaces, and thus the low-
frequency arc on the Nyquist plot that is caused by ion
migration. Recently it has been shown that adopting
an asymptotic approach to solving the charge transport
model, rather than a numerical one, can provide signif-
icant insight into the impedance spectroscopy response
of PSCs [112]. Application of these mathematical meth-
ods to the modified charge transport model presented
here will therefore be the subject of future work, with
the aim of elucidating the exact effect of the Boltzmann
approximation in IS modelling. The numerical simula-
tions conducted here, however, show that the Boltzmann
approximation causes significant errors in predictions of
dynamic device-level behaviour.
As understanding of PSC physics continues to improve,

it is essential that models of their operation also continue
to advance. While PSC drift-diffusion models based on
the standard Boltzmann approximation of charge car-
rier statistics in the transport layers may, in some cases,
be sufficient, their validity cannot be assumed in gen-
eral. In particular, while Boltzmann statistics give a fair
description of charge transport in weakly doped and in-
organic transport layer materials, they provide a much
poorer description of strongly doped and organic trans-
port layer materials. The numerical methods discussed
here, and their implementation in IonMonger, give the
perovskite community access to fast and accurate numer-
ical models incorporating alternative statistical descrip-
tions of charge carrier behaviour in the transport lay-
ers that enable simulations of enhanced predictive power,
across a wide range of scenarios, which are not solely lim-
ited to the steady-state but include current-voltage and
impedance spectroscopy measurements.
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Appendix A: The full charge transport model

Here we list the full charge transport model of a three-layer perovskite solar cell. Equations directly modified to
account for full Fermi-Dirac statistics are highlighted in teal. This charge transport model was presented in [110].

FIG. 9. Schematic of the three-layer planar drift-diffusion model of a PSC.

a. Perovskite absorber layer (0 < x < b)

∂P

∂t
+

∂FP

∂x
= 0 FP = −DI

(
∂P

∂x
+

P

VT

∂ϕ

∂x

)
(A1)

∂n

∂t
− 1

q

∂jn

∂x
= G(x, t)−R(n, p) jn = qDn

(
∂n

∂x
− n

VT

∂ϕ

∂x

)
(A2)

∂p

∂t
+

1

q

∂jp

∂x
= G(x, t)−R(n, p) jp = −qDp

(
∂p

∂x
+

p

VT

∂ϕ

∂x

)
(A3)

∂2ϕ

∂x2
=

q

εA
(N0 − P + n− p) (A4)

where G and R are the generation and recombination rates.
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b. Electron transport layer (−bE < x < 0)
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c. Hole transport layer (b < x < b+ bH)
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d. Boundary conditions
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e. Continuity conditions
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where
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Appendix B: Parameter set
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Symbol Name Values Unit Ref.
T Temperature 298 K
- Light entering through ETL -

Perovskite (MAPI)
b Perovskite width 400 nm
εp Permittivity 24.1 ε0 [114]
α Absorption coefficient 1.3× 107 m−1 [115]
gc Conduction band effective DoS 8.1×1024 m−3 [114]
gv Valence band effective DoS 5.8× 1024 m−3 [114]
Ec Conduction band edge -3.7 eV [116]
Ev Valence band edge -5.4 eV [116]
Dn Electron diffusivity 1.7×10−4 m2s−1 [117]
Dp Hole diffusivity 1.7×10−4 m2s−1 [117]
N0 Mean anion vacancy density 1.6× 1025 m−3 [118]
DP Anion vacancy diffusivity 1×10−17 m2s−1 [9]

ETL (TiO2)

gEc Conduction band effective DoS 2× 1023 m−3 [81]
EE

f Equilibrium electron QFL -4.19 eV [119]
DE Electron diffusivity 1.3× 10−5 m2s−1 [120]
εE Permittivity 10 ε0
bE ETL width 100 nm [121]
EE

c Conduction band edge -4.13 eV [84]

HTL (spiro-MeOTAD)

gHv Valence band effective DoS 1× 1026 m−3 [91]
EH

f Equilibrium hole QFL -4.97 eV
DH Hole diffusivity 1× 10−6 m2s−1 [120]
εH Permittivity 3 ε0
bH HTL width 200 nm [121]
EH

v Valence band edge -5.1 eV [92]

TABLE II. Material parameters for a TiO2/MAPI/spiro-MeOTAD cell. The necessary parameters to model non-Boltzmann
statistics in the transport layers are shown in Table I.

Symbol Name Values Unit

Perovskite bulk
β Bi-molecular rate constant 1.5×10−14 m3s−1

τp Hole SRH psuedo-lifetime 3×10−7 s
τn Electron SRH psuedo-lifetime 3×10−7 s
An Electron Auger coefficient 0 m6s−1

Ap Hole Auger coefficient 0 m6s−1

ETL/perovskite interface
νE
p Hole recombination velocity 10 ms−1

νE
n Electron recombination velocity 0 105 ms−1

βE Bi-molecular rate constant 0 m4s−1

HTL/perovskite interface
νH
p Hole recombination velocity 105 ms−1

νH
n Electron recombination velocity 0.1 ms−1

βH Bi-molecular rate constant 0 m4s−1

TABLE III. Recombination parameters for a typical TiO2/MAPI/spiro-MeOTAD cell.
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