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Abstract: The frequency spectra of the gravito-electromagnetic perturbations of the

Kerr-Newman (KN) black hole with the slowest decay rate have been computed recently.

It has been found that KN has two families − the photon sphere and the near-horizon

families − of quasinormal modes (QNMs), which display the interesting phenomenon of

eigenvalue repulsion. The perturbation equations, in spite of being a coupled system of two

PDEs, are amenable to an analytic solution using the method of separation of variables in

a near-horizon expansion around the extremal KN black hole. This leads to an analytical

formula for the QNM frequencies that provides an excellent approximation to the numerical

data near-extremality. In the present manuscript we provide an extended study of these

properties that were not detailed in the original studies. This includes: 1) a full derivation

of a gauge invariant system of two coupled PDEs that describes the perturbation equations

[1], 2) a derivation of the eikonal frequency approximation [2, 3] and its comparison with

the numerical QNM data, 3) a derivation of the near-horizon frequency approximation [3]

and its comparison with the numerical QNMs, and 4) more details on the phenomenon

of eigenvalue repulsion (also known as level repulsion, avoided crossing or Wigner-Teller

effect) and a first principles understanding of it that was missing in the previous studies.

Moreover, we provide the frequency spectra of other KN QNM families of interest to

demonstrate that they are more damped than the ones we discuss in full detail.
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1 Introduction

When a black hole is (moderately) perturbed, it typically relaxes back to equilibrium by

emitting gravitational waves with damped characteristic frequencies − the quasinormal

mode (QNM) frequencies − that depend on the conserved charges of the black hole. It

follows that these QNM frequencies may be used to determine the mass and angular mo-

mentum of a black hole. In fact, this is one way of measuring the mass and angular

momentum of the final black hole [4] that emerges from the black hole binary coalescences

observed in gravitational wave detector experiments [5–10].

Astrophysical black holes are expected to be described by Einstein gravity; more specif-

ically, by its Kerr solution parametrized by the mass M and angular momentum J ≡Ma

(where a is the rotation parameter) [11]. Therefore, all LIGO-Virgo [6, 7] observations of

events compatible with black hole binaries [8–10] have been described so far mainly under

the working assumption that the coalescing objects can be modelled by the Kerr solution

or parametrically small deviations thereof [4]. However, to discuss the physical interpre-

tation of the observed data, we might also want to consider black hole solutions of the

Einstein-Maxwell theory that have an electric charge Q, in addition to M and J .1 In this

1For recent theoretical studies discussing black hole binary coalescence of charged rotating black holes

see [12, 13].
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case, the uniqueness theorems [14, 15] guarantee that the Kerr-Newman black hole (KN

BH) [16, 17] parametrized by M , J and Q is the unique, most general, analytic, stationary

asymptotically flat electro-vacuum black hole of Einstein-Maxwell theory. The Kerr [5],

Reissner-Nordström (RN) [18, 19] and Schwarzschild [20] black holes are then viewed as

limiting cases of KN with Q = 0, a = 0 and Q = a = 0, respectively.

Although astrophysical black holes are expected to quickly lose any electric charge that

they may have [21, 22], one should nevertheless study the properties of KN black holes and

compute their quasinormal mode frequencies. With this theoretical information at hand,

we will be better equipped to analyse and interpret observational data to unequivocally

establish that the observed system has no charge (or even to compute its charge in the lucky

but unlikely event of observing a system during the short timescale where the discharge

has not yet occurred). Furthermore, the QNM spectra of KN might be of interest for

other interpretations of observational data and for applications in both ground and space-

based gravitational wave detectors [6, 7, 23–26]. For example, it can be used to model

gravitational wave emission [27], and it might even be useful for constraining some dark

matter models [28] and modified gravity models [29]. For these reasons, in this manuscript

we conclude a series of papers, started in [1, 3], that compute the main families of QNMs

of the KN BH and identify their key properties.

The QNM spectra of Schwarzschild, RN and Kerr black holes were determined many

decades ago [30–46] (see review [47]). This was possible at a relatively small computational

cost because for these black holes the QNM spectrum turns out (remarkably) to be encoded

in a single separable equation that effectively yields a pair of angular and radial ODEs that

one can solve as an eigenvalue problem. For Schwarzschild and RN black holes this is

known as the (odd mode) Regge-Wheeler and (even mode) Zerilli equations [30–32], while

for the Kerr black hole this is known as the Teukolsky equation [38]. The existence of such

a simplification allows one to find the QNM spectra, and in doing so, to establish evidence

in favour of the linear mode stability of these solutions and to ultimately motivate a formal

proof of the linear mode stability of the Kerr solution [48].2

The state of affairs is very different in the Kerr-Newman case. Generic gravito-

electromagnetic perturbations of KN are no longer described by a single separable equation.

Thus, initial hints about the QNM spectra of KN were obtained only within perturbation

theory about the RN or Kerr black holes: perturbative results in the small rotation pa-

rameter a about RN were discussed in [58, 59], and perturbative results in the small charge

parameter Q around Kerr were computed in [60].

To make further progress and compute the KN QNM spectrum for generic Q and

J , one must solve the perturbed Einstein-Maxwell equation which is a coupled partial

differential equation (PDE) system. Näıvely, one expects to find a system of nine cou-

pled PDEs. However, working in the so-called phantom gauge, Chandrasekhar reduced the

problem to the study of ‘just’ two coupled PDEs [40] (see also [60]). Despite this significant

progress, finding the QNM spectrum and addressing the problem of the linear mode sta-

2Even though the nonlinear stability of Kerr remains an open problem (see [49–57] for recent progress),

it is also believed to be stable beyond the linear level.
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bility of the KN BH has remained an open problem for several decades. Further progress

was made in [1] where it was shown that generic gravito-electromagnetic perturbations

of KN (except for those that change the mass and angular momentum of the solution)

are described by a coupled system of two PDEs for two gauge invariant Newman-Penrose

(NP) fields. Upon gauge fixing, these reduce to the coupled PDE system originally found

by Chandrasekhar [40, 60]. Moreover, in [1] a numerical search of KN modes was finally

performed in regions of the KN parameter space that could be more prone to developing

an instability, finding none and thus providing evidence for the linear mode stability of

KN (further supported by the non-linear time evolution study of [61]). More recently, in

[3], the numerical code of [1] was made computationally more efficient and extended to

compute the frequency spectra, across the full KN 2-parameter space, of the most dom-

inant (i.e. with slowest decay rate) gravito-electromagnetic QNM family. These are the

modes that reduce — in Chandrasekhar’s notation [40] — to the Z2 (i.e. gravitational),

` = m = 2, n = 0 modes in the Schwarzschild limit (a = Q = 0), where the harmonic

number ` gives the number of zeros of the eigenfunction along the polar direction and n is

the radial overtone. In the process, [3] found that KN has not one but two main families of

Z2 ` = m = 2 QNMs which were coined the photon sphere (PS), and the near-horizon (NH)

families, although the sharp distinction between the PS and NH modes is unambiguous

only for small rotation a, i.e., when the KN black hole is close to the Reissner-Nordström

family. Quite remarkably, [3] further found that as we evolve along the KN parameter

space, the imaginary part of the frequency of these two PS and NH families intersect each

other (however, the real part of the frequency is very similar for the PS and NH modes

and, typically, does not display crossings). Sometimes this intersection of the imaginary

part of the frequencies is a simple crossover where the modes simply trade dominance but,

other times this interaction is much more intricate and displays a behaviour that suggests

repulsions between the PS and NH modes. These “eigenvalue repulsions” were unexpected

since they are not observed in the QNM spectra of neither Kerr nor Reissner-Nordström.3

As a result of these repulsions, well away from the RN limit of the KN solution, the PS

and NH families lose their individual identities and instead combine to yield what is more

appropriately described as a PS−NH family of QNMs and its radial overtones.

In the current manuscript we complement and complete the studies of [1, 3] in five

main ways:

1. We use the Newman-Penrose (NP) formalism to derive the aforementioned coupled

system of two PDEs for two gauge invariant NP variables, first presented in [1], that

describes the most general gravito-electromagnetic perturbations of KN (except for

those that change the mass and angular momentum of the solution) and that reduces,

upon gauge fixing, to the Chandrasekhar PDE system [40, 60]. This derivation was

only very briefly sketched in [1] but we now give a detailed derivation of it in Sec-

3 More recently, eigenvalue repulsions were also found in rotating de Sitter black holes where, besides

the PS and NH modes, one has a third QNM family associated to the cosmological constant [62]. With

hindsight, they are also observed in the de Sitter Reissner-Nordström black hole study of [63].
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tion 2. We also take the opportunity to revisit a simple proof of isospectrality of the

Schwarzschild and RN QNM spectra [1].

2. We can envisage solving the perturbation equations for the two gauge invariant NP

fields in a WKB analysis at large |m| = ` � 1. Similar to the Schwarzschild and

Kerr cases, the leading order contribution of this analysis, known as the eikonal or

geometric optics limit |m| = ` → ∞, is expected to be closely connected to the

properties of unstable null circular orbits revolving around the KN black hole. In

Section 3.1 we will compare this eikonal result with the numerical data for photon

sphere modes to conclude that the eikonal frequency indeed provides a relatively good

approximation to the PS frequencies that gets better as m grows.

3. There is a second class of QNMs that have eigenfunctions that, near-extremality,

are very localized around the event horizon and quickly decay to zero away from

the horizon. These are the near-horizon modes or the PS−NH modes that were

already mentioned above. This suggests doing a ‘poor-man’s’ matched asymptotic

expansion (MAE) whereby we take the near-horizon limit of the perturbed equations

to find the near-region solution and match with a vanishing far-region wavefunction

in the overlapping region where both solutions are valid. Remarkably, this can be

done because the perturbation equations, in spite of being a coupled system of two

PDEs, can be solved analytically in the near-horizon region around the extremal (zero

temperature) KN black hole using the method of separation of variables. Ultimately,

this is possible because the near-horizon limit of the extremal KN BH is a warped

circle fibred over AdS2 (Anti-de Sitter in 1+1 dimensions) and thus its perturbations

can be decomposed as a sum of known radial AdS2 harmonics. The system of 2

coupled PDEs for the gauge invariant NP fields in the near-horizon region of the

near-extremal KN geometry separates into a system of 2 decoupled radial ordinary

differential equations (ODEs) and a coupled system of 2 angular ODEs. We can solve

this near-horizon system, match it with the trivial far-region, and obtain an analytical

expression for the NH and PS−NH frequencies. The final expression was presented

in [3] but not the long derivation that leads to it. We will present this detailed

derivation in Section 3.2 and show that it provides an excellent approximation to the

numerical frequencies when we are close to extremality.

4. In the Reissner-Nordström background, there are exactly two distinct sectors of

QNMs: the aforementioned PS and NH families (and their radial overtones). How-

ever, as we move away from this limit in the KN parameter space we find that this

clear distinction between the two families is lost and the two families and their over-

tones combine in an intricate way to form what is more appropriately described as

PS−NH modes and their radial overtones. This happens because the phenomenon

of eigenvalue repulsion occurs. These eigenvalue repulsions were already reported in

[3] but in Section 4 we will give a detailed description of these eigenvalue repulsions

in the KN QNM spectra, and we will see how the frequency gaps between different

QNM families develop and evolve. No less important, we will provide a first princi-
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ples understanding of this phenomenon that was not discussed in [3]. For that we

will start by pointing out that eigenvalue repulsion is common in some eigenvalue

problems of quantum mechanical systems where it is also known as level repulsion,

avoided crossing or Wigner-Teller effect [64, 65]. In Section 4.1 we will start by

reviewing (following §79 of the Landau-Lifshitz textbook [64]) the simplest quantum

mechanical two-level system with a self-adjoint Hamiltonian that exhibits avoided

crossing. We will then extend the discussion of avoided crossing to the case where

the perturbed Hamiltonian of the system is not self-adjoint, as is the case with the

KN QNM system. Having understood that level repulsions should be present in the

QNM spectra of KN, in Section 4.2 we will give a detailed description of eigenvalue

repulsions in the frequency spectra of KN. The analysis of Section 4 together with

the one of Section 3.2 will allow us to conclude that the complex frequencies ω of

KN have level crossing (i.e. both the real and imaginary parts of the PS and NH

modes cross each other) exactly at one, and only one, point in the 2-dimensional

KN parameter space (we collect strong evidence to claim that this is the point at

extremality where the PS modes reach Im(ω) = 0, which will be represented by a ?

in Fig. 12). In all other KN black holes we either have no crossovers of the imaginary

and real parts of the frequency or the imaginary part of the PS and NH frequen-

cies cross, but not the real part of the frequencies. These features are in agreement

with the predicted properties of the eigenvalue spectra of a 2-dimensional parameter

space system with avoided crossing, as explained in Section 4.1. This analysis will

also explain why avoided crossing is not observed in the 1-parameter family of Kerr

solutions. Ultimately, the intricate QNM spectra of KN emerges from the fact that

level crossing occurs only at one point but the system reacts to avoid crossings at

other points. This leads to the observed elaborate features/repulsions when one is

approaching the level crossing point ? of the system.

5. After revisiting in Section 5 the properties of the Z2 ` = m = 2 KN QNMs (first

presented in [3]) that are expected to be the least damped ones, in Section 6 we will

present the frequencies of some other relevant gravito-electromagnetic modes of KN.

This will give solid, explicit, evidence that the Z2 ` = m = 2 QNM is indeed the

mode with the slowest decay rate in KN (as with the Schwarzschild, RN and Kerr

black holes).

2 Derivation of the gauge invariant perturbation equations for KN

In subsection 2.1 we briefly review the Kerr-Newman black hole solution. Then, in sub-

section 2.2, we detail how the Newman-Penrose (NP) formalism can be used to derive a

coupled system of two PDEs for two gauge invariant NP variables [1] that describes the

most general gravito-electromagnetic perturbations of KN (except for those that change

the mass and angular momentum of the solution). Finally, in subsection 2.3 we discuss the

boundary conditions that allow one to solve the final eigenvalue problem to find the QNM

frequencies of KN.
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2.1 KN black hole: an algebraically special Petrov type D solution

The KN BH solution with mass M , angular momentum J ≡Ma and charge Q is most com-

monly expressed in standard Boyer-Lindquist coordinates {t, r, θ, φ} (time, radial, polar,

azimuthal coordinates) [16, 17], in which the metric takes the form

ds2 = −∆

Σ

(
dt− a sin2 θdφ

)2
+

Σ

∆
dr2 + Σ dθ2 +

sin2 θ

Σ

[(
r2 + a2

)
dφ− adt

]2
,

A =
Qr

Σ

(
dt− a sin2 θdφ

)
, (2.1)

with ∆ = r2 − 2Mr + a2 +Q2 and Σ = r2 + a2 cos2 θ.

Roots of the function ∆, namely

r± = M ±
√
M2 − a2 −Q2, (2.2)

correspond to the inner and outer event horizons, respectively. Physically, one is most

interested in the outer event horizon (r = r+), which is a Killing horizon generated by the

Killing vector

K = ∂t + ΩH∂φ , (2.3)

with angular velocity ΩH and temperature TH given by

ΩH =
a

r2+ + a2
, TH =

1

4πr+

r2+ − a2 −Q2

r2+ + a2
, (2.4)

where we have used (2.2) to express M as a function of r+, a and Q. If r− = r+, i.e.

a = aext, the KN BH has a regular extremal (“ext”) configuration with T ext
H = 0, and

maximum angular velocity Ωext
H

Ωext
H =

aext

M2 + a2ext
aext =

√
M2 −Q2 . (2.5)

Here, we are interested in linear gravito-electromagnetic perturbations about the KN

background. Following Teukolsky [38, 66], we work within the Newman-Penrose (NP)

formalism [36]. We will not review the NP formalism here, but instead refer the reader

to Chapter 7 of [67] for a comprehensive review. Suffice it to say that the NP formalism

starts with a complex null frame or tetrad4 and uses this tetrad to transform all quantities

of interest (connection coefficients, Ricci, Weyl and Maxwell field strength components)

into complex scalars. In such a manner, the Weyl tensor, for example is transformed into

a set of five complex scalars: Ψa (a = 0, 1 · · · , 4) or the Maxwell field strength into a set of

three complex scalars: Φa (a = 0, 1, 2) [40, 67]. Furthermore, the existence of a NP frame

in which a certain combination of the Weyl scalars vanishes determines the Petrov type of

the background solution.

Teukolsky [38, 66] showed that on an algebraically special vacuum background, which

is defined to be one in which there exists a null frame so that Ψ0 = Ψ1 = 0, the linear

perturbations of the background may be expressed in terms of a decoupled equation

OΨ
(1)
0 = 0, (2.6)

4There is a spinor version of the NP formalism. However, here, we deal only with the Lorentzian version.
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where O is some linear second-order differential operator and Ψ
(1)
0 is the gauge-invariant

perturbed value of Ψ0.

Fortunately, the Kerr BH, which was of principal interest for Teukolsky, is algebraically

special. In fact it is Petrov type D (i.e. a NP frame exists such that the only non-vanishing

Weyl scalar is Ψ2). Furthermore, given global and hidden [68] symmetries of the Kerr BH,

the coordinate dependence of the perturbations separate leading to a single ODE. Thus,

the combined simplification of decoupling and separability on the Kerr BH allows one to

study its linearized mode perturbations [38, 47, 66] and prove its linear mode stability [42]

(see also footnote 2).

Like its vacuum cousin the Kerr BH, the KN BH is also Petrov type D. In particular,

in a NP null frame {e(a)} = {`,n,m, m̄} with (a = 1, 2, 3, 4) adapted to the principal null

directions, given by

` =

(
r2 + a2

∆

)
∂

∂t
+

∂

∂r
+
a

∆

∂

∂φ
, n =

1

2Σ

(
(r2 + a2)

∂

∂t
−∆

∂

∂r
+ a

∂

∂φ

)
m =

i√
2 r̄

(
a sin θ

∂

∂t
− i ∂

∂θ
+

1

sin θ

∂

∂φ

)
, (2.7)

where r̄ = r + ia cos θ, 5 the only non-zero Weyl scalar is6

Ψ2 =
Q2 −Mr̄

r̄r̄∗3
. (2.10)

Moreover, the only non-zero Maxwell scalar is

Φ1 =
Q

2r̄∗2
. (2.11)

However, importantly, the decoupling result of Teukolsky does not apply to the KN BH,

since it is a non-vacuum solution. In fact, such a decoupling result does not seem possible

for the KN BH (see e.g. [40]). The best that can be done is to derive a gauge-invariant

coupled PDE system [1], which we now derive and which reduces to the Chandrasekhar

system [40] under a particular gauge choice.

5The standard notation for the complex conjugation in the NP formalism is to use a bar. We will stick

to this notation as far as NP quantities are concerned. However, this should not be confused with r̄ defined

here, whose complex conjugation (r̄∗) we shall denote with a star.
6Recall that the 5 complex Weyl scalars Ψa in the NP formalism encode the information in the 10

independent components Cµνρσ of the Weyl tensor,

Ψ0 = −C1313 = −Cµναβ `µmν`αmβ , Ψ1 = −C1213 = −Cµναβ `µnν`αmβ ,

Ψ2 = −C1342 = −Cµναβ `µmνm̄αnβ , Ψ3 = −C1242 = −Cµναβ `µnνm̄αnβ ,

Ψ4 = −C2424 = −Cµναβ nµm̄νnαm̄β , (2.8)

and the 3 complex NP scalars Φa encode the information in the 6 independent components of the anti-

symmetric Maxwell field strength, F = dA,

Φ0 = F13 = Fαβ `
αmβ , Φ1 =

1

2
(F12 + F43) =

1

2
Fαβ(`αnβ + m̄αmβ), Φ2 = F42 = Fαβ m̄

αnβ . (2.9)
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2.2 Derivation of the gauge invariant perturbation equations

To discuss generic perturbations of the Kerr-Newman black hole one needs to find the

perturbed Einstein-Maxwell equation which, a priori is a system of nine coupled PDEs.

Although, a decoupling result cannot be obtained for the perturbations on the KN BH

background, one can still reduce this perturbation system to a simpler set of two gauge

invariant coupled PDEs [1] that, after gauge fixing, reduces to the Chandrasekhar coupled

system of two PDEs [40, 60]. In this section we give the details of the derivation of this

system of PDEs.

The linearised perturbations on any background satisfy the linearised Einstein equation

on that background. Therefore, any perturbation equation that we derive must ultimately

come from some operator acting on this linearised Einstein equation [69].

There are two common ways of deriving the Teukolsky equations: the original method

relies on a particular manipulation of the NP Bianchi equations, which now comprise the

non-trivial content of the Einstein equations [38]. Another method is a more straightfor-

ward contraction of the Penrose wave equation

2Rµνρσ +Rµν
τλRρστλ + 2Rµ

τ
ρ
λRντσλ − 2Rµ

τ
σ
λRντρλ = 0 (2.12)

into the NP null frame (Rµνρσ is the Riemann tensor) [70]. While the second method is

more prescriptive and does not require much guesswork as to which equations to look at

and how to manipulate them, the former method requires less calculation, once a strategy

has been determined. Therefore, we shall derive the coupled equations using the Bianchi

equations, which, of course, coincide with those derived from the Penrose wave equation.

We derive the equations as follows. First, let us settle the notation. In this section

all equations labelled as (7.xx) refer to equation (xx) in chapter 7 of [67]. Since these

are long equations we do not reproduce them here and simply refer the reader to that

reference. Further recall that the fundamental quantities in the NP formalism needed to

study perturbations are the directional derivative operators [40, 67],7

D = `µ∇µ , ∆̂ = nµ∇µ , δ = mµ∇µ , δ̄ = m̄µ∇µ , (2.13)

and the 12 complex spin coefficients defined from linear combinations of the 24 background

Ricci rotation connection coefficients γcab = e µ
(c) e

ν
(b)∇νe(a)µ [40, 67],

κ = γ311 = 0, σ = γ313 = 0, ν = γ242 = 0, λ = γ244 = 0, ε =
1

2
(γ211 + γ341) = 0,

µ = γ243 = − ∆

2Σr̄∗
, ρ = γ314 = − 1

r̄∗
, γ =

1

2
(γ212 + γ342) = −∆− r(r −M)r̄∗

2Σ2
r̄,

τ = γ312 = − i a sin θ√
2Σ

, α =
1

2
(γ214 + γ344) = −iΣ− 2a2 − rr̄

2
√

2a sin θΣ2
r̄2, π = γ241 =

i a sin θ√
2r̄∗2

,

β =
1

2
(γ213 + γ343) =

cot θr̄∗

2
√

2Σ
. (2.14)

7In the NP formalism, ∆ is used to denote n ·∇. However, since we are already using ∆ in the definition

of the KN BH metric (2.1), in order to avoid confusion, we denote ∆̂ ≡ n · ∇.
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Their complex conjugates (denoted by a bar) correspond to the replacement 3↔ 4 in γcab.
8

Consider the expression

δ̄(7.32d)− ∆̂(7.32c) (2.15)

as a first order perturbative equation. Let us consider the left hand side of this expression,9

which involves second order in derivative quantities: 10

(∆̂D − δ̄δ)Ψ4 + (δ̄∆̂− ∆̂δ̄)Ψ3 + 2(δ̄∆̂ + ∆̂δ̄)(Φ2Φ̄1) (2.16)

Now, the operator acting on Ψ3 is a commutation operator. Therefore, we can use the equa-

tion (7.6c) to rewrite it in terms of first order in derivative quantities, which can themselves

be turned into zeroth order in derivative quantities using equations (7.32c) and (7.32d).

However, the third term involving Φ2 cannot be similarly simplified. At best we can use

the commutation relations to rewrite δ̄∆̂ in terms of ∆̂δ̄. Therefore, it is clear already at

this stage that a decoupled equation is not going to be possible on the KN background

and at best we can only hope to derive a coupled equation involving Ψ4 and Φ2. Further

simplifying the first order in derivative terms using equations (7.32f), (7.32g), (7.32j) and

(7.32k) and using various NP equations (7.21a)–(7.21r), as well as the Maxwell equations

(7.22)–(7.25), gives{
(∆̂ + 3γ − γ̄ + 4µ+ µ̄)(D − ρ)− (δ̄ + β̄ + 3α− τ̄ + 4π)(δ + 4β − τ)− 3Ψ2 + 4Φ1Φ̄1

}
Ψ4

−4Φ̄1

{
(∆̂ + 3γ − γ̄ + 2µ)(δ̄ + 2α) + (2π + τ̄)(∆̂ + 2γ)

}
Φ2

+8
{

(∆̂ + 3γ − γ̄)λ+ (τ̄ − π)ν
}

(Φ1Φ̄1) = 0. (2.17)

At this stage we find that perturbed quantities λ and ν are obstructions to a coupled

equation involving Ψ4 and Φ2. However, inspecting the Bianchi equations closely, we find

that λ appears in equation (7.32c) with coefficient 3Ψ2 +2Φ1Φ̄1, while ν appears in (7.32d)

with coefficient 3Ψ2 − 2Φ1Φ̄1. Thus, we can solve for λ and ν in terms of differential

operators on perturbed quantities Ψ3, Ψ4 and Φ2. Significantly, the operator on λ in

equation (2.17) and the form of (7.32c) means that Ψ3 will end up with a second order

derivative ∆̂δ̄, the same operator that acts on Φ2 in equation (2.17). Thus, we have the

possibility of defining a perturbed quantity involving a particular combination of Φ2 and

Ψ3 such that this quantity couples with Ψ4.

Studying the form of the equations, it is not too difficult to conclude that such a

quantity can be defined and is of the form

ϕ−1 = 2Φ1Ψ3 − 3Ψ2Φ2. (2.18)

8KN is Petrov type D so, from the Goldberg-Sachs, one must have κ = σ = ν = λ = 0. Moreover, one

has ε = 0 because we have chosen ` to be tangent to an affinely parametrized null geodesic `µ∇µ`ν = 0.
9Note that in equations (7.xx), the derivative terms are written on the left hand side, while the rest of

the terms are placed on the right.
10Generally, we will use the notation that NP scalars with superscript (0) refer to scalars in the KN

background and the superscript (1) to first order perturbations of the scalar. However, in the equations

below, for brevity, we suppress the superscripts. From the expressions above for the background NP scalars

it should be clear what is a background quantity and what is a first order perturbed quantity.
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The resulting equation is of the form{
(∆̂ + 3γ − γ̄ + 4µ+ µ̄)(D − ρ)− (δ̄ + β̄ + 3α− τ̄ + 4π)(δ + 4β − τ)− 3Ψ2

+ 4Φ1Φ̄1

[
1− 2(∆̂ + 3γ − γ̄)

(
D − ρ

3Ψ2 + 2Φ1Φ̄1

)
− 2(τ̄ − π)

3Ψ2 − 2Φ1Φ̄1
(δ + 4β − τ)

]}
ϕ−2

+ 4Φ1

{
(∆̂ + 3γ − γ̄ + 2µ)

(
δ̄ + 2α+ 6π

3Ψ2 + 2Φ1Φ̄1

)
+

(τ̄ − π)

3Ψ2 − 2Φ1Φ̄1
(∆̂ + 2γ + 6µ)

}
ϕ−1 = 0,

(2.19)

where ϕ−2 = Ψ4.

The second coupled equation is derived in a similar manner, except that it is now

easier, because we know that the perturbed quantity that couples to Ψ4 is ϕ−1 as defined

in (2.18). Thus we begin by considering

(∆̂D − δ̄δ)(2Φ1Ψ3 − 3Ψ2Φ2), (2.20)

using the fact that an equation for (∆̂D − δ̄δ)Ψ3 may be obtained from

D(7.32d)− δ(7.32c)

and an equation for (∆̂D − δ̄δ)Φ2 may be obtained from

∆̂(7.23)− δ̄(7.25).

The strategy used to simplify the resulting equation is very similar to that used to derive

equation (2.19). Therefore, without going through the details, we give the resulting coupled

equation:{
(∆̂ + 3γ + γ̄ + 5µ+ µ̄)(D − 4ρ)− (δ̄ + α+ β̄ − τ̄ + 5π)(δ + 2β − 4τ)

+ 4Φ1Φ̄1

[
(D − 4ρ+ ρ̄)

(
∆̂ + 2γ + 6µ

3Ψ2 − 2Φ1Φ̄1

)

+ (δ + 3β − ᾱ− 4τ − π̄)

(
δ̄ + 2α+ 6π

3Ψ2 + 2Φ1Φ̄1

)]}
ϕ−1

− 8(Φ1)
2Φ̄1

{
(D − 2ρ+ ρ̄)

(
δ + 4β − τ

3Ψ2 − 2Φ1Φ̄1

)

+ (δ + 3β − ᾱ− 2τ + π̄)

(
D − ρ

3Ψ2 − 2Φ1Φ̄1

)}
ϕ−2 = 0. (2.21)

In summary, we have derived from the NP equations two coupled PDEs, (2.19) and (2.21),

satisfied by ϕ−2 = Ψ4 and ϕ−1 = 2Φ1Ψ3 − 3Ψ2Φ2, which are invariant under infinitesimal

diffeomorphisms and tetrad rotations [40].
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These NP scalars ϕ−2 and ϕ−1 are the ones relevant for the study of perturbations

that are outgoing at future null infinity and regular at the future horizon. Note that we

could have equally derived a set of coupled equations satisfied by Ψ0 and 2Φ1Ψ1 − 3Ψ2Φ0;

the positive spin counterparts of ϕ−2 and ϕ−1. Such equations are simply obtained via

Geroch-Held-Penrose (GHP) transformations [37] of equations (2.19) and (2.21) and are

relevant for perturbations outgoing at past null infinity.

We can now substitute the background values of the NP quantities into equations (2.19)

and (2.21) (recall footnote 10). Since ∂t, ∂φ are Killing vector fields of the KN background,

its gravito-electromagnetic perturbations can be Fourier decomposed as e−iωteimφ, where

ω and m are the frequency and azimuthal quantum number of the mode. Moreover, we

rescale the perturbed quantities, {ϕ−2, ϕ−1} → {ψ−2, ψ−1} as [1]:

ψ−2 = (r̄∗)4 Ψ
(1)
4 ,

ψ−1 =
(r̄∗)3

2
√

2Φ
(0)
1

(
2Φ

(0)
1 Ψ

(1)
3 − 3Ψ

(0)
2 Φ

(1)
2

)
. (2.22)

Having done this, we obtain the following coupled system of two PDEs (first presented in

[1]):11 (
F−2 +Q2G−2

)
ψ−2 +Q2H−2ψ−1 = 0 ,(

F−1 +Q2G−1
)
ψ−1 +Q2H−1ψ−2 = 0 , (2.23)

where the second order differential operators {F ,G,H} are given by

F−2 = ∆D†−1D0 + L−1L†2 − 6iωr̄ ,

G−2 = ∆D†−1α−r̄
∗D0 − 3∆D†−1α− − L−1α+r̄

∗L†2 + 3L−1α+ia sin θ ,

H−2 = −∆D†−1α−r̄
∗L−1 − 3∆D†−1α−ia sin θ − L−1α+r̄

∗∆D†−1 − 3L−1α+∆ ,

F−1 = ∆D1D†−1 + L†2L−1 − 6iωr̄ , (2.24)

G−1 = −D0α+r̄
∗∆D†−1 − 3D0α+∆ + L†2α−r̄

∗L−1 + 3L†2α−ia sin θ ,

H−1 = −D0α+r̄
∗L†2 + 3D0α+ia sin θ − L†2α−r̄

∗D0 + 3L†2α− ,

with α± ≡
[
3(r̄2M − r̄Q2)±Q2r̄∗

]−1
, and the radial and angular Chandrasekhar operators

[40] are defined

Dj = ∂r +
iKr

∆
+ 2j

(r −M)

∆
, Kr = am− (r2 + a2)ω;

Lj = ∂θ +Kθ + j cot θ, Kθ =
m

sin θ
− aω sin θ. (2.25)

The complex conjugate of these operators, namely D†j and L†j , can be obtained from Dj
and Lj via the replacement Kr → −Kr and Kθ → −Kθ, respectively.

11There is a set of two coupled PDEs — related to (2.23) by a Geroch-Held-Penrose [37] transformation

— for the quantities ψ2 and ψ1 that are the positive spin counterparts of (2.23); however these would be

relevant if we were interested in perturbations that were outgoing at the past null infinity.
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Note that fixing a gauge in which Φ
(1)
0 = Φ

(1)
1 = 0, (2.23) reduces to the Chandrasekhar

coupled PDE system [40] (see also the derivation in [60]). Finally, note that in the limit

Q→ 0 equations (2.23) decouple yielding the familiar Teukolsky equation for Kerr [38].

Before finishing this section, we take the opportunity to discuss a property of QNMs of

Schwarzschild and RN black holes that has raised a lot of attention in the literature. This

is the fact that the spectra of the Regge-Wheeler (aka odd or axial) [30], and Zerilli (aka

even or polar) [31] QNMs is isospectral (i.e. these two QNM families have exactly the same

frequency) [40]. In the Schwarzschild limit, (2.23) decouples and we can look independently

at the gravitational ψ−2 or electromagnetic ψ−1 perturbations. In particular, the decoupled

equation for ψ−2 (ψ−1) corresponds to the original Teukolsky master equation [38] for

gravitational (electromagnetic) perturbations in Kerr with a = 0. Thus, we can use the

Teukolsky master equation to study the QNMs of the Schwarzschild black hole, instead of

the Regge-Wheeler−Zerilli (RWZ) formalism. The two must give the same spectrum. The

Teukolsky formulation has a single gauge invariant variable ψ−2 that must translate into two

gauge invariant variables in the RWZ formulation, namely Regge-Wheeler’s Φv and Zerilli’s

Φs eigenfunctions. Refs. [71–73] give the unique differential map that allows one to derive

Φv and Φs from ψ−2: see e.g., equation (4.16) of [73] (which holds for any cosmological

constant). Isospectrality is the statement that Φv and Φs have the same QNM spectrum.

Since Φv and Φs are constructed from the same Teukolsky NP gauge invariant variable

ψ−2, it follows that the eigenfrequencies of the Regge-Wheeler and Zerilli QNMs must

necessarily be the same. This proves the isospectral property of QNMs in Schwarzschild

and RN black holes and shows that this property is only non-trivial when viewed from the

perspective of the Regge-Wheeler−Zerilli formalism.12

2.3 Boundary conditions of the problem

To have a well-posed boundary value problem we must supplement the coupled PDE system

(2.23) with appropriate (physical) boundary conditions. At spatial infinity, we require only

outgoing waves, and at the future event horizon, we keep only regular modes in ingoing

Eddington-Finkelstein coordinates. Moreover, we must require regularity at the north

(south) pole θ = π (−π). In this subsection, we state what the conditions that these

boundary conditions impose on the fields {ψ−1, ψ−2} are.13

Recall that ω and m are the frequency and azimuthal quantum number m of the

linear mode perturbations, respectively. The t− φ symmetry of the KN BH allows one to

consider only modes with Re(ω) ≥ 0, as long as we study both signs of m. Then, to solve

the coupled PDEs (2.22), we need to impose physical boundary conditions. At spatial

infinity, a Frobenius analysis of (2.23) yields two independent solutions that at leading

order behave as C±e
±iωr. Imposing the boundary condition C− = 0, i.e. allowing only

12The proof given in [1] and revisited here is for ψ−2 in the Schwarzschild black hole but it extends

trivially to ψ−1 modes and the RN background.
13The reader interested on a more detailed discussion of boundary conditions in perturbation problems

about asymptotically flat backgrounds can see e.g. [74–76].

– 12 –



outgoing waves yields the decay:

ψs
∣∣
∞'e

iωrr
−(2s+1)+iω

r2++a2+Q2

r+

(
αs(θ) +

βs(θ)

r
+ · · ·

)
,

where s = −2,−1, and βs(θ) is a function of αs(θ) and its derivative fixed by expanding

(2.23) at spatial infinity.

At the horizon, the boundary condition must be such that only ingoing modes are

allowed. A Frobenius analysis at this boundary gives two independent solutions,

ψs
∣∣
H
∼ Ain (r − r+)

−s−iω−mΩH
4πTH [1 +O (r − r+)] +Aout (r − r+)

s+i
ω−mΩH

4πTH [1 +O (r − r+)] ,

(2.26)

where Ain, Aout are arbitrary amplitudes and ΩH , TH are the angular velocity and tem-

perature defined in (2.4). To impose the correct boundary condition, we introduce the

ingoing Eddington-Finkelstein coordinates {v, r, x, φ̃}, which extend the solution through

the horizon. These are defined via

t = v −
∫
r2 + a2

∆
dr , φ = φ̃−

∫
a

∆
dr . (2.27)

The boundary condition is determined by the requirement that the metric and Maxwell

field perturbations are regular in these ingoing Eddington-Finkelstein coordinates. This

happens if and only if ψs(r) behaves as ψs|H ∼ ψEF
s |H (r − r+)

−s−iω−mΩH
4πTH where ψEF

s (r) is

a smooth function. Thus, we must set Aout = 0 in (2.26). To conclude, at the horizon, a

Frobenius analysis whereby we require only regular modes in ingoing Eddington-Finkelstein

coordinates, yields the expansion

ψs
∣∣
H
'(r − r+)

−s− i(ω−mΩH )

4πTH [as(θ) + bs(θ)(r − r+) + · · · ],

where bs(θ) is a function of as(θ) and its derivative.

At the north (south) pole x ≡ cos θ = 1 (−1), regularity dictates that the fields must

behave as (ε = 1 for |m| ≥ 2, while ε = −1 for |m| = 0, 1 modes)

ψs
∣∣
N,(S)
' (1∓ x)ε

1±1
2

s+|m|
2
[
A±s (r) +B±s (r)(1∓ x) + · · ·

]
,

where B+
s (r)(B−s (r)) is a function of A+

s (r)(A−s (r)) and its derivatives along r, whose exact

form is fixed by expanding (2.23) around the North (South) pole.

The PDE system (2.23) subject to the above boundary conditions that describe the

gravito-electromagnetic QNMs of the KN black hole with parameters {M,a,Q} has a useful

scaling symmetry. When we scale the metric and Maxwell field strength as gµν → Λ2gµν
and Fµν → ΛFµν , for an arbitrary constant Λ, the equations of motion are left invariant.

This means we can scale out one of the 3 parameters of the solution. Therefore, we can work

with the adimensional parameters {ã, Q̃} ≡ {a/M,Q/M} (or {a/r+, Q/r+}) and ω̃ ≡ ωM .

To find the frequency spectra of KN BHs we thus ‘just’ need to scan a 2-dimensional space.

To solve the PDE problem numerically, we use a pseudospectral method that searches

directly for specific QNMs using a Newton-Raphson root-finding algorithm. We refer the
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reader to the review [77] and [74–76, 78–84] for details. The exponential convergence of

the method, and the use of quadruple precision, guarantee that the results are accurate up

to, at least, the eighth decimal place.

3 Two families of QNMs: photon sphere and near-horizon modes

The frequency spectra of gravito-electromagnetic perturbations of KN has two main fami-

lies of QNMs: 1) the photon sphere (PS), and 2) the near-horizon (NH) families. Each of

these families can dominate the frequency spectra (i.e. have lower |Im ω̃|) depending on

the region of the parameter space we look at. These two families are the natural extension

to the rotating case (a 6= 0) of the PS and NH families of QNMs that are present in the

Reissner-Nordström case, although this sharp distinction between the two families is un-

ambiguous only for small rotation a parameter. There are particular regimes of parameter

space where the frequency of each of these two families can be captured by perturbative

expansions (WKB expansion and/or a near-horizon matched asymptotic expansion). This

allows us to identify these two families of QNMs (thus providing the basis for their nomen-

clature), while providing also analytical formulae that give good approximations to the

actual frequencies. Therefore, in this section we discuss in detail two useful perturbative

analyses. In subsection 3.1 we consider a large m WKB expansion that identifies the PS

QNMs, while, in subsection 3.2 we describe a simple but efficient matched asymptotic

expansion that captures the NH modes.

Before considering the perturbative analyses, it is enlightening to identify the two fami-

lies of QNMs in the simplest black hole where they co-exist. This is the Reissner-Nordström

(RN) black hole. This identification will be our guide once we delve into the parameter

phase space of KN away from the RN limit. It will also allow us to speculate about expec-

tations for the KN QNM spectra that will then be discussed in the next subsections 3.1-3.2

and in section 4.

In Fig. 1 we plot the frequency spectra for ` = m = 2, n = 0 gravitational (Z2) QNMs

in the RN BH,14 which are the QNMs with slowest decay rate in RN and KN as we will

demonstrate in section 6. We see that there are two clearly distinct families of QNMs: 1)

the PS family (orange diamonds) which dominates for a wide range of charge, namely for

Q̃ < Q̃RN
c ∼ 0.9991342 (and reduces to the Schwarzschild QNM when Q = 0 [40, 41]), and

2) the NH family (green circles) which becomes the slowest decaying mode for Q̃RN
c < Q̃ ≤ 1

and approaches Im ω̃ = 0 at extremality as best seen in the inset plot (in RN these NH

modes have Re ω̃ = 0 for any Q̃).

By continuity, once rotation is turned on but with small ã = a/M , we expect the

KN spectra to be similar to Fig. 1 (NH modes should still approach extremality with

Im ω̃ = 0 but this time, as we confirm later, with Re ω̃ = mΩ̃ext
H 6= 0). Moreover, it also

seems reasonable to expect the existence of a line − let us denote it as Q̃ = Q̃c(ã) − that

describes the intersection of the PS and NH surfaces and that eventually extends from

Q̃c(ã = 0) = Q̃RN
c (identified in Fig. 1) all the way up towards extremality. However, and

14This figure partially reproduces the top-left panel of later Fig. 13 where the charge is however measured

in units of r+.
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Figure 1. Photon sphere (PS; orange diamonds) and near-horizon (NH; green disks) gravitational

QNMs (Z2) for the Reissner-Nordström BH (a = 0) with ` = m = 2, n = 0. In the RN case the

PS and NH modes are unambiguously identified. This data was obtained by solving the Regge-

Wheeler−Zerilli ODE for RN [30, 31] and it matches the data for KN with a = 0, obtained by

solving the coupled set of two PDEs for {ψ−2, ψ−1}, which validates our KN numerics. The black

square with ω̃ ' 0.431341 − 0.0834603 i is obtained by solving the Regge-Wheeler−Zerilli ODE

directly at extremality (where we have to impose regular boundary conditions on a degenerate

horizon); the non-extremal frequencies approach this value as Q̃ → 1 which is yet a further check

of our numerics. Left panel: Imaginary part of the (dimensionless) frequency as a function of the

(dimensionless) charge. The inset plot shows the region where PS and NH modes intersect: above

Q̃ = Q̃RN
c ∼ 0.9991342, the NH modes have lower |Im ω̃| but this quantity grows very large very

quickly for Q̃ < Q̃RN
c where the PS mode is comfortably the dominant one. Right panel: Real

part of the frequency as a function of charge. The NH mode has Re ω̃ = 0 in the RN limit (and

only in this limit) and is not shown. Thus, the real part of the PS and NH frequencies have no

crossing (unlike the imaginary part).

interestingly, our full numerical results will prove that our expectations are only partially

correct. Indeed, the KN frequency spectra for fixed but small ã is similar to Fig. 1. In

particular, for 0 ≤ Q̃ < Q̃c(ã), the PS family has the lowest |Im ω̃| and for Q̃c(ã) < Q̃ ≤
Q̃ext it is the NH QNM that has slowest decay rate. Moreover, keeping a/aext small,

these two families trade dominance along their intersection line Q̃ = Q̃c(ã) with a simple

crossover in the imaginary part of the frequency like the one observed in the inset plot of

the left panel of Fig. 1 (the real part of the frequencies display no crossing as is clear in

the right panel of Fig. 1 for a = 0). However, as we keep increasing the rotation a/aext, we

find that we enter a region of the parameter space (a window of Q̃) where an unexpected

change occurs: instead of having simple crossovers in Im(ω̃) where the PS and NH families

should intersect, one starts observing intricate eigenvalue repulsions in Im(ω̃) that will be

discussed in section 4 and associated Figs. 13-14, and the sharp distinction between PS and

NH modes is lost (in this region PS and NH modes have similar Re(ω̃) with no crossings).
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So much so that the QNM families will now be a combination (to be made precise later)

of the two old modes in what will be more properly denoted as PS-NH families and their

radial overtones.

After this brief summary of the findings to come, let us discuss the eikonal and near-

horizon analytical descriptions of the KN modes.

3.1 Photon sphere modes in the eikonal limit: analytical formula for the fre-

quencies

In the eikonal or geometric optics limit ` ∼ |m| � 1, where a WKB approximation holds,

there are QNM frequencies − known as “photon sphere”(PS) QNMs − that are closely

related to the properties of the unstable circular photon orbits in the equatorial plane

of the KN black hole. Namely, the real part of the PS frequency is proportional to the

Keplerian frequency Ωc of the circular null orbit and the imaginary part of the PS frequency

scales with the Lyapunov exponent λL of the orbit [85–94]. The latter describes how quickly

a null geodesic congruence on the unstable circular orbit increases its cross section under

infinitesimal radial deformations.

The PS modes with an eikonal limit that we will consider are those with ` = m or

` = −m. This includes the ` = m = 2, n = 0 modes that have the slowest decay rate and

that we typically display as orange diamond curves/surfaces (e.g. in Fig. 1 and Figs. 13-14,

among others). And these PS modes of the KN BH are those that reduce to the well-

known QNM frequencies of Schwarzschild BH in the limit Q → 0 and a → 0 (typically

identified as a dark-red point in our figures) first studied by Chandrasekhar (see Table

V, page 262 of [40]). Therefore, in this subsection we use geometric optics to compute

an analytical approximation (to be denoted as ωeikn
PS ) for the frequency of these PS modes

in the KN background. A similar analysis was originally done in [2, 95]. Although, the

final analytical formula for the PS QNM frequencies is strictly valid in the WKB limit

` ∼ |m| → ∞, in practice we find that it matches reasonably well the PS frequencies even

for values as small as ` = |m| = 2. Therefore, the eikonal limit allows us to identify the

nature of this QNM family and, furthermore, it provides a check on our numerics.

The geodesic equation, describing the motion of pointlike particles around a KN BH,

leads to a set of quadratures. A priori this is perhaps an unexpected result since KN only

possesses two Killing fields, K = ∂/∂t and ξ = ∂/∂φ. We seem to be one Killing field

short of an integrable system. However, there is another conserved quantity − the Carter

constant − associated to a Killing tensor Kab, which saves the day [40].

The most direct way to identify this integrable structure is to consider the Hamilton-

Jacobi equation [40]:
∂S

∂xµ
∂S

∂xν
gµν = 0 , (3.1)

where S is known as the principal function. One can obtain the motion of null particles by

noting that, according to Hamilton-Jacobi theory, the principal function and the particle

momenta are related by
∂S

∂xµ
≡ pµ and pµ =

dxµ

dτ
, (3.2)
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with τ denoting an affine parameter of the null geodesic.

We can then take a separation ansatz of the form (x = cos θ, where θ is the polar

angle)

S = −e t+ j φ+R(r) +X(x) , (3.3)

where the constants e and j are the conserved charges associated with the Killing fields K

and ξ via15

e ≡ −Kµẋ
µ and j ≡ ξµẋµ , (3.4)

where the dot ( ˙ ) denotes a derivative with respect to the affine parameter τ .

Substituting the ansatz (3.3) into the Hamilton-Jacobi equation (3.1) for null geodesics

yields a coupled system of ordinary differential equations for R(r) and X(x) (the prime ′

denotes a derivative w.r.t. the argument, r or x, respectively)

∆2R′2 −
[
e
(
r2 + a2

)
− aj

]2
+ ∆

[
Q+ (j − ae)2

]
= 0 ,

X ′2 − (j − ae)2 +Q
1− x2

+

[
ae
(
1− x2

)
− j
]2

(1− x2)2
= 0 , (3.5)

where Q is a separation constant known as the Carter constant.

From (3.2), i.e. ẋµ = gµν ∂S
∂xµ , one further has

ṫ =

(
r2 + a2

) [
e
(
r2 + a2

)
− aj

]
+ a∆

[
j − ae

(
1− x2

)]
∆ (r2 + a2x2)

,

φ̇ =

(
1− x2

)
a
[
e
(
r2 + a2

)
− aj

]
+ ∆

[
j − ae

(
1− x2

)]
∆ (1− x2) (r2 + a2x2)

. (3.6)

We are interested in matching the behaviour of null geodesics with that of QNMs with

large values of ` = |m|, so we can restrict attention to the equatorial plane where x = 0.

From (3.5), such geodesics exist only if at τ = 0 one has X(0) = Ẋ(0) = 0 and Q = 0.

Defining the geodesic impact parameter

b ≡ j

e
, (3.7)

the equation (3.5) governing the radial motion now gives

ṙ2 = V (r; b) , (3.8)

where the potential is

V (r; b) =
j2

b2

(
1 +

a2 − b2

r2
+

2M(b− a)2

r3
− Q2(b− a)2

r4

)
. (3.9)

We are now interested in finding the photon sphere (region where null particles are

trapped on circular unstable orbits), i.e. the values of r = rs and b = bs, such that

V (rs, bs) = 0 and ∂rV (r, b)|r=rs,b=bs = 0. (3.10)

15For massive particles, these coincide with the energy and angular momentum of the particle, but for

massless particles e and j have no physical meaning since they can be rescaled. The ratio j/e, however, is

invariant under such rescalings.
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From the first equation we get

bs(rs) =
r2s
√

∆(rs) + a
(
Q2 − 2Mrs

)
r2s − 2Mrs +Q2

, (3.11)

which we insert in the second equation of (3.10) to get a fourth order polynomial equation

for rs:

4
[
r2s + 2a

(√
∆rs + a

)]2
−

(
3Mrs +

√
9M2r2s − 8Q2

[
r2s + 2a

(√
∆rs + a

)])2

= 0 ,

(3.12)

where ∆(r) is defined below (2.1) and we are interested in solutions with rs > r+. Alter-

natively, we can solve (3.10) to get the black hole parameters M and Q that have circular

orbits with radius rs and impact parameter bs, namely

M =
rs
(
b2s − a2 − 2r2s

)
(bs − a)2

, Q =
rs
√
b2s − a2 − 3r2s√
(bs − a) 2

. (3.13)

There are two real roots rs higher than r+ which are in correspondence with two PS modes:

the co-rotating one (with m = `) that maps to the eikonal orbit with radius rs = r−s and

bs > 0 (and that has the lowest |Im ω̃|) and the counter-rotating mode with m = −` which

is in correspondence with the orbit with radius rs = r+s and bs < 0, with r+s ≥ r−s ≥ r+.

The two real roots r±s higher than r+ are displayed in Fig. 2.

We can finally compute the orbital angular velocity (also known as Kepler frequency)

of the null circular photon orbit, that is simply given by

Ωc ≡
φ̇

ṫ
=

1

bs
, (3.14)

Figure 2. The radii r±s (with r+s ≥ r−s ≥ r+) of the two unstable circular orbits in the equatorial

plane of the KN black hole that ultimately yield the co-rotating m = ` (in the r−s case) and the

counter-rotating m = −` (in the r+s case) PS QNM frequencies in the eikonal limit. For a = 0, one

has r+s = r−s , and at (Q̃, ã) = (0, 1) one has r−s = r+.
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where we used (3.6) evaluated at r = rs and b = bs. We can also compute the largest

Lyapunov exponent λL, measured in units of t, associated with infinitesimal fluctuations

around photon orbits with r(τ) = rs. This can be done by perturbing the geodesic equation

(3.8) with the potential (3.9) evaluated on an orbit with impact parameter b = bs and

setting r(τ) = rs + δr(τ). One finds that small deviations decay exponentially in time as

δr ∼ e−λLt with Lyapunov exponent given by

λL =

√
1

2

V ′′(r, b)

ṫ(τ)2

∣∣∣∣
r=rs,b=bs

=
1

bsr2s

∣∣r2s + a2 − abs
∣∣

|bs − a|
√

6r2s + a2 − b2s . (3.15)

One finally obtains the approximate spectrum of the photon sphere family of QNMs

in the WKB limit ` = |m| � 1 using [85–93]

ωeikn
PS ' mΩc − i

(
n+

1

2

)
λL

' m

bs
− i n+ 1/2

bsr2s

∣∣r2s + a2 − abs
∣∣

|bs − a|
√

6r2s + a2 − b2s , (3.16)

where n = 0, 1, 2, . . . is the radial overtone. This is the eikonal approximation for the

PS modes we were looking for. Note that this expression is blind to the spin of the

perturbation, i.e. it is the same for scalar and gravito-electromagnetic perturbations. The

eikonal analysis, although only based on a geodesic analysis, gives the same result as a

Figure 3. Comparing the eikonal prediction ωeikn
PS (light blue surface) with the actual numerical

frequencies (orange points) for co-rotating PS modes with m = ` = 6, n = 0. The former is

given by (3.11)-(3.16) with rs = r−s of Fig. 2 and bs > 0. The brown curve at extremality has

Im ω̃ = 0 and Re ω̃ = mΩ̃ext
H . So, it turns out that m = 6 seems to be already within the WKB

validity |m| � 1. The dark-red point at (Q̃, ã) = (0, 0) coincides with the Schwarzschild QNM,

ω̃ ' 1.21200982− 0.09526585 i, first computed in [40].
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leading order |m| = ` → ∞ WKB analysis of the wave perturbation equations. Although

the eikonal frequency is independent on the spin of the perturbation, the higher order

frequency corrections in the 1/m WKB expansion should certainly depend on the spin of

the perturbation.

Figure 4. Comparing the eikonal prediction ωeikn
PS (light blue surface) with the actual numerical

frequencies (orange points) for co-rotating PS modes with m = ` = 2, n = 0. The former is

given by (3.11)-(3.16) with rs = r−s of Fig. 2 and bs > 0. The brown curve at extremality has

Im ω̃ = 0 and Re ω̃ = mΩ̃ext
H . Although m = 2 is certainly outside the regime of validity of the

geometrics optics approximation, |m| � 1, it turns out that the approximation (3.16) proves to

be reasonably good. The dark-red point at (Q̃, ã) = (0, 0) coincides with the Schwarzschild QNM,

ω̃ ' 0.37367168− 0.08896232 i, first computed in [40, 41].
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Figure 5. The eikonal prediction for (3.16) for ωeikn
PS evaluated at extremality (dark-blue line). The

dotted brown line has Im ω̃ = 0 and Re ω̃ = mΩ̃H (they correspond to the solid brown lines in

Figs. 3-4). The red ? point is at ãext = ãeikn
? = 1

2 .

Recall that (3.16) is strictly valid in the geometric optics limit, |m| � 1, with cor-
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Figure 6. Comparing the eikonal prediction ωeikn
PS (light blue surface) with the actual numerical

frequencies (blue/green) for counter-rotating PS modes with m = −` = −2, n = 0. The former is

given by (3.11)-(3.16) with rs = r+s of Fig. 2 and bs < 0. Although m = −2 is certainly outside

the regime of validity of the geometrics optics approximation, |m| � 1, it turns out that it already

gives a good qualitative approximation for the shape of the PS QNM surface. The dark-red point

at (Q̃, ã) = (0, 0) coincides with the Schwarzschild QNM, ω̃ ' 0.37367168 − 0.08896232 i, first

computed in [40, 41].

Figure 7. Comparing the eikonal prediction ωeikn
PS (light blue surface) with the actual numerical

frequencies (blue/green) for counter-rotating PS modes with m = −` = −6, n = 0. The former is

given by (3.11)-(3.16) with rs = r+s of Fig. 2 and bs < 0. Although m = −6 is still outside the

regime of validity of the geometrics optics approximation, |m| � 1, comparing the m = −2 case of

Fig. 6 with the m = −6 mode we see that as |m| increases the eikonal approximation quickly starts

proving to be a better quantitative approximation. The dark-red point at (Q̃, ã) = (0, 0) coincides

with the Schwarzschild QNM, ω̃ ' 1.21200982− 0.09526585 i first computed in [40, 41].
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rections to Im ω̃ and Re ω̃ of order O (1/|m|) and O (1), respectively. However, Fig. 3

compares (3.16) (light blue surface) with the actual numerical frequency (red dots) of the

co-rotating PS modes with m = ` = 6, n = 0 and already finds an excellent agreement

(of course this agreement will improve for m > 6). Moreover, as Fig. 4 demonstrates,

the eikonal approximation (3.16) (light blue surface) still provides a reasonably good qual-

itative approximation to the numerical co-rotating PS modes (orange dots) even in the

m = ` = 2, n = 0 case. Taken together, this identifies the PS QNM family and validates

our numerics.

As shown in Fig. 5, an important feature of the eikonal frequency (3.16) (the solid

dark-blue line) is that it is in good agreement with Im ω̃ = 0 and Re ω̃ = mΩ̃H (dotted

brown line) for ãext > ãeikn
? , but not so for ãext < ãeikn

? with ãeikn
? = 1

2 (recall that ãext = 0

and ãext = 1 in the RN and Kerr limits, respectively). This transition point ? is indeed

observed in the numerical data of Fig. 3 (for m = 6) and Fig. 4 (for m = 2), where the

values Im ω̃ = 0 and Re ω̃ = mΩ̃H are represented by the solid brown lines. As expected,

the eikonal quantitative value of ãeikn
? = 1

2 is not yet a good approximation for m = 2, where

numerically we find ã? ' 0.360, but it becomes a better approximation as m increases. For

example, for m = 6 one has ã? ' 0.463 and for m = 10 one has ã? ' 0.480. We come back

to this issue in the discussion of Fig. 11.

For completeness, in Fig. 6 we turn our attention to the counter-rotating PS modes, and

compare the eikonal prediction (3.16) (grey surface) with the numerical data (blue/green

points) for the counter-rotating PS modes Z2 m = −` = −2, n = 0. Although m = −2

is certainly outside the regime of validity of the geometric optics approximation, |m| � 1,

it turns out that it gives a relatively good approximation for the qualitative shape of the

PS QNM surface (although less than for the m > 0 case). As expected, the quantitative

eikonal prediction improves considerably as m grows more negative in the same way as for

the m > 0 case. This is illustrated for the PS modes Z2 m = −` = −6, n = 0 modes in

Fig. 7.

3.2 Near-horizon family of QNMs: analytical formula for the frequencies

Near-extremality, there is a family of KN wavefunctions that are very localized near the

horizon and quickly decay to zero away from it. This suggests doing a ‘poor-man’s’ matched

asymptotic expansion (MAE) whereby we take the near-horizon limit of the perturbed

equations (2.23), which can be solved analytically, to find the near-region solution and

then match it with a vanishing far-region wavefunction in the overlapping region where

both solutions are valid.16 In fact, motivated by the result that the near-horizon limit of

the extremal KN BH corresponds to a warped circle fibred over AdS2 (Anti-de Sitter) [96],

the perturbations of which can be decomposed as a sum of known radial AdS2 harmonics,

we can attempt to use separation of variables. It turns out that this can indeed be done,

and the system of 2 coupled PDEs for {ψ−2, ψ−1} separates into a system of two decoupled

radial ODEs and a coupled system of two angular ODEs. This is a non-trivial, remarkable

property of perturbations on KN.

16Ideally, we would also solve the far-region equations to obtain the next-to-leading order nonvanishing

far-region solution but in the KN background we cannot do it analytically.
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At extremality, the modes with slowest decay rate (independently of belonging to the

NH or PS families or, as we will introduce and discuss later, to the PS−NH family) always

approach Im ω̃ = 0 and Re ω̃ = mΩ̃ext
H and the near-horizon matched asymptotic expansion

analysis that we perform below produces a prediction for the frequencies of these modes

that will prove to be an excellent approximation near-extremality.

After this preliminary outline, we are ready to formulate and perform in detail our

matched asymptotic expansion to find the NH family of QNMs. The near-region is defined

as the region r
r+
−1� 1 and its wavefunction must be regular, in particular, at the horizon.

The far-region is the zone r
r+
−1� σ, with σ = 1− r−

r+
being an off-extremality parameter,

and its wavefunction must obey the outgoing boundary condition at r → +∞. The two

wavefunctions must be simultaneously valid − and thus the free parameters of the two

regions must be matched − in the matching region σ � r
r+
− 1 � 1. We can guarantee

that the latter overlap region exists if we take σ − which is our expansion parameter − to

be small, i.e. if σ � 1 and we are thus near-extremality r− . r+.

Under these conditions, in the near-region r
r+
− 1 � 1 we want to simultaneously

zoom in around the horizon and approach extremality. For that we first introduce the

dimensionless quantities

y = 1− r

r+
, σ = 1− r−

r+
, (3.17)

where recall that r = r− and r = r+ are the Cauchy and event horizon locations, respec-

tively, that satisfy ∆ = 0 with ∆ = r2−2Mr+a2+Q2 as defined in (2.1). Equivalently, we

can also write ∆ = (r − r−)(r − r+). Equating these two expressions and their derivatives

we can express M and Q as a function of (r−, r+, a):

M =
1

2
(r− + r+) , Q =

√
r−r+ − a2 . (3.18)

From (3.17), one sees that for y � 1 one is close to the event horizon and for σ � 1 the

Cauchy and event horizons are very close, i.e. one is close to extremality. Next, we take the

limit σ → 0. From previous works on QNMs of RN, Kerr, KN [1–3, 46, 93, 97–101] and even

de Sitter black holes [84, 102, 103], when we Fourier decompose the modes as e−iωteimφ,

the near-horizon modes are expected to saturate the superradiant bound ω = mΩH at

extremality (this will be further confirmed by our numerical results). Therefore, we expand

the frequency about this bound via the redefinition

ω = mΩext
H + σ δω +O(σ2) . (3.19)

Our task is to find δω. In (3.19) and hereafter, a and ΩH in expressions always refer to their

extremal values, aext and Ωext
H , although we drop the super/subscripts ‘ext’ for brevity.

In these near-extremality conditions, we are ready to find the near-horizon solution of

the KN gravito-electromagnetic perturbation equations (2.23). We substitute

ψ−2 = Σ−2 , ψ−1 =
1

σ
Σ−1 , (3.20)

together with (3.17)-(3.19) into the set of two coupled PDEs (2.23), and keep only the

leading order terms in the σ expansion. After this near-horizon/near-extremal procedure,
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we still have a set of two coupled PDEs, but this time for {Σ−2,Σ−1} and they are expected

to only capture the properties of the solution in the near-horizon region of the full near-

extremal solution.

Next we attempt to separate variables. In the KN system − described by a coupled pair

of PDEs − this might seem bound to fail. So it is enlightening to make a small diversion

from our exposition to explain the motivation for even considering this possibility. An

extremal KN BH has Q =
√
r2+ − a2. Similar to the Kerr case [96], the near-horizon limit

of the extremal KN black hole (NHEKN) can be obtained by performing the coordinate

transformations (t, r, x, φ)→ (T,Z, x,Φ) with

t =
r2+ + a2

r+

T

ε
, r = r+

(
1 +

ε

Z

)
, φ =

a

r+

T

ε
+ Φ (3.21)

in the KN solution (2.1) and taking the limit ε → 0 (recall that x = cos θ). This yields

the near-horizon geometry of the extremal KN solution (which also solves the original

Einstein-Maxwell equation):

ds2
∣∣
NHEKN

=
(
r2+ + a2x2

) [−dT 2 + dZ2

Z2
+

dx2

1− x2

+
1− x2(

r2+ + a2x2
)2 ((r2+ + a2

)
dΦ +

2ar+dT

Z

)2
]
, (3.22a)

A|NHEKN =
√
r2+ − a2 dT . (3.22b)

Surfaces of constant x are warped AdS3 geometries; that is they correspond to a circle fibred

over AdS2 (parametrized by T and Z) with warping parameter 1−x2

(r2
++a2x2)

2 . The isometry

group is SL(2, R) × U(1). Consequently, perturbations in NHEKN can be expanded in

terms of the AdS2 harmonics and thus they separate into a radial and angular part. This

observation is relevant for our purposes because, returning to the full KN geometry, it

suggests that near-extremality and near the horizon the two coupled PDEs for {Σ−2,Σ−1}
might be amenable to a solution by separation of variables.

With this strong motivation at hand, we return to the coupled system of two PDEs

for {Σ−2,Σ−1} described above and we attempt the separation ansätze

Σ−2(y, x) = Y1(y)X1(x) , Σ−1(y, x) = Y2(y)X2(x) . (3.23)

Introducing the adimensional quantities â = a/r+ and δω̂ = δω r+ this yields the two

equations:

ODEY1(Y1;m, δω̂, λ1)

Y1

+

{
ρ12(X2;m)

X1

1

Y1

[
y(y + 1)Y ′2 −

(
1 + 2y

(
1− iâm

1 + â2

)
− i
(
1 + â2

)
δω̂

)
Y2

]

−
(
1− x2

) [
1− â2

(
4− 3x2

)
− 2iâx

(
2 + â2

)]
1 + â2 (2− 3x2) + 2iâx (1 + 2â2)

A1(X1;m,λ1)

X1

}
= 0 ,

(3.24a)
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ODEY2(Y2;m, δω̂, λ2)

Y2
+

{
ρ21(X1;m)

X2

1

Y2

[
Y ′1 −

i
(

2âmy +
(
1 + â2

)2
δω̂
)

(1 + â2) y(y + 1)
Y1

]
−
(
1− x2

) [
1 + â2

(
2− 3x2

)
+ 2iâx

(
1 + 2â2

)]
1− â2(4− 3x2)− 2iâx (2 + â2)

A2(X2;m,λ2)

X2

}
= 0 ,

(3.24b)

where λ1 and λ2 are the two separation constants of the problem that only depend on m

and â = âext. Furthermore,

ρ12(X2;m) =
1

(1 + â2)
√

1− x2(âx− i)
[
1 + â

(
2â+ x (4iâ2 − 3âx+ 2i)

)]2
{

2
√

1− â2(âx+ i)2
[
m
(

2iâ2 − âx
(
4â2 + 3iâx+ 2

)
+ i
) (
â2x2 + 1

)2
+
(
1 + â2

)(
− 4â5x2

(
3x2 − 4

)
− iâ4x

(
6x4 − 29x2 + 22

)
− â3

(
3x2 − 5

) (
5x2 − 2

)
+ 19iâ2x

(
x2 − 1

)
+ â

(
7x2 − 5

)
− ix

)]
X2

−2
(
1 + â2

)√
1− â2

(
1− x2

) (
â2x2 + 1

)
(âx+ i)2

[
â
(

2iâ− x
(
4â2 + 3iâx+ 2

))
+ i

]
X ′2

}
,

(3.25a)

ρ21(X1;m) =
2
(
1− â2

)3/2
(1 + â2)

√
1− x2 (â2x2 + 1) (âx+ i)

[
1− 4â2 + 3â2x2 − 2i (â2 + 2) âx

]2
{[
im
(
−4â2 + 3â2x2 − 2i

(
â2 + 2

)
âx+ 1

) (
â2x2 + 1

)2
+ 2

(
1 + â2

)(
3â
(
â2 − 1

)
+ â3

(
1− â2

)
x4 − iâ2

(
â2 + 5

)
x3

−
(
â5 + 10â3 + â

)
x2 + ix

(
2â4 + 5â2 − 1

))]
X1

+
(
1− x2

) (
1 + â2

) (
â2x2 + 1

) [
− 4iâ2 + 3iâ2x2 + 2

(
â2 + 2

)
âx+ i

]
X ′1

}
, (3.25b)

A1(X1;m,λ1) = X ′′1 +
2x
[
2iâ4

(
1− 3x2

)
− 3â3x

(
2− x2

)
− 3iâ2x2 − 3âx+ i

]
(1− x2) (âx− i) [1 + â2 (2− 3x2) + 2i (1 + 2â2) âx]

X ′1

+ U1(x;m,λ1)X1 , (3.26a)

A2(X2;m,λ2) = X ′′2 +
1

x

(
1− â2

(
3x2 + 4

)
1− 4â2 + 3â2x2 − 2i (â2 + 2) âx

+
5− 7x2

1− x2
− 2(3 + iâx)

â2x2 + 1

)
X ′2

+ U2(x;m,λ2)X2 , (3.26b)

with

U1(x;m,λ1) =
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2x

(1 + 2â2) (1− x2)2 (i− âx) [1− â2 (4− 3x2)− 2iâx (â2 + 2)] [1 + â2 (2− 3x2) + 2iâx (1 + 2â2)](
− 12â

(
1− â2)2 (

6â4 + 5â2 + 1
)

+ 9
(
4â9 − 11â7 + â5)x6 − 3iâ4 (32â6 − 60â4 − 69â2 + 7

)
x5

+ â3 (−64â8 − 76â6 + 561â4 + 154â2 − 35
)
x4 + iâ2 (224â8 − 316â6 − 477â4 − 2â2 + 31

)
x3

+ â
(
64â10 + 144â8 − 454â6 − 121â4 + 87â2 + 10

)
x2 − i

(
128â10 − 96â8 − 182â6 + 43â4 + 51â2 + 2

)
x

)
+

m2x

(1 + â2)2 (1 + 2â2) (1− x2)2 [1− â2 (4− 3x2)− 2iâx (â2 + 2)](
6i

(
1− â2) (1 + 2â2) â− 3

(
1 + 2â2) â6x5 + 2i

(
2â4 + 5â2 + 2

)
â5x4 +

(
8â6 − 10â4 − 19â2 + 3

)
â2x3

− 2i
(
−4â6 − 18â4 − 6â2 + 1

)
âx2 −

(
8â2 + 1

) (
1− 2â2 (1 + â2))x)

+
4mx

(1 + â2) (1 + 2â2) (1− x2)2 [1− â2 (4− 3x2)− 2iâx (â2 + 2)] [1 + â2 (2− 3x2) + 2iâx (1 + 2â2)](
1− 2â2 (3− 6â6 + 23â4 + 21â2)− 6i

(
7â4 + 4â2 + 7

)
â5x5 −

(
20â6 + 30â4 + 132â2 + 61

)
â4x4

+ 2i
(
25â6 + 66â4 + 99â2 + 26

)
â3x3 + 3

(
12â8 + 22â6 + 84â4 + 48â2 + 5

)
â2x2 + 9

(
2â8 + â6)x6

− 2ix
(
6â9 + 53â7 + 75â5 + 27â3 + â

))
+

â2
(
2− 3x2

)
+ 2i

(
2â3 + â

)
x+ 1

(1− x2) [1− â2 (4− 3x2)− 2iâx (â2 + 2)]
λ1 , (3.27a)

U2(x;m,λ2) =

−â2
(
−36x4 − 23x2 + 40

)
− 15iâ

(
x2 + 3

)
x+ 13x2 + 10

3x2 (1− x2) (â2 (3x2 − 4)− 2i (â2 + 2) âx+ 1)
− −5iâx3 − 35x2 + 7iâx+ 25

3x2 (1− x2) (â2x2 + 1)

+
73x4 − 105x2 + 24

8x2 (1− x2)2 − 2

x2(âx+ i)2
+

27
(
−
(
â2

(
2− x2

))
− 2iâx+ 1

)
8 (1− x2) (â2 (2− 3x2) + 2i (1 + 2â2) âx+ 1)

+
2m

(1 + â2) (1− x2)2 [1− â2 (4− 3x2)− 2iâx (â2 + 2)] (â2 (2− 3x2) + 2i (1 + 2â2) âx+ 1)(
9i

(
3â3 − 2â5 − â

)
+ 9â6x7 − 3iâ5 (5â2 + 7

)
x6 − â4 (4â4 + 70â2 + 7

)
x5 + iâ3 (55â4 + 79â2 + 10

)
x4

+ 3â2 (4â6 + 42â4 + 11
)
x3 + iâ

(
−42â6 − 38â4 − 35â2 + 7

)
x2 +

(
−36â6 + 34â4 − 26â2 + 1

)
x

)
− m2

(1 + â2)2 (1− x2)2 (â2 (2− 3x2) + 2i (1 + 2â2) âx+ 1)(
4iâ7x5 + â6x4 (2− 3x2)− 2iâ5x

(
−x4 − 8x2 + 4

)
− â4 (17x4 − 32x2 + 16

)
+ 4iâ3x

(
5x2 − 3

)
+ â2 (6− 5x2) + 2iâx+ 1

)
−

1− â2
(
4− 3x2

)
− 2i

(
â2 + 2

)
âx

4 (1 + â2)2 (1− x2) [1 + â2 (2− 3x2) + 2i (1 + 2â2) âx]
λ2 . (3.27b)

Finally, in (3.24), ODEY1(Y1;m, δω̂, λ1) and ODEY2(Y2;m, δω̂, λ2) are two second order

differential operators acting on Y1 and Y2 with the property that

ODEY1(Y1;m, δω̂, λ1) = 0 ⇔ y(y + 1)Y ′′1 − (2y + 1)Y ′1 + V1(y;m, δω̂, λ1)Y1 = 0,

(3.28a)

ODEY2(Y2;m, δω̂, λ2) = 0 ⇔ y(y + 1)Y ′′2 + V2(y;m, δω̂, λ2)Y2 = 0, (3.28b)
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where the potentials are

V1(y;m, δω̂, λ1) =
2
(
1− 4â2

) (
2− â2

)
1 + 2â2

+
4iâm

[
2 + 3y − â2(5 + 3y)

]
(1 + â2) (1 + 2â2) (y + 1)

+
m2
(
1 + y + 8â4y − 4â2

)
(1 + â2)2 (1 + 2â2) (y + 1)

+
1

y + 1

((
1 + â2

)2
δω̃2

y
+ 4δω̃

[
âm+ i

(
1 + â2

)( 1

2y
+ 1

)])
+ λ1 ,

(3.29a)

V2(y;m, δω̂, λ2) =
1

4
− 4â2m2

(1 + â2)2 (y + 1)
− 2iâm

(1 + â2) (y + 1)

+

(
1 + â2

)2
δω̃2 + δω̃

[
i
(
1 + â2

)
+ 4âmy + 2i

(
1 + â2

)
y
]

y(y + 1)
− λ2

4 (1 + â2)2
.

(3.29b)

The reader will notice that in (3.24a) and (3.24b), the terms that are spoiling the

separation of variables are those proportional to ρ12X
−1
1 Y −11 and ρ21X

−1
2 Y −12 , respectively.

We can however separate these equations if the factor multiplying ρ12X
−1
1 Y −11 in (3.24a) is

proportional to Y1(y) and if the factor multiplying ρ21X
−1
2 Y −12 in (3.24b) is proportional

to Y2(y), i.e. if

Y1 = K12

{
y(y + 1)Y ′2 −

[
1 + 2y

(
1− iâm

1 + â2

)
− i
(
1 + â2

)
δω̂

]
Y2

}
, (3.30a)

Y2 = K21

(
Y ′1 −

i
(

2âmy +
(
1 + â2

)2
δω̂
)

(1 + â2) y(y + 1)
Y1

)
, (3.30b)

for constant K12 and K21 to be determined. If this is the case and (3.30a) holds, then the

first term in (3.24a) gives the radial equation for Y1(y), namely (3.28a), while the term

inside curly brackets yields the angular equation for X1. Similarly, if (3.30b) holds, in

(3.24b) we clearly identify the radial equation for Y2(y), namely (3.28b), and the angular

equation for X2 inside the curly brackets. However, in order for the separation procedure to

be consistent, (3.30) must still be supplemented by another two relations. Firstly, when we

substitute (3.30a) into (3.28a) we must certainly get a trivial identity after using (3.28b)

and its derivative. Similarly, we must get a trivial identity when we substitute (3.30b)

into (3.28b) and use (3.28a) and its derivative. This is the case if and only if the two

separation constants of the system are related in a specific way, λ1 = λ1(λ2). Secondly,

if we substitute (3.30a) into (3.30b) we must again obtain a trivial identity after using

the equation of motion (3.28b) for Y2. Equivalently, we must also get a trivial identity

if we substitute (3.30b) into (3.30a) and use the equation of motion (3.28a) for Y1. This

is the case if and only if a specific relation K21 = K21(K12) holds. Altogether, the two

consistency conditions that must be imposed, together with (3.30), to get a separated
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system of equations are:

λ1 = − λ2

4 (1 + â2)2
−
(
1 + â2

)2 (
32â4 − 90â2 + 7

)
+ 4

(
8â4 + 1

)
m2 + 48iâ

(
1− â4

)
m

4 (1 + â2)2 (1 + 2â2)
,

(3.31a)

K21 =
1

K12

[
4âm+ 3i

(
1 + â2

)]2
+ λ2

4 (1 + â2)2
, (3.31b)

where, without loss of generality since this is a linear system, we can set K12 ≡ 1.

What is the meaning of (3.30) and (3.31)? Recall that in the case of the Teukolsky

equation describing perturbations in the Kerr black hole [38], it is well known that the

so-called Starobinsky-Teukolsky relations relate perturbations with spin s to those with

spin −s [40] (see also Appendix of [83]). Thus, one interprets relations (3.30)-(3.31) as

being effectively a kind of Starobinsky-Teukolsky relations for the KN perturbations. In

this case they relate the wavefunction of spin s = −2 with that of spin s = −1 because the

perturbations for these two spins are coupled.

After this long tour, we should recap what we have learned so far. The gravito-

electromagnetic perturbations of the KN black are described by a coupled system (2.23)

of two PDEs for {ψ−2, ψ−1}. However, if we take its near-horizon limit near extremality,

as described in (3.17)-(3.20), we get two near-horizon coupled PDEs for {Σ−2,Σ−1} that

can be solved assuming the separation of variables (3.23). After using the Starobinsky-

Teukolsky−like relations (3.30)-(3.31), we verify that the system indeed separates. We get

two decoupled ODEs (3.28) for the radial wavefunctions Y1(y) and Y2(y). (This decoupling

reflects the fact that in NHEKN the radial perturbations are exactly described by the AdS2

harmonics as explained below (3.22)). Once we know the separation constant λ2, and thus

λ1 via (3.31), these two ODEs (3.28) can be solved independently as a quadratic eigenvalue

problem for δω̂ (for a given m). On the other hand, the angular equations for X1 and X2

– given by the curly brackets of (3.24) after using (3.30)–(3.31) – do not decouple. Thus

we have to solve this coupled system of two ODEs (that are independent of δω̂) to find the

eigenvalue λ2 (and thus λ1 given in (3.31a)). This can be done numerically as we discuss

later. But we can also solve this coupled ODE system analytically in a large m WKB

expansion. This is what we do next.

Substituting (3.25)–(3.27) and (3.30)–(3.31) into the curly brackets expressions of

(3.24), we find that (3.24a) is a second order ODE for X1 (hereafter we denote this as

the ‘first’ angular equation) that also depends on X ′2 and X2 but not on X ′′2 . Similarly,

(3.24b) is a second order ODE for X2 (henceforth denoted as the ‘second’ angular equation)

that also depends on X ′1 and X1 but not on X ′′1 . If we redefine

X1(x) = χ1(x) , X2(x) = K12 χ2(x) , (3.32)

where K12 was first introduced in (3.30a), we can solve the equation for χ1 to express χ′2 =

χ′2(χ2, χ
′′
1, χ
′
1, χ1). We substitute this relation and its derivative into the second angular

equation to get a differential equation that can be solved to express χ2 = χ2(χ
′′′
1 , χ

′′
1, χ
′
1, χ1).

Substituting this back in the first angular equation we end up with a fourth order differential
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equation for χ1 that no longer depends on χ2. This is a non-polynomial eigenvalue problem

for χ1 and λ2; recall (3.31a). Perhaps remarkably, this fourth order differential equation

can be solved analytically in a |m| � 1 WKB expansion to find χ1 and λ2.

We substitute the WKB ansatz

χ1(x) = emϕ(x)
[
χ1,0(x) +

χ1,1(x)

m
+
χ1,2(x)

m2
+O

(
1/m3

)]
, (3.33a)

λ2 = λ2,0m
2 + λ2,1m+ λ2,2 +

λ2,3
m

+O
(
1/m2

)
, (3.33b)

into the fourth order ODE and solve it order by order in a standard large m expansion,

requiring that the solution is regular at x = ±1. The leading order WKB wavefunction is

ϕ =

√
2â2 + â4x2 + 1

â2 + 1
− tanh−1

(√
2â2 + â4x2 + 1

â2 + 1

)
−
√

2â2 + 1

â2 + 1
+ tanh−1

(√
2â2 + 1

â2 + 1

)
(3.34)

and the separation constant λ2 is given by (3.33) with WKB coeficients

λ2,0 = 4
(
1− 4â2

)
, λ2,1 = −4

(
1 + â2

) (
2
√

1− â2 −
√

1 + 2â2
)
, (3.35a)

λ2,2 =
3
√

1− â2
(
1 + â2

)2 (
3− 726â10 − 253â8 + 128â6 − 74â4 − 50â2

)
(1 + 2â2)

[
(66â6 − 5â4 − 12â2 + 5)

√
1− â2 + 4 (1− â4)

√
2â2 + 1

] , (3.35b)

λ2,3 =

[
4
(
1 + 2â2

)7/2(
578577650112â40 − 338129795520â38 − 1042453021104â36

+ 1170932108544â34 + 243872180244â32 − 1092788709804â30 + 457571937931â28

+ 286639850738â26 − 371225227587â24 + 75821376048â22 + 83823143199â20

− 64522516578â18 + 5397537793â16 + 11870759300â14 − 5939331087â12

+ 15670254â10 + 798959271â8 − 269248008â6 − 8868395â4 + 20327618â2 − 4782969

)
+ 4
√

1− â2
(
1 + 2â2

)3(
661231600128â40 − 788969522880â38 − 475886378880â36

+ 1029138506352â34 − 630648141552â32 − 452699156052â30 + 658166339168â28

− 186975958943â26 − 249892000005â24 + 178743692406â22 − 3249242106â20

− 56479482309â18 + 20902690721â16 + 3663601312â14 − 5845481340â12

+ 1100552199â10 + 410656173â8 − 279409506â6 + 19829366â4

+ 13153165â2 − 4782969

)]−1
[
3â2
√

1− â2
(
1 + â2

)3√
2â2 + 1

(
90588729217536â46 + 93586813404480â44

− 64234642488192â42 − 54181551934224â40 + 14733709326864â38

− 34708141099764â36 − 8979094220672â34 + 34432474064505â32 − 10922161747605â30

− 23041644949212â28 + 5136927583340â26 + 4733507876355â24 − 3578226571619â22
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− 898929274206â20 + 753565243446â18 − 135077374365â16 − 174223122235â14

+ 33089919120â12 + 8380363168â10 − 9890782275â8 − 803782461â6

+ 541670718â4 − 148272034â2 − 57395628

)
+ 3â2

(
1 + â2

)3(
158530276130688â48 + 192260601732672â46 − 226279077675552â44

− 257580189150768â42 + 238634465705064â40 + 187478664334236â38

− 167948153974214â36 − 79050787933609â34 + 69165996968940â32

+ 1562277529575â30 − 26149776558142â28 + 6310859786413â26 + 3820171951948â24

− 4424582883901â22 − 417658252182â20 + 868831525263â18 − 249677209480â16

− 170706582299â14 + 47404470046â12 + 4708012127â10 − 10932078636â8

− 398469675â6 + 532105820â4 − 176969858â2 − 57395628

)]
. (3.35c)

Of course, now that we have the eigenpair λ2 and χ1(x) (in the WKB approximation) we

can straightforwardly obtain λ1 and χ2(x) using (3.31a) and the aforementioned relation

χ2 = χ2(χ
′′′
1 , χ

′′
1, χ
′
1, χ1). This terminates our WKB analysis of the angular equations.
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Figure 8. Comparing the WKB result (continuous line) for λ2(m, â) with the exact result (circles).

Left panel: m = 10 case. Right panel: m = 2 case.

We can also solve numerically the coupled pair of angular ODEs for X1 and X2 to check

that the WKB result is indeed a good approximation, even for m = 2. For m ≥ 2, regularity

at x = ±1 requires that we keep the X1, X2 solution that behaves as (1−x)
1
2
(s+m) at x = 1

and as (1+x)
1
2
(−s+m) at x = −1 where s = −2,−1 for X1, X2, respectively. We can impose

these boundary conditions straightforwardly if we introduce the field redefinition

X1 = (1− x)−1+
m
2 (1 + x)1+

m
2 Q1(x) , X2 = (1− x)−

1
2
+m

2 (1 + x)
1
2
+m

2 Q2(x) (3.36)

and solve the two coupled second order ODEs for smooth Q1 and Q2 and the eigenvalue

λ2, after using (3.31a). As explained above, we use a Newton-Raphson algorithm with
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pseudospectral discretization [77]. In Fig. 8 we compare the WKB result (3.33)-(3.35)

with the numerical λ2. We see that, as expected, for large m, m = 10 (left panel), there is

perfect agreement between the WKB result (continuous dark-blue curve) and the numerical

result (blue circles). However, as the right panel demonstrates, the WKB approximation

(continuous dark-green line) proves to be a good approximation to the exact result (green

circles) already for m = 2. Also note that as â increases from â = 0, λ2 changes sign from

positive to negative. This fact will be important later.

Having solved the angular equations we can now focus our attention on the radial

ODEs (3.28)-(3.29). Recall that we can solve one of these, e.g. (3.28b) for Y2, and the

solution for Y1 is then straightforwardly given by the Starobinsky-Teukolsky differential

map (3.30a). Further recall that (3.28b) is a quadratic eigenvalue problem in δω̂. This

ODE turns out to be a standard hypergeometric equation with most general solution given

by

Y2 = (y + 1)
2iâm
1+â2−i(1+â2)δω̃[

c1y
i(1+â2)δω̃

2F1

(
4imâ−

√
λ2

2 (1 + â2)
− 1

2
,
4imâ+

√
λ2

2 (1 + â2)
− 1

2
; 2i
(
1 + â2

)
δω̃;−y

)
+c2y

1−i(1+â2)δω̃
2F1

(
4imâ−

√
λ2

2 (1 + â2)
+

1

2
− 2i

(
1 + â2

)
δω̃,

4imâ+
√
λ2

2 (1 + â2)
+

1

2
− 2i

(
1 + â2

)
δω̃; 2− 2i

(
1 + â2

)
δω̃;−y

)]
(3.37)

where c1, c2 are arbitrary integration constants. At the event horizon, y = 0, this solu-

tion behaves as Y2|y=0 ∼ c1y
i(1+â2)δω̂ + c2y

1−i(1+â2)δω̂. Regularity in ingoing Eddington-

Finkelstein coordinates at the future event horizon requires that we set c1 = 0 to eliminate

the outgoing modes. On the other hand, far away from the horizon, i.e. at large y, the

regular solution at the horizon behaves as

Y2
∣∣
y�1
∼ c2Γ

(
2− 2i

(
1 + â2

)
δω̃
)

[ Γ
(
−
√
λ2

1+â2

)
Γ
(
3
2 −

4imâ+
√
λ2

2(1+â2)

)
Γ

(
1
2 +

4i(mâ−(1+â2)2δω̃)−
√
λ2

2(1+â2)

) y
1
2

(
1−
√
λ2

1+â2

)

+
Γ
( √

λ2

1+â2

)
Γ
(
3
2 −

4imâ−
√
λ2

2(1+â2)

)
Γ

(
1
2 +

4i(mâ−(1+â2)2δω̃)+
√
λ2

2(1+â2)

) y
1
2

(
1+

√
λ2

1+â2

)]
. (3.38)

Assume for now that λ2 > 0. From Fig. 8, this happens when âext =

√
1− Q̂2 is small,

which occurs for large Q̂. For λ2 > 0, at large y, the solution y
1
2

(
1−
√
λ2

1+â2

)
in (3.38) decays

while y
1
2

(
1+

√
λ2

1+â2

)
diverges.17

17Note that the metric components that must be a regular 2-tensor behave as y
± 1

2

√
λ2

1+â2 .
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In the context of a matched asymptotic expansion, the large behaviour of the near-

region (near-horizon) solution (3.38) must now be matched with the far-region solution

(near extremality). As explained at the beginning of this section, we expect the near-

horizon modes we are looking into to have wavefunctions that die-off very quickly away

from the black hole horizon (near extremality). This will be confirmed by our numeri-

cal analysis. Therefore, as a first approximation − that we henceforth call a ‘poor man’s

matched asymptotic expansion (MAE) − we take the far region to be described by a van-

ishing wavefunction. That is to say, in the overlapping region, we match the near-region

solution (3.38) with Y2|far ' 0.18 It is important to emphasize that this is an ansatz or

educated guess that we cannot argue for in a formal mathematical away that goes deeper

than the above heuristics. It is ultimately only validated a posteriori by the fact that the

final quantization agrees with the numerical results for the frequency spectra (indeed, Y2|far

is never exactly zero and thus a small component of the divergent term in (3.38) should

be used in a proper matching). This ansatz requires that we kill the solution y
1
2

(
1+

√
λ2

1+â2

)
in (3.38) that diverges for large y. Since Γ(−n) → ∞ for n ∈ N0, this is the case if we

quantize the frequency correction to be such that the argument of the gamma function in

the denominator of the divergent term is a non-positive integer n:

δω̂ ' mâ

(1 + â2)2
− i

4 (1 + â2)

(
1 + 2n+

√
λ2(m, ã)

1 + â2

)
, n = 0, 1, 2, 3, · · · (3.39)

Inserting this frequency correction into the frequency expansion (3.19) one gets the final

expression for the frequency in units of r+: ω̂ = mΩ̂H + σ δω̂. We can now convert this

into units of M by multiplying this expression by M/r+ (since ω̂M/r+ = ω̃ = ωM) and

expanding it in terms of σ while keeping terms only up to O(σ) (since all our analysis is

valid only up to this order). This yields the frequency quantization for the near-horizon

(NH) QNMs which can be written as:

ω̃MAE '
mã

1 + ã2
+ σ

[
mã(1− ã2)
2(1 + ã2)2

− i

4

1 + 2n

1 + ã2
−
√
−λ2(m, ã)

4(1 + ã2)2

]
+O

(
σ2
)
, n = 0, 1, 2, 3, · · ·

(3.40)

where ã in this expression must be evaluated at extremality, i.e. ã = ãext, the off-extremal

parameter σ is defined in (3.17), and we have defined
√
z to be such that Re(

√
z) > 0

(Im(
√
z) > 0) for positive (negative) values of z.

How good an approximation is (3.40)? It is in excellent agreement with the numerical

NH frequencies near extremality, as will be discussed in the analysis of Figs. 13-14. This

is further illustrated in the left panel of Fig. 9 where we take a KN BH family with

Q/r+ = 0.99 and compare the numerical results (green circles) with the red curve ω̃MAE

given by (3.40). It turns out that for very large Q̂ the agreement is excellent not only near-

extremality but also far away from it down to small â. So much so that we can basically use

(3.40) for any astrophysical application that requires the knowledge of the dominant NH

18Ideally, we would also solve the far-region equations to obtain the sub-leading far-region solution but

in the KN background we cannot do this analytically.

– 32 –



frequencies for 0.99 < Q/r+ < 1, say. Accordingly, the reader will later find that we have

not felt the need to collect numerical data in the window 0.99 < Q/r+ < 1 in our plots:

see e.g. the gap between the green surface and extremal brown curve in Fig. 16 and the

similar gaps in Figs. 18−20. Naturally, as we decrease Q̂ the approximation (3.40) becomes

increasingly less accurate when we move away from extremality. This is demonstrated in

the right panel of Fig. 9 where we do the comparison between (3.40) (red line) and the

numerical data for Q/r+ = 0.95.
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Figure 9. Imaginary part and real part (inset plot) of the frequency as a function of the rotation

for the NH QNM family with Q/r+ = 0.99 (left panel) and Q/r+ = 0.95 (right panel). The

numerical results are given by the green circles while the red line is the analytical result (3.40).

The brown diamond is the value ω̃ = mΩ̃ext
H at extremality. For large Q̃ (left panel), ω̃MAE is an

excellent approximation even away from extremality but it becomes less good away from extremality

for smaller Q̃ (right panel).

In the final steps leading to (3.40), we assumed that λ2 > 0. From Fig. 8, this happens

when ãext =

√
1− Q̃2 is small, which occurs for large Q̃, as is the case in Fig. 9. This also

includes the extremal RN limit, (Q̃, ã) = (1, 0) in which case (3.40) reduces to the expression

first found in [2]. However, nothing impedes us from extending the application of (3.40) also

to the case where λ2 < 0. From Fig. 8, this happens for large ãext =

√
1− Q̃2, and thus for

small Q̃. In particular, this includes the extremal Kerr limit, (Q̃, ã) = (1, 0). Interestingly,

when λ2 < 0 (unlike for λ2 > 0), one is effectively in a region of the parameter space

where the PS family terminates at Im ω̃ = 0 and Re ω̃ = mΩ̃ext
H and, quite importantly, it

dominates over the NH family. Therefore, by construction (3.40) should be able to capture

(also, or in this case) the frequency of the dominant PS modes near extremality. And

indeed it does so, as illustrated in Fig. 10 where we compare (3.40) (black curve) against

the numerical PS frequency (orange diamonds) for the KN families with Q/r+ = 0.5

(left panel) and Q = 0 (right panel). The latter case is the Kerr solution, where (3.40)

reduces to the expression first found in [46, 100]. Thus, ω̃MAE in (3.40) (also) provides an

analytical approximation for PS modes when they approach Im ω̃ = 0 at extremality that
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Figure 10. Imaginary and real (inset plot) part of the frequency as a function of the rotation for

the PS QNM family with Q/r+ = 0.5 (left panel) and Q = 0 (right panel). The numerical results

are given by the orange diamonds while the black line is the analytical result (3.40). The brown

diamond is the value ω̃ = mΩ̃ext
H at extremality. ω̃MAE in (3.40) is a good analytical approximation

for those PS modes that approach Im ω̃ = 0 at extremality. The approximation (3.40) to the PS

modes improves as Q̃ decreases.

complements, and is independent of, the eikonal analytical approximation ωeikn
PS given in

(3.16). It has the added value of being very accurate near extremality already for m = 2

(i.e. well outside the |m| � 1 eikonal regime of validity). Interestingly, the approximation

(3.40) for the PS modes improves as Q̃ decreases, as can be inferred from the two cases

presented in Fig. 10.

Altogether, and to summarize, we find that (3.40) is an excellent approximation for

the dominant modes (which always approach Im ω̃ = 0 and Re ω̃ = mΩ̃ext
H at extremality)

when we are close to extremality, i.e. when a/ãext . 1, independently of the QNM family

that dominates, as best illustrated in Figs. 9-10. For large Q̃ the dominant modes are the

NH modes and (3.40) describes them. For small Q̃ the dominant modes are instead the PS

modes and (3.40) also describes them. This might sound a bit puzzling: how can it be that

the near-horizon MAE analysis captures sometimes the PS modes? This is because, away

from the RN limit, the distinction between the PS and NH families becomes less clean and

actually the dominant QNM family is better described by a combination of the PS and

NH modes (that we will denote as a PS−NH family) due to the phenomenon of eigenvalue

repulsion. This statement will be clarified and made accurate when discussing the results

of Figs. 13−14 so we postpone further discussion till then.

In the analysis of the eikonal expression (3.16) and associated Fig. 5, we have already

pointed out that when we are at extremality, e.g., if we place ourselves on the extremal

brown curve of Fig. 5 (or of Fig. 16) and move along it from ãext = 1 down to ãext = 0

(or, equivalently, from Q̃ext = 0 to Q̃ext = 1), there is a critical rotation ãext = ã? (or,

equivalently, a critical charge Q̃? =
√

1− ã2?). For ã? < ãext ≤ 1 (i.e. 0 ≤ Q̃ext < Q̃?) the
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PS family terminates at Im ω̃ = 0 and Re ω̃ = mΩ̃ext
H at extremality (e.g., in the Kerr limit

where ãext = 1), but it fails to do so otherwise (e.g., in the RN limit where ãext = 0 and

Q̃ext = 1).
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Figure 11. Critical values of ãNH
? (left panel) and Q̃NH

? (right panel) for which λ2 vanishes as a

function of m. The WKB approximation (3.41) (blue line) already gives an excellent agreement

with the exact results (black ?’s) for values of m as low as 5 or 6. Further note that as m increases,

ãNH
? → ãeikn

? = 1
2 (left panel) and Q̃NH

? → Q̃eikn
? =

√
3

2 (right panel) − see the red dashed lines −
where the latter eikonal values were discussed in Fig. 5 (see its red ? point).

Interestingly, we find that this ? transition point turns out to be very well approximated

(if not exactly given) by the point where the separation constant λ2(m, ãext) in (3.40)

vanishes: λ2(m, ã
NH
? ) = 0. For ãext < ãNH

? (or equivalently, Q̃ext > Q̃NH
? ) one has λ2 > 0

and for ãext > ãNH
? we have λ2 < 0. To get the accurate values for ãNH

? − which are displayed

as black ?’s in Fig. 11 − we use the numerical solution for λ2(m, ãext) as displayed in Fig. 8.

Alternatively, since λ2 has the WKB expansion (3.33b) and (3.35), we can use it to find

ãNH
? |WKB or Q̃NH

? |WKB, yielding

ãNH
? |WKB '

1

2
−

5
√

3
(
2−
√

2
)

32m
+

5
(
69− 176

√
2
)

2048m2
+O

(
1/m3

)
, (3.41a)

Q̃NH
? |WKB '

√
3

2
+

5
(
2−
√

2
)

32m
+

5
√

3
(
112
√

2− 103
)

2048m2
+O

(
1/m3

)
. (3.41b)

Using our numerical data for λ2 (Fig. 8), when m = 2 we get {ã?, Q̃?}NH ' {0.360, 0.932}
while the WKB approximation (3.41) yields {ã?, Q̃?}NH

WKB ∼ {0.311, 0.970}. Being a WKB

approximation, (3.41) is expected to be accurate only as m → ∞. To confirm this, we

compute these critical rotations for m = 2 to m = 10 and Fig. 11 shows that ãNH
? |WKB as

given by (3.41) (the solid blue line) indeed approaches increasingly the value of ãNH
? (the

black ?’s) as m grows, with excellent agreement already for m = 10 (or even m = 6).

Further note that as m increases, ãNH
? and ãNH

? |WKB approach from below the eikonal value
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ãeikn
? = 1

2 (or from above the eikonal Q̃eikn
? =

√
1− (ãeikn

? )2 =
√

3/2 ' 0.866025) discussed

in Fig. 5 (see its red ?).

Figure 12. The PS modes at extremality. The black ? at ãext = ã? ' 0.360 is the one shown

in Fig. 11. The grey squares in the range ãext ∈ [0, 0.24] describe data obtained solving the

gravito-electromagnetic PDEs directly at extremality. The grey line in the range ãext ∈ [0, ã?] is an

interpolation of the grey square and ? points. On the other hand, for ãext > ã? it is simply described

by Im ω̃ = 0 and Re ω̃ = mΩ̃ext
H . The orange diamonds describe the closest point to extremality we

obtained using the non-extremal code. Left panel: Imaginary part of the PS frequency. Right

panel: Real part of the PS frequency.

So our numerical results indicate that the critical rotation/charge {ã?, Q̃?} seem to be

given to very good accuracy by the values {ãNH
? , Q̃NH

? } discussed above and displayed in

Fig. 11. This is further demonstrated in Fig. 12. In these plots we show the imaginary

and real part of the PS frequency as a function of the rotation at extremality, ãext, for Z2

` = m = 2, n = 0 modes. The black ? at ãext = ãNH
? ' 0.360 (i.e. Q̃ext = Q̃NH

? ' 0.932) is

the point already displayed in Fig. 11. The set of black squares displayed only for ãext ∈
[0, 0.24] describe data we obtained by solving the gravito-electromagnetic PDEs directly at

extremality (numerically, it is very hard to extend the computation for higher ãext; recall

that at extremality we have a degenerate horizon and thus the boundary conditions differ

from the non-extremal case). On the other hand, the auxiliary grey line that joins these

black squares and connects to the black ? point at ãext ∼ 0.360, is an interpolation curve

built from the black square and ? points. Finally, the PS modes closest to extremality that

we found using our non-extremal code are identified with orange diamonds (with ãext & 0.2

since it is hard to obtain data when ãext → 0). For 0 < ãext < ã? ' 0.360 they are just

below the interpolation grey line. Altogether this indicates that PS modes indeed terminate

at the grey interpolation line for 0 ≤ ãext ≤ ã?. On the other hand, for ã? < ãext ≤ 1,

the grey horizontal line displayed in Fig. 12 has Im ω̃ = 0 and Re ω̃ = mΩ̃ext
H . The orange

diamonds in this region are the closest PS modes we obtained using the non-extremal PS

numerical code; these points are at 99% of extremality. Again we see that they indeed

approach the grey horizontal line. To find even further approach we need to extend our
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collection of data closer to extremality, say up to 99.9% of extremality. We did this for a

few constant charge families (not shown) to confirm it is indeed the case (and these are

very accurately described by ω̃MAE in (3.40) as discussed previously).

4 Eigenvalue repulsions (also known as level repulsions or avoided cross-

ing)

The analytical analyses of Section 3 allowed us to find corners of the 2-parameter space

of KN where we can obtain good analytical approximations for the QNMs of KN. Impor-

tantly, they gave us evidence for the existence of not one but two main families of QNMs:

the photon sphere and near-horizon families. These are distinct families because the ana-

lytical analyses reveal different origins: the PS family is associated with properties of null

orbits in the eikonal limit, while the NH family is related to modes whose wavefunction is

very localized about the horizon near extremality. Our numerical search of QNMs, whose

findings will be presented in this section and in Sections 5−6, confirm that KN indeed

has two families of QNMs and not more, and all the numerical QNM frequencies are well

approximated by (3.16) and/or (3.40) in the regimes where the latter are valid.

However, the distinction between the two QNM families of KN becomes very fuzzy

as we move along the 2-parameter space of KN. In the RN limit (a = 0, Q 6= 0) this

distinction is very sharp: one of the families is the PS family well approximated by (3.16)

and the second one is the NH family well described by (3.40); recall Fig. 1. But when we

switch on the rotation and allow it to increase we find that the PS and NH families lose

their individual identities. Instead branches of these two families combine with each other

to produce a combined family that we can appropriately call PS−NH modes (and their

radial overtone families). This occurs because the KN spectra has a novel phenomenon

that is special to the KN QNM system (i.e. present neither in Kerr nor RN), namely

eigenvalue repulsion between QNM families. In subsection 4.2 we will describe in detail

this phenomenon in the KN QNM spectra. Although, in the context of black hole QNMs

eigenvalue repulsions are particular to KN (see also footnote 3), such a feature is common

in some eigenvalue problems, notably: 1) in solid state physics where e.g. it is responsible

for energy bands/gaps in the spectra of electrons moving in certain Schrödinger potentials,

and in 2) in quantum mechanical eigenvalue systems with the so-called avoided crossing

phenomenon. Therefore, before discussing eigenvalue repulsions in KN, in subsection 4.1

we will present a simple textbook example of eigenvalue repulsions that will allow us to

understand from first principles what occurs in the KN eigenfrequency spectra.

4.1 Complexified eigenvalue repulsion

Eigenvalue repulsion is a phenomenon that occurs in simple quantum mechanical models

(albeit it can also occur in classical physics, most notably when two levels of a classical

harmonic oscillator are coupled). In quantum mechanics this phenomenon is also known

as the Wigner-Teller effect, avoided crossing or level repulsion [64, 65]).

To explain the similarities and differences between what is observed in standard quan-

tum mechanics textbooks and the phenomenon that we observe numerically in the QNM
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spectra of KN, we will start by reviewing the simplest textbook example exhibiting avoided

crossing (see for instance §79 of [64] and/or §IV.C of [65])).

For concreteness consider a two-level system with Hamiltonian H0, orthonormal eigen-

states |ψi〉 and energy levels Ei, so that

H0 |ψi〉 = Ei |ψi〉 and 〈ψi|ψj〉 = δij , with i, j = 1, 2 . (4.1)

Let us imagine perturbing H0 with an interaction W , such that the full Hamiltonian is

given by H = H0 +W . Here W can be thought as coupling the two eigenstates ψi. In the

{|ψ1〉 , |ψ2〉} basis, the coupling is given as a 2×2 matrixW with entriesWij ≡ 〈ψi|W |ψj〉.
In the {|ψ1〉 , |ψ2〉} basis the perturbed Hamiltonian matrix Hij = 〈ψi|H|ψj〉 can be

written as

H =

[
E1 +W11 W12

W21 E2 +W22

]
. (4.2)

Self-adjointness of the perturbed Hamiltonian then demands H to be Hermitian, and thus

W21 =W12, where the bar denotes complex conjugation.

It is a rather standard exercise to diagonalise H given in (4.2) and find that the

eigenvalues of the perturbed Hamiltonian are:

E± =
Ẽ1 + Ẽ2

2
±

√
(Ẽ1 − Ẽ2)2

4
+ |W12|2 , (4.3)

where Ẽi = Ei−Wii (with no Einstein summation convention on the last term). Eigenvalue

crossing (i.e. E− = E+) will only occur if the argument of the square root vanishes. Since

the argument of the square root is given by a sum of two positive definite terms, we must

demand each to be zero separately :

W12 = 0 and Ẽ1 = Ẽ2 . (4.4)

Let us now imagine that W is a function of a number of real parameters, say N .

Since we have two conditions to be satisfied in order for crossing to occur, we expect that

crossing can only happen over a subspace of the N real variables parametrised by N − 2

real variables.19 Except at this special subspace, (4.3) predicts that eigenvalues do not

cross under the effect of perturbations W (since E− < E+ for W12 6= 0). This is known as

avoided crossing.

However, the case at hand (QNMs of KN), is more complicated than this standard

textbook example because the perturbation operator is not self-adjoint. However, we shall

see that progress can nevertheless be made to understand the properties of its intricate

QNM spectra in terms of avoided crossing. Let us denote by L0 the operator whose

eigenspectrum yields the QNM spectrum of a RN black hole, which is non-degenerate: see

Fig. 120. Let us label such QNMs as {ψi, ωi} with i = 1, 2 (in the simplest case, we should

19This is indeed the case, so long as W12 does not vanish for some symmetry reasons [64].
20Note that in Fig. 1, the imaginary part of the PS mode crosses the imaginary part of the NH mode.

Nevertheless, the real parts of the PS and NH frequencies are distinct. Thus, RN has no crossing in the

complex eigenfrequency plane.
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regard these as the two slowest decaying QNMs for a given value of Q/M as shown in

Fig. 1). We would like to investigate what will happen to these two QNMs as we turn

on J/M2. The operator governing the eigenspectrum will change to L = L0 + K, so that

K = 0 at J = 0.

For quasinormal modes, L is not self-adjoint, but one can nevertheless introduce a non-

degenerate bilinear form 〈〈·|·〉〉 with respect to which the ψi are orthogonal [104]. However,

in general, 〈〈·|·〉〉 will be complex. We will choose the normalisation of the ψi to be such

that 〈〈ψi|ψj〉〉 = δij
21. Note that we cannot choose 〈〈ψi|ψj〉〉 = δij since it could well be

that 〈〈ψi|ψi〉〉 = 0.

As with the Hermitian case, we define Lij = 〈〈ψi||ψj〉〉, which leads to the perturbed

matrix

L =

[
ω1 +K11 K12

K21 ω2 +K22

]
, (4.5)

with Kij = 〈〈ψi|K|ψj〉〉. L can also be straightforwardly diagonalised as

ω± =
ω̃1 + ω̃2

2
±
√

(ω̃1 − ω̃2)2

4
+K12K21 , (4.6)

where ω̃i = ωi−Kii (with no Einstein summation convention on the last term). Eigenvalue

crossing will only occur if the argument of the square root vanishes. Unlike the Hermitian

case, this time this gives only one condition

(ω̃1 − ω̃2)
2

4
+K12K21 = 0 . (4.7)

Let us now imagine that K depends on N real parameters. Since the condition (4.7) is

in general complex, it provides a restriction on two of the N parameters. This means

eigenvalue crossing can only occur on a N − 2 subspace, just as in the Hermitian case.

This is the reason why we need also at least two real parameters to see avoided crossing

in the non-Hermitian case. In the black hole context, this justifies why we can see this

phenomenon in Kerr-Newman [3], RN-dS [63], Myers-Perry-dS [62], but not in RN or Kerr

black holes.

The analysis above also shows that level crossing (in the complex frequency plane) will

only occur at most at a point in the full Kerr-Newman space of parameters (which has

N = 2 adimensional parameters, namely Q/M and J/M2). Our numerical analysis of the

KN QNM spectra (mainly of of Sections 3.2 and 4.2) provide us with strong evidence to

conjecture that this level crossing point lies precisely at extremality when the PS modes

reach Im(ω) = 0. This is the ? point in Fig. 12 (in the case of n = 0 PS and NH modes).

This conjecture is backed up not only by our numerical studies, but also by our approximate

analytic form of the near-horizon matching asymptotic expansion frequency (3.40), which

has the same elements as (4.6), with −λ2(m, ã) playing the role of (ω̃1−ω̃2)2

4 +K12K21.

The study of level crossing for non-Hermitian systems remains an active topic of re-

search particularly when more than two-levels are considered (see [105] for an excellent

21Here we use the fact that combining the non-degeneracy of the spectrum of L0 with the non-degeneracy

of 〈〈·|·〉〉 requires 〈〈ψi|ψj〉〉 6= 0.
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topical review on the subject). For instance, in (4.7) we could have demanded that the real

(imaginary) part vanishes, but let the imaginary (real) part be arbitrary. This would lead

to avoided crossing in the imaginary (real) part, but would allow for crossing in the real

(imaginary) part. This example shows that avoided crossing for non-Hermitian matrices

can indeed be a richer phenomenon than its Hermitian cousin.

4.2 Eigenvalue repulsions in the frequency spectra of KN

Perhaps surprisingly at first sight, but certainly not after the discussions in subsection 4.1,

in the numerical search of the KN QNM spectra we find eigenvalue repulsions between the

two distinct families of QNMs of the system. These eigenvalue repulsions are unique to

the KN QNM system since they are not observed in the spectra of Schwarzschild, RN nor

Kerr black holes (for reasons that were understood in subsection 4.1). Our strategy to

describe and discuss further these eigenvalue repulsions is the following. In Figs. 13−14 we

display a series of panels. Each one of them plots the imaginary part of the dimensionless

frequency, Im(ωr+), as a function of the dimensionless charge, Q̂ = Q/r+, at fixed a/aext.

We choose to use units of r+ since some curves change too much in a small range of

charge if we use units of M . Different plots of this series are for different values of fixed

a/aext. Namely, moving from top-left into bottom-right panels of Figs. 13−14 we have

fixed a/aext = 0, 0.38, 0.39, 0.5, 0.8, 0.86 and 0.96 (see legend on top of each panel). So we

start at the RN family with a = 0 and progressively increase a/aext till we reach a KN

black hole family parametrized by 0 ≤ Q̂ ≤ 1 where the whole KN family is at 96% of

extremality. We have chosen these particular a/aext cases because they are representative

of what happens to the system in a window of a/aext centred at the given a/aext. When

we move to the next panel a new major feature appears that justifies introducing a new

plot to illustrate it. We only display the imaginary part of the frequency. This is because

the plots for the real part of the frequency are not very illuminating since the curves for

the different modes quickly become very close to each other as we approach extremality i.e,

as a/aext increases. We will add comments about the real part of the frequency whenever

appropriate and at the end of this section.

We can now describe in detail the content of each plot in Figs. 13−14. In the top-

left panel of Fig. 13 we start with the RN black hole (a = 0). This describes what

happens to the system with a = 0 but it is also representative of small rotation cases

with a/aext below 0.38. We plot the first two overtones (n = 0, 1) of the PS QNM family

(that we denote by PS0 and PS1 or, more generically, as PSn modes) and the first two

overtones (n = 0, 1) of the NH QNM family (denoted as NH0 and NH1 or simply as

NHn modes). The PS0 and PS1 curves are described by orange diamonds and dark-red

triangles, respectively. In the Schwarzschild limit (Q̂ = 0), the PS0 family reduces to

the dark-red disk ω r+ = 0.74734337 − 0.17792463 i while the PS1 curve reduces to red

square ω r+ = 0.69342199 − 0.54782975 i, first computed by [40, 41]. On the other hand,

the NH0 and NH1 families are the green circle and blue square curves, respectively (not

shown: for Q̂ < 0.85 these curves plunge quickly to lower Im ω̂). Note that this plot

contains the same PS0 and NH0 information as the one of Fig. 1 (although here we use

units of r+ instead of M). Moreover, w.r.t. Fig. 1, in the top-left panel of Fig. 13 we also
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Figure 13. QNM spectra for KN BHs with a/aext = 0 (top left), 0.38 (top right), 0.39 (bottom

left) and 0.50 (bottom right). In the RN case, there is an unambiguous QNM family classification:

the orange diamond (dark-red triangle) curve is the n = 0 (n = 1) PS family which reduces to the

dark-red disk ω r+ = 0.74734337 − 0.17792463 i (red square ω r+ = 0.69342199 − 0.54782975 i) in

the Schwarzschild limit [40, 41]. The green circle (blue square) curve is the n = 0 (n = 1) NH family

(not shown: for Q̂ < 0.85 these curves extend to lower Im ω̂). In the middle panels one observes

eigenvalue repulsions unique to the KN QNM spectra. In the RN case, we also show the frequency

ω̃MAE given by (3.40) for n = 0 (black curve) and for n = 1 (magenta curve).
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Figure 14. QNM spectra for KN BHs with a/aext = 0.80 (top left), 0.39 (top right) and 0.96

(bottom). One observes further eigenvalue repulsions unique to the KN QNM spectra. On the

bottom panel we also show the frequency ω̃MAE given by (3.40) for n = 0 (black curve) and for

n = 1 (magenta curve).

display the near-horizon matched asymptotic expansion frequency ω̂MAE as given by (3.40)

for n = 0 (solid black curve) and for n = 1 (solid magenta curve); these are better seen

in the inset plot where one finds that (3.40) gives the correct slopes near-extremality at

Q̂ . 1. As emphasized already in subsection 3.2, these analytical ω̂MAE are in excellent

agreement with the numerical NH QNM frequencies, as long as we are near extremality

(which for RN occurs at Q̂ = 1). Actually this time we demonstrate that (3.40) is an

excellent approximation (near extremality) not only for the first overtone NH0 but also for

NH1 (and higher overtones n although not shown). A major feature of this a = 0 plot is

that the PSn and NHn curves are very well defined and clearly distinct from each other,
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with the PSn frequencies well approximated by ω̂eikn
PS in (3.16), and the NHn frequencies in

excellent agreement with ω̂MAE as given by (3.40). It is also important to emphasize that

the imaginary part of the PS0 and NH0 curves (in particular) cross each other but, as best

displayed in the right panel of Fig. 1, this is not the case for the real part of the frequency.

This will be a common feature in all the cases displayed in Figs. 13−14: whenever we see

crossing between two curves describing the imaginary part of the frequency there is no

crossing between the curves that represent the real part of the frequency.

As far as it is possible, we will keep the same colour/shape code for the PSn and NHn

QNM families displayed in the top-left panel as we move to the other plots with increasing

a/aext. However, at a certain point we will no longer be able to assign the PS or NH

nomenclatures to the QNM curves of the system.

As we switch on a and increase a/aext, the QNM spectra remains similar to the one

on the top-left panel but the PS1 (dark-red triangles) and NH0 (green circles) curves start

getting deformed in the region where they intersect as a simple crossover in the imaginary

part. It is as if each of these curves starts feeling the presence of the other and they start

interacting. This is particularly seen in the top-right panel of Fig. 13 for a/aext = 0.38.

Then, increasing a little bit the rotation, at a/aext = 0.39 (bottom-left panel of Fig. 13)

a dramatic new feature occurs. The ‘old’ PS1 (by ‘old’ we mean w.r.t. the previous plot

or, ultimately, w.r.t. the a = 0 plot) dark-red triangle curve breaks into two pieces, and

the same occurs for the ‘old’ NH0 curve. This occurs for Q̂ ∼ 0.875 as best seen in the

inset plot. Not less remarkably, the left-branch (Q̂ . 0.875) of the ‘old’ PS1 curve merges

with the right-branch (Q̂ & 0.875) of the ‘old’ NH0 curve. That is to say, the PS1 and

NH0 families lose their individual identity and they combine into what we now can call the

PS1−NH0 family of QNMs. Similarly, the left-branch of the ‘old’ NH0 (Q̂ . 0.875) curve

joins with the right-branch of the ‘old’ PS1 (Q̂ & 0.875) curve to form together a new QNM

family that we denote as the NH0−PS1 family of QNMs. These breakups and subsequent

mergers are even more surprising because they glue two sub-families that were, for lower

rotations, assigned different radial overtones n. At this rotation parameter we can say that

we have 4 families of QNMs (from top-left to bottom-right): the PS0, the PS1−NH0, the

NH0−PS1 and the NH1.

Altogether, these features and frequency gaps are characteristic of the phenomenon

of eigenvalue repulsion that we discussed in subsection 4.1. In particular, in the breakup

region, there is a a ‘frequency gap’ between the new PS1−NH0 and NH0−PS1 curves. This

‘frequency gap’ is zero exactly at the breakup rotation (somewhere in the window a/aext ∈
[0.38, 0.39]), and then it grows as a/aext increases. This is what is seen e.g. when we move

to a/aext = 0.5 case shown in the bottom-right panel of Fig. 13. In this plot we see that a

further eigenvalue repulsion episode happened in the window a/aext ∈ [0.39, 0.5]. Indeed,

the NH0−PS1 curve (green circles plus dark-red triangles) broke up around Q̂ ∼ 0.91 and

the same happened to the NH1 curve (blue squares). The left-branch of the ‘old’ NH0−PS1

curve is now merged with the right-branch of the ‘old’ NH1 curve to form what we can call

a NH0−PS1−NH1 family of QNMs. Simultaneously, the left-branch of the ‘old’ NH1 curve

(blue squares) is now merged with the right-branch of the ‘old’ NH0−PS1 curve (or with

a portion of the even ‘older’ PS1 curve since it only contains dark-red triangles) to form
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what we can call a NH1−PS1 curve.

So far the original PS0 family escaped eigenvalue repulsion phenomena, but this

changes when we keep increasing a/aext even further as seen in Fig. 14 (in this figure

we drop the subdominant NH1−PS1 curve). Indeed, at a/aext = 0.8 we already notice

that the PS0 curve (orange diamonds) and NH0 portion (green circles) of the PS1−NH0

curve are getting deformed by each other in the region where they intersect as a simple

crossover. Again, it is as if each of these curves feels the presence of the other and reacts

to the interaction (see the inset plot). This is similar to the eigenvalue repulsion observed

before between the PS1 and NH0 modes and, inevitably, the PS0 and the PS1−NH0 curves

break up in the window a/aext ∈ [0.8, 0.86]. Indeed, in the top-right panel of Fig. 14,

we see that at a/aext = 0.86 these two curves break at Q̂ ∼ 0.93. The left-branch (or-

ange diamonds) of the ‘old’ PS0 curve merges with the right-hand branch (green circles) of

the NH0 portion (green circles) of the PS1−NH0 curve to produce what we denote as the

PS0−NH0 family of QNMs. At the same Q̂ ∼ 0.93, the left-branch of the ‘old’ PS1−NH0

is now merged with the right branch of the ‘old’ PS0 curve to give birth to what we call a

PS1−NH0−PS0 family.

Similar eigenvalue repulsions keep occurring when we increase a/aext towards extremal-

ity. For example, already very close to extremality, namely at a/aext = 0.96, the two most

dominant QNM families are shown in the bottom panel of Fig. 14 (we do not show data

for even higher overtones). Here, we identify the PS0−NH0 curve already observed in the

previous plot. This is the family that has the lowest |Im ω̂| for all Q̂. Additionally, we see

that the ‘old’ PS1−NH0−PS0 curve of the a/aext = 0.86 broke again (around Q̂ ∼ 0.94)

and merged with the right branch of the ‘old’ NH1 (blue squares) to form a four colour

PS1−NH0−PS0-NH1 curve (see inset plot).

To conclude by summarizing the key aspects of our findings, the first plot of Fig. 13

together with the last plot of Fig. 14, are those that probably best illustrate the main

conclusion of our study. There is no doubt that a = 0, the RN black hole, has two clearly

distinct families of QNMs: the PS and NH families, together with overtones for each of

them (first plot of Fig. 13). Here, the PSn frequencies are well approximated by ω̂eikn
PS in

(3.16), and the NHn frequencies are in excellent agreement with ω̂MAE as given by (3.40).

However, as the rotation increases, several eigenvalue repulsions progressively appear that

increasingly break and combine pieces of the ‘old’ PSn and NHn curves. Very close to

extremality, we end up with a QNM landscape that is definitely very different from the

RN one. Indeed, as best illustrated in the last plot of Fig. 14, instead of having the

PSn and NHn curves, one now has what we can simply call the ‘PS−NH’ family and its

radial overtones (with higher |Im ω̂|). Interestingly, the near-horizon matched asymptotic

expansion frequency ω̂MAE given by (3.40) describes accurately this PS−NH family (and its

overtones) for the whole range of Q̂ at a fixed a/aext that is close to extremality. Indeed,

in the bottom panel of Fig. 14, the solid black curve describes (3.40) with n = 0 and the

solid magenta line represents (3.40) with n = 1. And these match very well the numerical

frequencies for the n = 0 and n = 1 PS−NH modes, respectively. This is a conclusion that

we had already reached when discussing (3.40) and Figs. 9-10 of subsection 3.2. Notice,

that this matching between ω̂MAE and the numerical data includes the region of the QNM
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curve that we can trace back as descending from the RN PS modes (i.e. the orange diamond

section of the n = 0 PS−NH curve), in agreement with the discussion of the extension of

(3.40) to negative values of λ2 and associated Fig. 10 that we had in subsection 3.2. In

particular, this means that the PS−NH overtone curves (including the two shown in the

in bottom panel of Fig. 14) approach Imω = 0 and Reω = mΩext
H as a/aext → 1 for any

value of Q̂.

In the analysis of this section we have not discussed much the behaviour of the real

part of the frequency. This is because nothing of relevance happens to this quantity as we

evolve though the 2-parameter space of KN black holes away from the level crossing point

that occurs in the imaginary part. Take for example the n = 0 PS and NH modes. As we

move away from the level repulsion point at {â, Q̂}|ext = {â?, Q̂?} ' {0.360, 0.932}, during

a good neighbourhood the real part of these two modes is very similar (parallel to each

other) but they do not cross. Then, sufficiently far away from the level crossing point the

two Re ω̂ surfaces become clearly distinct. These properties will be observed in the right

panel of Fig. 15. It turns out that the eigenvalue repulsions induce strong effects at the

level of the imaginary part of the frequencies but leave no (notably visible) imprint on the

real part of the frequencies. In more detail, whenever there is crossing between two curves

describing the imaginary part of the frequency there is no crossing between the curves that

represent the real part of the frequency; that is, the crossing in the imaginary part of the

frequency never extends to the full complex frequency plane, with one exception. For each

pair of modes, this exception occurs when we approach the particular extremal KN black

hole with {â, Q̂}|ext = {â?, Q̂?}.
To summarise, for definiteness consider again the PS0 and NH0 pair of modes. In this

case, the star point at extremality has {â?, Q̂?} ' {0.360, 0.932} and is represented with a

? in Fig. 12. At this ? point, the PS and NH modes both have Imω = 0 and Reω = mΩext
H .

That is, they have the same complex frequency and, as discussed in subsection 4.1, this is

the only level crossing point of the system. As we move away from this ? point, avoided

crossing effects emerge and Figs. 13−14 illustrate that these repulsion effects can be strong

and induce intricate features in the behaviour of the Im ω̂ curves (but not in the Re ω̂

curves) in a neighbourhood of the level crossing point but they become unnoticed far away

from this point.

5 Full frequency spectra of the QNMs with slowest decay rate

We have done a fairly good survey (having in mind the associated computational cost;

more in Section 6) of several gravito-electromagnetic QNMs of KN and we conclude that, as

expected, the modes that have the slowest decay rate are those that are the {Q, a} 6= {0, 0}
extension of the Schwarzschild mode that Chandraseckar classifies as the Z2, ` = m = 2,

n = 0 mode; see Table V, page 262 of [40] and associated discussion. These are also the

modes we discussed in Section 4.1, together with the n = 1 overtone of the same family

(which was first studied by Leaver [41]).

Therefore, before doing a general survey of other modes of interest in Section 6, in

this section we display the QNM spectra of the Z2, ` = m = 2, n = 0 modes and the
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Figure 15. Imaginary (left panel) and real (right panel) part of the frequency for the Z2 ` = m = 2

KN QNMs. The orange and the green surfaces are the PS0 and NH0 families (respectively), while

the dark-red and blue surfaces are the PS1 and NH1 families (respectively). When {Q, a} = {0, 0},
The PS0 surface reduces to ωM = 0.37367168 − 0.08896232 i, while the PS1 surface reduces to

ωM = 0.34671099− 0.27391487 i [40, 41]. The extremal KN frequencies are described by the solid

brown line which has Im ω̃ = 0 and Re ω̃ = mΩ̃ext
H .

n = 1 overtones (the latter will allow us to complement or even complete the analysis of

Section 4.2). Unlike in Section 4.2 where we made a judicious choice of 2-dimensional plots

at fixed a/aext to exhibit and explain eigenvalue repulsions, in this section we plot the QNM

frequencies as a function of the full 2-dimensional parameter space of KN. As discussed

previously, we can take these 2 dimensionless parameters to be {ã, Q̃} ≡ {a/M,Q/M}
or {â, Q̂} ≡ {a/r+, Q/r+}. From an astrophysical perspective, it is appropriate to work

in units of M and this is how we present many of our physical results, in particular the

frequency ωM . However, in practice we have scanned the 2-dimensional parameter space in

units of r+: typically (except when we needed a finer grid to study a particular feature), we

divided our numerical grid for {Q̂, â} ≡ {Q/r+, a/r+} with 100×100 points with 0 ≤ Q̂ ≤ 1

and 0 ≤ â ≤ âext with âext =

√
1− Q̂2. This is because some features of the QNM spectra

(e.g. the crossovers or eigenvalue repulsions between modes) occur in small windows of

(Q/M, a/M) which translate into wider windows of (Q/r+, a/r+). For this reason, some of

the fine details of the frequency spectra that we discuss in this section are better displayed

if we present our results in 3-dimensional plots {Q/r+, a/r+, ωM}. In the figures of this

section, the left panel always displays the imaginary part of the frequency, Im(ωM), while

the right panel plots the real part of the frequency, Re(ωM).

In Fig. 15 we present the raw data that we collected for the two QNM families that

have the slowest rate, namely the families that we identify with the PS0 and NH0 modes

in the RN limit and their n = 1 overtone cousins PS1 and NH1 (for the Z2 ` = m = 2

modes). Namely, the orange and the green surfaces are the n = 0 PS (PS0) and n = 0
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NH (NH0) families, respectively. On the other hand, the dark-red surface and the blue

surface describe the n = 1 PS (PS1) and n = 1 NH (NH1) families, respectively. Thus,

we are using the same colour code that was employed in Figs. 13−14 of section 4.2. The

solid brown curves are at extremality. They are parametrized by â = aext =

√
1− Q̂2

and have Im ω̃ = 0 and Re ω̃ = mΩ̃ext
H (we will use the same colour code for this extremal

curve in all other 3-dimensional plots where this curve plays a relevant role). Note that the

NH0,1 surfaces have a very large slope and plunge into very large negative Im(ωM) as we

move away from the â = âext(Q̂) extremal curve or, in the RN case, away from the Q̂ = 1

extremal solution. Therefore we only plot these families at large Q̂ (say, for Q̂ & 0.8) where

they can have |Im(ωM)| of the order as or smaller than those for the PS0,1 surfaces.

From the analysis of Fig. 15, several properties emerge. First, as expected, the n = 0

overtones always have the slowest decay rate of their families. Namely, in the left panel,

the orange PS0 surface is above the dark-red PS1 surface and the green NH0 surface is

above the blue NH1 surface. The PS0 and PS1 surfaces reduce to the Schwarzschild QNMs

(red points) at {Q, a} = {0, 0}, whose frequencies where first computed in [40, 41]. The

plane with a = 0 in Fig. 15 coincides with the RN plots of Fig. 1 or, equivalently, with the

RN plot in the top-left panel of Fig. 13, after we do the required conversion between r+
and M units. Similarly, “snapshots” at constant a/aext = 0, 0.38, 0.39, 0.5, 0.8, 0.86, 0.96

of Fig. 15 yields the series of 2-dimensional plots displayed in Figs. 13−14, after we do the

units conversion ωM → ωr+.

Naively, a “bird’s-eye” view of the left panel of Fig. 15 seems to suggest that the four

surfaces intersect each other with simple crossovers. For example, the orange PS0 and the

green NH0 surfaces seem to intersect along a curve Q̂ = Q̂c(â). In the RN limit â → 0,

this intersection curve gives the RN intersection point, i.e. Q̂c(â = 0) = Q̂RN
c ' 0.959227

(which corresponds, in units of M , to Q̃RN
c ' 0.9991342) already displayed in the left panel

of Fig. 1. On the opposite end, at extremality (on top of the solid brown curve), we should

have Q̂c(â = âext) ' Q̂? where the ? point was defined in the discussion that leads to (3.41).

This intersection curve Q̂ = Q̂c(â) between the PS0 and NH0 surfaces indeed is well defined

for 0 ≤ a/aext . 0.82 but, a fine-tuning or zoom-in analysis of the left panel proves that

this is definitely no longer the case for 0.82 < a/aext ≤ 1. Indeed, this fine-tuned analysis

was already performed in Figs. 13−14: in all plots of Fig. 13 and in the top-left panel of

Fig. 14 the PS0 and NH0 families indeed intersect with a simple crossover (but only the

imaginary part of the frequency cross). However, between the top-left (for a/aext = 0.8)

and top-right (for a/aext = 0.86) panels of Fig. 14 we concluded that the PS0 and NH0

families, instead of intersecting, suffer eigenvalue repulsions that effectively destroy their

individual identities and leads to the formation of PS-NH families of modes. Coming back

to the left panel of Fig. 15, these eigenvalue repulsions occur roughly for 0.82 < a/aext ≤ 1

and in the charge window 0.928 . Q̂ . 0.960. Again, the eigenvalue repulsions in this

region are not visible in the “bird’s-eye” view of the left panel of Fig. 15; we need to zoom-

in to make this noticeable very much like we did in Figs. 13−14. However, in Fig. 15 there

is a particular point that stands-out. The is the level crossing point located at the extremal

brown curve with {â?, Q̂?} ' {0.360, 0.932} and Imω = 0 and Reω = mΩext
H where the
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Figure 16. Imaginary (left panel) and real (right panel) parts of the frequency for the Z2,

(`,m, n) = (2, 2, 0) KN PS QNM. The dark-red point (a = 0 = Q), ω̃ ' 0.37367168− 0.08896232 i,

is the gravitational QNM of Schwarzschild [40, 41]. The orange surface describes PS0 modes while

the green surface corresponds to the NH0 modes.

orange and green surfaces meet (see subsection 4.1).

Similarly, a zoom-in of the left panel of Fig. 15 (illustrated again in Figs. 13−14)

shows that the dark-red PS1 and green NH0 surfaces intersect with simple crossovers in

the window 0 ≤ a/aext . 0.38 (but only the imaginary part of the frequency cross), but

this is replaced by eigenvalue repulsions between the two families roughly in the window

0.38 < a/aext ≤ 1 and 0.870 . Q̂ . 0.885. Finally, other eigenvalue repulsions, e.g.

between the PS1 and NH1 surfaces, also occur in the left panel of Fig. 15 as identified in

Figs. 13−14.

The evolution and intersections of the four QNM surfaces is much simpler and much

less dramatic at the level of the real part of the frequency, which is plotted in the right

panel of Fig. 15. We see that the Re(ωM) of the orange PS0 and dark-red PS1 families is

very similar and the same happens for Re(ωM) of the green NH0 and blue NH1 families.

So much so that one barely distinguishes the PS0 and PS1 surfaces and, even less, the NH0

and NH1 surfaces. Moreover, nothing special happens to the real part of the frequency in

the regions where the eigenvalue repulsions happen in the imaginary part of the frequency

(see further discussions about this in the end of subsection 4.2).

From the analysis of both plots in Fig. 15 we see that the NH0,1 surfaces always

approach the solid brown curve with Imω = 0 and Re ω̃ = mΩ̃ext
H at extremality. On the

other hand, the PS0,1 curves approach this solid brown curve if and only if âext(Q̂) > â?
where the ? point was introduced in the discussion that leads to (3.41), pinpointed in

Fig. 12, and identified as the level crossing point of the system in subsection 4.1. For

âext(Q̂) < â? which happens for Q̂? < Q̂ ≤ 1 this is no longer the case, in agreement with

the discussions of (3.41) and of Figs. 11−12.

To explicitly demonstrate/justify why we have chosen to display many of our plots in
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units of r+ in the plots of Figs. 13−15, in Fig. 16 we plot the n = 0 PS and NH families,

so the same as in Fig. 15, but this time without including the n = 1 families and all

quantities in units of M , i.e. the plot {Q/M, a/M,ωM}. In the left panel, the slope of

the green NH0 surface is now even more vertical than in Fig. 15, which indicates that the

eigenvalue repulsions occur in windows of Q/M that are much narrower than in Q/r+.

Furthermore, in the right panel the NH0,1 surfaces exist in such a narrow region that they

are not visible: they are too close to the extremal solid brown line with a width extremely

small and invisible to the naked eye.

Finally note that if we are interested on the numerical value of the frequency of the

slowest decaying mode of KN, we simply need to take the mode with minimum |Im(ωM)| for

a given {Q/M, a/M} in Fig. 16. For completeness, we display the result of this operation in

Fig. 17, which was first presented in [3]. The Z2 ` = m = 2, n = 0 KN modes with slowest

decay rate always terminate at extremality along the extremal solid brown curve, with the

frequencies off extremality well approximated by (3.40) as best illustrated in Figs. 9−10

and in the bottom panel of Fig. 14. The red surface family, continuously connected to the

Schwarzschild mode (dark-red point [40, 41]), is the PS0 QNM family as we unambiguously

identify it in the RN limit. It dominates the spectra for most of the parameter space.

However, for large Q̃ it is instead the green surface NH0 QNM family (as clearly identified

in the RN limit) that has the lowest |Im ω̃|. In between these orange/green regions there

is a yellowish zone. This is where either simple crossovers (that trade mode dominance)

or eigenvalue repulsions between the PS0 and NH0 modes occurs. These were analysed

in the discussion of Figs. 13−14 where we also found that as we approach extremality it

is appropriate to drop the PS and NH classifcation and adopt the nomenclature PS−NH

families and their overtones.

In the three Figs. 15−17, at very large charge, namely for Q̂ > 0.99 there is a gap

between the last green NH line (with Q̂ = 0.99) and the extremal solid brown curve. We

have not collected data in this region because we already know (see Fig. 9 and the bottom

panel of Fig. 14) that in this region so close to extremality, the analytical near-horizon

MAE frequency ω̃MAE − as given by (3.40) − provides an excellent approximation that can

be used for any physical application where such high charge values might be needed.

6 QNM spectra: a survey of key modes

So far we have been assuming that the least damped gravito-electromagnetic QNMs of the

KN black holes are the Z2 ` = m = 2 modes with n = 0. But we have not yet provided

evidence that this is the case. It is certainly the case for the RN black hole subfamily (a = 0)

and for the Kerr black hole (Q = 0) since several {`,m} modes have already been computed

in the literature for these cases. But strictly speaking the Z2 ` = m = 2 does not necessarily

need to be the mode with slowest decay in the whole parameter space {Q/M, a/M} of the

KN black hole away from the RN and Kerr sufamilies. Therefore, in this section we do a

survey of what should be the QNMs of KN that could eventually challenge the dominance

of the Z2 ` = m = 2 mode. Mainly these are all families with ` = 1, 2 and |m| ≤ ` that are

not pure gauge modes and the Z2 families with ` = m = 2, 3, 4, 5. For each mode, we only
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Figure 17. Imaginary (left panel) and real (right panel) parts of the frequency for the Z2, ` = m =

2, n = 0 KN QNM with lowest Im |ω̃|. At extremality, the dominant mode always starts at Im ω̃ = 0

and Re ω̃ = mΩ̃ext
H (brown curve). The dark-red point (a = 0 = Q), ω̃ ' 0.37367168−0.08896232 i,

is the gravitational QNM of Schwarzschild [40, 41]. In the right panel, the orange and green regions

are so close to the extremal brown curve that they are not visible.

display the data for the first radial overtone (n = 0) because higher overtones always have

larger |Im(ωM)| that the n = 0 one.

To classify and identify more precisely the QNMs families that we will study, note that

for Q, a → 0 we must recover the Schwarzschild QNMs. In this limit, it is well known

that there are two families of QNMs, namely the Regge-Wheeler (aka odd or axial) modes

[30] and the Zerilli (aka even or polar) modes [31, 32] . These families are isospectral,

i.e. they have exactly the same spectrum [40]. Ultimately, we only need to distinguish

the gravitational modes of Schwarzschild (described in Table V of page 262 [40]—hereafter

Table of [40]—by the eigenfunction Z2) from the electromagnetic modes of Schwarzschild

(described in Table of [40] by the eigenfunction Z1). In recent decades, these QNMs were

computed more accurately as detailed in the review [47]. Each of these Z2 and Z1 modes in

Schwarzschild can be found by solving a single pair of ODEs that constitute an eigenvalue

problem for the angular separation constant and frequency [30–32]. The Schwarzschild

modes are specified by the harmonic number ` = 0, 1, 2, 3, · · · that essentially fixes the

separation constant of the problem after requiring regularity of its spherical harmonic

eigenfunctions (Z2 perturbations with ` = 0 and ` = 1 are modes that change the mass

and the angular momentum of the black hole, respectively; thus we do not discuss these

further). When the black hole has charge and rotation, we have to scan a two parameter

space in {Q/M, a/M}. The above two families become coupled gravito-electromagnetic

QNMs and the Schwarzschild eigenvalue ` does not appear explicitly in the KN PDEs

(2.23). However, we can still count the number of nodes along the polar direction of the

eigenfunctions of (2.23) and this gives `. So, when Q 6= 0 and a 6= 0, we can still assign

to a given mode the value of ` that the mode has when we trace it back continuously to
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the Schwarzschild limit. This is what we will do to catalogue the modes we study. In

Table 1 we give the list of all modes we present. The first table is for Z2 modes while the

second is for Z1 modes. In both tables the first column specifies {`,m}, the second column

gives the value of the frequency for the Schwarzschild case. It matches the frequencies first

computed and listed in Table V of page 262 or in Table IV of page 202 of [40]. Finally, in

the third column we identify the figure of our manuscript where the QNMs of KN with the

given {`,m} of the first column are displayed. In the plots of all these figures, the QNM

surfaces reduce to the values of the second column of Table 1 in the Schwarzschild limit

(see red points at Q = a = 0 in our figures).

Z2 Schwarzschild (Q = a = 0) Kerr-Newman

Gravitational QNMs

` = 3,m = 3 ωM ' 0.59944329− 0.09270305 i Fig. 18

` = 4,m = 4 ωM ' 0.80917838− 0.09416396 i Fig. 19

` = 5,m = 5 ωM ' 1.01229531− 0.09487052 i Fig. 20

` = 6,m = 6 ωM ' 1.21200982− 0.09526585 i Fig. 3

` = 2,m = 2 ωM ' 0.37367168− 0.08896232 i Fig. 16

` = 2,m = 1 ωM ' 0.37367168− 0.08896232 i Fig. 21

` = 2,m = 0 ωM ' 0.37367168− 0.08896232 i Fig. 22

` = 2,m = −1 ωM ' 0.37367168− 0.08896232 i Fig. 23

` = 2,m = −2 ωM ' 0.37367168− 0.08896232 i Fig. 6

` = 6,m = −6 ωM ' 1.21200982− 0.09526585 i Fig. 7

Z1 Schwarzschild (Q = a = 0) Kerr-Newman

Electromagnetic QNMs

` = 2,m = 2 ωM ' 0.45759551− 0.09500443 i Fig. 24

` = 2,m = 1 ωM ' 0.45759551− 0.09500443 i Fig. 25

` = 2,m = 0 ωM ' 0.45759551− 0.09500443 i Fig. 26

` = 2,m = −1 ωM ' 0.45759551− 0.09500443 i Fig. 27

` = 2,m = −2 ωM ' 0.45759551− 0.09500443 i Fig. 28

` = 1,m = 1 ωM ' 0.24826326− 0.09248772 i Fig. 29

` = 1,m = 0 ωM ' 0.24826326− 0.09248772 i Fig. 30

` = 1,m = −1 ωM ' 0.24826326− 0.09248772 i Fig. 31

Table 1. List of most relevant gravitational (Z2) and electromagnetic (Z1) QNMs of Schwarzschild

(all with n = 0). Note that Z2 ` = 1 modes are pure gauge. The Schwarzschild frequencies displayed

in this table agree with the values listed in Table V of page 262 or in table IV of page 202 of [40].

In the last column of each Table we indicate the figure that extends the Schwarzschild result to the

Q̃ 6= 0, ã 6= 0 case. Note that for a given `, modes with |m| ≤ ` are degenerate in the Schwarzschild

limit but this degeneracy is broken once we switch on Q̃ and ã.
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Figure 18. Imaginary (left panel) and real (right panel) parts of the frequency for the Z2,

(`,m, n) = (3, 3, 0) KN PS QNM. The dark-red point (a = 0 = Q), ω̃ ' 0.59944329− 0.09270305 i,

is the gravitational QNM of Schwarzschild [40, 41]. The magenta surface describes PS0 modes while

the blue surface corresponds to the NH0 modes.

Figure 19. Imaginary (left panel) and real (right panel) parts of the frequency for the Z2,

(`,m, n) = (4, 4, 0) KN PS QNM. The dark-red point (a = 0 = Q), ω̃ ' 0.80917838− 0.09416396 i,

is the gravitational QNM of Schwarzschild [40, 41]. The orange surface describes PS0 modes while

the green surface corresponds to the NH0 modes.

We start by analysing what happens to the QNM Z2 spectra with ` = m when ` = m

progressively grows from ` = m = 2 (Fig. 16), to ` = m = 3 (Fig. 18), to ` = m = 4 (Fig. 19)

and, finally, to ` = m = 5 (Fig. 20). As for the ` = m = 2 case of Fig. 16, the solid brown

curves at extremality are parametrized by â = aext =

√
1− Q̂2 and have Im ω̃ = 0 and

Re ω̃ = mΩ̃ext
H . We see that the main features of Figs. 18−20 for ` = m = 3, 4, 5 are very

similar to those of Fig. 16 for the ` = m = 2 mode that was already analysed in much

detail in Sections 4.2 and 5.22 In particular, we identify the PS0 and NH0 surfaces (as

unambiguously identified in the RN limit) and a zoom in of Figs. 18−20 (not shown in

22As with the ` = m = 2 case of Fig. 16, note that in the right panels of Figs. 18−20 the NH0 surface

exist in such a narrow width around the solid brown extremal line that they are not visible to the naked

eye.
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Figure 20. Imaginary (left panel) and real (right panel) parts of the frequency for the Z2,

(`,m, n) = (5, 5, 0) KN PS QNM. The dark-red point (a = 0 = Q), ω̃ ' 1.01229531− 0.09487052 i,

is the gravitational QNM of Schwarzschild [40, 41]. The red surface describes PS0 modes while the

green surface corresponds to the NH0 modes.

our figures) shows that these surfaces intersect with simple crossovers or with eigenvalue

repulsions very much similar to those detailed in Figs. 13−14 for the ` = m = 2 case.

Therefore, the key features of Figs. 18−20 are as discussed before. However, we highlight

three features. First, the ` = m = 3, 4, 5 Im(ωM) surfaces are always below and thus more

damped than the ` = m = 2 one, and the damping increases as ` = m increases. Second,

the NH0 surfaces only dominate the spectra for very large Q/M and close to extremality,

again very much like in the ` = m = 2 case. In fact, since black holes with very large

charge are not expected to have any astrophysical interest, in the plots for the other modes

listed in Table 1 we will no longer display the NH families (when they exist; this is certainly

the case for the Z1 ` = m = 1, 2 modes). Finally, note that for ` = m ≥ 3 it is still true

that the PS0 frequencies are well approximated by (3.16) (in fact the approximation gets

better as m increases and we approach the eikonal limit; see also the ` = m = 6 case in

Fig. 3) and the NH0 frequencies are in excellent agreement with (3.40) near extremality.

Complementing the analysis reported here, note that in [1] we have reported our findings

for Z2 ` = 3 with m = −3,−2,−1, 0, 1, 2, 3 and we have concluded that their |Im ω̃| is

aways higher than the Z2 ` = m = 2 modes.

Next, we consider the several cases of Z2 modes with |m| ≤ ` = 2 in Fig. 16 (m =

2), Fig. 21 (m = 1), Fig. 22 (m = 0), Fig. 23 (m = −1), and Fig. 6 (m = −2). In

the Schwarzschild limit all these ` = 2 modes are degenerate with ω̃ ' 0.45759551 −
0.09500443 i, but this degeneracy is broken once we switch on Q̃ and ã. The figures speak

for themselves and we refrain from describing them further. We note simply that the

surfaces for positive m have a qualitative shape that is significantly distinct from the ones

for negative m (notably, m ≥ 0 cases have a monotonic behaviour that is not observed in

the m < 0 cases) and, as expected, further note that for m 6= ` the PS0 surfaces no longer

approach Im ω̃ = 0 and Re ω̃ = mΩ̃ext
H at extremality (hence we do not display these solid

brown curves in the associated plots). This sequence of figures demonstrates, as previously

claimed, that Z2 modes with ` = m = 2 are the dominant ones among the |m| ≤ ` = 2
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Figure 21. Imaginary (left panel) and real (right panel) parts of the frequency for the Z2,

(`,m, n) = (2, 1, 0) KN PS QNM. The dark-red point (a = 0 = Q), ω̃ ' 0.37367168− 0.08896232 i,

is the gravitational QNM of Schwarzschild [40, 41].

Figure 22. Imaginary (left panel) and real (right panel) parts of the frequency for the Z2,

(`,m, n) = (2, 0, 0) KN PS QNM. The dark-red point (a = 0 = Q), ω̃ ' 0.37367168− 0.08896232 i,

is the gravitational QNM of Schwarzschild [40, 41].

Figure 23. Imaginary (left panel) and real (right panel) parts of the frequency for the Z2,

(`,m, n) = (2,−1, 0) KN PS QNM. The dark-red point (a = 0 = Q), ω̃ ' 0.37367168−0.08896232 i,

is the gravitational QNM of Schwarzschild [40, 41].
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Figure 24. Imaginary (left panel) and real (right panel) parts of the frequency for the Z1,

(`,m, n) = (2, 2, 0) KN PS QNM. The dark-red point (a = 0 = Q), ω̃ ' 0.45759551− 0.09500443 i,

is the gravitational QNM of Schwarzschild [40, 41].

families (and all others).

We can now consider the Z1 modes which are purely electromagnetic modes in the

Schwarzschild (and Kerr) limit.23 In Figs. 24, 25, 26, 27 and 28, we display the ` = 2

PS surfaces of this family for m = 2, 1, 0,−1,−2, respectively. Moreover, in Figs. 29, 30

and 27, we display the Z1 ` = 1 PS surfaces for m = 1, 0,−1, respectively. Comparing

Z1 modes with the same {`,m} as Z2 modes, we see that the qualitative shape of the

surfaces is similar but Z1 modes are typically more damped than the Z2 modes. Moreover,

Z1 modes with ` = m also approach Im ω̃ = 0 and Re ω̃ = mΩ̃ext
H at extremality if and

only if âext(Q̂) > â? (see Fig. 24 for ` = m = 2 and Fig. 29 for ` = m = 1) where the ?

point was defined in the discussion leading up to (3.41). For âext(Q̂) < â? which occurs

for Q̂? < Q̂ ≤ 1 this is no longer the case, very much like in the Z2 ` = m discussions of

(3.41) and of Figs. 11−12. For a given ` = m, the value of â? for Z1 modes tends to be

higher than the one for Z2 modes.
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because it is computationally very costly and it does not add much to our physical discussions.

– 55 –



Figure 25. Imaginary (left panel) and real (right panel) parts of the frequency for the Z1,

(`,m, n) = (2, 1, 0) KN PS QNM. The dark-red point (a = 0 = Q), ω̃ ' 0.45759551− 0.09500443 i,

is the gravitational QNM of Schwarzschild [40, 41].

Figure 26. Imaginary (left panel) and real (right panel) parts of the frequency for the Z1,

(`,m, n) = (2, 0, 0) KN PS QNM. The dark-red point (a = 0 = Q), ω̃ ' 0.45759551− 0.09500443 i,

is the gravitational QNM of Schwarzschild [40, 41].

Figure 27. Imaginary (left panel) and real (right panel) parts of the frequency for the Z1,

(`,m, n) = (2,−1, 0) KN PS QNM. The dark-red point (a = 0 = Q), ω̃ ' 0.45759551−0.09500443 i,

is the gravitational QNM of Schwarzschild [40, 41].
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Figure 28. Imaginary (left panel) and real (right panel) parts of the frequency for the Z1,

(`,m, n) = (2,−2, 0) KN PS QNM. The dark-red point (a = 0 = Q), ω̃ ' 0.45759551−0.09500443 i,

is the gravitational QNM of Schwarzschild [40, 41].

Figure 29. Imaginary (left panel) and real (right panel) parts of the frequency for the Z1,

(`,m, n) = (1, 1, 0) KN PS QNM. The dark-red point (a = 0 = Q), ω̃ ' 0.24826326− 0.09248772 i,

is the gravitational QNM of Schwarzschild [40, 41].

Figure 30. Imaginary (left panel) and real (right panel) parts of the frequency for the Z1,

(`,m, n) = (1, 0, 0) KN PS QNM. The dark-red point (a = 0 = Q), ω̃ ' 0.24826326− 0.09248772 i,

is the gravitational QNM of Schwarzschild [40, 41].
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Figure 31. Imaginary (left panel) and real (right panel) parts of the frequency for the Z1,

(`,m, n) = (1,−1, 0) KN PS QNM. The dark-red point (a = 0 = Q), ω̃ ' 0.24826326−0.09248772 i,

is the gravitational QNM of Schwarzschild [40, 41].
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