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Abstract: Reciprocal spin-orbit coupling (SOC) via geometric phase with flat optics provides a promising platform for shaping and 
controlling paraxial structured light. Current devices, from the pioneering q-plates to the recent J-plates, provide only spin-
dependent wavefront modulation without amplitude control. However, achieving control over all the spatial dimensions of paraxial 
SOC states requires spin-dependent control of corresponding complex amplitude, which remains challenging for flat optics. Here, 
to address this issue, we present a new type of flat-optics elements termed structured geometric phase gratings that is capable of 
conjugated complex-amplitude control for orthogonal input circular polarizations. By using a microstructured liquid crystal 
photoalignment technique, we engineered a series of flat-optics elements and experimentally showed their excellent precision in 
arbitrary SOC control. This principle unlocks the full-field control of paraxial structured light via flat optics, providing a promising 
way to develop an information exchange and processing units for general photonic SOC states, as well as extra-/intracavity mode 
convertors for high-precision laser beam shaping. 
 

 

Introduction 
Recent advances in structured vectorial paraxial beams with 
tunable spatially-varying amplitude, phase and state of 
polarization (SoP) are continually revealing a variety of exotic 
structured photonic states and unexpected phenomena [1-4]. 
These vector paraxial modes were discovered in the early years 
of laser physics but became an active topic only in this century 
[5]. The mechanism behind the exotic beam structure of vector 
modes has become widely known only in the last two decades, 
after people became aware of paraxial orbital angular 
momentum (OAM) [6,7]. More precisely, vector modes a 
nonseparable superposition between the SoP and spatial 
structure of light, which can also be interpreted as spin-orbit 
coupling (SOC) in light beams, and the modes are therefore also 
known as paraxial SOC states, especially in the quantum 
context [8-10]. Crucially, this mechanism has provided the 
basis on how to shape and control the SOC states — i.e., spin-
dependent spatial light modulation. Along this line, there are 
two feasible approaches: the first one relies on the use of a 
traditional polarization interferometer, very often comprising a 
digital spatial light modulator [11,12], while the other is to 
exploit the geometric phase, through photonic SOC devices 
based on delicate flat optics [13]. The former can fully control 
the spatiotemporal structure of light in a dynamic and flexible 
way but has a complex, bulky and inefficient configuration. The 
latter, owing to its low cost, integrability and versatility, is 
gaining increasing attention and popularity in a rapidly 
developing field [14,15]. 

The geometric phase referred here originates from the slow 
transformation of the SoP, also known as the Pancharatnam–
Berry phase, and its retardance depends on the geometric path 
on the Poincaré sphere [16-18]. This principle provides a new 
paradigm for building wavefront-shaping platforms, i.e., 
exploiting the 2D geometric phase resulting from a spatially 
varied SoP transformation. Specifically, imagine if we pass a 
beam through a flat element with spatial-variant birefringence, 
such as microstructured liquid crystals (LCs) or dielectric 
metasurfaces [14,15], beyond enabling a point-by-point SoP 
transformation in the transverse plane, a wavefront modulation 
with SoP switchable behaviour will be achieved. Notably, 
current SOC devices, from the original LC q-plates to recent 
metasurface J-plates [19,20], provide only spatial light 
modulation of the phase with SoP-switchable behaviour. The 
absence of amplitude control greatly limits the range of SOC 
achievable states. To illustrate this, we take cylindrical vector 
(CV) polarized modes (also called vector vortex beams) as an 
example, which have been considered of paramount importance 
in applications, such as, high-dimensional communication, 
remote sensing, microscopy, to mention a few [21-28]. Their 
modal constitution exhibits ‘typical’ SOC states, i.e., a 
superposition of two conjugate (opposite topological charge) 
OAM modes with orthogonal circular polarization. Remarkably, 
CV modes obtained via q-plates are not eigenmodes of free 
space and therefore, upon propagation they give rise to the so-
called hyper-Geometric Gauss (HyGG) beams [29]. In contrast 
to propagation invariant Laguerre–Gauss (LG) modes, their 
pattern exhibits ripple-like motion upon propagation owing to 
their undefined amplitude structure [30]. This issue creates 
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difficulties in SOC state manipulation and transmission, but 
more importantly, it limits the exploitation of all the spatial 
dimensions of structured light. Without amplitude control, it is 
impossible to access the radial degree-of-freedom of LG and 
associated CV modes [31-35], let alone to control more general 
SOC states in other paraxial coordinates [36-38]. That is why 
q-plate-like flat elements have always been absent from 
experimental studies involving full spatial dimensions of 
structured light, and instead, the traditional optical scheme 
seems to be the only choice of scientists [39-42]. 

To control a paraxial SOC state in all its spatial degrees of 
freedom, spin-dependent complex amplitude modulation 
provides an essential alternative, but up to now it has remained 
elusive with flat optics. In this work we fill this gap, by putting 
forward a new type of geometric-phase element termed 
Structured Geometric Phase Grating (SGPG), featuring a 
spatially-varying grating cycle, depth and orientation. 
Importantly, this SOC device can structure arbitrarily the 
complex amplitude of input beams in the ±1st-order of 
diffractions with a conjugate manner in response to left- and 
right-circular polarized components, respectively. Such a 
crucial advance, compared with the present geometric phase 
elements, unlocks the control of paraxial structured light in all 
spatial dimensions, and paves the way towards arbitrary SOC 
conversion via flat optics. To demonstrate this principle, we 
engineered a series of LC flat elements using a photoalignment 
technique [15] and experimentally showed their excellent 
performance in terms of arbitrary SOC control of structured 
light.  

Concept and Principle 
Spin-orbit coupled states — The term SOC state utilized here 
refers to the most common family of vectorial paraxial modes 
constructed by conjugate angular momentum components [43] 
and can be expressed as a nonseparable superposition of 
orthogonal circular SoPs 𝑒𝑒±̂  (associated to spin angular 
momentum) and conjugate spatial modes 𝜓𝜓±(𝒓𝒓, 𝑧𝑧)  carrying 
opposite OAM 

Ψsoc(𝒓𝒓, 𝑧𝑧) =
√

𝑎𝑎𝜓𝜓+(𝒓𝒓, 𝑧𝑧)𝑒𝑒+̂ + 𝑒𝑒𝑖𝑖𝑖𝑖√1 − 𝑎𝑎𝜓𝜓−(𝒓𝒓, 𝑧𝑧)𝑒𝑒−̂, (1) 

where 𝒓𝒓  denotes transverse coordinates, 𝑎𝑎 ∈ [0,1]  is a 
weighting coefficient that controls the degree of nonseparability 
(which is maximum for 𝑎𝑎 = 0.5), and 𝜃𝜃 is an intermodal phase. 
Note that the two OAM-carrying modes 𝜓𝜓±(𝒓𝒓, 𝑧𝑧)  form a 
conjugate pair and thus can be expressed as 

𝜓𝜓±(𝒓𝒓, 𝑧𝑧) = 𝑢𝑢(𝒓𝒓, 𝑧𝑧) exp[±𝑖𝑖𝑖𝑖(𝒓𝒓, 𝑧𝑧)] , (2) 

where 𝑢𝑢(𝒓𝒓, 𝑧𝑧)  and ±𝑖𝑖(𝒓𝒓, 𝑧𝑧)  represent the identical spatial 
amplitude and conjugate wavefronts of the pair, respectively. 
All possible vector modes shown in Eq. (1) form a tensor 
parameter space with respect to spin and orbital angular 
momenta and can be visualized as the surface of a spin-orbit 
hybrid unit sphere commonly called higher-order Poincaré 
sphere [44], although less rigorous [45]. Here we call it SOC 
modal sphere in the following contents. In particular, the SOC 
state (1) becomes the most common CV mode, as 𝜓𝜓±(𝒓𝒓, 𝑧𝑧) are 

OAM eigenmodes carrying well-defined OAMs, i.e., ±ℓℏ per 
photon (ℓ is an integer), such as a pair of conjugate LG, Bessel 
or HyGG modes. 

Note that state (1) has the same SU(2) algebraic structure as 
a scalar SoP on the ‘classical’ Poincaré sphere. This indicates 
that a reciprocal SOC device, if achievable, can realize the 
interconversion between an arbitrary SOC mode and its 
corresponding scalar SoP 

�
√

𝑎𝑎𝑒𝑒+̂ + 𝑒𝑒𝑖𝑖𝑖𝑖√1 − 𝑎𝑎𝑒𝑒−̂�𝜓𝜓0(𝒓𝒓, 𝑧𝑧) ↔ Ψsoc(𝒓𝒓, 𝑧𝑧), (3) 

where 𝜓𝜓0(𝒓𝒓, 𝑧𝑧) denotes the spatial complex amplitude of the 
scalar beam and is commonly considered the TEM00 mode. In 
other words, the supposed device can map a SoP on the 
Poincaré sphere into the same position on an arbitrary desired 
SOC modal sphere and vice versa, as the example shown in Fig. 
1(a). A popular example is the q-plate, used to interconvert a 
given scalar SoP and its CV-polarized counterpart. The 
mechanism of this interconversion is realized by imprinting 
conjugate spiral wavefronts exp(±𝑖𝑖ℓ𝜑𝜑)  onto 𝑒𝑒±̂  polarization 
components of the input beam. This widely used spin-
dependent phase-only modulation [13, 15, 20], although 
belonging to unitary transformation, fails to define the 
amplitude structure of 𝜓𝜓±(𝒓𝒓, 𝑧𝑧). Namely, the implementation 
of Eq. (3) for general SOC states relies on a reciprocal complex-
amplitude transformation 𝜓𝜓±(𝒓𝒓, 𝑧𝑧) ↔ 𝜓𝜓0(𝒓𝒓, 𝑧𝑧)  according to 
the input SoP. In particular, this arbitrary SOC conversion can 
work as a controlled gate in quantum computing system built 
by photonic SOC states [46].  

Structured geometric phase gratings — How to build a flat 
SOC device for structuring arbitrary paraxial vector modes? 
The task requires that the device, beyond conjugately shaping 
wavefronts of 𝑒𝑒±̂ components, can also structure the amplitude 
profile directly and preferably without the assistance of other 
operations, such as polarization filtering. Moreover, the 
intramodal phase 𝑒𝑒𝑖𝑖𝑖𝑖  should remain unchanged in the 
conversion. That is, our main focus is to achieve spin-
dependent complex amplitude modulation with phase-locking 
ability. 

To achieve this goal, we introduce a new type of geometric-
phase element termed the Structured Geometric Phase Grating 
(SGPG) that has spatially-variant grating cycle, depth and 
orientation. When guiding a TEM00 or Ψsoc(𝒓𝒓, 𝑧𝑧) mode passing 
this flat element, the designed mode conjugates 𝜓𝜓±(𝒓𝒓, 𝑧𝑧) can be 
generated or measured at the ±1st diffraction orders with 
opposite circular SoPs. The two diffraction orders can be 
recombined coherently using a conventional polarizing grating 
(PG); in this way, the reciprocal SOC device for arbitrary vector 
modes shown in Eq. (3) is realized. Both microstructed LCs and 
dielectric metasurfaces are good candidates to fabricate SGPGs. 
Here, we used nematic LC and the photoalignment technique to 
fabricate all the elements by virtue of their high efficiency, low 
cost, high reliability and electro-tunability [47-50]; see 
Methods for details. These LC elements can be regarded as 
microstructured half-wave plates with spatially-variant director 
orientation 𝛼𝛼(𝒓𝒓), giving a 2D SoP transformation and  
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Figure 1. (a) Schematic of the reciprocal SOC device based on structured geometric phase gratings (SGPGs) designed for 
controlling the ‘example’ SOC state composed of �LG±1,1, 𝑒𝑒±̂⟩. (b) Inverse design of the SGPG for generating and measuring 
�LG±1,1, 𝑒𝑒±̂⟩ in ±1st-order diffractions. The left panel shows the target intensity profile to be structured, diffraction efficiency (DE) 
and the corresponding grating phase depth (GPD) distribution, the middle panel shows the constructed spin-switchable geometric 
phase, and the right panel shows the LC-director orientations of the designed SGPG.  

 

associated wavefront modulation |𝑒𝑒±̂⟩ → exp[±𝑖𝑖2𝛼𝛼(𝒓𝒓)] |𝑒𝑒∓̂⟩ to 
circular-polarized components of incident light. 

To illustrate the principle specifically, as shown in Fig. 1, 
we choose vector modes constructed by SOC bases 
�LG±1,1, 𝑒𝑒±̂⟩ as an example to show the inverse design of the 
geometric-phase elements. That is, in the example, the desired 
mode conjugates 𝜓𝜓±(𝒓𝒓, 𝑧𝑧) were assumed as a dual-ring donut 
mode pair LG±1,1 . First, to directly structure the spatial 
amplitude via geometric phase, we exploit the relation of the 
grating phase depth (𝐷𝐷) to diffractive efficiency (or probability) 
to control amplitude profiles of light (or photons) in ±1st-order 
diffractions, given by 

𝐷𝐷(𝒓𝒓) = 2𝜋𝜋{1 − sinc−1[𝑢𝑢(𝒓𝒓, 𝑧𝑧0)]}, (4) 

where 𝐷𝐷 ∈ [0,2𝜋𝜋]  and 𝑢𝑢(𝒓𝒓, 𝑧𝑧0)  denote the amplitude profile 
(realized via diffractive efficiency control) of desired spatial 
modes at the 𝑧𝑧 = 0 plane. Specifically, in the left panel of Fig. 
1(b), the green dashed line shows a calculated grating phase 
depth 𝐷𝐷(𝒓𝒓) with the blue solid curve as the desired diffractive 
efficiency (or the beam profile to be shaped) 𝑢𝑢2(𝒓𝒓). Based on 
this, by integrating with the spin-dependent wavefronts 
±𝑖𝑖(𝒓𝒓, 𝑧𝑧0)𝑒𝑒±̂ , a pair of geometric phase conjugates used to 
structure the example mode pairs LG±1,1 is obtained, as shown 
in the middle panel. At last, using the relation between the 
geometric phase and LC-director orientation 
|𝑒𝑒±̂⟩ → exp[±𝑖𝑖2𝛼𝛼(𝒓𝒓)] |𝑒𝑒∓̂⟩ , we obtain the LC-director 
distribution to fabricate the desired SGPG, as shown in the right 
panel. This novel geometric-phase element can exactly 
structure the example SOC bases �LG±1,1, 𝑒𝑒±̂⟩  in ±1st-order 
diffractions. On this basis, in combination with a 4f-PG 
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polarizing beam combiner, we build a reciprocal SOC device 
that can map arbitrary scalar SoPs into their vector counterpart 
on the SOC modal sphere defined by �LG±1,1, 𝑒𝑒±̂⟩ and vice 
versa. In addition, there are two noteworthy points. First, 
incident beams in the generation process are usually in the 
fundamental Gaussian mode; thus, the corresponding design 

should contain Gaussian amplitude amendments. Second, the 
principle of spatial mode detection used here, as well as in other 
relevant works, is not a strict projective measurement but a 
spatial autocorrelation [51-53]. More details about the two 
points are provided in the Supplementary Materials. 

 

 
Figure 2. (a) Schematic representation of the experimental setup, where the key components are the single-mode fiber (SMF), half-
wave plate (HW), quarter-wave plate (QW), polarizing beam splitter (PBS), nonpolarizing beam splitter (NPBS), structured 
geometric phase grating (SGPG), polarization grating (PG), and camera (CCD). The right-bottom inset shows the constitution of 
spatial Stokes polarimetry. (b) Schematics and characterizations of the SGPG design for generating �IG6,4

± , 𝑒𝑒±̂⟩  with 𝜀𝜀 =
0, 1 and ∞, including designed LC director distributions, polarizing micrographs taken at 0V voltage under crossed polarizers, and 
target geometric phases (GPs) & complex amplitudes. 
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Experimental Results 

Figure 2(a) shows the experimental setup used to verify the 
principle illustrated above. A narrow linewidth laser operating 
at 780 nm, collimated from a single-mode fiber as a TEM00 
beam, was used as the initial light source of the experiment. The 
TEM00 beam was first adjusted to the desired polarization using 
a SoP-control unit consisting of a polarizing beam splitter (PBS) 
and two wave plates (QW and HW). This scalar polarized 
TEM00 beam was then converted into a corresponding vectorial 
structured Gaussian beam by passing it through the first SOC 
convertor (SOC-I), that is, by performing SOC state generation. 
Then, the generated vector beam was guided into the second 
SOC convertor (SOC-II), which operated in the detection mode, 
and was converted back to a corresponding scalar polarized 
beam. All the LC elements were operated in the half-wave 
condition by controlling their load voltage (a 1 kHz square-
wave signal with a peak-peak voltage of around 2 V is applied). 
To match the beam size and divergence in SOC state generation 
and detection, a 4f-system was placed between the two SOC 
convertors. Finally, another SoP-control unit was used to 
perform Stokes tomography on the scalar polarized beam 
output from SOC-II, and projective values (i.e., Stokes 
parameters) were received by a single-mode fiber. In addition, 
to an in-situ measure of the beam structure in SOC state 
generation and detection operations, we used spatial Stokes 
polarimetry, see the apparatus in the right-bottom inset in Fig. 
2(a), to monitor polarizing beam patterns sampled from two 
nonpolarizing beam splitters (NPBSs). 

In the experiment, to show the modal versatility of the 
principle (i.e., can generate and measure arbitrary spatial 
modes), SGPGs were designed to control a group of generalized 
SOC states in elliptical coordinates, i.e., vector Ince-Gauss (IG) 
modes [37]. As vector eigen solutions of the paraxial wave 
equation, they have a propagation-invariant beam structure but, 
unlike the CV mode, are usually not rotationally symmetric. 
This indicates that the helical mode pair 𝜓𝜓±(𝒓𝒓, 𝑧𝑧) within the 
‘generalized’ SOC state probably does not carry well-defined 
OAMs per photon. Specifically, here, helical IG modes 
IG6,4

± = �1 2⁄ �IG6,4
𝑒𝑒 ± 𝑖𝑖IG6,4

𝑜𝑜 �  with three ellipticities 𝜀𝜀 =
0, 1 and ∞  (see Supporting Information) were chosen for 
𝜓𝜓±(𝒓𝒓, 𝑧𝑧), corresponding to a transition from LG±4,1 to IG6,4

±  
and finally to helical Hermite–Gauss (HG) modes 
�1 2⁄ (HG42 ± 𝑖𝑖HG33). Figure 2(b) shows the designed LC 
director distributions (left) and observed polarizing 
micrographs (middle) of the SGPGs used in experiments, as 
well as their spin-switchable geometric phase and 
corresponding complex amplitudes to be structured (right) in 
theory. In all three cases, we see that the structured complex 
amplitude conjugates have the same intensity profile but 
opposite OAMs, so each pair can form an SU(2) unit sphere 
regarding the OAM. In particular, the average OAMs per 
photon carried by the helical IG (±3.89ℏ) and HG (±3.46ℏ) 
modes were calculated by reconstructing them with 
superposition of LG modes with the same order 𝑁𝑁 = 2𝑝𝑝 +
|ℓ| = 6 [54,55]. See Supporting Information for details on the 
paraxial Gaussian modes. 

The experimental results are shown in Fig. 3. For each 
ellipticity, we chose four states, evenly spaced on the rainbow-
colored circle on the higher-order Poincaré sphere, as desired 
SOC states to be generated and measured. The polarizing beam 
patterns shown in the first (Generation) column are 
experimentally generated vector modes that we observed using 
spatial Stokes polarimetry. As an example, black insets nearby 
the Generation column show the observed spatial Stokes 
projection of each state |a⟩. We see that the effect of the SOC 
state transition from state |a⟩ to |d⟩ , or the motion on the 
higher-order Poincaré sphere, is reflected in the variation of 
SoP distributions. The position parameters, i.e., 𝑎𝑎  and 𝜃𝜃 , 
according to Eq. (3), can be measured quantitatively by 
converting the vector mode back into the corresponding scalar 
one. The middle (Detection) column shows the observed 
polarizing beam patterns sampled from the NPBS after 
detection by SOC-II. The theory regarding the pattern evolution 
in vector mode detection is given in the Supporting Information. 
Here, only the central Gaussian-like patterns were coupled into 
the SMF, and we used SoPs covering them to determine the 
position parameters 𝑎𝑎 and 𝜃𝜃, as indicated by the colored dots 
embedded on the rainbow path to show the measured positions. 
For a more intuitive comparison, the right (Reconstruction) 
column shows the simulated polarizing beam pattern of each 
involved SOC state according to the measured position 
parameters. That is, these patterns were calculated using Eq. (1) 
with measured 𝑎𝑎 and 𝜃𝜃 as input. The theoretical reconstruction 
is shown to be highly consistent with that in the observation, 
verifying the precision of the device in both SOC state 
generation and detection. 

Conclusion & Discussion 
We experimentally demonstrated a new type of photonic SOC 
device, the SGPG, using the LC geometric phase. This 
advanced SOC device, compared with the present generation of 
devices, such as the q-plate, enables conjugate complex-
amplitude control of orthogonal circular polarizations by 
bringing in a spatially varied grating microstructure. Such a 
crucial advance unlocks the control of paraxial structured light 
in all spatial dimensions via geometric phase. Taking the results 
in Fig. 3(a) as an example, the accession of radial modes further 
boosts the dimensions (or data capacity) of a quantum (or 
spatial-division multiplex) system relative to those of a 
photonic SOC system controlled by q-plates. In addition to the 
special CV modes, as shown in Figs. 3(b) and (c), the device 
can control generalized SOC states without rotational 
symmetry (or well-defined OAM). This capability makes it a 
key extra-/intracavity component to build a structured laser that 
has greater tunability in beam structure, compared with 
reported systems based on q-plate and metasurface [56,57]. For 
quantum optics, the reciprocal SOC interface demonstrated 
here allows to implement a Bell measurement for arbitrary SOC 
states, which is the basis towards the teleportation scheme for 
SOC photon pairs [46]. Moreover, owing to the capability of 
full-field spatial mode control [58], the device also paves the 
way to quantum control of high-dimension photonic skyrmions 
[59,60].  
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Figure 3 Experimental results of the reciprocal SOC conversion used for the generation and detection of generalized SOC modes, 
where (a)–(c) correspond to vector IG modes with 𝜀𝜀 = 0, 1 and ∞, respectively. In the detection column, only the SoPs covering 
on the center patterns surrounded by orange dashed circles were coupled into the SMF and used to determine SOC states. Additional 
data acquired by spatial Stokes measurement are provided in the Supplementary Materials. 

 

Beyond single-beam vector mode control, this principle can 
further realize multiple vector mode control through the 
addition of a Dammann grating structure [12, 61,62], see 
Supporting Information for an extended discussion on this. This 
represents a promising way to develop information exchange 
and processing units working for photonic SOC states, i.e., 
vector-mode multiplexers and demultiplexers. Moreover, the 
existence of the grating phase makes the diffraction response 
tunable with both the polarization and temporal spectrum of the 
incident beam, suggesting that the principle may also be used 
to shape and control the nonseparable structure of paraxial light 
in ray-wave coupled and spatiotemporal degrees of freedom 
[63-68]. Another issue of concern is the fabrication complexity, 
and another key advantage of SGPG is that it only requires the 
birefringence microstructure having a spatially varied 
orientation with global identical retardation, i.e., the complexity 
is same as the fabrication of q-plates. Hence, this new-type SOC 
device can be easily commercially manufactured, especially the 
LC version enabled by the photoalignment technique. 

Regarding the limitation of the SOC device presented here, 
although the key LC element SGPG supports arbitrary 

complex-amplitude control with SoP switchable behaviour, the 
crucial amplitude control is realized by introducing spatially-
varying grating; as a consequence, the generated or measured 
mode conjugates 𝜓𝜓±(𝒓𝒓, 𝑧𝑧)  were separated to ±1st-order 
diffractions. Such spatial separation of 𝜓𝜓±(𝒓𝒓, 𝑧𝑧) is useful for 
the applications that requires shaping arbitrary scalar mode with 
SoP switchable behaviour. For vector mode control, however, 
we have to use a 4f-PG system with the phase-locking capacity 
to recombine the spatially separated 𝜓𝜓±(𝒓𝒓, 𝑧𝑧), leading to the 
whole SOC device bulky. To further simplify the components 
of the device, in principle, the 4f lens can also be replaced by 
geometric phase elements. However, for single-beam vector 
mode control, reciprocal SOC conversion realized via a single 
flat element is preferred and thus is still a worthy issue to further 
research.  

Methods  
LC microstructure fabrication — The sulfonic azo-dye SD1 
(Dai-Nippon Ink and Chemicals, Japan) was dissolved in 
dimethylformamide at a concentration of 0.3 wt% and used as 
the photoalignment agent. Two indium-tin-oxide glasses were 
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ultrasonic and UV-Ozone cleaned. After that, they were spin-
coated with the SD1 solution at 800 rpm for 10 s and then 3000 
rpm for 40 s. After curing at 100 °C for 10 min, the two glasses 
were assembled into a 6-μm-thick empty cell with the aid of 
spacers. Next, a digital-micromirror-device (DMD) based 
photoalignment system was used to fulfill the dynamic multi-
step photoalignment process [69]. The DMD (Discovery 3000, 
Texas Instruments) consisted of 1024 × 768 micro-mirrors with 
the pixel size of 13.68 μm × 13.68 μm, and a 5× objective was 
used to further reduce the pixel pitch. When loading the 
designed alignment patterns, this system exposed the cell to UV 
light in a multi-step manner with a total dose of ≈ 5 J cm−2. Each 
step corresponded to a specific exposure pattern and a certain 
UV linear polarization direction. Since SD1 molecules tend to 
reorient perpendicular to the UV polarization direction, the SD1 

layers could be endowed with the desired alignment distribution 
after photoalignment process. Finally, the nematic LC E7 
(HCCH, China) was filled into the cell at 70 °C via the capillary 
action. After cooling to room temperature, the LC molecules 
acquired the same director distribution as SD1 through 
intermolecular interactions. 
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