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ABSTRACT: The frequency spectra of the gravito-electromagnetic perturbations of the
Kerr-Newman (KN) black hole with the slowest decay rate have been computed recently.
It has been found that KN has two families — the photon sphere and the near-horizon
families — of quasinormal modes (QNMs), which display the interesting phenomenon of
eigenvalue repulsion. The perturbation equations, in spite of being a coupled system of two
PDEs, are amenable to an analytic solution using the method of separation of variables in
a near-horizon expansion around the extremal KN black hole. This leads to an analytical
formula for the QNM frequencies that provides an excellent approximation to the numerical
data near-extremality. In the present manuscript we provide an extended study of these
properties that were not detailed in the original studies. This includes: 1) a full derivation
of a gauge invariant system of two coupled PDEs that describes the perturbation equations
[1], 2) a derivation of the eikonal frequency approximation [2, 3] and its comparison with
the numerical QNM data, 3) a derivation of the near-horizon frequency approximation [3]
and its comparison with the numerical QNMs, and 4) more details on the phenomenon
of eigenvalue repulsion (also known as level repulsion, avoided crossing or Wigner-Teller
effect) and a first principles understanding of it that was missing in the previous studies.
Moreover, we provide the frequency spectra of other KN QNM families of interest to
demonstrate that they are more damped than the ones we discuss in full detail.
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1 Introduction

When a black hole is (moderately) perturbed, it typically relaxes back to equilibrium by
emitting gravitational waves with damped characteristic frequencies — the quasinormal
mode (QNM) frequencies — that depend on the conserved charges of the black hole. It
follows that these QNM frequencies may be used to determine the mass and angular mo-
mentum of a black hole. In fact, this is one way of measuring the mass and angular
momentum of the final black hole [4] that emerges from the black hole binary coalescences
observed in gravitational wave detector experiments [5-10].

Astrophysical black holes are expected to be described by Einstein gravity; more specif-
ically, by its Kerr solution parametrized by the mass M and angular momentum J = Ma
(where a is the rotation parameter) [11]. Therefore, all LIGO-Virgo [6, 7] observations of
events compatible with black hole binaries [8-10] have been described so far mainly under
the working assumption that the coalescing objects can be modelled by the Kerr solution
or parametrically small deviations thereof [4]. However, to discuss the physical interpre-
tation of the observed data, we might also want to consider black hole solutions of the
Einstein-Maxwell theory that have an electric charge @, in addition to M and J.! In this

'For recent theoretical studies discussing black hole binary coalescence of charged rotating black holes
see [12, 13].



case, the uniqueness theorems [14, 15] guarantee that the Kerr-Newman black hole (KN
BH) [16, 17] parametrized by M, J and @ is the unique, most general, analytic, stationary
asymptotically flat electro-vacuum black hole of Einstein-Maxwell theory. The Kerr [5],
Reissner-Nordstrém (RN) [18, 19] and Schwarzschild [20] black holes are then viewed as
limiting cases of KN with Q =0, a = 0 and @ = a = 0, respectively.

Although astrophysical black holes are expected to quickly lose any electric charge that
they may have [21, 22|, one should nevertheless study the properties of KN black holes and
compute their quasinormal mode frequencies. With this theoretical information at hand,
we will be better equipped to analyse and interpret observational data to unequivocally
establish that the observed system has no charge (or even to compute its charge in the lucky
but unlikely event of observing a system during the short timescale where the discharge
has not yet occurred). Furthermore, the QNM spectra of KN might be of interest for
other interpretations of observational data and for applications in both ground and space-
based gravitational wave detectors [6, 7, 23-26]. For example, it can be used to model
gravitational wave emission [27], and it might even be useful for constraining some dark
matter models [28] and modified gravity models [29]. For these reasons, in this manuscript
we conclude a series of papers, started in [1, 3], that compute the main families of QNMs
of the KN BH and identify their key properties.

The QNM spectra of Schwarzschild, RN and Kerr black holes were determined many
decades ago [30—46] (see review [47]). This was possible at a relatively small computational
cost because for these black holes the QNM spectrum turns out (remarkably) to be encoded
in a single separable equation that effectively yields a pair of angular and radial ODEs that
one can solve as an eigenvalue problem. For Schwarzschild and RN black holes this is
known as the (odd mode) Regge-Wheeler and (even mode) Zerilli equations [30-32], while
for the Kerr black hole this is known as the Teukolsky equation [38]. The existence of such
a simplification allows one to find the QNM spectra, and in doing so, to establish evidence
in favour of the linear mode stability of these solutions and to ultimately motivate a formal
proof of the linear mode stability of the Kerr solution [48].2

The state of affairs is very different in the Kerr-Newman case. Generic gravito-
electromagnetic perturbations of KN are no longer described by a single separable equation.
Thus, initial hints about the QNM spectra of KN were obtained only within perturbation
theory about the RN or Kerr black holes: perturbative results in the small rotation pa-
rameter a about RN were discussed in [58, 59], and perturbative results in the small charge
parameter () around Kerr were computed in [60].

To make further progress and compute the KN QNM spectrum for generic ) and
J, one must solve the perturbed Kinstein-Maxwell equation which is a coupled partial
differential equation (PDE) system. Naively, one expects to find a system of nine cou-
pled PDEs. However, working in the so-called phantom gauge, Chandrasekhar reduced the
problem to the study of ‘just’ two coupled PDEs [40] (see also [60]). Despite this significant
progress, finding the QNM spectrum and addressing the problem of the linear mode sta-

2Even though the nonlinear stability of Kerr remains an open problem (see [49-57] for recent progress),
it is also believed to be stable beyond the linear level.



bility of the KN BH has remained an open problem for several decades. Further progress
was made in [1] where it was shown that generic gravito-electromagnetic perturbations
of KN (except for those that change the mass and angular momentum of the solution)
are described by a coupled system of two PDEs for two gauge invariant Newman-Penrose
(NP) fields. Upon gauge fixing, these reduce to the coupled PDE system originally found
by Chandrasekhar [40, 60]. Moreover, in [1] a numerical search of KN modes was finally
performed in regions of the KN parameter space that could be more prone to developing
an instability, finding none and thus providing evidence for the linear mode stability of
KN (further supported by the non-linear time evolution study of [61]). More recently, in
[3], the numerical code of [1] was made computationally more efficient and extended to
compute the frequency spectra, across the full KN 2-parameter space, of the most dom-
inant (i.e. with slowest decay rate) gravito-electromagnetic QNM family. These are the
modes that reduce — in Chandrasekhar’s notation [40] — to the Zy (i.e. gravitational),
¢ =m = 2, n = 0 modes in the Schwarzschild limit (e = @ = 0), where the harmonic
number ¢ gives the number of zeros of the eigenfunction along the polar direction and n is
the radial overtone. In the process, [3] found that KN has not one but two main families of
Zy L = m = 2 QNMs which were coined the photon sphere (PS), and the near-horizon (NH)
families, although the sharp distinction between the PS and NH modes is unambiguous
only for small rotation a, i.e., when the KN black hole is close to the Reissner-Nordstréom
family. Quite remarkably, [3] further found that as we evolve along the KN parameter
space, the imaginary part of the frequency of these two PS and NH families intersect each
other (however, the real part of the frequency is very similar for the PS and NH modes
and, typically, does not display crossings). Sometimes this intersection of the imaginary
part of the frequencies is a simple crossover where the modes simply trade dominance but,
other times this interaction is much more intricate and displays a behaviour that suggests
repulsions between the PS and NH modes. These “eigenvalue repulsions” were unexpected
since they are not observed in the QNM spectra of neither Kerr nor Reissner-Nordstrom.3
As a result of these repulsions, well away from the RN limit of the KN solution, the PS
and NH families lose their individual identities and instead combine to yield what is more
appropriately described as a PS—NH family of QNMs and its radial overtones.

In the current manuscript we complement and complete the studies of [1, 3] in five
main ways:

1. We use the Newman-Penrose (NP) formalism to derive the aforementioned coupled
system of two PDEs for two gauge invariant NP variables, first presented in [1], that
describes the most general gravito-electromagnetic perturbations of KN (except for
those that change the mass and angular momentum of the solution) and that reduces,
upon gauge fixing, to the Chandrasekhar PDE system [40, 60]. This derivation was
only very briefly sketched in [1] but we now give a detailed derivation of it in Sec-

3 More recently, eigenvalue repulsions were also found in rotating de Sitter black holes where, besides
the PS and NH modes, one has a third QNM family associated to the cosmological constant [62]. With
hindsight, they are also observed in the de Sitter Reissner-Nordstrom black hole study of [63].



tion 2. We also take the opportunity to revisit a simple proof of isospectrality of the
Schwarzschild and RN QNM spectra [1].

. We can envisage solving the perturbation equations for the two gauge invariant NP
fields in a WKB analysis at large |m| = ¢ > 1. Similar to the Schwarzschild and
Kerr cases, the leading order contribution of this analysis, known as the eikonal or
geometric optics limit |m| = ¢ — oo, is expected to be closely connected to the
properties of unstable null circular orbits revolving around the KN black hole. In
Section 3.1 we will compare this eikonal result with the numerical data for photon
sphere modes to conclude that the eikonal frequency indeed provides a relatively good
approximation to the PS frequencies that gets better as m grows.

. There is a second class of QNMs that have eigenfunctions that, near-extremality,
are very localized around the event horizon and quickly decay to zero away from
the horizon. These are the near-horizon modes or the PS—NH modes that were
already mentioned above. This suggests doing a ‘poor-man’s’ matched asymptotic
expansion (MAE) whereby we take the near-horizon limit of the perturbed equations
to find the near-region solution and match with a vanishing far-region wavefunction
in the overlapping region where both solutions are valid. Remarkably, this can be
done because the perturbation equations, in spite of being a coupled system of two
PDES, can be solved analytically in the near-horizon region around the extremal (zero
temperature) KN black hole using the method of separation of variables. Ultimately,
this is possible because the near-horizon limit of the extremal KN BH is a warped
circle fibred over AdSy (Anti-de Sitter in 141 dimensions) and thus its perturbations
can be decomposed as a sum of known radial AdSs harmonics. The system of 2
coupled PDEs for the gauge invariant NP fields in the near-horizon region of the
near-extremal KN geometry separates into a system of 2 decoupled radial ordinary
differential equations (ODESs) and a coupled system of 2 angular ODEs. We can solve
this near-horizon system, match it with the trivial far-region, and obtain an analytical
expression for the NH and PS—NH frequencies. The final expression was presented
in [3] but not the long derivation that leads to it. We will present this detailed
derivation in Section 3.2 and show that it provides an excellent approximation to the
numerical frequencies when we are close to extremality.

. In the Reissner-Nordstrém background, there are exactly two distinct sectors of
QNMs: the aforementioned PS and NH families (and their radial overtones). How-
ever, as we move away from this limit in the KN parameter space we find that this
clear distinction between the two families is lost and the two families and their over-
tones combine in an intricate way to form what is more appropriately described as
PS—NH modes and their radial overtones. This happens because the phenomenon
of eigenvalue repulsion occurs. These eigenvalue repulsions were already reported in
[3] but in Section 4 we will give a detailed description of these eigenvalue repulsions
in the KN QNM spectra, and we will see how the frequency gaps between different
QNM families develop and evolve. No less important, we will provide a first princi-



ples understanding of this phenomenon that was not discussed in [3]. For that we
will start by pointing out that eigenvalue repulsion is common in some eigenvalue
problems of quantum mechanical systems where it is also known as level repulsion,
avoided crossing or Wigner-Teller effect [64, 65]. In Section 4.1 we will start by
reviewing (following §79 of the Landau-Lifshitz textbook [64]) the simplest quantum
mechanical two-level system with a self-adjoint Hamiltonian that exhibits avoided
crossing. We will then extend the discussion of avoided crossing to the case where
the perturbed Hamiltonian of the system is not self-adjoint, as is the case with the
KN QNM system. Having understood that level repulsions should be present in the
QNM spectra of KN, in Section 4.2 we will give a detailed description of eigenvalue
repulsions in the frequency spectra of KN. The analysis of Section 4 together with
the one of Section 3.2 will allow us to conclude that the compler frequencies w of
KN have level crossing (i.e. both the real and imaginary parts of the PS and NH
modes cross each other) exactly at one, and only one, point in the 2-dimensional
KN parameter space (we collect strong evidence to claim that this is the point at
extremality where the PS modes reach Im(w) = 0, which will be represented by a *
in Fig. 12). In all other KN black holes we either have no crossovers of the imaginary
and real parts of the frequency or the imaginary part of the PS and NH frequen-
cies cross, but not the real part of the frequencies. These features are in agreement
with the predicted properties of the eigenvalue spectra of a 2-dimensional parameter
space system with avoided crossing, as explained in Section 4.1. This analysis will
also explain why avoided crossing is not observed in the 1-parameter family of Kerr
solutions. Ultimately, the intricate QNM spectra of KN emerges from the fact that
level crossing occurs only at one point but the system reacts to avoid crossings at
other points. This leads to the observed elaborate features/repulsions when one is
approaching the level crossing point x of the system.

5. After revisiting in Section 5 the properties of the Zs { = m = 2 KN QNMs (first
presented in [3]) that are expected to be the least damped ones, in Section 6 we will
present the frequencies of some other relevant gravito-electromagnetic modes of KN.
This will give solid, explicit, evidence that the Zy £ = m = 2 QNM is indeed the
mode with the slowest decay rate in KN (as with the Schwarzschild, RN and Kerr
black holes).

2 Derivation of the gauge invariant perturbation equations for KN

In subsection 2.1 we briefly review the Kerr-Newman black hole solution. Then, in sub-
section 2.2, we detail how the Newman-Penrose (NP) formalism can be used to derive a
coupled system of two PDEs for two gauge invariant NP variables [1] that describes the
most general gravito-electromagnetic perturbations of KN (except for those that change
the mass and angular momentum of the solution). Finally, in subsection 2.3 we discuss the
boundary conditions that allow one to solve the final eigenvalue problem to find the QNM
frequencies of KN.



2.1 KN black hole: an algebraically special Petrov type D solution

The KN BH solution with mass M, angular momentum J = Ma and charge @ is most com-
monly expressed in standard Boyer-Lindquist coordinates {¢,r,0, ¢} (time, radial, polar,
azimuthal coordinates) [16, 17], in which the metric takes the form

2
ds? = —% (dt — asin?6de)” + %er +xde? + % (2 + a2) d¢ — adt]®,
A= Qr (dt — a sin? 0dg) , (2.1)

b))
with A =72 —2Mr + a®> + Q% and ¥ = r? 4 a® cos? 6.
Roots of the function A, namely

re =M=+ /M2 —a?—Q2, (2.2)

correspond to the inner and outer event horizons, respectively. Physically, one is most
interested in the outer event horizon (r = r4 ), which is a Killing horizon generated by the
Killing vector

K =0y +Qpu0y, (2.3)
with angular velocity g and temperature Ty given by
a 1 72 —a®—Q?
Op=——. = + : 2.4
a r2 + a? a drry 12+ a? (24)
where we have used (2.2) to express M as a function of ry,a and Q. If r— = ry, i.e.

a = aext, the KN BH has a regular extremal (“ext”) configuration with 7" [‘?IXt = 0, and
maximum angular velocity QX

Qoxt = Mzai";gm toxs = VM2 — Q2. (2.5)
Here, we are interested in linear gravito-electromagnetic perturbations about the KN
background. Following Teukolsky [38, 66], we work within the Newman-Penrose (NP)
formalism [36]. We will not review the NP formalism here, but instead refer the reader
to Chapter 7 of [67] for a comprehensive review. Suffice it to say that the NP formalism
starts with a complex null frame or tetrad? and uses this tetrad to transform all quantities
of interest (connection coefficients, Ricci, Weyl and Maxwell field strength components)
into complex scalars. In such a manner, the Weyl tensor, for example is transformed into
a set of five complex scalars: ¥, (a =0,1---,4) or the Maxwell field strength into a set of
three complex scalars: ®, (a = 0,1,2) [40, 67]. Furthermore, the existence of a NP frame
in which a certain combination of the Weyl scalars vanishes determines the Petrov type of
the background solution.
Teukolsky [38, 66] showed that on an algebraically special vacuum background, which
is defined to be one in which there exists a null frame so that Vg = ¥; = 0, the linear
perturbations of the background may be expressed in terms of a decoupled equation

0wl =0, (2.6)

4There is a spinor version of the NP formalism. However, here, we deal only with the Lorentzian version.
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where O is some linear second-order differential operator and \I’él is the gauge-invariant
perturbed value of Uy.

Fortunately, the Kerr BH, which was of principal interest for Teukolsky, is algebraically
special. In fact it is Petrov type D (i.e. a NP frame exists such that the only non-vanishing
Weyl scalar is WUg). Furthermore, given global and hidden [68] symmetries of the Kerr BH,
the coordinate dependence of the perturbations separate leading to a single ODE. Thus,
the combined simplification of decoupling and separability on the Kerr BH allows one to
study its linearized mode perturbations [38, 47, 66] and prove its linear mode stability [42]
(see also footnote 2).

Like its vacuum cousin the Kerr BH, the KN BH is also Petrov type D. In particular,
in a NP null frame {e(,)} = {¢,n, m,m} with (a = 1,2, 3,4) adapted to the principal null
directions, given by

? = T2+a2 g+g+ﬁﬁ n—i (2_|_ Q)Q_AE_F 2
"\ A Ja o T Aay o\ T e T % T %0

]

. .0 .0 1 0
m = oL (asm&a —ig + sinﬁagb) , (2.7)

where 7 = r + iacos 6, ° the only non-zero Weyl scalar is®

Q*— Mr
Uy = —-—. 2.10
2 7:7:*3 ( )
Moreover, the only non-zero Maxwell scalar is

Q

1= g

(2.11)

However, importantly, the decoupling result of Teukolsky does not apply to the KN BH,
since it is a non-vacuum solution. In fact, such a decoupling result does not seem possible
for the KN BH (see e.g. [40]). The best that can be done is to derive a gauge-invariant
coupled PDE system [1], which we now derive and which reduces to the Chandrasekhar
system [40] under a particular gauge choice.

5The standard notation for the complex conjugation in the NP formalism is to use a bar. We will stick
to this notation as far as NP quantities are concerned. However, this should not be confused with 7 defined
here, whose complex conjugation (7*) we shall denote with a star.
SRecall that the 5 complex Weyl scalars ¥, in the NP formalism encode the information in the 10

independent components C,,,,s of the Weyl tensor,

o = —C1313 = —Chvap 'm"€*m”, U1 = —Ci213 = —Chpap ("n"1*m”,
Uy = —Ciaa2 = —Clvag tm mn?, V3 = —Cro42 = —Clvagp /" mn”,
Uy = —Caans = —Chpap n'm”nm” (2.8)

and the 3 complex NP scalars &, encode the information in the 6 independent components of the anti-
symmetric Maxwell field strength, F' = dA,

. 1 1 s a
dy = I3 = Fage mB, o, = 5 (F12+F43) = 5 aﬁ(f TLB +m mB), Dy = Fyo = Fa,gm T’LB. (29)



2.2 Derivation of the gauge invariant perturbation equations

To discuss generic perturbations of the Kerr-Newman black hole one needs to find the
perturbed Einstein-Maxwell equation which, a priori is a system of nine coupled PDEs.
Although, a decoupling result cannot be obtained for the perturbations on the KN BH
background, one can still reduce this perturbation system to a simpler set of two gauge
invariant coupled PDEs [1] that, after gauge fixing, reduces to the Chandrasekhar coupled
system of two PDEs [40, 60]. In this section we give the details of the derivation of this
system of PDEs.

The linearised perturbations on any background satisfy the linearised Einstein equation
on that background. Therefore, any perturbation equation that we derive must ultimately
come from some operator acting on this linearised Einstein equation [69].

There are two common ways of deriving the Teukolsky equations: the original method
relies on a particular manipulation of the NP Bianchi equations, which now comprise the
non-trivial content of the Einstein equations [38]. Another method is a more straightfor-
ward contraction of the Penrose wave equation

DR,uupU + R,LWT)\RpJT/\ + 2R,U,Tp>\RVTU/\ - 2RMTO')\RVTpA =0 (212)

into the NP null frame (R, is the Riemann tensor) [70]. While the second method is
more prescriptive and does not require much guesswork as to which equations to look at
and how to manipulate them, the former method requires less calculation, once a strategy
has been determined. Therefore, we shall derive the coupled equations using the Bianchi
equations, which, of course, coincide with those derived from the Penrose wave equation.

We derive the equations as follows. First, let us settle the notation. In this section
all equations labelled as (7.xx) refer to equation (xx) in chapter 7 of [67]. Since these
are long equations we do not reproduce them here and simply refer the reader to that
reference. Further recall that the fundamental quantities in the NP formalism needed to
study perturbations are the directional derivative operators [40, 67],”

D=1V, A=n"V,, §=m'v,, 5 =m'v,,, (2.13)

and the 12 complex spin coefficients defined from linear combinations of the 24 background
Ricci rotation connection coefficients veqp = e(cﬁ‘ e(b)” V,,e(a) " [40, 67],

1
k=y1=0, 0=713=0, v=92=0, A=7u=0, e=-(v1+73a)=0,

2
A 1 1( N ) A—r(r—M)r*_
= = - = = —— = — = — T
B =243 oy P = 314 g Y B Y212 T 7342 o312 )
ia sin@ 1( i ) Y —2a® -7, 1a sin@
T = g —_—, o = — = Q—7T y m = = —
s NG PAL 2/2a sin 452 T e
1 cot 07*
= - + = . 2.14
B 5 (7213 + 7343) o> (2.14)

"In the NP formalism, A is used to denote n- V. However, since we are already using A in the definition

of the KN BH metric (2.1), in order to avoid confusion, we denote A =n - V.



Their complex conjugates (denoted by a bar) correspond to the replacement 3 <+ 4 in yeqp."
Consider the expression

5(7.32d) — A(7.32¢) (2.15)

as a first order perturbative equation. Let us consider the left hand side of this expression,’

which involves second order in derivative quantities: '°

(AD — 66)Ty + (6A — Ab) U3 + 2(6A + Ad) (D2P) (2.16)

Now, the operator acting on W3 is a commutation operator. Therefore, we can use the equa-

tion (7.6¢) to rewrite it in terms of first order in derivative quantities, which can themselves
be turned into zeroth order in derivative quantities using equations (7.32¢) and (7.32d).
However, the third term involving ®, cannot be similarly simplified. At best we can use
the commutation relations to rewrite 6A in terms of Ad. Therefore, it is clear already at
this stage that a decoupled equation is not going to be possible on the KN background
and at best we can only hope to derive a coupled equation involving W4 and ®5. Further
simplifying the first order in derivative terms using equations (7.32f), (7.32¢), (7.32j) and
(7.32k) and using various NP equations (7.21a)—(7.21r), as well as the Maxwell equations
(7.22)—(7.25), gives

{(A+3’y—’7—|—4u+ﬂ)(D—p) — 6+ B+3a—F+4Am)(+48—T1) —3\1/2+4<I>1<T>1}\I/4
—4®, {(A+3’y—7y+2u)(5+2a) + (277+ﬂ(A+2’y)} P,
+8 {(A + 3y — F)A+ (7 — w)y} (&131) = 0. (2.17)

At this stage we find that perturbed quantities A and v are obstructions to a coupled
equation involving W, and ®5. However, inspecting the Bianchi equations closely, we find
that \ appears in equation (7.32c) with coefficient 3Wy + 2@ ®1, while v appears in (7.32d)
with coefficient 3Uy — 2®,®;. Thus, we can solve for A and v in terms of differential
operators on perturbed quantities W3, W4 and ®5. Significantly, the operator on A in
equation (2.17) and the form of (7.32¢) means that W3 will end up with a second order
derivative Ad, the same operator that acts on ®y in equation (2.17). Thus, we have the
possibility of defining a perturbed quantity involving a particular combination of ®9 and
W3 such that this quantity couples with Wy.

Studying the form of the equations, it is not too difficult to conclude that such a
quantity can be defined and is of the form

Y_1 = 2‘1)1\113 - 3\112(1)2. (218)

8KN is Petrov type D so, from the Goldberg-Sachs, one must have x = ¢ = v = A = 0. Moreover, one
has € = 0 because we have chosen ¢ to be tangent to an affinely parametrized null geodesic ¢#V ¢, = 0.

“Note that in equations (7.xx), the derivative terms are written on the left hand side, while the rest of
the terms are placed on the right.

0Generally, we will use the notation that NP scalars with superscript (©) refer to scalars in the KN
background and the superscript * to first order perturbations of the scalar. However, in the equations
below, for brevity, we suppress the superscripts. From the expressions above for the background NP scalars
it should be clear what is a background quantity and what is a first order perturbed quantity.



The resulting equation is of the form

{(A+3’y—’y+4u—|—u)(l)—p)—(5+,3+3a—7'—|—471')((5+4ﬁ—7')—31112

_ . _ D—p 2(7 —m)
40,8, [1 - 2(A + 3y — ) - _ (5445 — _
T 1[ (A+3y 7)(3\1/2+2<1>1e1>1> 30, — 20,8, 0 T4 T)]}‘p 2

i _ (A +2v+6 1 =0,
30, 1 20,8, ) T 30, 20,3, " “>}‘p !

(2.19)

where p_9 = Uy.

The second coupled equation is derived in a similar manner, except that it is now
easier, because we know that the perturbed quantity that couples to W, is ¢_1 as defined
in (2.18). Thus we begin by considering

(AD — 66)(20, U3 — 3, ®y), (2.20)
using the fact that an equation for (AD — 66)¥3 may be obtained from
D(7.32d) — 06(7.32¢)
and an equation for (AD — §6)®, may be obtained from
A(7.23) — 6(7.25).

The strategy used to simplify the resulting equation is very similar to that used to derive
equation (2.19). Therefore, without going through the details, we give the resulting coupled
equation:

{(A+3fy+7+5u+ﬁ)(D—4p)—(5+a+5—%+5w)(5+25—4¢)

- [ A+2y+6u
1P, [D—4 ST TR
A1 Py | ( p+p)(3\112—2q>1q>1>
5+ 20+ 67
S+38—a—dr—x) [ 2 rxTOT } _
+(0+38—a—4r ﬂ)<3@2+2@1¢)1> }(,0 1
= _ 0+4p8—T1
—8(91)23,d (D — 2 OTEP T
(@) 1{< 00 (50 se )

D—p
a2, V0 (221
(0+3f—a-2r 7r)<3\112—2<131<1>1)}(’02 0. (2.21)

In summary, we have derived from the NP equations two coupled PDEs, (2.19) and (2.21),
satisfied by ¢p_o = ¥4 and ¢_1 = 2®1¥3 — 3U,P,, which are invariant under infinitesimal
diffeomorphisms and tetrad rotations [40].
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These NP scalars ¢_o and ¢_1 are the ones relevant for the study of perturbations
that are outgoing at future null infinity and regular at the future horizon. Note that we
could have equally derived a set of coupled equations satisfied by ¥g and 2, V; — 3U,Py;
the positive spin counterparts of p_o and ¢_;. Such equations are simply obtained via
Geroch-Held-Penrose (GHP) transformations [37] of equations (2.19) and (2.21) and are
relevant for perturbations outgoing at past null infinity.

We can now substitute the background values of the NP quantities into equations (2.19)
and (2.21) (recall footnote 10). Since 0y, J, are Killing vector fields of the KN background,
its gravito-electromagnetic perturbations can be Fourier decomposed as e"“*e™? where
w and m are the frequency and azimuthal quantum number of the mode. Moreover, we
rescale the perturbed quantities, {p_2,p_1} — {_2,9_1} as [1]:

77/)_2 _ (7:*)4 \Ijz(Ll)7

(7)° 0) (1) (0) (1)
= (20008 - 30 el (2.22)
2\/5@5) ( )

Having done this, we obtain the following coupled system of two PDEs (first presented in

[1]):

(Foo 4+ Q°G2) ¥+ Q*H_91p_1 =0,
(Fo1+@Q*G_1) vo1 + Q*Ho19p_2 =0, (2.23)

where the second order differential operators {F,G, H} are given by

F_o = AD' Dy + L1 L} — 6iwr,

G_oy = ADT_la_F*DO — 3ADT_104_ — L'_lourff*ﬁg +3L_jayiasing,

H_o = —ADila_F*[,_l — BADila_ia sin 6 — £_1a+f*ADi1 —3L_ 104 A,
Fo1=ADD | + Ll | — 6iwr, (2.24)
g1 = —Doay’*ADil —3Dgar A+ Lga,F*E,l + 3££a,ia sin@,

H = —Domj*ﬁg + 3Dpariasinf — /J;a_f*Do + 3£;a_ ,

with a4 = [B(FQM —7Q?) + QQF*] 71, and the radial and angular Chandrasekhar operators
[40] are defined
iK, (r—M)

2 ~ 7
A + ] A )
L;=0p+ Ko+ jcot, Ky =

Dj =0, + K, =am— (r? + az)w;

Spg  awsin 6. (2.25)

The complex conjugate of these operators, namely D;r» and ,C;r-, can be obtained from D;
and £; via the replacement K, — —K, and Ky — —Kpy, respectively.

"There is a set of two coupled PDEs — related to (2.23) by a Geroch-Held-Penrose [37] transformation
— for the quantities 12 and 1 that are the positive spin counterparts of (2.23); however these would be
relevant if we were interested in perturbations that were outgoing at the past null infinity.
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Note that fixing a gauge in which @él) = @gl) = 0, (2.23) reduces to the Chandrasekhar
coupled PDE system [40] (see also the derivation in [60]). Finally, note that in the limit
Q@ — 0 equations (2.23) decouple yielding the familiar Teukolsky equation for Kerr [38].

Before finishing this section, we take the opportunity to discuss a property of QNMs of
Schwarzschild and RN black holes that has raised a lot of attention in the literature. This
is the fact that the spectra of the Regge-Wheeler (aka odd or axial) [30], and Zerilli (aka
even or polar) [31] QNMs is isospectral (i.e. these two QNM families have exactly the same
frequency) [40]. In the Schwarzschild limit, (2.23) decouples and we can look independently
at the gravitational ¥_s or electromagnetic ¥_1 perturbations. In particular, the decoupled
equation for 1_s (¢_1) corresponds to the original Teukolsky master equation [38] for
gravitational (electromagnetic) perturbations in Kerr with a = 0. Thus, we can use the
Teukolsky master equation to study the QNMs of the Schwarzschild black hole, instead of
the Regge-Wheeler—Zerilli (RWZ) formalism. The two must give the same spectrum. The
Teukolsky formulation has a single gauge invariant variable 1_o that must translate into two
gauge invariant variables in the RWZ formulation, namely Regge-Wheeler’s @, and Zerilli’s
4 eigenfunctions. Refs. [71-73] give the unique differential map that allows one to derive
O, and Py from 1p_o: see e.g., equation (4.16) of [73] (which holds for any cosmological
constant). Isospectrality is the statement that @, and ®¢ have the same QNM spectrum.
Since @, and ®g are constructed from the same Teukolsky NP gauge invariant variable
Y_g, it follows that the eigenfrequencies of the Regge-Wheeler and Zerilli QNMs must
necessarily be the same. This proves the isospectral property of QNMs in Schwarzschild
and RN black holes and shows that this property is only non-trivial when viewed from the
perspective of the Regge-Wheeler—Zerilli formalism.'?

2.3 Boundary conditions of the problem

To have a well-posed boundary value problem we must supplement the coupled PDE system
(2.23) with appropriate (physical) boundary conditions. At spatial infinity, we require only
outgoing waves, and at the future event horizon, we keep only regular modes in ingoing
Eddington-Finkelstein coordinates. Moreover, we must require regularity at the north
(south) pole # = 7 (—m). In this subsection, we state what the conditions that these
boundary conditions impose on the fields {¢_1,¢_5} are.'

Recall that w and m are the frequency and azimuthal quantum number m of the
linear mode perturbations, respectively. The ¢ — ¢ symmetry of the KN BH allows one to
consider only modes with Re(w) > 0, as long as we study both signs of m. Then, to solve
the coupled PDEs (2.22), we need to impose physical boundary conditions. At spatial
infinity, a Frobenius analysis of (2.23) yields two independent solutions that at leading

+iwr

order behave as Ce . Imposing the boundary condition C_ = 0, i.e. allowing only

2The proof given in [1] and revisited here is for ¢_» in the Schwarzschild black hole but it extends
trivially to ¢»—1 modes and the RN background.

13The reader interested on a more detailed discussion of boundary conditions in perturbation problems
about asymptotically flat backgrounds can see e.g. [74-76].
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outgoing waves yields the decay:

i —(2s w 7T3'+a2+Q2
wr (2 +1)+ (015(0) + BST(‘Q) _|_ . ) s

¢s|ooze r T+

where s = —2,—1, and (5,(0) is a function of a,(f) and its derivative fixed by expanding
(2.23) at spatial infinity.

At the horizon, the boundary condition must be such that only ingoing modes are
allowed. A Frobenius analysis at this boundary gives two independent solutions,

cw—mQ

Y|y ~ Ain (r =) T 14O (1 —ry)] + At (r — 14

w—mQpr

TR [0 (= ry)]
(2.26)
where Ajn, Aout are arbitrary amplitudes and Qp, T are the angular velocity and tem-

perature defined in (2.4). To impose the correct boundary condition, we introduce the
ingoing Eddington-Finkelstein coordinates {v,r, x, ¢}, which extend the solution through
the horizon. These are defined via

r? 4 a? ~ a
t—v—/ A dr, d)—(;b—/Adr. (2.27)

The boundary condition is determined by the requirement that the metric and Maxwell

field perturbations are regular in these ingoing Eddington-Finkelstein coordinates. This
_ _Aw—mQH

happens if and only if 14(r) behaves as 1|z ~ V¥ |y (r —ry) " " #Tm where ¥ (1) is

a smooth function. Thus, we must set Aoy = 0 in (2.26). To conclude, at the horizon, a

Frobenius analysis whereby we require only regular modes in ingoing Eddington-Finkelstein

coordinates, yields the expansion

e Hw—mQp)

Vsl = (r = 1) T [ag(0) + bs(0)(r — ) ],

where bs(0) is a function of as(f) and its derivative.
At the north (south) pole x = cosf = 1(—1), regularity dictates that the fields must
behave as (¢ = 1 for |m| > 2, while ¢ = —1 for |m| = 0,1 modes)

LEL 54 |m)

wS‘N,(S) x~ (1 :Fl')s 2 3 [A;t(T) —f—B;t(T)(l :Fx) + ] ,

where B (r)(B; (1)) is a function of AT (r)(A; (r)) and its derivatives along r, whose exact
form is fixed by expanding (2.23) around the North (South) pole.

The PDE system (2.23) subject to the above boundary conditions that describe the
gravito-electromagnetic QNMs of the KN black hole with parameters {M, a, @} has a useful

scaling symmetry. When we scale the metric and Maxwell field strength as g, — AQQW

and F,, — AF},,, for an arbitrary constant A, the equations of motion are left invariant.
This means we can scale out one of the 3 parameters of the solution. Therefore, we can work
with the adimensional parameters {a, Q} = {a/M,Q/M} (or {a/ry,Q/r.}) and & = wM.
To find the frequency spectra of KN BHs we thus ‘just’ need to scan a 2-dimensional space.

To solve the PDE problem numerically, we use a pseudospectral method that searches
directly for specific QNMs using a Newton-Raphson root-finding algorithm. We refer the
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reader to the review [77] and [74-76, 78-84] for details. The exponential convergence of
the method, and the use of quadruple precision, guarantee that the results are accurate up
to, at least, the eighth decimal place.

3 Two families of QNMs: photon sphere and near-horizon modes

The frequency spectra of gravito-electromagnetic perturbations of KN has two main fami-
lies of QNMs: 1) the photon sphere (PS), and 2) the near-horizon (NH) families. Each of
these families can dominate the frequency spectra (i.e. have lower |Im@|) depending on
the region of the parameter space we look at. These two families are the natural extension
to the rotating case (a # 0) of the PS and NH families of QNMs that are present in the
Reissner-Nordstrom case, although this sharp distinction between the two families is un-
ambiguous only for small rotation a parameter. There are particular regimes of parameter
space where the frequency of each of these two families can be captured by perturbative
expansions (WKB expansion and/or a near-horizon matched asymptotic expansion). This
allows us to identify these two families of QNMs (thus providing the basis for their nomen-
clature), while providing also analytical formulae that give good approximations to the
actual frequencies. Therefore, in this section we discuss in detail two useful perturbative
analyses. In subsection 3.1 we consider a large m WKB expansion that identifies the PS
QNMs, while, in subsection 3.2 we describe a simple but efficient matched asymptotic
expansion that captures the NH modes.

Before considering the perturbative analyses, it is enlightening to identify the two fami-
lies of QNMs in the simplest black hole where they co-exist. This is the Reissner-Nordstréom
(RN) black hole. This identification will be our guide once we delve into the parameter
phase space of KN away from the RN limit. It will also allow us to speculate about expec-
tations for the KN QNM spectra that will then be discussed in the next subsections 3.1-3.2
and in section 4.

In Fig. 1 we plot the frequency spectra for £ = m = 2,n = 0 gravitational (Z3) QNMs
in the RN BH,' which are the QNMs with slowest decay rate in RN and KN as we will
demonstrate in section 6. We see that there are two clearly distinct families of QNMs: 1)
the PS family (orange diamonds) which dominates for a wide range of charge, namely for
Q< Q?N ~ 0.9991342 (and reduces to the Schwarzschild QNM when @ = 0 [40, 41]), and
2) the NH family (green circles) which becomes the slowest decaying mode for Q5N < Q < 1
and approaches Im@ = 0 at extremality as best seen in the inset plot (in RN these NH
modes have Re@ = 0 for any Q).

By continuity, once rotation is turned on but with small @ = a/M, we expect the
KN spectra to be similar to Fig. 1 (NH modes should still approach extremality with
Im & = 0 but this time, as we confirm later, with Re®w = mQ%’,‘t # 0). Moreover, it also
seems reasonable to expect the existence of a line — let us denote it as Q = Q.(@) — that
describes the intersection of the PS and NH surfaces and that eventually extends from
Qc(a = 0) = Q"N (identified in Fig. 1) all the way up towards extremality. However, and

14This figure partially reproduces the top-left panel of later Fig. 13 where the charge is however measured
in units of r4.
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Figure 1. Photon sphere (PS; orange diamonds) and near-horizon (NH; green disks) gravitational
QNMs (Zs) for the Reissner-Nordstrém BH (¢ = 0) with £ = m = 2,n = 0. In the RN case the
PS and NH modes are unambiguously identified. This data was obtained by solving the Regge-
Wheeler—Zerilli ODE for RN [30, 31] and it matches the data for KN with a = 0, obtained by
solving the coupled set of two PDEs for {¢)_5,4_1}, which validates our KN numerics. The black
square with @ =~ 0.431341 — 0.0834603 ¢ is obtained by solving the Regge-Wheeler—Zerilli ODE
directly at extremality (where we have to impose regular boundary conditions on a degenerate
horizon); the non-extremal frequencies approach this value as Q — 1 which is yet a further check
of our numerics. Left panel: Imaginary part of the (dimensionless) frequency as a function of the
(dlmensmnless) charge. The inset plot shows the region where PS and NH modes intersect: above
Q QRN ~ 0.9991342, the NH modes have lower |Im@| but this quantity grows very large very
quickly for Q < QCRN where the PS mode is comfortably the dominant one. Right panel: Real
part of the frequency as a function of charge. The NH mode has Re® = 0 in the RN limit (and
only in this limit) and is not shown. Thus, the real part of the PS and NH frequencies have no
crossing (unlike the imaginary part).

interestingly, our full numerical results will prove that our expectations are only partially
correct. Indeed, the KN frequency spectra for fixed but small a is similar to Fig. 1. In
particular, for 0 < Q < Q.(a), the PS family has the lowest |[Im&| and for Q.(a) < Q <
Qext it is the NH QNM that has slowest decay rate. Moreover, keeping a/aext small,
these two families trade dominance along their intersection line Q = Qc(d) with a simple
crossover in the imaginary part of the frequency like the one observed in the inset plot of
the left panel of Fig. 1 (the real part of the frequencies display no crossing as is clear in
the right panel of Fig. 1 for a = 0). However, as we keep increasing the rotation a/aext, we
find that we enter a region of the parameter space (a window of Q) where an unexpected
change occurs: instead of having simple crossovers in Im(w) where the PS and NH families
should intersect, one starts observing intricate eigenvalue repulsions in Im(w) that will be
discussed in section 4 and associated Figs. 13-14, and the sharp distinction between PS and
NH modes is lost (in this region PS and NH modes have similar Re(@) with no crossings).
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So much so that the QNM families will now be a combination (to be made precise later)
of the two old modes in what will be more properly denoted as PS-NH families and their
radial overtones.

After this brief summary of the findings to come, let us discuss the eikonal and near-
horizon analytical descriptions of the KN modes.

3.1 Photon sphere modes in the eikonal limit: analytical formula for the fre-
quencies

In the eikonal or geometric optics limit £ ~ |m| > 1, where a WKB approximation holds,
there are QNM frequencies — known as “photon sphere” (PS) QNMs — that are closely
related to the properties of the unstable circular photon orbits in the equatorial plane
of the KN black hole. Namely, the real part of the PS frequency is proportional to the
Keplerian frequency €2, of the circular null orbit and the imaginary part of the PS frequency
scales with the Lyapunov exponent Ay, of the orbit [85-94]. The latter describes how quickly
a null geodesic congruence on the unstable circular orbit increases its cross section under
infinitesimal radial deformations.

The PS modes with an eikonal limit that we will consider are those with ¢ = m or
¢ = —m. This includes the ¢ = m = 2,n = 0 modes that have the slowest decay rate and
that we typically display as orange diamond curves/surfaces (e.g. in Fig. 1 and Figs. 13-14,
among others). And these PS modes of the KN BH are those that reduce to the well-
known QNM frequencies of Schwarzschild BH in the limit @ — 0 and a — 0 (typically
identified as a dark-red point in our figures) first studied by Chandrasekhar (see Table
V, page 262 of [40]). Therefore, in this subsection we use geometric optics to compute
an analytical approximation (to be denoted as wg&") for the frequency of these PS modes
in the KN background. A similar analysis was originally done in [2, 95]. Although, the
final analytical formula for the PS QNM frequencies is strictly valid in the WKB limit
¢ ~ |m| — oo, in practice we find that it matches reasonably well the PS frequencies even
for values as small as ¢ = |m| = 2. Therefore, the eikonal limit allows us to identify the
nature of this QNM family and, furthermore, it provides a check on our numerics.

The geodesic equation, describing the motion of pointlike particles around a KN BH,
leads to a set of quadratures. A priori this is perhaps an unexpected result since KN only
possesses two Killing fields, K = 0/0; and { = 0/04. We seem to be one Killing field
short of an integrable system. However, there is another conserved quantity — the Carter
constant — associated to a Killing tensor K, which saves the day [40].

The most direct way to identify this integrable structure is to consider the Hamilton-
Jacobi equation [40]:

oS 08
a0z
where S is known as the principal function. One can obtain the motion of null particles by

), (3.1)

noting that, according to Hamilton-Jacobi theory, the principal function and the particle

momenta are related by

o8 dz#
_ = u p—
i = P and pt = T (3.2)
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with 7 denoting an affine parameter of the null geodesic.
We can then take a separation ansatz of the form (z = cosf, where 6 is the polar
angle)
S=—et+jo+R(r)+ X(z), (3.3)

where the constants e and j are the conserved charges associated with the Killing fields K
and ¢ vial'®
e=—K,i" and Jj=&uat, (3.4)
where the dot () denotes a derivative with respect to the affine parameter 7.
Substituting the ansatz (3.3) into the Hamilton-Jacobi equation (3.1) for null geodesics

yields a coupled system of ordinary differential equations for R(r) and X (z) (the prime ’
denotes a derivative w.r.t. the argument, r or x, respectively)

A’R? — [e(r® + a®) —aj}g—l—A [Q+ (j —ae)®] =0,

(j—ae)2+Q [ae(1—2?) —j]°

X/2 _
1 — a2 (1—a22)?

=0, (3.5)

where Q is a separation constant known as the Carter constant.
From (3.2), i.e. " = g“"%, one further has

(r? +a?) [e (r* + a*) — aj] + aA [j — ae (1 — 2?)]
A (r? 4 a?2?) ’
(1-2?)ale(r*+a*) —aj] + A[j —ae (1 —2?)]

6= A (1 —22) (r? + a?x?) ' (3:6)

t=

We are interested in matching the behaviour of null geodesics with that of QNMs with
large values of ¢ = |m|, so we can restrict attention to the equatorial plane where z = 0.
From (3.5), such geodesics exist only if at 7 = 0 one has X(0) = X(0) = 0 and Q = 0.
Defining the geodesic impact parameter

J
b=+<= .
J (37)
the equation (3.5) governing the radial motion now gives
i = V(r;b), (3.8)
where the potential is
2 2 _ 2 2 2 2
. J a®—b> 2M(b—a)* Q“(b—a)
Vr;b) = W2 (1 + 2 + 3 — o . (3.9)

We are now interested in finding the photon sphere (region where null particles are
trapped on circular unstable orbits), i.e. the values of r = rg and b = by, such that

V(rs;bs) =0 and 9,V (r,b)|._,_ -, =0. (3.10)

15For massive particles, these coincide with the energy and angular momentum of the particle, but for
massless particles e and j have no physical meaning since they can be rescaled. The ratio j/e, however, is
invariant under such rescalings.
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From the first equation we get

r2/A(rs) + a (Q* — 2Mry)
bs(Ts) = 7”3 — 2M’l“s T Q2 ;

(3.11)

which we insert in the second equation of (3.10) to get a fourth order polynomial equation
for rg:
2

4[r§+2a( Ars+a>]2—<3MTS+\/9M27“§—8Q2 [r§+2a( Ars+a)] =0,

(3.12)
where A(r) is defined below (2.1) and we are interested in solutions with rs > . Alter-

natively, we can solve (3.10) to get the black hole parameters M and @ that have circular
orbits with radius rs and impact parameter bg, namely

— TS (bg - a/2 _22T§) rs\/m' (313)
(bs — a) (bs —a)?

There are two real roots rg higher than r which are in correspondence with two PS modes:

;o Q=

the co-rotating one (with m = ¢) that maps to the eikonal orbit with radius r; = r; and
bs > 0 (and that has the lowest [Im@|) and the counter-rotating mode with m = —¢ which
is in correspondence with the orbit with radius rs = rf and bs < 0, with rf > r; > ry.
The two real roots r{ higher than r, are displayed in Fig. 2.

We can finally compute the orbital angular velocity (also known as Kepler frequency)
of the null circular photon orbit, that is simply given by

(3.14)

Q/M. | 10 1.0

Figure 2. The radii r¥ (with r} > 77 > r}) of the two unstable circular orbits in the equatorial
plane of the KN black hole that ultimately yield the co-rotating m = ¢ (in the r; case) and the
counter-rotating m = —£ (in the r case) PS QNM frequencies in the eikonal limit. For a = 0, one
has r} = r7, and at (Q,a) = (0,1) one has r; = 7.
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where we used (3.6) evaluated at r = rg and b = b;. We can also compute the largest
Lyapunov exponent A7, measured in units of ¢, associated with infinitesimal fluctuations
around photon orbits with r(7) = r5. This can be done by perturbing the geodesic equation
(3.8) with the potential (3.9) evaluated on an orbit with impact parameter b = bs and
setting 7(7) = rs + 0r(7). One finds that small deviations decay exponentially in time as

dr ~ e 2t with Lyapunov exponent given by
1V"(r,b)
)\L = —.—2
2 t(T) r=rg,b=bs
1 ’r? +a®— abs‘
= 6r2 2 b2, 3.15
bsr’g |b3—a| TS +a S ( )

One finally obtains the approximate spectrum of the photon sphere family of QNMs
in the WKB limit £ = |m| > 1 using [85-93]

) 1
wist ~ mQ. — i (n+§> AL

1/2|r2 +a*—ab
SLILL 2|8+ a? —abs| e (3.16)

bsr?2 |bs — al

where n = 0,1,2,... is the radial overtone. This is the eikonal approximation for the
PS modes we were looking for. Note that this expression is blind to the spin of the
perturbation, i.e. it is the same for scalar and gravito-electromagnetic perturbations. The
eikonal analysis, although only based on a geodesic analysis, gives the same result as a

- |0.00

j _0.05Im(wM)

0.0°0.0

Figure 3. Comparing the eikonal prediction wg™ (light blue surface) with the actual numerical
frequencies (orange points) for co-rotating PS modes with m = ¢ = 6,n = 0. The former is
given by (3.11)-(3.16) with rs = r; of Fig. 2 and b, > 0. The brown curve at extremality has
Im@w =0 and Rew = mQ%Xt. So, it turns out that m = 6 seems to be already within the WKB
validity |m| > 1. The dark-red point at (Q,a) = (0,0) coincides with the Schwarzschild QNM,
@ ~ 1.21200982 — 0.09526585 7, first computed in [40].
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leading order |m| = ¢ — oo WKB analysis of the wave perturbation equations. Although
the eikonal frequency is independent on the spin of the perturbation, the higher order
frequency corrections in the 1/m WKB expansion should certainly depend on the spin of
the perturbation.

Re(wMM)
0.6

0.41

0.5
a/M

Figure 4. Comparing the eikonal prediction wgf™ (light blue surface) with the actual numerical
frequencies (orange points) for co-rotating PS modes with m = ¢ = 2,n = 0. The former is
given by (3.11)-(3.16) with r, = r; of Fig. 2 and by > 0. The brown curve at extremality has
Im& = 0 and Rew = mfl%}(t. Although m = 2 is certainly outside the regime of validity of the
geometrics optics approximation, |m| > 1, it turns out that the approximation (3.16) proves to
be reasonably good. The dark-red point at (Q,a) = (0,0) coincides with the Schwarzschild QNM,
@ =~ 0.37367168 — 0.08896232 i, first computed in [40, 41].
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Figure 5. The eikonal prediction for (3.16) for wgk™ evaluated at extremality (dark-blue line). The

dotted brown line has Im@ = 0 and Re@ = mQy (they correspond to the solid brown lines in

Figs. 3-4). The red  point is at dext = as" = 3.

Recall that (3.16) is strictly valid in the geometric optics limit, |m| > 1, with cor-
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Figure 6. Comparing the eikonal prediction wgk™ (light blue surface) with the actual numerical
frequencies (blue/green) for counter-rotating PS modes with m = —¢ = —2,n = 0. The former is
given by (3.11)-(3.16) with 7, = ! of Fig. 2 and bs < 0. Although m = —2 is certainly outside
the regime of validity of the geometrics optics approximation, |m| > 1, it turns out that it already
gives a good qualitative approximation for the shape of the PS QNM surface. The dark-red point
at (Q,a) = (0,0) coincides with the Schwarzschild QNM, & ~ 0.37367168 — 0.088962321, first
computed in [40, 41].

eikn

Figure 7. Comparing the eikonal prediction wgg" (light blue surface) with the actual numerical
frequencies (blue/green) for counter-rotating PS modes with m = —¢ = —6,n = 0. The former is
given by (3.11)-(3.16) with rs = r} of Fig. 2 and bs < 0. Although m = —6 is still outside the
regime of validity of the geometrics optics approximation, |m| > 1, comparing the m = —2 case of
Fig. 6 with the m = —6 mode we see that as |m/| increases the eikonal approximation quickly starts
proving to be a better quantitative approximation. The dark-red point at (Q, a) = (0,0) coincides
with the Schwarzschild QNM, @ ~ 1.21200982 — 0.09526585 ¢ first computed in [40, 41].
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rections to Im@ and Re@ of order O (1/|m|) and O (1), respectively. However, Fig. 3
compares (3.16) (light blue surface) with the actual numerical frequency (red dots) of the
co-rotating PS modes with m = ¢ = 6,n = 0 and already finds an excellent agreement
(of course this agreement will improve for m > 6). Moreover, as Fig. 4 demonstrates,
the eikonal approximation (3.16) (light blue surface) still provides a reasonably good qual-
itative approximation to the numerical co-rotating PS modes (orange dots) even in the
m = ¢ = 2,n = 0 case. Taken together, this identifies the PS QNM family and validates
our numerics.

As shown in Fig. 5, an important feature of the eikonal frequency (3.16) (the solid
dark-blue line) is that it is in good agreement with Im& = 0 and Re®@ = mQy (dotted
brown line) for Gext > a5, but not so for Gexy < ad™® with as™» = % (recall that Gext = 0
and dext = 1 in the RN and Kerr limits, respectively). This transition point % is indeed
observed in the numerical data of Fig. 3 (for m = 6) and Fig. 4 (for m = 2), where the
values Im@ = 0 and Re® = mQy are represented by the solid brown lines. As expected,
the eikonal quantitative value of ag*" = % is not yet a good approximation for m = 2, where
numerically we find a, ~ 0.360, but it becomes a better approximation as m increases. For
example, for m = 6 one has a, ~ 0.463 and for m = 10 one has a, =~ 0.480. We come back
to this issue in the discussion of Fig. 11.

For completeness, in Fig. 6 we turn our attention to the counter-rotating PS modes, and
compare the eikonal prediction (3.16) (grey surface) with the numerical data (blue/green
points) for the counter-rotating PS modes Zy m = —¢ = —2,n = 0. Although m = —2
is certainly outside the regime of validity of the geometric optics approximation, |m| > 1,
it turns out that it gives a relatively good approximation for the qualitative shape of the
PS QNM surface (although less than for the m > 0 case). As expected, the quantitative
eikonal prediction improves considerably as m grows more negative in the same way as for
the m > 0 case. This is illustrated for the PS modes Zs m = —¢ = —6,n = 0 modes in
Fig. 7.

3.2 Near-horizon family of QNNMs: analytical formula for the frequencies

Near-extremality, there is a family of KN wavefunctions that are very localized near the
horizon and quickly decay to zero away from it. This suggests doing a ‘poor-man’s’ matched
asymptotic expansion (MAE) whereby we take the near-horizon limit of the perturbed
equations (2.23), which can be solved analytically, to find the near-region solution and
then match it with a vanishing far-region wavefunction in the overlapping region where
both solutions are valid.'® In fact, motivated by the result that the near-horizon limit of
the extremal KN BH corresponds to a warped circle fibred over AdS, (Anti-de Sitter) [96],
the perturbations of which can be decomposed as a sum of known radial AdSs harmonics,
we can attempt to use separation of variables. It turns out that this can indeed be done,
and the system of 2 coupled PDEs for {¢)_2,%_1} separates into a system of two decoupled
radial ODEs and a coupled system of two angular ODEs. This is a non-trivial, remarkable
property of perturbations on KN.

161deally, we would also solve the far-region equations to obtain the next-to-leading order nonvanishing
far-region solution but in the KN background we cannot do it analytically.
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At extremality, the modes with slowest decay rate (independently of belonging to the
NH or PS families or, as we will introduce and discuss later, to the PS—NH family) always
approach Im@ = 0 and Rew = mﬁift and the near-horizon matched asymptotic expansion
analysis that we perform below produces a prediction for the frequencies of these modes
that will prove to be an excellent approximation near-extremality.

After this preliminary outline, we are ready to formulate and perform in detail our
matched asymptotic expansion to find the NH family of QNMs. The near-region is defined
as the region ﬁ —1 <« 1 and its wavefunction must be regular, in particular, at the horizon.
The far-region is the zone ﬁ —1>»o0,witho=1-— :,—; being an off-extremality parameter,
and its wavefunction must obey the outgoing boundary condition at r — +oo. The two
wavefunctions must be simultaneously valid — and thus the free parameters of the two
regions must be matched — in the matching region o < ﬁ — 1 <« 1. We can guarantee
that the latter overlap region exists if we take o — which is our expansion parameter — to
be small, i.e. if 0 < 1 and we are thus near-extremality r_ < 4.

Under these conditions, in the near-region ﬁ — 1 <« 1 we want to simultaneously
zoom in around the horizon and approach extremality. For that we first introduce the
dimensionless quantities

y=1-—, o=1-"_—=, (3.17)

T4 T4
where recall that r = r_ and r = r; are the Cauchy and event horizon locations, respec-
tively, that satisfy A = 0 with A = 72 —2M7r +a?+@Q? as defined in (2.1). Equivalently, we
can also write A = (r —r_)(r — r4). Equating these two expressions and their derivatives

we can express M and @ as a function of (r_,r4,a):

M = %(r,+r+) , Q=+/r_ry —a’. (3.18)

From (3.17), one sees that for y < 1 one is close to the event horizon and for ¢ < 1 the
Cauchy and event horizons are very close, i.e. one is close to extremality. Next, we take the
limit ¢ — 0. From previous works on QNMs of RN, Kerr, KN [1-3, 46, 93, 97-101] and even
de Sitter black holes [84, 102, 103], when we Fourier decompose the modes as e wteime,
the near-horizon modes are expected to saturate the superradiant bound w = mQy at
extremality (this will be further confirmed by our numerical results). Therefore, we expand

the frequency about this bound via the redefinition
w=mOF + 06w + O(c?). (3.19)

Our task is to find dw. In (3.19) and hereafter, a and Qp in expressions always refer to their
extremal values, aext and Q¢ although we drop the super/subscripts ‘ext’ for brevity.

In these near-extremality conditions, we are ready to find the near-horizon solution of
the KN gravito-electromagnetic perturbation equations (2.23). We substitute

1
o9 =X_o, o1 = - Y, (3.20)

together with (3.17)-(3.19) into the set of two coupled PDEs (2.23), and keep only the
leading order terms in the o expansion. After this near-horizon/near-extremal procedure,
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we still have a set of two coupled PDEs, but this time for {¥_9,¥_1} and they are expected
to only capture the properties of the solution in the near-horizon region of the full near-
extremal solution.

Next we attempt to separate variables. In the KN system — described by a coupled pair
of PDEs — this might seem bound to fail. So it is enlightening to make a small diversion
from our exposition to explain the motivation for even considering this possibility. An
extremal KN BH has Q = y/r% — a?. Similar to the Kerr case [96], the near-horizon limit
of the extremal KN black hole (NHEKN) can be obtained by performing the coordinate
transformations (¢, 7, z, ¢) — (T, Z, z, ®) with

t:ri+a2z
T4+ 13

T
, r:r+<1+£), o=2" 10 (3.21)

A Crye
in the KN solution (2.1) and taking the limit ¢ — 0 (recall that x = cos#). This yields
the near-horizon geometry of the extremal KN solution (which also solves the original
Einstein-Maxwell equation):
—dT? + dZz* da?
2 _ (2 2,2

ds NHEKN_(T++CL‘T)|: 72 +1—1‘2

1— 22

2 2 2aT+dT 2
+(r§r+a2x2)2 ((r++a Jae+ Z )

Alnaexn = (/72 — a?dT . (3.22b)

Surfaces of constant x are warped AdSs geometries; that is they correspond to a circle fibred
1—a?
(Zrata)

group is SL(2,R) x U(1). Consequently, perturbations in NHEKN can be expanded in

. (3.22a)

over AdSs (parametrized by T and Z) with warping parameter The isometry

terms of the AdSs harmonics and thus they separate into a radial and angular part. This
observation is relevant for our purposes because, returning to the full KN geometry, it
suggests that near-extremality and near the horizon the two coupled PDEs for {¥_9,¥_1}
might be amenable to a solution by separation of variables.

With this strong motivation at hand, we return to the coupled system of two PDEs
for {¥_9,%¥_1} described above and we attempt the separation ansdtze

Yoo(y,z) = Yi(y) Xa(z), Y o1(y,z) = Ya(y) Xo(2) . (3.23)
Introducing the adimensional quantities @ = a/ry and 00 = dwry this yields the two
equations:
ODEy, (Y1;m, 0, A1)
Y,
p12(Xo;m) 1 / iam , 2\ £n
L DYy — 142y (1——5 ) —i(1 ow | Y
—l—{ X, v y(ly+1)Y, + 2y T a2 i(14a°%) 6w )| Ys

C(1—a?) [1-a% (4= 382%) — 2iax (24 6°)] Au(Xy;m, M) )| 0
1+ a2 (2 — 322) + 2iax (1 + 2a2) X -
(3.24a)
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- ~ AO\2 ¢ A
ODEYQ(Yz;m,&TJ,)\g)+{p21(X1;m) 1 [ , Z(Qamy+(1_|_a2) &u) ]
1

Ys X, Yo' (1+a@)yly+1)
(1 —2?) 1 +a” (2 - 32%) + 2iax (1 +26%) ] Ap(Xp3m, M) | 0
1 —a2(4 — 322) — 2iaz (2 + a?) X, 7

(3.24D)

where A1 and Ay are the two separation constants of the problem that only depend on m
and @ = Qext. Furthermore,
1

2
(1+ a2) vI— 22(az — 9) [1 +&(2&+w(4z’&2 - 3ax+2i))}
{2\/1 — a2(ax +1)° [m(m'a? — ax (46° + 3iax + 2) + z) (a%2? +1)°

+ (1+a°) ( —4a°2? (32% — 4) — ia*x (62" — 2927 +22) — a® (322 — 5) (5a? — 2)

p12(Xa;m) =

+19ia’x (2° — 1) +a (72° — 5) — i:r)]Xg
-2 (1+a*)V1-a2(1-2?) (a%2* +1) (az + i) [a(zm — x (4a* + 3iax + 2)) + z] Xg},
(3.25a)
2(1—a?)*?

2
(1+a2) vI— a2 (6222 + 1) (az + 1) [1 482 + 38222 — 2i (2 + 2) ax}

p21(X1;m) =
{ [zm (—4a% + 3a%2 — 2i (4> +2) ax + 1) (a%% +1)°
+2(1+a%) <3a(a2 —1)+a*(1-a?) a* —ia® (&> +5)2°
— (@° 4+ 10a° + &) #* + iz (2a* + 5a* — 1) ﬂXl
+ (1 —2%) (144a°) (a2 +1) | — 4ia® + 3ia*z® + 2 (6° + 2) az + z] X{}, (3.25b)

A(X_mA)_X,,+2x[2z'a4(1—3x2)—3a3x(2—x2)—3¢a2x2—3ax+i} .
HALT AT T 0 ) (ar — i) 1+ a2 (2 322) + 20 (1 + 2a%) aa] !

+ U (x;m, A1) Xy, (3.26a)
1 ( 1— a2 (322 + 4) LB 2(3+i€wc)> X

1—4a%+3a%22 — 2i (6> +2)ax 1 —2a? a’z? +1

A (Xo;m, Xo) = Xy + p

+ Us(z;m, A2) Xo, (3.26b)

with
Ui(z;m, A1) =
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2x
(1+2a%)(1— :752)2 (i—ax) [l —a2 (4 —3z2) — 2iaz (a% + 2)] [1 + a2 (2 — 3x2) + 2iax (1 + 2a62)]

( —12a (1 —a2)” (6" + 5a% + 1) + 9 (4a° — 114" + a°) «° — 3ia* (32a° — 60a* — 694> + 7) 2°
+a” (—64a® — 76a° + 561a" + 154a” — 35) 2" +4a” (224a° — 316a° — 477" — 26° + 31) 2°
+a(64a"” + 144a° — 454a° — 121" + 87a” + 10) 2” — i (128a'° — 966° — 182a° + 434" + 51a” + 2) x)

* (1+a2)* (14 2a2) (1 — 22)*[1 — a2 (4 — 322) — 2iaz (a2 + 2)]

((Si (1-a%) (1+2a%)a—3(1+24°)a°2" +2i (24" + 56" + 2) a°z* + (8a° — 104" — 19a% + 3) a°z°

—2i (—4a® — 184" — 66" + 1) az® — (84" +1) (1 —2a* (1 +a%)) x)

dmax
+ (1+a%) (1+2a2)(1— x2)2 [1—a?(4—3z2) — 2iax (6% 4+ 2)] [1 + a? (2 — 32?) + 2iaz (1 + 2a2)]

<1 —2a® (3 - 6a° +23a" + 216°) — 64 (7a* + 4a° + 7) a°=° — (20a° + 304" + 132a” + 61) a'a*

+2i (25a° + 664" + 99a” + 26) 6°x® + 3 (12a° + 22a° + 84a” + 484° + 5) a’a” + 9 (2a° + &%) 2°
a* (2—32) +2i (28> +a)z+1
(1—22)[1—a2 (4 — 3a2) — 2iaz (a2 + 2)]

— 2iz (66° + 53a" + 756° + 27a° + a) ) + At (3.27a)
Uz (z;m, A2) =
—a® (—36z" — 232% +40) — 15ia (z° +3) x + 132> + 10 —5iaa® — 3522 + Tiax + 25

322 (1 — 22) (a2 (322 — 4) — 2i (a2 + 2) az + 1) 322 (1 — 22) (a2z2 + 1)

732" — 10527 4 24 2 27 (- (a* (2 — 7)) — 2iaz + 1)
822(1—a2)?  a2(ax +1)2 *3 (1 —22) (a2 (2 — 322) + 23 (1 + 242) ax + 1)
2m
* (14 a2) (1 —x2)°[1 — a2 (4 — 322) — 2iaz (a2 + 2)] (a2 (2 — 322) + 2i (1 + 2a2) az + 1)

(9¢ (3a° — 2a° — a) +9a°2" — 3ia® (5a° + 7) 2° — a* (4a” + 70a* + 7) 2° +ia® (554" + 79a% + 10)

+3a% (4a° + 42a* + 11) 2® +ia (—42a° — 38a" — 35a% + 7) 2® + (—36a° + 34a* — 264> + 1) x)

m2

(1+4a2)* (1 —22)? (a2 (2 — 322) + 20 (1 + 2a2) az + 1)

<4id7x5 +a°z* (2 - 32%) — 2ia°x (—a* — 82° +4) —a” (172" — 322° + 16) + 4ia’x (52° — 3)

1—a*(4—32%) —2i(a° +2) ax
4(14a2)>(1—a2)[1 4 a2 (2 — 3a2) + 24 (1 + 2a2) ax]

+a* (6 — 52%) + 2iax + 1) - Az (3.27b)

Finally, in (3.24), ODEy, (Y1;m, 0w, A1) and ODEy, (Y2;m,dw, \2) are two second order
differential operators acting on Y; and Y, with the property that

ODEy, (Yi;m,00,A1) =0 & yy+ 1Y — 2y + 1)Y{ + Vi(y;m, 60, \)Y¥1 =0,
(3.28a)

ODEy, (Yo;m,60,X2) =0 & y(y+ 1)Yy + Va(y;m, 60, A2)Ya = 0, (3.28b)
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where the potentials are

2(1—4a%) (2—a%) 4diam [2+ 3y —a*(5 + 3y))
1+ 2a? (1+a%) (1+2a%) (y+1)

m? (1 4y + 8a'y — 4a?)

(1+a2)*(1+2a2) (y +1)

‘/l(y7 m, 5(':)7 )‘1) =

A\ 2 o~
Ll ((1+a2) 0 4 s [&m+i(1+d2) <1+1>D + A1,
y+1 Y 2y
(3.29a)
A 1 462m2 2iam
Blm 082 = T (@)
L (@) 0 4001 (14+6) +damy+20 (1+a%)y]
y(y+1) 4(1+a2)*
(3.29b)

The reader will notice that in (3.24a) and (3.24b), the terms that are spoiling the
separation of variables are those proportional to p12.X; lYl_1 and p21 Xy 1Y2_1, respectively.
We can however separate these equations if the factor multiplying p12.X; 1Yl_l in (3.24a) is
proportional to Y;(y) and if the factor multiplying p2; X5 11/2_1 in (3.24b) is proportional
to Ya(y), i.e. if

Y, = Klg{y(y F1)Y) - [1 +2y (1 - fj”;) —i(1+a?) 5@] YQ}, (3.30a)

i (2amy + (1 +a2)° 6w
(om0 02 52) ) s

Yy = Koy [ Y7 —
? 21< ! (1+a2)y(y+1)

for constant Kj2 and K»; to be determined. If this is the case and (3.30a) holds, then the
first term in (3.24a) gives the radial equation for Yj(y), namely (3.28a), while the term
inside curly brackets yields the angular equation for X;. Similarly, if (3.30b) holds, in
(3.24b) we clearly identify the radial equation for Y»(y), namely (3.28b), and the angular
equation for X5 inside the curly brackets. However, in order for the separation procedure to
be consistent, (3.30) must still be supplemented by another two relations. Firstly, when we
substitute (3.30a) into (3.28a) we must certainly get a trivial identity after using (3.28b)
and its derivative. Similarly, we must get a trivial identity when we substitute (3.30b)
into (3.28b) and use (3.28a) and its derivative. This is the case if and only if the two
separation constants of the system are related in a specific way, A\; = A1(A2). Secondly,
if we substitute (3.30a) into (3.30b) we must again obtain a trivial identity after using
the equation of motion (3.28b) for Y,. Equivalently, we must also get a trivial identity
if we substitute (3.30b) into (3.30a) and use the equation of motion (3.28a) for Y;. This
is the case if and only if a specific relation K91 = Ko1(K72) holds. Altogether, the two
consistency conditions that must be imposed, together with (3.30), to get a separated
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system of equations are:

- Ao (1+42)* (32a* — 9042 +7) + 4 (8a* + 1) m? + 48ia (1 — a*) m
YT a+a2)? 4(1+ a2 (1+24a2) !
(3.31a)
44 (1 +a2)]% + A
Koy = 1 [ am + 32( +a )] + A2 7 (3.31b)

K12 4(1+a2)?

where, without loss of generality since this is a linear system, we can set K15 = 1.

What is the meaning of (3.30) and (3.31)?7 Recall that in the case of the Teukolsky
equation describing perturbations in the Kerr black hole [38], it is well known that the
so-called Starobinsky-Teukolsky relations relate perturbations with spin s to those with
spin —s [40] (see also Appendix of [83]). Thus, one interprets relations (3.30)-(3.31) as
being effectively a kind of Starobinsky-Teukolsky relations for the KN perturbations. In
this case they relate the wavefunction of spin s = —2 with that of spin s = —1 because the
perturbations for these two spins are coupled.

After this long tour, we should recap what we have learned so far. The gravito-
electromagnetic perturbations of the KN black are described by a coupled system (2.23)
of two PDEs for {¢)_9,%_1}. However, if we take its near-horizon limit near extremality,
as described in (3.17)-(3.20), we get two near-horizon coupled PDEs for {¥_o,¥_;} that
can be solved assuming the separation of variables (3.23). After using the Starobinsky-
Teukolsky—like relations (3.30)-(3.31), we verify that the system indeed separates. We get
two decoupled ODEs (3.28) for the radial wavefunctions Y;(y) and Ya2(y). (This decoupling
reflects the fact that in NHEKN the radial perturbations are exactly described by the AdSs
harmonics as explained below (3.22)). Once we know the separation constant Ay, and thus
A1 via (3.31), these two ODEs (3.28) can be solved independently as a quadratic eigenvalue
problem for 0w (for a given m). On the other hand, the angular equations for X; and Xy
— given by the curly brackets of (3.24) after using (3.30)—(3.31) — do not decouple. Thus
we have to solve this coupled system of two ODEs (that are independent of dw) to find the
eigenvalue A2 (and thus A; given in (3.31a)). This can be done numerically as we discuss
later. But we can also solve this coupled ODE system analytically in a large m WKB
expansion. This is what we do next.

Substituting (3.25)-(3.27) and (3.30)—(3.31) into the curly brackets expressions of
(3.24), we find that (3.24a) is a second order ODE for X; (hereafter we denote this as
the ‘first’ angular equation) that also depends on X} and Xs but not on XJ. Similarly,
(3.24b) is a second order ODE for X (henceforth denoted as the ‘second’ angular equation)
that also depends on X and X; but not on X{. If we redefine

Xi(z) = xa(z), Xo(7) = K12 x2(2) , (3.32)

where K12 was first introduced in (3.30a), we can solve the equation for x; to express x/, =
X5(x2, X715 X}, x1)- We substitute this relation and its derivative into the second angular
equation to get a differential equation that can be solved to express x2 = x2(x7", x7> X1 x1)-

Substituting this back in the first angular equation we end up with a fourth order differential
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equation for y; that no longer depends on x». This is a non-polynomial eigenvalue problem
for x1 and Ag; recall (3.31a). Perhaps remarkably, this fourth order differential equation
can be solved analytically in a |m| > 1 WKB expansion to find y; and As.

We substitute the WKB ansatz

xi(z) = e [XLO@) + Xl;(x) + Xlrflgx) +0 (1/m3)] : (3.33a)
Ay = (1/m?) , (3.33b)

into the fourth order ODE and solve it order by order in a standard large m expansion,
requiring that the solution is regular at £ = £1. The leading order WKB wavefunction is

L Y R W ( 242 + @22 + 1) CVERET <\/2&2 n 1>

a2+ 1 a2+ 1 a2 +1 a2 +1
(3.34)
and the separation constant Ay is given by (3.33) with WKB coeficients
Moo = 4 (1 — 4a?) Noi = —4(1+a%) (2V1- @ —V1+22) (3.35a)
V1—a? % (3 — 726410 — 25348 + 128a° — T4a* — 5042
Agg = Vi@ (1) ) (3.35D)

(1 n 2a2) [(66@6 _5at— 1202+ 5) VI — a2 +4(1 —ad)v2aZ 1 1} ’
Ao = [4 (1+2a2)"? <578577650112A40 3381297955204% — 1042453021104

+ 1170932108544 + 2438721802444 — 109278870980443° + 45757193793142°
+ 286639850738a%0 — 371225227587a%% + 7582137604842 + 838231431994%°
— 645225165784 + 539753779346 + 1187075930044 — 59393310874

+ 1567025460 + 79895927148 — 2692480084a° — 88683954 + 2032761842 — 4782969)

+4v/1—a? (1 +2a%)° (661231600128&40 — 7889695228804°° — 4758863788804°°

+ 1029138506352a* — 6306481415524 — 452699156052a° + 6581663391684
— 186975958943a26 — 2498920000054 + 1787436924064 — 32492421066°

— 56479482309a'% 4 209026907214'° + 36636013124 — 584548134042

+ 11005521994 + 410656173a° — 2794095064° + 19829366:*

-1
+ 131531654 — 4782969)]

3a\/1— a2 (1+4a2)° /242 + <90588729217536A46 + 93586813404480a**

— 64234642488192a*% — 541815519342244%° + 147337093268644°38
— 347081410997646°% — 8979094220672a°* + 34432474064505a% — 109221617476050°°
— 230416449492124%8 + 5136927583340a%¢ + 4733507876355a%4 — 3578226571619422
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— 8989292742064%° + 7535652434464'8 — 135077374365a'6 — 1742231222350
+ 3308991912042 + 838036316840 — 9890782275a% — 8037824614°

+ 5416707184 — 1482720344> — 57395628)

+3a2 (1+4%)° <158530276130688a48 +192260601732672a"0 — 226279077675552a**

— 257580189150768a4% + 2386344657050644° + 1874786643342364°

— 167948153974214a3¢ — 790507879336094>* + 6916599696894063

+ 1562277529575a3° — 26149776558142428 + 63108597864133%¢ + 38201719519484*
— 44245828839016%% — 417658252182a2° 4 868831525263a% — 2496772094804,

— 1707065822994 + 4740447004642 + 47080121274 — 109320786364°

— 39846967545 + 5321058204 — 1769698580> — 57395628)] . (3.35¢)

Of course, now that we have the eigenpair Ay and xi1(x) (in the WKB approximation) we

can straightforwardly obtain A\; and y2(x) using (3.31a) and the aforementioned relation

x2 = x2(x7", X1, X1, x1). This terminates our WKB analysis of the angular equations.

500F ‘ ‘ ‘ ‘ T 100

ol
_10l
_20.

A2 A2

—30f
-5007
— 40}
_50,

—1000 1 —60f

00 02 04 06 08 10 00 02 04 06 08 10
a/M |exs a/M|ext

Figure 8. Comparing the WKB result (continuous line) for A2(m, a) with the exact result (circles).
Left panel: m = 10 case. Right panel: m = 2 case.

We can also solve numerically the coupled pair of angular ODEs for X; and X5 to check
that the WKB result is indeed a good approximation, even for m = 2. For m > 2, regularity

at © = £1 requires that we keep the X1, X5 solution that behaves as (1 — x)%(”m)

atx =1
and as (1 —i—w)%(_”m) at = —1 where s = —2, —1 for X1, X5, respectively. We can impose

these boundary conditions straightforwardly if we introduce the field redefinition
Xi=(1—2) 21 4+2)"2Qi(z), Xo=(1—-2)2t5(1+2)2"2Qs(x) (3.36)

and solve the two coupled second order ODEs for smooth )1 and )2 and the eigenvalue
Ao, after using (3.31a). As explained above, we use a Newton-Raphson algorithm with
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pseudospectral discretization [77]. In Fig. 8 we compare the WKB result (3.33)-(3.35)
with the numerical Ay. We see that, as expected, for large m, m = 10 (left panel), there is
perfect agreement between the WKB result (continuous dark-blue curve) and the numerical
result (blue circles). However, as the right panel demonstrates, the WKB approximation
(continuous dark-green line) proves to be a good approximation to the exact result (green
circles) already for m = 2. Also note that as a increases from @ = 0, Ay changes sign from
positive to negative. This fact will be important later.

Having solved the angular equations we can now focus our attention on the radial
ODEs (3.28)-(3.29). Recall that we can solve one of these, e.g. (3.28b) for Y3, and the
solution for Yj is then straightforwardly given by the Starobinsky-Teukolsky differential
map (3.30a). Further recall that (3.28b) is a quadratic eigenvalue problem in dw. This
ODE turns out to be a standard hypergeometric equation with most general solution given
by

ay 2 < 2(1+a2) 2 2(1+a?) 2 i(1+3a7) 05—y
1-i(14a2)os g ((4ima— vz 1
tezy 1< 2(1+a2) 2
4imd+ \/)\2 +1
2(1+a2) 2

+ - —2i(1+a%) 6w,

2i (1 + a%) 6; 2 — 26 (1 + &%) o —y) ]
(3.37)

where c1, co are arbitrary integration constants. At the event horizon, y = 0, this solu-

tion behaves as Ya|,—¢ ~ clyZ(Hdz)‘sa’ + Cle_i(Hdz)m. Regularity in ingoing Eddington-

Finkelstein coordinates at the future event horizon requires that we set ¢; = 0 to eliminate

the outgoing modes. On the other hand, far away from the horizon, i.e. at large y, the
regular solution at the horizon behaves as

Yoy ~ o (2= 20 (1+%) 60)

o
| r(-i) (-42)
3 4imat+vA 1, 4i(ma—(1442)%00)—vA2
L (5 B ﬁ#) r <2 + 4 2(1+a?) ) )
VA2
. r (1+a2) y% (Hﬁ)} (3.38)
r <§ _ M) p(1 g (maz(14a2)’50) v
2 2(1+a?%) 2 2(1+a?)

Assume for now that Ay > 0. From Fig. 8, this happens when aGext = 4/1 — Q2 is small,

| (-2
which occurs for large Q. For Ay > 0, at large y, the solution y° %/ in (3.38) decays
1 (1 VLY

a2 .
e ) diverges.'”

while y?
17 . 41 VA
Note that the metric components that must be a regular 2-tensor behave as y~ 2 1+a2
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In the context of a matched asymptotic expansion, the large behaviour of the near-
region (near-horizon) solution (3.38) must now be matched with the far-region solution
(near extremality). As explained at the beginning of this section, we expect the near-
horizon modes we are looking into to have wavefunctions that die-off very quickly away
from the black hole horizon (near extremality). This will be confirmed by our numeri-
cal analysis. Therefore, as a first approximation — that we henceforth call a ‘poor man’s
matched asymptotic expansion (MAE) — we take the far region to be described by a van-
ishing wavefunction. That is to say, in the overlapping region, we match the near-region
solution (3.38) with Ya|g,, ~ 0.1¥ Tt is important to emphasize that this is an ansatz or
educated guess that we cannot argue for in a formal mathematical away that goes deeper
than the above heuristics. It is ultimately only validated a posteriori by the fact that the
final quantization agrees with the numerical results for the frequency spectra (indeed, Ya|g,r
is never exactly zero and thus a small component of the divergent term in (3.38) should

1+a2

1 Vg
be used in a proper matching). This ansatz requires that we kill the solution yg( )
in (3.38) that diverges for large y. Since I'(—n) — oo for n € Ny, this is the case if we
quantize the frequency correction to be such that the argument of the gamma function in
the denominator of the divergent term is a non-positive integer n:

ma 7

;Y —
o ~ — <1+2n+2(m,a)

1+a?

, n=0,1,2,3- 3.39
(1+a2)? 4(1+a?) ) (3.39)

Inserting this frequency correction into the frequency expansion (3.19) one gets the final
expression for the frequency in units of r,: @ = mQy + o 6. We can now convert this
into units of M by multiplying this expression by M/r, (since @M /ri = © = wM) and
expanding it in terms of o while keeping terms only up to O(o) (since all our analysis is
valid only up to this order). This yields the frequency quantization for the near-horizon
(NH) QNMs which can be written as:

ma N ma(l —a?) il+2n —Xa(m, a)
o _t _
1+ a? 2(1+a2)2  41+a2 4(1+ a?)?

+0(0?), n=0,1,2,3,--

(3.40)
where @ in this expression must be evaluated at extremality, i.e. & = Gext, the off-extremal
parameter o is defined in (3.17), and we have defined \/z to be such that Re(y/z) > 0
(Im(y/z) > 0) for positive (negative) values of z.

How good an approximation is (3.40)? It is in excellent agreement with the numerical

WhMAE =

NH frequencies near extremality, as will be discussed in the analysis of Figs. 13-14. This
is further illustrated in the left panel of Fig. 9 where we take a KN BH family with
Q/r+ = 0.99 and compare the numerical results (green circles) with the red curve Wyag
given by (3.40). It turns out that for very large Q the agreement is excellent not only near-
extremality but also far away from it down to small a. So much so that we can basically use
(3.40) for any astrophysical application that requires the knowledge of the dominant NH

81deally, we would also solve the far-region equations to obtain the sub-leading far-region solution but
in the KN background we cannot do this analytically.
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frequencies for 0.99 < Q/r4 < 1, say. Accordingly, the reader will later find that we have
not felt the need to collect numerical data in the window 0.99 < @/r; < 1 in our plots:
see e.g. the gap between the green surface and extremal brown curve in Fig. 16 and the
similar gaps in Figs. 18—20. Naturally, as we decrease Q the approximation (3.40) becomes
increasingly less accurate when we move away from extremality. This is demonstrated in
the right panel of Fig. 9 where we do the comparison between (3.40) (red line) and the
numerical data for Q/r; = 0.95.
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Figure 9. Imaginary part and real part (inset plot) of the frequency as a function of the rotation
for the NH QNM family with @Q/ry = 0.99 (left panel) and Q/ry = 0.95 (right panel). The
numerical results are given by the green circles while the red line is the analytical result (3.40).
The brown diamond is the value © = mQ%?t at extremality. For large @ (left panel), Wyag is an
excellent approximation even away from extremality but it becomes less good away from extremality

for smaller @ (right panel).

In the final steps leading to (3.40), we assumed that Ay > 0. From Fig. 8, this happens

when Gext = 1/1 — Q2 is small, which occurs for large Q, as is the case in Fig. 9. This also

includes the extremal RN limit, (Q,a) = (1,0) in which case (3.40) reduces to the expression
first found in [2]. However, nothing impedes us from extending the application of (3.40) also

to the case where Ay < 0. From Fig. 8, this happens for large Gext = 1/ 1 — Q2, and thus for
small Q In particular, this includes the extremal Kerr limit, (Q, a) = (1,0). Interestingly,
when A2 < 0 (unlike for A2 > 0), one is effectively in a region of the parameter space
where the PS family terminates at Im@w = 0 and Rew = mQ%’,{t and, quite importantly, it
dominates over the NH family. Therefore, by construction (3.40) should be able to capture
(also, or in this case) the frequency of the dominant PS modes near extremality. And
indeed it does so, as illustrated in Fig. 10 where we compare (3.40) (black curve) against
the numerical PS frequency (orange diamonds) for the KN families with Q/ry = 0.5
(left panel) and @ = 0 (right panel). The latter case is the Kerr solution, where (3.40)
reduces to the expression first found in [46, 100]. Thus, Wyar in (3.40) (also) provides an
analytical approximation for PS modes when they approach Im& = 0 at extremality that
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Figure 10. Imaginary and real (inset plot) part of the frequency as a function of the rotation for
the PS QNM family with @/r4 = 0.5 (left panel) and @ = 0 (right panel). The numerical results
are given by the orange diamonds while the black line is the analytical result (3.40). The brown
diamond is the value w = mﬂ‘ﬁ‘t at extremality. wWyag in (3.40) is a good analytical approximation
for those PS modes that approach Im& = 0 at extremality. The approximation (3.40) to the PS
modes improves as () decreases.

complements, and is independent of, the eikonal analytical approximation wg™ given in
(3.16). It has the added value of being very accurate near extremality already for m = 2
(i.e. well outside the |m| > 1 eikonal regime of validity). Interestingly, the approximation
(3.40) for the PS modes improves as @ decreases, as can be inferred from the two cases
presented in Fig. 10.

Altogether, and to summarize, we find that (3.40) is an excellent approximation for
the dominant modes (which always approach Imw = 0 and Rew = mQ%’,‘t at extremality)
when we are close to extremality, i.e. when a/aext < 1, independently of the QNM family
that dominates, as best illustrated in Figs. 9-10. For large Q the dominant modes are the
NH modes and (3.40) describes them. For small Q the dominant modes are instead the PS
modes and (3.40) also describes them. This might sound a bit puzzling: how can it be that
the near-horizon MAE analysis captures sometimes the PS modes? This is because, away
from the RN limit, the distinction between the PS and NH families becomes less clean and
actually the dominant QNM family is better described by a combination of the PS and
NH modes (that we will denote as a PS—NH family) due to the phenomenon of eigenvalue
repulsion. This statement will be clarified and made accurate when discussing the results
of Figs. 13—14 so we postpone further discussion till then.

In the analysis of the eikonal expression (3.16) and associated Fig. 5, we have already
pointed out that when we are at extremality, e.g., if we place ourselves on the extremal
brown curve of Fig. 5 (or of Fig. 16) and move along it from dext = 1 down to Gext = 0
(or, equivalently, from Qext = 0 10 Qext = 1), there is a critical rotation Gext = @, (or,
equivalently, a critical charge Q, = \/1 — @2). For @y < dext < 1 (i.e. 0 < Qext < Q4) the
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PS family terminates at In& = 0 and Rew = mfl‘}ft at extremality (e.g., in the Kerr limit

where Gext = 1), but it fails to do so otherwise (e.g., in the RN limit where Gext = 0 and

Qext = 1)-
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Figure 11. Critical values of @Y™ (left panel) and QY™ (right panel) for which )y vanishes as a
function of m. The WKB approximation (3.41) (blue line) already gives an excellent agreement
with the exact results (black x’s) for values of m as low as 5 or 6. Further note that as m increases,
ay" — ag = 1 (left panel) and QYH 5 Qi — \/73 (right panel) — see the red dashed lines —
where the latter eikonal values were discussed in Fig. 5 (see its red * point).

Interestingly, we find that this x transition point turns out to be very well approximated
(if not exactly given) by the point where the separation constant A2(m,adext) in (3.40)
vanishes: Ag(m,ai™) = 0. For aexy < ai™ (or equivalently, Qoxt > QSH) one has Ay > 0
and for dext > al™ we have Ay < 0. To get the accurate values for ai™ — which are displayed
as black x’s in Fig. 11 — we use the numerical solution for Ao(m, Gext) as displayed in Fig. 8.
Alternatively, since A2 has the WKB expansion (3.33b) and (3.35), we can use it to find

aal\:H|WKB or Q§H|WKB, yleldlng

N 1 5V3(2—v2) 5(69—176v2)

ay | wks =~ 3 . = ommz O (1/m?), (3.41a)
- V3 5(2—-+2) 5vV3(112y/2-103

Q¥ lwks > == + (32m ) - (2048m2 ) + 0 (1/m?). (3.41b)

Using our numerical data for Ay (Fig. 8), when m = 2 we get {a,, Q,}™ ~ {0.360,0.932}
while the WKB approximation (3.41) yields {ay, Qy )L, ~ {0.311,0.970}. Being a WKB
approximation, (3.41) is expected to be accurate only as m — oo. To confirm this, we
compute these critical rotations for m = 2 to m = 10 and Fig. 11 shows that a}"|wks as
given by (3.41) (the solid blue line) indeed approaches increasingly the value of ai* (the
black x’s) as m grows, with excellent agreement already for m = 10 (or even m = 6).
Further note that as m increases, ai™ and a}"|wxp approach from below the eikonal value
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3 (or from above the eikonal Q5 = /1 — (ag*)? = v/3/2 ~ 0.866025) discussed
in Fig. 5 (see its red *).
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Figure 12. The PS modes at extremality. The black x at Gext = Gx =~ 0.360 is the one shown
in Fig. 11. The grey squares in the range deyxt € [0,0.24] describe data obtained solving the
gravito-electromagnetic PDEs directly at extremality. The grey line in the range Gext € [0, @] is an
interpolation of the grey square and x points. On the other hand, for Geyt > G it is simply described
by Imw =0 and Rew = mfl?ft. The orange diamonds describe the closest point to extremality we
obtained using the non-extremal code. Left panel: Imaginary part of the PS frequency. Right
panel: Real part of the PS frequency.

So our numerical results indicate that the critical rotation/charge {d, Q,} seem to be
given to very good accuracy by the values {aX", Q¥"} discussed above and displayed in
Fig. 11. This is further demonstrated in Fig. 12. In these plots we show the imaginary
and real part of the PS frequency as a function of the rotation at extremality, Gext, for Zs
¢ =m =2,n =0 modes. The black * at dext = a¥" ~ 0.360 (i.e. Qext = QY ~ 0.932) is
the point already displayed in Fig. 11. The set of black squares displayed only for Gext €
[0,0.24] describe data we obtained by solving the gravito-electromagnetic PDEs directly at
extremality (numerically, it is very hard to extend the computation for higher dGext; recall
that at extremality we have a degenerate horizon and thus the boundary conditions differ
from the non-extremal case). On the other hand, the auxiliary grey line that joins these
black squares and connects to the black x point at Gext ~ 0.360, is an interpolation curve
built from the black square and % points. Finally, the PS modes closest to extremality that
we found using our non-extremal code are identified with orange diamonds (with Gext = 0.2
since it is hard to obtain data when Gext — 0). For 0 < @ext < @x =~ 0.360 they are just
below the interpolation grey line. Altogether this indicates that PS modes indeed terminate
at the grey interpolation line for 0 < dext < dx. On the other hand, for a, < Gext < 1,
the grey horizontal line displayed in Fig. 12 has Im@ = 0 and Rew = mQ%’ft. The orange
diamonds in this region are the closest PS modes we obtained using the non-extremal PS
numerical code; these points are at 99% of extremality. Again we see that they indeed
approach the grey horizontal line. To find even further approach we need to extend our
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collection of data closer to extremality, say up to 99.9% of extremality. We did this for a
few constant charge families (not shown) to confirm it is indeed the case (and these are
very accurately described by @yag in (3.40) as discussed previously).

4 Eigenvalue repulsions (also known as level repulsions or avoided cross-
ing)

The analytical analyses of Section 3 allowed us to find corners of the 2-parameter space
of KN where we can obtain good analytical approximations for the QNMs of KN. Impor-
tantly, they gave us evidence for the existence of not one but two main families of QNMs:
the photon sphere and near-horizon families. These are distinct families because the ana-
lytical analyses reveal different origins: the PS family is associated with properties of null
orbits in the eikonal limit, while the NH family is related to modes whose wavefunction is
very localized about the horizon near extremality. Our numerical search of QNMs, whose
findings will be presented in this section and in Sections 5—6, confirm that KN indeed
has two families of QNMs and not more, and all the numerical QNM frequencies are well
approximated by (3.16) and/or (3.40) in the regimes where the latter are valid.

However, the distinction between the two QNM families of KN becomes very fuzzy
as we move along the 2-parameter space of KN. In the RN limit (¢ = 0,Q # 0) this
distinction is very sharp: one of the families is the PS family well approximated by (3.16)
and the second one is the NH family well described by (3.40); recall Fig. 1. But when we
switch on the rotation and allow it to increase we find that the PS and NH families lose
their individual identities. Instead branches of these two families combine with each other
to produce a combined family that we can appropriately call PS—NH modes (and their
radial overtone families). This occurs because the KN spectra has a novel phenomenon
that is special to the KN QNM system (i.e. present neither in Kerr nor RN), namely
etgenvalue repulsion between QNM families. In subsection 4.2 we will describe in detail
this phenomenon in the KN QNM spectra. Although, in the context of black hole QNMs
eigenvalue repulsions are particular to KN (see also footnote 3), such a feature is common
in some eigenvalue problems, notably: 1) in solid state physics where e.g. it is responsible
for energy bands/gaps in the spectra of electrons moving in certain Schrédinger potentials,
and in 2) in quantum mechanical eigenvalue systems with the so-called avoided crossing
phenomenon. Therefore, before discussing eigenvalue repulsions in KN, in subsection 4.1
we will present a simple textbook example of eigenvalue repulsions that will allow us to
understand from first principles what occurs in the KN eigenfrequency spectra.

4.1 Complexified eigenvalue repulsion

FEigenvalue repulsion is a phenomenon that occurs in simple quantum mechanical models
(albeit it can also occur in classical physics, most notably when two levels of a classical
harmonic oscillator are coupled). In quantum mechanics this phenomenon is also known
as the Wigner-Teller effect, avoided crossing or level repulsion [64, 65]).

To explain the similarities and differences between what is observed in standard quan-
tum mechanics textbooks and the phenomenon that we observe numerically in the QNM

— 37 —



spectra of KN, we will start by reviewing the simplest textbook example exhibiting avoided
crossing (see for instance §79 of [64] and/or §IV.C of [65])).

For concreteness consider a two-level system with Hamiltonian Hy, orthonormal eigen-
states |¢;) and energy levels F;, so that

Holi) = Ei [¢i)  and  (¥i]hy) = iy, with 4,7 =1,2. (4.1)

Let us imagine perturbing Hy with an interaction W, such that the full Hamiltonian is
given by H = Hg+ W. Here W can be thought as coupling the two eigenstates ;. In the
{l¥1) , [12)} basis, the coupling is given as a 2 x 2 matrix VW with entries Wj; = (¢;|W|1);).

In the {|¢1),|¢2)} basis the perturbed Hamiltonian matrix #H;; = (¢;|H|¢;) can be
written as

Eir+Win Wia

H =
War  Ego 4+ Waa

. (4.2)

Self-adjointness of the perturbed Hamiltonian then demands H to be Hermitian, and thus
Wy1 = Wia, where the bar denotes complex conjugation.

It is a rather standard exercise to diagonalise H given in (4.2) and find that the
eigenvalues of the perturbed Hamiltonian are:

B+ FE E, — E5)?
By = “; Qi\/( L 1 2) + W2, (4.3)

where E; = E;—Wj (with no Einstein summation convention on the last term). Eigenvalue
crossing (i.e. E_ = Ey) will only occur if the argument of the square root vanishes. Since
the argument of the square root is given by a sum of two positive definite terms, we must
demand each to be zero separately:

W12 =0 and El = Eg . (4.4)

Let us now imagine that W is a function of a number of real parameters, say N.
Since we have two conditions to be satisfied in order for crossing to occur, we expect that
crossing can only happen over a subspace of the N real variables parametrised by N — 2
real variables.!” Except at this special subspace, (4.3) predicts that eigenvalues do not
cross under the effect of perturbations W (since E_ < E; for Wjg # 0). This is known as
avoided crossing.

However, the case at hand (QNMs of KN), is more complicated than this standard
textbook example because the perturbation operator is not self-adjoint. However, we shall
see that progress can nevertheless be made to understand the properties of its intricate
QNM spectra in terms of avoided crossing. Let us denote by Lg the operator whose
eigenspectrum yields the QNM spectrum of a RN black hole, which is non-degenerate: see
Fig. 12°. Let us label such QNMs as {t;, w;} with i = 1,2 (in the simplest case, we should

19This is indeed the case, so long as Wi2 does not vanish for some symmetry reasons [64].

2ONote that in Fig. 1, the imaginary part of the PS mode crosses the imaginary part of the NH mode.
Nevertheless, the real parts of the PS and NH frequencies are distinct. Thus, RN has no crossing in the
complex eigenfrequency plane.
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regard these as the two slowest decaying QNMs for a given value of Q/M as shown in
Fig. 1). We would like to investigate what will happen to these two QNMs as we turn
on J/M?. The operator governing the eigenspectrum will change to L = Lo + K, so that
K=0atJ=0.

For quasinormal modes, L is not self-adjoint, but one can nevertheless introduce a non-
degenerate bilinear form ((-|-)) with respect to which the 1; are orthogonal [104]. However,
in general, ((:|-)) will be complex. We will choose the normalisation of the 1; to be such
that ((¢;|1;)) = 8;;*'. Note that we cannot choose ((;]1);)) = &;; since it could well be
that ((1]¢i)) = 0.

As with the Hermitian case, we define L£;; = ((¢;]|%;)), which leads to the perturbed
matrix

wi + K Ko
L= ) 4.5
Ko w2+ Ko (45)
with K;; = ((¢;] K|t;)). £ can also be straightforwardly diagonalised as
S EAY
L Ly (46)

where @; = w; — K;; (with no Einstein summation convention on the last term). Eigenvalue
crossing will only occur if the argument of the square root vanishes. Unlike the Hermitian
case, this time this gives only one condition

(@1 — @o)?

1 + K19K91 = 0. (47)

Let us now imagine that I depends on N real parameters. Since the condition (4.7) is
in general complex, it provides a restriction on two of the N parameters. This means
eigenvalue crossing can only occur on a N — 2 subspace, just as in the Hermitian case.
This is the reason why we need also at least two real parameters to see avoided crossing
in the non-Hermitian case. In the black hole context, this justifies why we can see this
phenomenon in Kerr-Newman [3], RN-dS [63], Myers-Perry-dS [62], but not in RN or Kerr
black holes.

The analysis above also shows that level crossing (in the complex frequency plane) will
only occur at most at a point in the full Kerr-Newman space of parameters (which has
N = 2 adimensional parameters, namely Q/M and J/M?). Our numerical analysis of the
KN QNM spectra (mainly of of Sections 3.2 and 4.2) provide us with strong evidence to
conjecture that this level crossing point lies precisely at extremality when the PS modes
reach Im(w) = 0. This is the x point in Fig. 12 (in the case of n = 0 PS and NH modes).
This conjecture is backed up not only by our numerical studies, but also by our approximate
analytic form of the near-horizon matching asymptotic expansion frequency (3.40), which
has the same elements as (4.6), with —Aa(m, @) playing the role of W + K12Ko1.

The study of level crossing for non-Hermitian systems remains an active topic of re-
search particularly when more than two-levels are considered (see [105] for an excellent

2'Here we use the fact that combining the non-degeneracy of the spectrum of Lo with the non-degeneracy

of ((-]-)) requires ((¥;|¢;)) # 0.
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topical review on the subject). For instance, in (4.7) we could have demanded that the real
(imaginary) part vanishes, but let the imaginary (real) part be arbitrary. This would lead
to avoided crossing in the imaginary (real) part, but would allow for crossing in the real
(imaginary) part. This example shows that avoided crossing for non-Hermitian matrices
can indeed be a richer phenomenon than its Hermitian cousin.

4.2 Eigenvalue repulsions in the frequency spectra of KN

Perhaps surprisingly at first sight, but certainly not after the discussions in subsection 4.1,
in the numerical search of the KN QNM spectra we find eigenvalue repulsions between the
two distinct families of QNMs of the system. These eigenvalue repulsions are unique to
the KN QNM system since they are not observed in the spectra of Schwarzschild, RN nor
Kerr black holes (for reasons that were understood in subsection 4.1). Our strategy to
describe and discuss further these eigenvalue repulsions is the following. In Figs. 13—14 we
display a series of panels. Each one of them plots the imaginary part of the dimensionless
frequency, Im(wr;.), as a function of the dimensionless charge, Q=0 /74, at fixed a/aext-
We choose to use units of r; since some curves change too much in a small range of
charge if we use units of M. Different plots of this series are for different values of fixed
a/aext. Namely, moving from top-left into bottom-right panels of Figs. 13—14 we have
fixed a/aext = 0,0.38,0.39,0.5,0.8,0.86 and 0.96 (see legend on top of each panel). So we
start at the RN family with a = 0 and progressively increase a/aext till we reach a KN
black hole family parametrized by 0 < @ < 1 where the whole KN family is at 96% of
extremality. We have chosen these particular a/aext cases because they are representative
of what happens to the system in a window of a/aext centred at the given a/aext. When
we move to the next panel a new major feature appears that justifies introducing a new
plot to illustrate it. We only display the imaginary part of the frequency. This is because
the plots for the real part of the frequency are not very illuminating since the curves for
the different modes quickly become very close to each other as we approach extremality i.e,
as a/aext increases. We will add comments about the real part of the frequency whenever
appropriate and at the end of this section.

We can now describe in detail the content of each plot in Figs. 13—14. In the top-
left panel of Fig. 13 we start with the RN black hole (a = 0). This describes what
happens to the system with a = 0 but it is also representative of small rotation cases
with a/acxt below 0.38. We plot the first two overtones (n = 0, 1) of the PS QNM family
(that we denote by PSy and PS; or, more generically, as PS,, modes) and the first two
overtones (n = 0,1) of the NH QNM family (denoted as NHy and NH; or simply as
NH,, modes). The PSy and PS; curves are described by orange diamonds and dark-red
triangles, respectively. In the Schwarzschild limit (Q = 0), the PSy family reduces to
the dark-red disk wry = 0.74734337 — 0.17792463 ¢ while the PS; curve reduces to red
square wry = 0.69342199 — 0.54782975 ¢, first computed by [40, 41]. On the other hand,
the NHp and NH; families are the green circle and blue square curves, respectively (not
shown: for Q < 0.85 these curves plunge quickly to lower Im@). Note that this plot
contains the same PSy and NH( information as the one of Fig. 1 (although here we use
units of 74 instead of M). Moreover, w.r.t. Fig. 1, in the top-left panel of Fig. 13 we also
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Figure 13. QNM spectra for KN BHs with a/aext = 0 (top left), 0.38 (top right), 0.39 (bottom
left) and 0.50 (bottom right). In the RN case, there is an unambiguous QNM family classification:
the orange diamond (dark-red triangle) curve is the n =0 (n = 1) PS family which reduces to the
dark-red disk wry = 0.74734337 — 0.17792463 ¢ (red square wry = 0.69342199 — 0.5478297514) in
the Schwarzschild limit [40, 41]. The green circle (blue square) curve is the n = 0 (n = 1) NH family
(not shown: for Q < 0.85 these curves extend to lower Im@). In the middle panels one observes
eigenvalue repulsions unique to the KN QNM spectra. In the RN case, we also show the frequency
Oumag given by (3.40) for n = 0 (black curve) and for n = 1 (magenta curve).
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Figure 14. QNM spectra for KN BHs with a/aext = 0.80 (top left), 0.39 (top right) and 0.96
(bottom). One observes further eigenvalue repulsions unique to the KN QNM spectra. On the
bottom panel we also show the frequency Oumag given by (3.40) for n = 0 (black curve) and for
n =1 (magenta curve).

display the near-horizon matched asymptotic expansion frequency wyag as given by (3.40)
for n = 0 (solid black curve) and for n = 1 (solid magenta curve); these are better seen
in the inset plot where one finds that (3.40) gives the correct slopes near-extremality at
Q < 1. As emphasized already in subsection 3.2, these analytical @y, are in excellent
agreement with the numerical NH QNM frequencies, as long as we are near extremality
(which for RN occurs at Q = 1). Actually this time we demonstrate that (3.40) is an
excellent approximation (near extremality) not only for the first overtone NHy but also for
NH; (and higher overtones n although not shown). A major feature of this a = 0 plot is
that the PS,, and NH,, curves are very well defined and clearly distinct from each other,
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with the PS,, frequencies well approximated by @™ in (3.16), and the NH,, frequencies in
excellent agreement with wyap as given by (3.40). It is also important to emphasize that
the imaginary part of the PSy and NHy curves (in particular) cross each other but, as best
displayed in the right panel of Fig. 1, this is not the case for the real part of the frequency.
This will be a common feature in all the cases displayed in Figs. 13—14: whenever we see
crossing between two curves describing the imaginary part of the frequency there is no
crossing between the curves that represent the real part of the frequency.

As far as it is possible, we will keep the same colour/shape code for the PS,, and NH,,
QNM families displayed in the top-left panel as we move to the other plots with increasing
a/aext. However, at a certain point we will no longer be able to assign the PS or NH
nomenclatures to the QNM curves of the system.

As we switch on a and increase a/aext, the QNM spectra remains similar to the one
on the top-left panel but the PS; (dark-red triangles) and NHy (green circles) curves start
getting deformed in the region where they intersect as a simple crossover in the imaginary
part. It is as if each of these curves starts feeling the presence of the other and they start
interacting. This is particularly seen in the top-right panel of Fig. 13 for a/aext = 0.38.
Then, increasing a little bit the rotation, at a/aext = 0.39 (bottom-left panel of Fig. 13)
a dramatic new feature occurs. The ‘old’ PS; (by ‘old” we mean w.r.t. the previous plot
or, ultimately, w.r.t. the a = 0 plot) dark-red triangle curve breaks into two pieces, and
the same occurs for the ‘old’ NHy curve. This occurs for Q ~ 0.875 as best seen in the
inset plot. Not less remarkably, the left-branch (Q < 0.875) of the ‘old” PS; curve merges
with the right-branch (Q > 0.875) of the ‘old’ NHy curve. That is to say, the PS; and
NHj families lose their individual identity and they combine into what we now can call the
PS1—NHy family of QNMs. Similarly, the left-branch of the ‘old’ NHy (Q < 0.875) curve
joins with the right-branch of the ‘old’ PS; (Q 2 0.875) curve to form together a new QNM
family that we denote as the NHy—PS; family of QNMs. These breakups and subsequent
mergers are even more surprising because they glue two sub-families that were, for lower
rotations, assigned different radial overtones n. At this rotation parameter we can say that
we have 4 families of QNMs (from top-left to bottom-right): the PSy, the PS;—NHj, the
NHy—PS; and the NH;.

Altogether, these features and frequency gaps are characteristic of the phenomenon
of eigenvalue repulsion that we discussed in subsection 4.1. In particular, in the breakup
region, there is a a ‘frequency gap’ between the new PS;—NHg and NHy—PS; curves. This
‘frequency gap’ is zero exactly at the breakup rotation (somewhere in the window a/aext €
[0.38,0.39]), and then it grows as a/aext increases. This is what is seen e.g. when we move
to a/aext = 0.5 case shown in the bottom-right panel of Fig. 13. In this plot we see that a
further eigenvalue repulsion episode happened in the window a/aext € [0.39,0.5]. Indeed,
the NHy—PS; curve (green circles plus dark-red triangles) broke up around Q ~ 0.91 and
the same happened to the NH; curve (blue squares). The left-branch of the ‘old’ NHy—PS;
curve is now merged with the right-branch of the ‘old’ NH; curve to form what we can call
a NHo—PS;—NH; family of QNMs. Simultaneously, the left-branch of the ‘old’ NH; curve
(blue squares) is now merged with the right-branch of the ‘old’ NHo—P$S; curve (or with
a portion of the even ‘older’ PS; curve since it only contains dark-red triangles) to form
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what we can call a NH;—PS; curve.

So far the original PSy family escaped eigenvalue repulsion phenomena, but this
changes when we keep increasing a/aext even further as seen in Fig. 14 (in this figure
we drop the subdominant NH;—PS; curve). Indeed, at a/aext = 0.8 we already notice
that the PSp curve (orange diamonds) and NHy portion (green circles) of the PS;—NHj
curve are getting deformed by each other in the region where they intersect as a simple
crossover. Again, it is as if each of these curves feels the presence of the other and reacts
to the interaction (see the inset plot). This is similar to the eigenvalue repulsion observed
before between the PS; and NHg modes and, inevitably, the PSy and the PS;—NHg curves
break up in the window a/aext € [0.8,0.86]. Indeed, in the top-right panel of Fig. 14,
we see that at a/aext = 0.86 these two curves break at Q ~ 0.93. The left-branch (or-
ange diamonds) of the ‘old’ PSy curve merges with the right-hand branch (green circles) of
the NHy portion (green circles) of the PS;—NHg curve to produce what we denote as the
PSo—NHg family of QNMs. At the same Q ~ 0.93, the left-branch of the ‘old” PS;{—NHj
is now merged with the right branch of the ‘old’ PSy curve to give birth to what we call a
PSl—NHo—PSO family.

Similar eigenvalue repulsions keep occurring when we increase a/aext towards extremal-
ity. For example, already very close to extremality, namely at a/aext = 0.96, the two most
dominant QNM families are shown in the bottom panel of Fig. 14 (we do not show data
for even higher overtones). Here, we identify the PSo—NH( curve already observed in the
previous plot. This is the family that has the lowest |Im&| for all 0. Additionally, we see
that the ‘old” PS;—NHy—PSy curve of the a/aext = 0.86 broke again (around Q ~ 0.94)
and merged with the right branch of the ‘old” NH; (blue squares) to form a four colour
PS;—NH(—PSy-NH; curve (see inset plot).

To conclude by summarizing the key aspects of our findings, the first plot of Fig. 13
together with the last plot of Fig. 14, are those that probably best illustrate the main
conclusion of our study. There is no doubt that ¢ = 0, the RN black hole, has two clearly
distinct families of QNMs: the PS and NH families, together with overtones for each of
them (first plot of Fig. 13). Here, the PS,, frequencies are well approximated by @&k in
(3.16), and the NH,, frequencies are in excellent agreement with @y as given by (3.40).
However, as the rotation increases, several eigenvalue repulsions progressively appear that
increasingly break and combine pieces of the ‘old” PS,, and NH,, curves. Very close to
extremality, we end up with a QNM landscape that is definitely very different from the
RN one. Indeed, as best illustrated in the last plot of Fig. 14, instead of having the
PS, and NH,, curves, one now has what we can simply call the ‘PS—NH’ family and its
radial overtones (with higher [Im|). Interestingly, the near-horizon matched asymptotic
expansion frequency Wy g given by (3.40) describes accurately this PS—NH family (and its
overtones) for the whole range of Q at a fixed a/aext that is close to extremality. Indeed,
in the bottom panel of Fig. 14, the solid black curve describes (3.40) with n = 0 and the
solid magenta line represents (3.40) with n = 1. And these match very well the numerical
frequencies for the n = 0 and n = 1 PS—NH modes, respectively. This is a conclusion that
we had already reached when discussing (3.40) and Figs. 9-10 of subsection 3.2. Notice,
that this matching between Wy ,r and the numerical data includes the region of the QNM
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curve that we can trace back as descending from the RN PS modes (i.e. the orange diamond
section of the n = 0 PS—NH curve), in agreement with the discussion of the extension of
(3.40) to negative values of Ay and associated Fig. 10 that we had in subsection 3.2. In
particular, this means that the PS—NH overtone curves (including the two shown in the
in bottom panel of Fig. 14) approach Imw = 0 and Rew = mQ%* as a/acxy — 1 for any
value of Q

In the analysis of this section we have not discussed much the behaviour of the real
part of the frequency. This is because nothing of relevance happens to this quantity as we
evolve though the 2-parameter space of KN black holes away from the level crossing point
that occurs in the imaginary part. Take for example the n = 0 PS and NH modes. As we
move away from the level repulsion point at {a, Q}’ext = {ay, Q*} ~ {0.360,0.932}, during
a good neighbourhood the real part of these two modes is very similar (parallel to each
other) but they do not cross. Then, sufficiently far away from the level crossing point the
two Re@ surfaces become clearly distinct. These properties will be observed in the right
panel of Fig. 15. It turns out that the eigenvalue repulsions induce strong effects at the
level of the imaginary part of the frequencies but leave no (notably visible) imprint on the
real part of the frequencies. In more detail, whenever there is crossing between two curves
describing the imaginary part of the frequency there is no crossing between the curves that
represent the real part of the frequency; that is, the crossing in the imaginary part of the
frequency never extends to the full complex frequency plane, with one exception. For each
pair of modes, this exception occurs when we approach the particular extremal KN black
hole with {a, Q}ext = {ax, Q4 }-

To summarise, for definiteness consider again the PSy and NHy pair of modes. In this
case, the star point at extremality has {a,, Q,} ~ {0.360,0.932} and is represented with a
* in Fig. 12. At this x point, the PS and NH modes both have Imw = 0 and Rew = mQ%’,‘t.
That is, they have the same complex frequency and, as discussed in subsection 4.1, this is
the only level crossing point of the system. As we move away from this x point, avoided
crossing effects emerge and Figs. 13—14 illustrate that these repulsion effects can be strong
and induce intricate features in the behaviour of the Im& curves (but not in the Rew
curves) in a neighbourhood of the level crossing point but they become unnoticed far away
from this point.

5 Full frequency spectra of the QNMs with slowest decay rate

We have done a fairly good survey (having in mind the associated computational cost;
more in Section 6) of several gravito-electromagnetic QNMs of KN and we conclude that, as
expected, the modes that have the slowest decay rate are those that are the {Q, a} # {0,0}
extension of the Schwarzschild mode that Chandraseckar classifies as the Zs, £ = m = 2,
n = 0 mode; see Table V, page 262 of [40] and associated discussion. These are also the
modes we discussed in Section 4.1, together with the n = 1 overtone of the same family
(which was first studied by Leaver [41]).

Therefore, before doing a general survey of other modes of interest in Section 6, in
this section we display the QNM spectra of the Z3, £ = m = 2, n = 0 modes and the
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Figure 15. Imaginary (left panel) and real (right panel) part of the frequency for the Zs £ = m = 2
KN QNMs. The orange and the green surfaces are the PSy and NHy families (respectively), while
the dark-red and blue surfaces are the PS; and NH; families (respectively). When {Q,a} = {0, 0},
The PSy surface reduces to w M = 0.37367168 — 0.08896232 i, while the PS; surface reduces to
wM =0.34671099 — 0.27391487 ¢ [40, 41]. The extremal KN frequencies are described by the solid
brown line which has Im& = 0 and Re& = mQ§st.

n = 1 overtones (the latter will allow us to complement or even complete the analysis of
Section 4.2). Unlike in Section 4.2 where we made a judicious choice of 2-dimensional plots
at fixed a/aext to exhibit and explain eigenvalue repulsions, in this section we plot the QNM
frequencies as a function of the full 2-dimensional parameter space of KN. As discussed
previously, we can take these 2 dimensionless parameters to be {a,Q} = {a/M,Q/M}
or {a, Q} = {a/ry,Q/r+}. From an astrophysical perspective, it is appropriate to work
in units of M and this is how we present many of our physical results, in particular the
frequency wM . However, in practice we have scanned the 2-dimensional parameter space in
units of r: typically (except when we needed a finer grid to study a particular feature), we
divided our numerical grid for {Q,a} = {Q/r4, a/r,} with 100 x 100 points with 0 < Q < 1

and 0 < @ < Gext With Gext = 1/1 — QQ. This is because some features of the QNM spectra
(e.g. the crossovers or eigenvalue repulsions between modes) occur in small windows of
(Q/M, a/M) which translate into wider windows of (Q/r4,a/ry). For this reason, some of
the fine details of the frequency spectra that we discuss in this section are better displayed
if we present our results in 3-dimensional plots {Q/r+,a/ry,wM?}. In the figures of this
section, the left panel always displays the imaginary part of the frequency, Im(wM), while
the right panel plots the real part of the frequency, Re(wM ).

In Fig. 15 we present the raw data that we collected for the two QNM families that
have the slowest rate, namely the families that we identify with the PSy and NHg modes
in the RN limit and their n = 1 overtone cousins PS; and NH; (for the Zs £ = m = 2
modes). Namely, the orange and the green surfaces are the n = 0 PS (PSp) and n = 0
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NH (NHp) families, respectively. On the other hand, the dark-red surface and the blue
surface describe the n = 1 PS (PS;) and n = 1 NH (NH;) families, respectively. Thus,
we are using the same colour code that was employed in Figs. 13—14 of section 4.2. The

solid brown curves are at extremality. They are parametrized by @ = aext = /1 — Q2
and have Im&w = 0 and Rew = mf)%’ft (we will use the same colour code for this extremal
curve in all other 3-dimensional plots where this curve plays a relevant role). Note that the
NHy,; surfaces have a very large slope and plunge into very large negative Im(wM) as we
move away from the a = &eXt(Q) extremal curve or, in the RN case, away from the Q =1
extremal solution. Therefore we only plot these families at large Q (say, for Q> 0.8) where
they can have |Im(wM)| of the order as or smaller than those for the PSg ; surfaces.

From the analysis of Fig. 15, several properties emerge. First, as expected, the n =0
overtones always have the slowest decay rate of their families. Namely, in the left panel,
the orange PSy surface is above the dark-red PS; surface and the green NHg surface is
above the blue NH; surface. The PSy and PS; surfaces reduce to the Schwarzschild QNMs
(red points) at {Q,a} = {0,0}, whose frequencies where first computed in [40, 41]. The
plane with ¢ = 0 in Fig. 15 coincides with the RN plots of Fig. 1 or, equivalently, with the
RN plot in the top-left panel of Fig. 13, after we do the required conversion between 7
and M units. Similarly, “snapshots” at constant a/acxt = 0,0.38,0.39,0.5,0.8,0.86,0.96
of Fig. 15 yields the series of 2-dimensional plots displayed in Figs. 13—14, after we do the
units conversion wM — wry.

Naively, a “bird’s-eye” view of the left panel of Fig. 15 seems to suggest that the four
surfaces intersect each other with simple crossovers. For example, the orange PSy and the
green NHy surfaces seem to intersect along a curve Q = Qc(d). In the RN limit a — 0,
this intersection curve gives the RN intersection point, i.e. QC(& =0) = Q?N ~ 0.959227
(which corresponds, in units of M, to Q?N ~ 0.9991342) already displayed in the left panel
of Fig. 1. On the opposite end, at extremality (on top of the solid brown curve), we should
have Q.(d = Gext) ~ Q4 where the + point was defined in the discussion that leads to (3.41).
This intersection curve Q = Qc(d) between the PSy and NHj surfaces indeed is well defined
for 0 < a/aext < 0.82 but, a fine-tuning or zoom-in analysis of the left panel proves that
this is definitely no longer the case for 0.82 < a/aext < 1. Indeed, this fine-tuned analysis
was already performed in Figs. 13—14: in all plots of Fig. 13 and in the top-left panel of
Fig. 14 the PSy and NHj families indeed intersect with a simple crossover (but only the
imaginary part of the frequency cross). However, between the top-left (for a/aext = 0.8)
and top-right (for a/aext = 0.86) panels of Fig. 14 we concluded that the PSy and NH
families, instead of intersecting, suffer eigenvalue repulsions that effectively destroy their
individual identities and leads to the formation of PS-NH families of modes. Coming back
to the left panel of Fig. 15, these eigenvalue repulsions occur roughly for 0.82 < a/aext < 1
and in the charge window 0.928 < Q < 0.960. Again, the eigenvalue repulsions in this
region are not visible in the “bird’s-eye” view of the left panel of Fig. 15; we need to zoom-
in to make this noticeable very much like we did in Figs. 13—14. However, in Fig. 15 there
is a particular point that stands-out. The is the level crossing point located at the extremal
brown curve with {a, Q,} ~ {0.360,0.932} and Imw = 0 and Rew = mOE where the
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Figure 16. Imaginary (left panel) and real (right panel) parts of the frequency for the Zs,
(£,m,n) =(2,2,0) KN PS QNM. The dark-red point (a =0 = Q), & ~ 0.37367168 — 0.08896232 1,
is the gravitational QNM of Schwarzschild [40, 41]. The orange surface describes PSy modes while
the green surface corresponds to the NHy modes.

orange and green surfaces meet (see subsection 4.1).

Similarly, a zoom-in of the left panel of Fig. 15 (illustrated again in Figs. 13—14)
shows that the dark-red PS; and green NHq surfaces intersect with simple crossovers in
the window 0 < a/aext < 0.38 (but only the imaginary part of the frequency cross), but
this is replaced by eigenvalue repulsions between the two families roughly in the window
0.38 < a/aext < 1 and 0.870 < @ < 0.885. Finally, other eigenvalue repulsions, e.g.
between the PS; and NH; surfaces, also occur in the left panel of Fig. 15 as identified in
Figs. 13—14.

The evolution and intersections of the four QNM surfaces is much simpler and much
less dramatic at the level of the real part of the frequency, which is plotted in the right
panel of Fig. 15. We see that the Re(wM) of the orange PSy and dark-red PS; families is
very similar and the same happens for Re(wM) of the green NHy and blue NH; families.
So much so that one barely distinguishes the PSy and PS; surfaces and, even less, the NHg
and NH; surfaces. Moreover, nothing special happens to the real part of the frequency in
the regions where the eigenvalue repulsions happen in the imaginary part of the frequency
(see further discussions about this in the end of subsection 4.2).

From the analysis of both plots in Fig. 15 we see that the NHg; surfaces always
approach the solid brown curve with Imw = 0 and Rew = mfl‘}f,‘t at extremality. On the
other hand, the PSp; curves approach this solid brown curve if and only if &eXt(Q) > Qy
where the * point was introduced in the discussion that leads to (3.41), pinpointed in
Fig. 12, and identified as the level crossing point of the system in subsection 4.1. For
&ext(Q) < @, which happens for Q, < Q < 1 this is no longer the case, in agreement with
the discussions of (3.41) and of Figs. 11—12.

To explicitly demonstrate/justify why we have chosen to display many of our plots in
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units of r4 in the plots of Figs. 13—15, in Fig. 16 we plot the n = 0 PS and NH families,
so the same as in Fig. 15, but this time without including the n = 1 families and all
quantities in units of M, i.e. the plot {Q/M,a/M,wM?}. In the left panel, the slope of
the green NHy surface is now even more vertical than in Fig. 15, which indicates that the
eigenvalue repulsions occur in windows of @Q/M that are much narrower than in Q/r;.
Furthermore, in the right panel the NHg ; surfaces exist in such a narrow region that they
are not visible: they are too close to the extremal solid brown line with a width extremely
small and invisible to the naked eye.

Finally note that if we are interested on the numerical value of the frequency of the
slowest decaying mode of KN, we simply need to take the mode with minimum |Im(wM )| for
a given {Q/M,a/M} in Fig. 16. For completeness, we display the result of this operation in
Fig. 17, which was first presented in [3]. The Z3 £ = m = 2, n = 0 KN modes with slowest
decay rate always terminate at extremality along the extremal solid brown curve, with the
frequencies off extremality well approximated by (3.40) as best illustrated in Figs. 9—10
and in the bottom panel of Fig. 14. The red surface family, continuously connected to the
Schwarzschild mode (dark-red point [40, 41]), is the PSg QNM family as we unambiguously
identify it in the RN limit. It dominates the spectra for most of the parameter space.
However, for large Q it is instead the green surface NHy QNM family (as clearly identified
in the RN limit) that has the lowest |[Im®|. In between these orange/green regions there
is a yellowish zone. This is where either simple crossovers (that trade mode dominance)
or eigenvalue repulsions between the PSy and NHy modes occurs. These were analysed
in the discussion of Figs. 13—14 where we also found that as we approach extremality it
is appropriate to drop the PS and NH classifcation and adopt the nomenclature PS—NH
families and their overtones.

In the three Figs. 15—17, at very large charge, namely for Q > 0.99 there is a gap
between the last green NH line (with Q = 0.99) and the extremal solid brown curve. We
have not collected data in this region because we already know (see Fig. 9 and the bottom
panel of Fig. 14) that in this region so close to extremality, the analytical near-horizon
MAE frequency Wy — as given by (3.40) — provides an excellent approximation that can
be used for any physical application where such high charge values might be needed.

6 QNM spectra: a survey of key modes

So far we have been assuming that the least damped gravito-electromagnetic QNMs of the
KN black holes are the Zs £ = m = 2 modes with n = 0. But we have not yet provided
evidence that this is the case. It is certainly the case for the RN black hole subfamily (a = 0)
and for the Kerr black hole (@ = 0) since several {¢, m} modes have already been computed
in the literature for these cases. But strictly speaking the Z5 £ = m = 2 does not necessarily
need to be the mode with slowest decay in the whole parameter space {Q/M,a/M} of the
KN black hole away from the RN and Kerr sufamilies. Therefore, in this section we do a
survey of what should be the QNMs of KN that could eventually challenge the dominance
of the Z3 ¢ = m = 2 mode. Mainly these are all families with £ = 1,2 and |m| < ¢ that are
not pure gauge modes and the Z5 families with £ = m = 2, 3,4, 5. For each mode, we only
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Figure 17. Imaginary (left panel) and real (right panel) parts of the frequency for the Zs, £ = m =
2,n = 0 KN QNM with lowest Im |©|. At extremality, the dominant mode always starts at Im@ = 0
and Re@ = mQSFt (brown curve). The dark-red point (a = 0 = Q), & ~ 0.37367168 — 0.088962321,
is the gravitational QNM of Schwarzschild [40, 41]. In the right panel, the orange and green regions
are so close to the extremal brown curve that they are not visible.

display the data for the first radial overtone (n = 0) because higher overtones always have
larger [Im(wM )| that the n = 0 one.

To classify and identify more precisely the QNMs families that we will study, note that
for @Q,a — 0 we must recover the Schwarzschild QNMs. In this limit, it is well known
that there are two families of QNMs, namely the Regge-Wheeler (aka odd or axial) modes
[30] and the Zerilli (aka even or polar) modes [31, 32] . These families are isospectral,
i.e. they have exactly the same spectrum [40]. Ultimately, we only need to distinguish
the gravitational modes of Schwarzschild (described in Table V of page 262 [40]—hereafter
Table of [40]—by the eigenfunction Z3) from the electromagnetic modes of Schwarzschild
(described in Table of [40] by the eigenfunction Z;). In recent decades, these QNMs were
computed more accurately as detailed in the review [47]. Each of these Zs and Z; modes in
Schwarzschild can be found by solving a single pair of ODEs that constitute an eigenvalue
problem for the angular separation constant and frequency [30-32]. The Schwarzschild
modes are specified by the harmonic number £ = 0,1,2,3,--- that essentially fixes the
separation constant of the problem after requiring regularity of its spherical harmonic
eigenfunctions (Zy perturbations with ¢ = 0 and ¢ = 1 are modes that change the mass
and the angular momentum of the black hole, respectively; thus we do not discuss these
further). When the black hole has charge and rotation, we have to scan a two parameter
space in {Q/M,a/M}. The above two families become coupled gravito-electromagnetic
QNMs and the Schwarzschild eigenvalue ¢ does not appear explicitly in the KN PDEs
(2.23). However, we can still count the number of nodes along the polar direction of the
eigenfunctions of (2.23) and this gives . So, when @ # 0 and a # 0, we can still assign
to a given mode the value of £ that the mode has when we trace it back continuously to
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the Schwarzschild limit. This is what we will do to catalogue the modes we study. In
Table 1 we give the list of all modes we present. The first table is for Z5 modes while the
second is for Z; modes. In both tables the first column specifies {¢, m}, the second column
gives the value of the frequency for the Schwarzschild case. It matches the frequencies first
computed and listed in Table V of page 262 or in Table IV of page 202 of [40]. Finally, in
the third column we identify the figure of our manuscript where the QNMs of KN with the
given {¢,m} of the first column are displayed. In the plots of all these figures, the QNM
surfaces reduce to the values of the second column of Table 1 in the Schwarzschild limit
(see red points at @) = a = 0 in our figures).

Zy Schwarzschild (Q =a =0) |Kerr-Newman
Gravitational QNMs
£=3m=3 | wM ~0.59944329 — 0.09270305 ¢ Fig. 18
C=4m=4 |wM ~0.80917838 — 0.094163964|  Fig. 19
L=5m=>5 |[wM ~1.01229531 — 0.09487052 ¢ Fig. 20
£=6,m=06 |[wM ~1.21200982 — 0.09526585 ¢ Fig. 3
£=2m=2 |[wM ~0.37367168 — 0.08896232 ¢ Fig. 16
t=2m=1 |wM ~0.37367168 — 0.088962327| Fig. 21
£=2m=0 |[wM ~0.37367168 — 0.08896232 i Fig. 22
£=2m=—1|wM ~ 0.37367168 — 0.08896232 ¢ Fig. 23
£=2m= —2||wM ~ 0.37367168 — 0.08896232 ¢ Fig. 6
£=6,m=—6|wM ~1.21200982 — 0.09526585 ¢ Fig. 7
Z Schwarzschild (Q =a=0) |Kerr-Newman
Electromagnetic QNMs
£=2m=2 |[wM ~0.45759551 — 0.09500443 Fig. 24
£=2m=1 || wM ~0.45759551 — 0.09500443 ¢ Fig. 25
£=2m=0 |[wM ~0.45759551 — 0.09500443 ¢ Fig. 26
{=2,m=—1|wM ~0.45759551 — 0.095004437| Fig. 27
£=2m=—-2||lwM ~ 0.45759551 — 0.09500443 i Fig. 28
L=1m=1 |[wM >~ 0.24826326 — 0.09248772+¢ Fig. 29
£=1m=0 |[[wM ~0.24826326 — 0.09248772 ¢ Fig. 30
f=1m=—1|wM ~ 0.24826326 — 0.09248772¢ Fig. 31

Table 1. List of most relevant gravitational (Z3) and electromagnetic (Z;) QNMs of Schwarzschild
(all with n = 0). Note that Zs ¢ = 1 modes are pure gauge. The Schwarzschild frequencies displayed
in this table agree with the values listed in Table V of page 262 or in table IV of page 202 of [40].
In the last column of each Table we indicate the figure that extends the Schwarzschild result to the
Q # 0, @ # 0 case. Note that for a given ¢, modes with |m| < £ are degenerate in the Schwarzschild
limit but this degeneracy is broken once we switch on Q and a.
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Figure 18. Imaginary (left panel) and real (right panel) parts of the frequency for the Zs,
(¢,m,n) = (3,3,0) KN PS QNM. The dark-red point (¢ =0 = Q), & ~ 0.59944329 — 0.09270305 i,
is the gravitational QNM of Schwarzschild [40, 41]. The magenta surface describes PSy modes while
the blue surface corresponds to the NHy modes.

|
| -0.05
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Figure 19. Imaginary (left panel) and real (right panel) parts of the frequency for the Zs,
(¢,m,n) = (4,4,0) KN PS QNM. The dark-red point (¢ =0 = Q), & ~ 0.80917838 — 0.09416396 i,
is the gravitational QNM of Schwarzschild [40, 41]. The orange surface describes PSy modes while
the green surface corresponds to the NHy modes.

We start by analysing what happens to the QNM Z5 spectra with £ = m when £ =m
progressively grows from ¢ = m = 2 (Fig. 16), to { = m = 3 (Fig. 18), to { = m = 4 (Fig. 19)
and, finally, to £ = m =5 (Fig. 20). As for the £ = m = 2 case of Fig. 16, the solid brown

curves at extremality are parametrized by @ = aext = /1 — Q2 and have Imw = 0 and
Rew = mQ%’,‘t. We see that the main features of Figs. 18—20 for £ = m = 3,4,5 are very
similar to those of Fig. 16 for the £ = m = 2 mode that was already analysed in much
detail in Sections 4.2 and 5.22 In particular, we identify the PSy and NHg surfaces (as
unambiguously identified in the RN limit) and a zoom in of Figs. 18—20 (not shown in

22As with the £ = m = 2 case of Fig. 16, note that in the right panels of Figs. 18—20 the NHy surface
exist in such a narrow width around the solid brown extremal line that they are not visible to the naked

eye.
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Figure 20. Imaginary (left panel) and real (right panel) parts of the frequency for the Zs,
(¢,m,n) = (5,5,0) KN PS QNM. The dark-red point (¢ =0 = Q), & ~ 1.01229531 — 0.09487052 7,
is the gravitational QNM of Schwarzschild [40, 41]. The red surface describes PSy modes while the
green surface corresponds to the NHy modes.

our figures) shows that these surfaces intersect with simple crossovers or with eigenvalue
repulsions very much similar to those detailed in Figs. 13—14 for the £ = m = 2 case.
Therefore, the key features of Figs. 18—20 are as discussed before. However, we highlight
three features. First, the £ = m = 3,4,5 Im(wM ) surfaces are always below and thus more
damped than the ¢ = m = 2 one, and the damping increases as £ = m increases. Second,
the NH( surfaces only dominate the spectra for very large Q/M and close to extremality,
again very much like in the £ = m = 2 case. In fact, since black holes with very large
charge are not expected to have any astrophysical interest, in the plots for the other modes
listed in Table 1 we will no longer display the NH families (when they exist; this is certainly
the case for the Z; £ = m = 1,2 modes). Finally, note that for £ = m > 3 it is still true
that the PSy frequencies are well approximated by (3.16) (in fact the approximation gets
better as m increases and we approach the eikonal limit; see also the £ = m = 6 case in
Fig. 3) and the NHy frequencies are in excellent agreement with (3.40) near extremality.
Complementing the analysis reported here, note that in [1] we have reported our findings
for Zy ¢ = 3 with m = —3,-2,—1,0,1,2,3 and we have concluded that their [Im®| is
aways higher than the Zy £ = m = 2 modes.

Next, we consider the several cases of Zs modes with |m| < ¢ = 2 in Fig. 16 (m =
2), Fig. 21 (m = 1), Fig. 22 (m = 0), Fig. 23 (m = —1), and Fig. 6 (m = —2). In
the Schwarzschild limit all these £ = 2 modes are degenerate with @ =~ 0.45759551 —
0.09500443 ¢, but this degeneracy is broken once we switch on Q and a. The figures speak
for themselves and we refrain from describing them further. We note simply that the
surfaces for positive m have a qualitative shape that is significantly distinct from the ones
for negative m (notably, m > 0 cases have a monotonic behaviour that is not observed in
the m < 0 cases) and, as expected, further note that for m # ¢ the PSy surfaces no longer
approach Imw = 0 and Rew = mQ%’,‘t at extremality (hence we do not display these solid
brown curves in the associated plots). This sequence of figures demonstrates, as previously
claimed, that Z; modes with £ = m = 2 are the dominant ones among the |m| < ¢ = 2
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Figure 21. Imaginary (left panel) and real (right panel) parts of the frequency for the Zs,
(¢,m,n) = (2,1,0) KN PS QNM. The dark-red point (a = 0 = Q), @ ~ 0.37367168 — 0.088962321,
is the gravitational QNM of Schwarzschild [40, 41].

Figure 22. Imaginary (left panel) and real (right panel) parts of the frequency for the Zs,
(¢,m,n) = (2,0,0) KN PS QNM. The dark-red point (¢ =0 = Q), & ~ 0.37367168 — 0.08896232 i,
is the gravitational QNM of Schwarzschild [40, 41].

0.40|
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036

0.6-0

Figure 23. Imaginary (left panel) and real (right panel) parts of the frequency for the Zs,
(¢,m,n) = (2,—1,0) KN PS QNM. The dark-red point (a =0 = @), © ~ 0.37367168 —0.08896232 i,
is the gravitational QNM of Schwarzschild [40, 41].
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Figure 24. Imaginary (left panel) and real (right panel) parts of the frequency for the Zi,
(¢,m,n) =(2,2,0) KN PS QNM. The dark-red point (a =0 = Q), & ~ 0.45759551 — 0.09500443 7,
is the gravitational QNM of Schwarzschild [40, 41].

families (and all others).

We can now consider the Z; modes which are purely electromagnetic modes in the
Schwarzschild (and Kerr) limit.?3 In Figs. 24, 25, 26, 27 and 28, we display the £ = 2
PS surfaces of this family for m = 2,1,0, -1, —2, respectively. Moreover, in Figs. 29, 30
and 27, we display the Z; £ = 1 PS surfaces for m = 1,0, —1, respectively. Comparing
Z1 modes with the same {¢,m} as Zs modes, we see that the qualitative shape of the
surfaces is similar but Z; modes are typically more damped than the Zs modes. Moreover,
Z1 modes with £ = m also approach Im@& = 0 and Rew = mQ‘}}‘t at extremality if and

~

only if Gext(Q) > a4 (see Fig. 24 for £ = m = 2 and Fig. 29 for £ = m = 1) where the
point was defined in the discussion leading up to (3.41). For éext(Q) < G, which occurs
for Q, < Q < 1 this is no longer the case, very much like in the Z5 ¢ = m discussions of
(3.41) and of Figs. 11—12. For a given ¢ = m, the value of a, for Z; modes tends to be

higher than the one for Z5 modes.
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Figure 25. Imaginary (left panel) and real (right panel) parts of the frequency for the Zi,
(4,m,n) =(2,1,0) KN PS QNM. The dark-red point (a =0 = Q), & ~ 0.45759551 — 0.09500443 7,
is the gravitational QNM of Schwarzschild [40, 41].
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Figure 26. Imaginary (left panel) and real (right panel) parts of the frequency for the Zi,

(¢,m,n) = (2,0,0) KN PS QNM. The dark-red point (a =0 = Q), & ~ 0.45759551 — 0.09500443 i,
is the gravitational QNM of Schwarzschild [40, 41].
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Figure 27. Imaginary (left panel) and real (right panel) parts of the frequency for the Zi,
(£,m,n) = (2,—1,0) KN PS QNM. The dark-red point (a = 0 = Q), & ~ 0.45759551 — 0.09500443 ,
is the gravitational QNM of Schwarzschild [40, 41].
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Imaginary (left panel) and real (right panel) parts of the frequency for the Zi,
(¢,m,n) = (2,—-2,0) KN PS QNM. The dark-red point (a = 0 = Q), @ ~ 0.45759551 —0.09500443 7,
is the gravitational QNM of Schwarzschild [40, 41].
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Figure 29.

Imaginary (left panel) and real (right panel) parts of the frequency for the Zi,

(¢,m,n) = (1,1,0) KN PS QNM. The dark-red point (a =0 = Q), & ~ 0.24826326 — 0.09248772 i,
is the gravitational QNM of Schwarzschild [40, 41].
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Figure 30.

Imaginary (left panel) and real (right panel) parts of the frequency for the 7,

(4,m,n) =(1,0,0) KN PS QNM. The dark-red point (a =0 = Q), & ~ 0.24826326 — 0.09248772 1,
is the gravitational QNM of Schwarzschild [40, 41].
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Figure 31. Imaginary (left panel) and real (right panel) parts of the frequency for the Zi,
(¢,m,n) = (1,—1,0) KN PS QNM. The dark-red point (a = 0 = Q), & =~ 0.24826326 — 0.09248772 1,
is the gravitational QNM of Schwarzschild [40, 41].
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