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Abstract
We present a drift–diffusion model of a perovskite solar cell (PSC) in which carrier transport in the
charge transport layers (TLs) is not based on the Boltzmann approximation to the Fermi–Dirac
(FD) statistical distribution, in contrast to previously studied models. At sufficiently high carrier
densities the Boltzmann approximation breaks down and the precise form of the density of states
function (often assumed to be parabolic) has a significant influence on carrier transport. In
particular, parabolic, Kane and Gaussian models of the density of states are discussed in depth and
it is shown that the discrepancies between the Boltzmann approximation and the full FD statistical
model are particularly marked for the Gaussian model, which is typically used to describe organic
semiconducting TLs. Comparison is made between full device models, using parameter values
taken from the literature, in which carrier motion in the TLs is described using (I) the full FD
statistical model and (II) the Boltzmann approximation. For a representative TiO2/MAPI/Spiro
device the behaviour of the PSC predicted by the Boltzmann-based model shows significant
differences compared to that predicted by the FD-based model. This holds both at steady-state,
where the Boltzmann treatment overestimates the power conversion efficiency by a factor of 27%,
compared to the FD treatment, and in dynamic simulations of current–voltage hysteresis and
electrochemical impedance spectroscopy. This suggests that the standard approach, in which
carrier transport in the TLs is modelled based on the Boltzmann approximation, is inadequate.
Furthermore, we show that the full FD treatment gives a more accurate representation of the
steady-state performance, compared to the standard Boltzmann treatment, as measured against
experimental data reported in the literature for typical TiO2/MAPI/Spiro devices.

1. Introduction

Over the past decade, perovskite solar cells (PSCs) have seen rapid developments, in both efficiency and
stability, to an extent that they are now viewed as a realistic prospective next-generation photovoltaic
technology. However despite the impressive efficiency of modern PSCs (the current record for certified
power conversion efficiency (PCE) is 25.7% [1]), challenges remain that must be overcome to enable
large-scale commercial manufacture of perovskite solar panels, the chief amongst these being their relatively
poor long-term stability and the presence of lead in the perovskite structure. An increased understanding of
the fundamental materials and device physics governing their properties and performance will be key to the
further development of PSC technology. In this context, modelling plays a central role in elucidating the
basic physical processes underlying the performance of PSCs. In particular, drift–diffusion modelling, which
provides a macroscopic description of an entire cell, and directly links to the properties of the materials from
which it is constructed, has proven to be a powerful tool to understand PSC device physics [2–4]. PSCs
typically use a planar architecture in which a perovskite absorber layer is sandwiched between a highly
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n-doped electron transport layer (ETL) and a highly p-doped hole transport layer (HTL). While some
drift–diffusion models comprising only electrons and holes continue to be published [5–7], it has repeatedly
been shown that migration of ion vacancies is not only present in the perovskite layer but vital to
understanding their operation [8–10]. These simplistic models, which omit ion migration, are incapable of
replicating the dynamic current–voltage or impedance responses of PSCs [2, 8, 11–14]. The transport layers
(TLs) are chosen such that light can enter through one of them, either the ETL (standard architecture) [15]
or the HTL (inverted architecture) [16]. While early drift–diffusion models of PSCs omitted the TLs,
focusing on the interplay between electronic and ionic conduction in the perovskite layer [8, 17–19], state of
the art models include an explicit description of all three layers [12, 20–22], enabling a number of studies of
the important role played by the TLs, and their interplay with the perovskite layer. Such studies have included
investigations of the role of intrinsic materials properties, such as band alignment, carrier mobility [23] and
dielectric constants [20], as well as extrinsic properties such as layer thickness [24] and doping densities [20],
in determining both steady state [23, 24] and transient [20] cell characteristics.

As with any mathematical model, there are a number of assumptions and approximations that are made
in the derivation of the drift–diffusion equations (see, e.g. [25]). In particular, and as will be discussed in
detail in section 2, it is typically assumed that the diffusion coefficient (D) is related to the mobility (µ) via
the classical Einstein relation (CER):

qD= µkBT;

this assumption is equivalent to the assumption that the carrier density is sufficiently low that the FD
statistical distribution is well approximated by a Boltzmann distribution (see section 2). When this is not the
case, the generalised Einstein relation (GER) must be used instead [26, 27]:

qDn = µnn
∂Efn
∂n

, qDp =−µpp
∂Efp
∂p

,

in which Efn and Efp are the electron and hole quasi-Fermi levels, respectively. This leads to more complex
versions of the drift–diffusion equations, the functional forms of which depend on the density of states of the
material, and which are, in general, no longer analytic. Physically, this results in an enhancement of the
diffusion coefficient relative to the value from the CER, that increases with the local carrier density [27, 28].
Additionally, it is often assumed implicitly that the mobilities (µn and µp) do not depend on the carrier
density. Some studies [29, 30] contradict this but the functional form of the dependence of mobility on
carrier density is still debated [31]. Henceforth, for simplicity, we treat the mobilities as constants.

Tessler and Vaynzof have investigated the validity of the Boltzmann approximation in describing
electronic carriers in the perovskite layer of a PSC, assuming a density of states function derived from a
parabolic dispersion model, and concluded that, while the approximation is warranted in many scenarios, it
can lead to appreciable errors in others [2]. However, conditions under which it is valid are likely to be more
limited for the TLs than the perovskite layer for at least the following three reasons: (i) while the perovskite
layer is undoped, the TLs tend to be heavily doped in order to increase their equilibrium carrier density (and
hence also conductivity); (ii) even if the equilibrium carrier density in the bulk of the TL is sufficiently low
for the Boltzmann approximation to be valid, much higher carrier densities can arise in the regions close to
the interfaces between layers [20], or when the device is out of equilibrium; and (iii) as will be discussed in
section 3, the range of carrier densities for which the Boltzmann approximation is valid depends strongly on
the density of states (DoS) function of the material in question. The physical processes occurring at the
material interfaces between the perovskite and the TLs have been shown to be highly important in explaining
the dynamic behaviour of the cell, such as current–voltage hysteresis [32–35] and electrochemical impedance
spectroscopy (IS) [32]. Point (ii) therefore leads us to conjecture that models based on the Boltzmann
approximation in the TLs are not always appropriate when investigating the dynamic behaviour of PSCs.
With reference to point (iii), disordered organic semiconductors, which are often used as one of the TLs in
PSCs, are best described by a Gaussian DoS [36, 37], which is only accurately approximated by the
Boltzmann distribution in a far smaller domain than inorganic materials with band structures described by a
parabolic DoS [38]. The potential inaccuracies arising from the assumption of the CER have also been
recognised by Abdel et al [39, 40] but only addressed for ion vacancies in the perovskite layer, rather than the
carriers in the TLs.

In light of the above discussion, the purpose of this contribution is to investigate the effects of full
Fermi–Dirac (FD) statistics in drift–diffusion models of PSC devices, with a particular focus on the TLs. We
note that the three-layer drift–diffusion model is sufficiently complex that it is difficult to predict, without
the aid of a full numerical solution of the model, exactly how errors associated with employing the
Boltzmann approximation in one of the TLs might manifest themselves in the predicted device behaviour in
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any particular scenario. For example, the accumulation of carriers near the perovskite interface is dependent
on the distribution of ion vacancies in the perovskite, which itself is dependent on many material parameters
as well as external conditions, such as temperature, light intensity, and applied voltage [20]. Here we shall
present example numerical results for a typical three layer device. In particular, we compare the prediction
made using a model in which carrier transport in the TLs is described using full FD statistics to one in which
carrier transport in the TLs is described using the Boltzmann approximation. Since we consider only a single
typical device there remains room for further investigation for other device configurations.

The remainder of the paper is organised as follows. We begin, in section 2 by discussing the
drift-diffusion equations in which carrier transport is modelled using (i) the Boltzmann approximation and
(ii) full FD statistics. We further show that the application of full FD statistics causes a density-dependent
diffusivity enhancement (equivalent to the GER), the form of which is determined by the DoS function.
Then, in section 3, we consider the form of the DoS function for both ordered inorganic and disordered
organic materials, and show that the choice of DoS function must be carefully considered in scenarios for
which the Boltzmann approximation does not hold. The range of carrier densities for which Boltzmann
statistics accurately approximate full FD statistics is discussed for a variety of relevant TL materials in
section 4. In section 5, comparisons are made between the predictions of a device-level model of a PSC in
which charge carrier motion in the TLs is modelled by (i) the Boltzmann approximation and (ii) full FD
statistics. The results obtained using these two different descriptions of the TLs are compared for both steady
state performance and transient measurements, namely current–voltage hysteresis and IS. Finally, we draw
our conclusions in section 6.

2. The drift–diffusion equations and the GER

The basis of the drift–diffusion model is a set of conservation equations, one for each particle species, in
which the change in the particle number density is driven by the net flux into a region and contributions
from volume source and sink terms. In most photovoltaic devices the only particle species modelled by the
drift–diffusion equations are the charge carriers, i.e. electrons in the conduction band (volume density n)
and holes in the valence band (volume density p). The source and sink terms in the corresponding
conservation equations model photogeneration and recombination, respectively. In halide perovskites it is
also necessary to model the transport of one or more mobile point defect species, such as charged anion or
cation vacancies [8]. However, it is usually assumed that any defects/dopants in the charge TLs, which are
our focus here, are static and homogeneously distributed.

In one dimension, the case to which we restrict ourselves here, the electron and hole conservation
equations take the form

∂n

∂t
=

1

q

∂jn

∂x
+G(x, t)−R(n,p), (1a)

∂p

∂t
=−1

q

∂jp

∂x
+G(x, t)−R(n,p), (1b)

in which G(x, t) and R(n,p) are the rates of generation and recombination of electron–hole pairs per unit
volume, respectively, and jn and jp are the electron and hole current densities, respectively. The latter are
calculated from the carrier densities and the quasi-Fermi levels via the relations

jn = µnn
∂Efn
∂x

, (2a)

jp = µpp
∂Efp
∂x

, (2b)

where µn and µp are the electron and hole mobilities, while Efn and Efp are the quasi-Fermi levels of the
electrons in the conduction band and holes in the valence band, respectively. The implicit assumption made
in using quasi-Fermi levels to characterise the state of the semiconductor is that the valence band electrons
are (locally) in thermal equilibrium with each other and that the conduction band electrons are (locally) in
thermal equilibrium with each other, but that valence and conduction band electrons are not necessarily in
thermal equilibrium with each other. Constitutive equations that relate the quasi-Fermi levels to n, p and ϕ,
and which derive from the statistical distributions of the electrons in the valence and conduction bands,
must also be specified. The system of drift-diffusion equations is closed by Poisson’s equation for the electric
potential ϕ,

∂2ϕ

∂x2
=−ρ

ε
, (3)
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where ρ= q(p− n) is the net charge density and ε is the permittivity of the material.
The quasi-Fermi levels depend on the carrier density and the electric potential as follows:

Efn = Fn(n,T)− qϕ, (4a)

Efp = Fp(p,T)− qϕ, (4b)

where Fn,p are functions that depend on both the band structure and the statistical distribution, the forms of
which shall be derived below. The current densities (2) can thus be split into a diffusion term and a drift
term, as follows:

jn = µnn
∂Efn
∂n

∂n

∂x
− qµnn

∂ϕ

∂x
, (5a)

jp = µpp
∂Efp
∂p

∂p

∂x
− qµpp

∂ϕ

∂x
. (5b)

We define the chemical diffusivities of electrons and holes, respectively, according to Fick’s law,

qDn = µnn
∂Efn
∂n

, (6a)

qDp =−µpp
∂Efp
∂p

, (6b)

where the change in sign between the electron and hole diffusivities is due to the sign of their respective
charges. This result, referred to as the GER [26, 27], allows the current equations to be written as

jn = qDn
∂n

∂x
− qµnn

∂ϕ

∂x
, (7a)

jp =−qDp
∂p

∂x
− qµpp

∂ϕ

∂x
. (7b)

When the conduction electrons and valence holes satisfy Boltzmann statistics (as is frequently assumed in
semiconductor modelling [2, 41–45]), the dependencies of the QFLs on carrier density (i.e. the Fn,p
functions in equations (4)) are logarithmic (a result that will be derived in the following sections). In such
scenarios it is straightforward to show that the GER is replaced by the CER,

qDn,p = µn,pkBT, (8)

in which the ratio of diffusivity to mobility is constant, i.e. not dependent on the local carrier concentration.
While this approximation greatly simplifies the model, the accuracy of the CER is often poor (as will be
shown). In such scenarios the full GER is required.

2.1. Statistical integrals and the Fermi level
In order to determine equations for the electron and hole current currents from (2), expressions for the
quasi-Fermi levels in terms of the carrier densities are required. In thermal equilibrium, the probability (f )
that an electronic state with energy E is occupied in a material with Fermi level Ef is given by the FD
statistical distribution,

f(E;Ef) =
1

exp
(

E−Ef
kBT

)
+ 1

(9)

where T is temperature and kB is Boltzmann’s constant. The density (per unit volume) of electrons lying in
the conduction band with energies between E and E+ dE is therefore given by the product of the FD
distribution, f, and the DoS (per unit volume), or DoS, ĝ(E)dE. The corresponding density of holes in the
valence band is given by the product of (1− f) with the DoS in the valence band ĝ(E)dE.

Under the assumption that the material is a semiconductor, we first split the DoS ĝ(E) into that pertaining
to the valence band ĝv(E) and that pertaining to the conduction band ĝc(E) (see figure 1) and write

ĝ(E) = ĝv(E)+ ĝc(E). (10)

4
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Figure 1. The filling of electron states. The solid black line shows the density of states (DoS) function ĝ(E), solid coloured lines
show the density of filled states per unit energy (specifically, ĝ(E)f(E;Efn ) for conduction electrons and ĝ(E)[1− f(E;Efp )] for
valence holes), and shaded areas show the total carrier density, integrated over all energies. Here the electron QFL is closer to the
band edge than the hole QFL, meaning a higher density of electrons than holes.

Figure 2. The filling of electron states in (top) parabolic and (bottom) Gaussian DoS functions.

It is usually assumed that the bands are perfectly distinct, meaning there exists a finite range of energies
between the highest occupied state and the lowest unoccupied state at absolute zero in which the DoS is zero.
However, in the case of organic semiconductors the bands do not have well-defined edges (see figure 2) and
this can lead to definitions of ĝv(E) and ĝc(E) which are convenient, but for which there is some overlap of
the tails of both functions. We assume that the bands have sufficient separation that any overlap in the DoS
functions is negligible and note that any material that violates this would be a poor semiconductor. The total
electron and hole densities (per unit volume) are thus

n=

ˆ ∞

−∞
f(E;Efn)ĝc(E)dE, (11a)

p=

ˆ ∞

−∞

[
1− f(E;Efp)

]
ĝv(E)dE, (11b)

where the Fermi level Ef in the FD statistical distribution (9) is replaced by the QFL in the conduction/
valence band in the expression for the electron/hole density.

For convenience, it is also assumed that the conduction and valence band DoS functions can each be cast
in terms of (at least) two dimensional constants, an effective DoS (gc or gv) and reference energies Ec or Ev,
corresponding to the conduction and valence band edges (in the case of inorganic semiconductors) and to
the LUMO and HOMO (in the case of organic semiconductors). The dimensionless functions N̂c and N̂v are
used to describe the general shape of the DoS function in the vicinity of the reference energies Ec and Ev,
respectively. This allows us to write:

ĝc(E) =
gc
kBT

N̂c

(
E− Ec
kBT

)
, (12a)

ĝv(E) =
gv
kBT

N̂v

(
−E− Ev

kBT

)
, (12b)
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where N̂c and N̂v are here referred to as reduced densities of states. These reduced DoS functions can be
obtained from the DoS functions defined in (10) by inverting (12) to obtain

N̂c(η) =
kBT

gc
ĝc (Ec + kBTη) , (13a)

N̂v(η) =
kBT

gv
ĝv (Ev − kBTη) , (13b)

in which η can be interpreted as a dimensionless state energy level. With these DoS functions, and
substituting the FD distribution (9), the electron and hole densities (11) become

n= gc

ˆ ∞

−∞

1

kBT

N̂c

(
E−Ec
kBT

)
1+ exp

(
E−Efn
kBT

)dE, (14a)

p= gv

ˆ ∞

−∞

1

kBT

N̂v

(
− E−Ev

kBT

)
1+ exp

(
Efp−E

kBT

)dE. (14b)

Carrier densities and quasi-Fermi levels are therefore related by an integral dependent on the reduced
DoS. Specifically, the carrier densities are given by the expressions

n= gcSc

(
Efn − Ec
kBT

)
, (15a)

p= gvSv

(
−
Efp − Ev
kBT

)
, (15b)

where the statistical integrals, Sc and Sv, are the functions defined by the relations

Sc(ξ) =

ˆ ∞

−∞

N̂c(η)

1+ exp(η− ξ)
dη, (16a)

Sv(ξ) =

ˆ ∞

−∞

N̂v(η)

1+ exp(η− ξ)
dη, (16b)

in which ξ may be interpreted as a dimensionless QFL. We note that, in practice, ξ will almost always be
negative, meaning both QFLs lie between the two reference energies, Ec and Ev, in the band gap. We invert
these expressions (15) for the carrier densities to obtain expressions for the QFLs in terms of the densities.
Substituting for the conduction band and valence band reference energies using Ec =−Ea − qϕ and
Ev =−Ea − Eg − qϕ, leads to the following expressions for the QFLs:

Efn = kBTS−1
c

(
n

gc

)
− Ea − qϕ, (17)

Efp =−kBTS−1
v

(
p

gv

)
− Ea − Eg − qϕ, (18)

where S−1 is the inverse of S . Here Ea denotes the electron affinity, the difference between the conduction
band reference energy and the vacuum level, and Eg = Ec − Ev is the gap between the two bands’ reference
energies. Note that energies are defined relative to the vacuum level at E= 0 eV. In turn, the diffusion
coefficients can be calculated as functions of mobility and carrier density from the GERs (6):

qDn = µnkBTn
∂

∂n

(
S−1
c

(
n

gc

))
, (19a)

qDp = µpkBTp
∂

∂p

(
S−1
v

(
p

gv

))
. (19b)

Equivalently, the expressions for the QFLs (17)–(18) can be substituted directly into the current density
equations (2) to obtain the following expressions for the currents:

jn = µnkBT

(
∆n(n)

∂n

∂x
− qn

kBT

∂ϕ

∂x

)
, (20a)

6
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jp =−µpkBT

(
∆p(p)

∂p

∂x
+

qp

kBT

∂ϕ

∂x

)
, (20b)

in which

∆n (n) = n
∂

∂n

(
S−1
c

(
n

gc

))
, (21a)

∆p (p) = p
∂

∂p

(
S−1
v

(
p

gv

))
(21b)

are carrier density-dependent diffusion enhancement functions that approach 1 in the limit of low carrier
density [46–50], as will be shown below.

2.2. The Boltzmann approximation and the CER
It is well known that the FD distribution (9) approaches the Boltzmann distribution,

f(E;Ef)∼ exp

(
−E− Ef

kBT

)
, (22)

for energies significantly greater than the Fermi level, (E− Ef)/kBT≫ 1. Thus, for Fermi energies sufficiently
far away from the reference energy of the DoS, the FD distribution (9) in the statistical integral can be
approximated by a Boltzmann distribution (22), and the statistical integral (16) becomes

S(ξ)≈
ˆ ∞

−∞
N̂(η)exp(ξ − η)dη, (23)

which can be evaluated as

S(ξ)≈ Aexp(ξ), (24)

where

A=

ˆ ∞

−∞
N̂(η)exp(−η)dη (25)

is a scaling constant determined by the reduced DoS, which can readily be reabsorbed into an effective DoS
constant. Specifically, this scaling constant is large if there is a high DoS at energies below the reference
energy, i.e. the DoS has a tail, decaying into the band gap. This approximation, often referred to as the
Boltzmann approximation, is valid when the QFL lies far inside the band gap, i.e. ξ ≪−1.

Thus, Boltzmann distributed carriers have an exponential statistical integral, regardless of DoS function,
with inverse S−1(x) = ln( x

A ). This function can be differentiated exactly, leading to

∂

∂n

(
S−1
c

(
n

gc

))
=

1

n
, (26a)

∂

∂p

(
S−1
v

(
p

gv

))
=

1

p
, (26b)

and the diffusion enhancement functions (21) therefore become∆≡ 1, thus recovering the CER from the
generalised form.

This result is independent of the value of the constant A. The choice of DoS function is therefore
unimportant when the Boltzmann approximation holds. If the approximation does not hold, however, the
functional form of the DoS becomes significant and must be carefully considered. Furthermore, the choice of
DoS affects the domain of carrier densities for which the Boltzmann approximation does hold, as will be
discussed in section 4.

7
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3. DoS functions and statistical integrals

A number of different materials have been used as TLs in PSCs, both inorganic and organic. Charge carrier
conduction occurs via different basic mechanisms in the two classes of material (viz. inorganic and organic),
which, in the present context, is important because it determines the model for the DoS that is appropriate
for a given TL material.

Inorganic semiconductors are typically (poly)crystalline with electrons inhabiting delocalised Bloch
(travelling) wave states, and the DoS is derived from the (quantum mechanical) dispersion relations of the
bands of states. In contrast, electrons in organic materials occupy localised molecular orbitals, and their
motion occurs via thermally activated hopping between molecules. In the latter case, a continuous DoS
function arises from the (classical) disorder in the molecular arrangements, which causes variations in the
energy of the molecular orbitals4.

As we shall see, in the present context the most important distinction between the two scenarios is that
the DoS in a crystalline (inorganic, in this case) material has a well defined minimum, while this is not the
case for the amorphous (organic) materials. In this section, we will consider appropriate choices of the DoS
function for both crystalline inorganic and amorphous organic materials.

3.1. Crystalline inorganic materials—Parabolic and simplified Kane models
As mentioned above, the dispersion relation in an inorganic material has a well defined minimum and
maximum. The energy (E) of an electron in a state with wavevector (k) near to the conduction band
minimum (with energy Ec and wavevector kc) can be approximated by an expansion in powers of |k− kc|
(see for example [27, 55]). Furthermore, we assume the band structure to be isotropic about this minimum,
meaning the expansion depends only on the magnitude k= |k− kc|, so that

E(k) = Ec + k
∂E

∂k

∣∣∣
k=0

+
k2

2

∂2E

∂k2

∣∣∣
k=0

+O(k3). (27)

As k= 0 is the point at which the conduction band has a minimum, the first derivative in this expansion is
necessarily zero. Furthermore, on defining the conduction band effective mass by

m∗
c =

ℏ2
∂2E
∂k2

∣∣
k=0

, (28)

the following expression for the electron energy is obtained:

E− Ec =
ℏ2

2m∗
c

k2. (29a)

This is referred to as the parabolic band approximation [55]. Similarly, the dispersion relation in the vicinity
of the valence band maximum is

E− Ev =− ℏ2

2m∗
v

k2. (29b)

Note that this approximation is based upon a band structure with well-defined valence and conduction
band edges that is not found in disordered systems, hence its use is limited to crystalline inorganic materials.
The DoS function is then derived according to [27]

g(E) =
1

π2
k2
dk

dE
(30)

to obtain the DoS functions (as defined in (10)),

ĝc(E) =
2gc√
π

(
1

kBT

) 3
2 √

E− Ec for E> Ec, (31a)

4 The scenarios described here are, of course, idealisations. Both organic and inorganic materials can exhibit varying degrees of disorder,
and intermediate or mixed modes of transport and DoS functions [51–54].
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near the conduction band minimum, and

ĝv(E) =
2gv√
π

(
1

kBT

) 3
2 √

Ev − E for E< Ev, (31b)

near the valence band maximum. Thus the reduced DoS functions (N̂c and N̂v, as defined in (13)) have the
same form, i.e.

N̂(η) =

{
0 η < 0
2√
π

√
η η ⩾ 0.

(32)

The statistical integral corresponding to this reduced DoS function is Sc,v(ξ) = F(ξ), where F follows
from (16), and is

F(ξ) =

ˆ ∞

0

2√
π

√
η

1+ exp(η− ξ)
dη, (33)

and is referred to as the Fermi–Dirac integral5.
Further away from the band extrema, the parabolic approximation becomes increasingly inaccurate.

States further from the band edge can be modelled by the simplified form of Kane’s model for dispersion in
III–V semiconductors [57–59], in which (29a) and (29b) are replaced by

(E− Ec)(1+αc(E− Ec)) =
ℏ2

2m∗
c

k2 (34a)

(E− Ev)(1−αv(E− Ev)) =− ℏ2

2m∗
c

k2 (34b)

where αc and αv are two parameters that determine the degree of non-parabolicity. We note that the Kane
model reduces to the parabolic model in the limit that α goes to zero. Once again, the DoS functions can be
derived from (30) to obtain

ĝc(E) =
2gc√
π

(
1

kBT

) 3
2 √

(E− Ec)(1+αc(E− Ec))(1+ 2αc(E− Ec)) , (35a)

ĝv(E) =
2gv√
π

(
1

kBT

) 3
2 √

(Ev − E)(1+αc(Ev − E))(1+ 2αc(Ev − E)) . (35b)

These Kane DoS functions lead to an altered reduced DoS function taking the place of (32):

N̂(η) =

{
0 η < 0
2√
π

√
η(1+α∗η)(1+ 2α∗η) η ⩾ 0,

(36)

where α∗ = αkBT is the dimensionless non-parabolicity parameter. The statistical integrals for
non-parabolic bands are therefore Sc(ξ) =K(ξ;α∗

c ) for conduction electrons and Sv(ξ) =K(ξ;α∗
v ) for

valence holes, where K (which follows from (16)) is

K(ξ ;α∗) =

ˆ ∞

0

2√
π

√
η(1+α∗η)(1+ 2α∗η)

1+ exp(η− ξ)
dη, (37)

and is referred to here as the Kane–Fermi integral. The non-parabolic DoS function (including the parabolic
limit α→ 0) and the resulting Kane–Fermi integral are plotted in figure 3. We note once again that the Kane
model reduces to the parabolic model in the limit that α∗ → 0, and that therefore the Kane–Fermi integral
approaches the FD integral in the same limit,

lim
α∗→0

K(ξ ;α∗) = F(ξ). (38)

5 Specifically, this is the Fermi–Dirac integral of order 1/2 [56]. Note that some definitions omit the prefactor.
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Figure 3. Reduced densities of state (top) and statistical integrals (bottom) derived from the simplified Kane dispersion (left) and
Gaussian disorder (right) models. Solid lines in the bottom plots correspond to full FD distributions and dashed lines to
Boltzmann distributions. Here, F ,K, and G denote the Fermi–Dirac (33), Kane–Fermi (37), and Gauss–Fermi (41) integrals, α∗

is the dimensionless non-parabolicity parameter of the Kane model and s is the dimensionless standard deviation of the Gaussian.

3.2. Amorphous organic materials—Gaussian model
The discrete transport sites in disordered organic materials are typically modelled by Gaussian DoS functions
[36, 38], as represented in figure 2(b), of the form

ĝc(E) =
gc

σc
√
2π

exp

(
−1

2

(
E− Ec
σc

)2
)
, (39a)

ĝv(E) =
gv

σv
√
2π

exp

(
−1

2

(
Ev − E

σv

)2
)
, (39b)

where the degree of disorder is represented by the standard deviation, σ. Once again the reduced DoS
functions (N̂c and N̂v) can be obtained using (13) and have the form

N̂(η, s) =
1

s
√
2π

exp

(
−1

2

(η
s

)2)
, (40)

where s= σ
kBT

is the dimensionless disorder parameter, which in general differs between the ‘conduction

states’ (for which the reduced DoS is N̂(η; sc) and and ‘valence states’ (for which the reduced DoS is N̂(η; sv).
The crucial difference from the parabolic model is that the Gaussian band has no defined edge, meaning the
reference energies Ec and Ev are now the band centres, the LUMO and HOMO energies, respectively. The
statistical integrals (16) resulting from the Gaussian DoS are Sc(ξ) = G(ξ; sc) for conduction electrons and
Sv(ξ) = G(ξ; sv) for valence holes, where G follows from (16):

G(ξ ; s) = 1

s
√
2π

ˆ ∞

−∞

exp
(
− 1

2

(
η
s

)2)
1+ exp(η− ξ)

dη, (41)
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and is referred to as the Gauss–Fermi integral [60]. The Gaussian DoS function and the resulting
Gauss–Fermi integral are plotted in figure 3. Note that greater standard deviation effectively shifts the onset
of the band further away from the reference energy, resulting in a shift in the statistical integral.

4. Accuracy of the Boltzmann approximation for common TLmaterials

As discussed in section 2.2, the CER is recovered from the general Einstein relation (GER) when carrier
densities are sufficiently low so that the FD distribution (9) can be approximated by the Boltzmann
distribution (22). Under this approximation, the statistical integrals take the form

S(ξ)≈ Aexp(ξ), (24 repeated)

where A is some constant determined by the functional form of the reduced DoS (25). For the Kane
model (36), this constant is

A=
1√
πα∗

e
1

2α∗ K2

(
1

2α∗

)
(42)

where K2 is the second order modified Bessel function of the second kind (note that in the limit α∗ → 0, the
band becomes perfectly parabolic and A→ 1). The corresponding result in the Gaussian band model (40) is

A= exp

(
s2

2

)
. (43)

Notably, the CER is unaffected by the value of this constant, meaning that the choice of DoS is
unimportant when the Boltzmann approximation holds. However, the functional form of the DoS does
significantly affect the range of carrier densities in which the Boltzmann approximation holds. Furthermore,
as the statistical integrals are not, in general, analytically invertible, the validity of the Boltzmann
approximation for each band model usually has to be investigated numerically. In what follows, we conduct
such an investigation for a number of different TL materials. In particular, we compute the diffusion
enhancement factor∆ for some of the more commonly used TL materials in PSCs, noting that a value of∆
close to 1 implies that both the CER and the Boltzmann approximation accurately model the material’s
charge transport properties.

We consider the following inorganic TL materials: TiO2, ZnO and SnO2 (for the ETL) [61–65], and NiO
(for the HTL) [66, 67]. In addition, we consider the following organic TL materials: spiro-MeOTAD [68, 69],
PEDOT:PSS [70–72] and P3HT [73, 74] (for the HTL), and PCBM [75, 76] (for the ETL). More
comprehensive lists of TL materials can be found in [77, 78] or through the Perovskite Database Project [79].
The relevant parameters for these TL materials, taken from the literature, are shown in table 1. We note that
measurements of band nonparabolicity parameters in the literature are rare and, to the authors’ knowledge,
have not been reported for these materials, possibly because oxides are typically used as insulators in
semiconductor applications. In the absence of measured values for inorganic TL materials, their bands will
be assumed to be perfectly parabolic (i.e. α∗ = 0).

It is generally agreed that the Boltzmann approximation is sufficiently accurate for carriers in parabolic
bands when the QFL is at least three thermal voltages from the band edge (ξ <−3), corresponding to carrier
concentrations less than 0.05gc,v. At this carrier density, the diffusion enhancement function,∆, computed
from from full FD statistics (and the GER), is approximately 1.018 and so is within 2% of the value given by
the Boltzmann approximation (and the CER). For ξ >−3, however, the Boltzmann approximation to the
FD integral begins to overestimate the carrier density, effectively allowing multiple carriers to occupy the
same low-energy states. This can be seen in figure 3, where the FD integral is plotted with its Boltzmann
approximation. The result is that the diffusion enhancement rapidly diverges from 1 as the carrier density
exceeds 0.05gc,v, as shown in figure 4.

Perhaps unexpectedly, the Boltzmann approximation to the Kane–Fermi integral is accurate over a wider
range of densities for greater nonparabolicity. This is because the form of the reduced DoS means
nonparabolicity increases the density of higher energy states, far away from the QFL, for the same effective
DoS (shown in figure 3). Despite this, the deviation is minor and the CER can be considered accurate in the
same domain as for perfectly parabolic bands.

Gaussian bands possess a tail of states extending into the band gap, as shown in figure 3. These states have
energies closer to the QFL, meaning the Boltzmann approximation performs poorly. This is exacerbated by
greater disorder [108], as seen in the dependence of the scaling constant for Gaussian bands (43) on the
disorder, s. Consequently, the diffusion enhancement function,∆, predicted by the Gauss-Fermi statistical
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Figure 4. Diffusion enhancement functions according to the generalised Einstein relation for (top) inorganic and (bottom)
organic transport layer materials.∆ is (21a) for ETL materials and (21b) for HTL materials. Similarly, carrier density is n for ETL
materials and p for HTL materials. Parameters taken from table 1.

Table 1. Density of states parameters for common PSC transport layer materials. s is the dimensionless width of the Gaussian DoS,
s= σ

kBT
.

Material Layer Record PCE (%) gc,v (m
−3) Ec,v (eV) α∗

Inorganic
NiO HTL 20.68 [80] 1.1×1025 [81] −5.41 [82] N/A
TiO2 ETL 24.8 [83] 2×1023 [81] −4.13 [84] N/A
ZnO ETL 20.09 [85] 2.2× 1024 [86] −4.03 [87] N/A
SnO2 ETL 25.2 [88] 4.36× 1024 [89] −3.91 [90] N/A
Organic s
spiro-MeOTAD HTL 25.2 [88] 1× 1026 [91] −5.09 [92] 3.38–4.08 [93–95]
PEDOT:PSS HTL 21.15 [96] 1× 1026 [97] −5.13 [98] 4.09–5.08 [97, 99]
P3HT HTL 23.9 [100] 4.2× 1025 [101] −4.7 [102] 1.04–3.12 [99, 101]
PCBM ETL 21.43 [103] 0.1− 2× 1025 [104–106] −3.95 [107] 2.81–5.38 [104, 105]

integral (and the equivalent GER) quickly diverges from 1 (i.e. from the value predicted by the Boltzmann
approximation and the CER), as shown in figure 4. The greater the disorder of the material (i.e. the larger s is)
the more rapid the divergence of∆ away from 1 as the concentration of electrons (or holes) is increased [28].

Measurements of the disorder parameter, s, for common organic PSC TL materials taken from the
literature are shown in table 1. Values range from 1.04 to 5.38. The corresponding diffusion enhancement
functions under the GER are plotted in figure 4. Even for the material with the least disorder (P3HT), the
GER prediction of∆ has strongly diverged from 1 by the time the carrier density has increased to the typical
TL doping density. This divergence is far more pronounced for the more disordered materials (such as
PEDOT:PSS and PCBM) where it begins at relatively low carrier concentrations.

12



J. Phys. Energy 5 (2023) 025007 W Clarke et al

5. Effects of full FD statistics on device-level models

As discussed in the previous section, the diffusion enhancement predicted by charge transport models based
upon a full description of the charge carrier statistics (i.e. using a full FD statistical model) is often significant
in the materials commonly employed as TLs for PSCs over the range of carrier densities relevant to device
operation. In this section, we examine the effect that this more complete physical description of the TLs has
on the predictions of both steady-state and time-dependent device behaviour. In order to do this, we
augment the widely-used model of the three-layer planar PSC [2, 12, 13, 19–21, 39, 109], with a model of
carrier transport in the TLs based upon full FD statistics (i.e. (20)–(21)), to account for the fact that carrier
densities are sufficiently high that the standard Boltzmann approximation breaks down in these layers. We
define the statistical integrals as SE in the conduction band of the ETL and as SH in the valence band of the
HTL, and note that the minority carriers in the TLs (i.e. holes in the ETL and electrons in the HTL) typically
occur at such low densities that they do not significantly affect device behaviour, and so can be neglected.
Since only a single significant carrier species is modelled in each TL, we drop the subscripts c and v that
distinguish between conduction and valence bands.

The principle change to the standard device model, in which Boltzmann statistics are assumed accurate
for all carriers, is that electron and hole current densities in the TLs are now computed with GERs,
via (20)–(21), with an appropriate statistical model and material parameters. The changes to the statistical
integrals also lead to minor alterations to the continuity and boundary conditions. These are described in
more detail in [110] but the full drift–diffusion model solved here is also stated in appendix A.

The numerical results presented here are obtained using a recently released version of the open-source
PSC simulation software, IonMonger [18, 21, 110], which enables the user to simulate a variety of
measurement protocols, including current–voltage sweeps and IS. Details of the numerical methods used for
adapting the discretised, non-dimensional charge transport model to account for the GER can be found in
[110], along with a discussion of the challenges of implementing statistical integrals, which are neither
analytically invertible nor differentiable, without significantly impacting the computation time.

The charge transport model of a PSC discussed here is too complex to easily predict how changes to the
statistical models of the TLs affect the predictions of the cell’s response to particular experimental protocols,
but appropriate numerical solutions to the model allow us to investigate these changes on a case by case
basis. In particular, they offer insight into the scenarios in which the error made by assuming Boltzmann
statistics (and correspondingly the CER) leads to significant error in the predicted device behaviour.
In order to illustrate our hypotheses we compute solutions based on a representative data set for a
TiO2/MAPI/Spiro-MeOTAD cell (given in tables 2 and 3 of appendix B), with TL DoS parameters taken from
table 1. We note that, while we construct the parameter set using material parameters taken from
independent measurements, simulations using our parameter set may exhibit differences from the behaviour
of a real device of this form as a consequence of device construction (e.g. material deposition method and
architecture). The device considered here is intended to be representative, and a full parameter sweep lies
outside the scope of this work.

5.1. Steady-state performance
Here the effect of the Boltzmann approximation in the TLs on four key performance parameters is
investigated by computing numerical solutions to the drift–diffusion device model.

Steady-state results are shown in figures 5 and 6, in which direct comparison is made between the
predictions of four key performance parameters (VOC, JSC, fill factor (FF), and PCE) obtained using full FD
statistics in the TLs (i.e. the GER), and those obtained using the Boltzmann approximation (i.e. the CER).
The short-circuit current (JSC) shows the least sensitivity to the change in the statistical model of the TL
carriers, a consequence of the low carrier densities in the TLs at this low voltage. Conversely, the predicted
open-circuit voltage (VOC) found using Boltzmann statistics is 9.43% greater than that found using the full
statistical models of the TLs. This is a consequence of the Boltzmann approximation being far less accurate at
open-circuit, where the large applied voltage leads to large carriers concentrations in the TLs. Combined
with an increase in the FF, the increase in VOC leads the model based on the Boltzmann approximation to
significantly overestimate the PCE of the cell (by a factor of 27.04%). As shown in figure 5, where simulations
are compared to data from the Perovskite Database Project [79], the simulated steady-state performance
parameters obtained using simulations based on full FD statistics in the TLs are more representative of the
experimental results found in the literature than those predictions made using simulations based on
Boltzmann statistics for this particular device configuration.

The importance of these results lies in the fact that, owing to the difficulty in obtaining accurate estimates
of material properties, many parameters are commonly fitted by comparing simulations to experiment, for
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Figure 5.Measured steady state performance parameters of TiO2/MAPI/Spiro-MeOTAD cells. Red circles were taken from The
Perovskite Database Project [79]. Crosses were obtained through simulations using IonMonger, based on the parameter set given
in appendix B. The band shapes in the TiO2 and in the Spiro-MeOTAD were taken to be parabolic and Gaussian, respectively,
using the parameters given in table 1. Significant differences can be observed between the predictions made using the Boltzmann
approximation (blue crosses) and full Fermi–Dirac statistics (green crosses).

Figure 6. Sensitivity of key performance parameters to the Boltzmann approximation in the transport layers of a
TiO2/MAPI/Spiro-MeOTAD cell. Obtained through simulation using IonMonger. The parameter set is listed in appendix B. The
band shapes in the TiO2 and Spiro-MeOTAD were parabolic and Gaussian, respectively, with parameters taken from table 1.

values such as the short-circuit current and the open-circuit voltage. Thus, if the model predicts these values
incorrectly (as seen here), material parameter estimates obtained through fitting will also be incorrect,
leading to divergence between fitted parameter values obtained from the same material using different
experimental protocols. This is likely to create confusion in the field and lead to difficulty in obtaining
reliable and accurate material parameters estimates.

5.2. Current–voltage hysteresis
Differences in the predictions of PSC behaviour between models based on Boltzmann statistics in the TLs
and those based on full FD statistics are not restricted to steady state behaviour. As shown in figures 7 and 8,
simulations of J-V hysteresis and IS both show significant differences depending on which of these two
modelling assumptions is applied.
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Figure 7. The effect of the Boltzmann approximation vs. full Fermi–Dirac statistics for current–voltage hysteresis for the
parameter set listed in appendix B. The scan rates showing maximum hysteresis factor under the Boltzmann approximation and
Fermi–Dirac statistics are plotted in the top-left and top-right panels respectively.

Figure 8. The effect of the Boltzmann approximation vs. full Fermi–Dirac statistics on impedance spectra for the parameter set
listed in appendix B. The DC voltages were 0.3 V (top) and 1.0 V (bottom).

A 180mV s−1 scan of the TiO2/MAPI/Spiro-MeOTAD parameter set shows that the use of Boltzmann
statistics in the TLs leads not only to a different open-circuit voltage to that predicted by FD statistics, but
also to qualitative differences in the shape of the hysteresis curve and the fill factor obtained from each
direction of the scan. It has long been understood that the observed performance of a PSC during a
current–voltage sweep is highly influenced by the preconditioning procedure [8], where the cell is held to
equilibrate at a high applied voltage. Changes to the statistical integrals strongly influence the preconditioned
state of the cell, and thus have a knock-on effect on the predicted performance observed during the sweep.
Once again, the shape of the hysteresis curve is highly sensitive to many material parameters and subtleties of
the drift–diffusion model and the effects seen for this parameter set cannot be assumed to be uniform across
all other parameter sets.
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5.3. Impedance spectroscopy
Current–voltage sweeps constitute only one of many dynamic characterisation techniques commonly
simulated by drift–diffusion models. Another is IS, in which the steady state is perturbed by a
small-amplitude oscillating voltage at varying frequencies and the amplitude and phase of the current
response is measured as a function of frequency. This technique can be used to diagnose performance losses
and degradation as well as probe the timescales on which the physical processes within the cell operate
[13, 111–113]. Recent additions of FD statistics and an IS simulation capability to IonMonger [110] provide
the first PSC modelling software capable of exploring the interdependent effects of the two. As shown in
figure 8, predicted impedance spectra are highly sensitive to changes in the statistical integrals. The
discrepancies between the simulations employing the Boltzmann approximation in the TLs and those based
on FD statistics in the TLs are exacerbated for larger values of the DC voltage, the value about which the
voltage is perturbed, and particularly impact the low-frequency arc, caused by the charging and discharging
of the Debye layers and mediated by the mobile ions in the perovskite [13].

6. Conclusion

While the Boltzmann approximation (from which the CER, is derived) has been widely employed in
semiconductor modelling, it has often been used without due consideration of the validity of the
approximation in the scenario in which it is being employed. Specifically, the use of organic materials to
fabricate PSC TLs, and the high doping levels in these structures, suggest that the Boltzmann
approximation (22) to the FD statistical distribution (9) (and thus also the CER) is frequently inaccurate in
the TLs. This, in turn, can lead to significant errors in the predictions made by PSC charge transport models.

Incorporating a full statistical treatment of the charge carrier dynamics in the TLs (equivalent to using
the GER) leads to a density-dependent diffusion enhancement function,∆, that is determined by the DoS
function. For cases in which the Boltzmann approximation is accurate, the diffusion enhancement function
reduces to∆= 1. Crucially, however, the function is highly sensitive to the choice of DoS function. In
particular, the region of validity of the Boltzmann approximation depends sensitively on the exact DoS
employed by the model. Of the common PSC TL materials, disordered organic materials, which are usually
modelled by a Gaussian DoS function, are those for which the Boltzmann approximation is least accurate,
due to the diffuse nature of the Gaussian. The accuracy is particularly poor for the materials with greatest
disorder, such as PCBM and PEDOT:PSS.

In order to test the sensitivity of drift–diffusion models of a typical TiO2/MAPI/Spiro-MeOTAD PSC to
changes in the description of carrier transport in the TLs of the device, comparison was made between
predicted device behaviour obtained from (I) a PSC model in which carrier transport in the TLs was
described using the Boltzmann approximation and (II) a PSC model in which full FD statistics were
employed.

Numerical solutions show that the the full statistical treatment of carrier transport in the TLs leads to
significantly different predictions of four key steady state performance parameters (VOC, JSC, FF and PCE) in
comparison to the predictions made by the model in which carrier transport in the TLs is described by the
Boltzmann approximation. The most notable is between the predictions of the PCE, the value of which was
overestimated by the model based upon the Boltzmann approximation by 27%. This leads us to conclude
that the steady state performance of the cell is not well-described by the standard planar PSC model (i.e. one
in which the Boltzmann approximation is employed in the TLs). Due to the large number of material
parameters in the PSC model and the difficulty in obtaining accurate estimates of their values, it is common
to fit some parameters to match experimental data, particularly the four performance parameters considered
here. It is clear that fitting these parameters to the standard model (based on the Boltzmann approximation)
can easily lead to incorrect predictions of these parameters, and a misleading description of the cell.

In addition to steady state performance, two common dynamic measurements, namely current–voltage
hysteresis and IS, were simulated using PSC models based on (I) a Boltzmann description of the TLs and (II)
a full FD description of the TLs. For this representative parameter set, the model based on the Boltzmann
approximation incorrectly predicts both the maximum hysteresis factor and the scan rate at which this
maximum appears (figure 7). Furthermore, the Boltzmann model produces qualitative errors in the shape of
the J-V curve across a wide range of physically relevant scan rates. Similar errors were observed in the
Boltzmann model when simulating IS, dependent on the DC voltage. At low voltages, carrier densities in the
TLs near the perovskite interfaces are lower, meaning the Boltzmann approximation is more likely to be
accurate. For greater DC voltages, however, carriers in the TLs accumulate near the perovskite interfaces,
affecting the ion vacancy accumulation/depletion occurring on the perovskite side of the interfaces, and thus
the low-frequency arc on the Nyquist plot that is caused by ion migration. Recently it has been shown that
adopting an asymptotic approach to solving the charge transport model, rather than a numerical one, can
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provide significant insight into the IS response of PSCs [112]. Application of these mathematical methods to
the modified charge transport model presented here will therefore be the subject of future work, with the aim
of elucidating the exact effect of the Boltzmann approximation in IS modelling. The numerical simulations
conducted here, however, show that the Boltzmann approximation causes significant errors in predictions of
dynamic device-level behaviour.

As understanding of PSC physics continues to improve, it is essential that models of their operation also
continue to advance. While PSC drift–diffusion models based on the standard Boltzmann approximation of
charge carrier statistics in the TLs may, in some cases, be sufficient, their validity cannot be assumed in
general. In particular, while Boltzmann statistics give a fair description of charge transport in weakly doped
and inorganic TL materials, they provide a much poorer description of strongly doped and organic TL
materials. The numerical methods discussed here, and their implementation in IonMonger, give the
perovskite community access to fast and accurate numerical models incorporating alternative statistical
descriptions of charge carrier behaviour in the TLs that enable simulations of enhanced predictive power,
across a wide range of scenarios, which are not solely limited to the steady-state but include current–voltage
and IS measurements.
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Appendix A. The full charge transport model

Here we list the full charge transport model of a three-layer PSC, a schematic of which is shown in figure 9.
Equations directly modified to account for full FD statistics are highlighted in teal. This charge transport
model was presented in [110].

A.1. Perovskite absorber layer (0< x < b)
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where G and R are the generation and recombination rates.

A.2. Electron transport layer (−bE < x < 0)
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Figure 9. Schematic of the three-layer planar drift–diffusion model of a PSC.

A.3. Hole transport layer (b < x < b+ bH)
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A.4. Boundary conditions
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A.5. Continuity conditions

jn|x=0− = jn|x=0+ −Rl

jp =−qRl

FP = 0

ϕ|x=0− = ϕ|x=0+

εE
∂ϕ

∂x

∣∣∣
x=0−

= εA
∂ϕ

∂x

∣∣∣
x=0+

dEkE exp

[
S−1
E

(
n|x=0−

gEc

)
−S−1

E

(
dE
gEc

)]
= n|x=0+


on x= 0 (A11)

jp|x=b− −Rr = jp|x=b+

jn =−qRr

FP = 0

ϕ|x=b− = ϕ|x=b+

εA
∂ϕ

∂x

∣∣∣
x=b−

= εH
∂ϕ

∂x

∣∣∣
x=b+

p|x=b− = dHkH exp

[
S−1
H

(
p|x=b+

gHv

)
−S−1

H

(
dH
gHv

)]


on x= b (A12)

where

kE =
gc
dE

exp

(
EEc − Ec
kBT

+S−1
E

(
dE
gEc

))
(A13)

kH =
gv
dH

exp

(
Ev − EHv
kBT

+S−1
H

(
dH
gHv

))
(A14)
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Appendix B. Parameter set

Table 2.Material parameters for a TiO2/MAPI/spiro-MeOTAD cell. The necessary parameters to model non-Boltzmann statistics in the
transport layers are shown in table 1.

Symbol Name Values Unit References

T Temperature 298 K
— Light entering through ETL —
Perovskite (MAPI)
b Perovskite width 400 nm
εp Permittivity 24.1 ε0 [114]
α Absorption coefficient 1.3× 107 m−1 [115]
gc Conduction band effective DoS 8.1×1024 m−3 [114]
gv Valence band effective DoS 5.8× 1024 m−3 [114]
Ec Conduction band edge −3.7 eV [116]
Ev Valence band edge −5.4 eV [116]
Dn Electron diffusivity 1.7×10−4 m2 s−1 [117]
Dp Hole diffusivity 1.7×10−4 m2 s−1 [117]
N0 Mean anion vacancy density 1.6× 1025 m−3 [118]
DP Anion vacancy diffusivity 1×10−17 m2 s−1 [9]
ETL (TiO2)
gEc Conduction band effective DoS 2× 1023 m−3 [81]
EEf Equilibrium electron QFL −4.19 eV [119]
DE Electron diffusivity 1.3× 10−5 m2 s−1 [120]
εE Permittivity 10 ε0
bE ETL width 100 nm [121]
EEc Conduction band edge −4.13 eV [84]
HTL (spiro-MeOTAD)
gHv Valence band effective DoS 1× 1026 m−3 [91]
EHf Equilibrium hole QFL −4.97 eV
DH Hole diffusivity 1× 10−6 m2 s−1 [120]
εH Permittivity 3 ε0
bH HTL width 200 nm [121]
EHv Valence band edge −5.1 eV [92]

Table 3. Recombination parameters for a typical TiO2/MAPI/spiro-MeOTAD cell.

Symbol Name Values Unit

Perovskite bulk
β Bi-molecular rate constant 1.5×10−14 m3 s−1

τp Hole SRH psuedo-lifetime 3×10−7 s
τn Electron SRH psuedo-lifetime 3×10−7 s
An Electron Auger coefficient 0 m6 s−1

Ap Hole Auger coefficient 0 m6 s−1

ETL/perovskite interface
νEp Hole recombination velocity 10 ms−1

νEn Electron recombination velocity 0 105 ms−1

βE Bi-molecular rate constant 0 m4 s−1

HTL/perovskite interface
νHp Hole recombination velocity 105 ms−1

νHn Electron recombination velocity 0.1 ms−1

βH Bi-molecular rate constant 0 m4 s−1
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