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A B S T R A C T

Advances in technology have made it possible to use loudspeakers to generate the perception
in a listener of a ‘‘virtual’’ image of a source of sound that appears to be at a position other
than that of the loudspeakers. This paper deals with the challenge of simultaneously generating
the perception of the same virtual sound image at the ears of multiple listeners. The basis of
the analysis is the so-called Optimal Source Distribution (OSD) that enables well-conditioned
crosstalk cancellation at the ears of a single listener. This consists of a hypothetically continuous
distribution of monopole acoustic strength which has a remarkable frequency independent
radiation pattern. This directivity pattern enables crosstalk cancellation at a series of defined
listener positions in the far field. However, in any practical application using current technology,
the sources will be discrete loudspeaker elements. Previous work already shows the promise
of this technique and the work described here aims to evaluate a number of methods for
determining the strength of such discrete sources while still ensuring crosstalk cancellation at
a number of listener positions.

. Introduction

Developments in digital signal processing and the associated microelectronic technology has made the active control of acoustic
ields an increasingly practical proposition, a possibility recognised at an early stage by Ffowcs-Williams [1]. Whilst much attention
as been focused on the reduction of unwanted noise by such electronic means [2,3], it has also been found possible to manipulate
coustic fields in order to generate signals at the ears of listeners that enhance the experience of listening to sound. This can be
chieved by controlling the interference between a number of sources to generate the requisite signals at the listener’s ears. The
ethod described here builds on the idea of cancelling the crosstalk from two transducers at the ears of a listener, that arguably

egan with work in the 1960’s by Bauer [4] and Atal and Schroeder [5] and that was developed thereafter by number of workers
see, for example, the papers by Damaske [6], Ando et al. [7], Sakamoto et al. [8], Hamada [9], Bauck and Cooper [10], and
irkeby et al. [11]). A comprehensive review of progress in the application of this technique can be found in the recent PhD thesis
y Hamdan [12].

A further development [13] was the introduction of the Optimal Source Distribution (OSD) for achieving binaural sound
eproduction for a single listener. This method has been shown to yield excellent subjective results [14] and has since been
mplemented in a number of products for virtual sound imaging. A remarkable property of the OSD is that the crosstalk cancellation
roduced at a single centrally placed listener is replicated at all frequencies at a number of other locations in the radiated sound
ield. This property has since been further investigated experimentally [15,16], and analytically by Yairi et al. [17]. The experiments
eported show that once a discrete approximation to the hypothetically continuous OSD is introduced, the effectiveness of the
rosstalk cancellation is achieved at many, but not all, frequencies at the non-central positions in the radiated sound field.
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The work presented here investigates a number of approaches that can be used to generate virtual sound images for multiple
isteners. Initial attempts to tackle this problem have been presented by Kim et al. [18] who emphasised the importance of the
ondition number of the matrix relating the outputs of multiple sources to the pressures at the ears of multiple listeners. Further
ork by Masiero and Qiu [19] introduced the scattering by the listener’s heads into the analysis. Other contributions include those
f Mannerheim and Nelson [20], Kurabayashi et al. [21] and Simon-Galvez et al. [22] who use image processing for tracking
istener head position in binaural reproduction, and of House et al. [23] who aim to present binaural sound to multiple listeners
n an in-car environment. More recently, promising work has been presented by Holleborn et al. [24] using linear arrays with a
oudspeaker dependent regularisation in order to deliver binaural sound to three listeners. The aim of the work presented here is
o enable the exploitation of the fundamental property of the OSD with the objective of producing exact cross-talk cancellation for
ultiple listener positions over the maximum possible frequency range. The focus of the work is on the acoustical consequences

f different optimisation strategies rather than the design of the associated inverse filters that has been dealt with previously by
irkeby et al. [11] and Masiero and Vorlander [25].

First, the background to the problem will be introduced through a brief analysis of the original OSD [13] and its three channel
xtension [26]. Then a number of approaches to the discretisation problem will be developed. These include the linearly constrained
east squares solution and the approach minimising the 𝐿2 norm of the source strength vector that were first presented in Ref. [27].

New solutions based on the minimisation of the 𝐿1 norm of the source strength vector will also be presented. In particular it is
emonstrated numerically that the OSD provides the natural solution to the 𝐿1 norm minimisation problem. The OSD thus appears
o guide the search for sparse solutions to this discretisation problem.

. The Optimal Source Distribution

Fig. 1(a) shows the geometry of the two-loudspeaker/single listener problem and Fig. 1(b) shows the equivalent block diagram,
oth figures replicating the notation used by Takeuchi and Nelson [13] and Yairi et al. [17]. The desired signals for reproduction,
he source signals and the reproduced signals are respectively defined by

𝐝T =
[

𝑑𝑅 𝑑𝐿
]

, 𝐯T =
[

𝑣𝑅 𝑣𝐿
]

, 𝐰T =
[

𝑤𝑅 𝑤𝐿
]

(1)

hilst the inverse filter matrix and transmission path matrix are defined by

𝐇 =
[

𝐻11 𝐻12
𝐻21 𝐻22

]

, 𝐂 =
[

𝐶11 𝐶12
𝐶21 𝐶22

]

, (2)

where a harmonic time dependence of ej𝜔𝑡 is assumed and all variables are in the frequency domain. Note that the vector 𝐝 of
esired signals defines the signals input to the filter matrix and these are the signals that are to be produced at the listener’s ears
hrough the process of crosstalk cancellation. Thus 𝐯 = 𝐇𝐝 and 𝐰 = 𝐂𝐇𝐝 and therefore it appears that the vector 𝐰 of reproduced
ignals can be made equal to the desired signals 𝐝 if the matrix 𝐇 is made equal to the inverse of the matrix 𝐂. However if the
atrix of filters is to be realisable, the elements of 𝐇 must each have a causal impulse response. As shown in what follows, this is

ccomplished by defining the signals to be reproduced to be delayed versions of the desired signals.
Now assume that the sources are free field point monopoles with volume accelerations respectively given by 𝑣𝑅 and 𝑣𝐿. The

ransmission path matrix 𝐂 then takes the form

𝐂 =
𝜌0
4𝜋

⎡

⎢

⎢

⎢

⎣

e−j𝑘𝑙1
𝑙1

e−j𝑘𝑙2
𝑙2

e−j𝑘𝑙2
𝑙2

e−j𝑘𝑙1
𝑙1

⎤

⎥

⎥

⎥

⎦

, (3)

The distances between the assumed point sources and the ears of the listener are as shown in Fig. 1(a) and 𝑘 = 𝜔∕𝑐0 and 𝜌0, 𝑐0
are respectively the density and sound speed. This matrix can be written as

𝐂 =
𝜌0e−j𝑘𝑙1

4𝜋𝑙1

[

1 𝑔e−j𝑘𝛥𝑙

𝑔e−j𝑘𝛥𝑙 1

]

=
𝜌0e−j𝑘𝑙1

4𝜋𝑙1
𝐂N (4)

where 𝑔 = 𝑙1∕𝑙2 and 𝛥𝑙 = 𝑙2−𝑙1. The normalised matrix 𝐂N can be further simplified by assuming that 𝑙 ≫ 𝛥𝑟 where 𝛥𝑟 is the distance
between the ears of the listener (see Fig. 1(a)), a notation that is consistent with that used previously [13,14]. This assumption
enables the approximation 𝛥𝑙 = 𝛥𝑟sin𝜃 so that the matrix 𝐂N can be written as

𝐂N =
[

1 𝑔e−j𝑘𝛥𝑟sin𝜃

𝑔e−j𝑘𝛥𝑟sin𝜃 1

]

(5)

Now note that the relationship 𝐰 = 𝐂𝐇𝐝 can be written as

𝐰 =
𝜌0e−j𝑘𝑙1

4𝜋𝑙1
𝐂N𝐇𝐝 (6)

Thus if the target values of the reproduced signals are defined as

𝐰̂ =
𝜌0e−j𝑘𝑙1

𝐝 (7)
2

4𝜋𝑙1
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Fig. 1. (a) A two source single listener geometry and (b) the equivalent block diagram.

Fig. 2. The Optimal Source Distribution (OSD) consisting of a continuous distribution of monopole source strength whose frequency varies with angular span
to ensure that the path length difference from any source element to the two ears of a listener is always one quarter of an acoustic wavelength.

where the term e−j𝑘𝑙1 is equivalent to a pure delay of 𝑙1∕𝑐0 in the time domain and ensures that the target signals for reproduction
are delayed versions of the desired signals input to the matrix 𝐇. Thus to ensure that the reproduced signals 𝐰 = 𝐰̂, then the matrix
of inverse filters is simply given by the inverse of the matrix 𝐂N where 𝐇 = 𝐂−1

N . The inverse filter matrix is thus given by

𝐇 = 1
1 − 𝑔2e−2j𝑘𝑟sin𝜃

[

1 −𝑔e−j𝑘𝛥𝑟sin𝜃

−𝑔e−j𝑘𝛥𝑟sin𝜃 1

]

(8)

Thus expressing the signals to be reproduced in terms of the sound field produced at the listener’s ears by one of the sources [13]
ensures the causality of the inverse filter matrix 𝐇.

The conditioning of the matrix 𝐂 is of particular importance in what follows. The conditioning of the matrix can be defined
by its condition number, given by the ratio of the maximum to minimum singular values of the matrix. A high condition number
implies poor conditioning and a great sensitivity to errors in the solution involving the inverse matrix (see for example [28] for a full
discussion). The singular value decomposition of the matrix 𝐂 (and thus of the matrix 𝐇) has also been investigated previously [13]
and it has been shown that the two singular values of the matrix are equal when

𝑘𝛥𝑟sin𝜃 = 𝑛𝜋
2

(9)

where 𝑛 is an odd integer (1, 3, 5...). Equality of the two singular values results in a condition number of unity. This in turn implies
that the inversion problem is intrinsically well-conditioned when the above criterion is met so that reproduction can be accomplished
with minimal error. This condition is equivalent to the difference in path lengths 𝛥𝑙 being equal to odd integer multiples of one
quarter of an acoustic wavelength 𝜆. The angle 2𝜃 is equal to the angular span of the sources (see Fig. 1), so that this condition implies
that the source span should vary continuously with frequency to preserve the 𝜆∕4 path length difference. The OSD is therefore a
continuous distribution of pairs of sources, each radiating a different frequency, with sources radiating high frequencies placed close
together and those radiating lower frequencies placed further apart. This is illustrated in Fig. 2. Provided the sources are distributed
to preserve the path length difference condition 𝛥𝑙 = 𝑛𝜆∕4 where 𝑛 is an odd integer, then the inverse filter matrix reduces to

𝐇 = 1
[

1 −j𝑔
]

(10)
3

1 + 𝑔2 −j𝑔 1
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Fig. 3. Far field sound pressure level as a function of the angle 𝜙 produced by the two channel Optimal Source Distribution.

The term −j𝑔, involves simple inversion, 90-degree phase shift, and a small amplitude adjustment of the input signals. The inverse
filter matrix thus takes a particularly simple form.

3. Radiation properties of the Optimal Source Distribution

This idealised source distribution has some attractive radiation properties [13,17]. This can be demonstrated by computing the
far field pressure 𝑝(𝑟, 𝜙) radiated by a pair of sources with inputs determined by the above optimal inverse filter matrix. If it is also
assumed that the desired signals for reproduction are given by 𝐝T = [1 0], the condition for crosstalk cancellation, then it follows
that the source signals are given by

𝐯 = 𝐇𝐝 = 1
1 + 𝑔2

[

1 −j𝑔
−j𝑔 1

] [

1
0

]

= 1
1 + 𝑔2

[

1
−j𝑔

]

(11)

The pressure field is then given by the sum of the two source contributions such that

𝑝(𝑟, 𝜙) =
𝜌0

4𝜋(1 + 𝑔2)

[

e−j𝑘𝑟1
𝑟1

−𝑗𝑔 e−j𝑘𝑟2
𝑟2

]

(12)

Writing ℎ = 𝑟1∕𝑟2, shows that this can further be reduced to

𝑝(𝑟, 𝜙) =
𝜌0e−j𝑘𝑟1

4𝜋𝑟1(1 + 𝑔2)
[

1 −j𝑔ℎe−j𝑘(𝑟2−𝑟1)
]

(13)

In the far field, where 𝑟1, 𝑟2 ≫ 𝑎, the distance between the sources, using the geometry of Fig. 1(a), shows that

𝑟1 = 𝑟 − 𝑎
2

sin𝜙, 𝑟2 = 𝑟 + 𝑎
2

sin𝜙 (14)

Taking the squared modulus of the term in square brackets above shows that
|

|

|

1 − j𝑔ℎe−j𝑘𝑎𝑠𝑖𝑛𝜙|
|

|

2
= 1 + (𝑔ℎ)2 − 2𝑔ℎ𝑠𝑖𝑛(𝑘𝑎sin𝜙) (15)

and thus the modulus squared of the pressure field is given by

|

|

|

𝑝(𝑟, 𝜙)||
|

2
=
(

𝜌0
4𝜋𝑟1

)2 1 + (𝑔ℎ)2 − 2𝑔ℎsin(𝑘𝑎sin𝜙)
1 + 𝑔2

(16)

As 𝑟 increases, making the approximation 𝑟 ≈ 𝑟1 ≈ 𝑟2 leads to

|

|

|

𝑝(𝑟, 𝜙)||
|

2
=
(

𝜌0
4𝜋𝑟1

)2
(1 − sin(𝑘𝑎sin𝜙)) (17)

Maxima and minima are produced in the sound field when 𝑘𝑎sin𝜙 = 𝑛𝜋∕2 where 𝑛 is odd. The term (1 − sin(𝑘𝑎sin𝜙)) zero at
𝑛 = 1, 5, 9... etc. and is equal to two when 𝑛 = 3, 7, 11...etc. The squared modulus of the sound pressure as a function of the angle
𝜙 is illustrated in Fig. 3. Most importantly, this directivity pattern of the far field pressure is the same at all frequencies, provided
the two sources are arranged to always ensure that the path length difference to the listener’s ears at a given frequency satisfies the
condition of an integer number of quarter wavelengths. It then follows that, as shown above, the value of 𝑘𝛥𝑟sin𝜃 is an odd integer
multiple of 𝜋∕2, and since from the geometry of Fig. 1, sin𝜃 = 𝑎∕2𝑙 then 𝑘𝑎 = 𝑛𝜋𝑙∕2𝛥𝑟. Thus 𝑘𝑎 and therefore 𝜔𝑎∕𝑐0 takes a constant
value (assuming 𝑛 = 1). The radiation pattern is thus determined solely by the geometrical arrangement of the two on-axis points
chosen initially for cross-talk cancellation. The directivity pattern illustrated in Fig. 3 demonstrates that an intrinsic property of
the OSD is the production of cross-talk cancellation at multiple angular positions in the sound field. This will be further illustrated
below using plots of the sound pressure distribution along an arc in the sound field (see Fig. 6), showing that there are multiple
potential positions of a listener’s head at which crosstalk cancellation can be produced.
4
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Fig. 4. Geometry of the three channel OSD with a single listener.

4. The three-channel Optimal Source Distribution

It has also been demonstrated [26] that there are some distinct advantages to including an additional centrally located source
between the two sources of the OSD. Such an arrangement of sources is illustrated in Fig. 4, where the sources are assumed to be
located on a circular arc centred on the head of the listener. This geometry proves helpful to the analysis that follows. In this case
the vector of source strengths is defined as

𝐯T =
[

𝑣𝑅 𝑣𝐶 𝑣𝐿
]

, (18)

and the inverse filter matrix and transmission path matrix are respectively defined by

𝐇 =
⎡

⎢

⎢

⎣

𝐻11 𝐻12
𝐻21 𝐻22
𝐻31 𝐻32

⎤

⎥

⎥

⎦

, 𝐂 =
[

𝐶11 𝐶12 𝐶13
𝐶21 𝐶22 𝐶23

]

, (19)

where in this case the vector of three source strengths is given by 𝐯 = 𝐇𝐝 where the vector of two desired signals is again given by
𝐝 and the vector of two reproduced signals is given by 𝐰 = 𝐂𝐇𝐝. This is an underdetermined system of equations but a solution can
be found that minimises the 𝐿2-norm of the vector 𝐯 whilst generating delayed versions of the desired signals at the listener’s ears.
Again assuming the sources are point monopoles radiating into a free field, with volume accelerations respectively given by 𝑣𝑅, 𝑣𝐶
and 𝑣𝐿, the transmission path matrix 𝐂 can be written as

𝐂 =
𝜌0
4𝜋

⎡

⎢

⎢

⎢

⎣

e−j𝑘𝑙1
𝑙1

𝑠 e−j𝑘𝑙3
𝑙3

e−j𝑘𝑙2
𝑙2

e−j𝑘𝑙2
𝑙2

𝑠 e−j𝑘𝑙3
𝑙3

e−j𝑘𝑙1
𝑙1

⎤

⎥

⎥

⎥

⎦

, (20)

where the distances 𝑙1, 𝑙2 and 𝑙3 are defined in Fig. 4. Note that an additional factor 𝑠 has been used to multiply the transfer
function between the centre source and the listener’s ears. This term enables adjustment of the strength of the centre source by the
additional factor 𝑠. As demonstrated below, the condition number of the matrix 𝐂 can in turn be modified through the choice of 𝑠.
The conditioning of the matrix can again be deduced by examination of its singular values. The singular value decomposition can
be undertaken analytically by first writing the matrix in the form

𝐂 =
𝜌0𝑒−𝑗𝑘𝑙1
4𝜋𝑙1

[

1 𝑠𝑔3e−j𝑘(𝑙3−𝑙1) 𝑔2e−j𝑘(𝑙2−𝑙1)

𝑔2e−j𝑘(𝑙2−𝑙1) 𝑠𝑔3e−j𝑘(𝑙3−𝑙1) 1

]

, (21)

where 𝑔2 = 𝑙1∕𝑙2 and 𝑔3 = 𝑙1∕𝑙3. When the listener is in the far field of the sources, 𝑔2 ≈ 𝑔3 = 1. Furthermore, it follows from the
geometry of shown in Fig. 4 that when 𝛥𝑟, the width of the listener’s head, is much smaller than the distance 𝑙 to the listener from
the centre source, we may make the approximation 𝑙2 − 𝑙1 ≈ 𝛥𝑟sin𝜃. In addition, to the same order of approximation, 𝑙3 ≈ 𝑙 and thus
𝑙3 − 𝑙1 ≈ (𝛥𝑟sin𝜃)∕2. Now defining the path length difference 𝛥𝑙 = 𝑙2 − 𝑙1 enables the transmission path matrix to be written as

𝐂 =
𝜌0e−j𝑘𝑙1

4𝜋𝑙1

[

1 𝑠e−j𝑘𝛥𝑙∕2 e−j𝑘𝛥𝑙

e−j𝑘𝛥𝑙 𝑠e−j𝑘𝛥𝑙∕2 1

]

, (22)

The singular values of this matrix can be calculated by finding the roots of the determinant of the matrix 𝜆𝐈−𝐂𝐂H where 𝜆 is an
eigenvalue and 𝐈 is the identity matrix (see, for example, Hamdan and Fazi [29]). After some lengthy, but straightforward, algebra
it follows that the two singular values (the square roots of the eigenvalues) are given by

𝜎 =
√

[2 + 2𝑠2 + 2cos𝑘𝛥𝑙], 𝜎 =
√

[2 − 2cos𝑘𝛥𝑙] (23)
5

+ −
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Fig. 5. The dependence of angular position 𝜃 of the sources as a function of frequency for (a) the two channel and (b) the three channel OSD for 𝑛 = ±1 (solid
line) 𝑛 = ±3 (dashed line) and 𝑛 = ±5 (dotted line).

First note that when 𝑠 = 0, these results reduce to those derived previously [13] for the two channel case when the far field
approximation is made. Secondly, as also recognised previously [14], and as demonstrated by Yairi et al. [17], choosing the
parameter 𝑠 =

√

2 results in a minimum of the condition number of the matrix 𝐂𝐂H i.e. when the two singular values become
equal. Making the choice 𝑠 =

√

2 and equating the singular values soon shows that this condition is met at frequencies where the
path length difference 𝛥𝑙 = 𝑛𝜆∕2 where 𝑛 is an odd integer. This is in contrast to the criterion of 𝛥𝑙 = 𝑛𝜆∕4 for optimal conditioning
of the two-channel OSD. The range of values of the optimal angular position of the sources in for the two and three channel OSD
are shown as a function of frequency and the value of 𝑛 in Fig. 5.

Also note that a normalised matrix 𝐂N can be defined analogously to Eq. (4) and the desired signals for reproduction can be
defined in accordance with Eq. (5). The solution for the inverse filters that minimises the 𝐿2 norm of the source strength vector is
then given by 𝐇 = 𝐂H

N[𝐂N𝐂H
N]

−1. Using this solution when 𝛥𝑙 = 𝜆∕2, and assuming the desired signals are again given by 𝐝T = [1 0],
then shows that the inverse filter matrix and optimal source strength vector are respectively given by [17]

𝐇 = 1
4

⎡

⎢

⎢

⎣

1 −1
√

2j
√

2j
−1 1

⎤

⎥

⎥

⎦

, 𝐯𝑜𝑝𝑡 =
1
4

⎡

⎢

⎢

⎣

1
√

2j
−1

⎤

⎥

⎥

⎦

(24)

Fig. 6(a) and (b) show the radiation patterns of the two- and three-channel OSD systems with the optimal choice of the parameter
𝑠 =

√

2 used in the three channel system. Note that in contrast to the two-channel system, the three channel OSD produces an
interference pattern that has radial dependence, although clear zones of cross talk cancellation are produced on the circular arc
at the assumed listener radius of 𝑙 =1.5 m (shown by the black line in Fig. 6(a) and (b)). Fig. 6(c) and (d) show the resulting
sound pressures as a function of frequency at locations along this same listener arc. Clearly, in both cases, cross-talk cancellation is
produced very effectively over a wide frequency range, although the spatial zones over which cross-talk is cancelled are markedly
larger in the case of the three-channel OSD. However, the lowest frequency at which crosstalk cancellation can be delivered with
good conditioning of the inversion problem is higher (1244 Hz) for the three channel OSD than for the two-channel OSD (622 Hz).
There are clearly subjective trade-offs to be made in designing such systems and these await a full evaluation.

5. Discretisation of the Optimal Source Distribution

In any real application, any approximation to the OSD must be realised by a discrete number of loudspeakers. The work presented
here examines a number of approaches to determining the signals input to a discrete number of sources in order to achieve the
objective of producing cross-talk cancellation at multiple listener positions. Now consider the case illustrated in Fig. 7. The strength
of a distributed array of acoustic sources is defined by a vector 𝐯 of order 𝑀 , and the pressure is defined at a number of points in
the sound field by the vector 𝐰 of order 𝐿. The curved geometry chosen here replicates that used in Fig. 4. In general 𝐰 = 𝐂𝐯 where
𝐂 is an 𝐿 ×𝑀 matrix. However, it will be helpful to partition this matrix 𝐂 into two other matrices 𝐀 and 𝐁 and also partition the
vector 𝐰 of reproduced signals so that

𝐰 =
[

𝐰𝐴
𝐰𝐵

]

=
[

𝐀
𝐁

]

𝐯 = 𝐂𝐯 (25)

The vector 𝐰𝐵 is of order 𝑃 and defines the reproduced signals at a number of pairs of points in the sound field at which cross-talk
cancellation is sought. Thus 𝐰B = 𝐁𝐯 where 𝐁 defines the 𝑃 ×𝑀 transmission path matrix relating the strength of the 𝑀 sources to
these reproduced signals. The vector 𝐰𝐴 is of order 𝑁 and defines the reproduced signals sampled at the remaining points in the
sound field. Thus 𝑁 = 𝐿 − 𝑃 and the reproduced field at these remaining points can be written as 𝐰𝐴 = 𝐀𝐯 where 𝐀 is the 𝑁 ×𝑀
transmission path matrix between the sources and these points. Now note that the desired pressure at the 𝑃 points in the sound field
6
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Fig. 6. The radiation pattern of (a) the two channel OSD for a pair of sources at 2058 Hz, and (b) the three channel OSD for the same pair of sources at
3206 Hz, where the black line defines the listener arc. The distribution of sound pressure level on the listener arc as a function of frequency and the listener
angle is shown for (c) the two channel OSD and (d) the three channel OSD.

Fig. 7. The arrangement of 𝑀 point sources (grey symbols) and 𝐿 points in the sound field (white symbols) at which the complex sound pressure is sampled.
Cross-talk cancellation is desired at 𝑃 points (black symbols) whilst a least squares fit to the OSD sound field is desired at 𝐿 − 𝑃 = 𝑁 points (white symbols).
The black symbols denote the ear positions of five listeners chosen to coincide with maxima and minima in the OSD sound field.

at which cross-talk cancellation is required can be written as the vector 𝐰̂𝐵 . This vector can in turn be written as 𝐰̂𝐵 = 𝐃𝐝 where
the matrix 𝐃 defines the reproduced signals required in terms of the desired signals. As a simple example, suppose that cross-talk
7
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Fig. 8. The condition number of the matrix 𝐂 when (a) 14 sources are used in the two-channel OSD and (b) 15 sources are used in the three-channel OSD,
where the solid thick black line shows the condition number associated with each pair of sources over the best conditioned frequency range. Also shown are
the condition number of the matrix 𝐁 in each case when there is a single listener (dashed line), three listeners spaced apart (dotted line) three listeners close
together (dash–dotted line), and five listeners (solid thin line).

cancellation is desired at two pairs of points in the sound field such that

⎡

⎢

⎢

⎢

⎢

⎣

𝑤̂𝐵1
𝑤̂𝐵2
𝑤̂𝐵3
𝑤̂𝐵4

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

1 0
0 1
1 0
0 1

⎤

⎥

⎥

⎥

⎥

⎦

[

𝑑𝑅
𝑑𝐿

]

(26)

The matrix D has elements of either zero or unity, is of order 𝑃 ×2, and may be extended by adding further pairs of rows if cross
talk cancellation is required at further pairs of points. Similar to the analysis presented above, we assume that the inputs to the
sources are determined by operating on the two desired signals defined by the vector 𝐝 via an 𝑀 ×2 matrix 𝐇 of inverse filters. The
causality of the matrix 𝐇 can again be ensured by including a term such as e−j𝜔𝛥 on the right side of Eq. (25), where 𝛥 represents
the maximum delay necessary to ensure causality.

Some numerical simulations have been undertaken using MATLAB in order to examine a number of approaches to the
determination of the optimal strength of the discrete sources used to represent the OSD. The arrangement of sources chosen is
illustrated in Fig. 7 where the sources are placed on an arc of radius 1.5 m surrounding a central listener. Fig. 5 suggests that
increasing the density of sources as frequency increases will also increase the possibility of ensuring a well-conditioned problem.
The positions of the sources on the arc chosen to emulate the optimal source distribution and are thus spaced logarithmically. This
is accomplished by first defining the lowest frequency 𝑓𝑚𝑖𝑛 at which a path length difference of 𝜆∕4 (or 𝜆∕2 in the three channel
case) can be achieved at the listeners ears. For example, if the outermost sources are spaced at angle of 𝜃𝑚𝑎𝑥 = ±45 deg then the
calculation of the lowest frequency at which the matrix 𝐂 is well conditioned is given by 𝛥𝑟𝑠𝑖𝑛𝜃𝑚𝑎𝑥 = 𝜆∕4.

It is helpful to include the effect of the head related transfer function (HRTF) of the listener by making the approximation
𝛥𝑟 = 𝛥𝑟0[1 + (2𝜃∕𝜋)] where 𝛥𝑟0 is the physical distance between the listeners ears. This was first identified in Ref. [13] as providing
a good approximation to the HRTF of a typical dummy head. Choosing 𝛥𝑟0 = 0.13 m and the speed of sound 𝑐0 = 343 m/s then
results in a frequency 𝑓𝑚𝑖𝑛 = 622 Hz. The equivalent calculation for the three channel OSD yields a frequency 𝑓𝑚𝑖𝑛 = 1244 Hz

The highest frequency 𝑓𝑚𝑎𝑥 is then chosen at which a minimum condition number is required. Assuming this to be 20 kHz, then
the loudspeaker span giving a 𝜆∕4 path length difference at the listener’s ears will be given by 𝜃𝑚𝑖𝑛 = ±1.89 deg. The span for a
𝜆∕2 path length difference is similarly given by 𝜃𝑚𝑖𝑛 = ±3.78 deg. The angular locations 𝜃𝑖 of the 𝑚 = 𝑀∕2 pairs of sources (or
𝑚 = (𝑀 − 1)∕2 in the three channel case) are chosen to be logarithmically spaced between 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥. This results in minima
in the condition numbers that are also spaced approximately logarithmically as a function of frequency. If there are 𝑚 source pairs
and the 𝑖th source pair is spaced at an angle ±𝜃𝑖 then one can write 𝜃𝑖 = 𝑢𝑖𝜃𝑚𝑖𝑛 where 𝑖 = 0...𝑚 and the factor 𝑢 can be found from
𝑢 = log−1[(1∕(𝑚 − 1))log(𝜃𝑚𝑎𝑥∕𝜃𝑚𝑖𝑛)].

Fig. 8 (a) shows the condition number of the matrix 𝐂 relating the strengths of each pair of sources to the sound pressures at the
ears of a centrally located listener in a discrete approximation of the two channel OSD consisting of fourteen sources. Note that this
condition number plot assumes that each source pair acts only over a specific range of frequencies. The equivalent plot is shown
for the three channel OSD in Fig. 8(b). These figures show that choosing each pair of sources to act only over a given frequency
range results in a well-conditioned inversion problem. This is in contrast to the case where all 14 or 15 sources are used across the
entire frequency range to control the field the ears of multiple listeners, the dotted, dash–dotted and solid lines in Fig. 8(a) and (b)
showing how poorly conditioned this inversion problem becomes, especially at low frequencies.
8
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6. Minimising the deviation from the OSD sound field

An obvious approach to the discretisation problem is to simply choose a large number of 𝑀 of sources and attempt a ‘‘best fit’’
to the OSD sound field at a number 𝑁 positions where 𝑁 ≥ 𝑀 . Thus for example one might seek to solve the standard least squares
problem

𝑚𝑖𝑛
[

‖

‖

‖

𝐀𝐯 − 𝐰̂𝐴
‖

‖

‖

2

2
+ 𝛽‖‖

‖

𝐯‖‖
‖

2

2

]

(27)

which has the well-known solution given by

𝐯𝑜𝑝𝑡 = [𝐀H𝐀 + 𝛽𝐈]−1𝐀H𝐰̂𝐴 (28)

where ‖

‖

‖

‖

‖

‖2
indicates the 𝐿2 norm of the vector, H denotes the Hermitian transpose and 𝛽 is a regularisation parameter.

First note that the problem to be solved is fundamentally ill-conditioned at low frequencies when the acoustic wavelength starts
to become significant relative to the distances separating the sources and relevant positions in the sound field. Fig. 8 shows, for
both two and three channel OSD systems, that the condition number increases rapidly with reducing frequency below the minimum
frequency 𝑓𝑚𝑖𝑛.

The results of computing the solution for the least squares fit to the two channel OSD radiated field given above are shown in
Fig. 9. This shows the results for the case of 𝑀 = 62, 30 and 14 sources and in each case a number 𝑁 = 95 points on the arc of
radius 1.5 m spanning angles 𝜙 = ±90 deg. For a large number of sources, the OSD sound field is well replicated at frequencies
above 𝑓𝑚𝑖𝑛 and the optimal distribution of source strength as a function of frequency is also well replicated. However, when a more
practical number of sources such as 14 is used, the replication of the desired field deteriorates markedly and the source strength
distribution deviates from that associated with the OSD. The results presented in Fig. 9 have been computed using a regularisation
parameter of 𝛽 = 0.01. This has the effect of suppressing the excessive source strengths at low frequency, but has little effect on the
solution at frequencies above 𝑓𝑚𝑖𝑛. It is also interesting to note the distributions of source strength that are illustrated in Fig. 9(b),
(d) and (f). These plots show that the solutions used tend naturally to select the sources at the centre of the distribution to deliver
the sound field at high frequencies, whilst at low frequencies the whole range of available sources appears to be recruited to provide
the solution. Whilst the results show that it is indeed possible to replicate the OSD sound field given a sufficient number of sources,
the challenge remains of finding solutions using a smaller number of sources.

7. Minimising the deviation from the OSD sound field with the constraint of crosstalk cancellation

A further approach is to attempt to achieve a ‘‘best fit’’ of the radiated sound field to the known sound field of the OSD whilst
also attempting to achieve cross-talk cancellation at multiple pairs of points. Such a problem can be described as a least squares
minimisation with a linear equality constraint. The constraint at 𝑃 points in the sound field can be expressed as 𝐰̂𝐵 = 𝐃𝐝. Thus the
desired sound field is that produced by the OSD and one seeks to minimise the sum of squared errors at the remaining 𝑁 = 𝐿 − 𝑃
points of interest, where again it is assumed that 𝑁 ≥ 𝑀 . One therefore seeks the solution of

𝑚𝑖𝑛‖‖
‖

𝐀𝐯 − 𝐰̂𝐴
‖

‖

‖

2

2
subject to 𝐰̂𝐵 = 𝐁𝐯 (29)

The solution that is used here is based on that given by Golub and Van Loan [28] but modified to enable application to the complex
valued variables. The solution can be written as

𝐯𝑜𝑝𝑡 = 𝐐2𝐀
†
2𝐰̂𝐴 + (𝐐1𝐑H−1 −𝐐2𝐀

†
2𝐀1𝐑H−1)𝐰̂𝐵 (30)

As shown in the Appendix, the method relies on a 𝑄𝑅 factorisation of the matrix 𝐁H and the terms in the solution above are defined
by the relationships

𝐁H = 𝐐
[

𝐑
𝟎

]

𝐀𝐐 =
[

𝐀1 𝐀2
]

𝐐 =
[

𝐐1 𝐐2
]

(31)

where the dimensions of the matrices involved are defined in the Appendix and 𝐀†
2 = [𝐀H

2 𝐀2]−1𝐀H
2 is the pseudoinverse of the

matrix 𝐀2. It is worth noting that in previous work [27] two further methods of solution were investigated. The first of these made
use of Lagrange multipliers to find the solution to the constrained optimisation problem that was previously proposed by Olivieri
et al. [30]. Once a minor error in this solution is corrected (see [27] for details) it was found in numerical simulations that this
solution gave identical results to that given above. Numerical experiments were also undertaken using the approximate solution
given by Golub and Van Loan [28] referred to as the ‘‘Method of Weighting’’ but was found, as anticipated [28] to suffer from
numerical difficulties under some conditions. The results of applying this solution to the current problem are shown in Fig. 10.

This shows the sound pressure as a function of frequency and the listener angle when the constraint ensures crosstalk cancellation
at the ears of three spaced apart listeners having ear positions corresponding to the central and two outermost pairs of sensors in
Fig. 7. Again the problem is poorly conditioned at low frequencies but the application of regularisation to the inversion of the matrix
𝐀†
2 succeeds to some extent in controlling excessive source outputs at low frequency. It is likely that the regularisation of the matrix

𝐑H-1 is also necessary to further suppress excessive source outputs. It is also found that when the number of sources used is made
larger, as one might expect, the characteristics of the OSD sound field become more closely reproduced, although the results are
not shown here.
9
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Fig. 9. The results of determining the strengths of a number of 𝑀 sources to minimise the deviation from the two channel OSD sound field a number 𝑁 =
95 on the listener arc. Results are shown for the sound pressure level as a function of frequency and listener angle for (a) 𝑀 = 62 (c) 𝑀 = 30 (d) 𝑀 = 14
sources. The corresponding distributions of relative source strength as a function of frequency are shown on a decibel scale in (b), (d) and (f) respectively.

8. Minimising the 𝑳𝟐 norm of the source strength vector

A further approach is simply to choose the number of sources to be greater than that of the number of points at which crosstalk
cancellation is required i.e. 𝑀 ≥ 𝑃 , a method also used recently by Holleborn et al. [24]. One may then seek solutions that
minimise the source strengths required to satisfy the constraint of achieving the desired signals at the ears of multiple listeners.
10
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Fig. 10. The results of minimising the deviation from the two channel OSD sound field whilst ensuring crosstalk cancellation at three spaced apart listeners
showing sound pressure level as a function of listener angle without (a) and with (c) regularisation and relative source strength on a decibel scale without (b)
and with (d) regularisation, with 𝛽 = 10. Results are for 𝑀 = 14 sources, 𝑁 = 95 positions in the sound field, and 𝑃 = 6 points at which crosstalk cancellation
is ensured.

The optimisation problem can be stated as

𝑚𝑖𝑛‖‖
‖

𝐯‖‖
‖

2

2
subject to 𝐰̂𝐵 = 𝐁𝐯 (32)

This problem has the well-known solution given by [28]

𝐯𝑜𝑝𝑡 = 𝐁H[𝐁𝐁H]−1𝐃𝐝 (33)

and this solution can also be regularised by using the parameter 𝛽 such that

𝐯𝑜𝑝𝑡 = 𝐁H[𝐁𝐁H + 𝛽𝐈]−1𝐃𝐝 (34)

which, as noted by Masiero and Vorlander [25], can be shown to be equivalent to Eq. (27). This can be demonstrated by using the
identities described by Henderson and Searle [31] in their discussion of the matrix inversion lemma (Sherman–Morrison–Woodbury
formula).

Fig. 8(a) and (b) also show the condition numbers of the matrix 𝐁 that relates the source strengths to the sound pressures at the
positions at which crosstalk cancellation is sought. This is shown for a single listener and for three and five listeners arranged with
ears at the locations illustrated in Fig. 7. These locations were chosen to coincide with those at which the OSD system naturally
provides crosstalk cancellation at multiple sound field positions. Again it can be seen that the matrix is poorly conditioned at
low frequencies. However, the least poorly conditioned problem is that for which three listeners are spaced apart. Some results of
applying the minimum 𝐿2 norm solution for this case are shown in Fig. 11. This shows the degree of cross-talk cancellation at each
of the listener positions as a function of frequency for a range of values of the regularisation parameter 𝛽.

Fig. 11 shows again that cross-talk cancellation can be achieved at the ears of all three listeners at all frequencies above a lower
frequency limit. Below this frequency the problem becomes very poorly conditioned and the source strengths become excessive.
Whilst the regularisation can indeed assist in suppressing the low frequency source strengths it does not enable crosstalk cancellation.
11
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Fig. 11. The effect of regularisation on cross-talk cancellation performance for (a) 𝛽 = 0, (b) 𝛽 = 0.0001, (c) 𝛽 = 0.001, (d) 𝛽 = 0.01. Results are for 𝑀 = 14
sources and 𝑁 = 6 (3 spaced apart pairs) of points in the sound field at which crosstalk cancellation is ensured.

Another characteristic of this solution is that all sources are recruited in providing a solution to the problem. An example is given
in Fig. 12 of the distribution of source strength as a function of frequency. Fig. 13 shows an example of the radiated field and
associated source distribution for the three channel OSD at a frequency of 1995 Hz, the frequency of the second minimum of the
condition number curve shown in Fig. 7(b).

9. Minimising the 𝑳𝟏 norm of the source strength vector

It is well known that in solving optimisation problems of the type considered here, that the minimisation of the 𝐿1 norm of the
appropriate vector will help to find so-called sparse solutions to the problem at hand. That is, the number of sources required to
deliver the solutions will be minimised. Since the minimisation of the 𝐿2 norm described above results in a large number of sources
required at a given frequency, it seems logical to attempt to find and evaluate minimum 𝐿1 norm solutions. The problem can thus
be stated as

𝑚𝑖𝑛‖‖
‖

𝐯‖‖
‖1

subject to 𝐰̂𝐵 = 𝐁𝐯 (35)

This is a convex optimisation problem [32] and solutions can be computed numerically by using the CVX software package [33]. The
papers by Gerstoft et al. [34], Gauthier et al. [35] and Franck et al. [36] also provide some examples of using 𝐿1 norm minimisation
to find sparse solutions to acoustical problems.

An example of the solution found by minimising the 𝐿1 norm of the source strength vector are given in the case of a single
listener in Fig. 14(a) and (b). The hoped-for sparsity in the solution is indeed generated. However, there is clearly asymmetry in
the solution for the source strengths, most likely caused by the natural asymmetry resulting from the requirement of the desired
signals at the listeners’ ears to be unity and zero respectively. It is possible to recast the optimisation problem to include a symmetric
constraint on the source strengths. This can be written as

𝑚𝑖𝑛‖𝐯‖ subject to 𝐰̂ = 𝐁𝐯 and 𝑣 = −𝑣 (36)
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Fig. 12. The distribution of relative source strength on a decibel scale as a function of frequency for the three channel OSD system consisting of fifteen sources
when ensuring crosstalk cancellation at the ears of three spaced apart listeners.

Fig. 13. An example of the radiated field and the relative source strength distribution on a decibel scale at a frequency of 1995 Hz when minimising the 𝐿2
norm of the source strength vector of fifteen sources used to emulate the three channel OSD.

where the index 𝑚 is used to denote the source, with positive and negative values of 𝑚 respectively denoting sources to the right
and left of the vertical axis in Fig. 7. Note also that the choice 𝑣𝑚 = −𝑣−𝑚 is consistent with the opposite phase of the two outer
sources of the three channel OSD [17].

The results of solving this problem are shown in Fig. 14(c) and (d) which demonstrates that the solution is both sparse and
symmetric. Furthermore, the results in Fig. 15 show the solution to this problem for the entire range of frequencies of interest.
Evidently the minimisation of the 𝐿1 norm seems almost always to select the pair of sources most closely associated with the OSD
at a given frequency. However, at some frequencies, the minimisation appears to result in the selection of those pairs of sources
corresponding to values of the odd integer 𝑛 shown in Fig. 5.

Finally, some results of using the 𝐿1 norm minimisation solution to determine the sound field generated by the three-channel
OSD with three spaced apart listeners are shown as a function of frequency in Fig. 16. This shows that the performance of crosstalk
cancellation is comparable with that of the 𝐿2 norm solution, but that the solution is much more selective in the choice of source
required. Thus comparison with Fig. 12 shows that the minimum 𝐿1 norm solution gives a greater concentration of source strength in
a smaller number of sources, especially at higher frequencies. In this case the symmetrically constrained and unconstrained solutions
show very little difference and only the symmetrically unconstrained solution is shown here.

10. Discussion

It has been demonstrated that the Optimal Source Distribution (OSD), can deliver crosstalk cancellation at the ears of multiple
listeners above a lower limiting frequency. Using this observation as a starting point, solutions have presented for the optimal vector
of source strengths when the OSD has discrete source elements. It has been shown that the discrete approximation to the OSD can
13
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Fig. 14. The results of minimising the 𝐿1 norm of the source strength vector when using fifteen sources to produce crosstalk cancellation at a single centrally
placed listener at a frequency of 1995 Hz showing the sound pressure field (a) without and (c) with the symmetry constraint and the source strength distribution
(c) without and (d) with the symmetry constraint.

Fig. 15. The result of minimising the 𝐿1 norm of the symmetrically constrained vector of fifteen source strengths when ensuring crosstalk cancellation at the
ears of a single centrally placed listener. The relative source strength distribution is shown on a decibel scale.

replicate the OSD sound field provided a sufficiently large number of sources is used. It has also been shown that linearly constrained
least squares solutions can ensure crosstalk cancellation at a prescribed number of positions.

However, when the number of sources available is insufficient to provide replication of the OSD sound field over all frequencies,
minimising both 𝐿1 and 𝐿2 norms of the source strength vector subject to the constraint of ensuring crosstalk cancellation appear to
provide viable solutions. In particular for a single listener at a given frequency, the spacing of the elements of the OSD is shown to
14
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Fig. 16. An example of the radiated field and the relative source strength distribution on a decibel scale when minimising the 𝐿1 norm of the source strength
vector of fifteen sources with the constraint of crosstalk cancellation at three spaced apart listeners.

provide a solution equivalent to minimising the 𝐿1 norm of the source strength vector with the constraint of crosstalk cancellation.
Minimisation of the 𝐿1 norm also seems to provide sparse solutions that make use of the properties of the OSD through selecting the
sources that provide well-conditioned relationships to the listener positions, although further investigations of this are necessary. To
summarise, the comparison of the various methods used, it appears from the results generated to date that minimisation of either
𝐿2 or 𝐿1 norms of the source strength vector, or some combination of both, shows the most promise for engineering application.

A significant number of questions remain unanswered. In particular, the extent to which any of the strategies examined will
yield subjectively acceptable solutions remains unclear. The simple use of each pair of sources comprising the OSD over their best
conditioned frequency range in a modest number (typically less than a dozen) alone can produce virtual sound imaging [16,17].
Subjective experiments comparing this approach with the strategies outlined here are required. Further analyses that include factors
such as loudspeaker directivity and scattering by the heads of listeners would also be helpful, although the informal listening
experiments so far undertaken [16,17] do not indicate that there are any serious problems introduced by these factors. Whilst
the emphasis of the work described here has been on the control of the physical properties of the sound field through crosstalk
cancellation, which has hitherto yielded good subjective results, it may be that other physical properties may be relevant [37,38].

The design of inverse filters necessary to deliver the appropriate sound field is also a challenge that remains, especially if 𝐿1 norm
solutions are to be exploited. Recent work on inverse filter design using more sophisticated cost functions may also be relevant [39].
Related to that is the time domain response of the systems that might be implemented and their subjective implications. It has been
found from previous studies that crosstalk cancellation systems can be associated with highly recursive (and subjectively disruptive)
‘‘ringing’’ in the delivery of acoustic fields in the time domain [40]. Finally, the use of mixed 𝐿2 and 𝐿1 norm cost functions such
as those used in the LASSO [35,41,42] would also be worthy of further investigation

11. Conclusions

The Optimal Source Distribution for single listener virtual sound imaging provides a useful basis for the delivery of multiple
listener virtual sound imaging, although the number of listeners for whom this is possible will depend on the number of sources
available. For a practical number of sources (such as fifteen for example), it seems feasible to deliver crosstalk cancellation for three
listeners over a wide frequency range above a lower limiting value. Minimisation of either or both 𝐿2 and 𝐿1 norms of the source
strength vector appear to offer the most promise for system design, although a number of challenges remain before such systems
can be fully optimised.
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Appendix

The solution to the linearly constrained least squares problem relies on a 𝑄𝑅 factorisation of the matrix 𝐁H where H denotes
he Hermitian transpose. This can be written as

𝐁H = 𝐐
[

𝐑
𝟎

]

(A.1)

he matrix 𝐁H is of order 𝑀 ×𝑃 , the matrix 𝐐 is square of order 𝑀 ×𝑀 and has the property 𝐐H𝐐 = 𝐐𝐐H = 𝐈 whilst 𝐑 is an upper
riangular matrix of order 𝑃 × 𝑃 and the zero matrix is of order (𝑀 − 𝑃 ) × 𝑃 . The vector 𝐯 is then expressed in terms of the matrix

using

𝐯 = 𝐐
[

𝐲
𝐳

]

(A.2)

The above definitions can then be used to show that

𝐁𝐯 =
(

𝐐
[

𝐑
𝟎

])H
𝐯 =

[

𝐑H 𝟎
]

𝐐H𝐯 =
[

𝐑H 𝟎
]

[

𝐲
𝐳

]

= 𝐑H𝐲 (A.3)

Furthermore, using the property 𝐐𝐐H = 𝐈 and defining the partitioned matrix given by 𝐀𝐐 =
[

𝐀1 𝐀2
]

also shows that

𝐀𝐯 = 𝐀𝐐𝐐H𝐯 =
[

𝐀1 𝐀2
]

[

𝐲
𝐳

]

= 𝐀1𝐲 + 𝐀2𝐳 (A.4)

The problem can now be transformed into a minimisation problem described by ‖

‖

‖

𝐀1𝐲+𝐀2𝐳− 𝐰̂𝐴
‖

‖

‖

2

2
subject to 𝐑H𝐲 = 𝐰̂𝐵 . Then since

𝐲 = 𝐑H−1𝐰̂𝐵 the minimisation problem can be written as

𝑚𝑖𝑛‖‖
‖

𝐀2𝐳 − (𝐰̂𝐴 − 𝐀1𝐲)
‖

‖

‖

2

2
= 𝑚𝑖𝑛‖‖

‖

𝐀2𝐳 − (𝐰̂𝐴 − 𝐀1𝐑H−1𝐰̂𝐵)
‖

‖

‖

2

2
(A.5)

The solution for the optimal source strength vector can be written in terms of the vector 𝐳 where

𝐯𝑜𝑝𝑡 = 𝐐
[

𝐲𝑜𝑝𝑡
𝐳𝑜𝑝𝑡

]

(A.6)

such that the least squares solution to the minimisation problem can be written as

𝐳𝑜𝑝𝑡 = [𝐀H
2 𝐀2]−1𝐀H

2 (𝐰̂𝐴 − 𝐀1𝐑H−1𝐰̂𝐵) (A.7)

This solution can be written in terms of the optimal vector of source strengths by partitioning the matrix 𝐐 to give

𝐯𝑜𝑝𝑡 = 𝐐1𝐲𝑜𝑝𝑡 +𝐐2𝐳𝑜𝑝𝑡 (A.8)

Writing the pseudoinverse of matrix 𝐀2 as [𝐀H
2 𝐀2]−1𝐀H

2 = 𝐀†
2 then enables the solution to be written as

𝐯𝑜𝑝𝑡 = 𝐐1𝐑H−1𝐰̂𝐵 +𝐐2𝐀
†
2(𝐰̂𝐴 − 𝐀1𝐑H−1𝐰̂𝐵) (A.9)

which can also be written as

𝐯𝑜𝑝𝑡 = 𝐐2𝐀
†
2𝐰̂𝐴 + (𝐐1𝐑H−1 −𝐐2𝐀

†
2𝐀1𝐑H−1)𝐰̂𝐵 (A.10)
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