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Abstract. We prove a surface embedding theorem for 4-manifolds with good fundamental group in
the presence of dual spheres, with no restriction on the normal bundles. The new obstruction is a

Kervaire–Milnor invariant for surfaces and we give a combinatorial formula for its computation. For

this we introduce the notion of band characteristic surfaces.

1. Introduction

We study whether a given map of a surface to a topological 4-manifold is homotopic to an embed-
ding. Here and throughout the article, embeddings and immersions in the topological category are by
definition locally flat, meaning they are locally modelled on linear inclusions R2 ↪→ R4 or R2

+ ↪→ R4.
Even for maps of 2-spheres, this question has only been completely addressed in a handful of simple

manifolds, such as S4, CP2 [Tri69Tri69, p. 264], and S2×S2 [Tri69Tri69, Theorem 4.5; KM61KM61, Corollary 1; Fre82Fre82,
Corollary 1.1]. Lee–Wilczynski [LW90LW90, LW97LW97] and Hambleton–Kreck [HK93HK93] described the minimal
genus of an embedded surface in a fixed homology class, in any given simply connected, closed 4-
manifold, assuming that the fundamental group of the complement is abelian. This was recently
extended by [FMN+21FMN+21] to knot traces. In the relative setting even the simplest case is open: which
knots in S3 bound a (locally flat) embedded disc in D4?

The main available tool for proving positive results is Freedman’s embedding theorem which shows
that maps of discs and spheres to a 4-manifold with good fundamental group, with vanishing intersection
and self-intersection numbers, and with framed algebraically dual spheres, are regularly homotopic to
embeddings (Theorem 4.34.3 [Fre82Fre82; FQ90FQ90, Corollary 5.1B], see also [PRT20PRT20, BKK+21BKK+21]). Surgery and
the s-cobordism theorem for topological 4-manifolds with good fundamental group are consequences of
this theorem [Qui82Qui82,FQ90FQ90]. Our aim, realised in Theorems 1.21.2 and 1.61.6 below, is to extend Freedman’s
theorem to all compact surfaces with algebraically dual spheres, in any connected 4-manifold with
good fundamental group. In Section 1.41.4 we explain how to apply this to the question from the opening
paragraph of whether a given homotopy class contains an embedding. In Section 1.51.5 we give some
applications to knot theory. In particular, we show that every knot bounds an embedded surface of
genus one in M \ D̊4 for every simply connected closed 4-manifold M not homeomorphic to S4. Recall
that for M = S4, this does not hold because the slice genera of knots can be arbitrary large.

Throughout the paper, we will work in the following setting unless otherwise specified.

Convention 1.1. We assume that M is a connected, topological 4-manifold and that Σ is a nonempty
compact surface with connected components {Σi}mi=1. The notation F = {fi}mi=1 : (Σ, ∂Σ) ↬ (M,∂M)
represents a generic immersion (Definition 2.32.3) with components fi : (Σi, ∂Σi) ↬ (M,∂M).

By assumption, the map F restricts to an embedding on ∂Σ and F−1(∂M) = ∂Σ, where ∂Σ and ∂M
are permitted to be empty. There is no requirement for Σ or M to be orientable, and M could be non-
compact. Weakening the hypotheses of Freedman’s theorem to allow for the algebraically dual spheres
to be unframed introduces an additional obstruction, the Kervaire–Milnor invariant km(F ) ∈ Z/2
(Definition 1.41.4), which vanishes in the presence of framed algebraically dual spheres.

Theorem 1.2 (Surface embedding theorem). Let F = {fi}mi=1 : (Σ, ∂Σ) ↬ (M,∂M) be as in Conven-
tion 1.11.1. Suppose that π1(M) is good and that F has algebraically dual spheres G = {[gi]}mi=1 ⊆ π2(M).
Then the following statements are equivalent.

(i) The intersection numbers λ(fi, fj) for all i < j, the self-intersection numbers µ(fi) for all i, and
the Kervaire–Milnor invariant km(F ) ∈ Z/2, all vanish.

(ii) There is an embedding F = {f i}mi=1 : (Σ, ∂Σ) ↪→ (M,∂M), regularly homotopic to F relative to
∂Σ, with geometrically dual spheres G = {gi : S2 ↬ M}mi=1 such that [gi] = [gi] ∈ π2(M) for all i.

2020 Mathematics Subject Classification. 57K40, 57N35.

Key words and phrases. Embedding surfaces in 4-manifolds, Kervaire–Milnor invariant.

1



2 D. KASPROWSKI, M. POWELL, A. RAY, AND P. TEICHNER

Equivariant intersection and self-intersection numbers of immersed discs and spheres have a long
history (see e.g. [Wal99Wal99]). In the theorem above, we consider generalised versions for arbitrary compact
surfaces, lying in quotients of the group ring Z[π1(M)], which we denote by Γfi,fj ∋ λ(fi, fj) for the
intersection numbers and Γfi ∋ µ(fi) for the self-intersection numbers. We describe these quotients
in detail in Sections 2.22.2 and 2.32.3. As in the simply connected case, these invariants require based
maps (Definition 2.112.11) but their vanishing as in Theorem 1.21.2 (i) does not depend on the choice of
basing. Vanishing of all the λ(fi, fj) for i < j and all the µ(fi) is equivalent to the vanishing of the
self-intersection number µ(F ), which is defined as follows.

Definition 1.3. Let F = {fi}mi=1 : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1. Assume in addition
that M and Σ are based and that F is a based map. The self-intersection number of this possibly
disconnected immersed surface is given by counting all double points of F , as follows:

µ(F ) :=
∑
i<j

λ(fi, fj) +
∑
i

µ(fi) ∈
⊕
i<j

Γfi,fj ⊕
⊕
i

Γfi .

The self-intersection number µ(F ) is a regular homotopy invariant that vanishes if and only if
there is a collection of Whitney discs that pair all double points of F (Corollary 2.302.30), just like for
connected surfaces. The Whitney discs may be chosen to form a convenient collection, meaning that
all Whitney discs have disjointly embedded boundaries, are framed, and have interiors transverse to F
(Definition 2.312.31).

Definition 1.4. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1. By definition, km(F ) ∈ Z/2
vanishes if and only if, after finitely many finger moves taking F to some F ′, there is a convenient
collection of Whitney discs pairing all the double points of F ′ and whose interiors are disjoint from F ′.

We think of µ(F ) as the primary embedding obstruction, and km(F ) as the secondary embedding
obstruction. Note that km(F ) = 0 implies µ(F ) = 0 but km(F ) is always defined even if µ(F ) ̸= 0. In
Section 1.11.1 we will give a combinatorial description of km(F ) in the case that µ(F ) = 0.

The Kervaire–Milnor invariant is named in homage to [KM61KM61], in which Kervaire and Milnor defined
an embedding obstruction, and used it to give the first proof that the Whitney trick fails in dimension 4.
Section 33 gives details on the connection of our Kervaire–Milnor invariant to the original obstruction
and other secondary embedding obstructions in the literature.

A group is said to be good if it satisfies the π1-null disc property [FT95FT95] (see also [KOPR21KOPR21]); we
shall not repeat the definition. In practice, it suffices to know that virtually solvable groups and groups
of subexponential growth are good, and that the class of good groups is closed under taking subgroups,
quotients, extensions, and colimits [FT95FT95,KQ00KQ00].

If Σ is a union of discs or spheres, Theorem 1.21.2 follows from [FQ90FQ90, Theorem 10.5 (1)]. The latter
theorem contained an error found by Stong [Sto94Sto94] (cf. Theorem 5.75.7), but this is not relevant to
Theorem 1.21.2 because of the way we defined the Kervaire–Milnor invariant. It is, however, very relevant
to how to compute the Kervaire–Milnor invariant, and Stong’s correction will be one of the ingredients
in our results (see Section 1.11.1).

For an arbitrary Σ, one could try to prove Theorem 1.21.2 by using general position to embed the 0-
and 1-handles of Σ (relative to ∂Σ) and removing a small open neighbourhood thereof from M . This
gives a new connected 4-manifold M0 with the same fundamental group as M , and only the 2-handles
{hi : (D

2, S1) ↬ (M0, ∂M0)}, one for each component Σi of Σ, remain to be embedded. One then
hopes to apply [FQ90FQ90, Theorem 10.5 (1)] (i.e. Theorem 1.21.2 for Σ a union of discs) to these maps of
2-handles to produce the desired embedded surface. The original algebraically dual spheres {gi} for
the {fi} perform the same rôle for the {hi} in M0. The intersection and self-intersection numbers λ
and µ remain unchanged, hence they also vanish for {hi}. However, the Kervaire–Milnor invariant
may behave differently. That is, it may become nonzero for the embedding problem for the discs {hi},
whereas it was trivial for the original F . We show that this phenomenon can occur in Example 9.39.3.
This difference stems from the fact that in applying [FQ90FQ90, Theorem 10.5 (1)] we fix an embedding of
the 1-skeleton of Σ and try to extend it across the 2-handles. As usual in obstruction theory, it might
be advantageous to go back and change the solution of the problem on the 1-skeleton.

1.1. Computing the Kervaire–Milnor invariant. The strength of Theorem 1.21.2 versus the above
strategy using [FQ90FQ90, Theorem 10.5 (1)] lies in our computation of the Kervaire–Milnor invariant for
arbitrary compact surfaces. In the case of discs and spheres, Stong showed that the Kervaire–Milnor
invariant vanishes in more situations than claimed by Freedman–Quinn, due to the ambiguity arising
from sheet choices when pairing up double points by Whitney discs, when the associated fundamental
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group element has order two. As we recall in Theorem 5.75.7, Stong [Sto94Sto94] introduced the notion of
an r-characteristic surface, short for RP2-characteristic surface (Definition 5.55.5), to give a criterion, in
terms of copies of RP2 immersed in the ambient manifold M , to decide whether the sheet changing
move is viable. Combined with the work of Freedman and Quinn, this enabled the computation of
the Kervaire–Milnor invariant, and therefore answered the embedding problem for every finite union
of discs or spheres with algebraically dual spheres, in an ambient 4-manifold with good fundamental
group (see Remark 5.85.8 for more details).

In order to compute the Kervaire–Milnor invariant km(F ) for general surfaces, we extend the notion
of r-characteristic surfaces to a notion of b-characteristic surfaces, short for band characteristic (Defi-
nition 5.175.17), defined using bands (annuli and Möbius bands) immersed in M . The next theorem is a
generalisation of Stong’s computation of km(F ) to arbitrary compact surfaces.

Definition 1.5. Let F = {fi}mi=1 : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1 with µ(F ) = 0. Choose
a convenient collection W = {Wℓ} of Whitney discs that pair all double points of F and define

t(F,W) :=
∑
ℓ,i

|IntWℓ ⋔ fi| mod 2.

In other words, t(F,W) is the mod 2 count of transverse intersections between F and the interiors of
the Whitney discs in W.

We will often apply this definition to the restriction F of F = {f1, . . . , fm} to the sub-surface
Σ ⊆ Σ, which includes a component Σi of Σ precisely if its image does not admit a framed immersion
gi : S

2 ↬ M with λ(fj , gi) = δij for all j = 1, . . . ,m (Definition 5.15.1). The main result of the article is
as follows.

Theorem 1.6. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1. Suppose that µ(F ) = 0 and that
F has algebraically dual spheres. If F is not b-characteristic then km(F ) = 0. If F is b-characteristic
then the secondary embedding obstruction satisfies

km(F ) = t(F ,W ) ∈ Z/2
for every convenient collection of Whitney discs W pairing all the double points of F .

The main novelty in this theorem lies in finding the right condition on F that makes the combinatorial
formula t(F ,W ) independent of the choice of Whitney discs, namely that F is b-characteristic. Note
that if π1(M) is good, then for km(F ) = 0 in the previous theorem, Theorem 1.21.2 gives an embedding
regularly homotopic to F . In practice, it can often be easy to determine if a given surface is b-
characteristic, as demonstrated by the following corollaries, derived in Section 99 as consequences of the
more general Proposition 9.19.1.

Corollary 1.7. If M is a simply connected 4-manifold and Σ is a connected, oriented surface with
positive genus, then any generic immersion F : (Σ, ∂Σ) ↬ (M,∂M) with vanishing self-intersection
number is not b-characteristic. Thus if F has an algebraically dual sphere then km(F ) = 0, and since
π1(M) is good the map F is regularly homotopic, relative to ∂Σ, to an embedding.

This corollary in particular implies that for every simply connected 4-manifold M with boundary a
disjoint union of homology spheres every primitive class inH2(M ;Z) can be represented by an embedded
torus. This recovers [LW97LW97, Theorem 1.1] in the case of divisibility d = 1. We also have the following
extension to the case of arbitrary 4-manifolds.

Corollary 1.8. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1, with µ(F ) = 0 and Σ connected.
If F ′ is obtained from F by an ambient connected sum with an embedding S1 × S1 ↪→ S4, then F ′ is
not b-characteristic. Thus if F has an algebraically dual sphere then km(F ′) = 0, and if π1(M) is good
then F ′ is regularly homotopic, relative to ∂Σ, to an embedding.

See Corollaries 1.131.13 and 1.141.14 for the nonorientable analogues of these two results. In particular, the
latter concerns the case where we replace the embedded torus in Corollary 1.81.8 by an embedded RP2.

1.2. Band characteristic maps. We briefly explain how the notion of a map being b-characteristic
arises in the context of embedding general surfaces. Given F : Σ ↬ M as in Convention 1.11.1, assume
that its double points are paired by a convenient collection of Whitney discs W. Then the interiors of
the discs in W could be tubed into spheres in M , potentially changing the count t from Theorem 1.61.6.
The condition that F is s-characteristic, short for spherically characteristic (Definition 5.25.2), precisely
ensures that the count is preserved under this move.
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F F ′

F F ′

B WB

Figure 1.1. Two portions of the immersion F and part of a band B are shown on
the left. A finger move produces F ′ with two new double points, paired by WB .

Similarly, consider a band, i.e. an annulus or Möbius band, immersed in M with boundary lying on
F (Σ) minus the double points, as in Figure 1.11.1. Then as shown in the figure we may perform a finger
move on F along a fibre of the band, creating F ′ with two new intersections, paired by a new Whitney
disc WB arising from the band B (see Figure 1.11.1). We call this move the band fibre finger move and
give further details in Construction 7.27.2. Adding WB to W might in principle change the count t, but
the requirement that F is b-characteristic maps ensures it does not. In the case that Σ has only simply
connected components, the boundary of the band is null-homotopic in Σ, and therefore the band can
be closed off by discs to produce either a sphere (from an annulus) or an RP2 (from a Möbius band).
Thus in this case it suffices to consider r-characteristic maps.

However, for general Σ there may exist a band in M with a boundary curve that is nontrivial in
π1(Σ). This necessitates the new notion of b-characteristic maps, which by definition requires that a
function Θ: B(F ) → Z/2 vanishes (Definitions 5.125.12 and 5.145.14), where B(F ) consists of the homology
classes in H2(M,Σ;Z/2) that can be represented by certain immersed bands in M with boundary on
Σ (Definition 5.95.9). These additional conditions on the bands have to do with the first Stiefel–Whitney
classes of M and Σ; when both are oriented, B(F ) consists precisely of the classes in H2(M,Σ;Z/2)
that are represented by maps of annuli and Möbius bands. Roughly speaking, the vanishing of Θ means
that every band with boundary on Σ intersects Σ evenly many times in its interior. Intersections among
the boundary components of the bands and a relative Euler number also play a rôle: see Sections 3.73.7
and 55 for details. If Θ ≡ 0 then for every band B, adding WB does not change the t-count, and in fact
t is well defined if and only if F is b-characteristic (Lemma 7.37.3). See Example 9.39.3 for a map which is
r-characteristic but not b-characteristic.

The first step for deciding whether F is b-characteristic is to determine the subset B(F ). In general
this could be difficult, but in practice it is often soluble. If this can be done, then, as shown in Figure 1.21.2,
by computing λΣ|∂B(F ) and Θ: B(F )→ Z/2, we can decide whether F is b-characteristic. Both of these
are functions on a finite group, so in principle these computations are manageable.

1.3. An embedding obstruction without dual spheres. Irrespective of whether F has alge-
braically dual spheres, we obtain a secondary embedding obstruction in the b-characteristic case.

Theorem 1.9. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1 with µ(F ) = 0. Let W be a
convenient collection of Whitney discs for the double points of F . Then F is b-characteristic if and
only if for every F ′ regularly homotopic to F and convenient collection W ′ for the double points of F ′,
we have t(F,W) = t(F ′,W ′).

For b-characteristic F , we denote the resulting regular homotopy invariant by t(F ) ∈ Z/2. Then if
km(F ) = 0, for instance if F is an embedding, then t(F ) = 0.

Note that, in particular, if F is b-charactertistic and a map H is regularly homotopic to F , then H
is b-characteristic (Lemma 5.195.19). If F is not b-characteristic, it is still possible that some restriction F ′

of F to a union of connected components Σ′ ⊆ Σ is b-characteristic. Then we obtain an obstruction
for embedding F ′ and, as a consequence, for embedding F . A frequent example of this phenomenon is
F ′ = F from Theorem 1.61.6. Note that by Lemma 5.35.3, if F is b-characteristic then F = F .

As part of our analysis of the obstruction t, in Section 99 we shall prove the following additivity
properties.

Proposition 1.10. Let M1 and M2 be oriented 4-manifolds. Let F1 : (Σ1, ∂Σ1) ↬ (M1, ∂M1) and
F2 : (Σ2, ∂Σ2) ↬ (M2, ∂M2) be generic immersions of connected, compact, oriented surfaces, each with
vanishing self-intersection number. If Fi is b-characteristic for each i then both the disjoint union

F1 ⊔ F2 : Σ1 ⊔ Σ2 ↬ M1#M2
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A generic immersion
F : Σ ↬ M

(Convention 1.11.1)

Is µ(F ) = 0?

Is λΣ|∂B(F ) ̸= 0?
(Def 5.95.9 and Lem 5.115.11)

Is Θ: B(F ) → Z/2 nontrivial?
(Defs 5.125.12 and 5.145.14, Lem 5.165.16)

F is b-characteristic
(Def 5.175.17)

Is t(F ,W ) = 0 ∈ Z/2?
(Def 1.51.5)

No conclusion

F is regularly
homotopic,

rel. ∂Σ, to an
embedding

F is not regularly
homotopic,

rel. ∂Σ, to an
embedding

km(F ) = 1
(Def 1.41.4)

km(F ) = 0
(Def 1.41.4)

Are there algebraically
dual spheres? (Def 4.14.1)

F is not b-characteristic
(Def 5.175.17)

Is π1(M) good?

Yes

No

No Yes

No Yes

No

Thm 1.91.9

Yes

Yes

Thm 1.61.6

No

Yes

Thm 1.21.2

No

Figure 1.2. A flowchart deciding whether a generic immersion F is regularly homo-
topic, relative to the boundary, to an embedding.
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and any interior connected sum
F1#F2 : Σ1#Σ2 ↬ M1#M2

are b-characteristic, and satisfy

t(F1 ⊔ F2) = t(F1#F2) = t(F1) + t(F2).

Theorem 1.91.9 and Proposition 1.101.10 imply the following corollary.

Corollary 1.11. For any g, there exists a smooth, closed 4-manifold Mg, a closed, connected, oriented
surface Σg of genus g, and a smooth, b-characteristic, generic immersion F : Σg ↬ Mg with t(F ) ̸= 0,
and therefore km(F ) ̸= 0.

By contrast, we show in Example 9.59.5 that every map of a closed surface to S1 × S3 is homotopic
to an embedding. One could ask whether there exists a 4-manifold M and immersions Σg ↬ M with
nontrivial Kervaire–Milnor invariant, for every g. However, as a partial negative answer we will show
in Proposition 9.79.7 that a b-characteristic generic immersion F : Σ ↬ M from a closed surface Σ to a
compact 4-manifold M with abelian fundamental group with n generators must satisfy χ(Σ) ≥ −2n.

1.4. Homotopy versus regular homotopy. Theorems 1.21.2, 1.61.6, and 1.91.9 together give a framework
for deciding whether or not an immersed surface is regularly homotopic to an embedding, as illustrated
by the flowchart in Figure 1.21.2. However, in the first sentence of the article, we began by considering
whether a given continuous map is homotopic to an embedding. We explain now how to extend the
framework of Figure 1.21.2 to decide this, for maps of surfaces that admit algebraically dual spheres.

For a map f from a connected surface to a 4-manifold, we will show in Theorem 2.322.32 that there are
either infinitely many or precisely two regular homotopy classes in the homotopy class of f , according
to whether f∗(w1(M)) is trivial or nontrivial respectively. Our strategy is to make a judicious choice
of regular homotopy class to which we apply our previous theory.

Begin with a continuous map F : Σ → M that restricts to an embedding on ∂Σ and satisfies
F−1(∂M) = ∂Σ, where Σ,M are as in Convention 1.11.1. Denote the components of F by fi : (Σi, ∂Σi)→
(M,∂M), and suppose that F has algebraically dual spheres. Note that homotopies preserve the in-
tersection numbers λ(fi, fj), but might not preserve the self-intersection number µ(fi), since adding a
local cusp in fi changes µ(fi)1, the coefficient of 1 ∈ π1(M), by ±1. Depending on the behaviour of
the orientation characters of M and Σ, the coefficient µ(fi)1 lies in either Z or Z/2, and is preserved
under regular homotopy (see Lemma 2.242.24 and Proposition 2.252.25).

Now, in order to decide whether F is homotopic to an embedding, we will either find a generic
immersion in the homotopy class of F which is regularly homotopic to an embedding, or we will show
that this is impossible. First, by performing a homotopy we may assume without loss of generality that
F is a generic immersion such that µ(fi)1 = 0 for every component fi of F . If µ(F ) ̸= 0, then F is not
homotopic to an embedding. On the other hand if µ(F ) = 0, we have the two following cases. Below,
(fi)• is the map induced on fundamental groups by fi using some choice of path connecting fi(Σi) to
the basepoint of M .

Case 1. w1(Σ)|ker(fi)• is trivial for every fi ∈ F .

By Theorem 2.322.32 the regular homotopy class of F is uniquely determined by the condition that
µ(fi)1 = 0 for each i with fi ∈ F . Run the analysis in Figure 1.21.2 on F to determine whether it is
regularly homotopic to an embedding. Note that the outcome of this analysis only depends on the
regular homotopy class of F , rather than all of F . In particular, if π1(M) is good then F is homotopic
to an embedding if and only if F is regularly homotopic to an embedding.

Case 2. There exists fi ∈ F with w1(Σ)|ker(fi)• nontrivial.

In this case we use the following theorem, which we prove in Section 66.

Theorem 1.12. Let F = {fi}mi=1 : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1 with µ(F ) = 0.
Suppose that there is at least one fi ∈ F with w1(Σ)|ker(fi)• nontrivial. Then there exists a generic
immersion F ′ homotopic to F with µ(F ′) = 0, and a convenient collection of Whitney discs W ′ such
that t((F ′) , (W ′) ) = 0. Thus if F ′ has algebraically dual spheres then km(F ′) = 0, and if moreover
π1(M) is good then F ′ is regularly homotopic, relative to ∂Σ, to an embedding.

Using this theorem, we can immediately conclude that our F as in Case 2 is homotopic to an embed-
ding, as long as π1(M) is good. Notably, it is not relevant in this case whether F is b-characteristic.
This completes the analysis of whether a given continuous map of a surface into a 4-manifold is homo-
topic to an embedding.
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We now sketch the proof of Theorem 1.121.12. By the vanishing of µ(F ), there is a convenient collection
of Whitney discs W for F and therefore for F . In case t(F ,W ) = 0 the proof is completed by
setting F ′ = F . In case t(F ,W ) = 1, we use Construction 6.16.1 to find another generic immersion F ′

homotopic to F . Briefly, Construction 6.16.1 involves creating four new double points in the component
fi with nontrivial w1(Σ)|ker(fi)• using local cusps, and then cancelling them using a suitable choice of
Whitney arcs and discs. For further details on the proof, see Section 66.

Theorem 1.121.12 also has the following immediate corollaries. These are the nonorientable analogues of
Corollaries 1.71.7 and 1.81.8. They provide homotopies to embeddings rather than regular homotopies, and
again it is not relevant whether F is b-characteristic.

Corollary 1.13. If M is a simply connected 4-manifold and Σ is a connected, nonorientable surface,
then a generic immersion F : (Σ, ∂Σ) ↬ (M,∂M) with vanishing self-intersection number and an
algebraically dual sphere is homotopic, relative to ∂Σ, to an embedding.

Corollary 1.14. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1, with Σ connected and π1(M)
good. Suppose that F has vanishing self-intersection number and an algebraically dual sphere. If F ′ is
obtained from F by an ambient connected sum with any embedding RP2 ↪→ S4, then F ′ is homotopic,
relative to ∂Σ, to an embedding.

As in our analysis for the embedding problem up to regular homotopy, our techniques are primarily
applicable in the presence of algebraically dual spheres and good fundamental group of the ambient
space. It is however sometimes possible to conclude that a map without algebraically dual spheres is
homotopic to an embedding. For example we show in Example 9.59.5 that every map of a closed surface
to S1 × S3 is homotopic to an embedding.

1.5. Applications to knot theory. Theorem 1.21.2 can be applied to the problem of finding embedded
surfaces in general 4-manifolds bounded by knots in their boundary. Given a closed 4-manifold M , let
M◦ denote the punctured manifold M \ D̊4. The M -genus of a knot K ⊆ S3 = ∂M◦, denoted by
gM (K), is the minimal genus of an embedded orientable surface bounding K in M◦. If M is smooth,
we also consider the smooth M -genus, denoted by gDiff

M (K), the minimal genus of a smoothly embedded
orientable surface with boundary K. The quantities gS4 and gDiff

S4 coincide with the topological and

smooth slice genus of knots in D4 respectively. Note that gM (K) = gM (K), so (2) and (3) below imply

a corresponding results for CP2
and ∗CP2

respectively.

Corollary 1.15. For every knot K ⊆ S3,

(1) gM (K) = 0 for every simply connected 4-manifold M not homeomorphic to one of S4, CP2, or
∗CP2;

(2) gCP2(K) ≤ 1 and gCP2(#3T (2, 3)) = 1; and
(3) g∗CP2(K) ≤ 1 and g∗CP2(#2T (2, 3)) = 1.

See Section 99 for the proof. The smooth CP2-genus has been studied by [Yas91Yas91,Yas92Yas92,AN09AN09,Pic19Pic19,
MMRS22MMRS22], and differs dramatically from the topological result in Corollary 1.151.15 (2); in particular, it
can be arbitrarily high [MMRS22MMRS22].

Corollary 1.151.15 (1) is straightforward to prove ifM topologically splits as a connected sum with S2×S2

or S2×̃S2, because gS2×S2(K) = gS2×̃S2(K) = 0 for all K by the Norman trick [Nor69Nor69, Corollary 3,
Remark]. For the K3 surface, this implies that gK3(K) = 0 for all knots K. On the other hand, it is
an open question whether there exists a K with gDiff

K3 (K) ̸= 0 [MMP20MMP20, Question 6.1].
Given a knot K ⊆ S3 and an integer n ∈ Z, we build the n-trace Xn(K) by attaching a 2-handle

D4 along K with framing n. The minimal genus of an embedded surface representing a generator of
H2(Xn(K);Z) is called the n-shake genus of K, denoted by gshn (K). Similarly, the smooth n-shake
genus of K is denoted by gsh,Diff

n (K). We recover the following result of [FMN+21FMN+21].

Corollary 1.16 ([FMN+21FMN+21, Proposition 8.7]). For any knot K ⊆ S3, gsh±1(K) = Arf(K) ∈ {0, 1}.

By contrast, the smooth ±1-shake genus of a knot can be arbitrarily high. For example, for q ≥ 5

we have that gsh,Diff
±1 (T (2, q)) ≥ q+1

2 , by the slice-Bennequin inequality [LM98LM98; CR16CR16, Corollary 5.2].

Outline of the paper. In Section 22 we describe the primary embedding obstructions arising from
the theory of equivariant intersection numbers for surfaces in 4-manifolds. In Section 33 we define the
Kervaire–Milnor invariant carefully. We prove Theorem 1.21.2 in Section 44. In Section 55 we explain our
combinatorial method for computing the Kervaire–Milnor invariant, and define b-characteristic surfaces,
postponing almost all proofs to Section 77. In Section 66 we give the proof of Theorem 1.121.12. In Section 88,
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we prove Theorems 1.61.6 and 1.91.9. Finally, in Section 99, we prove Corollaries 1.71.7, 1.81.8, 1.111.11, 1.151.15, and 1.161.16
and Proposition 1.101.10, and we give further applications and examples.
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insightful comments on a previous version, and to Allison N. Miller and Andrew Nicas for helpful
conversations. Much of this research was conducted at the Max Planck Institute for Mathematics. DK
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Germany’s Excellence Strategy - GZ 2047/1, Projekt-ID 390685813. MP was partially supported by
EPSRC New Investigator grant EP/T028335/1 and EPSRC New Horizons grant EP/V04821X/1.

2. Generic immersions and intersection numbers

In Section 2.12.1 we carefully define and study generic immersions of surfaces in 4-manifolds in the topo-
logical category. We show they admit well-behaved normal bundles, and introduce generic homotopies
and ambient isotopies between them.

In Sections 2.22.2 and 2.32.3 we study equivariant intersection and self-intersection numbers of generically
immersed surfaces. In the case of immersions of spheres and discs, these have a long history, in particular
in surgery theory (see e.g. [Wal99Wal99]). For the first time in the literature, as far as we are aware, we give
a careful account of intersection and self-intersection numbers in full generality, for compact surfaces
and for any possible combination of orientation characters. The specific groups in which these numbers
live depend on the input surfaces, and it is somewhat subtle to describe them. A preliminary version
for orientable surfaces was considered in e.g. [COT03COT03, Section 7], and the self-intersection number for
annuli was considered by Schneiderman in [Sch03Sch03].

In Section 2.42.4 we discuss Whitney discs, which arise if the intersection and self-intersection numbers
vanish. We define the important notion of a convenient collection of Whitney discs. In Section 2.52.5,
Theorem 2.322.32 explains the difference between homotopy and regular homotopy of generic immersions
of surfaces, in terms of the Euler number of the normal bundle or the self-intersection number.

2.1. Topological generic immersions. We start with the definition of an immersion of manifolds in
the topological setting. For m ≥ 0 let Rm

+ := {(x1, . . . , xm) ∈ Rm | x1 ≥ 0}. For k ≤ n we consider the
standard inclusions:

ι : Rk = Rk × {0} ↪−→ Rk × Rn−k = Rn,

ι+ : Rk
+ = Rk

+ × {0} ↪−→ Rk × Rn−k = Rn, and

ι++ : Rk
+ = Rk

+ × {0} ↪−→ Rk
+ × Rn−k = Rn

+.

Definition 2.1. A continuous map F : Σk → Mn between topological manifolds of dimensions k ≤ n
is an immersion if locally it is a flat embedding, that is if for each point p ∈ Σ there is a chart φ around
p and a chart Ψ around F (p) fitting into one of the following commutative diagrams. The first diagram
is for p ∈ IntΣ and F (p) ∈ IntM , the second diagram is for p ∈ ∂Σ and F (p) ∈ IntM , and the third is
for p ∈ ∂Σ and F (p) ∈ ∂M . In particular F is required to map interior points of Σ to interior points
of M .

Rk ι //

φ

��

Rn

Ψ

��

Σ
F // M

Rk
+

ι+
//

φ

��

Rn

Ψ

��

Σ
F // M

Rk
+

ι++
//

φ

��

Rn
+

Ψ

��

Σ
F // M

(2.1)

Some authors prefer to call this notion a locally flat immersion.

Definition 2.2. A (linear) normal bundle for an immersion F : Σk → Mn is an (n − k)-dimensional

real vector bundle π : νF → Σ, together with an immersion F̃ : νF →M that restricts to F on the zero

section s0, i.e. F̃ ◦ s0 = F , and such that each point p ∈ Σ has a neighbourhood U such that F̃ |π−1(U)

is an embedding.

We now restrict to the relevant dimensions for this paper, k = 2 and n = 4, and take M to be a
connected topological 4-manifold as in Convention 1.11.1. The singular set of an immersion F : Σ → M
is the set

S(F ) := {m ∈M | |F−1(m)| ≥ 2}.
Recall that a continuous map is said to be proper if the inverse image of every compact set in the
codomain is compact.



EMBEDDING SURFACES IN 4-MANIFOLDS 9

Definition 2.3. Let Σ be a surface, possibly noncompact. A continuous, proper map F : Σ → M is
said to be a (topological) generic immersion, denoted F : Σ ↬ M , if it is an immersion and the singular
set is a closed, discrete subset of M consisting only of transverse double points, each of whose preimages
lies in the interior of Σ. In particular whenever m ∈ S(F ), there are exactly two points p1, p2 ∈ Σ
with F (pi) = m, and there are disjoint charts φi around pi, for i = 1, 2, where φ1 is as in the left-most
diagram of (2.12.1), and φ2 is the same, with respect to the same chart Ψ around m, but with ι replaced
by

ι′ : R2 = {0} × R2 ↪−→ R2 × R2 = R4.

Theorem 2.4. A generic immersion F : Σ ↬ M , for possibly noncompact Σ, has a normal bundle

as in Definition 2.22.2 with the additional property that F̃ is an embedding outside a neighbourhood of

F−1(S(F )), and near the double points F̃ plumbs two coordinate regions π−1(φi(R2)) ∼= φi(R2) × R2,

i = 1, 2, together i.e. F̃ ◦ (φ1(x), y) = F̃ ◦ (φ2(y), x).

Proof. Let ∂1Σ ⊆ ∂Σ denote the union of the components of ∂Σ mapped to ∂M . Then since F |∂1Σ

is an embedding of a 1-manifold in a 3-manifold, it has a normal bundle. We extend this to a collar
neighbourhood of F (∂1Σ) contained in a collar neighbourhood of ∂M . To do this, first note that since
(i) ∂M is closed in M , (ii) S(F ) is closed and contained in Int(M), and (iii) manifolds are normal, it
follows that there is an open neighbourhood of ∂M disjoint from S(F ). Then argue as in Connelly’s
proof [Con71Con71] that boundaries of manifolds have collars, to obtain a homeomorphism of pairs

G :
(
M,F (Σ)

) ∼=−−→
(
M ∪ (∂M × [0, 1]), F (Σ) ∪ (F (∂1Σ)× [0, 1])

)
.

The normal bundle over the boundary extends to a collar in the codomain, hence its pull-back extends
to a collar in the domain.

Next, let ∂2Σ ⊆ ∂Σ denote the union of the components of ∂Σ mapped to IntM . We see that

F (∂2Σ) has a normal bundle by [FQ90FQ90, Theorem 9.3], as a submanifold of M . Let F̃ be the embedding
of the total space, as in Definition 2.22.2. By using the inward pointing normal for ∂2Σ in Σ, we obtain
an orthogonal decomposition of each fibre as ν∂2Σ↪→Σ ⊕ V , where V is a 2-dimensional subspace. Then
translates of V in the direction of the inward pointing normal give rise to a normal bundle on the

intersection of a collar of ∂2Σ with the image of the normal bundle of ∂2Σ under F̃ .
Now we want to extend the normal bundle that we have just constructed on a neighbourhood of ∂Σ

to the rest of Σ. First we will produce a normal bundle in a neighbourhood of both preimages of each
double point, and then finally we will extend the normal bundle to the rest of the interior of Σ.

Let m ∈ S(F ) be a double point of F , so that there exist p1, p2 ∈ Σ with F (pi) = m, i = 1, 2. By
the definition of a generic immersion, there is a chart Ψ for M at m, and charts φi around pi, such that
F ◦φ1(x) = Ψ(x, 0) and F ◦φ2(y) = Ψ(0, y). We assume that F (Σ)∩Ψ(R4) = F (φ1(R2))∪F (φ2(R2)),
and moreover that the images of the charts for different elements of S(F ) do not overlap one another,
and also are disjoint from the images of the normal bundles already constructed close to ∂Σ. Then we

take a trivial R2-bundle over each φi(R2), and we define the map F̃ on φ1(R2)×R2 and φ2(R2)×R2 by

setting F̃ (φ1(x), y) = Ψ(x, y) and F̃ (φ2(x), y) = Ψ(y, x). Then F̃ ◦(φ2(y), x) = Ψ(x, y) = F̃ ◦(φ1(x), y)
as needed.

Let Um
1 and Um

2 be open neighbourhoods in Σ of p1 and p2, contained within the images of φ1

and φ2 above, respectively. Define Σ′ := Σ \
⋃

m∈S(F )(U
m
1 ∪ Um

2 ). Then the restriction of F gives

an embedding of Σ′ in M . We already have a normal bundle defined on a neighbourhood of ∂Σ′.
Apply [FQ90FQ90, Theorem 9.3A] to extend the given normal bundle on Um

1 ∪ Um
2 and ∂Σ to all of Σ′ and

therefore we have a normal bundle on all of Σ. □

Remark 2.5. Freedman–Quinn [FQ90FQ90, Theorem 9.3] produce an extendable normal bundle for every
submanifold of a 4-manifold. The extendability condition is technical with an important consequence:
extendable normal bundles are unique up to isotopy. One can always find an extendable normal bundle
embedded in the total space of any given normal bundle.

The proof of Theorem 2.42.4 also applies in the following more general setting where ∂2Σ is not em-
bedded in M , but F |∂2Σ factors as a composition of generic immersions ∂2Σ ↬ S ↬ M , for some
surface S. We will use this case in the definition of b-characteristic maps in Section 55, so we introduce
nomenclature.

Definition 2.6. Let g : S ↬ M be a generic immersion of a surface in a 4-manifold M . Let (B,Z) be
a pair consisting of a surface B and a collection Z ⊆ ∂B of connected components of its boundary. A
map H : B →M is called a generic immersion of pairs if H(Z) ⊆ g(S) and
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(i) H|B\Z is a generic immersion that is transverse to g and has image disjoint from H(Z);
(ii) H(B) is disjoint from the double points of g, which implies there is a unique map h : Z → S with

g ◦ h = H|Z ;
(iii) the map h is a generic immersion; and
(iv) there is a collar N of Z in B with H(N \ Z) ⊆M \ g(S).
We denote such maps by H : (B,Z) ↬ (M,S), and sometimes identify h with H|Z .

Corollary 2.7. Let g : S ↬ M be a generic immersion of a surface in a 4-manifold M and let
H : (B,Z) ↬ (M,S) be a generic immersion of pairs. Then H admits a normal bundle, i.e. a normal
bundle for B in M such that the restriction to Z contains a normal bundle for Z in S.

Proof. Note that Z has a normal bundle in S, and then the sum of this with the normal bundle of S in
M guaranteed by Theorem 2.42.4 gives rise to a normal bundle for Z in M . The rest of the proof proceeds
as before. □

Observe that smooth generic immersions are topological immersions. Next we show that when both
notions make sense they coincide, which justifies the terminology.

Theorem 2.8. Consider a smooth compact surface Σ and a (topological) generic immersion F : Σ ↬
M . If M is non-compact then let M ′ := M , and if M is compact then choose p ∈ M \ F (Σ) and set
M ′ := M \ {p}. Then F is a smooth generic immersion in some smooth structure on M ′.

We know that M ′ has a smooth structure by [FQ90FQ90, Theorem 8.2; Qui82Qui82, Corollary 2.2.3].

Proof. Fix a smooth structure on ∂M such that the generic immersion F restricted to those connected
components of ∂Σ that map to ∂M is a smooth embedding. To find such a smooth structure, first
use the standard smooth structure on the normal bundle of F |∂Σ, and then extend this to a smooth
structure on all of ∂M . Since any two smooth structures on a 3-manifold are isotopic this could also
be arranged by an isotopy of ∂Σ, but our aim is to use the given map without isotoping it.

By Theorem 2.42.4 there is a normal bundle (νF , F̃ ) for F . Let D(νF )→ Σ be the (closed) disc bundle.

This yields a regular neighbourhood N(F ) := F̃ (D(νF )) of F (Σ), a codimension zero submanifold
of M ′. The regular neighbourhood N(F ) can be identified with a smooth manifold obtained from
D(νF ) after the requisite plumbing operations and smoothing corners. Use such an identification to
fix a smooth structure on N(F ) ⊆M . With respect to this smooth structure the map Σ→ N(F ) is a
smooth generic immersion.

In addition, the boundary of N(F ) inherits a smooth structure. The complement in M ′ of IntN(F )∪
(N(F )∩∂M ′) is a connected, noncompact 4-manifold with a prescribed smooth structure on its bound-
ary. Then the interior has a compatible smooth structure by [FQ90FQ90, Theorem 8.2; Qui82Qui82, Corol-
lary 2.2.3], giving rise to a smooth structure on all of M ′. Since the smooth structure on N(F ) is
unaltered, F become a smooth generic immersion, as desired. □

Recall that an isotopy of homeomorphisms of a manifold M is a map H : M × [0, 1]→M such that
the track M × [0, 1]→M × [0, 1] given by (m, t) 7→ (H(m, t), t) is a homeomorphism.

Definition 2.9. An ambient isotopy between generic immersions F,G : Σ ↬ M consists of two isotopies
HΣ : Σ× [0, 1]→ Σ and HM : M × [0, 1]→M such that

(1) HΣ(−, 0) and HM (−, 0) are both the identity; and
(2) G(x) = HM (F (HΣ(x, 1)), 1) for all x ∈ Σ.

This is motivated by the smooth result which states that two generic immersions are ambiently
isotopic (in the sense of Definition 2.92.9 but with homeomorphism replaced by diffeomorphism in the
definition of an isotopy) if and only if they are connected by a path in the space of generic immer-
sions [GG73GG73, Chapter III, Theorem 3.11]. Note that for embeddings one does not need the isotopy HΣ.

Mirroring the smooth notion, a generic homotopy between generically immersed surfaces in a 4-
manifold is by definition a sequence of ambient isotopies, finger moves, Whitney moves, and cusp
homotopies. The moves in question are defined in local coordinates exactly as in the smooth setting.
A regular homotopy between generically immersed surfaces in a 4-manifold is by definition a sequence
of ambient isotopies, finger moves, and Whitney moves. The following proposition explains that maps
of surfaces in a 4-manifold can be assumed to be generic immersions, and homotopies between generic
immersions may be assumed to be generic as well.

Proposition 2.10 ([PRT20PRT20, Proposition 3.1]). Let Σ be a compact surface and let M be a topological
4-manifold.
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(1) Every map (Σ, ∂Σ)→ (M,∂M) is homotopic (relative to the embedded boundary) to a generic
immersion.

(2) Every homotopy (Σ, ∂Σ)× [0, 1]→ (M,∂M) that restricts to a generic immersion on Σ×{0, 1},
is homotopic (relative to the boundary) to a generic homotopy.

Briefly, the proposition is proven as follows. Homotope the maps away from a point of M using
cellular approximation, remove that point, choose a smooth structure on the complement of the point,
and then apply the smooth theory of generic immersions, combining [Hir76Hir76, Theorems 2.2.6 and 2.2.12]
with [GG73GG73, Chapter III, Corollary 3.3].

2.2. Intersection numbers. We define intersection numbers between compact, connected surfaces in
4-manifolds. In order to accommodate the fundamental group in equivariant intersection numbers, we
need to use basings.

Definition 2.11. We call a manifold X based if it is equipped with basepoints pi ∈ Xi for each
connected component Xi ⊆ X, together with a local orientation at each pi. A generic immersion
F : X → Y between based manifolds with Y connected is said to be based if it is equipped with
whiskers, i.e. paths in Y from the basepoint of Y to F (pi), for each basepoint pi of X.

For the remainder of this section, let M be a connected, based 4-manifold and let Σ and Σ′ be based,
compact, connected surfaces, unless specified otherwise.

Let f : Σ → M and g : Σ′ → M be based maps that are transverse, i.e. around each intersection
point f(s) = g(s′), s ∈ Σ, s′ ∈ Σ′, there are coordinates that make f and g (in a neighbourhood of s
in Σ and a neighbourhood of s′ in Σ′) resemble the standard inclusions R2 ×{0} and {0}×R2 into R4

respectively, as in (2.12.1). We assume that these intersections are the only singularities between f and g
and that f(∂Σ) and g(∂Σ′) are disjoint.

Let vf and vg be whiskers for f and g. The intersection number λ(f, g) is the sum of signed
fundamental group elements

λ(f, g) :=
∑

p∈f⋔g

ε(p) · η(p)

as follows. A priori this is the formal sum of a list of elements of the set {±1}×π1(M). It will ultimately
give rise to an element of a quotient of Z[π1(M)], given in Definition 2.122.12, after we factor out the effect
of finger and Whitney moves and the effect of the choice of the paths γp

f and γp
g in the first bullet point

below.
Fix p ∈ f ⋔ g. Next we define ε(p) ∈ {±1} and η(p) ∈ π1(M). We use ∗ to denote concatenation of

paths.

• Let γp
f be a path in Σ from the basepoint to f−1(p) and let γp

g be a path in Σ′ from the

basepoint to g−1(p).
• The sign ε(p) ∈ {±1} is determined as follows. Transport the local orientation of Σ at the
basepoint to f−1(p) along γp

f , and the local orientation of Σ′ at the basepoint to g−1(p) along
γp
g . This induces a local orientation at p, by ordering f before g. Another local orientation is

obtained by transporting the local orientation at the basepoint ofM to p along the concatenated
path vg ∗ (g ◦ γp

g ). We define ε(p) = +1 when the two local orientations match at p, and −1
otherwise.

• The element η(p) ∈ π1(M) is by definition the concatenation vf ∗ (f ◦ γp
f ) ∗ (g ◦ γp

g )
−1 ∗ v−1

g .

For a generic immersion f : Σ ↬ M , we define λ(f, f) := λ(f, f+), where f+ is a push-off of f along
a section of its normal bundle transverse to the zero section. In case the embedding f |∂Σ is equipped
with a specified framing for its normal bundle, then f+ is defined to be a push-off of f along a section
restricting to the first vector of that framing on ∂Σ.

If ft is a homotopy of f that is transverse to g for all t then λ(ft, g) is independent of t as a set of
signed fundamental group elements, assuming the above choices of γp

ft
are made carefully. However, if

ft describes a finger move of f into g, there is a single time t0 at which ft0 and g are not transverse,
because there is a tangency. After the tangency, two new intersection points p and q arise. These have
the same group element η(p) = η(q) and opposite signs ε(p) = −ε(q), with appropriate choices of γp

ft

and γq
ft
. Similarly, a Whitney move reduces the intersections between f and g by such a pair. To get

a regular homotopy invariant notion, it is thus important to specify the home of λ(f, g) carefully.
For Σ and Σ′ simply connected, the sum λ(f, g) is usually considered as an element of Z[π1(M)] and

is independent of the choice of {γp
f}p and {γp

g}p. In the abelian group Z[π1(M)] the relations −a+a = 0
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for each a ∈ π1(M) are built in, and if one identifies the sign ε(p) with the inverse in this abelian group
then finger moves and Whitney moves do not change λ(f, g) as an element in the group ring.

For non-simply connected Σ, Σ′, the homotopy class of γp
f and γp

g may be changed by wrapping

around nontrivial elements in π1(Σ) or π1(Σ
′). This wrapping may also change the induced lo-

cal orientations at the intersection points of f and g. We describe this in more detail next. Let
wM : π1(M)→ {±1}, wΣ : π1(Σ)→ {±1}, wΣ′

: π1(Σ
′)→ {±1} denote the orientation characters.

Definition 2.12. Let Γf,g be the abelian group generated by the elements of π1(M) and with relators

γ − wΣ(α)wΣ′
(β)wM (g•(β)) · f•(α) ∗ γ ∗ g•(β), (2.2)

for all α ∈ π1(Σ), β ∈ π1(Σ
′), γ ∈ π1(M). Here f•(α) := vf ∗ (f ◦α) ∗ v−1

f and g•(β) := vg ∗ (g ◦β) ∗ v−1
g

are elements of π1(M).

For transverse f : Σ → M and g : Σ′ → M , the intersection number λ(f, g) ∈ Γf,g is well defined.
The relations precisely account for wrapping around elements of π1(Σ) or π1(Σ

′) as described above.
We will show in Proposition 2.182.18 that this target also makes λ(f, g) a homotopy invariant.

Remark 2.13. In the case that M , Σ, and Σ′ are all oriented,

Γf,g
∼= Z[f•(π1(Σ))\π1(M)/g•(π1(Σ

′))],

the free abelian group generated by the double coset quotient of π1(M) by left and right multiplication
by the images of loops in Σ and Σ′ respectively.

In general, due to the signs introduced by the orientation characters, there may be torsion in Γf,g.

For example, consider f : RP2 ↬ M with f•(RP1) = 1, without any assumption on M . Then for every
g : Σ′ →M , the group

Γf,g
∼= (Z/2)[π1(M)/g•(π1(Σ

′))],

is 2-torsion, due to the relations γ = wRP2

(RP1) · f•(RP1) ∗ γ = −γ for every γ ∈ π1(M), arising from
setting α := RP1 and β := 1 in (2.22.2).

To understand Γf,g better, we introduce some notation. Write ±π1(M) := {±1} × π1(M). There is
a natural inclusion ±π1(M) → Z[π1(M)] given by (±1, γ) 7→ ±γ. Write [a] ∈ Γf,g for the equivalence
class of a ∈ Z[π1(M)], and let ∼ denote the equivalence relation on ±π1(M) induced by the composition
±π1(M) ↪→ Z[π1(M)] ↠ Γf,g, i.e. for a, b ∈ ±π1(M), a ∼ b if and only if the images of a and b in Γf,g

coincide. The following lemma is immediate from the definitions.

Lemma 2.14. Let γ1, γ2 ∈ π1(M). One of the relations [γ1] = ±[γ2] ∈ Γf,g holds if and only if γ1 and
γ2 represent the same element in the double coset f•(π1(Σ))\π1(M)/g•(π1(Σ

′)).

Let pm: ±π1(M)⧸∼↠ f•π1(Σ)\π1(M)/g•π1(Σ
′) be the map sending ±γ to the class of γ. We write

|γ| := pm(γ). Here one should think that pm stands for dividing out “plus-minus”. Note that pm has
fibres of order 1 or 2 and we can decompose the double coset as a disjoint union B1 ⊔B2 according to
this distinction, where pm gives a bijection pm−1(B1)↔ B1 while pm−1(B2)→ B2 is 2-1.

Remark 2.15. We give examples in the cases from Remark 2.132.13. In the case that M , Σ, and Σ′

are all oriented, then B1 = ∅ and B2 = f•(π1(Σ))\π1(M)/g•(π1(Σ
′)). If we have f : RP2 ↬ M with

f•(RP1) = 1, and g : Σ′ →M is arbitrary, then B1 = π1(M)/g•(π1(Σ
′)) and B2 = ∅.

Choose a section s of pm. For each s(b) ∈ pm−1(B2) we denote the other element of pm−1(b) by
−s(b). Their images in Γf,g are indeed inverse to one another, which motivates the notation.

Lemma 2.16. Fix a section s for pm as above. The abelian group Γf,g is a direct sum Γf,g = FA⊕V

of a free abelian group FA on the set s(B2) ⊆ ±π1(M)⧸∼ ⊆ Γf,g and a Z/2-vector space V with basis

s(B1) = pm−1(B1) ⊆ ±π1(M)⧸∼.
Reading off the coefficients in this decomposition gives homomorphisms cs(b) : Γf,g → Z for each

b ∈ B2, and cb : Γf,g → Z/2 for each b ∈ B1, yielding a decomposition of Γf,g as a direct sum of copies
of Z and Z/2.

In particular, the homomorphisms cs(b) and cb determine the isomorphisms displayed in Remark 2.132.13.

Proof. Starting with the free abelian group with basis π1(M), a relator in (2.22.2) does one of the following
three things.

(1) It identifies two distinct basis elements γ1 and γ2 if and only if γ2 = f•(α) ∗ γ1 ∗ g•(β) ∈ π1(M)

and wΣ(α)wΣ′
(β)wM (g•(β)) = 1 for some α ∈ π1(Σ) and β ∈ π1(Σ

′).
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(2) It identifies a basis element γ1 with the inverse −γ2 of another basis element γ2 ̸= γ1 if and

only if γ2 = f•(α) ∗ γ1 ∗ g•(β) and wΣ(α)wΣ′
(β)wM (g•(β)) = −1 for some α ∈ π1(Σ) and

β ∈ π1(Σ
′).

(3) It identifies a basis element γ with its inverse −γ if and only if

γ = f•(α) ∗ γ ∗ g•(β)

and

wΣ(α)wΣ′
(β)wM (g•(β)) = −1

for some α ∈ π1(Σ) and β ∈ π1(Σ
′).

The first two types of relators reduce the basis to the double coset f•π1(Σ)\π1(M)/g•π1(Σ
′). The third

type adds the relations 2[γ] = 0 to the fundamental group elements γ in question, which then generate
V , because these are exactly the γ such that −[γ] = [γ], i.e. where #pm−1(|γ|) = 1. Those γ where
#pm−1(|γ|) = 2 remain of infinite order and generate FA. Note that the second type of relator forces
us to choose the section s in order to write down a consistent basis for FA. □

The subgroup V and its basis clearly do not depend on our choice of section, but the basis of FA
depends on this choice. If we change the section s at a point b ∈ B2 to s′ so that s′(b) = −s(b), the
associated basis element changes to its inverse. It follows that the subgroup FA of Γf,g does not depend
on the choice of s. It also follows that the coefficient maps cs(b) only depend on s up to sign and satisfy
c−s(b) = −cs(b).

For a given a ∈ ±π1(M)⧸∼ we can choose a section s as above with s(pm(a)) := a and hence
we get a coefficient map ca that is independent of the other values of s. For example, we can take

a := [γ] ∈ ±π1(M)⧸∼ with γ ∈ π1(M) to get cγ .

Definition 2.17. For γ ∈ π1(M), we write λ(f, g)γ := cγ(λ(f, g)). This quantity lies in Z (respectively,
Z/2) when |γ| lies in B2 (respectively B1), or equivalently when [γ] has infinite order (respectively,
order 2) in Γf,g. The values does not depend on the choice of s and satisfies cγ1 = −cγ2 whenever
[γ1] = −[γ2].

The following can be proven using Proposition 2.102.10 (see e.g. [FQ90FQ90, Section 1.7; PR21bPR21b] for the case
of discs and spheres).

Proposition 2.18. Let f : Σ→M and g : Σ′ →M be based maps that are transverse to one another.
The intersection number λ(f, g) is preserved by homotopies that are ambient isotopies near ∂Σ ⊔ ∂Σ′.

Remark 2.19. The geometric definition of λ given above has a well known algebraic version in the
case that f and g correspond to classes in H2(M,∂M ;Z[π1(M)]). This extends to the case of positive
genus, as we now sketch. We restrict ourselves to the case that M , Σ, and Σ′ are closed and oriented
for convenience.

Choose a basepoint in the universal cover of M , lifting the basepoint of M . The maps f and g lift

uniquely (with respect to this choice of basepoint) to covers M̂ and M̂ ′, corresponding to the subgroups
f•(π1(Σ)) and g•(π1(Σ

′)) respectively. These lifts represent classes

[f ] ∈ H2(M̂ ;Z) ∼= H2

(
M ;Z[π1(M)/f•π1(Σ)]

)
and [g] ∈ H2(M̂

′;Z) ∼= H2

(
M ;Z[π1(M)/g•π1(Σ

′)]
)
.

Then we have PD−1([f ]) ⌣ PD−1([g]) ∈ H4
(
M ;Z[π1(M)/f•π1(Σ)] ⊗Z Z[π1(M)/g•π1(Σ

′)]
)
. By

Poincaré duality, this yields an element in

H0

(
M ;Z[π1(M)/f•π1(Σ)]⊗Z Z[π1(M)/g•π1(Σ

′)]
)
,

which is isomorphic as an abelian group to

Z[f•π1(Σ)\π1(M)]⊗Z[π1(M)] Z[π1(M)/g•π1(Σ
′)].

Here Z[f•(π1(Σ))\π1(M)] denotes Z[π1(M)/f•π1(Σ)] considered as a right Z[π1(M)]-module.
Finally we have the isomorphism

Z[f•π1(Σ)\π1(M)]⊗Z[π1(M)] Z[π1(M)/g•π1(Σ
′)] −→ Z[f•π1(Σ)\π1(M)/g•π1(Σ

′)]

[a]⊗ [b] 7−→ [ab] for a, b ∈ π1(M).

We shall not prove that this formulation agrees with the geometric definition.
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2.3. Self-intersection numbers. Next we turn to the self-intersection number for a based generic
immersion f : Σ ↬ M of a connected surface Σ, with whisker vf . The definition of µ, given below, is
similar to that of λ in the previous subsection, except that there is no longer a clear choice of which
sheet to consider first at a given double point. Consequently, the values of µ lie in a further quotient
of the group Γf,f from Definition 2.122.12.

We write f ⋔ f ⊆ M for the set of double points of f . We record the self-intersections of f by the
sum of signed group elements

µ(f) :=
∑

p∈f⋔f

ε(p) · η(p)

as follows.

• For p = f(x1) = f(x2) for x1 ̸= x2 ∈ Σ, let γp
1 and γp

2 be paths in Σ from the basepoint to x1

and x2 respectively.
• The sign ε(p) ∈ {±1} is defined as follows. Transport the local orientation of Σ at the basepoint
to x1 along γp

1 , and along γp
2 to x2. This induces a local orientation at p. Another local

orientation is obtained by transporting the local orientation at the basepoint of M to p along
the concatenated path vf ∗ (f ◦ γp

2 ). We define ε(p) = 1 when the two local orientations match
at p, and −1 otherwise.

• The element η(p) ∈ π1(M) is given by the concatenation vf ∗ (f ◦ γp
1 ) ∗ (f ◦ γ

p
2 )

−1 ∗ v−1
f .

There is a similar discussion about homotopy invariance of µ(f) as for λ(f, g) earlier: homotopies ft
that are generic immersions for all t preserve the formal sum of signed elements but finger moves and
Whitney moves (of f with itself) create pairs −η(p) + η(p) so it is convenient to use abelian groups.
This takes care of regular homotopies of f but there is an additional subtlety for cusp homotopies ft
where there is exactly one time t0 for which ft0 is not an immersion. These issues will be discussed
carefully below.

For simply connected Σ, the self-intersection invariant µ(f) is well defined in the quotient (as an
abelian group) of Z[π1(M)] obtained by introducing the relators

γ − wM (γ) · γ−1

for all γ ∈ π1(M). For general Σ, the quantity µ(f) is well defined in the abelian group

Γf := Γf,f/⟨γ − wM (γ) · γ−1⟩, (2.3)

i.e. in this quotient of Γf,f from Definition 2.122.12. Here, as above wM : π1(M)→ {±1} is the orientation
character.

We now change our notation slightly from the discussion of λ(f, g) in order to work in this further
quotient. Let ∼ denote the equivalence relation on ±π1(M) induced by the composition

±π1(M) ↪−→ Z[π1(M)] −↠ Γf

sending a 7→ [a] and let |π1(M)| be the quotient of ±π1(M) obtained by identifying γ1 and γ2 whenever
[γ1] = ±[γ2] ∈ Γf . Then we obtain the following analogues of Lemmas 2.142.14 and 2.162.16.

Lemma 2.20. Let γ1, γ2 ∈ π1(M). One of the relations [γ1] = ±[γ2] holds if and only if γ1 and γ2
represent the same element in the quotient of the double coset by inversion. In other words, the identity
map induces a bijection

|π1(M)| ←→ (f•π1(Σ)\π1(M)/f•π1(Σ))⧸≈
where ≈ is the equivalence relation identifying γ and γ−1 for all γ ∈ π1(M).

We write |γ| := pm(γ) for the quotient map pm: ±π1(M)⧸∼ ↠ |π1(M)|. Again pm has fibres of
order 1 or 2 and we decompose |π1(M)| as a disjoint union B1 ⊔ B2 according to this distinction as

before. Choose a section s : |π1(M)| → ±π1(M)⧸∼ of pm. As before, for b ∈ B2 we denote the elements
of the fibre by pm−1(b) = {s(b),−s(b)}.

Lemma 2.21. The abelian group Γf is a direct sum Γf = FA⊕ V of a free abelian group FA on the

set s(B2) ⊆ ±π1(M)⧸∼ ⊆ Γf and a Z/2 vector space V with basis s(B1) = pm−1(B1) ⊆ ±π1(M)⧸∼.
Reading off the coefficients in this decomposition gives homomorphisms cs(b) : Γf → Z for b ∈ B2,

and cb : Γf → Z/2 for b ∈ B1, leading to a decomposition of Γf as a direct sum of copies of Z and Z/2.

Proof. The proof is analogous to that of Lemma 2.162.16. □
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Remark 2.22. If M and Σ are oriented, then

Γf
∼= Z[f•π1(Σ)\π1(M)/f•π1(Σ)]/⟨γ − γ−1⟩ = Z

[
(f•π1(Σ)\π1(M)/f•π1(Σ))⧸≈

]
is free abelian. In this case B1 = ∅ and B2 = |π1(M)| = (f•π1(Σ)\π1(M)/f•π1(Σ))⧸≈ by Lemma 2.202.20.

Consider instead f : RP2 ↬ M with f•(RP1) = 1, without any assumption on M . Then

Γf
∼= (Z/2)[π1(M)]/⟨γ − wM (γ) · γ−1⟩ = (Z/2)

[
π1(M)⧸≈

]
.

As in Remark 2.132.13 this is 2-torsion due to the relations γ = wRP2

(RP1) · f•(RP1) ∗ γ = −γ. In this case

B1 = |π1(M)| = π1(M)⧸≈ and B2 = ∅.

As before the subgroups FA and V of Γf do not depend on the choice of s, only the basis of FA does.
As a consequence, the coefficient maps cs(b) only depend on s up to sign and satisfy c−s(b) = −cs(b).
Given a ∈ ±π1(M)⧸∼ we may again take s(pm(a)) := a to get ca and in particular cγ for γ ∈ π1(M)
independent of the choice of s at other points. This gives the following definition.

Definition 2.23. For γ ∈ π1(M), we write µ(f)γ := cγ(µ(f)). This quantity lies in Z (respectively,
Z/2) when |γ| lies in B2 (respectively B1), or equivalently when [γ] has infinite order (respectively,
order 2) in Γf . The values does not depend on the choice of s and satisfies cγ1

= −cγ2
whenever

[γ1] = −[γ2].

We focus on µ(f)1, which plays an important rôle in the distinction between the homotopy class
and regular homotopy class of f , as we will discuss in the next subsection. In the usual case, where Σ
is simply connected, µ(f)1 ∈ Z. However, in general µ(f)1 may lie in either Z or Z/2. The following
lemma gives the precise conditions determining the home of µ(f)1.

Lemma 2.24. Let f : Σ ↬ M be a based, generic immersion, with whisker v. Recall that the map
f• : π1(Σ)→ π1(M) is given by α 7→ v ∗ (f ◦ α) ∗ v−1.

If wΣ is trivial on ker(f•) and wM is trivial on Im(f•), then [1] ∈ Γf has infinite order and thus
µ(f)1 ∈ Z. Otherwise, [1] has order 2 and µ(f)1 ∈ Z/2.

Proof. By definition, for 1 ∈ π1(M), we know that [1] ∈ Γf,f has order 2 precisely if (i) there ex-
ists α, β ∈ π1(Σ) such that f•(α) ∗ f•(β) = f•(α ∗ β) = 1 and wΣ(α)wΣ(β)wM (f•(β)) = wΣ(α ∗
β)wM (f•(β)) = −1, or (ii) there exists δ ∼ 1 where δ has order two in π1(M) and wM (δ) = −1.

Suppose that wΣ is trivial on ker(f•) and wM is trivial on Im(f•). Then the first case (i) cannot
happen, since if f•(α ∗ β) = 1, then α ∗ β ∈ ker(f•) so wΣ(α ∗ β)wM (f•(β)) = 1 · 1 = 1. Similarly, (ii)
cannot happen: suppose δ is order two in π1(M) and δ ∼ 1. Then by definition, δ = f•(α) ∗ 1 ∗ f•(β) =
f•(α ∗ β) in π1(M), for some α, β ∈ π1(M). In particular, δ ∈ Im(f•), and so again wM (δ) = 1 by
hypothesis, contradicting (ii). Therefore, [1] has infinite order as claimed.

Now suppose there is some α ∈ π1(Σ) with wM (f•(α)) = −1. Then we have f•(α
−1) ∗ 1 ∗ f•(α) = 1

and wΣ(α−1)wΣ(α)wM (f•(α)) = −1, so [1] ∼ −[1] and [1] has order two.
Finally suppose that there is some α ∈ ker(f•) with wΣ(α) = −1. Then we have f•(α)∗1∗f•(1Σ) = 1

and wΣ(α)wΣ(1Σ)w
M (f•(1Σ)) = −1, where 1Σ denotes the trivial element in π1(Σ). Then again we

have [1] ∼ −[1] and [1] has order two. □

As with Proposition 2.182.18 the proof of the following proposition is virtually identical to the case of
discs and spheres using Proposition 2.102.10 (see e.g. [PR21bPR21b]), and we leave it for the interested reader.

Proposition 2.25. Let f : Σ ↬ M be a based generic immersion. The self-intersection number µ(f)
is preserved under regular homotopies that are ambient isotopies near ∂Σ.

In this and the previous subsection, we have considered intersection and self-intersection numbers
of connected surfaces. By combining these invariants, we can define the conglomerate notion of self-
intersection number for disconnected surfaces F = {fi}mi=1 : Σ→M , as considered in Definition 1.31.3:

µ(F ) :=
∑
i<j

λ(fi, fj) +
∑
i

µ(fi) ∈
⊕
i<j

Γfi,fj ⊕
⊕
i

Γfi .

Propositions 2.182.18 and 2.252.25 imply that µ(F ) preserved under regular homotopies of F that are ambient
isotopies near ∂Σ.
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2.4. Whitney discs. A Whitney move cancels a pair of double points of a generic immersion F : Σ ↬
M as in Convention 1.11.1, provided all the assumptions on the guiding Whitney disc are satisfied. In our
setting where Σ and M need be neither simply connected nor orientable, this requires some care. We
start with the notion of arcs A and A′ pairing double points p and q, and the corresponding notion of
(p, q, A,A′) having opposite sign.

Definition 2.26. Let f : Σ→M and g : Σ′ →M be based maps that either intersect transversely, or
f = g and f is a generic immersion. We say that two points p, q ∈ f ⋔ g ⊆ M are paired by arcs if
we equip them with the extra data of an arc A : [0, 1]→ Σ from f−1(p) to f−1(q) and an arc A′ in Σ′

from g−1(q) to g−1(p). In the case that f = g we require that each point in f−1(p) and in f−1(q) is
the endpoint of precisely one of the arcs A and A′, i.e. A and A′ lie in distinct sheets at both p and q.

With the extra data of the arcs A and A′, we can make sense of whether two intersection points that
are paired by arcs have opposite sign.

Definition 2.27. Let f : Σ→M and g : Σ′ →M be based maps that either intersect transversely, or
f = g and f is a generic immersion. Two intersection points p, q ∈ f ⋔ g ⊆ M paired by arcs A in Σ
and A′ in Σ′ have opposite sign if the following holds. Fix local orientations of Σ at f−1(p) and of Σ′

at g−1(p). This choice induces a local orientation of M at p. Transport the local orientation of Σ from
f−1(p) to f−1(q) along A, and the local orientation of Σ′ from g−1(p) to g−1(q) along A′. This gives
a local orientation of M at the point q. Compare this with the local orientation on M at q induced by
transporting the local orientation from p to q along the arc f ◦ A. If these orientations disagree then
the points p, q are said to have opposite sign (with respect to A,A′) and otherwise they are said to have
the same sign. The dependence on the choice of arcs A and A′ is sometimes neglected.

Note that double points having the same sign could be “paired” by an embedded disc, but this does
not mean that a Whitney move using this disc is possible, because the required section of the normal
bundle of the disc is not available; in this case any rank one sub-bundle of the normal bundle of the
disc, restricted to the boundary, that is tangent to one sheet of Σ and normal to the other sheet, turns
out to be a Möbius bundle. So one does not study such discs and assumes that a Whitney disc always
pairs two double points of opposite sign.

In the setting of based transverse maps f ̸= g, with Σ and Σ′ connected, recall from Section 2.22.2
that λ(f, g) is a sum of terms ε(p) · η(p), one for each double point p ∈ f ⋔ g, with η(p) ∈ π1(M)
and ε(p) ∈ {±1}. This sum is well defined in the abelian group Γf,g and each signed group element
a ∈ ±π1(M) represents a unique element [a] ∈ Γf,g. The same proof as in the case of simply connected
surfaces [PR21bPR21b, Proposition 11.10] yields the following result.

Lemma 2.28. Let Σ and Σ′ be compact connected surfaces and let f : Σ→M and g : Σ′ →M be based
maps with transverse double points p, q ∈ f ⋔ g ⊆ M . Then [ε(p) · η(p) + ε(q) · η(q)] = 0 ∈ Γf,g if and
only if p and q can be paired by arcs A ⊆ Σ and A′ ⊆ Σ′ such that

(i) the closed loop f ◦A ∪p,q g ◦A′ is null-homotopic in M , and
(ii) the points p and q have opposite sign with respect to the arcs A and A′.

If (ii) and (iiii) are satisfied for p and q, we say that W : D2 →M is a (map of a) Whitney disc pairing
p and q if its boundary is the closed loop in (ii), the union of its two Whitney arcs f ◦A and g ◦A′. We
leave it to the reader to formulate the analogous notion for a pair of transverse self-intersection points
of f : Σ→M . This gives rise to the following corollary to Lemma 2.282.28.

Corollary 2.29. Let Σ and Σ′ be compact connected surfaces and let f : Σ → M and g : Σ′ → M be
transverse based maps. Then λ(f, g) = 0 if and only if all intersection points between f and g can be
paired by maps of Whitney discs.

Moreover, a based generic immersion f : Σ ↬ M satisfies µ(f) = 0 if and only if all self-intersection
points of f can be paired by maps of Whitney discs.

Note that by the geometric Casson lemma (Lemma 4.24.2) the vanishing of λ(f, g) is equivalent to the
existence of a regular homotopy of f and g that makes their images disjoint, at the cost of introducing
self-intersections in f and g. There is no analogue of this argument if µ(f) = 0 by the failure of the
Whitney trick in dimension 4, as for example exhibited by the secondary embedding obstruction km(f)
(see Section 33).

By the geometric characterisation in Corollary 2.292.29, it is meaningful to refer to f and g having trivial
intersection number, and to f having trivial self-intersection number, without using a basing.
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The analogue of the characterisation in the second part of Corollary 2.292.29 holds for generic immersions
F = {fi}mi=1 : Σ ↬ M from Convention 1.11.1, i.e. for compact but possibly disconnected domains, if we
use Definition 1.31.3 from the introduction for the self-intersection number µ(F ).

Corollary 2.30. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1. Then µ(F ) = 0 if and only if
the double points of F can be paired by maps of Whitney discs.

Proof. This is a direct consequence of Propositions 2.182.18 and 2.252.25 and Corollary 2.292.29 because every
double point of F is either a self-intersection point of a component fi or an intersection point between
distinct components fi and fj (where we can assume that i < j). Note that both cases represent
self-intersection points of F . □

Collections of Whitney discs as above may be assumed to be convenient in the following sense (see
e.g. [FQ90FQ90, Section 1.4; PR21bPR21b]).

Definition 2.31. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1. A convenient collection of
Whitney discs for F is a collection of framed, generically immersed Whitney discs pairing all the double
points of F , with interiors transverse to F , and with disjointly embedded boundaries. A collection of
arcs in F (Σ) is called a collection ofWhitney arcs if the union of the arcs is the boundary of a convenient
collection of Whitney discs.

By pushing double points of a convenient collection across the boundaries of Whitney discs [PR21bPR21b,
Figure 11.4], we may further assume that all Whitney discs are pairwise disjoint and embedded. How-
ever, the (resulting and pre-existing) intersections between the original surface F and the Whitney
discs can in general not be removed, as detected by the secondary invariant km(F ).

2.5. Homotopy versus regular homotopy of generic immersions. Let f : Σ ↬ M be a generic
immersion. Local orientations of M and Σ determine a local orientation of νf . Hence, given a fram-
ing of f |∂Σ, one can define a relative Euler class of the normal bundle νf in H2(Σ, ∂Σ;Zw1(νf)). If
f∗(w1(M)) = w1(νf) + w1(TΣ) = 0 then the local orientation of Σ determines a Poincaré duality
isomorphism from this twisted cohomology group to Z, and we denote the resulting integer by e(νf).
Note that e(νf) does not depend on the local orientation of Σ but only on the local orientation of M . If
f∗(w1(M)) ̸= 0 then there is still a mod 2 normal Euler number, which we also denote by e(νf) ∈ Z/2.

A useful interpretation of e(νf) is as follows. A vector in R2 together with the framing of f |∂Σ
determines a nonvanishing section of νf on f(∂Σ). Extend this to a section of νf over all of f(Σ),
transverse to the zero section. Then e(νf) counts, with sign, the number of zeros of the section, in Z
or Z/2 as appropriate.

Next we give an extension of [PRT20PRT20, Theorem 1.2] from the simply connected to the general setting,
restricting ourselves to the case of connected Σ for convenience. We note that [PRT20PRT20, Theorem 1.2]
was based on [FQ90FQ90, Lemma 1.2 and Proposition 1.6], but that the latter proposition was not proven
in [FQ90FQ90].

By the following theorem, in some cases, for example if M is orientable, then e(νf) ∈ Z is an addi-
tional invariant of regular homotopy classes of immersions. It changes by ±2 during a cusp homotopy
(see e.g. [CST12bCST12b, Figure 19]) and hence can be infinitely many regular homotopy classes of immersions,
that are all homotopic as continuous maps.

In Theorem 2.322.32, in the case that Σ has nontrivial boundary, we fix a framing on the embedding

f |∂Σ, in order to define the relative Euler number e(νf̃), for f̃ any generic immersion homotopic to f .

Theorem 2.32. Let Σ be a compact, connected surface and let M be a 4-manifold. Then the inclusion
of the subspace of generic immersions Imm(Σ,M) in the space of all continuous maps induces a map

Imm(Σ,M)

{regular homotopy}
i−−→ [Σ,M ]∂ ,

where [Σ,M ]∂ denotes the set of homotopy classes of continuous maps that restrict on ∂Σ to embeddings
disjoint from the image of the interior of Σ.

(1) i is surjective.
(2) The fibres of i are related by cusp homotopies. More precisely, suppose that f and g are homo-

topic generic immersions. Then we can add cusps to f and g, to obtain f ′ and g′ respectively,
such that f ′ and g′ are regularly homotopic.



18 D. KASPROWSKI, M. POWELL, A. RAY, AND P. TEICHNER

(3) For every f ∈ [Σ,M ]∂ , there is a bijection

i−1(f) ∼=


2Z if f∗(w1(M)) = 0 and w2(νf̃) = 0;

2Z+ 1 if f∗(w1(M)) = 0 and w2(νf̃) = 1;

Z/2 otherwise;

where νf̃ is a normal bundle for f̃ , a generic immersion in i−1(f). In the cases where
f∗(w1(M)) = 0, the bijection is given by

f̃ 7→ e(νf̃).

Otherwise the bijection is given by

f̃ 7−→ µ(f̃)1 ∈ Z/2.

(4) If f∗(w1(M)) = 0 and w1(Σ)|ker(f•) = 0, for f̃ a generic immersion in i−1(f), the quantities

µ(f̃)1 and e(νf̃) are related by the formula

λ(f̃ , f̃)1 = 2µ(f̃)1 + e(νf̃) ∈ Z

and so µ(f̃)1 ∈ Z also detects the regular homotopy class of f̃ ∈ i−1(f).

While we prefer the upcoming direct argument analysing singularities, Theorem 2.322.32 could in princi-
ple also be proven via Smale–Hirsch immersion theory, which has a version in the topological category.
The main novelty of the theorem is that we give precise conditions in terms of the Stiefel–Whitney
classes to control how large the fibres of i are, and which invariants detect them.

Proof of Theorem 2.322.32. By Proposition 2.102.10 (11), the map is surjective. That is, every homotopy class
contains a generic immersion. This proves (11).

For (22), note that if f and g are homotopic generic immersions, then by Proposition 2.102.10 (22) there
exists a generic homotopy H between them, which by definition is a sequence of ambient isotopies,
finger moves, Whitney moves, and cusp homotopies. We can modify H such that there are real numbers
t1 < t2 ∈ [0, 1] such that the singularities of H in [0, t1] only consist of cusp homotopies that create
double points, the singularities in [t1, t2] only consist of finger moves and Whitney moves, and those
in [t2, 1] only consist of cusp homotopies that remove double points. The statement then follows by
taking f ′ := Ht1 and g′ := Ht2 .

To achieve this modification, note that we can bring all the creating cusp singularities forward, so
that they occur earlier, and we can delay all the removing cusps. To arrange for a creating cusp to
be rearranged earlier than a finger or Whitney move, choose an arc in the image of H starting from
Ht(Σ), for some t ∈ (0, t1), and ending at the cusp, which intersects each level in a point and is disjoint
from all Whitney arcs and double points. The homotopy can then be altered in a neighbourhood of
this arc so that the cusp singularity occurs at time t. Delaying a removing cusp is the same procedure
but with the direction of time reversed. This completes the proof of (22).

The proof of (33) splits naturally into two cases.

Case 1. f∗(w1(M)) = 0.

As noted in Section 22, the sign of an intersection point is not always well defined. Nevertheless, in
the case that f∗(w1(M)) = 0 the sign of a cusp homotopy is well defined. The key point is that a
cusp not only specifies a double point p but also an arc between the preimages of p. In the case that
f∗(w1(M)) = 0, using this path, the sign of the double point p is well defined, independent of the choice
of path transporting the local orientation at the basepoint to the double point. Thus in this setting
we define the sign of a cusp to be the sign of the double point it creates or removes. We will use the
terminology of creating cusps for cusps that create a double point and removing cusps for those that
remove a double point.

Since f∗(w1(M)) = 0, e(νf̃) is defined in Z for any generic immersion f̃ homotopic to f . Recall

that w2(νf̃) ≡ e(νf̃) mod 2. Since regularly homotopic generic immersions have equal Euler numbers,
the map in the theorem statement is well defined on equivalence classes in the domain of i. Note that

a cusp homotopy changes e(νf̃) by 2 or −2, depending on the sign of the cusp and whether it is a

creating or a removing cusp. So every element of 2Z or 2Z+ 1, depending on w2(νf̃), can be realised
as the Euler number of a generic immersion in i−1(f).
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To complete the proof when f∗(w1(M)) = 0, it remains to show injectivity. We will show that
given a generic homotopy between generic immersions with equal Euler numbers, we can modify the
homotopy to cancel cusps, until we are left with a regular homotopy.

First, note that when we have a removing cusp, and later in the homotopy we have a creating cusp
with the same sign, then we can cancel these two cusps along a level-preserving path in the homotopy
as indicated in Figure 2.12.1.

t t t

(a) (b) (c)

Figure 2.1. A schematic picture showing how a removing cusp singularity and creat-
ing cusp singularity with the same sign can be cancelled. In each of (a), (b), and (c),
a homotopy is traced out in the direction of t. At every time t, except the times of the
cusp singularities, we depict an arc of a generic immersion homotopic to f . (a) Two
cusp singularities are shown: a removing cusp occurring first, followed by a creating
cusp of the same sign. (b) Modify the homotopy, delaying the removing cusp until it
coincides with the creating cusp. This involves choosing an arc in Σ joining the two
cusp points. (c) A further local modification removes the two cusps.

However this is not sufficient. We also have to show that we can also cancel cusps in the following
two situations.

(a) Two creating cusps of opposite sign, or two removing cusps of opposite sign.
(b) A creating cusp paired with a later removing cusp, both of the same sign.

Suppose that we have a generic homotopy H between generic immersions with equal Euler numbers
consisting of two creating cusp homotopies of opposite sign, as in (aa). Create a self-homotopy H0 of
the starting immersion, i.e. the immersion at t = 0, consisting of a trivial finger move together with
two removing cusps for the double points created by the finger move, as shown in Figure 2.22.2. Then
concatenate H0 with the original homotopy H. The new homotopy can be modified as in Figure 2.12.1 to
cancel the removing cusps in H0 and the creating cusps in H, leaving only the finger move behind. An
analogous argument shows how to cancel two removing cusps of opposite sign, this time concatenating
at the end of H.

t

Figure 2.2. A schematic picture showing a self-homotopy consisting of a trivial self-
finger move followed by two removing cusps. The homotopy is traced out in the
direction of t. At every time t, except at the times of the cusp and finger move
singularities, we depict an arc of a generic immersion homotopic to f . In red we show
the arc of self-intersections of f – note that it starts at one cusp singularity and ends
at the other.

Similarly, for the situation in (bb), suppose that we have a generic homotopy H between generic
immersions with equal Euler numbers consisting of a creating cusp and a later removing cusp of the
same sign. Again we construct the self-homotopy H0 and concatenate with H. In the result, we use
the procedure from Figure 2.12.1 to cancel the creating cusp in H with one of the removing cusps in H0.
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This entire operation has so far replaced a cusp with a cusp of opposite sign and direction. As before
we can repeat the operation at the end of the homotopy to replace the removing cusp with a creating
one, also with the opposite sign. Thus when we have a creating cusp with a later removing cusp of
the same sign, we can replace both by cusps of opposite sign and direction. Since now the removing
cusp happens before the creating cusp, the two can be cancelled and we are done with case (bb). This
completes the proof of (33) in the case that f∗(w1(M)) = 0.

Case 2. f∗(w1(M)) ̸= 0.

Note that a cusp homotopy changes µ(f̃)1 ∈ Z/2 by one. So both values of Z/2 can be realised
within the homotopy class. To show injectivity in this case, we have to show that we can cancel cusps
in a homotopy in arbitrary pairs. First use the trading argument above to get all the removing cusps
before the creating cusps in the homotopy. Then for any pair of cusps, one removing and one creating,
choose some level-preserving path in the homotopy between the first and the second cusp, and restrict
to a small disc containing the path. If they have the same sign with respect to this disc, cancel the two
cusps as before.

If they have opposite signs, change the choice of the arc to arrange that the union of the new arc
and the old arc maps nontrivially under w1(M). Such an arc exists since f∗(w1(M)) is nontrivial and
Σ is connected. With this new choice, the signs of the cusps in the disc become the same and we can
again cancel the cusps. This completes the proof of both halves of (33).

Finally for (44) note that if f∗(w1(M)) = 0 and w1(Σ)|ker(f•) = 0, then recall that by Lemma 2.242.24

that µ(f̃)1 is well defined in Z. By the discussion above the statement of the theorem, e(νf̃) is also
well defined in Z. In this case the formula

λ(f̃ , f̃)1 = 2µ(f̃)1 + e(νf̃) ∈ Z

holds by the proof of the corresponding fact for discs and spheres (see e.g. [PR21bPR21b, Proposition 11.8]).

Any cusp homotopy leaves λ(f̃ , f̃)1 unchanged, while it changes µ(f̃)1 by ±1. By the formula, it

changes e(νf̃) by ∓2. Thus if f̃ and f̃ ′ are generic immersions homotopic to f , then e(νf̃) = e(νf̃ ′) if

and only if µ(f̃)1 = µ(f̃ ′)1. Hence (44) follows from (33). □

3. Secondary embedding obstructions for surfaces in 4-manifolds

TheWhitney trick implies that every map F : Sn →M2n is homotopic to an embedding, wheneverM
is a simply connected 2n-dimensional manifold and n > 2. In order to prove the failure of the Whitney
trick in dimension 4, Kervaire–Milnor devised an obstruction in [KM61KM61] that gave counterexamples to
the above statement for n = 2. They showed that the homotopy class of 3 · CP1 is not represented by
an embedded sphere in CP2. In a smooth, oriented, closed 4-manifold M , consider the formula

θ(c) :=
c · c− σ(M)

8
mod 2, (3.1)

where the Z/2-reduction of c ∈ H2(M ;Z) is Poincaré dual to w2(M) and σ(M) is the signature of
the intersection form (x, y) 7→ x · y on H2(M ;Z). In this setting, if c is represented by an embedded
sphere, then θ(c) = 0. Recall that for a unimodular form ℓ and a characteristic element c, i.e. one
satisfying ℓ(c, x) ≡ ℓ(x, x) mod 2, the difference ℓ(c, c) − σ(ℓ) is always divisible by 8. The condition
on c being dual to w2(M) is stronger than being characteristic for the intersection form since the mod 2
intersection condition holds for all x ∈ H2(M ;Z/2), not just for integral homology classes. For example,
if M is the Enriques surface (double covered by the K3 surface) then θ(0) ̸= 0, so 0 cannot be dual to
w2(M), even though the intersection form on H2(M ;Z) is even.

For the proof that θ is an embedding obstruction, Kervaire–Milnor add (1 − [F ] · [F ]) copies of
(CP2,CP1) to a proposed characteristic pair (M,F : S2 ↪→ M), with F assumed to be an embedding,
to obtain an embedded sphere with self-intersection number 1. Then they blow down that characteristic
sphere to arrive at a spin manifold M ′ with σ(M ′) = σ(M) + (1 − [F ] · [F ]) − 1 = σ(M) − [F ] · [F ].
Rochlin’s theorem [Roc52Roc52], that the signature of a smooth, closed, spin 4-manifold is divisible by 16, is
equivalent to the original condition θ([F ]) = 0 in M .

The Kervaire–Milnor result also has consequences for spin manifolds, where it says that any (charac-
teristic) homology class c = 2b that is represented by an embedded sphere must satisfy b ·b ≡ 0 mod 4.
For example, 2∆ ∈ π2(S

2 × S2) is not represented by an embedding for ∆ the diagonal 2-sphere.
For about a decade, it remained an open problem to find a combinatorial formula for θ(c) in terms

of geometric representatives for c.
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3.1. Combinatorial formulae: Rochlin’s Arf invariant. Rochlin picked an embedded represen-
tative F : Σ ↪→ M for c ∈ H2(M ;Z) as above and assumed that H1(M ;Z/2) vanishes [Roc72Roc72]. Any
simple closed curve r in (the image of) F then bounds a compact surface R in M . The reader should
think of R as an “unoriented cap” and check that it has a relative Euler number, just like a Whitney
disc or an ordinary cap. Rochlin then asserted that setting qF (r) := |IntR ⋔ F |, for R with vanishing
relative Euler number, defines a quadratic enhancement

qF : H1(Σ;Z/2)→ Z/2,
that refines the mod 2 intersection form on Σ. Independence from the choice of R follows from F being
dual to w2(M), in this setting using intersections of F with all classes of the form [R∪R′] ∈ H2(M ;Z/2).
Rochlin stated that the Arf invariant Arf(qF ) is equal to θ(c) = θ([F ]). A nice consequence of this
equality is that Arf(qF ) = θ(c) vanishes whenever c can be represented by an embedded sphere, because
qF is then defined on the zero vector space.

3.2. Combinatorial formulae: Freedman–Kirby’s characteristic bordism. Using the same def-
initions, Freedman and Kirby proved Rochlin’s claims from above in [FK78FK78], on their way to a geometric
proof of Rochlin’s original theorem. They worked with an arbitrary smooth, closed, oriented 4-manifold
M , but before computing qF they performed surgery on circles in M to arrange that H1(M ;Z/2) = 0;
alternatively, they could have made M simply connected and used discs for R, i.e. ordinary caps. They
showed that Arf(qF ) is invariant under “characteristic bordism”, implying independence from the choice
of surgeries, as well as establishing the equality Arf(qF ) = θ([F ]) by checking it on the generators of
Ωchar

4 . A different proof of Arf(qF ) = θ([F ]) was given in [Mat86Mat86].
On a historical note, Freedman–Kirby wrote that they learnt these results from Casson and that

they only heard of Rochlin’s results after finishing their paper. The Rochlin method was extended
to non-orientable characteristic surfaces in closed 4-manifolds by Guillou–Marin [GM80GM80] and Kirby–
Taylor [KT01KT01].

3.3. Combinatorial formulae: Matsumoto’s t-invariant. In [Mat78Mat78], published in the same pro-
ceedings as [FK78FK78], Matsumoto started with a spherical class c ∈ π2(M) and represented it by a generic
immersion F : S2 ↬ M with 2g algebraically cancelling double points. He assumed that H1(M ;Z) = 0,
using this condition to find “Whitney surfaces”, i.e. oriented surfaces R1, . . . , Rg bounded by pairs of
Whitney arcs in F . Again there is a relative Euler number and we may assume that every Ri has
vanishing relative Euler number. Matsumoto proved that if [F ] ∈ H2(M ;Z) is characteristic then

Arf(qF ) =

g∑
i=1

|IntRi ⋔ F | =: t(F ) ∈ Z/2 (3.2)

by adding g tubes based at pairs of double points of F to turn it into an embedding of a surface Σ of
genus g, where qF is the quadratic enhancement defined above. The new surface has pairs of framed
caps (Di, Ri) where Di is a meridional disc of the i-th tube and hence has one interior intersection
with F , so qF (∂Di) = 1. Since the boundaries of these caps form a hyperbolic basis of H1(Σ;Z/2), the
result follows from the usual formula

Arf(qF ) =

g∑
i=1

qF (∂Di) · qF (∂Ri) =

g∑
i=1

qF (∂Ri) =

g∑
i=1

|IntRi ⋔ F |.

3.4. Summary of the secondary embedding obstructions from the 1970s. Given [F ] ∈ π2(M)
such that its Hurewicz image in H2(M ;Z/2) is Poincaré dual to w2(M), the above results show that

θ([F ]) = Arf(qF ) = t(F ) ∈ Z/2
is an obstruction to representing [F ] by an embedding F : S2 ↪→ M . Note that θ only depends on the
homology class h([F ]) ∈ H2(M ;Z) by definition, whereas that is not clear for the other two invariants.

An attractive aspect of Matsumoto’s t(F ) is that it can be computed combinatorially from a generic
immersion F : S2 ↬ M . One argues directly that t(F ) is an obstruction to representing [F ] ∈ π2(M)
by an embedded sphere and independence of the choice of Ri comes from [F ] being characteristic.

Matsumoto’s formula was extended in a number of ways. For example, in recent work of three of
the current authors and Land on the stable diffeomorphism classification of spin 4-manifolds [KLPT17KLPT17,
KPT21bKPT21b,KPT21aKPT21a], a version of Matsumoto’s t-invariant was used to compute the relevant Arf invariant.
We describe further extensions presently.

It follows from topological transversality [FQ90FQ90, Section 9.5] that in a smooth, closed, oriented
4-manifold M , the quantity θ(c) is also an obstruction to representing an element c as before by a
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topological i.e. locally flat embedding F : S2 ↪→M . IfM is not smooth, one adds the Kirby–Siebenmann
invariant and then the formula

θTOP(c) := θ(c) + ks(M)

defines such an obstruction; see [CST12aCST12a, Introduction] for details. For example, it follows that the
generator of π2(∗CP2) is not represented by an embedding. Historically speaking, these applications
were not known at the time of publication of [Roc72Roc72,FK78FK78,Mat78Mat78].

In the following, we will return to considering topological manifolds and obstructions to topological
embeddings.

3.5. Secondary obstructions to embedding genus zero surfaces with dual spheres. If Σ is a
union of discs or spheres and F : (Σ, ∂Σ) ↬ (M,∂M) has algebraically dual spheres, then Freedman–
Quinn [FQ90FQ90] gave a version of Matsumoto’s t-invariant in [FQ90FQ90, Definition 10.8A], calling it the
Kervaire–Milnor invariant. Rather than restricting H1(M ;Z) as in the discussions above, they assumed
that µ(F ) = 0, i.e. that all double points of F can be paired by Whitney discs. They used the same
formula as in (3.23.2), but counted intersections with F , restricting to the Whitney discs in a convenient
collection W that pair double points of F . They claimed that this mod 2 count, t(F ,W ) from
Definition 1.51.5, is a secondary obstruction to representing F by an embedding. However, this is only
true if F is r-characteristic (Definition 5.55.5), as Stong’s correction [Sto94Sto94] showed. Stong noticed that
the choice of sheets for double points whose group elements have order 2 is related to immersed RP2s
in M . If F is dual to w2(M) then F is also r-characteristic, but not vice versa, so this obstruction is
more generally defined than θ([F ]).

The embedding theorem for unions of discs and spheres [FQ90FQ90, Theorem 10.5], as corrected by Stong,
says, in our notation, that for good fundamental group π1(M), such an F is homotopic to a topological
embedding if and only if there exists a convenient collection of Whitney discs W for the double points
of F such that t(F ,W ) = 0. We give more details about the Freedman–Quinn–Stong embedding
result in Section 55.

3.6. Secondary obstructions to embedding unions of spheres. Matsumoto’s invariant t(F ) from
(3.23.2) was extended to a secondary embedding obstruction in [ST01ST01] for F = {fi}mi=1, not assuming dual
spheres, where each fi : S

2 ↬ M is a generic immersion and assuming µ(F ) = 0 and that M is oriented.
By counting interior intersections of F with a convenient collection W of Whitney discs pairing the
double points of F , and remembering group elements, signs, and components of F , Schneiderman and
the fourth author defined an intersection count τ(F,W) ∈ T (π1(M),m). Here T (π1(M),m) is the
abelian group given by the direct sum of m +

(
m
2

)
+

(
m
3

)
copies of Z[π1(M) × π1(M)]. To obtain a

secondary embedding obstruction, [ST01ST01, Section 8] gave a list of relations such that the subgroup
R(M,F ) ≤ T (π1(M),m) generated by these relations has the property that

τ(f1, . . . , fm) = τ(F ) := [τ(F,W)] ∈ T (π1(M),m)/R(M,F )

does not depend on the choice of convenient collection W. In our current language, the main result of
that paper is that τ(F ) = 0 if and only if km(F ) = 0 as in Definition 1.41.4. In the absence of dual spheres,
τ(F ) = 0 does not imply that F is homotopic to an embedding. For example, there are obstructions
from higher order Whitney towers.

If F is r-characteristic then the augmentation map E : T (π1(M),m) → Z/2, summing all possible
coefficients, takes R(M,F ) to zero and τ(F ) to Matsumoto’s t(f1# · · ·#fm), for an arbitrary choice of
interior connected sum of the {fi}mi=1. Moreover, if F has algebraic dual spheres then E induces an iso-
morphism of T (π1(M),m)/R(M,F ) with either Z/2 or 0, depending on whether F is r-characteristic
or not. This gives the relationship to Section 3.53.5.

3.7. Secondary embedding obstructions for arbitrary compact surfaces. It is likely possible
to extend the invariant τ from Section 3.63.6 to arbitrary immersed compact surfaces, not just spheres.
However determining the analogue of R(M,F ) would be a formidable task. In this paper we take
the first step, namely by defining the right notion of b-characteristic surfaces for which Matsumoto’s
invariant extends from spheres to a secondary embedding obstruction for arbitrary compact surfaces.
We also generalise the work of Freedman-Quinn–Stong to all compact surfaces in the presence of
algebraically dual spheres.

Recall from Definition 1.41.4 that for F : (Σ, ∂Σ) ↬ (M,∂M) as in Convention 1.11.1, by definition the
Kervaire–Milnor invariant km(F ) ∈ Z/2 vanishes if and only if after finitely many finger moves on the
interior of F , taking F to some F ′, there is a convenient collection of Whitney discs, with interiors
disjoint from F ′, pairing all the double points of F ′.
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The finger moves in this definition are relevant because finger moves can add relations to the funda-
mental group π1(M ∖ F ), making it easier to find (Whitney) discs in the complement of F .

We could have allowed arbitrary regular homotopies, from F to F ′, in the definition of km. However,
this is not needed as the following result shows. Note that a non-regular homotopy can change km(F ),
see Corollary 6.36.3.

Proposition 3.1. Let Σ and M be as in Convention 1.11.1. If F1, F2 : Σ ↬ M are regularly homotopic
generic immersions then km(F1) = km(F2) ∈ Z/2.

Proof. To show that km(F1) = km(F2), by symmetry it suffices to show that km(F1) = 0 implies
km(F2) = 0. Suppose that km(F1) = 0, and let F ′

1 be obtained from F1 by finger moves such that the
intersections of F ′

1 can be paired up by Whitney discs {Wi} as in Definition 1.41.4. Since F ′
1 and F2 are

regularly homotopic, there is a generic immersion F3 such that F3 can be obtained from both F ′
1 and

F2 by finger moves and ambient isotopies. Since F3 is obtained from F ′
1 by finger moves and ambient

isotopies and the finger moves can be assumed to be disjoint from {Wi}, all the double points of F3

can also be paired up by Whitney discs with interiors disjoint from F3, as in Definition 1.41.4. Since F3

is obtained from F2 by finger moves, taking F ′
2 := F3 it follows that km(F2) = 0. □

Definition 1.41.4 is optimised for the proof of Theorem 1.21.2, as we will see shortly, but is difficult to use
in practice. In particular, while one may fortuitously detect specific finger moves and Whitney discs
to show km(F ) = 0, without a combinatorial description it appears, for a given F , to be hard to prove
that the required finger moves from F to some F ′, together with Whitney discs for F ′, do not exist.
We provide precisely such a combinatorial reformulation in Theorem 1.91.9, generalizing Matsumoto’s
invariant to our formula for t(F ) for b-characteristic F . In the proof of Theorem 1.61.6 we will show that
in the presence of dual spheres this agrees with Definition 1.41.4.

4. The proof of the surface embedding theorem

The surface embedding theorem (Theorem 1.21.2) can be deduced using the proof of [FQ90FQ90, Theo-
rem 10.5 (1)], combined with an observation in [PRT20PRT20, Theorem A, Lemma 6.5] for the condition on
the homotopy class of G, using our definition of the Kervaire–Milnor invariant (Definition 1.41.4). Since
the surface embedding theorem does not follow directly from the statement of [FQ90FQ90, Theorem 10.5 (1)],
as previously discussed, and also since the latter requires a correction by Stong [Sto94Sto94], it can be hard
for the uninitiated to piece together a correct proof. Therefore we provide one in this section.

Further, the statement of [FQ90FQ90, Theorem 10.5 (1)] is itself quite complicated, and our version
focused on the surface embedding problem may be useful for those looking to apply the technology of
Freedman–Quinn without delving into the details.

4.1. Ingredients. The statement of the surface embedding theorem uses the notions of algebraically
and geometrically dual spheres. We recall the definitions.

Definition 4.1. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1, with components {fi}mi=1.

(1) A collection G = {gi : S2 ↬ M}mi=1 of generic immersions is said to be algebraically dual to F if
F ⊔G is a generic immersion and λ(fi, gj) = [δij ] ∈ Γfi,gj for all i, j, for some choice of basings
for F and G.

(2) A collection G = {gi : S2 ↬ M}mi=1 of generic immersions is geometrically dual to F if F ⊔G is
a generic immersion and the geometric count of intersections satisfies |fi ⋔ gj | = δij for all i, j.

We will need the following lemma, the idea behind which is due to Casson [Cas86Cas86; Fre82Fre82, Section 3].
The formulation we give here is from [PRT20PRT20, Lemma 5.1].

Lemma 4.2 (Geometric Casson lemma). Let F and G be transversely intersecting generic immersions
of compact surfaces in a connected 4-manifold M . Assume that the intersection points {p, q} ⊆ F ⋔ G
are paired by a Whitney disc W . Then there is a regular homotopy from F ∪G to F ∪G such that F ⋔
G = (F ⋔ G) \ {p, q}. That is, the two paired intersections have been removed. The regular homotopy
may create many new self-intersections of F and G; however, these are algebraically cancelling.

The proof of the surface embedding theorem also relies on Freedman’s disc embedding theorem,
whose statement we recall.

Theorem 4.3 (Disc embedding theorem [Fre82Fre82,FQ90FQ90,PRT20PRT20]; see also [BKK+21BKK+21]). Let M be a con-
nected topological 4-manifold with good fundamental group, and let

F = {fi}mi=1 : (D
2 ⊔ · · · ⊔D2, S1 ⊔ · · · ⊔ S1) ↬ (M,∂M)
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be a generic immersion of finitely many discs. Assume that F has framed algebraically dual spheres
G = {[gi]}mi=1 ⊆ π2(M) such that λ(gi, gj) = 0 = µ(gi) for all i ̸= j. Then there is a flat embedding

F = {f i}mi=1 : (⊔D2,⊔S1) ↪→ (M,∂M), which is equipped with geometrically dual spheres G = {gi}mi=1,
such that F and F have the same framed boundary and [gi] = [gi] ∈ π2(M) for all i.

We will also freely use standard constructions such as symmetric contraction, boundary twisting,
and interior twisting (i.e. adding local cusps). See [FQ90FQ90, Chapters 1-2; PR21aPR21a] for further details.

4.2. Proof of the surface embedding theorem. We recall the statement for the convenience of the
reader.

Theorem 1.21.2 (Surface embedding theorem). Let F = {fi}mi=1 : (Σ, ∂Σ) ↬ (M,∂M) be as in Conven-
tion 1.11.1. Suppose that π1(M) is good and that F has algebraically dual spheres G = {[gi]}mi=1 ⊆ π2(M).
Then the following statements are equivalent.

(i) The self-intersection number µ(F ) and the Kervaire–Milnor invariant km(F ) ∈ Z/2 vanish.
(ii) There is an embedding F = {f i}mi=1 : (Σ, ∂Σ) ↪→ (M,∂M), regularly homotopic to F relative to

∂Σ, with geometrically dual spheres G = {gi : S2 ↬ M}mi=1 such that [gi] = [gi] ∈ π2(M) for all i.

Proof of Theorem 1.21.2. The direction (iiii) ⇒ (ii) follows from the fact that the intersection and self-
intersection numbers, as well as the Kervaire–Milnor invariant, are invariant under regular homotopy
(relative to the boundary) by Propositions 2.182.18, 2.252.25, and 3.13.1 respectively.

The proof of the direction (ii) ⇒ (iiii) reduces to the disc embedding theorem (Theorem 4.34.3) as
follows. The argument is similar to the proof of [FQ90FQ90, Corollary 5.1B] (see also the proof of [PRT20PRT20,
Theorem 8.1]).

Apply the geometric Casson Lemma 4.24.2 to upgrade G = {gi} from algebraically to geometrically
dual spheres G′ = {g′i}, changing F to F ′ by a regular homotopy in the process. The intersection
and self-intersection numbers, and the Kervaire–Milnor invariant, vanish for F . So they also vanish
for F ′, since all three quantities are preserved under regular homotopy relative to the boundary by
Propositions 2.182.18, 2.252.25, and 3.13.1.

Then by the definition of the Kervaire–Milnor invariant (Definition 1.41.4), after further finger moves
changing F ′ to some F ′′, we can find a convenient collection of Whitney discs W = {Wℓ} for F ′′ whose
interiors are disjoint from F ′′. Moreover F ′′ and G′ are still geometrically dual, since the finger moves
may be assumed to miss G′.

We shall apply the disc embedding theorem (Theorem 4.34.3) to the collection of generically immersed
discs W in the 4-manifold M \ νF ′′, so we verify that the hypotheses are satisfied. The Whitney discs
W have framed algebraically dual spheres as follows. The Clifford tori at the double points of F ′′

are geometrically dual to W. Symmetrically contract half of these tori, one per Whitney disc, using
meridional discs for F ′′ tubed into the geometrically dual spheres G′ = {g′i}. The resulting spheres are
only algebraically dual to W since the components of W and G′ may intersect arbitrarily; however,
they have vanishing intersection and self-intersection numbers since they were produced by symmetric
contraction. They are also framed, as we argue briefly now. If a sphere gi in G′ is not framed, then
the symmetric contraction uses incorrectly framed caps. However in the symmetric contraction process
each cap is used twice, with opposite orientations, and so any framing discrepancies cancel out. Since
F ′′ has geometrically dual spheres, the fundamental group π1(M \ νF ′′) ∼= π1(M) and is thus good.
This verifies the hypotheses of the disc embedding theorem (Theorem 4.34.3) for W, as desired.

Apply the disc embedding theorem to the Whitney discsW inM\νF ′′ to obtain disjointly embedded,
flat, framed Whitney discs {W ℓ} for the double points of F ′′, with interiors still disjoint from F ′′, along
with a collection of geometrically dual spheres for the {W ℓ} in M \ νF ′′.

Tube any intersections of G′ with {W ℓ} into the geometrically dual spheres for {W ℓ}, giving a new
collection of spheres G = {gi} disjoint from {W ℓ}. Now we have that the interiors of {W ℓ} lie in the
complement of F ′′ ∪ G, and moreover F ′′ and G are geometrically dual. Perform Whitney moves on
F ′′ along {W ℓ} to arrive at an embedding F as claimed. By construction, F and G are geometrically
dual. That [gi] = [gi] ∈ π2(M) for each i follows from [PRT20PRT20, Lemma 6.5]. □

4.3. The π1-negligible surface embedding theorem. Recall that a map F : X → Y is called π1-
negligible if the inclusion Y \ F (X) ⊆ Y induces an isomorphism on π1 for all basepoints. Here is a
reformulation of the surface embedding theorem.

Corollary 4.4 (The π1-negligible surface embedding theorem). Let F : (Σ, ∂Σ) ↬ (M,∂M) be as
in Convention 1.11.1. Suppose that F is π1-negligible and that π1(M) is good. Then µ(F ) = 0 and the
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Kervaire–Milnor invariant of F vanish if and only if there exists a π1-negligible embedding F : (Σ, ∂Σ) ↪→
(M,∂M) regularly homotopic to F , relative to the boundary.

This corollary follows from the surface embedding theorem and the fact that a generic immersion
F : Σ ↬ M is π1-negligible if and only if F admits geometrically dual spheres, which can be seen
as follows. For the forwards direction, the meridional circles are null-homotopic in M , so by π1-
negligibility they are null-homotopic in M \ F (Σ). The union of null-homotopies with meridional
discs gives geometrically dual spheres. For the reverse direction, first note that by general position the
homomorphism π1(M \F (Σ)) −→ π1(M) is surjective. The kernel is normally generated by a collection
consisting of one meridional circle for each connected component of Σ. Since geometrically dual spheres
provide null homotopies for these meridians, the assertion follows. By the geometric Casson lemma
(Lemma 4.24.2), the map F in the statement of the surface embedding theorem (Theorem 1.21.2) is regularly
homotopic to a π1-negligible map, due to the existence of the algebraically dual spheres G. Indeed, this
is the first step of the proof of the surface embedding theorem. Note that Theorem 1.21.2 also controls
the homotopy class of the dual spheres, and so is slightly stronger than Corollary 4.44.4.

5. Band characteristic maps and the combinatorial formula

In this section we define b-characteristic surfaces (Definition 5.175.17) and motivate the combinatorial
formula for the Kervaire–Milnor invariant (Definition 1.51.5). We postpone many of the proofs to Section 77.
We hope this will help the reader to assimilate the overall structure more easily. We work towards the
definition of b-characteristic surfaces by first defining the related notions of s-characteristic and r-
characteristic surfaces, mirroring the historical development. These latter definitions are simpler to
state and serve to motivate the more complicated definition of b-characteristic surfaces.

A sphere g : S2 ↬ M in a topological 4-manifold M is said to be twisted if the Euler number of the
normal bundle is odd. We say g is framed if the normal bundle is trivial. To coincide with the usual
meaning of framed, one can also implicitly choose a trivialisation, although we will not make use of
such a choice. Observe that if the normal bundle of g has even Euler number then it is homotopic to a
generically immersed sphere with trivial normal bundle, via adding local cusps.

Definition 5.1. Let F = {f1, . . . , fm} : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1. We define
Σ ⊆ Σ so that for i ∈ {1, . . . ,m}, the component Σi ⊆ Σ if and only if there is no framed immersed
sphere gi with λ(fj , gi) = δij for all j = 1, . . . ,m. Then we use

F = {fi : Σi −→M}
to denote the restriction of F to Σ . Note that if an fi does not admit an algebraically dual sphere at
all, then it belongs to F .

Recall that x ∈ H2(M,∂M ;Z/2) is said to be characteristic if x · a = a · a ∈ Z/2 for every a ∈
H2(M ;Z/2), where − ·− denotes the intersection pairing H2(M ;Z/2)×H2(M,∂M ;Z/2)→ Z/2. The
next definition gives a weaker notion.

Definition 5.2. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1. The map F is called spherically
characteristic (or s-characteristic for short) if F · a = a · a ∈ Z/2 for all a ∈ π2(M), considered as an
element of H2(M ;Z/2).

We will show in Lemma 5.185.18 that b-characteristic maps are s-characteristic.

Lemma 5.3. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1.

(i) If F is s-characteristic, then F = F .
(ii) If F has algebraically dual spheres, then F is s-characteristic or empty.

Proof. To prove (i), suppose F is not equal to F then there exists a component Σi of Σ with a framed
dual sphere gi, i.e. with λ(fj , gi) = δij for all j ̸= i. This leads to the contradiction

1 = fi · gi = fi · gi +
∑
j ̸=i

fj · gi = F · gi = gi · gi = 0 ∈ Z/2,

where the second to last equality follows from F being s-characteristic.
To prove (ii), suppose that F has algebraically dual spheres. Note that the dual spheres for F ⊆ F

are necessarily twisted. Assume that F neither s-characteristic nor empty. Then there exists a ∈
π2(M) such that F · a ̸= a · a ∈ Z/2. By tubing into a dual sphere to a component of F if necessary,
we can assume that a is untwisted, i.e. a · a is zero and that F · a = 1. Choose some component fj
of F such that a ⋔ fj is nonempty. Except for one of the intersections between fj and a, tube all
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the intersections of a and F into the corresponding dual spheres to F . Call the resulting sphere a′j .
Since F · a = 1, we tubed into an even number of dual spheres, so a′j · a′j = a · a = 0 ∈ Z/2. Via
adding local cusps, we may assume that a′j is framed. We also have that λ(fi, a

′
j) = δij for all i, j. This

contradicts the definition of F . □

Recall that a convenient collection of Whitney discs W for the intersections within F consists
of framed, generically immersed Whitney discs with interiors transverse to F , and with disjointly
embedded boundaries. Recall the invariant t from Definition 1.51.5 appearing in Theorem 1.61.6, where
t(F,W) is the mod 2 count of transverse intersections between F and the interiors of the Whitney discs
in W.

If F is not s-characteristic, then we can change t(F,W) as follows. Given a ∈ π2(M) with F · a odd
but a · a even, one can tube a framed Whitney disc W for F into a framed representative ã : S2 ↬ M ,
keeping the new Whitney disc framed but adding an odd number of interior intersections with F . If
F · a is even and a · a is odd one can tube W into a representative ã and also add an odd number
of boundary twists to keep the new Whitney disc framed but again adding an odd number of interior
intersections with F . Using Lemma 5.35.3, this is one reason for the appearance of F in the following
statements.

The following lemma is also used in the proof of Theorem 1.61.6, and shows that the vanishing of t for
a given collection of Whitney discs implies the vanishing of km.

Lemma 5.4. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1. Suppose that F admits algebraically
dual spheres, and that all double points of F are paired by a convenient collection W of Whitney discs.
Let W ⊆ W denote the sub-collection of Whitney discs for the intersections within F , where F is
as in Definition 5.15.1. If t(F ,W ) = 0, then km(F ) = 0.

We wish to find practically verifiable conditions on F that guarantee that t(F ,W ) is independent
of the collection of Whitney discs W . More precisely, the value of t(F ,W ) should be independent
of the pairing of double points, the Whitney arcs joining the paired double points (which includes the
choice of sheets at each double point) and finally the Whitney discs. In the case that each Σi is simply
connected, t(F ,W ) agrees with [FQ90FQ90, Definition 10.8A]. However, Freedman-Quinn claim in their
Lemma 10.8B that, for simply connected Σ, the quantity t(F ,W ) only depends on F , and not on
the Whitney discs, as long as F is s-characteristic. This is not true in general, as pointed out and
corrected by Stong [Sto94Sto94]. Further, again with π1(Σi) = 1 for all i, Stong established that the value
of t does not depend on the choice of W using the notion of r-characteristic discs and spheres. Here
is our generalisation of his notion.

Definition 5.5. Let Σ and M be as in Convention 1.11.1. A map F : (Σ, ∂Σ) → (M,∂M) is called
RP2-characteristic (or simply r-characteristic) if F · R = R · R ∈ Z/2 for every map R : RP2 → M
satisfying R∗w1(M) = 0.

Remark 5.6. A map c : RP2 → S2 of odd degree (e.g. a collapse map) composed with elements
of π2(M) can be used to show that r-characteristic maps are s-characteristic. Indeed, given F and
a ∈ π2(M) we obtain a ◦ c : RP2 →M , and we have 0 = F · (a ◦ c)+ (a ◦ c) · (a ◦ c) = F · a+ a · a ∈ Z/2,
where the second equality uses that c has odd degree.

Stong’s key observation [Sto94Sto94] was that in some instances involving elements of order two in π1(M),
one can change the choice of sheets at two double points of F , and hence the Whitney arcs and
corresponding Whitney disc, with a resulting change in the value of t(F ,W ) by one. The restriction to
r-characteristic maps removes this source of indeterminacy. To summarise, Stong showed the following
theorem.

Theorem 5.7 (Stong [Sto94Sto94]). Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1, with Σ a union
of discs or spheres. Suppose µ(F ) = 0 and that F admits algebraically dual spheres. If F is not
r-characteristic then km(F ) = 0, and if F is r-characteristic then km(F ) = t(F ,W ) for any choice
of Whitney discs W for the intersections within F .

Remark 5.8. Combining Theorem 2.322.32 and Theorem 5.75.7 with Theorem 1.21.2 gives the complete answer
to the embedding problem for spheres and discs with algebraically dual spheres for good fundamental
groups, due to Freedman, Quinn, and Stong. Theorem 2.322.32 allows one to fix the regular homotopy class
of generic immersions within the homotopy class to be that with µ(−)1 = 0, Theorem 5.75.7 computes
the Kervaire–Milnor invariant, and then one applies Theorem 1.21.2 to conclude whether or not there is
a regular homotopy to an embedding.



EMBEDDING SURFACES IN 4-MANIFOLDS 27

Our contribution in the present paper extends this solution to the case that the components of Σ
are not all simply connected. In this case there is a further source of indeterminacy coming from the
choice of Whitney arcs on Σ. For this reason we need a stronger restriction on F .

Definition 5.9. A band refers to either of the two D1-bundles over S1, i.e. a band is either an annulus
or a Möbius band. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1. Let MF be the mapping
cylinder of F . Write B(F ) ⊆ H2(M,Σ;Z/2) := H2(MF ,Σ;Z/2) for the subset of elements of the
relative homology group that can be represented by a square

∂B Σ

B M

h

ι F

g

where B is a band and ι : ∂B ↪→ B is the inclusion, such that

⟨w1(M), g(C)⟩+ ⟨w1(Σ), h(∂B)⟩ = 0 ∈ Z/2, (5.1)

where C is the core curve of B.

F (Σ)

C

B

F (Σ)

Figure 5.1. An annular band B (blue) is shown with boundary on F (black). One
of the boundary components of B is nonorientable on F and one is orientable, so
⟨w1(Σ), h(∂B)⟩ = 1. Therefore, in order for this to be an element of B(F ), we must
have ⟨w1(M), g(C)⟩ = 1, where M is the ambient 4-manifold and C is the core curve
of the annulus, shown in blue.

See Figure 5.15.1 for an example of a band. Note that every element of B(F ) can be represented by
a generic immersion of pairs (B, ∂B) ↬ (M,Σ) (Definition 2.62.6). Writing H2(M,Σ;Z/2) in place of
H2(MF ,Σ;Z/2) is a slight but standard abuse of notation. The pair (g, h) induces a relative homology
class since the map

g ⊔ (h× Id[0,1]) : B ⊔ (∂B × [0, 1]) −→M ⊔ (Σ× [0, 1])

descends to a mapMι →MF . The mapping cylinderMι is homeomorphic to B, and so we obtain a
map (B, ∂B) → (MF ,Σ). The image of the relative fundamental class [B, ∂B] in H2(MF ,Σ;Z/2) is
an element of B(F ). From now on, since MF ≃ M , to simplify the notation we will not mention the
mapping cylinder and refer to B(F ) ⊆ H2(M,Σ;Z/2).

We will see in Lemma 7.77.7 that given a generic immersion F : (Σ, ∂Σ) ↬ (M,∂M) as in Conven-
tion 1.11.1, every element of H2(M,Σ;Z/2) can be represented by an immersion of some compact surface
S into M , with interior transverse to F , and with boundary generically immersed in F (Σ) away from
the double points. The subset B(F ) consists of those homology classes for which S can be chosen to be
a band, satisfying condition (5.15.1).

We use the notation

∂ : H2(M,Σ;Z/2) −→ H1(Σ;Z/2)
for the connecting homomorphism from the long exact sequence of the pair. A class represented by a
compact surface S is mapped to its boundary ∂S under the map ∂. Then ∂B(F ) ⊆ H1(Σ;Z/2) consists
of (the homology classes of) those closed 1-manifolds immersed in Σ whose images under F bound
bands in M satisfying (5.15.1).
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F (Σ)

S B

(a) (b)

Figure 5.2. (a) An immersed surface S (blue) in the ambient manifold M , and the
image (black) of a generic immersion F : (Σ, ∂Σ) ↬ (M,∂M). (b) A thin tube is
added, with one boundary component on Σ and one on S. The surface B (blue) is
obtained by cutting out a disc on S and gluing in the tube. Note that compared to S,
the surface B has a new boundary component lying on Σ.

Construction 5.10. Given a generic immersion F : (Σ, ∂Σ) ↬ (M,∂M) as in Convention 1.11.1 suppose
we have a generically immersed surface S in M with boundary on Σ, i.e. admitting maps satisfying

∂S Σ

S M,

h

ι F

g

where possibly ∂S is empty. Then the tubing procedure shown in Figure 5.25.2 can be used to create a
band, as follows. If S is a disc, the procedure gives an annulus B with boundary lying on Σ. This
annulus satisfies (5.15.1), and therefore lies in B(F ), if and only if ⟨w1(Σ), h(∂S)⟩ = 0 ∈ Z/2, since the core
of B is null-homotopic in M and and the newly created boundary component of B is null-homotopic
in Σ.

In the case that S is a sphere, we can perform the tubing procedure of Figure 5.25.2 to S twice. In this
case both boundary components of the annulus created are null-homotopic on Σ, so we always produce
an element of B(F ).

Finally if S is an RP2, the tubing procedure creates a Möbius band with boundary on Σ, which lies
in B(F ) if and only if ⟨w1(M), g(RP1)⟩ = 0 ∈ Z/2, where RP1 ⊆ RP2.

When defining b-characteristic surfaces, we will restrict to the case that the Z/2-valued intersection
form λΣ is trivial on ∂B(F ). We can restrict in this way because of the following lemma.

Lemma 5.11. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1, with µ(F ) = 0. If the Z/2-
valued intersection form λΣ on H1(Σ;Z/2) is nontrivial on ∂B(F ), then we can change F by a regular
homotopy to F ′ such that there are convenient collections of Whitney discs W and W ′ for the double
points of F and F ′ respectively, such that t(F,W) ̸= t(F ′,W ′).

Moreover, if F has dual spheres and the Z/2-valued intersection form λΣ on H1(Σ ;Z/2) is non-
trivial on ∂B(F ) then km(F ) = 0.

In the case that λΣ|∂B(F ) is trivial, we define an invariant Θ on the set B(F ). We will need the
following notions.

(1) For Z a closed 1-manifold generically immersed in Σ, the self-intersection number µΣ(Z) ∈ Z/2
of Z counts the number of double points, which we assume without loss of generality to be
disjoint from the double points of F . As usual, this is not invariant under homotopies of Z in
Σ, only under regular homotopies.

(2) Let S be a compact surface, with a generic immersion of pairs (S, ∂S) ↬ (M,Σ). Suppose that
w1(Σ) is trivial on each component of ∂S, e.g. if Σ is orientable. Then the normal bundle of
∂S in Σ is trivial and we can pick a nowhere vanishing section (if S is closed, this is an empty
choice). Extend this section to the normal bundle of S in M (such a normal bundle exists by
Corollary 2.72.7) such that the extension is transverse to the zero section. Then we define the
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Euler number e(S) to be the number of zeros of this section modulo 2. Observe that this is
analogous to how one measures the twisting of a Whitney disc with respect to the Whitney
framing. For S a closed surface this coincides with the usual definition of the Euler number.

Here is the definition of Θ(S) in the case that w1(Σ) is trivial on every component of ∂S.

Definition 5.12. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1, with µ(F ) = 0. Let A be a
choice of Whitney arcs pairing the double points of F . Let S be a compact surface in M with a generic
immersion of pairs (S, ∂S) ↬ (M,Σ), such that ∂S is transverse to A and w1(Σ) is trivial on every
component of ∂S. Define

ΘA(S) := µΣ(∂S) + |∂S ⋔ A|+ |IntS ⋔ F |+ e(S) mod 2. (5.2)

For closed S we have ΘA(S) ≡ |IntS ⋔ F |+ e(S) mod 2, and thus ΘA(S) vanishes for all closed S
if and only if F is characteristic in the traditional sense. In the proof of Theorem 1.61.6, we will only use
the definition of ΘA for bands. But the case of general surfaces will be useful for our proof that, in the
cases relevant to us, ΘA does not depend on the choice of A (see Lemma 5.165.16 below).

Remark 5.13. Definition 5.125.12 suffices in the case of orientable Σ. The reader only interested in this
case may safely skip ahead to Lemma 5.165.16.

If a component of ∂S is orientation-reversing in Σ, then its normal bundle in Σ is nontrivial and hence
we may not use it to choose a nowhere vanishing section of the normal bundle of S on its boundary
as before to define the Euler number. However, bands with such boundaries may exist in the ambient
4-manifold and must be considered. In case w1(Σ) is nontrivial on precisely one component of ∂S, e.g.
when ∂S is connected, we know λΣ(∂S, ∂S) = 1. Then, by Lemma 5.115.11, if a band with such boundary
exists, then km(F ) = 0, and there is no need to define Θ. In particular, note that this means that we
need not consider the case of a Möbius band whose boundary consists of a curve on which w1(Σ) is
nontrivial. There is one final case of relevant bands left to consider, which we do next.

Definition 5.14. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1, with µ(F ) = 0. Let A be a
choice of Whitney arcs pairing the double points of F . Let B be an annulus with a generic immersion
of pairs (B, ∂B) ↬ (M,Σ), such that ∂B transverse to A and w1(Σ) is nontrivial on both components
of ∂B. Pick an embedded arc D in B connecting the two boundary components, disjoint from the

self-intersections of B and the intersections of B with F . Let B̂ be the result of cutting B open along

D. There is a canonical quotient map γ : B̂ → B.

Let νMB denote the normal bundle of B in M . Pick a nowhere vanishing section of γ∗νMB on ∂B̂

as follows. On each part of ∂B̂ that maps to ∂B, use the normal bundle of ∂B in F to define the
section locally. For this we require that on ∂D the two vectors for the two components agree up to

multiplication by ±1. On the part of ∂B̂ that maps to D pick a section so that on every pair of points
that map to the same point in D the vectors agree up to multiplication by ±1. See the middle picture
of Figure 5.35.3. We define

ΘA(B,D) := µΣ(∂B) + |∂B ⋔ A|+ |IntB ⋔ F |+ e(B̂) mod 2. (5.3)

Remark 5.15. An alternative definition of ΘA(B,D) would use the arc D to add a tube to F (Σ), in
such a way that the tube intersects the band B in two parallel copies of D. More precisely, we perform
an ambient surgery on F (Σ). This requires choosing a 2-dimensional sub-bundle of the normal bundle
of D in M – the tube itself consists of the circle bundle for this sub-bundle, considered within a tubular
neighbourhood of D. We build the required sub-bundle by first choosing a section lying in the normal
bundle of D in B, denoted νBD . The second section can be chosen freely. Let F ′ denote the immersion
constructed by the tubing procedure. Observe that the domain of F ′, denoted Σ′, is obtained from the
abstract surface Σ by adding a 1-handle. Depending on the choice of the second section above, this
may be an orientation-reversing or orientation-preserving 1-handle, but this will not matter for us.

Adding the tube changes the band B to a disc ∆, by removing a thin strip neighbourhood of D. The
disc ∆ has boundary lying on Σ′. Observe that ∂∆ is orientation-preserving on Σ′, since it is the result
of banding together two orientation-reversing curves. Since no new intersection points were added, the
collection A is a collection of Whitney arcs for the intersection points of F ′. As a result, we may define

ΘA(B,D) := ΘA(∆),

where the latter is computed as in Definition 5.125.12. In order to see that this agrees with Definition 5.145.14,
we need only check that the definition of the Euler number terms agree, assuming we choose the tube
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F (Σ)

F (Σ)

B
D

F (Σ)

F (Σ)

B̂

F ′(Σ′)

F ′(Σ′)

∆

(a) (b) (c)

Figure 5.3. (a) A band B (blue) is shown for F (black). Both boundary components
of B are nonorientable on Σ. A vertical arc D is shown in orange. (b) By cutting along

the arc D we obtain a disc B̂. We show how to choose a nowhere vanishing section of

the normal bundle of ∂B̂ in M . (c) Adding a tube to F guided by D splits the band
into a disc ∆, and changes Σ to a surface Σ′. We show how to choose a section of the
normal bundle of ∂∆ in F ′.

to be thin enough to miss any double points. For this compare Figures 5.35.3 (b) and (c) to see that
the sections at the boundary in both cases are the same and hence also the Euler numbers coincide.
When comparing the pictures, the choice of the second section of the 2-dimensional sub-bundle which

determines the tube corresponds to the choice of the section of γ∗νMB on the part of ∂B̂ that maps
to D.

Note that we did not prove that e(B̂) is independent of the choice of D. This will follow from
the upcoming proof of (iiii) in Lemma 5.165.16 below, which states that ΘA(B,D) depends only on the
homology class of B. The following lemma, whose proof is again deferred to Section 77, shows that Θ is
well defined in all required cases. As a reminder, the case of orientable Σ does not require the notion of
ΘA(B,D) from Definition 5.145.14, so parts (iiii) and (iiiiii) of the following lemma may be skipped by anyone
only interested in that case.

Lemma 5.16. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1, with µ(F ) = 0. Let A be a choice
of Whitney arcs pairing the double points of F .

(i) Let S be a compact surface, with a generic immersion of pairs (S, ∂S) ↬ (M,Σ), such that ∂S is
transverse to A and w1(Σ) is trivial on every component of ∂S. Then ΘA(S) ∈ Z/2 depends only
on the homology class of S in H2(M,Σ;Z/2).

(ii) Let B be an annulus, with a generic immersion of pairs (B, ∂B) ↬ (M,Σ), such that ∂B is
transverse to A and w1(Σ) is nontrivial on both components of ∂B. Pick an embedded arc D in
B connecting the components of ∂B and disjoint from all double points. Then ΘA(B,D) ∈ Z/2
depends only on the homology class of B in H2(M,Σ;Z/2). In particular, ΘA(B,D) does not
depend on D, so we write ΘA(B).

(iii) Let S be a surface as in (ii) and let B be an annulus as in (iiii) such that [S] = [B] ∈ H2(M,Σ;Z/2).
Then ΘA(S) = ΘA(B) ∈ Z/2.

(iv) If λΣ|∂B(F ) = 0, the restriction of ΘA to B(F ) is independent of the choice of A, giving a well
defined map Θ: B(F )→ Z/2.

Finally we are ready to define the required generalisation of r-characteristic maps, called b-characteristic
maps.

Definition 5.17. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1, with µ(F ) = 0. We say F is
band characteristic (or b-characteristic for short) if λΣ|∂B(F ) = 0 and Θ: B(F )→ Z/2 is trivial.

Lemma 5.18. Every b-characteristic map is r-characteristic. Moreover, the two notions agree for
unions of discs or spheres.

Proof. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1, with µ(F ) = 0. Let R : RP2 → M be a
generic immersion which is transverse to F and so that R∗w1(M) = 0. We apply Construction 5.105.10. In
other words, take a small disc on F (Σ) away from R ⋔ F , and tube into the image of R. This creates a
Möbius band B with boundary on Σ. Here ∂B is homotopically trivial in Σ, so ⟨w1(Σ), ∂B⟩ = 0. The
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core C of B corresponds to RP1 within the original immersed RP2. Therefore, since R∗w1(M) = 0, we
have that ⟨w1(M), C⟩ = 0. So B ∈ B(F ). Note that Θ: B(F )→ Z/2 is well defined by Lemma 5.165.16 (iviv)
since F is b-characteristic. Further Θ(B) = Θ(R) = F · R + R · R ∈ Z/2 by Lemma 5.165.16 (ii) since
[B] = [R] ∈ H2(M,Σ;Z/2). But this vanishes since F is b-characteristic. Hence F is r-characteristic.

For the second sentence, suppose that Σ is a union of discs or spheres and is r-characteristic. Let
B ∈ B(F ) be a band. Since Σ is simply connected, the boundary of B is null homotopic in F (Σ).
Therefore B can be closed up using a codimension zero submanifold of Σ to either a sphere or an
RP2 immersed in M . The resulting closed surface R again satisfies Θ(B) = F · R + R · R ∈ Z/2
by Lemma 5.165.16 (ii). Here λΣ|∂B(F ) = 0 since Σ is simply connected and so Θ: B(F ) → Z/2 is again
well defined by Lemma 5.165.16 (iviv). Once again, since null homotopic circles on Σ must be orientation-
preserving, ⟨w1(Σ), ∂B⟩ = 0 and so (5.15.1) implies that R∗w1(M) = 0. So Θ(B) = 0 since F is
r-characteristic. Thus F is b-characteristic. It follows that the notions of b-characteristic and r-
characteristic coincide as claimed. □

Recall that if F is b-characteristic, then Theorem 1.61.6 states that km(F ) = t(F ,W ), so we have a
combinatorial description of km(F ). Moreover, since Θ only depends on the homology class of a band
in H2(M,Σ;Z/2), we can in principle determine whether or not F is b-characteristic by computing Θ
on finitely many homology classes. Having said that, as mentioned in the introduction, in practice
deciding precisely which homology classes can be represented by maps of bands may be tricky.

Lemma 5.19. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1, with µ(F ) = 0. If G is regularly
homotopic to F and F is b-characteristic then G is b-characteristic.

Proof. By definition, a regular homotopy can be decomposed into a sequence of ambient isotopies,
finger moves, and Whitney moves. None of these affect which classes of H1(Σ;Z/2) bound a band.
In particular, λΣ|∂B(F ) = λΣ|∂B(G). Assume that G is not b-characteristic. Then either λΣ|∂B(G) is
nontrivial or there is a band in B(G) on which Θ is nonvanishing. In the former case λΣ|∂B(F ) = λΣ|∂B(G)

implies that F is not b-characteristic.
For the latter case, let B in B(G) be such that Θ(B) = 1. It suffices to show that such a band still

exists after an ambient isotopy, a finger move, or a Whitney move. This is obvious for ambient isotopy.
Recall that Θ only depends on the homology class of the band by Lemma 5.165.16. Hence we can assume
that the boundary of B is away from the singularity of the finger move. Then we can still consider the
band B as a band for the surface after the finger move and Θ is unchanged. The argument in the case
of a Whitney move is similar. We first let B undergo a homotopy to arrange that it is disjoint from
the boundary of the Whitney disc W along which the Whitney move is performed. Then we can again
consider the same band B for the new surface. The Whitney move leaves all terms in the definition of
Θ except | IntB ⋔ F | unchanged. Since the Whitney move uses two copies of the Whitney disc, the
change in | IntB ⋔ F | is twice | IntB ⋔ W |. As Θ takes values in Z/2, Θ(B) is unchanged as claimed.
Thus we have a band B in B(F ) with Θ(B) = 1, and so again F is not b-characteristic. We have shown
the contrapositive of the desired statement. □

Remark 5.20. As a counterpoint to Lemma 5.195.19, there exist maps that are homotopic to each other,
but where one is b-characteristic and the other is not. For example, let Σ be the Klein bottle. Then
an embedding f : Σ ↪→ R4 must have normal Euler number e(νf) ∈ {−4, 0, 4} by [Mas69Mas69]. It can
be verified, as we do presently, that the embeddings with e(νf) = 0 are precisely those which are
b-characteristic. Hence the b-characteristic notion is not invariant under homotopy.

To see that f is b characteristic if and only if e(νf) = 0, think of Σ ∼= RP2#RP2, with a corresponding
isomorphism H1(Σ;Z/2) ∼= Z/2⊕Z/2. There is a standard embedding of RP2 in R4 with normal Euler
number ±2, and there are essentially three ways to take connected sums of these embeddings, realising
the three options e(νf) ∈ {−4, 0, 4}. With e(νf) fixed, these embeddings are unique up to regular
homotopy by Theorem 2.322.32.

We explicitly construct the standard embeddings, as follows. Take two disjoint, unlinked, unknotted
Möbius bands M1 and M2 in R3, with an εi ∈ {±1} signed half-twist, for i = 1, 2. Take the boundary
connected sum M1♮M2 ambiently to obtain a punctured Klein bottle in R3 with boundary an unknot.
Cap this unknot off with a standard slice disc in R4

≥0 to obtain a standard embedding f with normal

Euler number −2(ε1 + ε2). We do not justify the sign, which depends on conventions that are not
important for us.
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By Lemma 5.195.19, it suffices to check whether the three standard embeddings above are b-characteristic,
which we do next. First one computes that λΣ|∂B(f) = 0 in all three cases, as follows. We have

B(f) ⊆ H2(R4,Σ;Z/2)
∼=−→
∂

H1(Σ;Z/2) ∼= Z/2⊕ Z/2.

By (5.15.1) in order for B ∈ B(f) we need ⟨w1(Σ), h(∂B)⟩ = 0. Hence ∂B ∈ H1(Σ;Z/2) ∼= Z/2 ⊕ Z/2
is either (0, 0) or (1, 1). To see that (x, x), for x ∈ {0, 1}, can be realised as the boundary of a band,
pick a simple closed curve Z on Σ representing the homology class (x, x) and a generically immersed
disc D bounded by Z in R4. Then add a tube from D to Σ to turn D into an annulus B, using
Construction 5.105.10 (see Figure 5.25.2). Thus ∂B(f) = {(0, 0), (1, 1)}, on which λΣ vanishes.

Hence whether or not the given standard embedding of Σ is b-characteristic is decided by Θ(B),
where B is a band with boundary (1, 1) ∈ H1(Σ;Z/2). For the standard embeddings constructed
above, such a band can be constructed explicitly, as follows. Take the core curves of M1 and M2, and
connect sum them inside M1♮M2. This gives an unknot representing (1, 1), which bounds a standard
slice disc D in R4

≤0. Construction 5.105.10 converts D to a band B.

Since Θ only depends on the class of a band in H2(M,Σ;Z/2), we can use the band B from the
previous paragraph. We shall compute that Θ(B) = 0 for this band if and only if e(νf) = 0, that is if
the embedding of Σ arises from the connected sum of the standard embeddings of RP2 with opposite
normal Euler numbers. The curve ∂B is orientation preserving on Σ, so we use (5.25.2) to compute Θ(B).
Most of the terms in this definition are trivial in this case, since we are working with an embedding of
Σ and ∂B is itself embedded. Also D has interior disjoint from the image of f , and therefore so does B.
Only the relative Euler number term remains, which can be computed from the twists in M1 and M2.
It follows that Θ(B) ≡ (ε1 + ε2)/2 ∈ Z/2, which vanishes if and only if ε1 = −ε2, which in turn holds
if and only if e(νf) = 0.

6. Homotopy versus regular homotopy

In this short section, we describe Construction 6.16.1 and apply it to prove Theorem 1.121.12, which we
used in Section 1.41.4 to compare homotopy and regular homotopy of maps. Note that the results in this
section require that the surface Σ from Convention 1.11.1 is nonorientable.

If we are interested in finding an embedding in a given homotopy class, rather than a regular
homotopy class, we may use the construction below to replace a given map by a homotopic map
for which the invariant t is trivial. In particular, the construction is applicable in the cases from
Theorem 2.322.32 in which there are infinitely many regular homotopy classes with µ(−)1 = 0 in a given
homotopy class.

Construction 6.1. Let F = {fi}mi=1 : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1, with µ(F ) = 0.
Let W denote a convenient collection of Whitney discs for the double points of F . Suppose that there
exists fi with w1(Σ)|ker(fi)• nontrivial.

Let N ⊆ Σi be a Möbius band with fi|N π1-trivial. In a small disc in N introduce four double points
with the same sign by cusp homotopies and call the resulting immersion f ′

i . Let F ′ denote the map
given by {fj}j ̸=i ∪ {f ′

i}. Then there is a convenient collection of Whitney discs W ′ for all the double
points of F ′ such that

t(F ′,W ′) ≡ t(F,W) + 1 mod 2.

While we have created four double points with the same sign, we will use in the proof that the
Möbius band is nonorientable to change the sign of two of the double points, in order to then be able
to find new Whitney discs.

Proof of Construction 6.16.1. We will pair up the two new pairs of double points with new Whitney discs.
Pick any pair of the four new double points and pair them by arcs in the small disc, as in Definition 2.262.26,
such that the resulting circle is null-homotopic in M . For one of the arcs perform a connected sum in
the interior with the core α of N . With this new pair of arcs, the double points have opposite sign,
and by our choice of N the resulting Whitney circle bounds a Whitney disc W1 in M with embedded
boundary. By boundary twisting, arrange that W1 is framed, and by pushing off ensure there is no
intersection between the boundary of W1 and the boundaries of the components of W. For this we
push the boundary arc of W1 over the end of the boundary arc for the Whitney disc in W. This way
t(F,W) remains unchanged. Do the same for the remaining two new double points in f ′

i , namely pair
them by a Whitney disc W2, which by definition is a parallel copy of W1.

Since λN (α, α) = 1, the boundaries of W1 and W2 intersect an odd number of times. To turn
W ∪ {W1,W2} into a convenient collection of Whitney discs we have to remove any intersections
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between their boundaries. For such an intersection, push the Whitney arc of W1 over the end of the
Whitney arc of W2. This will in turn change the number of intersections between the interior of W1 and
f ′
i by one mod 2; that is, | IntW1 ⋔ F | ≡ | IntW2 ⋔ F |+ 1 mod 2. Let W ′ be the resulting collection
of Whitney discs. We have

t(F ′,W ′) ≡ t(F,W) + | IntW1 ⋔ F |+ | IntW2 ⋔ F | ≡ t(F,W) + 1 mod 2. □

With the above construction in hand, we can now prove Theorem 1.121.12 from the introduction.

Theorem 1.121.12. Let F = {fi}mi=1 : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1 with µ(F ) = 0.
Suppose that there is at least one fi ∈ F with w1(Σ)|ker(fi)• nontrivial. Then there exists a generic
immersion F ′ homotopic to F with µ(F ′) = 0, and a convenient collection of Whitney discs W ′ such
that t((F ′) , (W ′) ) = 0. Thus if F ′ has algebraically dual spheres then km(F ′) = 0, and if moreover
π1(M) is good then F ′ is regularly homotopic, relative to ∂Σ, to an embedding.

Proof. By the vanishing of the intersection and self-intersection numbers, there is a convenient collection
of Whitney discs W for F and therefore for F . If t(F ,W ) = 0 set F ′ = F . If t(F ,W ) = 1, use
Construction 6.16.1 to find a generic immersion F ′ homotopic to F , with t((F ′) , (W ′) ) = 0. If F ′ has
algebraically dual spheres, then km(F ′) = 0 by Theorem 1.61.6 since either F ′ is not b-characteristic or
km(F ′) = t((F ′) , (W ′) ) = 0. If in addition π1(M) is good, apply Theorem 1.21.2 to see that F ′ is
regularly homotopic, relative to ∂Σ, to an embedding. □

We end this section by giving another pair of applications of Construction 6.16.1.

Proposition 6.2. Let f : (Σ, ∂Σ) ↬ (M,∂M) be a generic immersion as in Convention 1.11.1. Assume
that Σ is connected, µ(f) = 0, and that w1(Σ)|ker f• is nontrivial while f∗(w1(M)) is trivial. If f ′ is a
generic immersion homotopic to f , both f and f ′ are b-characteristic, and e(νf)− e(νf ′) = ±8, then

t(f ′) ≡ t(f) + 1 mod 2.

Proof. Since f∗(w1(M)) is trivial, regular homotopy classes of generic immersions homotopic to f are
detected by the Euler number of the normal bundle by Theorem 2.322.32. Further, since e(νf)−e(νf ′) = ±8
we may add four cusps (of the same sign) to f to obtain a map f ′′ which is regularly homotopic to f ′.

The map f is b-characteristic by assumption, while the map f ′′ is b-characteristic since f ′ is, by
Lemma 5.195.19. By Lemma 2.242.24, we know that µ(f)1 ∈ Z/2, so by construction µ(f) = µ(f ′′) = µ(f ′) = 0.
So the quantities t(f) and t(f ′′) are defined, and further t(f ′′) = t(f ′). Apply Construction 6.16.1 to see
that t(f ′′) ≡ t(f) + 1 mod 2. □

Applying Proposition 6.26.2 to immersions of RP2 into R4 we obtain the following corollary, obstructing
generic immersions of RP2 in R4 with e(f) ̸= ±2 mod 16 from being regularly homotopic to an
embedding and thus partially recovers the result due to Massey [Mas69Mas69] that every embedding of RP2

in R4 must have Euler number ±2. Massey stated the result for smooth embeddings, since he used the
G-signature theorem. But the G-signature theorem was later extended to the topological category by
[Wal99Wal99, Chapter 14B], so Massey’s result also holds for locally flat embeddings of RP2 in R4.

Corollary 6.3. Let f : RP2 ↬ R4 be a generic immersion with µ(f) = 0. Then t(f) = 0 if and only if
e(νf) = ±2 mod 16.

Proof. Recall that there exist embeddings g± : RP2 ↪→ R4 with Euler number ±2. First we prove that
e(νf) ≡ 2 mod 4. By Lemma 2.242.24, we know that µ(f)1 ∈ Z/2. Then µ(g+) = 0, and so µ(g+)1 = 0.
Since f is homotopic to g+ and µ(f) = 0, it follows from Theorem 2.322.32 that e(νf) ≡ e(νg+) ≡ 2
mod 4. (The same argument would have applied with g−.)

Note that any generic immersion of RP2 into R4, and in particular the map f , is b-characteristic since
H2(R4,RP2;Z/2) ∼= Z/2 and the nontrivial element does not satisfy condition (5.15.1) in Definition 5.95.9.

We have t(g±) = 0 since t vanishes for embeddings. Since e(νf) ≡ 2 mod 4, it differs from one of
±2 by a multiple of 8. Let k ∈ Z be such that e(νf) = ±2 + 8k = e(νg±) + 8k. By Proposition 6.26.2,

t(f) ≡ t(g±) + k ≡ k mod 2.

Thus t(f) = 0 if and only if k is even, which is the case precisely when e(νf) differs from e(νg±) = ±2
by a multiple of 16. □
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7. Proofs of statements from Section 55

In this section, we provide the proofs we skipped in Section 55. The following transfer move will be
useful for arranging that algebraically cancelling intersection points occur on the same Whitney disc.

Construction 7.1 (Transfer move). Let Σ and M be as in Convention 1.11.1 and let H : (Σ, ∂Σ) →
(M,∂M) be a generic immersion, with components {hi : Σi → M}. Assume the double points within
H are paired by a convenient collection W of Whitney discs.

Let W1 and W2 be components of W with IntW1 ⋔ H ̸= ∅ ̸= IntW2 ⋔ H. We can perform three
finger moves on H, so that the resulting generic immersion H ′ has six new double points, paired by
three framed, embedded Whitney discs {V,U1, U2}, each of which has two intersections with H ′, and
such that the boundaries of {V,U1, U2} are mutually disjoint and embedded. Moreover, the collection
W ′ :=W ∪ {V,U1, U2} is a convenient collection of Whitney discs for H ′ and we have

|IntW1 ⋔ H ′| = |IntW1 ⋔ H| − 1 and

|IntW2 ⋔ H ′| = |IntW2 ⋔ H| − 1.

Proof of Construction 7.17.1. Suppose that W1 pairs intersections of ha and hb while W2 pairs intersec-
tions of hc and hd, where repetition within a, b, c, d is allowed. Perform a finger move between ha and
hc, creating two new double points paired by a corresponding framed, embedded Whitney disc V . Note
that the interior of V is disjoint from the image of H. The operation depicted in Figure 7.17.1 gives a
further regular homotopy, involving a finger move pushing he through ha, and a finger move pushing
hf through hc. We call the outcome of all three finger moves H ′. The procedure creates six new
intersections within H ′ compared with H. The four intersections created by the he – ha and hf – hc

finger moves are paired by Whitney discs U1 and U2. A preliminary version of these are shown in the
middle panel of Figure 7.17.1; the final versions are those arising after the boundary push off operations
indicated by the bottom panel. Overall, the move transfers an intersection of H with W1, as well as an
intersection of H with W2, on to V , so that | IntV ⋔ H ′| = 2. By construction, each Ui intersects H

′

twice. □

Now we prove Lemma 5.45.4, whose statement we recall.

Lemma 5.45.4. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1. Suppose that F admits algebraically
dual spheres, and that all double points of F are paired by a convenient collection W of Whitney discs.
Let W ⊆ W denote the sub-collection of Whitney discs for the intersections within F , where F is
as in Definition 5.15.1. If t(F ,W ) = 0, then km(F ) = 0.

Proof. By applying the geometric Casson lemma (Lemma 4.24.2) and Propositions 2.182.18, 2.252.25, and 3.13.1, we
may arrange by a regular homotopy that F and G become geometrically dual. By definition

t(F ,W ) =
∑
ℓ,i

|IntWℓ ⋔ fi | = 0 ∈ Z/2. (7.1)

We modify the collection of Whitney discs, as follows, so that each has an even number of intersections
with F . Since the count in (7.17.1) is zero, the number of Whitney discs with odd intersection with F is
even, so we may pair them up (arbitrarily). For each such pair, apply Construction 7.17.1. This changes
F by finger moves to some F ′, whose double points are paired by a convenient collection of Whitney
discs W ′ := {W ′

ℓ}, such that each element of W ′ has an even number of intersections with (F ′) . Note
that the new Whitney discs created by the application of Construction 7.17.1 have been added to the
collection.

For each intersection of some W ′
ℓ with (F ′) , tube W ′

ℓ into the corresponding geometrically dual
sphere. Note that each sphere being tubed into is necessarily twisted, but since we tube an even
number of times, the total change in the framing of W ′

ℓ is even. Do this for each element of W ′. The
resulting family of Whitney discs may still intersect F ′, but not (F ′) . For each such intersection with
F ′, again tube into the appropriate geometrically dual sphere. Now the spheres are not twisted, so
the framing of the Whitney discs changes by an even number. Arrange for all the Whitney discs to be
framed by adding local cusps in the interior. We may do this because the framing coefficient of each of
the Whitney discs is even. We have now produced the desired convenient collection of Whitney discs for
the intersections within F ′, whose interiors lie in the complement of F ′. This shows that km(F ′) = 0,
and therefore km(F ) = 0, as desired. □
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(i)

(ii)

(iii)

ha hc

hb hd

he hf

W1 W2

ha U1 hc U2

hb hd

he hf

W1 W2

hc ha

V V

he

hf

ha hc

hb hd

he hf

W1 W2

V V

Figure 7.1. The transfer move. (i) Whitney discs W1 and W2 pairing intersections
between ha and hb, and between hc and hd respectively. (ii) A finger move between
ha and hc has created a new pair of intersections, paired by a Whitney disc V . The
interior of V is disjoint from H. Observe that V appears on both panels. As shown in
the left panel, an intersection between W1 and he has been pushed down into ha and
then one of the resulting intersection points has been pushed across to V . In the right
panel, we see this new intersection between V and he. We have performed a similar
move in the right panel – an intersection between W2 and hf has been pushed down
to hc and one of the resulting intersection points is pushed over to V . These last three
moves form a regular homotopy of H. We call the result H ′. Each Wi has one fewer
intersection with H ′ than with H, at the expense of creating two new intersections
within H ′. These two new pairs of intersections are paired by Whitney discs U1 and
U2, both shaded grey. Additionally, V has two intersections with H ′. Note that the
Whitney arcs for each Ui (purple) intersect the Whitney arcs for Wi and V . The result
of a boundary push off operation making these arcs disjoint is shown in (iii). This
operation creates two intersections of each Ui with H ′.

Before giving the proof of Lemma 5.115.11, we explain the key new construction in this paper, which
we already mentioned in Section 1.21.2. Briefly, given a band B with boundary lying on an immersed
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surface, a finger move along a fibre of the band produces two new double points paired by a Whitney
disc arising from B.

Construction 7.2 (Band fibre finger move). Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1.
Suppose that µ(F ) = 0 and that the self-intersections of F are paired by a convenient collection
W = {Wℓ} of Whitney discs with boundary arcs A.

Consider B ∈ B(F ) as a D1-bundle. Then we can do a finger move along a fibre of B, with endpoints
missing A, as depicted in Figure 1.11.1. We call this fibre the finger arc, and denote it by D. We assume
that D misses all double points of B and all intersections between IntB and F .

A finger move depends on a choice of 2-dimensional sub-bundle of the normal bundle to the finger
arc (the proof of Lemma 7.37.3 will give further details). We use a sub-bundle that lies in the tangent
bundle TF at one end of the arc, contains νBD along D, and intersects TF in the line bundle νBD at the
other end of the arc. Here νBD is the normal bundle of D in B.

Call the immersion resulting for the above finger move F ′. We will check in the next paragraph that
the remainder of B, i.e. the complement in B of a tubular neighbourhood of D, gives a Whitney disc for
the new pair of double points. Make the boundary embedded and disjoint from A, by boundary push
off operations, and then boundary twist if necessary, to obtain a framed Whitney disc WB for the new
double points. Then W ′ := W ∪ {WB} is a convenient collection of Whitney discs pairing the double
points of F ′. Note that both F ′ and WB depend on the choice of finger arc D and the 2-dimensional
sub-bundle of its normal bundle mentioned above.

Now, as promised, we check that WB is a Whitney disc. The finger move creates a trivial Whitney
disc and we refer to the corresponding Whitney arcs as the trivial arcs. The double points are also
paired by the arcs A1, A2 ⊆ ∂B where A1 ∪A2 = ∂WB . The existence of the disc WB implies that the
group elements of the double points agree with respect to the arcs A1 and A2. It remains only to to
see that the double points have opposite signs with respect to the arcs A1 and A2 (see Definition 2.272.27).
The case that both M and Σ are orientable is straightforward. The general case follows from the w1

condition in the definition of a band, (5.15.1), as we now check.
First we consider the case that B is an annulus. Let ∂1B and ∂2B denote the two components of ∂B.

Then A1 and A2 differ from the trivial arcs joining the new double points by ∂1B and ∂2B respectively.
By Definition 2.272.27 the double points have opposite sign precisely when ⟨w1(Σ), ∂B⟩+⟨w1(M), ∂1B⟩ = 0,
which matches (5.15.1) since ∂1B is homotopic in M to the core of B.

Now suppose that B is a Möbius band. Then the union of A1 and A2 and the trivial pair of arcs
is the circle ∂B ⊆ Σ. Moreover, the union of the image of A1 and either one of the trivial arcs forms
a circle in M homotopic to the core C of B. As before, the double points have opposite sign precisely
when ⟨w1(Σ), ∂B⟩+ ⟨w1(M), C⟩ = 0, which again matches (5.15.1).

The following lemma explains how Construction 7.27.2 changes the value of t. In the proof we will also
carefully explain how to make suitable choices of 2-dimensional sub-bundles, as required for the finger
move in Construction 7.27.2.

Lemma 7.3. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1.

(i) Suppose that F ′ and W ′ are obtained from F and W by a single application of Construction 7.27.2
with respect to a band B ∈ B(F ), where w1(Σ) restricted to every component of ∂B is trivial. Let
A denote the Whitney arcs corresponding to W. Then

t(F ′,W ′) = t(F,W) + ΘA(B) ∈ Z/2.
(ii) Suppose that F ′ and W ′ are obtained from F and W by a single application of Construction 7.27.2

with respect to a band B ∈ B(F ) and an arc D ⊆ B, where B is an annulus with w1(Σ) nontrivial
on both boundary components and D ⊆ B connects the two boundary components. Let A denote
the Whitney arcs corresponding to W. Then

t(F ′,W ′) = t(F,W) + ΘA(B,D) ∈ Z/2.

For the proof it will be advantageous to refrain from applying boundary twists and removing in-
tersections involving ∂WB , and to instead use the following alternative definition of t(F,W), using a
slightly weaker restriction on collections of Whitney discs, as in [Sto94Sto94], cf. [FQ90FQ90, Section 10.8A].

Definition 7.4. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1. A weak collection of Whitney
discs for F is a collection W of Whitney discs pairing all the double points of F , with generically
immersed interiors transverse to F , and with Whitney arcs whose interiors are generically immersed in
F (Σ) minus the double points of F .
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In particular, compared to the definition of a convenient collection of Whitney discs (Definition 2.312.31),
we allow the boundaries of Whitney discs to be generically immersed on Σ and to intersect one another
transversely. We also allow the Whitney discs to be twisted, i.e. for the framing of the normal bundle
restricted to the boundary to disagree with the Whitney framing. Each of the discs in a weak collection
of Whitney discs admits a normal bundle. The proof is the same as for a generic immersion of pairs,
but with a preliminary step than one has to first fix the normal bundle in neighbourhoods of the two
double points being paired.

Definition 7.5. Given a weak collection of Whitney discsW := {Wℓ} for the double points of a generic
immersion F as in Convention 1.11.1, fix an ordering on the indexing set for W and define

talt(F,W) :=
∑
ℓ

(
µΣ(∂Wℓ) +

∑
k>ℓ

|∂Wℓ ⋔ ∂Wk|+
∑
i

|IntWℓ ⋔ fi|+ e(Wℓ)
)
∈ Z/2,

where e(Wℓ) is the relative Euler number of the normal bundle with respect to the Whitney framing
on ∂Wℓ.

Note that if W is a convenient collection of Whitney discs for F , then talt(F,W) = t(F,W) (cf. Def-
inition 1.51.5). In particular, since a convenient collection of Whitney discs comprises framed Whitney
discs and has embedded and disjoint Whitney arcs, a majority of terms in the definition of talt vanish.
The following lemma shows that talt can be used as a proxy for t in general.

Lemma 7.6. Given a weak collection of Whitney discsW := {Wℓ}nℓ=1 for the double points of a generic
immersion F as in Convention 1.11.1, there exists a convenient collection of Whitney discs W ′ such that
t(F,W ′) = talt(F,W).

Proof. For each Whitney disc Wℓ with e(Wℓ) ̸= 0, add boundary twists to obtain W ℓ with e(W ℓ) = 0.
Each boundary twist changes the Euler number by ±1 and introduces an intersection of the Whitney
disc with F . We have ∑

i

|IntW ℓ ⋔ fi| ≡
∑
i

|IntWℓ ⋔ fi|+ e(Wℓ) mod 2,

and also µΣ(∂W ℓ) = µΣ(∂Wℓ), and |∂W ℓ ⋔ ∂W k| = |∂Wℓ ⋔ ∂Wk|, for each k ̸= ℓ.
Next, we will remove intersections between Whitney arcs as well as self-intersections of Whitney arcs,

at the expense of adding intersections between F and the Whitney discs. We will use the procedure
described in [PR21aPR21a, Section 15.2.3]. For an intersection between ∂W ℓ and ∂W k, where possibly k = ℓ,
the procedure pushes the intersection off one of the endpoints of one of the Whitney arcs of ∂W ℓ, i.e. a
double point of F , moving a neighbourhood of ∂W k and creating an intersection between W k and F .
This new intersection point is created in a small neighbourhood of the double point of F chosen for
the pushing off procedure. If several Whitney arcs intersect the given Whitney arc of ∂W ℓ, push off in
order of proximity to the endpoint. This avoids extraneous intersections between Whitney arcs being
created. Perform this pushing off procedure on both arcs of ∂W ℓ. For each of the two arcs in ∂W ℓ,
push towards one of the two double points of F paired by W ℓ; choose these double points so that we
use one double point for each arc. This ensures that the new intersections between Whitney discs and
F arise in disjoint neighbourhoods in the ambient manifold.

Apply the move described in the previous paragraph to the Whitney arcs of {W ℓ} in order, beginning
with ℓ = n. In other words, in the ith step, we push off the intersections of ∂W k with ∂Wn−i+1, for
k ≤ n − i + 1. After the nth step, we produce a convenient collection W ′ := {W ′

ℓ}, where each W ′
ℓ is

the result of applying the above procedure to W ℓ. This yields, for each ℓ,∑
i

|IntW ′
ℓ ⋔ fi| ≡

∑
i

|IntW ℓ ⋔ fi|+ µΣ(∂W ℓ) +
∑
k>ℓ

|∂W ℓ ⋔ ∂W k| mod 2

≡
∑
i

|IntWℓ ⋔ fi|+ e(Wℓ) + µΣ(∂Wℓ) +
∑
k>ℓ

|∂Wℓ ⋔ ∂Wk| mod 2.

In the above expression, the term
∑

k>ℓ|∂W ℓ ⋔ ∂W k| arises since the arcs in ∂W ℓ are moved, to create

a new intersection point of W ℓ with F , precisely once for each intersection of ∂W ℓ with
⋃

k>ℓ ∂W k.
Sum over ℓ to obtain that t(F,W ′) = talt(F,W) ∈ Z/2 as claimed. □

Proof of Lemma 7.37.3. By Lemma 7.67.6, it will suffice to show that in case (ii),

talt(F
′,W ′) = talt(F,W) + ΘA(B) ∈ Z/2,
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and in case (iiii),

talt(F
′,W ′) = talt(F,W) + ΘA(B,D) ∈ Z/2.

The proof splits into three cases.

Case 1. The band B is an annulus as in (ii).

Recall that

ΘA(B) := µΣ(∂B) + |∂B ⋔ A|+ |IntB ⋔ F |+ e(B) mod 2.

By the construction of F ′ and W ′, we have

talt(F
′,W ′) ≡ t(F,W) + µΣ(∂WB) + |∂WB ⋔ A|+ |IntWB ⋔ F |+ e(WB) mod 2.

Every self-intersection of ∂B and each intersection ∂B ⋔ A will contribute one intersection of ∂WB and
between ∂WB and A respectively, while each intersection IntB ⋔ F will contribute one intersection
between IntWB and F . Thus it remains to show that the framing e(B) appearing in the definition
of ΘA(B) agrees with the framing e(WB). For this it will be helpful to pick the finger arc and the
2-dimensional sub-bundle for its normal bundle needed for the finger move more carefully, which we do
next.

F

B

F

WB

Figure 7.2. Left: we see a model annulus B (blue) connecting two sheets of F (black),
and a finger arc D = {pt} × D1 ⊆ S1 × D1 ∼= B (orange). We also see the surface
framing on ∂B and the section s along the finger arc of the normal bundle of B in M .
Recall the section is defined over all of B, but we only show it on a subset. Middle: in
the top half of B, we rotate the section so that it lies in (νMΣ |∂iB ∩ νMB |∂iB), i.e. in the
time direction, on the top boundary component (dotted green). The modified section
is called s′. Right: after performing the finger move, s′ gives the Whitney framing for
the new Whitney disc WB .

Let ∂iB denote the connected components of ∂B ⊆ Σ. Consider the following decomposition of the
tangent bundle of M restricted to ∂iB:

TM |∂iB
∼= T (∂iB)⊕ νΣ∂iB ⊕ νB∂iB ⊕ (νMΣ |∂iB ∩ νMB |∂iB). (7.2)

As shown in Figure 7.27.2, choose a section s of the normal bundle of B that is nonvanishing on the finger
arc. In both boundary components ∂iB, we assume that this section lies in νΣ∂iB

. Now rotate the section
near the top boundary component, as shown in the middle picture of Figure 7.27.2, to obtain a section s′,
so that on the top component s′ lies in (νMΣ |∂iB ∩ νMB |∂iB). For the finger move, by definition, we use
the 2-dimensional sub-bundle of νMD determined by s′ and T (∂iB), as shown in the right-most figure of
Figure 7.27.2.

Now consider the Whitney disc WB obtained from B after performing the finger move along D using
the above 2-dimensional sub-bundle of its normal bundle. By definition, e(WB) equals the number of
zeros of s′|WB

, since on the boundary Whitney arcs it is normal to one sheet and tangent to the other.
On the other hand, the number of zeros of s′|WB

equals the number of zeros of s, since s′ was obtained
from s by a rotation, and neither section vanishes near the finger arc. Finally by definition e(B) counts
the zeros of s. Therefore we see that e(B) = e(WB).

Case 2. The band B is an annulus such that w1(Σ) restricted to both components of ∂B is nontrivial,
as in (iiii).
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Assume that a finger arc D has been chosen. To define ΘA(B,D), we pick a section s as in Defini-

tion 5.145.14 on B̂, which is by definition the result of cutting B open along D. Recall that

ΘA(B,D) := µΣ(∂B) + |∂B ⋔ A|+ |IntB ⋔ F |+ e(B̂) mod 2.

As in Case 11, we need only check that the term e(B̂) in ΘA(B,D) agrees with the term e(WB) in talt.
Again as in Case 11, we rotate the section near the top boundary component to obtain a section s′, so
that on the top component s′ lies in (νMΣ |∂iB ∩ νMB |∂iB). For the finger move, we use the 2-dimensional
sub-bundle determined by s′ and T (∂iB). Note that, just like s, the section s′ is not defined on all of

B, but only on B̂; see Figure 7.37.3. Nevertheless, on points that map to the same point in D, the section
s′ agrees up to a sign and thus still determines a 1-dimensional sub-bundle. The section s′ restricts to
a section of the normal bundle of the Whitney disc WB obtained from B. As in Case 11, the quantities
e(B) and e(WB) coincide.

F ′

F ′

WB

F

F

B̂

Figure 7.3. Left: the section s′ on D (orange), and on a parallel copy of D; cf.
Figure 5.35.3 (b). Close to the top boundary the section extends into the time direction
(teal and dotted green). Right: the section s′ on the boundary of the new Whitney
disc WB .

Case 3. The band B is a Möbius band with w1(Σ) restricted to ∂B trivial, as in (ii).

As in Case 11, we only need to show that the term e(B) in ΘA(B) agrees with the term e(WB) in
talt. Let D denote a properly embedded arc on B along which we wish to perform the finger move.
Identify B with the quotient of the square S := [−1, 1]× [−1, 1] as usual, i.e. (−1, x) ∼ (1,−x) for all
x ∈ [−1, 1], with D corresponding to the arc {−1} × [−1, 1] ≡ {1} × [−1, 1] (see Figure 7.47.4). Pull back
the normal bundle νMB of B in M to S via the quotient map π : S → B and then pick a trivialisation
π∗(νMB ) ∼= S × R2 so that on the horizontal boundary H := [−1, 1] × {−1, 1} we have that π∗νΣ∂B
coincides with H × R× {0} ⊆ S × R× R.

(a) (b) (c)

D DN

S−

S+

Figure 7.4. (a) The necklace region N ⊆ S is shown in grey. The dotted black lines
indicate the boundary of the region where the finger move occurs. The solid black lines
indicate where the band is attached to the surface F . The arc D is shown in orange.
(b) The section s is shown in blue. (c) The section s′ is indicated. Note that on S−, the
sections s and s′ agree. On S+, the section s′ (green) is obtained by rotating s by 90
degrees. In the necklace region, the section rotates continuously (teal), interpolating
between the values on S+ and S−. Note that the section on the arc D has not changed,
but it has been modified on part of the dotted lines.

Then we pick a section s of νMB such that s|∂B lies in νΣ∂B . Note that s|∂B is nowhere vanishing but
the section s might have zeros. Without loss of generality we assume that any zeros of s do not lie in
the strip ([−1,−1 + ε] ∪ [1− ε, 1])× [−1, 1] for some ε ∈ (0, 1/4).
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Next we modify the section s. Choose a “necklace” region, i.e. a sub-square N with two opposite
edges coinciding with [−1,−1 + ε] × {1} and [1 − ε, 1] × {1}, and otherwise lying in the interior of
S := [−1, 1]2. We consider the pullback of s to S, where we have a trivialisation. Modify this pullback
so that it remains unchanged in the lower component S− of S \N , and is rotated by 90 degrees on the
upper component S+. On the region N , the section rotates continuously, interpolating between the
values on S+ and S−. Push this forward to get a modified section s′ on B. Since the modification is
produced by a continuous rotation, the number of zeros of this modification agrees with the number of
zeros of the original s.

Recall that we wish to perform a finger move guided by the arc D = {−1} × [−1, 1]. Without loss
of generality, we assume that the ‘width’ of the finger move is 2ε. More precisely, to perform a finger
move we need a 2-dimensional sub-bundle of νMD . We require that this contains νBD to ensure that the
finger move cuts B open into a Whitney disc as desired. Fix an identification of the total space of the
normal bundle νMD with D × R3. We choose an embedding ι : νMD ↪→ M restricting to the inclusion of
D on D × {0}, with the following properties.

(i) We assume that the first R1 factor of D×R3 corresponds to νBD , and that ι identifies D×{±1}×
{0} × {0} with the arcs {−1 + ε, 1 − ε} × [−1, 1]. This is what was meant by the width of the
finger move.

(ii) We also require that ι identifies D × {t} × {1} × {0} with s′(ι(D × {t} × {0} × {0})) for t ≥ 0,
and with s′(ι(D × {t} × {0} × {0})) rotated by 90 degrees for t ≤ −1. (Here we also implicitly
identify νMB with its image in M .)

(a) (b)

(c) (d)

D S−
F

F ′

S+

NB

Figure 7.5. (a) The surface F is shown in black, and the Möbius band B in blue.
Note this picture is entirely in R3. The necklace region N is in grey, and splits B into
two components S+ and S−. The finger arc D is in orange, and the width of the finger
move is shown with dotted lines. (b) We show the section s in blue. Note that while
there is a rotation along D there are no zeros of s in the strip between the dotted
lines. (c) The modified section s′. Note the section coincides with s on S− and has
been rotated (green) on S+. (d) The section s′ on the Whitney disc WB formed after
the band fibre finger move. By the construction of the 2-dimensional sub-bundle of
the normal bundle of D used to guide the finger move, the section s′ is tangent to F ′

along the right edge of the finger (corresponding to the right dotted line in (c), where
the finger contains part of a Whitney arc of WB), and s′ is normal to F ′ along the left
edge of the finger.
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Now do the finger move using D × S1 × {0} according to this parametrisation, where S1 is the unit
circle in the R2 factor, along with a finger tip. The choices above imply that s′|∂WB

is a Whitney
framing, where WB denotes the new Whitney disc created according to Construction 7.27.2. Specifically,
let F ′ denote the result of the finger move. By our choice of the 2-dimensional sub-bundle for the
finger move above, the section s′ is normal to F ′ along half of ∂WB , and tangent along the other half;
see Figure 7.57.5.

As previously mentioned, we need to check that the relative Euler number e(B) in ΘA(B) agrees
with the twisting number e(WB) in talt. The relative Euler number e(B) is given by the number of zeros
of the section s on the interior of B. As mentioned before, this coincides with the number of zeros of the
section s′. Since s′|∂WB

is a Whitney framing, this further coincides with the twisting number e(WB) as
desired, since we assumed there are no zeros of s within the strip ([−1,−1 + ε] ∪ [1− ε, 1])× [−1, 1] ⊆ B
used for the finger move. □

Next we prove Lemma 5.115.11. Here is the statement for the convenience of the reader.

Lemma 5.115.11. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1, with µ(F ) = 0. If the Z/2-
valued intersection form λΣ on H1(Σ;Z/2) is nontrivial on ∂B(F ), then we can change F by a regular
homotopy to F ′ such that there are convenient collections of Whitney discs W and W ′ for the double
points of F and F ′ respectively, such that t(F,W) ̸= t(F ′,W ′).

Moreover, if F has dual spheres and the Z/2-valued intersection form λΣ on H1(Σ ;Z/2) is non-
trivial on ∂B(F ) then km(F ) = 0.

Proof. We first prove the statement (without using dual spheres) about t(F,W) depending on the
choice of W under our assumption. By hypothesis F is a generic immersion whose double points can
be paired by a convenient collection W = {Wℓ} of Whitney discs (Corollary 2.302.30). By hypothesis, λΣ

is nontrivial on ∂B(F ), meaning that there are bands B1 and B2 with boundary on F (Σ) minus double
points such that λΣ(∂B1, ∂B2) ̸= 0 ∈ Z/2. Here it is possible that B2 is a parallel push-off of B1.
Using Bi and Construction 7.27.2, perform a finger move and obtain a new framed Whitney disc, calling
the resulting convenient collection of Whitney discs Wi, for i = 1, 2, and the resulting map Fi

If t(Fi,Wi) ̸= t(F,W) for some i = 1, 2, we can set F ′ = Fi andW ′ =Wi. Otherwise, use Lemma 7.37.3
twice, for B1 and B2 simultaneously, and let W ′ denote the resulting convenient collection of Whitney
discs for the resulting map F ′. Then the change in t(F,W) is as before except that there is an additional
contribution from the odd number of intersections between the boundary arcs for the new Whitney
discs coming from B1 and B2. Specifically, removing these by pushing one Whitney arc off the end of
the other (as part of Construction 7.27.2) introduces an odd number of intersections between the Whitney
discs and F . Therefore, t(F ′,W ′) ̸= t(F,W), as needed.

For the second statement, apply the above argument to the sub-collection W of W pairing the
intersections within F . It follows that we may find W such that t(F ,W ) = 0, possibly after a
regular homotopy of F . Then km(F ) = 0 follows from Lemma 5.45.4. □

For the proof of Lemma 5.165.16, we will need the next four Lemmas 7.77.7 to 7.107.10.

Lemma 7.7. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1. Every element of H2(M,Σ;Z/2)
can be represented by an immersion of some compact surface into M , with interior transverse to F ,
and with boundary generically immersed in F (Σ) away from the double points.

Proof. Let Nk(M,Σ) denote the k-dimensional unoriented bordism group over (M,Σ), and let Nk

denote the k-dimensional unoriented bordism group over a point. Using topological transversality, it
suffices to show that every element of H2(M,Σ;Z/2) can be represented by a map (S, ∂S)→ (M,Σ) for
some surface S. To show this, it suffices to see that the edge homomorphismN2(M,Σ)→ H2(M,Σ;Z/2)
from the Atiyah–Hirzebruch spectral sequence is onto.

Recall that the N0 is isomorphic to Z/2 while the N1 vanishes. It follows that in the Atiyah–
Hirzebruch spectral sequence with E2-term Hp(M,Σ;Nq) and converging to Np+q(M,Σ), there is no
nontrivial differential going out of H2(M,Σ;N0) ∼= H2(M,Σ;Z/2); such a differential would have
codomain H0(M,Σ;N1) = 0. Thus the edge homomorphism N2(M,Σ) → H2(M,Σ;Z/2) is onto, as
desired. □

Lemma 7.8. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1. Suppose that µ(F ) = 0 and let A
be a choice of Whitney arcs pairing the double points of F . Then the function ΘA is quadratic with
respect to the Z/2-valued intersection form λΣ. That is, let S and S′ be compact surfaces, with generic
immersions of pairs (S, ∂S) ↬ (M,Σ) and (S′, ∂S′) ↬ (M,Σ) such that ∂S and ∂S′ intersect A and
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each other transversely, and are such that w1(Σ) is trivial on every component of ∂S and ∂S′. Then
we have

ΘA(S ∪ S′) = ΘA(S) + ΘA(S
′) + λΣ(∂S, ∂S

′).

Proof. The term e(S) in Definition 5.125.12 is defined component-wise and the terms |∂S ⋔ A| and |IntS ⋔
F | are linear in ∂S and S, respectively. Hence the only term that is not linear in S is µF (∂S). This
term is also quadratic in the sense that

µΣ(∂S ∪ ∂S′) = µΣ(∂S) + µΣ(∂S
′) + λΣ(∂S, ∂S

′),

which proves the lemma. □

Lemma 7.9. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1. Suppose that µ(F ) = 0 and let
A be a choice of Whitney arcs pairing the double points of F . Let S be a compact surface, with a
generic immersion of pairs (S, ∂S) ↬ (M,Σ), such that ∂S is transverse to A and w1(Σ) is trivial
on every component of ∂S. Then there is another such surface S′ with a generic immersion of pairs
(S′, ∂S′) ↬ (M,Σ) with ∂S′ transverse to A such that:

(1) [S] = [S′] ∈ H2(M,Σ;Z/2);
(2) ΘA(S) = ΘA(S

′); and
(3) ∂S′ is embedded in Σ.

Proof. To start, pick a section γS of the normal bundle νMS which on ∂S is nowhere vanishing and lies
in νF∂S as in the definition of ΘA(S).

∂S ∂S ∂D

∂S′

Figure 7.6. Adding a disc D to S to remove a self-intersection of ∂S. Left: The
neighbourhood of a self-intersection of ∂S before adding the disc D. The section γS is
shown along ∂S. Middle: the boundary of the disc D. The section γD is shown along
∂D. Right: after the modification cf. Figure 7.77.7.

F F F

S D S′

Figure 7.7. Glue D to S along the aligned parts of the boundaries and push this part
of the boundary off F .

The idea of the proof is to remove all intersections of ∂S by locally adding a twisted disc D as
indicated in Figure 7.67.6. More precisely, we add these discs D such that the interiors are disjoint from
the interior of F and the boundary is disjoint from A. Then pick a section γD of νMD such that, along
the aligned (i.e. parallel) parts of the boundaries, γD and γS are opposite. Glue D to S along the
aligned parts of the boundaries and push this part of the boundary off F as indicated in Figure 7.77.7.
Each of these local twisted discs has mod 2 Euler number 1, as can be seen from the nontrivial linking
in Figure 7.87.8. Thus the resulting surface S′ has embedded boundary and the mod 2 Euler number of
S′ differs from that of S by the number of intersections of ∂S modulo two, i.e. µΣ(∂S). Since we have
neither changed the number of intersections of the interior with F nor the number of intersections of
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the boundary with A, we have ΘA(S) = ΘA(S
′) ∈ Z/2. As the local discs are trivial in H2(M,Σ;Z/2),

we furthermore have [S] = [S′] ∈ H2(M,Σ;Z/2) as needed. □

F

Figure 7.8. A twisted band with Euler number +1 in a movie description. Bottom:
an immersed figure-eight curve (blue) is shown lying on the immersed surface F (Σ)
(black) away from the double points. A framing on the normal bundle on the boundary
of the band is shown in light blue. Moving upward/forward in time, we see a simple
closed curve shrinking to a point. The push-off corresponding to the framing induced
by Σ is shown in light blue. For the twisted band with Euler number −1, we use the
other resolution.

Lemma 7.10. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1. Let Z be a disjoint union of
embedded circles in Σ. Let Σ | Z denote Σ cut along Z, i.e. the completion of Σ \ Z to a compact
manifold with boundary. Let F = {Σi} be the connected components of Σ | Z and suppose that [Z] =
0 ∈ H1(Σ;Z/2). Then we can pick a subset F ′ ⊆ F such that each component of Z appears exactly
once as a connected component of the boundary of precisely one Σi ∈ F ′.

Proof. Without loss of generality, assume that Σ is connected. Considering the entire collection F =
{Σi}, every component of Z would appear as the boundary of precisely two of the Σi, since otherwise Z
would be nontrivial in H1(Σ;Z/2). To see this note that Z can contain homologically essential curves
in H1(Σ;Z/2), provided they cancel. However none of these can be orientation-reversing curves, since
Z is embedded.

The idea of the proof is to take “half” of the components of F . Let x ∈ Σ | Z be an arbitrary
basepoint away from Z. For each Σi, define p(Σi) ∈ Z/2 as follows. Pick a point y ∈ IntΣi and a
path w in Σ from x to y which is transverse to Z. Define p(Σi) as the mod 2 intersection number of w
and Z.

We show that p(Σi) is independent of the choices of w and y. If w′ is another path from x to y, then
the concatenation w−1 · w′ is a loop in Σ and we have

|(w−1 · w′) ⋔ Z| = λΣ([w
−1 · w′], [Z]) = λΣ([w

−1 · w′], 0) = 0.

So p(Σi) does not depend on the choice of w. Also, since each Σi is connected, p(Σi) does not depend
on y. To see this let y′ ∈ IntΣi, and choose a path z from y to y′ that lies in IntΣi. Let w

′ be a path
from x to y′, which is further transverse to Z. Then

|w ⋔ Z| = |(w · z) ⋔ Z| = |w′ ⋔ Z|.

The first equation uses that z ⊆ Σi and the second uses independence of the choice of w. Hence
p(Σi) ∈ Z/2 is well defined as desired.

Now let F ′ consist of all the components Σi for which p(Σi) = 0. This subset is the one we seek,
since for a fixed component Zj of Z, the two components of F containing a cut-open copy of Zj have
different values of p. This completes the proof of the lemma. □

We are now ready for the proof of Lemma 5.165.16.

Lemma 5.165.16. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1, with µ(F ) = 0. Let A be a choice
of Whitney arcs pairing the double points of F .

(i) Let S be a compact surface, with a generic immersion of pairs (S, ∂S) ↬ (M,Σ), such that ∂S is
transverse to A and w1(Σ) is trivial on every component of ∂S. Then ΘA(S) ∈ Z/2 depends only
on the homology class of S in H2(M,Σ;Z/2).
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(ii) Let B be an annulus, with a generic immersion of pairs (B, ∂B) ↬ (M,Σ), such that ∂B is
transverse to A and w1(Σ) is nontrivial on both components of ∂B. Pick an embedded arc D in
B connecting the components of ∂B and disjoint from all double points. Then ΘA(B,D) ∈ Z/2
depends only on the homology class of B in H2(M,Σ;Z/2). In particular, ΘA(B,D) does not
depend on D, so we write ΘA(B).

(iii) Let S be a surface as in (ii) and let B be an annulus as in (iiii) such that [S] = [B] ∈ H2(M,Σ;Z/2).
Then ΘA(S) = ΘA(B) ∈ Z/2.

(iv) If λΣ|∂B(F ) = 0, the restriction of ΘA to B(F ) is independent of the choice of A, giving a well
defined map Θ: B(F )→ Z/2.

Proof. To prove (ii), assume that S and S′ are immersed compact surfaces, with w1(Σ) trivial on each of
the connected components of the boundaries, representing the same element in H2(M,Σ;Z/2). Modulo
isotopy we can assume that S and S′ intersect transversely in their interiors in M , and their boundaries
intersect transversely on F . In particular, their boundaries ∂S and ∂S′ intersect in an even number of
points. Hence ΘA(S ∪ S′) = ΘA(S) + ΘA(S

′) by Lemma 7.87.8. Thus it suffices to show that ΘA(S) = 0
for a compact surface S such that 0 = [S] ∈ H2(M,Σ;Z/2) and w1(Σ) is trivial on ∂S. In particular,
we know by Lemma 7.77.7 that every element of H2(M,Σ;Z/2), in particular the trivial class, can be
represented by an immersed surface S.

By Lemma 7.97.9, we can assume that ∂S is embedded. As 0 = [S] ∈ H2(M,Σ;Z/2), we also have that
0 = [∂S] ∈ H1(Σ;Z/2) since S maps to ∂S under the map H2(M,Σ;Z/2) → H1(Σ;Z/2). Pick a set
F ′ of components of Σ | ∂S as in Lemma 7.107.10. Gluing the Fi ∈ F ′ to S along the common boundary,
we obtain a closed surface N . First note that N represents the same class as S in H2(M,Σ;Z/2) since
it only differs by a subset of F (Σ). Hence 0 = [N ] ∈ H2(M,Σ;Z/2). As N is closed it also defines an
element in H2(M ;Z/2). Note that we have the pair sequence

· · · −→ H2(Σ;Z/2)
F−−→ H2(M ;Z/2) −→ H2(M,Σ;Z/2) −→ · · ·

Hence N represents the same class in H2(M ;Z/2) as a subsurface Σ′ of Σ. Let λM denote the Z/2-
valued intersection form on H2(M ;Z/2). By hypothesis, we have λM (fj , fj′) = 0 for any two connected
components fj , fj′ of F . Thus

λM ([N ], [F ]) + λM ([N ], [N ]) = 0. (7.3)

We finish the proof of (ii) by showing that ΘA(S) = λM ([N ], [F ]) + λM ([N ], [N ]).
Recall that we were able to assume that ∂S is embedded in F (Σ) away from the double points and

that λM ([N ], [N ]) = e(νN) mod 2. We claim that this in turn agrees with e(S) +
∑

Fi∈F ′ e(Fi). Here

we define e(Fi) as follows. We used F to define a nowhere vanishing section of νMS |∂S . Since νMS |∂S
is two dimensional, we can pick a linearly independent nonvanishing section. This can be equivalently
used for the definition of e(S). But this new section now can also be used to define e(Fi). Combining
these vector fields that are transverse to the zero section defines a vector field on the normal bundle of
N , and hence computes the Euler number of the normal bundle of N . Thus we have shown

λM ([N ], [N ]) = e(S) +
∑

Fi∈F ′

e(Fi).

Now consider λM ([N ], [F ]). We can use the vector field used for defining e(Fi) to make N and F
transverse. Then λM ([N ], [F ]) is given by the sum of |S ⋔ F |,

∑
Fi∈F ′ e(Fi), and the self-intersection

points of F contained in the Fi ∈ F ′. As the self-intersection points of F are paired by the Whitney
arcs A, we have that modulo two the number of self-intersection points of F contained inside Fi agrees
with |A ⋔ ∂Fi|. Since the boundary of the Fi is precisely ∂S, we have

λM ([N ], [F ]) = |IntS ⋔ F |+
∑

Fi∈F ′

e(Fi) + |A ⋔ ∂S|.

Therefore

λM ([N ], [N ]) + λM ([N ], [F ]) = e(S) +
∑

Fi∈F ′

e(Fi) + |IntS ⋔ F |+
∑

Fi∈F ′

e(Fi) + |A ⋔ ∂S|

= e(S) + |IntS ⋔ F |+ |A ⋔ ∂S| = ΘA(S) ∈ Z/2,

where the last equality holds because µS(∂S) = 0. Combine this with (7.37.3) to obtain

ΘA(S) = λM ([N ], [N ]) + λM ([N ], [F ]) = 0.

This completes the proof of (ii).
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Before proving (iiii) and (iiiiii), we introduce a general construction. Let B be an annulus as in (iiii)
with an embedded arc D in B connecting its two boundary components. As in Remark 5.155.15, add a
tube to F (Σ) along the arc D. Let d, d′ denote the two discs removed from F when the tube is added.
Adding the tube changes F to some F ′, an immersion of a surface Σ′, and changes B to a disc ∆. As
before, observe that ∂∆ is an orientation-preserving curve in Σ′ and A is now a collection of Whitney
arcs pairing the double points of F ′. By construction, we see that ΘA(B,D) = ΘA(∆).

Moreover, suppose there is either some immersed compact surface S in M as in (ii) or some immersed
annulus B′ as in (iiii), with an embedded arc D′ on B′ connecting its two boundary components, where
possibly B = B′. We may choose the tube in the above construction thin enough so that ΘA(S) and
ΘA(B

′, D′) remain unchanged. In particular, this means we assume, after a small local isotopy, that the
discs d and d′ do not intersect the boundaries of S and B′, so both represent classes in H2(M,Σ′;Z/2).
We have the following claim.

Claim 7.11. If [B] = [S] ∈ H2(M,Σ;Z/2), then either [∆] = [S] ∈ H2(M,Σ′;Z/2) or [∆] = [S]+ [d] ∈
H2(M,Σ′;Z/2). Similarly, if [B] = [B′] ∈ H2(M,Σ;Z/2) then either [∆] = [B′] ∈ H2(M,Σ′;Z/2) or
[∆] = [B′] + [d] ∈ H2(M,Σ′;Z/2).

Proof. The exact sequence of the triple with Z/2 coefficients yields

(Z/2)2 ∼= H2(Σ,Σ \ (d̊ ∪ d̊′)) −→ H2(M,Σ \ (d̊ ∪ d̊′))
j−−→ H2(M,Σ)

−→ H1(Σ,Σ \ (d̊ ∪ d̊′)) = 0,

so j is surjective with kernel generated by the images of [d] and [d′] from the left hand group.

F ′

F ′

∆
F

F

B̃

Figure 7.9. A strip, i.e. half of the tube, added to ∆.

Construct a lift B̃ of ∆ in H2(M,Σ\ (d̊∪ d̊′)) by adding a strip along the added tube to ∆, as shown

in Figure 7.97.9. Since B̃, S, and B′ are mapped by j to B, S, and B′ in H2(M,Σ) respectively, and the

kernel is generated by [d] and [d′], we see that the classes of B̃, S, and B′ differ at most by the classes

[d] and [d′]. The map H2(M,Σ \ (d̊ ∪ d̊′))→ H2(M,Σ′) identifies [d] and [d′], so the claim follows. □

We continue now to prove (iiii). Let B and B′ be immersed annuli in M as in the statement of (iiii).
Choose arcs D in B and D′ in B′ connecting the boundary components of each, and assume that
[B] = [B′]. By the construction from the proof of Claim 7.117.11 applied twice, once to B and once to
B′, we find discs ∆ and ∆′, coming from B and B′ respectively, such that ΘA(B,D) = ΘA(∆) and
ΘA(B

′, D′) = ΘA(∆
′). From Claim 7.117.11, applied twice with the rôles of B and B′ reversed, we see

that the classes [∆] and [∆′] satisfy:(
[∆] = [B] or [∆] = [B] + [d]

)
and

(
[∆′] = [B′] or [∆′] = [B′] + [d]

)
.

Since also [B] = [B′], it follows that either [∆] = [∆′] or [∆] = [∆′] + [d] in H2(M,Σ′;Z/2) for Σ′ the
surface obtained from applying the construction (twice) to Σ.

In the first case, [∆] = [∆′], the proof of (iiii) is completed by appealing to (ii), which says that
ΘA(∆) = ΘA(∆

′), since both ∆ and ∆′ have w1(Σ
′) trivial on the boundary. In the second case,

[∆] = [∆′] + [d], we also appeal to (ii), but now for the pair of surfaces ∆ and ∆′ ∪ d. So we have that
ΘA(∆) = ΘA(∆

′∪d). It follows directly from the definition that ΘA(∆
′∪d) = ΘA(∆

′). This completes
the proof of (iiii). In particular, we have proved that ΘA(B,D) does not depend on the choice of arc D.

The proof of (iiiiii) is similar. Suppose we have an immersed annulus B in M as in the statement
of (iiii), as well as an immersed compact surface S in M as in the statement of (ii). Choose an embedded
arc D ⊆ B connecting the boundary components. Assume that [S] = [B] ∈ H2(M,Σ;Z/2). Apply
the previous construction to B, yielding a disc ∆ which by Claim 7.117.11 satisfies either [∆] = [S] or
[∆] = [S] + [d] in the group H2(M,Σ′;Z/2) for the surface Σ′ obtained from applying the construction
to Σ. Further, we know that ΘA(B,D) = ΘA(∆). Now in the first case the proof is completed by
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appealing to (iiii), which says that ΘA(∆) = ΘA(S). In the second case, apply (iiii) to the pair ∆ and
S ∪ d, to see that ΘA(∆) = ΘA(S ∪ d). It follows directly from the definition that ΘA(S ∪ d) = ΘA(S).

It remains to prove (iviv). Let B denote an element of B(F ). First note that only the term |∂B ⋔ A|
of ΘA(B) depends on the Whitney arcs A. Let A′ denote another collection of Whitney arcs. The
quantities ΘA(B) and ΘA′(B) differ by |∂B ⋔ A|+ |∂B ⋔ A′|, regardless of whether Σ is orientable or
nonorientable.

Case 1. The collections of Whitney arcs A and A′ correspond to the same choice of pairing up of the
double points of F .

For each pair of double points, we can pick Whitney discs W1 and W2 with boundary in A and A′

respectively. By adding small strips to the union of W1 and W2 in the neighbourhood of the double
points, we can see that the difference of A and A′ is the boundary of some collection of bands B′. For
more details about this construction, see the upcoming proof of Theorem 1.61.6. Then we have

|∂B ⋔ A|+ |∂B ⋔ A′| = |∂B ⋔ (A ∪A′)| = |∂B ⋔ ∂B′| = λΣ(∂B, ∂B′) mod 2,

which vanishes by assumption.

W1 W2

V1

V2p1 p2 q1
q2 p1 q2

Figure 7.10. Left: the Whitney discs W1, W2, and V1, pairing up double points
as (p1, p2), (q1, p2) and (q1, q2), respectively. Right: the Whitney disc V2 pairing up
(p1, q2) is obtained as a union of W1, W2, and V1, by adding small bands at the points
p2 and q1 to resolve the singularities, and pushing the interiors of the bands into the
complement of F . Compare with [Sto94Sto94, Figure 2].

Case 2. The collections of Whitney arcs A and A′ correspond to a different pairing up of the double
points of F .

From A we can construct Whitney arcs A′′ so that A′ and A′′ correspond to the same pairing up of
double points, as in Figure 7.107.10. Here are the details. We will define the family A′′ iteratively, starting
with A. Let p1, p2, q1, q2 be double points of F . Suppose that arcs in A pair up p1 and p2, as well as
q1 and q2, while arcs in A′ pair up p2 and q1. Pick Whitney discs W1 and W2 with boundary in A.
Let V1 be a Whitney disc for the points p2 and q1 with boundary away from A. Then, as indicated in
Figure 7.107.10, we may choose Whitney arcs, away from the other arcs in A, so that p2 and q1 are also
paired by a Whitney disc V2, obtained as a union of W1, W2, and V1. Modify the family A by removing
∂W1 and ∂W2, and adding in ∂V1 and ∂V2. Comparing this new family with A′, we see that we have
reduced the number of mismatches in the pairing up of double points of F . Iterate this process and
call the result A′′.

Looking more closely at the construction in the previous paragraph, observe that at each step, the
family of arcs changes by adding in two parallel copies of the boundary of a Whitney disc V1. Since
intersection points are counted modulo 2, ΘA and ΘA′′ are equal. By Case 11 we know that ΘA′ and
ΘA′′ are equal when restricted to B(F ). Thus, ΘA and ΘA′ are equal when restricted to B(F ), as
needed. □

8. Proof of Theorems 1.61.6 and 1.91.9

First we prove Theorem 1.91.9 from the introduction, which shows that for b-characteristic surfaces,
t(F,W) ∈ Z/2 is well defined, i.e. independent of the Whitney discs W. Note that the theorem has no
assumption about the existence of algebraically dual spheres.

Theorem 1.91.9. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1 with µ(F ) = 0. Let W be a
convenient collection of Whitney discs for the double points of F . Then F is b-characteristic if and
only if for every F ′ regularly homotopic to F and convenient collection W ′ for the double points of F ′,
we have t(F,W) = t(F ′,W ′).

For b-characteristic F , we denote the resulting regular homotopy invariant by t(F ) ∈ Z/2. Then if
km(F ) = 0, e.g. if F is an embedding, then t(F ) = 0.
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Proof. The final sentence, that km(F ) = 0 implies t(F ) = 0 for b-characteristic F , is an immediate
consequence of the definitions.

Now suppose that F is not b-characteristic. Then by Lemma 5.115.11 we can assume that λΣ|∂B(F )

is trivial, which implies that the function Θ is well defined on B(F ). Since we assume that F is
not b-characteristic, there exists B ∈ B(F ) so that Θ(B) = 1, so we can apply Construction 7.27.2
and Lemma 7.37.3 to find F ′, regularly homotopic to F , and a convenient collection of Whitney discs W ′

for the double points of F ′ with t(F,W) ̸= t(F ′,W ′).
If F is b-characteristic, by definition λΣ|∂B(F ) is trivial and Θ is trivial on B(F ). As indicated above,

the function Θ, as well as which classes of H2(M,Σ;Z/2) can be represented by bands, only depends
on the immersion F up to regular homotopy. We need to show that t(F,W) does not depend on the
choice of pairing of the double points, the choice of Whitney arcs, nor the choice of Whitney discs;
see Figure 8.18.1. Let W be a given initial choice of convenient collection of Whitney discs for the double
points of F . Let A be the corresponding collection of Whitney arcs for the double points of F .

The remainder of the proof is similar to Stong’s [Sto94Sto94, pp. 1311–3] and [FQ90FQ90, Section 10.8A]. We
will work with weak collections of framed Whitney discs and the alternative count talt ∈ Z/2, as in
Definitions 7.47.4 and 7.57.5. So the boundaries of our collections of Whitney discs might not be disjointly
embedded, but the Whitney discs will be framed (as can always be arranged by boundary twisting).
We will show that talt(F,W) does not depend on the choice of weak collection of Whitney discs W,
and then use that talt(F,W) = t(F,W) for W a convenient collection (Lemma 7.67.6).

Claim 8.1. Given a weak collection of Whitney discs W corresponding to some choice of pairing up of
double points of F , then for any other choice of pairing, there exists a weak collection of Whitney discs
V for that choice, so that talt(V) = talt(W).

Proof. Let p1, p2, q1, q2 be double points of F . Suppose that in the initial choice of data, p1 and p2 are
paired by a Whitney disc W1 ∈ W, and q1 and q2 by a Whitney disc W2 ∈ W. Suppose we instead pair
up p1 and q2 by some Whitney disc V1. Then, as indicated in Figure 7.107.10, p2 and q1 are also paired by
a Whitney disc V2, obtained as a union of W1, W2, and V1. Then (W \ {W1,W2})∪ {V1, V2} is a weak
collection of framed Whitney discs. The contribution of V1 and V2 to talt(F, (W\{W1,W2})∪{V1, V2})
counts the intersections of F with each disc W1 and W2 once, while it counts the intersections of F with
the disc V1 twice. Each intersection of ∂V1 with A \ (∂W1 ∪ ∂W2) can be paired with an intersection of
∂V2 with A \ (∂W1 ∪ ∂W2). Each intersection of ∂V1 with ∂W1 ∪ ∂W2 gives rise to two contributions
to talt: an intersection of ∂V2 with ∂V1 and a self-intersection of ∂V2. Since intersections are counted
mod 2 in the definition of talt, we see that

talt(F, (W \ {W1,W2}) ∪ {V1, V2}) = talt(F,W) ∈ Z/2

as needed. Iterate this process to complete the proof of Claim 8.18.1. □

p+2 p−2

p−1 p+2

p+2 p−2

p−1 p+2

Figure 8.1. Within Σ we see the preimages p±1 and p±2 , for the double points p1 and
p2 of F respectively. Blue denotes the Whitney arcs for W1 while red denotes the
Whitney arcs for the new disc V1. On the left, the choice of sheets stays the same,
while it changes on the right. Compare with [Sto94Sto94, Figure 3].

Continuing with the proof of Theorem 1.91.9, next we check that talt is independent of the choice of
Whitney discs. This includes potentially changing the Whitney arcs and the choice of sheets at each
double point. Suppose we are given another weak collection of framed Whitney discs V for the double
points of F . By applying Claim 8.18.1, we may assume that V corresponds to the same pairing of double
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points of F as W. Assume the collections are indexed so that Wℓ ∈ W and Vℓ ∈ V correspond to the
same pair of double points. For each i, define the weak collection of Whitney discs

Ui := {V1, V2, . . . , Vi,Wi+1,Wi+2 . . . ,WN}
where U0 = W and UN = V. We will show that talt(F,Ui−1) = talt(F,Ui) ∈ Z/2 for each i. Let Ai

denote the collection of Whitney arcs for Ui. First we prove a special case.

Claim 8.2. Suppose the Whitney disc Wi is framed, embedded, with interior disjoint from F and
the Whitney discs Ui−1 \ {Wi}, and with ∂Wi disjoint from Ai, other than the endpoints. Then
talt(F,Ui−1) = talt(F,Ui) ∈ Z/2.

Proof. A neighbourhood of Wi is depicted in Figure 8.28.2. Note that the two arcs of ∂Vi lie in Ai and
thus my hypothesis only intersect the arcs in ∂Wi at the endpoints. As described in the figure, we wish
to perform the Whitney move using Wi pushing towards the Whitney arc ai for Wi. Observe that the
union of Vi with a strip, corresponding to the unit outward pointing normal vector field of ai ⊆ ∂Wi,
is either an annulus or a Möbius band; this requires a small isotopy of Vi to ensure that the chosen
vector field of ai is compatible with the Whitney arcs of Vi, as shown in Figure 8.28.2. Denote the union
of Vi and the strip by B.

We show that B ∈ B(F ). For this we need to check that condition (5.15.1) holds. From the right hand
side of Figure 8.28.2, one sees that ∂B is homotopic in Σ to the union of ∂Vi and ∂Wi. The core C of
B is given by the union of ai and either of the Whitney arcs of Vi. The Whitney arcs must induce
opposite signs at the two double points, as explained in Definition 2.272.27. The orientation conditions in
the latter definition imply that the condition in (5.15.1) holds, as we explain next. Let p1 and p2 denote
the double points paired by Wi (and Vi). Let ai and bi denote the Whitney arcs of Wi, and let ci
and di denote those of Vi. Begin by fixing local orientations of M and both sheets of Σ at p1, so that
the first agrees with the one determined by the latter two. Transport the local orientations of Σ to p2
via the Whitney arcs of Wi and form the induced local orientation of M at p2. By Definition 2.272.27,
this does not agree with the local orientation of M at p2 determined by the one at p1 by transporting
along ai. Continuing with the local orientations at p2 determined in the previous step, transport the
local orientations of Σ back to p1, this time along the Whitney arcs of Vi. Again by Definition 2.272.27,
the resulting induced local orientation of M at p1 agrees with the local orientation of M transported
to p1 along ci. In this circuit, we have constructed a new set of local orientations of M and the two
sheets of Σ at p1. Compared to the initial choice, the local orientation induced by the sheets of Σ has
changed by ⟨w1(Σ), ai ∪ bi ∪ ci ∪ di⟩ = ⟨w1(Σ), ∂Vi ∪ ∂Wi⟩. On the other hand, the local orientation
of M transported along ai ∪ ci has changed by ⟨w1(M), ai ∪ ci⟩ = ⟨w1(M), C⟩, where C is the core of
B from above. Since the two orientations must agree, we have ⟨w1(Σ), ∂Vi ∪ ∂Wi⟩ = ⟨w1(M), C⟩, as
needed.

For the band B as above, performing a finger move as in Construction 7.27.2 creates Wi as the standard
Whitney disc, and Vi as the new Whitney disc arising from the band. Here we used the fact that
∂Wi and ∂Vi only intersect at the endpoints. Since F is b-characteristic, the disc Vi, has trivial
contribution to talt(F,Ui) by Lemma 7.37.3. So does Wi to talt(F,Ui−1), since by hypothesis ∂Wi is
framed, embedded, and disjoint from Ai−1 \ {ai, bi} ⊆ Ai, and the interior of Wi is disjoint from F .
Therefore talt(F,Ui−1) = talt(F,Ui) ∈ Z/2 as asserted. □

Now we prove the general case. Denote the double points paired by Wi by p1 and p2. By a small
isotopy, assume that, other than p1 and p2, the arcs of ∂Wi intersect the arcs in Ai in isolated double
points in the interiors. By performing a suitable finger move near p2, split Wi into new Whitney discs
W ′

i and U1, creating two new double points q1 and q2 in the process, paired by a standard trivial
Whitney disc U2, where U1 satisfies the conditions of Claim 8.28.2. We choose both the base and tip of
the finger arc to be closer to p2 than any intersections of ∂Wi with arcs in Ai, as well as any self-
intersections of ∂Wi. See Figure 8.38.3. By construction, the points p1 and q1 are paired by W ′

i , and the
points q2 and p2 are paired by U1. Here U1 is framed, embedded, has interior disjoint from F and the
Whitney discs Ui−1 \ {Wi}. In addition ∂U1 is disjoint from Ai, other than at p2, and is disjoint from
∂W ′

i . These conditions will shortly allow us to apply Claim 8.28.2 to U1.
Let F ′ denote the result of performing the finger move above to F . Note that

talt(F,Ui−1) = talt(F
′, (Ui−1 \ {Wi}) ∪ {W ′

i , U1}) (8.1)

by construction. Let V ′
i denote the Whitney disc obtained as the union of Vi, W ′

i , and U2, as in
Figure 7.107.10. Observe that the Whitney discs U1 and V ′

i pair the same double points, namely q2 and p2.
Consider the two collections of Whitney discs (Ui−1\{Wi})∪{W ′

i , U1} and (Ui−1\{Wi})∪{W ′
i , V

′
i }, for
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Figure 8.2. Left: two sheets of the surface Σ and two Whitney discs Wi and Vi be-
tween the same pair of double points. The disc Wi is assumed to be framed, embedded,
have interior disjoint from F and the Whitney discs Ui−1\{Wi}, and ∂Wi disjoint from
Ai. One of its Whitney arcs ai is also labelled. The blue strip to the right of ai is an
extension of Wi beyond its boundary, that is part of the data for the Whitney move.
Right: the result of the Whitney move. The strip and the disc Vi from the previous
panel have formed a band B (blue).

the double points of F ′. The two collections differ only in that one contains the disc U1 and the other
the disc V ′

i . We will apply Claim 8.28.2 to change between the two collections. This is permitted since U1

is framed, embedded, has interior disjoint from F ′ and the Whitney discs (Ui−1 \ {Wi}) ∪ {W ′
i}, and

∂U1 is disjoint, other than at the endpoints, from the Whitney arcs of (Ui−1 \ {Wi}) ∪ {W ′
i , V

′
i }, given

by Ai ∪ ∂W ′
i ∪ ∂U2.

So by Claim 8.28.2,

talt(F
′, (Ui−1 \ {Wi}) ∪ {W ′

i , U1}) = talt(F
′, (Ui−1 \ {Wi}) ∪ {W ′

i , V
′
i }). (8.2)

By the proof of Claim 8.18.1 (see Figure 7.107.10),

talt(F
′, (Ui−1 \ {Wi}) ∪ {W ′

i , V
′
i }) = talt(F

′, (Ui−1 \ {Wi}) ∪ {U2, Vi}). (8.3)

Since U2 is trivial, we can use it to undo the Whitney move, and obtain

talt(F
′, (Ui−1 \ {Wi}) ∪ {U2, Vi}) = talt(F, (Ui−1 \ {Wi}) ∪ {Vi}) = talt(F,Ui). (8.4)

The combination of (8.18.1), (8.28.2), (8.38.3), and (8.48.4) imply talt(F,Ui−1) = talt(F,Ui). This completes the
proof that talt is independent of the choices of Whitney discs, and therefore completes the proof that
talt is well defined.

Finally, by Lemma 7.67.6 we know that talt(F,W) = t(F,W) for W a convenient collection, so t is well
defined for convenient collections W, as desired. □

p1 Wi p2 p1 W ′
i p2

q1 q2

U2

U1

∂Vi

Figure 8.3. Splitting a Whitney disc Wi into two Whitney discs. One of the new
Whitney discs, U1, pairing p2 and q2, satisfies the hypotheses of Claim 8.28.2. The other
Whitney disc W ′

i intersects whatever Wi intersected. The trivial Whitney disc U2

pairing the new double points q1 and q2 is shown in grey. Note that ∂Wi may intersect
∂Vi, or more generally other arcs in Ai, or itself.

Next we recall the statement of Theorem 1.61.6 for the convenience of the reader.

Theorem 1.61.6. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1. Suppose that µ(F ) = 0 and that
F has algebraically dual spheres. If F is not b-characteristic then km(F ) = 0. If F is b-characteristic
then the secondary embedding obstruction satisfies

km(F ) = t(F ,W ) ∈ Z/2
for every convenient collection of Whitney discs W pairing all the double points of F .
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Proof. First we show that if F is not b-characteristic then km(F ) = 0. By Lemma 5.115.11 we reduce
to the case that λΣ |∂B(F ) is trivial, which implies that the function Θ is well defined on B(F ).
Since we assume that F is not b-characteristic, there exists B ∈ B(F ) so that Θ(B) = 1, so we can
apply Construction 7.27.2 and Lemma 7.37.3 to find a collection of Whitney discs W for the double points
of F with t(F ,W ) = 0. Then by Lemma 5.45.4, we know that km(F ) = 0.

By Theorem 1.91.9, if F is b-characteristic, then t(F ,W ) is well defined, i.e. is independent of W .
As in Theorem 1.91.9 we denote the resulting invariant t(F ). We need to show that km(F ) = t(F ).

Recall that b-characteristic implies r-characteristic by Lemma 5.185.18, and also r-characteristic implies
s-characteristic by Remark 5.65.6. Therefore Lemma 5.45.4 applies, which says that if t(F ) = t(F ,W ) = 0
then km(F ) = 0. On the other hand, if km(F ) = 0, then after a regular homotopy the double points of
F can be paired up by a convenient collection of Whitney discs with interiors disjoint from F . Using
these Whitney discs to calculate t(F ), and regular homotopy invariance of t from Theorem 1.91.9 it
follows that t(F ) = 0.

Thus we have shown that for F b-characteristic and F with algebraically dual spheres, km(F ) = 0
if and only if t(F ) = 0, or equivalently km(F ) = t(F ) ∈ Z/2, as desired. □

9. Examples and applications

Proposition 9.1. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1 and assume that µ(F ) = 0. If
there are two orientation-preserving immersed loops in Σ that intersect transversely in an odd number
of points and are null-homotopic in M , then F is not b-characteristic.

Proof. The two immersed loops in Σ from the assumption bound immersed discs in M . These discs give
classes in B(F ) by Construction 5.105.10 and by assumption λΣ|B(F ) is nontrivial. It follows by definition
that F is not b-characteristic. □

This applies to every simply connected target M whenever Σ has a component of positive genus.
Proposition 9.19.1 also implies Corollary 1.71.7 and Corollary 1.81.8, whose statements we recall, as follows.

Corollary 1.71.7. If M is a simply connected 4-manifold and Σ is a connected, oriented surface with
positive genus, then any generic immersion F : (Σ, ∂Σ) ↬ (M,∂M) with vanishing self-intersection
number is not b-characteristic. Thus if F has an algebraically dual sphere then km(F ) = 0, and since
π1(M) is good the map F is regularly homotopic, relative to ∂Σ, to an embedding.

Proof. As π1(M) is trivial and Σ has positive genus, F is not b-characteristic by Proposition 9.19.1. By
Theorem 1.61.6, it follows that km(F ) = 0 if F has an algebraically dual sphere. In this case F is regularly
homotopic, relative to ∂Σ, to an embedding, by Theorem 1.21.2. The theorem applies because π1(M) is
good. □

Corollary 1.81.8. Let F : (Σ, ∂Σ) ↬ (M,∂M) be as in Convention 1.11.1, with µ(F ) = 0 and Σ connected.
If F ′ is obtained from F by an ambient connected sum with an embedding S1 × S1 ↪→ S4, then F ′ is
not b-characteristic. Thus if F has an algebraically dual sphere then km(F ′) = 0, and if π1(M) is good
then F ′ is regularly homotopic, relative to ∂Σ, to an embedding.

Proof. Since F ′ is obtained from F by an ambient connected sum with an embedding S1 × S1 ↪→ S4,
we can apply Proposition 9.19.1 to see that F ′ is not b-characteristic. By Theorem 1.61.6, it follows that
km(F ′) = 0 if F has an algebraically dual sphere, as this sphere remains algebraically dual to F ′.
If in addition π1(M) is good, then by Theorem 1.21.2 F is regularly homotopic, relative to ∂Σ, to an
embedding. □

Example 9.2. To illustrate the difference between r-characteristic and b-characteristic surfaces we give
an example of a surface that is r-characteristic but not b-characteristic. Consider any r-characteristic
immersed sphere with trivial self-intersection number. Add a single trivial tube to obtain an immersed
torus. As this will not change the intersection number with any closed surface, the new torus is still
r-characteristic. But it fails to be b-characteristic by Corollary 1.81.8.

Example 9.3. We explain next why our methods allow us to obtain embeddings where [FQ90FQ90, Theo-
rem 10.5A (1)] would not produce them (cf. the discussion directly following Theorem 1.21.2).

Let f : S2 ↬ M be a generic immersion in a 4-manifold with π1(M) good, equipped with an alge-
braically dual sphere and with km(f) = 1, for example a sphere representing a generator of H2(∗CP2).
Other such spheres may be constructed as in [KLCLL21KLCLL21, Theorem 2]. Let T be a generic immersion
of a torus produced by adding a trivial tube to f , i.e. by taking the ambient connected sum of f with
the standard embedding S1 × S1 ↪→ S4. Then by Corollary 1.81.8 we see that km(T ) = 0. Thus T is
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regularly homotopic to an embedding since π1(M) is good. Fix a 1-skeleton Σ0 for S1 × S1. Then T
is not regularly homotopic to an embedding relative to Σ0, since the Kervaire–Milnor invariant for f
restricted to the 2-cell(s) (S1 × S1) \ νΣ0 considered as a map to M \ T (νΣ0) equals km(f) = 1.

We emphasise that this holds for every choice of 1-skeleton Σ0 ⊆ S1 × S1. In order to apply the
strategy of [FQ90FQ90, Theorem 10.5A(1)] to find an embedding, one needs to first make a judicious choice
of finger moves. But without our theory, there is no clear strategy for finding these finger moves. To
obtain an embedding obstruction in this way, matters are worse, since one would need to compute the
Kervaire–Milnor invariant of the 2-skeleton for every choice of finger moves and for every choice of
1-skeleton.

Example 9.4. We construct an immersed torus with nontrivial Kervaire–Milnor invariant. In contrast
to Proposition 9.19.1, the torus in this example is not π1-trivial. Consider an immersion f1 of a 2-sphere in
∗CP2 representing a generator of H2(∗CP2;Z) with trivial self-intersection number. Let K : S1 ↪→ S3 be
an arbitrary knot and consider the embedding of a torus given by the product f2 := K× Id : S1×S1 ↪→
S3 × S1. Let F denote the interior connected sum f1#f2 : S

1 × S1 ↬ W := ∗CP2#(S3 × S1).
First we claim that F is b-characteristic. To see this, we start by computing H2(W,S1 × S1;Z/2)

using the long exact sequence of the pair with Z/2 coefficients:

H2(S
1 × S1) −↠ H2(W )

0−−→ H2(W,S1 × S1) −→ H1(S
1 × S1) ∼= Z/2⊕ Z/2 −↠ H1(W ) ∼= Z/2.

Therefore H2(W,S1×S1;Z/2) ∼= Z/2 is generated by S ×{p} where S ⊆ S3 is a Seifert surface for the
knot K(S1) and p ∈ S1. The intersection form of S1 × S1 restricted to ∂S is trivial. Since Θ is well
defined on homology classes we can compute it using S. But S has interior disjoint from the image of
F , embedded boundary, and trivial relative Euler number, so Θ(S) = 0. If follows that Θ vanishes on
all of H2(W,S1 × S1;Z/2), in particular it vanishes on the subset B(F ). Thus F is b-characteristic as
claimed.

Observe that km(f1) = 1 inside ∗CP2 (see e.g. [FQ90FQ90, Section 10.8]). We can pick a convenient
collection of Whitney discs for f1 in ∗CP2. Since f2 is an embedding, these constitute a convenient
collection of Whitney discs for F . It follows that km(F ) = km(f1) = 1. Note that the choice of knot K
was irrelevant, since for any two choices the resulting immersions F are regularly homotopic and hence
have equal Kervaire–Milnor invariant.

Example 9.5. In the previous example we constructed a generically immersed torus in ∗CP2#(S1×S3)
with nontrivial Kervaire–Milnor invariant. In particular, this torus is not homotopic to an embedding
(cf. Section 1.41.4). Now we show that in contrast to this every map f from a closed surface Σ to
S1 × S3 is homotopic to an embedding. Note that these classes do not have algebraically dual spheres
since π2(S

1 × S3) = 0. The surfaces in the regular homotopy class with µ(f)1 = 0 are either not
b-characteristic or t(f ) vanishes.

Since the projection S1 × S3 → S1 is 3-connected, the induced map [Σ, S1 × S3] → [Σ, S1] is
bijective. In particular, the homotopy class of a map f : Σ → S1 × S3 is determined by the induced
map on fundamental groups.

We first consider the case that Σ is connected. Since π1(S
1×S3) ∼= Z, we can find a generating set for

π1(Σ) such that at most one generator is non-trivial in π1(S
1×S3). Thus there exists a decomposition

Σ = H#Σ′, where H is either a sphere, a torus, or a Klein bottle, with respect to which f can be
written as an internal connected sum T#f ′, where T is a map on H and f ′ is π1-trivial. In particular,
f ′ is homotopic to an embedding inside a ball D4 ⊆ S1 × S3. It remains to show that T is homotopic
to an embedding, which will show that the connected sum is homotopic to an embedding.

If H is a sphere, we are done. If H is a torus, let i : S1×S1 ↪→ S3 be an embedding. For each k ∈ Z,
define the embedding h′

k : S
1×S1 → S1×(S1×S1) by (s, t) 7→ (sk, (s, t)). Let hk := (Id×i)◦h′

k. There
exists some k and some identification of H with S1 × S1 such that T and hk induce the same map on
fundamental groups and thus are homotopic. If H is a Klein bottle, let p : H → S1 be a fibre bundle
with fibre S1. For each k ∈ Z there exists an immersion i : H ↬ S3 such that hk(x) := (p(x)k, i(x)) is
an embedding H ↪→ S1 × S3. As before, there exists some k such that T and hk are homotopic.

The above embeddings can be realised as embeddings into S1 × D3 ⊆ S1 × S3. The argument
generalises to disconnected surfaces by picking disjoint copies of S1×D3 in S1×S3 for each connected
component.

Next we prove Proposition 1.101.10 and Corollary 1.111.11, which we restate for the convenience of the
reader.
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Proposition 1.101.10. Let M1 and M2 be oriented 4-manifolds. Let F1 : (Σ1, ∂Σ1) ↬ (M1, ∂M1) and
F2 : (Σ2, ∂Σ2) ↬ (M2, ∂M2) be generic immersions of connected, compact, oriented surfaces, each with
vanishing self-intersection number. If Fi is b-characteristic for each i then both the disjoint union

F1 ⊔ F2 : Σ1 ⊔ Σ2 ↬ M1#M2

and any interior connected sum
F1#F2 : Σ1#Σ2 ↬ M1#M2

are b-characteristic, and satisfy

t(F1 ⊔ F2) = t(F1#F2) = t(F1) + t(F2).

Proof. The vanishing of the self-intersection number of Fi is witnessed by a convenient collection of
Whitney discs Wi in Mi, for each i. The union W1 ⊔W2, now considered in M1#M2, shows that the
intersection and self-intersection numbers of F1 ⊔ F2, as well as for F1#F2, vanish in M1#M2. Since
the union W1 ⊔W2 pairs all the double points of F1 ⊔ F2 (resp. F1#F2), and since components of Wi

cannot intersect Fj(Σj) for all i ̸= j, the claimed relationship t(F1 ⊔ F2) = t(F1#F2) = t(F1) + t(F2)
holds as long as F1 ⊔ F2 and F#F2 are b-characteristic.

As a preliminary step, note that neither Fi has a framed dual sphere in Mi, since otherwise it
would not be s-characteristic, and therefore, not b-characteristic by Lemma 5.185.18. As a result, Σi = Σi

for i = 1, 2.
Next we consider the immersion F1 ⊔ F2 : (Σ1 ⊔ Σ2, ∂Σ1 ⊔ ∂Σ2) ↬ M1#M2. Let S ⊆ M1#M2

denote a connected sum 3-sphere. Consider a band [B] ∈ H2(M1#M2,Σ1 ⊔ Σ2). By (topological)
transversality we can assume that B is immersed, the double points of B are disjoint from S, and the
intersection B ∩ S corresponds to an embedded 1-manifold in the interior of the domain of B, since
∂B ⊆ Σ1⊔Σ2 ⊆ (M1#M2)\S. The image of this 1-manifold in S is embedded and bounds a collection
of immersed (perhaps intersecting) discs in S. Surger B using two copies each of these discs to produce
B1 ⊆M1 and B2 ⊆M2, where each Bi is an immersed collection of surfaces with ∂Bi ⊆ Σi.

Each component of Bi can be replaced by a band as follows. Recall that since each Mi and Σi is
oriented, there is no condition on Stiefel–Whitney classes for bands, and we need only arrange that
each component is either a Möbius band or an annulus. By considering the Euler characteristic, we
see that each component is homeomorphic to either a sphere, an RP2, a disc, a Möbius band, or an
annulus. Then use the tubing procedure from Construction 5.105.10 to replace each sphere, RP2, or disc
component by a band. More precisely, choose a small disc on Σ1 or Σ2, as appropriate, away from all
Whitney arcs and double points, and tube into the disc, sphere, or RP2.

Since each Fi is b-characteristic, λΣ1
|∂B(Fi) is trivial for each i. Therefore, λΣ1⊔Σ2

is trivial on ∂B =
∂B1 ∪ ∂B2. It follows by Lemma 5.165.16 (iviv) that Θ: B(F1 ⊔F2)→ Z/2 is well defined. By Lemma 7.87.8, Θ
extends to a linear map ⟨B(F1⊔F2)⟩ → Z/2 on the subspace ⟨B(F1⊔F2)⟩ ⊆ H2(M1#M2,Σ1⊔Σ2;Z/2)
generated by the bands. Then since [B1 ∪ B2] = [B] ∈ H2(M1#M2,Σ1 ⊔ Σ2;Z/2), we see that
Θ(B) = Θ(B1) + Θ(B2).

For each i, the value of Θ(Bi) does not depend on whether the ambient manifold is Mi or M1#M2,
since Bi does not intersect Fj(Σj) for all i ̸= j (see Definition 5.125.12). Since each Fi is b-characteristic,
Θ(B) = Θ(B1) + Θ(B2) = 0 + 0 = 0 ∈ Z/2. This completes the proof that F1 ⊔ F2 is b-characteristic.

Now we consider the connected sum F1#F2. Let B ∈ H2(M1#M2,Σ1#Σ2) be a band. As above, we
assume that the intersection B∩S corresponds to an embedded 1-manifold in the domain of B. Unlike
above, this may include embedded arcs with endpoints on the boundary. These endpoints are mapped to
the intersection (F1#F2)(Σ1#Σ2)∩S. By connecting the endpoints with arcs on (F1#F2)(Σ1#Σ2)∩S,
we again get a collection of closed circles in S, which bound an immersed collection of discs in S.
Surger using these discs as before to produce collections Bi ⊆Mi. Once again, each component of Bi is
homeomorphic to either a sphere, an RP2, a disc, a Möbius band, or an annulus. By Construction 5.105.10
applied to the sphere, RP2, and disc components, we may arrange that each component is a band. The
argument of the previous paragraph now applies to show that F1#F2 is b-characteristic. □

Corollary 1.111.11. For any g, there exists a smooth, closed 4-manifold Mg, a closed, connected, oriented
surface Σg of genus g, and a smooth, b-characteristic, generic immersion F : Σg ↬ Mg with t(F ) ̸= 0
and therefore km(F ) ̸= 0.

Proof. By the same proof as in Example 9.49.4, for any knotK the product T := K×Id : S1×S1 → S3×S1

is an embedded b-characteristic torus. Since T is an embedding, t(T ) = 0. A computation using the
intersection form shows that a generic immersion S : S2 → CP2 representing three times a generator of
H2(CP2;Z) is s-characteristic. Since π1(CP2) has no 2-torsion the map S is also r-characteristic and
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thus b-characteristic by Lemma 5.185.18. We will show that km(S) = 1. This was the original example
of Kervaire and Milnor [KM61KM61]. To see that km(S) = 1, represent S in the following way. Take a
cuspidal cubic, which is a smooth embedding of a 2-sphere away from a single singular point. In a
neighbourhood of the singular point we see a cone on the trefoil. Replace a neighbourhood of the
singular point with an immersed disc ∆ in D4 with boundary the trefoil, and two double points that
are paired by a framed Whitney disc that intersects ∆ once. Alternatively, we can compute t(S) as
(σ(CP2) − S · S)/8 = (1 − 9)/8 ≡ 1 mod 2, see Section 33. This gives us the case g = 0. Next, by
Proposition 1.101.10, for every g ∈ N

S#gT : Σg −→ CP2#g(S3 × S1)

is a b-characteristic generic immersion of a closed surface of genus g with nontrivial t, and therefore
km(S#gT ) ̸= 0. In particular S#gT is not regularly homotopic to an embedding. Note these examples

are smooth, but have no algebraically dual sphere. We could replace (CP2, S) with (CP2#8CP2, S′)

where S′ is a generic immersion representing the class (3, 1, . . . , 1) ∈ Z9 ∼= H2(CP2#8CP2), to obtain
an example with an algebraically dual sphere and km(S′) = (−7− 1)/8 ≡ 1 mod 2. □

Remark 9.6. Let M denote the infinite connected sum CP2#∞(S3 × S1). The proof of the Corol-
lary 1.111.11, along with the formula from Proposition 1.101.10, shows that for every g there exists a smooth
generic immersion F : Σg ↬ M with t(F ) ̸= 0 and therefore km(F ) ̸= 0. The following proposition
shows that if there is such a compact 4-manifold M and such an F then the 4-manifolds must have
nonabelian fundamental group. In other words, if there is an immersed surface in a 4-manifold with
abelian fundamental group with nontrivial km, then we give a bound on the complexity of that surface.

Proposition 9.7. Let M be a compact 4-manifold such that π1(M) is abelian with n generators. Let
F : Σ ↬ M be a b-characteristic generic immersion where Σ is a closed, connected surface. Then the
Euler characteristic satisfies χ(Σ) ≥ −2n.

Proof. Suppose that χ(Σ) < −2n. Note that Σ can be written as a connected sum of a genus g
orientable surface Σ′ for some g > n with zero, one, or two copies of RP2. There exists a surjection
Zn ↠ π1(M). Then the induced map H1(Σ

′) → H1(M) ∼= π1(M) admits a lift H1(Σ
′) → Zn, which

has kernel of rank at least 2g − n > g. So there exist closed curves γ1, γ2 in Σ′ \ D̊2 ⊆ Σ that are
null-homotopic in M and λΣ(γ1, γ2) ≡ 1 mod 2. It follows that F is not b-characteristic. □

Next we prove our corollaries on knot theory from Section 1.51.5.

Corollary 1.151.15. For every knot K ⊆ S3,

(1) gM (K) = 0 for every simply connected 4-manifold M not homeomorphic to one of S4, CP2, or
∗CP2;

(2) gCP2(K) ≤ 1 and gCP2(#3T (2, 3)) = 1; and
(3) g∗CP2(K) ≤ 1 and g∗CP2(#2T (2, 3)) = 1.

Proof. Let K ⊆ S3 be an arbitrary knot and let M be an arbitrary closed, simply connected 4-manifold.
Let ∆′ be a generically immersed disc bounded by K in a collar S3 × [0, 1] of ∂M◦. Since M is simply
connected, every class in H2(M ;Z) ∼= π2(M) is represented by a generically immersed sphere. By
assumption, M is not homeomorphic to S4 and thus H2(M ;Z) is nontrivial. Since M is closed, every
primitive class α ∈ H2(M ;Z) has an algebraic dual β ∈ H2(M ;Z), i.e. λ(α, β) = 1. Represent α and
β by generically immersed spheres, and tube the interior of ∆′ into β to obtain ∆. Add local cusps to
arrange µ(∆) = 0.

First we prove (1). In this case we claim that in the construction of ∆ we can choose the primitive
class α to satisfy λ(α, α) ∈ 2Z, as we explain presently. Then the disc ∆ constructed above is not r-
characteristic, since ∆·α ̸≡ α·α mod 2 (see Remark 5.65.6). By Theorem 5.75.7, this implies that km(∆) = 0.
Since the disc ∆ has the algebraically dual sphere α and π1(M) = 1 is good, by Theorem 1.21.2, ∆
is homotopic rel. boundary to an embedding. To see the claim regarding α, note that when M ̸∼=
S4,CP2, ∗CP2, the group H2(M ;Z) has rank at least 2 by the classification of closed, simply connected
4-manifolds up to homeomorphism. Then H2(M ;Z) has a summand isomorphic to Z⊕Z, so the classes
x, y, and x+y, for the generators x, y of the Z-factors, are primitive, and at least one of λ(x, x), λ(y, y),
or λ(x+ y, x+ y) is even.

In (2) and (3), we have M = CP2 or ∗CP2. The only primitive classes are ±[CP1], so we choose
α = β = [CP1] in the construction of the first paragraph. We construct the disc ∆ as before, but
are no longer able to conclude that it is r-characteristic. However by Corollary 1.81.8 we know that the
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connected sum of ∆ with an unknotted torus is homotopic to an embedding. This completes the proof
of the first parts of (2) and (3).

Now we prove that gCP2(#3T (2, 3)) = 1. Let K := #3T (2, 3). Let gdCP2(K) denote the minimal

genus of a surface bounded by K in (CP2)◦ in the homology class d ∈ Z ∼= H2(CP2;Z). First we
consider d = ±1, where the class is b-characteristic (or equivalently, s-characteristic; see Lemma 5.185.18).
As before, construct the disc ∆′ ⊆ S3× [0, 1], and tube into CP1 to obtain the disc ∆. We assume that
∆′ has trivial self-intersection number, so 1 = Arf(K) = t(∆′) by [Mat78Mat78; FK78FK78; CST14CST14, Lemma 10].
Since CP1 is embedded disjointly from ∆′, t(∆) = 1. Thus by Theorem 1.91.9, ∆ is not homotopic to an
embedding and so g±1

CP2(K) ̸= 0.

Next, let σd(K) := σK(eπi
d−1
d ), where σK denotes the Levine–Tristram signature function of K.

By [Gil81Gil81,Vir70Vir70], for even d

2gdCP2(K) + 1 ≥
∣∣∣d2
2
− 1− σ(K)

∣∣∣,
while if d is divisible by an odd prime p, then

2gdCP2(K) + 1 ≥
∣∣∣p2 − 1

2p2
d2 − 1− σd(K)

∣∣∣.
In our case, σ(K) = σd(K) = −6 for all d, and so gdCP2(K) ≥ 1 for all d ̸= ±1. This completes the
argument that gCP2(K) = 1.

Finally we show that g∗CP2(#2T (2, 3)) = 1. Write K := #2T (2, 3) and let gd∗CP2(K) denote the

minimal genus of a surface bounded by K in (∗CP2)◦ in the homology class d ∈ H2(∗CP2;Z). For
d = ±1, modify the argument above for the case of CP2, using that tubing into a sphere representing
a generator of H2(∗CP2;Z) to obtain a disc ∆′ adds 1 to the t count, and so 1 = 1 + Arf(K) = t(∆′).
Therefore, again by Theorem 1.91.9, g±1

∗CP2(K) ̸= 0. Next, for ∗CP2 the same inequalities from [Gil81Gil81,Vir70Vir70]

hold, and σ(K) = σd(K) = −4 for all d. Therefore applying the inequalities we see that gd∗CP2(K) ≥ 1
for all d. It follows that g∗CP2(K) = 1 as asserted. □

Corollary 1.161.16. For any knot K ⊆ S3, gsh±1(K) = Arf(K) ∈ {0, 1}.

Proof. A generator of H2(X±1(K);Z) can be represented by a generically immersed sphere F which
is b-characteristic (or equivalently, s-characteristic; see Lemma 5.185.18), has trivial µ(F ), and has an
algebraically dual sphere. We also recall from [Mat78Mat78; FK78FK78; CST14CST14, Lemma 10] that Arf(K) coincides
with the count t(F ). Then by Theorems 1.61.6 and 1.91.9, the sphere F is homotopic to an embedding if and
only if Arf(K) = 0. We have an embedded torus representative for both generators by Corollary 1.81.8. □
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topologie perdue, 1986, pp. 201–244. With an appendix by L. Siebenmann.
[Con71] R. Connelly, A new proof of Brown’s collaring theorem, Proc. Am. Math. Soc. 27 (1971), 180–182.

[COT03] T. D. Cochran, K. E. Orr, and P. Teichner, Knot concordance, Whitney towers and L2-signatures, Ann. of

Math. (2) 157 (2003), no. 2, 433–519.
[CR16] T. D. Cochran and A. Ray, Shake slice and shake concordant knots, J. Topol. 9 (2016), no. 3, 861–888.

[CST12a] J. Conant, R. Schneiderman, and P. Teichner, Universal quadratic forms and Whitney tower intersection
invariants, Proceedings of the Freedman Fest, 2012, pp. 35–60.

[CST12b] J. Conant, R. Schneiderman, and P. Teichner, Whitney tower concordance of classical links, Geom. Topol.
16 (2012), no. 3, 1419–1479.

[CST14] J. Conant, R. Schneiderman, and P. Teichner, Milnor invariants and twisted Whitney towers, J. Topol. 7

(2014), no. 1, 187–224.

[FK78] M. Freedman and R. Kirby, A geometric proof of Rochlin’s theorem, Algebraic and geometric topology (Proc.
Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, 1978, pp. 85–97.

[FMN+21] P. Feller, A. N. Miller, M. Nagel, P. Orson, M. Powell, and A. Ray, Embedding spheres in knot traces,
Compositio Mathematica 157 (2021), no. 10, 2242–2279.

[FQ90] M. Freedman and F. Quinn, Topology of 4-manifolds, Princeton Mathematical Series, vol. 39, Princeton

University Press, 1990.

[Fre82] M. Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), no. 3, 357–453.
[FT95] M. H. Freedman and P. Teichner, 4-manifold topology. I. Subexponential groups, Invent. Math. 122 (1995),

no. 3, 509–529.
[GG73] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Springer-Verlag, New York-

Heidelberg, 1973. Graduate Texts in Mathematics, Vol. 14.



EMBEDDING SURFACES IN 4-MANIFOLDS 55

[Gil81] P. M. Gilmer, Configurations of surfaces in 4-manifolds, Trans. Amer. Math. Soc. 264 (1981), no. 2, 353–380.
[GM80] L. Guillou and A. Marin, Une extension d’un théorème de Rochlin sur la signature, 1980 (French).
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[LW97] R. Lee and D. M. Wilczyński, Representing homology classes by locally flat surfaces of minimum genus,
American Journal of Mathematics 119 (1997), no. 5, 1119–1137.

[Mas69] W. S. Massey, Proof of a conjecture of Whitney, Pac. J. Math. 31 (1969), 143–156.

[Mat78] Y. Matsumoto, Secondary intersectional properties of 4-manifolds and Whitney’s trick, Algebraic and geo-
metric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, 1978, pp. 99–

107.
[Mat86] Y. Matsumoto, An elementary proof of Rochlin’s signature theorem and its extension by Guillou and Marin,
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