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Abstract

The determination of the size and density of internal defects is a crucial
step in the inspection of additively manufactured metal components. X-ray
tomographic imaging is often the only viable inspection techniques, but for
objects with complex shapes, imaging can be difficult, leading to images
with significant artefacts that mask internal defects. Data-driven machine
learning based image enhancement tools have demonstrated benefits in this
setting, however, current methods often rely on the availability of significant
training data. In this paper we evaluate methods that are trained on a sin-
gle volumetric image. We are particularly interested in imaging applications
where only limited X-ray measurements can be collected. In this setting,
we compare a range of network architectures and training approaches and
show how block based image processing can have significant benefits. Using
both simulated and real X-ray data, we show that block based models can
be trained efficiently on single volumetric images. Comparing several deep
learning structures, we find that a 3D U-net architecture, applied to small im-
age blocks outperforms a wide range of alternative approaches in this setting,
showing particular benefits in challenging applications where X-ray images
have significant artefacts.
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1. Introduction

The non-destructive inspection of manufactured components is a vital
step in the quality assurance process and is indispensable in many safety-
critical applications. Advances in manufacturing processes and particularly
modern additive manufacturing (AM) methods, now allow us to build com-
ponents with complex shapes and advanced internal structures. Whilst
these can lead to components with significantly improved performance, non-
destructive inspection often remains challenging, as current techniques are
often not directly applicable. We are here interested in the inspection of com-
ponents manufactured using metallic powder bed fusion (PBF) additive man-
ufacturing (AM). Material feedstock irregularities, powder recoating, part
solidification and material/laser interactions lead to process parameter de-
pendent defects that reduce mechanical properties [1, 2, 3, 4, 5]. We are thus
interested in characterising the pore structure of metal parts manufactured
using a laser-based PBF process. This pore structure is known to be affected
by a wide range of manufacturing parameters and will have a significant im-
pact on structural component performance [6]. X-ray tomography [7] offers
a powerful approach to the inspection of such components, often allowing a
detailed visualisation of micrometer structures throughout the object. How-
ever, the image resolution directly depends on the object size. Furthermore,
especially for metal components, using currently available X-ray tomography
systems, X-ray path lengths limit the amount of material that can be pene-
trated with a given X-ray source. A full tomographic inspection requires the
acquisition of X-ray images through an object from evenly and closely spaced
directions measured along an orbit around the object, [8, 9, 10, 7, 11, 12].
For many objects, large aspect ratios or complex internal structures that
lead to widely varying path lengths through the material, often prevent the
acquisition of X-ray observations from certain directions. Furthermore, in a
production line setting, inspection speed is often a key factor, which leads
to a desire to reduce the number of X-ray measurements that are taken dur-
ing a scan. In this paper, we are thus interested in the characterisation of
the porosity distribution of a component if we are only able to collect lim-
ited X-ray measurements. We here distinguish and study two distinct cases
of interest in different manufacturing settings. In the first setting, we have
limited measurements, where the measurements are nevertheless evenly dis-
tributed in the orbit around the object. We call this setting the limited
measurement setting. In the second setting, we are only able to collect data
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from a limited range of projection angles. This setting will be called the
limited angle setting. In both of these settings, using standard tomographic
reconstruction methods leads to volumetric images with significant noise and
artefacts, which complicate further analysis and thus prevents detailed poros-
ity analysis. To overcome these issues, we explore the use of machine learning
techniques, where we utilised known training data, for which we have both,
a degraded volumetric image as well as a high quality ”ground truth” image
to train an algorithm to remove the noise and artefacts from the data.

If high quality tomographic data is available, then traditional image
processing methods often provide good porosity estimates, though machine
learning based approaches have recently been shown to offer some benefits
[13]. We here extend this work in several ways. 1) Instead of working with 2D
data slices, we work directly with a 3D volumetric data model; 2) we apply
these methods to the much more challenging limited data settings outlined
above and 3) we train the developmed method on a single volumetric image.

2. X-ray tomography

X-ray Cone Beam Computed Tomography (CBCT) [8] inspection can be
performed using a fixed mini- or micro-focus X-ray source and fixed digi-
tal flat panel X-ray detector. The object under inspection is placed on a
turntable between the X-ray source and the X-ray detector and X-ray pro-
jection measurements are taken through the object for equally spaced object
rotation angles, typically covering a full 360 degree rotation. Individual pro-
jection images are then processed and combined using the Feldkamp, Davis,
Kress (FDK) algorithm [14] to construct a 3D volumetric image of the spa-
tial distribution of the object’s X-ray absorption properties [8]. With this
method, a rule of thumb states that in order to achieve a desired resolu-
tion Rs for an object with diameter d, we would require at least πd/(2Rs)
evenly spaced projections. With fewer projections, resolutions achieved with
the FDK method decrease, whilst image noise increases. Furthermore, if it
is not possible to collect X-ray projections for certain directions, then the
image resolution in the direction orthogonal to the missing projection angle
decreases [15].

2.1. Regularisation and artefact reduction

To deal with limited measurements, one approach is to formulate the
image recovery problem as a regularised inverse problem that balances an
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observation noise term and a regularisation penalty, which encodes prior
knowledge about the image to be recovered. Here, total variation penal-
ties, that encourage smooth images with sharp edges are commonly found
[15]. However, solving the penalised inverse problem leads to iterative com-
putational methods that are very slow and require significant computing
resources. These methods are thus still seldom applied in realistic applica-
tions.

An alternative approach, that we will use here, is one based on image de-
noising. The relatively fast FDK method is used to estimate a noisy image
with artefacts and a noise and artefact removal algorithm is then used in a
separate step.

2.2. Machine learning for XCT

Machine learning methods are now routinely applied to many tomo-
graphic inverse problems. The most advanced methods to date typically build
deep networks that are unrolled versions of classical optimisation strategies,
but where training data is used to optimise the network, which effectively of-
fers learned regularisation to enforce the structures found in typical training
data [16]. An alternative approach is to directly train an inverse mapping,
that takes the tomographic measurements and predicts an image. Whilst
these method can work well on 2D images or very small 3D images, it is
currently not possible to apply these methods to realistically sized 3D data
that is found in typical XCT based inspection settings. Furthermore, most
of these methods rely on significant training data, which can be difficult to
collect in real applications. Machine learning based methods for XCT image
reconstruction of realistically sized data thus currently rely on de-noising
approaches and these methods have gained increased prominence recently,
where modern, machine learning based artefact removal methods have been
found to be particularly powerful. For example Pelt et al. [17] have trained
a mixed scale network architecture. Whilst the model requires reduced com-
puting memory, it has so far only been applied to 2D slices taken from a 3D
reconstruction. An alternative or complementary set of approaches works in
the observation domain. For example, a learned de-noising methods could
be applied to reduce the noise from low-dose projection images before the
FDK reconstruction as in [18], or we could use a trained model to optimally
interpolate observations to fill in missing data [19].
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3. Models

We here instead follow a slightly different image de-noising approach,
where we train a de-noising algorithm to work directly on 3D image data. It
is hoped that such an approach can learn more complex 3D image structures,
which might then lead to more accurate de-noising results. However, we
also want to 1) limit the required training data and 2) keep the model size
small, so that it can be implemented with standard computing hardware.
We thus opt for a model that operates only on smaller 3D image blocks.
Let Bb(I, i, j, k) = I[i : i + b, j + b, k + b], be the operator that cuts out
a b × b × b block of image I ∈ RNx×Ny×Nz with block corners at pixels
(i, j, k) and (i + d, j + d, k + d). We then train different 3D image models
on the training set {B32(I, i, j, k)}i∈I,j∈J ,k∈K, where I = {0, b/s, 2b/s,Nx −
b},J = {0, b/s, 2b/s,Ny − b} and J = {0, b/s, 2b/s,Nz − b} and where s
is the block overlap set to 2 for training. Such a block based approach
is similar to the 2D slice based approach of [17] in that an initial FDK
reconstruction is de-composed into smaller subsets, with each subset of the
data then being processed independently. However, whilst for 2D slice based
processing, each image subset is independent, for our block based approach,
overlapping blocks can be extracted from the image. For inference of the
entire image, we use the trained model and apply it to all image blocks
extracted with a given overlap fraction s, apply the model to each block and
then estimate the de-noised image by averaging the corresponding voxel over
all individual image blocks that contain this voxel. Whilst increasing the
computational demand (each pixel is de-noised several times), this reduces
visible image artefacts at block boundaries and also has the potential to
further reduce noise, as voxel estimates are now derived from several different
estimates.

We implemented and compared several deep models, a 3D U-net based
model, that uses an architecture similar to [20], a 3D convolutional autoen-
coder [21] as well as 2D and 3D versions of the method in [17].

3.1. U-net architecture

We implemented a standard U-net architecture [20], but using 3D convo-
lutional layers instead of the more standard 2D convolutions. In particular,
the U-net is constructed of 3D convolutional layers, each using a 3×3×3 ker-
nel size and zero padding. A convolution block is made up of two blocks

5



each consisting of a convolution layer, batch normalisation and a ReLU non-
linearity. We use 4 encoder blocks, where each block uses the above convo-
lution block followed by a 2×2×2 max pooling block. The first block has 8
output channels, with each subsequent block doubling the number of output
channels so that the fourth block has 64 channels, which are then fed into a
convolution block with 128 output channels.

There are also 4 decoding blocks, concatenating the output of the up-
sampled previous block and the output of the corresponding encoder block
before max pooling. The concatenated channels are send through a convo-
lution block, with output channels being half the number of input channels.
The last decoder block has 8 output channels, which are send through a sin-
gle convolution layer with kernel size 1, followed by a final ReLU nonlinearity
to guarantee positive outputs.

We also trained a 2D U-net, following the structure in [13], but instead
of training the network as a classifier (i.e. with a sigmoid non-linearity in
the output and using the binary cross-entropy loss), we instead trained the
model as an image de-noiser in the same way as our other networks, using a
ReLU non-linearity in the output and the mean squared error loss function.

3.2. Autoencoder Architecture

The autoencoder is build out of the same encoder structure, using the
same 3D convolution architecture as the U-net, with the only difference being
that we do use strided 3D convolutions (with a stride of 2) in the second
convolution of each convolution block instead of the max pooling layers. This
generates 64 channels in the code. The decoder uses the inverse structure of
the encoder, using transposed convolutions. The autoencoder also does not
use any skip connections.

3.3. Mixed-Scale Dense Convolutional Neural Network (MSDC-net)

For comparison, we also implement the 2D convolutional Mixed-Scale
Dense Convolutional Neural Network (MSDC-net) of [17] using 100 layers
as in [17] . Even when using a batch size of 1, we were unable to train
this model on the GPU we had available when trying to learn a model for
a full 2D slice of our data-sets. We thus also used a block wise training
strategy, but using blocks from the 2D image slices of size 512×512. This
model had significantly more parameters than our U-net and Autoencoder
models and training was thus much slower. To more deircetly compare this
architecture to the 3D Unet and autoencoder, we also implemented the same
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model using 3D convolutional layers trained on 3D blocks of size 32×32×32,
where training this time was done using a batch size of 8.

4. Data sets

We use two different data-sets to evaluate our method. The first data-
set is simulated, allowing us to generate data with uniform distributions of
pore-like features, with the ability to vary pore size and density as well as
image noise. The second data-set is real data as described in [13].

4.1. Simulated data

To generate simulated data that allows us to simulate porosity similar to
that observed in [6], we proceeded as follows:

1. We generated a volumetric dataset of size 2000×2000×2000 where each
value is drawn from an independent zero mean, unit variance Gaussian
distribution.

2. The data is then filtered with a 3D convolution using a Gaussian kernel
with standard deviation σ. Increasing σ generates larger features.

3. The data is then thresholded, with values above the threshold set to
1 and values below the threshold set to 0. Note, a threshold of 0 will
mean that 50% of the data is 0 and 50% is 1, whilst, due to the Gaussian
nature of the data, a threshold of 1 (i.e. one standard deviation) leads
to 84.1% of values set to 1.

4. To simulate a cylindrical object, we take each x-y slices of the data and
mask out the pixels that are further than 1000 pixels away from the
centre of each slice.

To simulate realistic tomographic images, we generate projection images from
the volumetric data using the TIGRE tomographic imaging toolbox [22].
We set up a scan geometry where the volumetric image has a side-length
of 10mm, We set the source to object distance to 10mm and the source to
detector distance to 250mm. the detector simulates a flat panel detector with
2000×2000 pixels, each of size 0.2mm by 0.2mm.

We generate two different scan scenarios, a limited number of projection
scan, where we simulated 128 projections, equally spaced between 0 and 360
degrees around the object. We also simulated a reduced angle scan, where
we collected 785 equally spaced projections that only covered 90 degrees. For
both of these data-sets, we added poisson random noise to the projections by
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setting the minimum X-ray transmission through the object to 10% of the
maximum transmission. We then assumed that the maximum transmission
had a mean X-ray flux of λ X-ray photons. By varying λ different amounts
of noise could be added. We here report results computed with λ=60000
unless stated otherwise. The projection data was then reconstructed using
the FDK algorithm [14] using the implementation available in [22].

4.2. Real data

We also had access to the reconstructed volumetric data of [13], which
is a data-set with relatively little noise and very few artefacts. To simulate
limited angle and limited measurement data, we applied the same process
to this data that was used for the simulated data, namely, we computed
projection images simulating the scanning system used in [13] by using the
TIGRE toolbox with a detector size of 1000×1000 pixels, each of 0.1mm side
length, a 3D volume size of 15mm×15mm×15mm, a source to object distance
of 34mm and a source to detector distance of 154mm. We also added poisson
noise to these projections (using λ = 60000) and then used either 128 equally
spaced projections over a 360 degree range or 785 projections over a 90 degree
range. Reconstructions were again computed using the FDK method.

4.3. Training

All models were trained on a single volumetric image. We extracted all
32×32×32 sized block with an overlap of 50% (unless stated otherwise) and
split the data into a 90% training set and a 10% validation set to monitor
training. For the original 2D version of MSDC-net we used blocks of size
512×512 as described above. All models were trained using the ADAM
optimiser with a learning rate of 0.0001 and weight decay of 0.00001 and a
batch size of 64, apart from the MSDC-net, which used a batch size of 1 for
the 2D version and a batch size of 8 for the 3D version. We trained each
model for 50 epochs. Training was performed on a linux workstation using
24 AMD EPYC 7401P CPU cores, 256 GB of RAM and two GeForce RTX
2080 GPUs with 12GB of memory each (only one of which was used during
training). Code was implemented in python using pytorch to define, train
and test the different machine learning models.

4.4. Data normalisation

When training networks on a single volumetric image using a block-based
approach, image normalisation cannot be done on a block by block basis,
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instead, we here use a global image normalisation approach. Whilst global
3D image normalisation using a min-max scaler worked well on the simulated
data, it is less robust to outliers and so, we found dividing the image intensity
by the image standard deviation worked well and is thus used for the real
data.

5. Results

5.1. Artificial data

We start by evaluating the method on artificial data, where the ground
truth is known and where we have control over pore size and density.

5.1.1. Comparison of networks and influence of variations in the pore size
and density

We trained three different models on data generated with a porosity of
50% and with medium size pore sizes (σ = 5). In particular, we trained the
3D U-net, the 3D Autoencoder and the 2D U-net of [13]. We here used the
data reconstructed from 128 projections using the FDK method. We also
compare the results to the use of global thresholding, where we determined
the threshold using Otsu’s method [23]. Results, evaluated on new data
over a range of different porosity statistics are shown in tables 1, 2, 3 and 4
respectively, where performance is evaluated in terms of classification accu-
racy. The 3D U-net outperforms all other methods, apart from the very low
porosity data, where the 2D U-net shows a very small improvement. Given
that the U-nets outperform the auto-encoder model and in many settings
performs noticeably better than the 2D model, we concentrate on the 3D
U-net model for most of the rest of this paper. Note also, that none of the
learned models performed well when estimating data with many pores that
were smaller than those used in training, a case were even simple threshold-
ing outperformed the machine learning based methods. As we here trained
the model on larger pores, it seems that the model learned a level of image
smoothness and thus seems to average out smaller image features. Note that,
results for direct thresholding of the FDK method can further be improved if
we use an additional median filtering step (results not shown here), though
the machine learning methods still preform better and thus seem to offer
additional de-noising benefits compared to standard filtering.

Results achieved with the 3D U-net de-noising approach and direct thresh-
olding can visually be compared in figure 1, where we show results for a single
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σ = 10 σ = 5 σ = 1
0.1% porosity 0.9992 0.9989 0.9982
13.6% porosity 0.9869 0.9631 0.8629
50% porosity 0.9573 0.8835 0.5946

Table 1: Classification accuracy achieved with the U-net trained as a de-noiser followed by
global thresholding for classification. Numbers in bold indicate cases where the method
outperformed the other de-noising methods.

σ = 10 σ = 5 σ = 1
0.1% porosity 0.9993 0.9990 0.9984
13.6% porosity 0.9788 0.9475 0.7579
50% porosity 0.9426 0.8676 0.5552

Table 2: Classification accuracy achieved with the 2D U-net trained as a de-noiser followed
by global thresholding for classification. Numbers in bold indicate cases where the method
outperformed the other de-noising methods.

σ = 10 σ = 5 σ = 1
0.1% porosity 0.9991 0.9988 0.9981
13.6% porosity 0.9843 0.9589 0.7737
50% porosity 0.9544 0.8771 0.5942

Table 3: Classification accuracy achieved with the auto encoder trained as a de-noiser
followed by global thresholding for classification. Numbers in bold indicate cases where
the method outperformed the other de-noising methods.

σ = 10 σ = 5 σ = 1
0.1% porosity 0.5617 0.5619 0.5605
13.6% porosity 0.6641 0.6452 0.5665
50% porosity 0.7847 0.7439 0.6286

Table 4: Classification accuracy achieved with global Otsu thresholding. Numbers in bold
indicate cases where the method outperformed the other de-noising methods.

slice through one block of the data and figure 2, where we show results for an
entire slice through the volume, this time, for data where pore sizes are much
larger than those used in training. A more detailed analysis of the threshold
choice in the methods can be seen by looking at a full ROC curve evaluated
on a randomly chosen data block as shown in figure 3, which is the result
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(a) Original (full slice) (b) Original (block) (c) Our method (block) (d) Our method +
thresholding (block)

(e) FDK reconstruction
(full slice)

(f) FDK reconstruction
(block)

(g) Otsu Thresholding of
FDK

Figure 1: Slices through the volume comparing our U-net based estimate to thresholding
results where the threshold is computed using Otsu’s method. Here the test data has
similar pore statistics as the training data. Shown are 2D slices from the volumetric data.
Red squares in left column indicate location of the blocks shown in the remaining panels.

where the pore size is the same between training and test data.

(a) FDK reconstruction (full
slice)

(b) Our method + thresholding
(full slice)

(c) Global Otsu thresholding
(full slice)

Figure 2: Slices through the volume comparing our U-net based estimate to thresholding
results where the threshold is computed using Otsu’s method. Here the test data has
larger pores than the training data. Shown are 2D slices from the volumetric data.
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Figure 3: ROC curve evaluated on a single block comparing our method (blue) to direct
thresholding (orange).

(a) Original (full slice) (b) FDK reconstruction
(full slice)

(c) Our method + thresh-
olding (full slice)

(d) Global Otsu thresh-
olding (full slice)

Figure 4: Slices through the volume comparing our U-net based estimate to thresholding
results where the threshold is computed using Otsu’s method. Here the test data is from
a limited angle scan, where the poe statistics are the same between the training data and
the test data.

Looking at the limited angle dataset, where projections are only available
over a 90 degree range, similar benefits of the 3D block based U-net model
can be observed. We show full image slices from the 3D data in figures 4
and 5, showing the original data, the FDK reconstruction from limited angle
data as well as the 3D U-net based results as well direct thresholding of the
FDK reconstruction. Results here are shown for a dataset that has the same
pore size and larger pore sizes compared with the training data respectively.
The numerical performance, independent of the threshold choice, is shown
in the ROC curves in figures 6 and 7, which again clearly demonstrates the
benefits of using the block based 3D U-net over direct thresholding.
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(a) Original (full slice) (b) FDK reconstruction
(full slice)

(c) Our method + thresh-
olding (full slice)

(d) Global Otsu thresh-
olding (full slice)

Figure 5: Slices through the volume comparing our U-net based estimate to thresholding
results where the threshold is computed using Otsu’s method. Here the test data is from
a limited angle scan, where the pores are larger than those used in model training.

Figure 6: ROC curve evaluated on a full slice comparing our method (blue) to direct
thresholding (orange) on the limited angle scan data with similar pore size.

Figure 7: ROC curve evaluated on a full slice comparing our method (blue) to direct
thresholding (orange) on the limited angle scan data with larger pore size.
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5.1.2. Classification vs de-noising

In [13], the proposed 2D network was trained as a classifier rather than
a de-noising algorithm. To evaluate potential benefits of each approach, we
trained the 3D U-net also as a classifier as well as a de-noising model (chang-
ing the output non-linearity as well as cost function). Again, the data for
training was generated using a threshold of 0, (i.e. 50% porosity) and medium
size pore sizes (σ = 5). We then evaluated the performance of both models
on new data over a range of porosity fractions and pore sizes. Results are
shown in tables 5 and 6, where we measure performance using the classifi-
cation accuracy. Whilst there are small differences in performance between
these two models, these differences are small compared to the variation ob-
served between conditions. Interestingly, comparing the results where the
de-noising based U-net performed well to the results found with the other
de-noising methods, we see that the de-noising Unet works better than the
classification U-net exactly for those case where the de-noising U-net worked
less well than the other de-nosing methods methods.

σ = 10 σ = 5 σ = 1
0.1% porosity 0.9992 0.9989 0.9982
13.6% porosity 0.9869 0.9631 0.8629
50% porosity 0.9573 0.8835 0.5946

Table 5: Results of classification accuracy achieved with the U-net trained as a de-noiser
followed by global thresholding for classification. Numbers in bold indicate cases where
the training method outperformed the classification based training.

σ = 10 σ = 5 σ = 1
0.1% porosity 0.9935 0.9935 0.9920
13.6% porosity 0.9873 0.9645 0.8460
50% porosity 0.9599 0.8978 0.5942

Table 6: Results of classification accuracy achieved with the U-net trained as a classifier
followed by global thresholding for classification. Numbers in bold indicate cases where
the training method outperformed the de-noising based training.

5.2. Real data

Pore structures in the real data are likely to be somewhat different from
the Gaussian random field structure used to generate our training data.
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(a) Original high quality recon-
struction (full slice)

(b) Our method (full slice) (c) Our method + thresholding
(full slice)

(d) FDK reconstruction (full
slice)

(e) Otsu’s Thresholding (full
slice)

(f) Hand segmentation of high
quality data (full slice)

Figure 8: Slices through the volume comparing our U-net based estimate to thresholding
results where the threshold is computed using Otsu’s method. Here the test data is
generated from real scan data from [13] by re-projecting and FDK reconstructing with
128 projections. Shown are 2D slices from the volumetric data.

5.2.1. Application to limited numbers of projection real data

We again start by looking at the simpler case where we have only 128
projections collected over 360 degrees. A full 2D slice of the data is shown in
figure 8, where we show the original high quality data, the FDK reconstruc-
tion from limited measurements, the de-noised FDK reconstruction using our
method, a thresholded version of our de-noised method as well as the results
obtained by using global thresholding. Results are compared visually to a
hand segmentation of the volume as provided by [13].

The ROC curves for these two methods, as well as global thresholding
applied after the use of a 2D median filter with a 11×11 square kernel are
shown in figure 9, where it is clear that the machine learning based approach
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has significant benefits compared to global thresholding, though for the data
reconstructed from limited projections here, there is only a small benefit in
using the machine learning based de-noiser over the simpler median filter.

Figure 9: ROC curve evaluated on a full slice comparing our method (blue) to direct
thresholding (orange) on the scan data generated from a real scan using only 128 projec-
tions. Also shown is a thresholding estimate applied after median filtering of the image
using an 11×11 square kernel (magenta).

5.2.2. Application to limited angle real data

Results look however much more beneficial for the machine learning based
approach when looking at data with significant limited angle artefacts as
shown in figure 10, where we see visually, that the block based machine
learning based approach is able to identify some areas that are outside the
object, but where limited angle artefacts lead to FDK reconstructions with
voxel values similar to those seen inside the object and so could not be
distinguished based on thresholding alone. Whilst the method identifies some
of the internal object as being a void, the results are significantly better than
could have been achieved with thresholding. As our machine learning method
analyses individual blocks, it seems that the method learns the fine structure
of the anisotropic noise variations, both inside and outside the object in
order to distinguish which blocks are inside and which are outside, as this
distinction cannot be made based on overall grey level values alone (the top
left corner of the FDK image has the same average grey value as the inside
of the object).

This is also clear by looking at the ROC curves (see figure 11), where
again, thresholding (even with median filtering) can simply not distinguish

16



(a) Original high quality recon-
struction (full slice)

(b) Our method (full slice) (c) Our method + thresholding
(full slice)

(d) FDK reconstruction (full
slice)

(e) Otsu’s Thresholding (full
slice)

(f) Hand segmentation of high
quality data (full slice)

Figure 10: Slices through the volume comparing our U-net based estimate to thresholding
results where the threshold is computed using Otsu’s method. Here the test data is
generated from real scan data from [13] by re-projecting and FDK reconstructing from
a limited angle scan spanning only 90 degrees. Shown are 2D slices from the volumetric
data.

the object’s outside from the inside, whilst the machine learning method
preforms significantly better.

5.2.3. Comparision to 2D MSDC-net

We also trained the MSDC network as described above, both on the
limited angle (90 degrees) data as well as the reduced number of projection
data (128 projection). ROC curves for a slice cleaned up using the MSDC-net
followed by thresholding is shown in figure 12 and 13 for the 128 projection
and the 90 degree data respectively. Again, for the data generated from 128
projections, the machine learning methods perform very well and there is
little difference between the results for the 3D block based U-net results and
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Figure 11: ROC curve evaluated on a full slice comparing our method (blue) to direct
thresholding (orange) on the limited angle scan data generated from a real scan. Also
shown is a thresholding estimate applied after median filtering of the image using an
11×11 square kernel (magenta).

the 2D MSDC-net. The advantages of the 3D block based U-net de-noising
is however much more evident for the significantly more challanging limited
angle data, where the MSDC-net performed poorly compared to the 3D block
based U-net data.

Figure 12: ROC curve evaluated on a full slice comparing the MSDC-net (black) to direct
thresholding (red) on the scan data generated from a real scan using only 128 projections.
Not shown here are the results of our method, but the ROC curve here is visually indis-
tinguishable from the MSDC-net result shown and is thus omitted.

5.2.4. Comparison to 3D MSDC-net

As a final comparison we also trained a 3D block version of the MSCD
net, where we replaced the 2D convolutional layers in the network with 3D
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Figure 13: ROC curve evaluated on a full slice comparing our method (blue) to the 2D
MSDC-net (black) and direct thresholding (red) on the limited angle scan data generated
from a real scan. A

layers. We then trained on 32 ×32×32 voxel blocks in the same way as with
the 3D U-net and Autoencoder models. We here used the same real data
reconstructed from projections limited to 90 degrees as above, following the
exact same approach for training and testing, just with the different model.
Due to the high number of parameters, training took significantly longer
(just over 8 days for 50 epochs). A reconstructed slice is shown in figure 14,
which should be compared to the same slice as reconstructed with the U-net
shown in Figure 10b. To evaluate the performance numerically, we again
show the ROC curves, comparing the 3D MSDC net, the 3D Unet and direct
threshiolding in figure 15

6. Conclusions

Whilst X-ray tomographic image reconstruction has been shown to benefit
from data-driven methods, applying these to realistically sized data remains
challenging, whilst training still requires significant amounts of high quality
data that is not normally available. In this paper we have shown how a
learned de-noising approach can be trained on a single volumetric image and
then applied to a full 3D tomographic reconstruction. Working with smaller
3D blocks was shown to allow us to train the method on as single image whilst
at the same time providing substantial benefits over alternative approaches
in terms of the detection of internal object defects.

There remain however several challenges, especially in limited angle scan
settings, where significant data is missing. Whilst our results have shown
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Figure 14: Slice from the 3D volume reconstructed with the FDK method and de-noised
using a 3D MSCD network with 100 layers applied to overlapping image blocks of size
32×32×32.

Figure 15: ROC curve evaluated on a full slice comparing our method (blue) to the 3D
MSDC-net (black) and direct thresholding (red) on the limited angle scan data generated
from a real scan. A

strong benefits here, these heavily relied on the availability of training data
where high quality data was available. Whilst we have reduced training data
requirements to a single image, to apply these methods in real applications,
it will be crucial to collect this training data image in a similar setting to the
real data, which might still remain difficult in certain applications.

We have here used a local block model, that works on blocks with 32 pixel
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side length. This model is obviously only able to capture local structure on
this scale (e.g. local noise properties, local X-ray attenuation properties and
material boundaries), so won’t be able to capture larger features. In appli-
cations were larger features exist, we could either use larger blocks or use a
second model that is applied to larger blocks. To keep the computational
benefits of the small models used here, such an additional model could be
applied to a downsampled version of the image, where we first model the
large, low frequency features on a larger scale and then fill in the variation
on a smaller scale. Using two independent model, whilst being more effi-
cient, would not be able to capture statistical dependancies between these
features, though for the manufactured object inspection application studied
here, local material density variation and material fine structure might not
be correlated strongly to overall object shape properties. The problem with
such an approach might however be that we would not be able to train on a
single image, as we have far fewer blocks at this scale in any one image.
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