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Abstract—Conventional centralized authentication techniques
based on both digital cryptography and physical-layer attributes
are prone to single-point failure due to either compromised digital
security keys or an abrupt change in the physical communi-
cation environment. Although these particular challenges could
be mitigated by the joint use of decentralized authentication
and physical-layer attributes, such schemes often exhibit unpre-
dictable performance. Simultaneously, the necessary involvement
of multiple parties and the imperfect observation of the physical
communication environment can also significantly increase the la-
tency and computational complexity. As a remedy, a decentralized
authentication scheme is proposed in this paper to achieve Guar-
anteed Authentication Level at Minimized Complexity (GALAMC)
based on the intelligent use of distributed collaboration and
available distributive physical-layer attributes. Specifically, we
aim for minimizing the complexity of the proposed collaborative
authentication process by harnessing the minimum number of
collaborative nodes and the selected authentication attributes at
each node across the different environments while guaranteeing
the required authentication level. The related physical-layer
authentication scheme is implemented at each collaborative node
where different physical-layer attributes can be selected based
on their usefulness which is time-varying. The simulation results
demonstrate that our scheme maintains the target level of authen-
tication and it is more immune to sudden environmental changes
than the conventional centralized physical-layer authentication
scheme. It can also be observed that our proposed scheme can
adaptively select the minimum number of collaborative nodes for
adaptively minimizing the computational cost.

Index Terms—Collaborative authentication, Decentralized
mechanism, Physical-layer attributes, Unmanned Aerial Vehicles
(UAVs).
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W ITH the proliferation of smart devices and the Internet-
of-Things (IoT) enabled applications, secure commu-

nications over the wireless infrastructure have become the
critical foundation of the increasingly connected society and
industries [1]. As an important aspect of communication
security provision, authentication is essential for ascertaining
the true identity of each communication device and for distin-
guishing the potential attackers from the legitimate users [2].
This task has become more challenging in wireless networks
due to their security weaknesses, such as their open broadcast
nature of the wireless communication environment, especially
in the face of the rapidly growing computational power of the
attackers [3], [4].

Conventional wireless security provision has been achieved
by using a centralized server, such as an authentication server,
or any trusted third party to provide the required credentials
[5]. These centralized servers have numerous benefits, such as
predictable overhead, high interoperability and compatibility
with different platforms [6]. However, they also face many
new challenges. To be more specific, the centralized authen-
tication process can be very inefficient due to the growing
complexity and the dynamic nature of the IoT network. Since
all devices have to contact a certain entity in the centralized
authentication, this trusted entity has to be always available
and authentic. This assumption is sometimes unrealistic in
many emerging applications, such as high-velocity vehicular
networks, Unmanned Aerial Vehicles (UAV) networks, and so
on. Furthermore, the centralized security schemes are always
susceptible to the single-point failure, where attacks can be
launched against the security server to disrupt the operation
of the network and the related devices [7]. Ultimately, the
conventional centralized authentication schemes is best-effort
based due to the inherent weaknesses of conventional digital
credential-based security provision, when the digital security
keys and passwords are compromised.

To overcome these challenges, decentralized authentication
becomes extremely important for improved security provision,
where multiple collaborative nodes are engaged jointly for
the authentication of the same device. It could become even
more robust by addressing the weakness of the commonly used
digital security schemes by embedding the physical-layer au-
thentication, where the devices-specific channel and hardware
characteristics are observed at the collaborative entities. How-
ever, the decentralized authentication schemes usually result in
significantly increased computational cost, processing delay,
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and communication overhead due to the extra resources and
collaboration involved. Additionally, the decentralized authen-
tication resources or physical-layer inputs arriving from some
collaborators may in fact become excessive or redundant for
satisfying certain security requirements. Hence, it is critical to
improve the trade-off between the authentication requirement,
authentication performance and the computational complexity
under the decentralized environment.

A. State of the art

Achieving reliable authentication is more challenging in
mobile ad hoc networks, e.g., vehicular networks and flying
UAV networks. Due to the unpredictable channel conditions
and dynamic network topology, establishing and maintaining
a reliable connection between a device to be authenticated and
the central security server is not always guaranteed in these
applications. To elaborate on the related security challenges
and the proposed intelligent collaborative authentication tech-
niques, a flying UAV network is considered as an application
scenario in this paper.

UAVs play increasingly more important roles in emerging
applications. In supporting surveillance and disaster relief, the
UAVs can form multiple collaborative groups, also known as
UAV swarms, to provide a self-managed flying ad hoc network
(FANET) for rapid deployment in different applications [8]–
[10]. These UAV swarms usually have a star-topology in
which the cluster head (CH) communicates directly with each
member UAV within the swarm or with the CHs from other
swarms if needed without the help of intermediate nodes. By
breaking the UAVs into multiple swarms, the flexibility of
each swarm can be increased and the latency within each
swarm can be reduced. The provision of security guarantees
for UAV swarms can be extremely challenging given their low
cost, flexible maneuvering and harsh or even hostile operating
environment. Explicitly, they exhibit rapidly evolving network
topology change, intermittent connection with the ground
station and might be readily discovered by their adversaries
[11]–[14]. As shown in Fig. 1, the CH of the FANET can
access the ground station and use it as a centralized authenti-
cation server. However, the high-power long-distance wireless
transmission and the increased latency make the cloud-based
authentication schemes less attractive in FANETs. Hence, the
on-site resources, which are the resources within the UAV
swarm (i.e., using the CH as the central authentication server),
should be utilized to support prompt and reliable security
provision.

To protect the system from malicious attacks, one of the
conventional on-site authentication techniques is the classic
cryptography-based centralized authentication scheme [15].
To be more specific, these schemes usually utilize either a
symmetric-key such as the Advanced Encryption Standard
(AES) or an asymmetric-key such as the Rivest-Shamir-
Adleman (RSA) solution relying on a key management center
to encrypt the transmission [16]. In the UAV swarm, these
digital key-based authentication techniques use the CH as the
authentication server and aim for ascertaining the identity
of each UAV by verifying the security key. However, these
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Fig. 1. Adversarial environment in a flying UAV network. The connection
between the ground station and the cluster head (CH) can become intermittent
which makes it difficult to provide a constant cloud-based centralized security
provision. Hence, on-site authentication resources (i.e., CH and member
UAVs) should be utilized to perform the authentication.

security provision techniques rely on the storage of secret keys
and might become compromised in the face of the adversaries’
rapidly increased computational power [17]. Once the digital
key is compromised by a brute force attack, it is almost
impossible for the central node to verify the true identity of
the authentication requester, which catastrophically degrades
the security performance [18].

Considering the weakness of the digital security provision,
sophisticated physical-layer authentication techniques have
been developed to extract the unique hardware and channel
characteristics of each device for authentication [19]–[27].
They also bring many other advantages, such as low com-
putational complexity and latency, since the observation of
the physical-layer attributes usually does not require addi-
tional signalling or protocol changes [28]–[30]. However, the
performance of physical-layer authentication schemes cannot
be guaranteed due to the imperfect estimation and owing
to the time-varying nature of the specific physical attributes
used for authentication and noisy communication environment,
such as the UAV network. The limited dynamic range of
the specific attributes could also be insufficient to provide a
guaranteed authentication result, when the number of devices
to be authenticated increases [31]. Ultimately, observing and
analyzing multiple attributes and devices at the same instance
may create a bottleneck, which may further lead to single-point
authentication failure and reduced application traffic [32].

To mitigate the probability of single-point failure and
increase the overall reliability, decentralized authentication
techniques have been developed, where a group of collabo-
rative nodes are utilized for arriving at a final authentication
decision. A popular decentralized authentication solution is the
blockchain-based technique, where duplicated transactional
databases are distributed over multiple nodes within a peer-
to-peer network [33]–[35]. These nodes form a chain of
interlocked blocks and each block contains the cryptographic
hash of the previous block. Naturally, the longer the blockchain
is, the safer the system becomes. Hence, it is extremely hard
for the attacker to forge or delete the information, since the
attacker has to overwrite or remove the history on all nodes
before the next block record arrives [36]. However, due to
the limited energy and storage space of UAVs, it is extremely
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difficult to harness the blockchain-based method due to its
excessive computational and communication overhead.

Ultimately, the physical-layer security (PLS) techniques
have also been integrated into decentralized security schemes
for mitigating the risks associated with digital security cre-
dentials and processes [37]–[39]. The estimations of physical
attributes at distributed collaborative nodes are capable of miti-
gating the uncertainty caused by the time-varying environment
and noisy estimations by a single observer. To optimize the
performance of each collaborative node, a different number of
PLS attributes can be selected at each node based on the spe-
cific hardware capability. The difficulty for the attacker to im-
personate the legitimate devices is thus dramatically increased,
since it is extremely hard to predict and impersonate different
observed physical-layer attributes at different locations and
at the same time. Moreover, the distributed authentication
techniques do not require a static network topology for the
authentication process. This can significantly improve both the
reliability and the robustness of the authentication scheme,
especially in a hostile environment, where the link between
the UAVs and the CH is intermittent. However, upon involving
more devices in the authentication process, the computational
complexity and overall network latency will be dramatically
increased which raises many challenges in resource-constraint
devices.

In a nutshell, a major challenge of the conventional central-
ized digital-key based authentication or physical-layer authen-
tication techniques is that they are best-effort based and usually
require extra authentication resources for improving the overall
performance [16]–[27]. On the other hand, some state-of-the-
art decentralized authentication schemes are capable of im-
proving the authentication security robustness even in the com-
plex use cases with the aid of rich authentication resources.
However, the excessive computational and communication
overheads are unrealistic for resource-constrained networks
[33]–[39]. More importantly, it is extremely challenging to
utilize a static authentication scheme in hostile time-varying
environments relying on complex distributed collaboration,
especially in dynamically evolving UAV networks.

B. Contributions

To overcome the above challenges, we propose the novel
concept of Security-as-a-Service (SaS) for decentralized col-
laborative physical-layer authentication. To be more specific,
in contrast to the best-effort based centralized authentication
schemes, a guaranteed level of authentication performance is
achieved by involving a minimal amount of ‘just-sufficient’
authentication resources, namely a limited number of collabo-
rative nodes and their physical-layer attributes. The authentica-
tion performance is not maximized when using ‘just-sufficient’
collaborative nodes and physical-layer attributes, which is in
contrast to the decentralized authentication schemes relying
on all possible authentication resources. Instead, we aim to
guarantee a specific target authentication requirement at a
minimal computational cost. A fluid authentication topology
can be customized for different time-varying environments
so that the most reliable, robust and efficient model can

be selected. Hence, an optimal equilibrium can be achieved
between the authentication requirement, the required resources
and the security performance. The novelty of this treatise
is boldly and explicitly contrasted to the state-of-the-art in
Table I. A list of key notations used in this manuscript are
summarized in Table II. Moreover, a list of abbreviations and
acronyms used throughout the paper is also given in Table III.

The contributions of this paper are summarized as follows:
• A novel concept of Guaranteed Authentication Level

at Minimized Complexity (GALAMC) is proposed for
decentralized collaborative physical-layer authentication.
As a major benefit, the computational complexity of the
distributed collaboration can be intelligently minimized
by harnessing ‘just-sufficient’ collaborators and authenti-
cation attributes.

• To select the collaborative nodes and the corresponding
authentication attributes, a Gini-impurity-based attribute
evaluation algorithm is proposed for assessing the relia-
bility of each time-varying physical-layer attribute at each
collaborative node. A collaborative node evaluation algo-
rithm is also developed for assessing the authentication
benefits of each collaborative node based on their relative
locations and their past authentication contributions.

• An intelligent authentication customization algorithm is
proposed for integrating the above two factors and pro-
vide SaS. By activating this algorithm at each authentica-
tion instance, a customized authentication model will be
generated for selecting the best combination of collabora-
tive nodes. Reliable authentication decisions may then be
generated at these selected collaborative nodes and fused
into the final authentication decision.

This paper is organized as follows. Section II introduces our
system model and problem formulation. Section III outlines
the proposed Gini-impurity-based attributes evaluation algo-
rithm, the collaborative node evaluation algorithm, intelligent
twin-component authentication customization algorithm and
our authentication decision fusion algorithm. The analysis and
performance evaluation are presented in Section IV and V.
Finally, the last section (Section VI) concludes this paper.

II. SYSTEM MODEL AND PROBLEM
FORMULATION

To elaborate on the proposed authentication technique, the
decentralized authentication process of a flying UAV network
is considered. As shown in Fig. 2, a flying UAV swarm consists
of M legitimate UAVs including a cluster head (CH). The
member UAVs are within the communication range of the CH.
Hence, a star topology is formulated, where the CH and the
member UAVs communicate directly without further routing
via intermediate nodes. The relative velocity of the UAVs is in
the typical range between 0 km/h and 60 km/h [40]. The line-
of-sight (LoS) propagation and the channel fading conditions
depend on the environment. For example, the urban area
usually features non-line-of-sight (NLoS) channel condition
with a Rayleigh fading distribution. Spoofing devices coexist
in this network, which aim to actively impersonate legitimate
UAVs. We assume that the spoofing UAVs are sufficiently far
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TABLE I
OVERVIEW OF THE EXISTING STATE-OF-THE-ART TECHNIQUES

References ⇒
keywords ⇓

Proposed
Approach [37] [15] [19]–[21],

[23]–[26] [33], [35] [38], [39]

Physical-layer-based ✓ ✓ ✓ ✓
Digital-based ✓ ✓
Centralized Topology ✓ ✓
Decentralized Topology ✓ ✓ ✓ ✓
Best-effort-based ✓ ✓ ✓ ✓ ✓
Performance-guaranteed ✓
Customized authentication model ✓

TABLE II
LIST OF KEY NOTATIONS

Notation Explanation
M Number of UAVs (including CH) in

the swarm
HI

m Physical-layer estimation observed
by the UAV m in phase I

N Number of observed physical-layer
attributes

()T Transposition of a vector
J Number of selected physical-layer

attributes
K Number of selected collaborative

UAV nodes
ϕk Soft authentication decision

generated by the selected UAV k
ϕ0 Authentication requester is

legitimate
ϕ1 Authentication requester is

illegitimate
ν Authentication decision threshold
E Authentication error rate
ED Operator defined security

requirement in terms of error rate
EA Actual authentication performance

in terms of error rate
Gn Gini-impurity of the n-th attribute
Upq Usability index of a collaborative

node
Pk(Φ0) Probability of legitimacy
Pk(Φ1) Probability of illegitimacy
K K-factor

TABLE III
LIST OF ACRONYMS AND ABBREVIATIONS

Acronym Explanation
CFO Carrier Frequency Offset
CH Cluster Head
FA False Alarm
FANET Flying Ad Hoc Network
GALAMC Guaranteed Authentication Level at

Minimized Complexity
IoT Internet-of-Things
I/Q In-phase/Quadrature
LOF Local Outlier Factor
LOS Line-of-Sight
MD Missdetection
NLOS Non-Line-of-Sight
OF Objective Function
PLS Physical-Layer Security
RSSI Received Signal Strength Indicator
SaS Security-as-a-Service
UAV Unmanned Aerial Vehicles

away from the legitimate UAVs, so that it is hard for the
spoofing UAVs to predict the exact physical-layer attributes
(e.g. channel conditions) of the legitimate UAVs. Due to
the potential connectivity outages or long distances from the
ground server, on-site authentication within the UAV swarm
is always preferred for avoiding the related delay. Again,
authentication coordinated by the CH of the UAV swarm is
preferred due to the limited security related information and
computational resources at every single UAV. In a nutshell, our
main objective is to authenticate the devices at a guaranteed
security by harnessing the minimum amount of authentication
resources within the flying UAV swarm. The CH selects
multiple collaborative nodes for generating edge authentication
decisions based on the physical-layer estimations and fuses
these decisions into a final authentication verdict. The full
process of the decentralized authentication contains three
phases:

Spoofing

Device

CH

Soft Authentication Decision

Data Transmission

(Authentication Request)

Spoofing Transmission

Selected

UAV

Selected

UAV

Member

UAV
Unselected

UAV

Unselected

UAV

Spoofing

Device

Fig. 2. System model of a flying UAV network. The legitimate communica-
tions in a UAV network suffer from attacks initiated by the spoofing devices.
The CH coordinates the collaborative nodes and fuses authentication decisions
to guarantee the SaS with minimum effort.

Phase I: At the time t1, one or more messages have been
transmitted to the CH and the CH aims to appropriately select
the collaborative nodes available for authentication based on
the observations of the message. Due to the interference or
noise imposed by the environment, some collaborative nodes
including the CH may observe a noisy physical-layer estimate
HI . The estimate at UAV m is given by:

Hm
I = (HI

m1,H
I
m2, , H

I
mN )T, (1)
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where N is the number of physical-layer attributes observed
and ()T represents the transposition of a vector. The physical-
layer attributes may include the carrier frequency offset (CFO),
in-phase/quadrature (I/Q) imbalance, received signal strength
indicator (RSSI) and so on. These physical-layer attributes
are then concatenated into an array with time stamps and
stored at each node for future analysis. Since some au-
thentication attributes may be less accurate, an attribute’s
reliability evaluation may be implemented at each available
collaborative node as a result. The number of reliable attributes
being selected for improving the performance at minimal
computational complexity at each node is denoted as J .
By evaluating the reliability of the attributes at each node,
the unavailable node(s) having no reliable estimates will be
temporarily removed from the authentication process. Then,
based on their relative location and past contributions, the CH
selects the least number of collaborative nodes from the set of
available and reliable collaborators, which is denoted by K.
Phase II: At the time t2, each selected collaborative node
generates an edge authentication decision and reports back
to the CH. For example, at the selected UAV k, a soft edge
authentication ϕk is generated, where we have ϕk = [0, 1].
The collaborative node evaluates how likely it is that the
authentication requester is legitimate based on the physical-
layer observations. For example, ϕk = 0.5 represents that the
UAV m estimates a 50% probability for the authentication
requester to be legitimate.
Phase III: At the time t3, the CH generates the final authen-
tication decision based on the K received edge authentication
decisions as follows:{

Φ0,
1
K

∑K
k=1 ϕk > ν;

Φ1,
1
K

∑K
k=1 ϕk ≤ ν,

(2)

where K is between 1 and M−1. Furthermore, Φ0 represents
that the transmitter is legitimate, while Φ1 indicates that the
signal is transmitted from a spoofing device; ϕk represents
the soft authentication decision gleaned from the k-th receiver
node. Moreover, ν is the authentication decision threshold
at the CH in the range of [0, 1], which can be dynamically
configured by the operators for different scenarios.

To evaluate the performance of a collaborative decentralized
authentication, the False Alarm rate and the Missdetection rate
are considered, which can be formulated as:

1) False Alarm (FA) rate: The probability that a legitimate
UAV is rejected as a suspected spoofing device, which is
formulated as:

PFA = Pr(
1

K

K∑
k=1

ϕk ≤ ν|Φ0). (3)

where Pr() represents the probability of an event.
2) Missdetection (MD) rate: The probability that a spoofing

device is approved as a legitimate UAV. It can be defined
as:

PMD = Pr(
1

K

K∑
k=1

ϕk > ν|Φ1). (4)

To define the security requirement and evaluate the per-
formance of the actual authentication, the false alarm rate and

the missdetection rate can be combined into the authentication
error rate (E) as:

E = w1PFA + w2PMD, (5)

where w1 and w2 are the weights of the false alarm and
the missdetection, since each may have a different impact
on the system in different scenarios. The weights directly
represent the security requirements and should be defined by
the operator based on the specific application. To formulate the
security requirement (ED) in terms of authentication’s error
rate, the operator has to also define the target false alarm
rate and missdetection rate. Similarly, the actual authentication
performance can also be formulated by measuring the actual
false alarm rate and missdetection rate as EA. To guarantee
the target SaS, the actual security performance should always
be ‘just-above’ the security requirement (ED > EA), so that
the security guarantee is met without utilizing an excessive
amount of authentication resources, such as the number of
selected collaborative nodes (K) and the number of attributes
selected at each node (J). Hence, the SaS is defined as:

min
J,K,ν

ED − EA, (6)

which is also the objective function (OF) of our problem
formulation. Therefore, it is critical to select the most reliable
collaborative nodes for computing the soft edge authentication
decisions so that the SaS can be guaranteed with minimum
effort.

III. GUARANTEED SAS AT MINIMIZED
COMPLEXITY BY INTELLIGENT COLLABORATIVE

AUTHENTICATION

To solve the problem of (6) by forming a customized
authentication model, it is critical to utilize the necessary
and minimal authentication resource to achieve the ‘just-
sufficient’ authentication performance. Therefore, quantifying
the reliability and selecting the most appropriate physical-
layer attributes at each collaborative node becomes the first
challenging design dilemma. This can help us to remove the
unnecessary attributes, while eliminating the nodes that failed
to collect any reliable physical-layer estimates for various
reasons. Then, the CH aims for selecting the most reliable
combination of collaborative nodes to further reduce the
amount of authentication resources being utilized. To be more
specific, a collaborative node evaluation algorithm is devel-
oped for characterizing and for ranking the available nodes by
considering both their relative locations and past authentication
contributions. An intelligent twin-component authentication
customization algorithm is also proposed for selecting the
collaborative nodes based on the previous algorithms. Once
the reliable nodes and the reliable attributes at each node
are selected, a soft authentication decision is generated at
each selected collaborative node and transmitted to the CH.
Ultimately, the CH intelligently fuses the soft authentication
decisions into the final authentication decision and updates
the authentication record for future use. The flow of the above
procedures is shown in Fig. 3.
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Fig. 3. Authentication processing flow for member UAVs and CH of the
proposed algorithms

A. Gini-impurity-based Attributes Evaluation Algorithm

To guarantee the target SaS at minimum effort, we first
have to verify, whether the physical-layer attributes are reliable
at each available collaborative node so that we can eliminate
any excessive authentication resources. The conception of a
reliable attribute evaluation algorithm that can competently
quantify the contribution of the specific attributes to the SaS
performance becomes the next challenge. To achieve this goal,
the past observations have to be stored and exploited for
continuously monitoring the behaviour of each attribute at the
collaborative nodes. If no estimate is observed or none of the
observed attributes are reliable, the associated collaborative
node should be removed from the authentication process. This
eliminates the ambiguity caused by unreliable decisions and
also reduces the overall computational cost.

To achieve an attribute reliability evaluation criterion that
can be generalized, we compute the Gini-impurity for all avail-
able physical-layer attributes. Explicitly, the Gini-impurity
represents the probability of an attribute misleading the au-
thentication decision [41]–[45]. To be more specific, a high
Gini-impurity means that the attribute has a high probability
of misleading the authentication decision; hence, the attribute
is unreliable. The Gini-impurity of the n-th attribute can be
formulated as:

Gn =

C∑
c=1

fnc(1− fnc) =

C∑
c=1

fnc −
C∑

c=1

f2
nc = 1−

C∑
c=1

f2
nc,

(7)

where we have C = 2 since the authentication decision can
only be either correct or false. Furthermore, fn1 and fn2 are
the frequency of the decision being correct by using only
the n-th attribute, and that of being false, respectively. To
get the value of fnc, the previous authentication decisions
using only the n-th attribute are computed and compared to
the final authentication decisions fedback from the CH. For
example, if the authentication decision using the attribute is
different from the final authentication decision, it would be
deemed to be a false decision. Then, the total number of
correct decisions and false decisions are divided by the total
number of available decisions as fnc. It should be noted that
when the total number of decisions is too high, the accuracy

of fnc may become less sensitive to real-time environmental
changes. The collaborative node should consider removing the
early observations in order to remain sensitive and to reduce
the data storage required. Ultimately, to evaluate whether an
attribute is reliable and hence it is worth selecting, a Gini-
impurity threshold (τ ) can be introduced and selected by
the operator based on the specific scenario. Explicitly, the
attributes are deemed reliable if the Gini-impurity is lower
than a specific operator-defined threshold, i.e., Gn < τ . If no
observation is made or none of the attributes is reliable at a
collaborative node, the node will not be considered by the CH
at this instant and hence will be assigned a usability index
of 0. Meanwhile, this excluded node will keep collecting the
physical-layer estimates and rejoin the authentication process,
when it meets the minimum performance requirement. Hence,
to find the optimum number of selected attributes (J) in (6),
an optimized τ value has to be found based on the specific
security requirement by the operator. The relationship between
the τ selection has been analyzed in Section IV. The proposed
Gini-impurity-based attribute evaluation procedure is shown in
Algorithm 1.

Algorithm 1 Gini-impurity-based attributes evaluation algo-
rithm
Given the previous observations of the other devices from each
collaborative node and the authentication decision feedback of
those devices from the CH. All the physical-layer attributes are
considered in the UAV network.

1: Gini impurity (Gn) value of each physical-layer attribute
is obtained via (7);

2: if Gn < τ, n = 1, 2, ..., N then
3: n-th attribute will be deemed as non-informative and

dropped;
4: else
5: n-th attribute will be selected;
6: end if
7: each collaborative node calculates the number of attributes

being selected (J);
8: if J ̸= 0 then
9: self-reports to the CH as an available and reliable

collaborative node;
10: updates the local authentication scheme to utilize J

selected attributes for the next authentication instance;
11: else
12: temporarily eliminates from the authentication pro-

cess.
13: end if

B. Collaborative Node Evaluation Algorithm
After selecting the attributes at each collaborative node, the

next step is to optimize the number of collaborative nodes
(K) for making the final authentication decision. Since the
objective of (6) is to guarantee the SaS rather than maximize
the security performance, some of the collaborative nodes can
be eliminated for reducing the computational cost. Hence, it is
critical to quantify a figure of merit for the remaining collabo-
rative nodes termed as the usability index at the authentication
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instance. The less important collaborative nodes can then be
eliminated for reducing the computational cost.

To evaluate the usability of the remaining collaborators, the
factors that cause the accuracy fluctuation of the physical-layer
observations have to be studied. The analog physical-layer
attributes estimates tend to be more environment-dependent
than the upper layer attributes. For example, a longer distance
between the authentication requester and the collaborative
node results in lower received signal strength, while the noise
level is almost constant. Therefore, the noise may signifi-
cantly increase the measurement deviation and increase the
uncertainty for distant requesters. On the other hand, different
locations also result in different channel fading statistics. The
measured physical-layer estimates may become significantly
different from the previous estimates and hence may result
in a flawed decision. Hence, from the challenges listed above,
the relative location between the collaborative node (p) and the
authentication requester (q) is chosen as one of the evaluation
attributes for quantifying the usability of the collaborative
node. The longitude (X), latitude (Y ) and altitude (Z) are
utilized to define the location of each node. By analyzing
the relative location as an attribute for quantifying the us-
ability index, collaborator nodes that failed to observe reliable
physical-layer estimates will be temporarily eliminated from
the authentication as an outlier.

To detect an outlier that leads to an unreliable physical-
layer estimate based on the relative location, the Local Outlier
Factor (LOF) can be utilized for defining the local neighbor-
hood of the data point [46]. It can reveal how isolated a data
point is with respect to its neighborhood based on a single
parameter N , which is the number of nearest neighbors used
in defining the local neighborhood. The distance between the
data point (α) and the N -th neighbor is defined as kdist(α).
The judgment of the outlier is based on the density between
each data point and its neighbor points [47]. If the density
of reliable estimate is lower than normal, it is more likely to
be identified as an outlier, since it has a lower probability to
make a reliable edge authentication decision [48]. Then, the
reachability distance, which is an intermediate parameter, can
be expressed as:

rdist(α, β) = max{dist(α, β), kdist(β)}, (8)

where α is the current data point and β is the target point.
Since there are 3 attributes, namely longitude, latitude and
altitude, in each data point, the dist(α, β) can be expressed
as:

dist(α, β) =
√

(Xα −Xβ)2 + (Yα − Yβ)2 + (Zα − Zβ)2.

(9)
Then, the local reachability density lrd(α) of the data point

α, which quantifies the average reachability distance of N
neighbors can be expressed as:

lrd(α) =
|R(α)|∑

β∈R(α) rdist(α, β)
, (10)

where |R(α)| denotes the size of R(α), which can be written
as:

R(α) = {β|dist(α, β) < kdist(α)}. (11)

Finally, the LOF can be calculated as:

lof(α) =

∑
β∈R(α)

lrd(β)
lrd(α)

|R(α)|
. (12)

If the LOF is near or smaller than 1, it is more likely to
be a normal data point. By contrast, if the LOF is higher
than 1, it is more likely to be an outlier. To be more
specific, the relative location will be converted to a binary
flag of either 1 or 0, where 1 indicates that the collaborative
node is capable of generating a reliable edge authentication
decision at this location as a normal data point and 0 means
that the collaborative node fails to generate a reliable edge
authentication, as it is an outlier. This binary decision can be
formulated as:

Dpq =

{
0, lof(αp) > L;
1, lof(αp) ≤ L,

(13)

where Dpq is the binary index that judges whether the collab-
orative node (p) can make a reliable physical-layer estimate at
its relative location with respect to the authentication requester
(q). Furthermore, L is the LOF threshold selected by the
operator and the data points used to calculate the LOF are
previous authentication contributions collected at the CH.

On the other hand, there exists a scenario in which some of
the soft authentication decisions are received from attackers. It
is critical to monitor the behaviour of each collaborative node
and eliminate any suspicious collaborative nodes. To achieve
this goal, the authentication contribution of each collaborative
node has to be considered. If a collaborative node has a
high probability of giving a flawed authentication decision,
the usability index should be adjusted to reflect the node’s
unreliable behaviour. Therefore, the authentication reliability
rate (Rpq) of a collaborative node (p) with respect to the
authentication requester (q) can be calculated by using the
U most recent authentication decisions as:

Rpq =

∑U
u=1(1− w1Pr(ϕpq ≤ ν|Φ0)− w2Pr(ϕpq > ν|Φ1))

U
,

(14)
where ν is the authentication threshold at the CH used to
evaluate whether the contribution of the collaborative node is
positive or negative. Furthermore, w1 and w2 are the weights
used in (5) to reflect the different importance levels of the
misdetection and false alarm scenarios. Then, to formulate the
usability index of the collaborative node (p) with respect to
the authentication requester (q), the distance estimate and the
reliability rate can be combined as:

Upq = RpqDpq, (15)

where we have Upq = [0, 1]. Therefore, if the collaborative
node is deemed unreliable due to its relative location, the
usability index will be set to 0, since Dpq = 0. Collaborative
nodes that are eliminated in Algorithm 1 will automatically
have a usability index of 0. Then, the calculated usability index
will be passed to the next step for ultimately selecting the
collaborative node and the combination of the attributes. The
proposed procedure is shown at a glance in Algorithm 2.
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Algorithm 2 Collaborative Node Evaluation Algorithm
Given the collaborative node p, authentication requester q, and
U previous contributions,

1: acquire the relative location of the collaborative node (p)
with respect to the authentication requester (q).

2: compute the binary distance index (Dpq) via (13);
3: calculate the reliability index (Rpq) via (14);
4: fuse the calculated Dpq and Rpq as the usability index

(Upq) via (15);

C. Intelligent Twin-component Authentication Customization
Algorithm

After calculating the usability index of each collaborative
node by using Algorithm 2, the set of usability indices can
be formulated as U = (U1q,U2q, ...,UMq)

T in descending
order where U1q has the highest usability index and UMq

has the lowest usability index. If multiple collaborative nodes
have the same usability index, the node that has a higher
proportion of correct authentication decisions beyond the most
recent U authentication decisions will have a higher rank.
For example, if a pair of collaborative nodes has a usability
index of 1, the node with more correct authentication decisions
will be ranked as U1q and the other one will be ranked as
U2q . The usability index of all M devices is included in
this set, where the unreliable collaborative nodes flagged in
Algorithm 1 and Algorithm 2 have a usability index of 0. To
select the collaborative nodes based on situational-awareness,
it is critical to understand the authentication performance
requirement to be met by the application. To be more specific,
a military application usually has a lower tolerance for wrong
authentication decisions than a civilian application due to the
more severe outcomes caused by the fault. Therefore, the
optimization goal of (6) can be met by relying on the minimum
number K of collaborative nodes.

To guarantee the SaS as given in the problem formulation
(6), the usability index obtained from Algorithm 2 can be
utilized, since it can be converted to the missdetection rate
and the false alarm rate, which are the pair of attributes
that characterize the error rate. Therefore, the goal of the
collaborative node selection may be reformulated as:

min
K

[ED − (1− U1q)(1− U2q)...(1− UKq)], (16)

where K = 1, 2, ...,M and [ED − (1 − U1q)(1 − U2q)...(1 −
UKq)] ≥ 0. A stricter security requirement generally indi-
cates that more collaborative nodes have to be utilized to
fuse the final authentication decision. To elaborate on the
authentication models, if multiple UAVs have a usability index
of 1, including the CH, only the CH will be harnessed for
performing the authentication to minimize the computational
overhead. On the other hand, if multiple UAVs have the
same usability index and the algorithm decides that it does
not need all of them, the collaborative node having a higher
rank will be selected. The proposed intelligent twin-component
authentication customization procedure is given in Algorithm
3.

Algorithm 3 Intelligent Authentication Customization Algo-
rithm
Given the usability index of each device from Algorithm 2
and the operator-defined security requirement (ED).

1: rank the usability index into a set of usability in descend-
ing order as U = (U1q,U2q, ...,UMq)

T;
2: if there exist multiple collaborative nodes that have the

same usability index then
3: a collaborative node with more correct authentication

decisions in the past will have a higher rank;
4: end if
5: select the top K collaborative nodes from the set of

usability index that meet the requirement of minK(ED −
(1− U1q)(1− U2q)...(1− UKq));

D. Authentication Decision Fusion Algorithm

After customizing the authentication model, all K selected
collaborative nodes have to submit their soft authentication
decisions to the CH, where the final authentication decision
is fused. To generate the soft authentication decision (ϕk) at
node k, it is critical to evaluate how likely the authentication
requester is legitimate based on the J selected physical-layer
attributes. Hence, the probability of legitimacy generated by
node k is used as the soft authentication decision and is
expressed as Pk(Φ0) and the binary hypothesis test of (2) can
be reformulated as:{

Φ0,
1
K

∑K
k=1 Pk(Φ0) > ν;

Φ1,
1
K

∑K
k=1 Pk(Φ0) ≤ ν.

(17)

Ideally, an optimized regression model is used to map
the physical-layer attributes to the probability of legitimacy.
However, it is a challenge to fit such a model to the probability
within [0,1], since the boundary of the regression model
is usually (−∞,∞) [49]. Hence, to simplify the regression
model, we utilize the natural logarithm of the odd, also known
as the logit, so that the domain of [0,1] is relaxed to (−∞,∞)
[50]. The logit (L) is the natural log of the ratio between the
probability of being legitimate and the probability of being
illegitimate. Since the identity of the authentication requester
UAV is also binary, the logit can be formulated as:

L = ln(
Pk(Φ0)

Pk(Φ1)
) = ln(

Pk(Φ0)

1− Pk(Φ0)
), (18)

where Φ0 represents that the device is legitimate and Φ1 means
that the device is illegitimate. Pk(Φ0) indicates the probability
for the authentication requester to be legitimate and Pk(Φ1)
represents the probability to be illegitimate and Pk(Φ0) =
1−Pk(Φ1). To find Pk(Φ0), different linear regression models
can be utilized to map the J selected physical-layer attributes
to the logit. However, given the resource-constrained nature of
the UAVs, complex regression model such as a neural network
may cause excessive long latency. Hence, the linear regression
model is implemented in the UAV swarm, and then (18) can
be rewritten as:

ln(
Pk(Φ0)

1− Pk(Φ0)
) = BTX, (19)
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where B is the vector of the regression coefficient computed
by the linear regression model and X is the vector of the
physical-layer attributes. Therefore, by combining (18) and
(19), Pk(Φ0) can be expressed as:

Pk(Φ0) = e(B
TX)[1− Pk(Φ0)]

= e(B
TX) − e(B

TX)Pk(Φ0)

=
e(B

TX)

1 + e(BTX)
.

(20)

Hence, the authentication decision fusion algorithm can be
broken down into two algorithms, namely the soft authenti-
cation decision algorithm implemented at each collaborative
node as Algorithm 4 and the final decision fusion algorithm
harnessed by the CH as Algorithm 5. Both algorithms are
given in the detailed flow chart of the proposed intelligent
collaborative authentication scheme in Fig. 4. Fig. 4 also
outlined the flow of our proposed scheme in detail as a
complement to Fig. 3. The optimization task of this algorithm
is to find the best ν value that fulfills (6). After the final
authentication decision is made, the CH will transmit the
judgment back to each collaborative node for future analysis
and then updates the authentication record, which constitutes
as the contribution used in Algorithm 2.

Authentication request

Obtain physical layer

(PL) Estimations (HI)

Obtain Gn and select the 

J reliable PL attributes 

Is this node 

the CH?

Compute the soft authentication 

decision (φm) via (20)

Obtain the usability index (Upq)

via (15)

Send the soft 

authentication 

to CH

Is this node 

selected?

Store the soft 

authentication 

decision

Select the top K collaborative 

nodes via (16)

Fuse the soft authentication 

decisions via (17)

Final authentication decision

Compute the soft authentication 

decision (φm) via (20)

No Yes

No Yes

ED

τA1

A4 A2

A4

A5

A3

v

A1: Algorithm 1

A2: Algorithm 2

A3: Algorithm 3

A4: Algorithm 4

A5: Algorithm 5

Fig. 4. Flow chart of the proposed intelligent collaborative authentication
scheme

IV. ANALYSIS

In this section, we first analyze the effects of Gini-impurity
threshold selection on the Gini-impurity-based attribute eval-

uation algorithm’s performance. Then, the impact of the au-
thentication threshold ν will also be discussed.

A. Analysis of the Gini-impurity Threshold (τ ) Selection

In order to minimize the authentication resource utilization
at each node, the unreliable physical-layer attribute have to be
removed by using the Gini-impurity-based attributes evalua-
tion algorithm. Since the Gini-impurity threshold is defined
by the operator, it is critical to analyze its impact on the
authentication performance. To achieve this goal, (20) which
represents the soft authentication is firstly combined with the
FA rate of (3) and the MD rate of (4). Then, the error rate of
(5) can be reformulated as:

E = w1PFA + w2PMD

= w1Pr(
1

K

K∑
k=1

ϕk ≤ ν|Φ0) + w2Pr(
1

K

K∑
k=1

ϕk > ν|Φ1)

= w1Pr(
1

K

K∑
k=1

e(B
TX)

1 + e(BTX)
≤ ν|Φ0)

+ w2Pr(
1

K

K∑
k=1

e(B
TX)

1 + e(BTX)
> ν|Φ1),

(21)

where X is the vector of the selected physical-layer attributes.
Only the physical-layer attribute having a Gini-impurity (Gn)
smaller than the Gini-impurity threshold τ can be included
into this vector. We assume that there exist two Gini-impurity
thresholds where 0.5 ≥ τ1 > τ2 > 0. Since τ1 > τ2, the
Gini-impurity of the physical layer attribute vector Xτ1 is
higher than or equal to the Gini-impurity of Xτ2. To be more
specific, Bτ2 will fit the regression model better compared
to Xτ1 due to the associated information gain, which
is the difference between the Gini-impurity of Xτ1 and
Xτ2. Hence, we can get Pr( 1

K

∑K
k=1

e(B
T
τ1Xτ1)

1+e(B
T
τ1Xτ1)

≤

ν|Φ0) ≥ Pr( 1
K

∑K
k=1

e(B
T
τ2Xτ2)

1+e(B
T
τ2Xτ2)

≤ ν|Φ0)

and Pr( 1
K

∑K
k=1

e(B
T
τ1Xτ1)

1+e(B
T
τ1Xτ1)

> ν|Φ1) ≥

Pr( 1
K

∑K
k=1

e(B
T
τ1Xτ1)

1+e(B
T
τ1Xτ1)

> ν|Φ1) which are equivalent
to Eτ1 ≥ Eτ2. In an extreme case, where τ1 = 0.5, all
physical layer attributes are chosen and Algorithm 1 can
be deemed as excluded. It can be safely concluded that the
security performance of using Algorithm 1 (0.5 > τ2 > 0)
will be better than excluding Algorithm 1 (τ1 = 0.5).
However, it should be noted that if τ is too small, no attribute
will be selected to construct the regression model. Hence,
the τ value selection should be carefully adjusted based on
the specific application use case. The simulation result of the
analysis is given in Section V, Fig. 6 and 7.

B. Analysis of the Authentication Threshold (ν) Selection

As the final authentication decision judgment, it is critical
to select an optimal authentication threshold to minimize the
error rate. To analyze the impact of the threshold selection, we
assume that the operator defines an authentication threshold ν,
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where 1 ≥ ν ≥ 0. When ν = 1, all devices will be deemed
to be spoofing devices. In the extreme case, the false alarm
rate and the missdetection rate will become Pr( 1

K

∑K
k=1 ϕk ≤

ν|Φ0) = 1 and Pr( 1
K

∑K
k=1 ϕk > ν|Φ1) = 0 so that (21) can

then be simplified as E = w1. Similarly, when ν = 0, all
devices will be authenticated as legitimate and the error rate
can be simplified as E = w2, respectively. Hence, in extreme
cases, the error rate can be reformulated as:

E =

{
w1, ν = 1;

w2, ν = 0.
(22)

In order to place ν in the range that is biased neither
to the missdetection nor the false alarm, it is important to
select the value of ν within the optimal range. However, it
is extremely hard for the human operator to find the range
before the application starts due to the nature of each unique
environment. Therefore, it is critical to improve the optimal
range of ν at each node to compensate for the potential error.
As discussed previously in Section IV-A, the regression model
will fit better due to its information gain by applying the Gini-
impurity-based attribute evaluation algorithm. Given more
accurate soft authentication decisions at each collaborative
node, the optimal range of ν can be relaxed. The simulation
results gleaned from this analysis can be found in Section V,
Fig. 6.

V. PERFORMANCE EVALUATION

In this section, the performance of the proposed intelligent
collaborative authentication scheme providing a guaranteed
SaS is studied using MATLAB based simulation. To represent
different UAV swarm sizes, the simulations consist of three
UAV swarms that contain 2, 4 and 6 member UAVs as well
as a CH. 30 spoofing devices coexist in the UAV swarm
which aim for actively impersonating each legitimate member
UAV at each time instance for malicious purposes. Each UAV
has a random motion path and a random starting position
that is less than 30 meters from each other. The relative
travelling speed between two UAVs is in the typical range
of 0 km/h and 60 km/h [40]. The analysis represents the last
of the 5 simulations that have been initialized differently and
all simulations have similar results. A dynamic environment
having 600 observations is constructed in which both urban
and rural areas are considered along with a transitional period.
The physical-layer attributes simulated include the RSSI, CFO
and IQI.

A 3D motion trajectory is considered for the UAVs. An
altitude-dependent Rician model is considered in the line-of-
sight (LOS) conditions in the rural area, since the flight altitude
varies from 150 to 300m [51]–[53]. The probability density
function of the Rician distribution can be expressed as:

PRician(s) =
s

σ2
exp(

−s2 −A2

2σ2
)I0(

As

σ2
), s ≥ 0, (23)

where s is the amplitude of the received signal, A is the
peak amplitude of the LOS component, I0(·) is the modified
Bessel function of the first kind with order zero, σ is the
root-mean-square of the received signal and the K-factor is

defined as K = A2

2σ2 . Then, in the urban area, where buildings
may exist, a non-line-of-sight (NLOS) condition with a flight
altitude between 15 and 30 m [54] is considered. In the NLOS
condition, since there may be no dominant path, the Rician
fading reduces to a Rayleigh fading which can be formulated
as:

PRayleigh(s) =
s

σ2
exp(

−s2

2σ2
)). (24)

To model the LoS and NLoS condition in MATLAB, we
use the embedded wlanTGaxChannel which conveys the sig-
nal through the 802.11ax channel. The MATLAB predefined
Model-A with K = 0 is used to simulate the Rayleigh
fading with 1 propagation path under the LoS condition. By
contrast, the MATLAB predefined model-F associated with
K = 6 is selected to simulate the Rician fading having
6 propagation paths to represent the NLOS condition in a
complex environment.

To simulate a traveling UAV swarm, we construct a sce-
nario, where the UAV swarm travels from a complex terrain
(i.e., urban area) to a simple terrain (i.e., suburban area).
In the complex terrain, the transmissions within the UAV
swarm are fully in NLoS conditions. Then, when the UAV
swarm is close to the simple terrain, a transitional period
emerges, where some of the transmissions take place in the
LoS condition, while the majority of the transmissions are
still in NLoS condition. To simulate this period, a random
token was used at each collaborative UAV to toggle between
model-A and model-F with a 25% probability being LOS
condition at each UAV. Hence, each collaborative UAV may
opt for a different authentication decision due to the different
observation conditions. Lastly, a sudden environmental change
takes place to represent the UAV swarm arriving at the simple
terrain. In this stage, all transmissions among the UAVs
suddenly move into a full LoS condition to test the robustness
of our proposed scheme. To evaluate the error rate of (5), we
set w1 = w2 = 0.5.

Fig. 5. Gini-impurity measurements of the physical-layer attributes across
different environments at a collaborative node
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To select a collaborative node associated with reliable at-
tributes to guarantee the SaS, the Gini-impurity-based attribute
evaluation algorithm is proposed first to evaluate the reliability
of each physical-layer attribute at each collaborative node. To
examine whether the Gini-impurity measurement can reflect
the different characteristics of each attribute, we selected a
random member UAV within the network and plotted the
relationship between the Gini-impurity and the time-varying
environment as shown, in Fig. 5. It can be observed that
the Gini impurity of each physical-layer attribute fluctuates
with respect to the environmental change. In this example,
the Gini-impurity of the RSSI fluctuates dramatically due
to the high mobility of the UAVs since RSSI is distance
sensitive. Therefore, it can be concluded that each attribute
has a different level of reliability and robustness in a time-
varying environment.

Fig. 6. Error rate comparison results with Algorithm 1 at different parameters
and without Algorithm 1 with all attributes.

Furthermore, to examine whether it is necessary to eliminate
the less reliable attributes by utilizing the Gini-impurity-based
attribute evaluation algorithm, we selected a random member
UAV within the network again. As discussed in the analysis
of Section IV, we set τ = 0.5 to utilize all physical-layer
attributes for error rate comparison purposes. The error rate of
(5) is computed with respect to the number of observations,
as shown in Fig. 6. This demonstrates that our proposed
algorithm has a better error rate performance than utilizing
all physical-layer attributes across different ν. It can also be
concluded that our proposed scheme significantly increases the
optimal authentication decision threshold interval, as discussed
in Section IV-B, which makes it easier to select the authenti-
cation threshold (ν). On the other hand, we have also tuned
Algorithm 1 by utilizing a different number of observations to
obtain fnc. To be more specific, we have included 3 scenarios
where the latest 200 observations, the latest 400 observations
and all observations are used. It can be observed that the
security performance between the three cases is very similar,
because it is predominantly determined by the number of the
observations which is 600 in total.

Fig. 7. Actual error rate comparison results with and without using Algorithm
1 in the UAV swarm

In Fig. 7, we compare the error rate of using Algorithm 1
to the scenario of employing all physical-layer attributes in
different UAV swarm sizes. Similar to the previous figure,
we set τ = 0.5 to simulate the case using all available
physical-layer attributes. It can be observed that our proposed
scheme achieves a better or at least similar performance
to that using all physical-layer attributes, which also veri-
fies our analytical results. Although all techniques achieve
an optimized authentication performance, when the number
of observations increases, the Gini-impurity-based attribute
evaluation algorithm has a better performance even when
the number of observations is small. The associated reduced
number of observations are extremely beneficial for resource-
constrained applications, where it is more difficult to find the
collaborative nodes for observation purposes.

Since the computational complexity is proportional to the
number of selected collaborative nodes, one of the objectives
in (6) is to minimize the number of selected collaborative
nodes (K). To examine our scheme’s ability to select the
minimum number of collaborative nodes, we considered 3
different security requirements evaluated in terms of the
operator-defined error rate as ED = 0.1, ED = 0.01 and
ED = 0.001. To guarantee the SaS, the actual error rate
(EA) should be lower than the operator-defined error rate (ED)
despite utilizing a minimal number of authentication resources.
The different selections of ED reflect the unique security
requirements in different scenarios ranging from civilian to
military applications.

As shown in Fig. 8, when ED = 0.1, only 1 collaborative
node is selected across different environments to guarantee
the SaS. This demonstrates that only modest authentication
resources are required to achieve a limited authentication
requirement. When ED = 0.01, it can be observed that
more collaborative nodes are selected at the beginning of
the authentications compared to the result of Fig. 8. This
demonstrates that a training stage is required at each node
to approach the optimal performance. It can also be observed
that during the environmental change, our proposed scheme
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Fig. 8. Subplots of the Security requirements (ED) and the number of selected
collaborative node(s)

can dynamically select a different number of collaborative
UAVs to meet the authentication requirement. Then, to study
the computational cost under an extremely strict authentication
performance requirement, a subplot is also included to charac-
terize the collaborative node selection at ED = 0.001. Similar
to the case of ED = 0.01, our proposed scheme selected
more authentication nodes during the environmental change to
guarantee the authentication requirement. We can also observe
that more collaborative nodes are selected across different
environments. However, this demanding authentication per-
formance can still be achieved without utilizing all possible
authentication resources. When the collaborative nodes are
well-trained, our proposed scheme succeeds in reducing the
number of selected nodes to as low as one. Note that although
only a single collaborative node is being selected, it is not
equivalent to the centralized authentication schemes, since the
single collaborative node selected can be different from one
time instant to another. Our proposed scheme can intelligently
select the most reliable combination of collaborative node(s)
to achieve guaranteed performance with minimum effort in a
distributed system.

Urban Area

Transition

Sudden 

Change

Rural Area

Fig. 9. Performance comparison between our proposed scheme and the NN-
based centralized authentication scheme

Ultimately, to demonstrate that our proposed scheme per-
forms better in satisfying the target authentication requirement,
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Fig. 9 is given by considering the same security requirement
for ED = 0.1, ED = 0.01 and ED = 0.001, as used in the
previous step. It can be observed from the zoomed-in plot
that the actual security performance (EA) can indeed satisfy
the defined requirement, which successfully demonstrates that
the SaS can be guaranteed with fewer authentication resources.
For the authentication performance comparison, a nearest-
neighbor-based (NN-based) centralized authentication scheme
proposed in [55] is selected for testing under three different
UAV swarm sizes of 2, 4 and 6 UAVs. It can be observed that
the NN-based centralized authentication scheme has a similar
trend in all three UAV sizes. Furthermore, compared to Fig.
7, the training stage of our proposed scheme is shorter, since
the decisions gleaned from the reliable collaborative nodes
are fused together. Moreover, to demonstrate the robustness
of our proposed scheme, a sudden environmental change is
simulated within the transitional stage, as labeled on the plot. It
can be observed that the performance of our proposed scheme
is significantly more robust against the sudden environmental
change imposed.

VI. CONCLUSION
An intelligent collaborative authentication scheme was pro-

posed for employment in diverse environments. The novel SaS
concept was conceived to achieve a specifically defined level
of authentication with minimal authentication resources as an
attractive design alternative to best-effort-based techniques.
To achieve our ambitious design objective, the reliability of
the physical-layer attributes had to be considered at each
collaborative node. Hence, a Gini-impurity-based attribute
evaluation algorithm was first developed to evaluate how likely
the attributes would contribute to a reliable authentication
decision. If none of the attributes were considered sufficiently
reliable based on the operator-defined threshold (τ ) or no
observation was made at the time instance, the collaborative
node would be temporarily removed from the authentication
process in conjunction with a usability index of 0. By applying
this procedure, only the reliable physical-layer attributes of
each node would be selected at each instance based on
situational-awareness. Then, the collaborative node evaluation
algorithm was proposed for quantifying the usability index of
each collaborative node associated with a reliable physical-
layer attribute by considering both the relative distance and
the past contributions. The result is further utilized by the
intelligent authentication customization algorithm to select
the most suitable combination of collaborative nodes. This
procedure guarantees to satisfy the specific authentication
requirement at a minimal computational cost by comparing
it to the decentralized authentication which utilizes all nodes.
Finally, the proposed scheme was critically appraised against
other state-of-the-art centralized authentication schemes to
demonstrate its superior authentication performance versus
computational complexity.
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