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Natural soil erosion and sediment transport processes are important in shaping the Earth’s critical 
zone. However, excess soil erosion and sediment delivery may pose different problems related to 
soil health, surface water quality and the safety of human living environments. To obtain robust 
information on the location of sediment source areas and to quantify their contributions to the 
sampled in-stream suspended sediment (SS) is important to guide the implementation of targeted 
management measures. Sediment fingerprinting is a widely applied approach to obtain such 
information, relying on the comparison of chemical and/or physical properties (i.e., fingerprints) 
between potential soil sources and target SS. However, there are several limitations and challenges 
associated with this approach. One of the major limitations relates to the available resources, which 
are often prohibitive in the context of research budgets. Given the relatively high costs and 
workloads involved in conventional source and SS sampling, and the subsequent laboratory 
fingerprint analysis procedures, repeat source and target SS sampling campaigns, or long durational 
studies, are limited. This situation remains despite the fact that it is widely known that catchments 
are rather dynamic, causing different source areas to be activated and deactivated over time. To 
this end, the work described in this thesis aims to develop new fingerprints (i.e., absorbance 
measurements at the UV-VIS wavelength range, and SS particle size distribution) that allow for 
increased temporal observations (i.e., up to minutes), by testing instruments that could directly 
obtain these fingerprints from water samples, and eventually measure in situ at high temporal 
resolution. Both fingerprints were tested at two scales in proof-of-concept studies: (i) in a 
laboratory scale setting, using artificial mixtures with known soil sample contributions to evaluate 
un-mixing model soil sample apportionment outcomes, and (ii) in a catchment scale setting, 
comparing un-mixing model source apportionment results with source apportionment results 
through sediment source budget estimations. The laboratory scale experiments showed rather 
small mean deviations to the known soil sample contributions (i.e., 15% and 7%, using absorbance 
and particle size distribution, respectively), comparable to other SS fingerprinting studies using 
artificial mixtures to evaluate un-mixing model results. Catchment scale experiments showed more 
variable outcomes, indicating the need for careful evaluation of the un-mixing model source 
apportionment results. Using absorbance; mean deviation between model results and sediment 
budget was 18%, though deviations were shown to reach up to 52%. Using particle size distribution; 
relatively low mean deviations (19%) were observed between model outcomes and sediment 
budget at relatively high discharge values (which were exceeded 12% of the time during the 5 
month study period, during which 82% of the total SS load was transported). Overall, results 
presented the potential usability of both fingerprints, allowing for increasing high temporal 
resolution source ascription due to easy and rapid measurements that could be obtained directly 
from water samples.
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Chapter 1 

1 

Chapter 1 Introduction 

1.1 Motivation – the Global Sediment Problem 

Despite erosion and sediment transport being natural processes, the rates and extent of erosion 

and sediment delivery across the globe have significantly increased due to land use changes and 

human-induced climate change (Poesen, 2018). With soil formation processes being very slow, any 

soil loss rate exceeding 1 t ha-1 yr-1 can be considered as irreversible within a 50-100 year time span 

(Jones et al., 2003), with about 7.5 million km2 (6.1% of land) exceeding this this threshold value 

(Borrelli et al., 2017; Figure 1.1). In perspective, losses of 20 to 40 t ha-1 are being observed in 

individual storm events that may occur in Europe once every two to three years, with losses 

exceeding 100 t ha-1 being observed in very extreme events (Morgan, 1995). In the US, average soil 

erosion rates on croplands in 2007 were estimated to be 10.8 t ha-1 yr-1 (USDA/NRCS, 2010). Overall, 

soil loss rates from agricultural areas are thus 10 to 40 times larger compared to the rate of natural 

soil formation processes (Pimentel and Burgess, 2013). 

 

Figure 1.1 Modelled global soil water erosion rates for the year 2012. From Borrelli et al. (2017). 

Water and wind are the major drivers of soil erosion (Borrelli et al., 2020), with Lal (2003) indicating 

globally affected land areas to be 1094 million hectares and 594 million hectares, respectively. Soil 

erosion directly affects the fertile (top)soil and its associated nutrients, with the majority of erosion 

thus induced by water (Lal, 2003). Losing these fertile soils decrease the agricultural potential 
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(Amundson et al., 2015; Borrelli et al., 2022; Panagos et al., 2015; Pimentel et al., 1995). On a yearly 

basis, an estimated 75 billion tonnes (Pg) of agricultural soil is eroded globally (e.g., FAO, 2016; 

Montanarella, 2015; Pimentel et al., 1995). This equates to an annual loss of 10 million ha of 

croplands (Pimentel and Burgess, 2013), causing an estimated loss in agricultural production of 

$400 billion per year (FAO, 2016; Noel et al., 2015). At the same time, rising populations and higher 

incomes demand a global increase in agricultural production (Foley et al., 2011; Mueller et al., 

2012). Soil erosion is therefore of particular importance, with e.g., the European Union (EU) making 

soil erosion part of its environmental agenda (Boardman and Poesen, 2006; Borrelli et al., 2022; 

Panagos et al., 2022). 

Suspended sediment (SS) originating from eroded soil particles, or from other sources such as 

eroded channel banks, play an essential role in the hydrological, geomorphological and ecological 

functioning of aquatic ecosystems (Owens et al., 2005; Vercruysse et al., 2017; Wohl et al., 2015). 

Sediments structure landscapes, create ecological habitats and transport nutrients and 

contaminants (i.e., organic contaminants, pesticides, trace and heavy metals) (Affandi and Ishak, 

2019; Dean et al., 2016; Koiter et al., 2013). However, increasing SS loads can impact water quality 

negatively. Sediment-associated nutrients and contaminants are a common reason why good 

ecological status of surface waters is often not achieved (Tye et al., 2016). In Europe, deterioration 

in water quality is a major policy challenge, as evidenced by the introduction and implementation 

of the European Water Framework Directive (WFD; 2000/60/EC, 2000) which aims for a `good` 

ecological status in surface (and ground) waters. Besides, increasing SS loads can also cause 

economic damages and direct risk for humans, due to e.g., reservoir sedimentation (Syvitski et al., 

2005; Walling, 2006), channel and harbour siltation (Netzband et al., 2002), elevated flood risks 

(Owens et al., 2005), and increasing water treatment costs (Hilton et al., 2006; Owens et al., 2005). 

In the view of the aforementioned issues, it is essential to mitigate excess erosion and sediment 

delivery rates for more sustainable catchment and river management. To this end, information on 

catchment sediment dynamics is necessary. This includes a thorough understanding of which 

sediment sources are mainly responsible for the excessive erosion and sediment delivery rates, and 

how this sediment is routed through the catchment system. Thereby, robust quantifications of SS 

source contributions to rivers and streams is an absolute must if effective sediment management 

and control strategies are to be implemented (Vercruysse et al., 2017; Walling, 2005), as these 

measures can then specifically target those areas contributing most to the in-stream SS load. 
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1.2 Soil Erosion and Sediment Transport 

1.2.1 Erosion Processes 

Zorn and Komac (2013) defined erosion as “a geomorphic process that detaches and removes 

material (soil, rock debris, and associated organic matter) from its primary location by some natural 

erosive agents or through human or animal activity”. The main natural agents causing soil erosion 

are water and wind (Pimentel and Burgess, 2013), though erosion can also be initiated by glaciers, 

snow, sea/lake waves and gravity (Osman, 2014). Whilst wind erosion is a major concern in Arid 

and Semi-Arid regions, erosion by water is of major concern in the more Temperate, Mediterranean 

and Tropical climatic regions (Amundson et al., 2015; Osman, 2014).  

Erosion by water comprises a complex interplay of processes, starting with the detachment of soil 

particles through rain splash (Bryan, 2000). When the force of the raindrop, influenced by its mass 

and impact velocity (Bryan, 2000), contacts the soil surface, the soil structure can be destroyed with 

soil particles being loosened and potentially displaced (Pimentel and Burgess, 2013). Furthermore, 

soil particles and small aggregates can be detached from the in situ soil by running water, biological 

activity, geochemical and physical weathering, freeze-thaw cycles and wind (Vercruysse et al., 

2017). The subsequent mobilisation of these detached particles is dependent on processes related 

to water infiltration, storage and overland flow, with the relative magnitude of these processes 

depending on factors including soil type, topography, climate, land management practises and 

antecedent hydrological conditions (Römkens et al., 2002). The antecedent soil water conditions 

herein play an important role in the transport of the detached particles (Bryan, 2000). For dry soils, 

the majority of the kinetic energy of the rainfall causes the disruption and detachment of soil 

particles. When soil moisture levels increase, the shear strength between the soil particles 

decreases due to a more plastic behaviour, thereby causing increased sediment entrainment in 

overland flow.  

With splash erosion being the main initial step in soil erosion by water, other erosion processes are 

then responsible for the downslope movement of particles (Figure 1.2). Sheet erosion represents 

the removal of a thin, rather uniform layer of the soil surface by means of splash erosion and 

subsequent shallow surface flow over large parts of the hillslope, which may lead to the loss of the 

fertile topsoil that is rich in nutrients and organic matter (Osman, 2014). Both splash erosion and 

sheet erosion are diffuse, non-concentrated, forms of soil erosion (Oakes et al., 2012). However, 

with most slopes not being uniform, water moving downslope often concentrates into small 

channels, referred to as rills (Osman, 2014). Detached soil particles may then be transported 

towards these rills by means of overland flow, which is referred to as interrill erosion (Osman, 
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2014). Rill erosion occurs when water concentrated in the rills can further entrain particles, due to 

the kinetic energy of the flowing water. Rill channels are generally less than 0.3 m deep (e.g., 

Valentin et al., 2005), which can, in the main, still be removed by e.g., tillage. When in-field eroded 

channels become deeper, they become more difficult to remove, ending up as permanent features. 

This type of erosion is referred to as gully erosion, where large water quantities in combination with 

high kinetic energy results in increasing levels of entrainment and thus rather high sediment loads 

(Osman, 2014). In extreme situations, gullies can ultimately form Badlands, which are areas that 

cannot be used for cultivation anymore. Being characterised by highly eroded areas comprising of 

steep slopes and low soil cover, these Badlands act as an important source of sediments (Valentin 

et al., 2005). Other processes that can serve as important sources of sediment are mass movements 

such as landslides, caused by e.g., unstable geological conditions, saturated soils due to intense 

rainfall or earthquakes (Osman, 2014). Additionally, erosion by water can also occur within rivers 

and streams, where the water velocity erodes channel banks and channel beds (Osman, 2014). 

 

Figure 1.2 Graphical representation of water erosion processes. From Sotiri (2020). 

Human activities have had an increasingly important role over time in observed erosion rates, 

related to agriculture, resource extraction, construction (Owens, 2020), and continuing land use 

changes (Borrelli et al., 2017). With 75% of the Earth’s surface experiencing some sort of human 

pressure (Venter et al., 2016), agricultural activities account for 38% of the total Earth surface cover 

(Viana et al., 2022; Zabel et al., 2019). With human livelihoods strongly dependent on agricultural 

production and livestock, maintaining soils of good quality is of great importance (Pimentel and 

Burgess, 2013). However, overgrazing, unsuitable agricultural practises, and deforestation are 

amongst the main causes of elevated soil erosion, being induced by human activities (Montgomery, 
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2007; Pimentel and Burgess, 2013). Consequent sediment-associated nutrient losses, reduction of 

carbon storage and a lowering of both soil and ecosystem health cause the majority of the world`s 

soil resources to be only in a fair, poor or very poor condition (FAO, 2015).  

Furthermore, human induced climate change increasingly affects soil erosion by causing more 

extreme and intense rainfall amounts (e.g., Mullan et al., 2012; O’Neal et al., 2005). Here, water 

erosion is predicted to increase globally by 30-66% in the near future (Borrelli et al., 2020). More 

intense and higher quantities of rainfall have the potential to increase splash erosion, and induce 

higher amounts of overland flow that increase entrainment of soil particles. Conversely, soil erosion 

itself has potential impacts on global climate change, as it influences the movement and 

sequestration of carbon (Owens, 2020). Several studies (e.g., Lal, 2003; Stallard, 1998; Van Oost et 

al., 2007) have focused on the role erosion has on the terrestrial carbon cycle, as erosion can both 

increase and decrease CO2 emissions by mineralization and sediment burial, respectively.  

1.2.2 Sediment Connectivity 

Following erosion processes, subsequent sediment delivery within the catchment is dependent on 

the catchment connectivity, which is defined as the degree of coupling between sediment sources 

and sinks (e.g., Cavalli et al., 2013; Heckmann and Schwanghart, 2013). Spatial changes in these 

connectivity pathways (i.e., the coupling or decoupling of certain sources to the sink) are essentially 

responsible for the inconsistency between erosion occurring within the catchment and observed 

SS yields at the catchment outlet (i.e., the ‘sediment delivery problem’; Walling (1983). 

Understanding connectivity patterns and temporal changes therein inform about landscape 

processes, allowing for the implementation of measures combatting soil erosion and sediment 

delivery, and contribute to improving soil erosion and sediment transport modelling (Keesstra et 

al., 2018).  

The degree of connectivity is, under natural conditions, influenced by geological and 

geomorphological factors (e.g., parent material, tectonics, relief, landforms), climatic conditions 

(e.g., rainfall amount and intensity, temperature) and biota (vegetation and fauna) (Keesstra et al., 

2018). Furthermore, human activities including agricultural practises, grazing, mining, burning and 

roads, have distinct impacts on structure and functioning, and thus on the existing connectivity of 

geomorphic systems (Marsh, 1864). An important factor in connectivity research is the dis-

connectivity that is often prevalent, due to interferences in relief patterns, fauna, flora or reservoirs 

in rivers and streams (Fryirs et al., 2007) that are present at the aggregate, pedon, slope and 

catchment scale (Keesstra et al., 2018). Fryirs (2012) identified buffers, barriers and blankets as the 

three different types of intermediate sediment stores that could interrupt catchment connectivity 
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patterns. Buffers are identified as landforms that prevent sediment from entering the channel 

network. These often include large sediment sinks such as alluvial fans and swamps. Barriers 

interrupt sediment movement along the channel network, and include dams and woody debris. 

Blankets are features disrupting the surface-subsurface interaction and are controlled by the bed 

material and characteristics of the soil, such as sand sheets and fine material in the interstices of 

gravel bars. These blockages prevent most of the eroded sediment from being directly transported 

towards the streams or catchment outlet, explaining why observed runoff and sediment yields are 

not just the simple sum of the erosion of the key sources (e.g., Keesstra et al., 2018; Walling, 1983).  

Spatial connectivity pathways are not fixed features, but change over time due to differences in 

prevailing conditions (e.g., Baartman et al., 2013a, 2013b; Parsons and Stone, 2006; Römkens et al., 

2002). Laboratory experiments and modelling have shown that the same rainfall events, run in 

different sequences, did not result in the same SS yields (Baartman et al., 2013a, 2013b; Parsons 

and Stone, 2006; Römkens et al., 2002). Differences in connectivity patterns explained these 

variations (Fryirs et al., 2007): large, high intensity, rainfall events, are generally able to create 

better connectivity between sources and streams, while smaller rainfall events result in less well-

developed connectivity patterns, resulting in higher levels of intermediate sediment storage and 

higher numbers of blockages.  

1.2.3 In-Stream Sediment Transport Processes 

The eroded particles are subsequently deposited at other locations within the catchment or reach 

surface water bodies, mostly rivers and streams (e.g., Walling, 1983). There, sediments are further 

transported when the bed-shear velocity surpasses the critical point for the initiation of motion. 

Whether sediment is transported or not depends on the ratio of this bed-shear velocity to the 

settling velocity (van Rijn, 1984). The settling velocity, in turn, depends on the particle shape, size 

and density. Depending on this ratio, transport can then take place through a range of different 

processes (Grotzinger et al., 2007; van Rijn, 1984). Coarser particles (i.e., boulder to sand size 

classes) are usually transported as bedload, while finer particles (i.e., fine sand to clay classes) are 

transported within the water column as suspended sediment (SS) load or (dissolved) wash load 

(Figure 1.3).  
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Figure 1.3 Sediment transport in rivers, as bed load, suspended load and wash load. From Dey 

(2014). 

For the coarser particles, the bed-shear velocity might just be strong enough to initiate their 

movement. This results in transport processes such as rolling or sliding, where particles remain in 

constant contact with the riverbed (van Rijn, 1984). With increasing values of the bed-shear 

velocity, or with decreasing particle sizes, particles can be moved along the riverbed by the process 

of saltation (van Rijn, 1984). Large proportions of the sediment load observed within rivers 

comprise SS (e.g., Misset et al., 2019; Turowski et al., 2010), which is kept in suspension by the 

prevailing hydraulic conditions, and generally accounts for 80-90% of the total sediment load 

(Turowski et al., 2010). Several authors have divided the SS load into two categories. The first 

category concerns the fraction of the SS that does interact with the riverbed (van Rijn, 1984). Upon 

a lowering of the bed-shear velocity, the transport of SS might be reduced. This can cause the SS to 

be temporarily stored in the riverbed, from where it can be remobilised upon an renewed increase 

in bed-shear velocity (e.g., Lawler et al., 2006; Walling et al., 2000). Therefore, the riverbed can act 

as a source or sink of fine sediment, depending on the prevailing hydraulic conditions. The second 

category concerns the particles that do not interact with the riverbed or bank, the so-called 

(dissolved) wash load fraction (e.g., Navratil et al., 2012). These particles are expected to be 

transported through the river system without any notable deposition and resuspension from the 

riverbed.  

Suspended sediment is mainly transported as flocculated material (Droppo and Ongley, 1994), with 

flocs representing a complex matrix composed of microbial communities, organic particles (e.g., 

detritus), inorganic particles (e.g., clays and silts) and interfloc spaces (pores) that allow for the 

retention or through-flow of water (Droppo, 2001). In-stream hydrodynamic processes affect the 

formation and aggradation of flocs, having the capacity to potentially alter the flocs in terms of their 

size, shape, density and porosity. Flocculated and aggregated particles continuously interact with 
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other entities within the aquatic environment, which influences their composition (e.g., Grangeon 

et al., 2012; Spencer et al., 2022): the aquatic environment provides new building materials that 

can be incorporated in these particles, as well as energy, nutrients and chemicals for biological 

growth (Droppo, 2001). These processes can change the way flocs behave; for example, in terms of 

physical behaviour (e.g., settling faster with increasing weight) and chemical behaviour (e.g., how 

contaminants and nutrients are adsorbed and transformed) (e.g., Leppard, 1985; Liss et al., 1996). 

Therefore, changes to the composition of the flocs have important implications for the fate of SS 

and its associated contaminants. 

Elevated concentrations of SS (Figure 1.4) can be a direct cause of freshwater pollution (Vörösmarty 

et al., 2010). Sediment-associated contaminants and nutrients can negatively affect aquatic 

ecosystems by means of e.g., eutrophication, together with losses in ecosystem services and 

biodiversity (e.g., Koiter et al., 2013). Furthermore, aquatic biota can be negatively affected, since 

elevated SS loads could cause, e.g., the clogging of fish gills and smothering of salmonid spawning 

grounds (e.g., Acornley and Sear, 1999; Bilotta and Brazier, 2008; Hilton et al., 2006). Other negative 

effects can be related to elevated levels of turbidity, resulting in lower clarity of the water leading 

to e.g., reduced dissolved oxygen concentrations due to a decrease in light transmittance through 

the water column (Ozturk and Work, 2016). Increasing SS loads could thus potentially cause an 

imbalance in the healthy, natural functioning of aquatic ecosystems (e.g., Farnsworth and Milliman, 

2003).  

Other SS related issues can be associated with dams and reservoirs. These structures largely impact 

the functioning of river systems by interrupting water flows, thereby hindering the transport of SS 

downstream (Kondolf et al., 2018). This impacts the delivery of sediment to downstream areas, 

affecting the livelihoods of people living in deltas and coastal zones due to the combination of 

reducing sediment supplies (and sediment-bound nutrients) and rising sea water levels (Kondolf et 

al., 2018). As many of the reservoirs are constructed as a source of drinking water or irrigation, 

sedimentation reduces storage capacity and thereby affects supplies (Morris, 2020). Other 

disadvantages of high SS transport rates can be related to increasing water treatment costs (Hilton 

et al., 2006; Owens et al., 2005; Vörösmarty et al., 2010). Furthermore, sediment transport and 

subsequent morphological changes to rivers and streams can impact flood risk, mainly induced by 

a reduction of the channel capacity (e.g., Nones, 2019; Wheater and Evans, 2009).  
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Figure 1.4 Attert River at Everlange (Luxembourg) during low flow conditions on the 22nd of 

February 2021 (a), and after a storm runoff event on the 13th of March 2021, showing 

high concentrations of suspended sediments (b). 

1.2.4 Sediment Management 

The off-site impacts of elevated SS delivery can be detrimental (e.g., Mekonnen et al., 2015), leading 

to potential problems (see section 1.2.3). Many studies have therefore focused on attempting to 

tackle the problem at its roots, by trying to reduce erosion rates. Mekonnen et al. (2015), however, 

highlights that in many situations, especially in developing countries, it is hard to control soil 

erosion. Therefore, it can instead be more useful to better understand sediment flow paths and 

dynamics to thereby delay or hamper sediment delivery (Abedini et al., 2012; Baartman et al., 2012, 

2013a; Keesstra, 2007; Keesstra et al., 2009). To this end, the challenge is to create sediment sinks 

inside the catchment. These measures do not prevent erosion, but can help reduce water flow 

velocities, enhancing water infiltration, and trapping of sediment. 

There is a range of different vegetation types that can be used to achieve such sediment trapping 

effects, e.g., grass strips planted along the contours of agricultural fields (Kagabo et al., 2013; 

Wanyama et al., 2012). These grass strips allow for better infiltration of water, reducing the runoff 

and runoff velocity, thereby reducing the sediment transport capacity (Kagabo et al., 2013; 

Wanyama et al., 2012). The sediment trapping efficiency has been found to be dependent on the 

grass species used (Wanyama et al., 2012). Furthermore, grassed waterways can prevent erosion 
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and gully formations by planting grasses along man-made or natural drainage lines. Other types of 

vegetation, such as shrubs, trees and riparian vegetation can also be used to trap mobilised 

sediment (e.g., Richet et al., 2017). 

Besides vegetation, barriers can comprise structural measures. Such measures are designed to 

intercept runoff, thereby reducing sediment transport through the trapping of sediments 

transported by surface runoff or by river flows (Mekonnen et al., 2015). Based on the same principle 

as the vegetative sediment trapping measures, Frankl et al. (2018) reported on the successful 

reduction of sediment transport upon the implementation of woody barriers. These barriers were 

placed inside an open-field agricultural catchment, where gullies had formed. Results showed that 

large amounts of sediments were stored by the barriers and that gully erosion rates were reduced. 

Other examples of structural sediment trapping measures include, amongst others, terraces, check 

dams, dams, basins and ponds. Terraces are built on sloping lands to decrease the slope of fields, 

thereby increasing on-site infiltration, reducing erosion and decreasing sediment transport (see 

review by Chen et al., 2017). Features such as grass strips could as well develop over time into 

terraces, reducing in the longer term the slope of the land due to the accumulated in-field sediment 

(Kagabo et al., 2013). Basins and ponds are implemented within channels or at edge-of-field to trap 

sediment from concentrated runoff, preventing off-site sedimentation (e.g., Fiener et al., 2005; 

Verstraeten and Poesen, 2001). Ponds constructed within channels can also capture sediment 

originating from stream bank erosion, which can be a major contributing source (Ramos-Scharrón 

and MacDonald, 2007). Check dams are mostly constructed within gullies and channels, where 

these fixed structures aim to control concentrated flows of water to be able to trap sediment in the 

eroding channels and further reduce gully erosion (Abedini et al., 2012; Sougnez et al., 2011).  

All these vegetational and structural sediment trapping measures aim to reduce the amounts of 

sediment transport downslope. To be able to apply these measures to specific sediment source 

areas within a catchment, especially to those areas significantly contributing to SS load, there is a 

need to identify where these sources are located. This is essential for developing appropriate and 

targeted management solutions (Vercruysse et al., 2020). To this end, the sediment fingerprinting 

approach is widely used to study sediment sources within catchments (Collins et al., 2017, 2020; 

Collins and Walling, 2004; Krishnappan et al., 2009; Owens et al., 2016; Walling, 2005, 2013). 
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1.3 Sediment Fingerprinting 

1.3.1 Sediment Fingerprinting - History  

The sediment fingerprinting approach was developed in the 1970s to provide information on the 

sources of SS transported by rivers and streams (e.g., Klages and Hsieh, 1975; Oldfield et al., 1979; 

Wall and Wilding, 1976; Walling et al., 1979). The approach relies on comparing physical and/or 

chemical properties measured on potential source samples to those measured on target SS 

samples. For example, the initial studies used minerology, geochemical properties and mineral 

magnetic properties as sediment fingerprints to discriminate between the potential SS sources, and 

thereby identify the origin of the SS sampled in the studied catchments.  

Even at the initial stages, different ways to classify potential sources were used. Studies by Oldfield 

et al. (1979), Walling et al. (1979) and Wall and Wilding (1976) presented a discrimination based on 

source types, with a differentiation made between surface, subsurface and channel banks. The 

assessment was limited to identifying which source was most likely to be the dominant contributor. 

Klages and Hsieh (1975), on the other hand, applied a more spatially distributed approach by 

considering different tributaries within a catchment as SS sources. At a later stage, sediment 

fingerprinting approaches became more quantitative by using increasingly advanced statistical 

methods and modelling approaches, allowing quantification of the relative SS source contributions 

to the observed in-stream target SS samples (e.g., Collins et al., 1997a). Since the early studies, an 

array of new fingerprint properties has been tested and applied over time, creating increasing 

opportunities to achieve more rigorous and robust source apportionment results (Owens, 2022). 

As highlighted in reviews (e.g., Collins et al., 2020; Walling, 2013), the number of sediment 

fingerprinting studies rapidly increased after the initial studies and continues to rise. Another key 

advancement in sediment fingerprinting studies considers the use of composite fingerprints 

(Walling, 2005); using more than one sediment fingerprint property to distinguish between 

sediment sources. Walling et al. (1993) showed that single diagnostic sediment properties were not 

reliable for discriminating between sources, stating that physical and chemical properties might be 

subject to changes. Moreover, values of specific properties as measured in the SS transported 

through the river system might be representative of more than one potential source (Collins and 

Walling, 2002). In response to this potential challenge, composite fingerprints were used (Collins, 

1995; Collins et al., 1996; He and Owens, 1995; Oldfield and Clark, 1990; Walling et al., 1993; Walling 

and Woodward, 1995). The use of several properties within the composite fingerprint improves the 

likelihood that source-sediment relations can be more discriminating, using a set of properties that 

is more likely to be unique for one or a limited number of sources. Furthermore, developments in 

quantitative, as opposed to qualitative procedures, were introduced, using statistical verification of 
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a range of properties to discriminate sources, as well as multivariate un-mixing models to determine 

sources in a more reliable and consistent manner (Collins, 1995; Collins et al., 1996, 1997a; He and 

Owens, 1995; Walling et al., 1993; Walling and Woodward, 1995; Yu and Oldfield, 1989, 1993). 

Combined with techniques assessing the uncertainty in source properties through the use of Monte 

Carlo techniques (Franks and Rowan, 2000; Rowan et al., 2000), where the outcomes were then 

used to give an uncertainty range (e.g., mean and standard deviation) on the modelled source 

apportionment. Including an uncertainty assessment in sediment fingerprinting modelling has now 

become a standard procedure. 

Initially, the sediment fingerprinting approach was mainly applied for scientific interests. It was 

advocated (e.g., Gregory and Walling, 1973; Schumm, 1977) that information on sediment sources 

is an important requirement to create an improved understanding of erosion and hydro-

sedimentary processes, as well as integrating studies regarding sediment mobilisation and 

sediment transportation within a catchment framework. Other early applied studies focused on 

environmental issues associated with the importance of sediment as a carrier of nutrients and 

contaminants. This because during the same time in which the first sediment fingerprinting 

approaches were developed and reported on, the transfer of nutrients and contaminants by fine 

sediment was increasingly recognised as a threat to aquatic ecosystems (e.g., Allan, 1986; Förstner 

and Muller, 1974; Golterman, 1977; Golterman et al., 1983; Horowitz, 1985; Shear and Watson, 

1977).  

In later years, the focus of the sediment fingerprinting approach has shifted to address issues 

related to catchment management (e.g., Bilotta and Brazier, 2008; Owens et al., 2005; Poesen, 

2018). Many studies have investigated dominant SS sources inside certain catchments, allowing a 

targeted approach to those sources that are mainly responsible for the in-stream observed SS. The 

sediment fingerprinting approach has thus provided the means to assist in making management 

decisions and policy developments (Owens, 2022).  

1.3.2 Current Status of Sediment Fingerprinting Research 

The sediment fingerprinting approach generally consists of three steps (Figure 1.5). The first step 

concerns the identification and subsequent sampling of potential sediment sources. Sources are 

identified e.g., during field visits, in which areas showing erosion (e.g., rills and gullies) and potential 

sediment connectivity pathways are used as evidence (e.g., Walling, 2013). Sources can also be 

identified using satellite images or Geographic Information Systems (GIS) tools to detect potential 

source areas or connectivity patterns (e.g., Borselli et al., 2008; Cavalli et al., 2013). Once potential 

sources are identified, samples are collected. Target sediment samples are also collected, using e.g., 
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time-integrated SS sampling (e.g., Philips sediment trap; Phillips et al., 2000) or manual sampling by 

collecting deposited bed sediment (e.g., Nosrati et al., 2018; Vale et al., 2016). Soil source and target 

sediment samples are then brought to the laboratory for preparation (e.g., drying and sieving).  

In a second step, source and sediment samples are analysed, generally for physical or geochemical 

properties, which are used as sediment fingerprints (Walling, 2013). A wide range of fingerprints 

has been applied and reported on, including: geochemistry (Foster and Walling, 1994), sediment 

colour (Grimshaw and Lewin, 1980), colour properties (Martínez-Carreras et al., 2010a), plant 

pollen content (Brown, 1985), mineral magnetic properties (Oldfield et al., 1985), fallout 

radionuclides (Wallbrink et al., 1998), stable isotopes (Revel-Rolland et al., 2005), Compound 

Specific Stable Isotope (CSSI) (Blake et al., 2012; Upadhayay et al., 2022), eDNA (Frankl et al., 2022), 

spectral reflectance in the visible and near infrared range (Martínez-Carreras et al., 2010a) and 

infrared spectroscopy (Poulenard et al., 2009). An informed decision is needed to select those 

fingerprint properties that could be best used under given circumstances (i.e., to allow for proper 

discrimination between potential sediment sources). An important requirement regarding the use 

of measured fingerprints is that they need to behave in a conservative manner, meaning that the 

properties must not undergo physical or chemical transformations during the processes of erosion, 

transportation and possible deposition and resuspension (e.g., Collins et al., 2020; Koiter et al., 

2013; Walling, 2013). Applied fingerprint selection methods therefore often involve the elimination 

of those sediment-associated properties that are non-conservative, followed by statistical tests to 

(i) identify the discriminatory power of potential fingerprints between at least on the sources (i.e., 

Kruskal-Wallis H test), and (ii) define a minimum set of fingerprints that maximizes discrimination 

between the potential sources (e.g., linear discriminant analysis).  

Then, in a third step, un-mixing models are often applied (see also section 1.4.4), using the selected 

set of fingerprints to quantify contributions of the potential sources to the target sediment. So-

called frequentist models have been used, commonly minimizing the sum of squared residuals 

(Collins et al., 1997a), or e.g., using parameter optimization couples with Monte Carlo uncertainty 

analysis (Collins et al., 2013). However, these models were often shown to be inconsistent in their 

uncertainty representations, and also to lack structural flexibility to coherently translate all sources 

of error into modelling results. Bayesian un-mixing models have become widely adopted as a more 

robust alternative (Cooper et al., 2014a). 
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Figure 1.5 Schematic representation of the typical sediment fingerprinting methodology. Panel 

(1) is adapted from Gaspar et al. (2019). 

1.4 Sediment Fingerprinting: Limitations and Research Gaps 

1.4.1 Particle Size 

One of the most important issues in sediment fingerprinting is that of particle size (see review by 

Laceby et al., 2017). Erosion and sediment transport processes are selective with respect to particle 

size. This process starts with the initial detachment of particles from the soil surface, with clay 

particles being more resistant to detachment due to their bonding with the substrate, while coarse 

sand may be resistant to detachment due to size and weight (Bradford et al., 1992; Poesen, 1992). 

In contrast, silts and finer sands can be more subject to detachment due to the absence of bonding 

with the substrate and their lighter weights (Poesen, 1992). Once particles are detached and 

transported to the stream network, particle size directly influences settling velocities and thus the 

transport and deposition of sediment (Walling et al., 2000).  

Fluvial SS transport processes change the properties of the material transported, when compared 

with the properties observed in the original source material (Laceby et al., 2017). Generally, average 

particle size decreases, while the roundness of particles and the sorting of the SS increases with 

distances travelled. These changes to the particle sizes and shaping of the particles subsequently 

affect the associated properties that are used to fingerprint SS sources. There are many fingerprints 

used within the sediment fingerprinting community that are recognized for their different affinities 
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to different particle sizes, with fingerprint property values often varying with particle size in a 

manner that is non-linear and difficult to generalize (Horowitz and Elrick, 1987; Russell et al., 2001). 

These include fallout radionuclides (Horowitz and Elrick, 1987) and geochemical properties such as 

total organic carbon (Wynn et al., 2005), that are generally enriched in the finer particle size 

fractions. Furthermore, mineral magnetic properties (e.g., Hatfield and Maher, 2009) and colour 

parameters (e.g., Pulley and Rowntree, 2016) are linked to different size fractions. 

Changes observed to the particle sizes between potential sediment sources and target sediment 

might therefore complicate sediment fingerprinting procedures, as potential source materials 

cannot simply be compared with the target SS. To this end, several methods have been introduced 

to ensure that the same size fractions are compared, and thus comparable fingerprint properties 

between the source and target sediment material are considered. Fractionation is commonly used 

(Laceby et al., 2017), which addresses the potential impacts of different particle size related 

fingerprints by sieving both the collected potential source and target sediment samples to defined, 

comparable particle size fractions. Thereby, the isolated fraction should include the range of 

fingerprint property values in the potential sources (Laceby et al., 2017). The size fraction <63 μm 

is often used (Walling et al., 1993), as this fraction is considered to account for the majority of the 

SS load transported in rivers (e.g., Legout et al., 2013; Walling et al., 2000). 

However, different size fractions are also used since it is recognised that the <63 μm fraction should 

not be adopted without scrutiny. For example, the <10 μm fraction is often used in Australian rivers 

(Douglas et al., 2003; e.g., Olley and Caitcheon, 2000). The fine silts and clay material in Australian 

river systems is considered as the dominant size fraction, being of particular interest due to the fact 

that this fraction has the largest impact on the water quality. Fractionation can thus also be applied 

to a fraction that is of particular interest (Laceby et al., 2017). Therefore, simply selecting a 

commonly used fraction of <63 μm may not be sufficient to give robust un-mixing outputs that are 

not affected by further differences in particle size between sources and target SS (Collins et al., 

2017, 2020). The choice of the fraction used for investigation requires robust justification, as the 

chosen fraction for analysis influences the source apportionment results (Haddadchi et al., 2015). 

Ways to investigate different fractions, and their effects on the sediment fingerprinting results are 

presented by, for example Gaspar et al. (2019, 2022) and Motha et al. (2002).  

Furthermore, though controversial in sediment fingerprinting (Owens et al., 2016), another 

approach to deal with differences in particle size is through the application of correction factors. 

Simple correction factors are based on the ratio of particle size distribution (PSD) measures such as 

median particle size or specific surface area (Collins et al., 1997a; Koiter et al., 2018). It is thereby 

mostly assumed that there is a linear relation between the fingerprint property concentration and 
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particle size. Several studies (Foster et al., 1998; Russell et al., 2001; Smith and Blake, 2014; Taylor 

et al., 2014) have shown, however, that such relationships can be much more complex, being 

fingerprint-specific and site-dependent. Other studies have shown that relationships can be 

variable during different times of sediment transport (Stone and Walling, 1997); particle size 

composition and organic matter content change when being transported from source to sink. Due 

to the reported uncertainties involved with these correction factors (Smith and Owens, 2014), care 

must be taken as source apportionment results might be significantly impacted by their adaption 

and it has become more commonplace not to apply them when using un-mixing models (Collins et 

al., 2017). 

1.4.2 Fingerprint Conservatism  

An important aspect within sediment fingerprinting is the selection of those fingerprints that allow 

for source discrimination and ultimately for the apportionment of the source contributions to the 

target sediment (e.g., Collins et al., 2017; Walling et al., 1993). To select a useful sediment 

fingerprint, there are two important aspects that need to be considered. First, it must be able to 

differentiate between the identified potential sources. Second, fingerprints must behave in a 

conservative manner. In the context of the sediment fingerprinting approach, conservatism refers 

to the concentration of the sediment fingerprint property that has to remain unchanged when 

being transported from the sources to the sink (i.e., the location from where the target sediment 

sample is collected). However, evidence has shown that fingerprint properties might change at 

different moments during transportation (see reviews by e.g., Collins et al., 2020; Koiter et al., 2013; 

Walling, 2013). Changes in fingerprint properties depend on the level of chemical, geochemical 

and/or mineralogical stability related to specific fingerprints (e.g., Davis and Fox, 2009; Koiter et al., 

2013; Motha et al., 2002). That stability depends on the chemical reactivity of the fingerprint in 

response to the prevailing physical-chemical and biological conditions.  

However, while the assessment of fingerprint conservatism is of important consideration, current 

tests assessing fingerprint conservatism remain a black-box approach (Koiter et al., 2013). There is 

only limited work exploring fingerprint conservatism during the sediment transport process (e.g., 

Motha et al., 2002). Standard procedures consider whether or not fingerprint values from target SS 

are within the limits of the fingerprint values measured from the different identified source 

samples. To this end, fingerprint values falling within the limits are thus potentially used even when 

transformations during transport cannot be discounted, eventually adding uncertainties to the 

estimation of source contributions. Despite the sediment fingerprinting community being aware of 

this problem (Cooper and Krueger, 2017; Sherriff et al., 2015), there are no formally agreed tests to 

investigate potential fingerprint transformations during sediment transport (Collins et al., 2017). 
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Changes to sediment fingerprint properties can also occur after sediment is deposited (Koiter et al., 

2013). This could thus as well challenge fingerprint conservatism, with sediment fingerprinting 

properties no longer representing the properties of its original sources (Koiter et al., 2013). This has 

for instance been observed by Foster et al. (2006), who reported that the radionuclide 137Cs was 

mobilised from deposited sediments. Furthermore, Hudson-Edwards et al. (1998) reported on the 

chemical remobilisation and the downward translocation of different chemical elements in 

floodplain deposits. In Smith and Owens (2014), bed samples were compared with the samples 

collected by a Phillips sediment trap (Phillips et al., 2000). It was observed that although there was 

no significant difference in particle size composition, properties such as geochemical and biological 

characteristics might vary between the two. It is therefore important to carefully consider sediment 

conservatism. Especially with fingerprint properties (e.g., particle size and geochemical properties) 

that can change when samples are left inside sampling equipment such as the Phillips sediment 

trap for long times, or when samples are stored before starting laboratory analyses (e.g. due to 

adsorption/desorption; Smith and Owens, 2014). 

1.4.3 Fingerprint Selection and Source Discrimination 

Sediment fingerprinting studies use a wide range of soil and sediment properties for source 

fingerprinting (see section 1.3.2). This array of available fingerprints has increased over time due to 

improved analytical capabilities, whereby samples can be analysed faster for a greater number of 

fingerprints (Sherriff et al., 2015). Walling (2013) describes the need that for most early sediment 

fingerprinting studies, sampling techniques were heavily depending on the amount of soil sample 

and sediment that had to be collected in order to proceed with the analysis of fingerprint 

properties. For instance, for the analysis of radionuclides or geochemical sediment properties, 

relatively large amounts of sediment were needed (e.g., ≥20 g). Developments have helped to 

progressively reduce the required masses needed (Walling, 2013). 

Another major development concerns the transition from using a single fingerprinting property 

towards the use of composite (i.e., multiple property) fingerprints for source discrimination (Collins 

et al., 2020). A single sediment property was used in source fingerprinting in the early stages of the 

approach. However, later work acknowledged that the use of several fingerprints was needed to 

be able to discriminate between several potential SS sources and to provide more robust source 

apportionment outcomes (Collins and Walling, 2002; Walling et al., 1993; Wasson et al., 2002). This 

is related to the potential uncertainties of using fingerprinting properties, such as non-

conservatism, which can influence the fingerprinting results. Therefore, by including several 

properties, some uncertainties are mitigated (Collins et al., 2020), with a further strengthening of 

the reliability of the un-mixing results upon the inclusion of additional properties (Walling, 2013). 
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As a minimum, n-1 fingerprint properties must be included in the linear un-mixing models to 

discriminate between n sources (Phillips and Gregg, 2003), where the structure of a standard linear 

un-mixing model should fulfil the following requirements: 

∑ a𝑖,𝑗  × w𝑗

𝑚

𝑗=1
    = bi  

which satisfies the following constraints: 

∑ w𝑗

𝑚

𝑗=1
    = 1 

and 

0 ≤ wj ≤1 

where bi is the fingerprint property i (i = 1 to n) of the sediment mixture, ai.j represents the 

fingerprint property in the source j (j = 1 to m), wj is the unknown relative source contributions of 

the source j. Herein, m represents the number of potential sources and n represents the number 

of fingerprint properties selected.  

Furthermore, the use of composite fingerprints that include properties from different groups of 

fingerprinting properties (e.g., combining geochemistry and colour properties) can further improve 

source discrimination (Collins et al., 2020; Collins and Walling, 2002; Walling, 2013). These 

composite fingerprints can thereby improve the robustness of the un-mixing results, providing a 

greater assurance that the influence of non-conservative fingerprints or certain fingerprints with 

poor discrimination potential is further limited (Collins et al., 2020). Collins et al. (2020) highlighted 

that the selection of fingerprint properties needs to be carefully assessed and analysed to create 

robust composite fingerprint signatures. Therein, the physical basis for discrimination of the 

potential SS sources is an important consideration, though explicit assessment of this physical basis 

is often lacking in sediment fingerprinting studies. This while the selection of fingerprints is shown 

to potentially impact SS source apportionment results (e.g., Gaspar et al., 2019; Laceby et al., 2015; 

Lizaga et al., 2020b).  

Current approaches to selecting suitable fingerprints often rely on a three step procedure, using (i) 

a range test to exclude properties outside the source property values, (ii) a Kruskal-Wallis test to 

identify those fingerprints that discriminate between at least one of the sources, and (iii) a 

discrimination (e.g., linear discriminant function analysis) to define the minimum set of fingerprints 

that allow for the best discrimination between the sources (e.g., Collins and Walling, 2002; Palazón 

et al., 2015; Smith and Blake, 2014). However, other fingerprint selection methods are applied (as 

highlighted in Evrard et al., 2022) including: (i) maximising the number of fingerprints by only 
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disregarding those failing the range test; (ii) process- or knowledge-based frameworks that consider 

the interpretation of the source fingerprinting properties, and (iii) methods that identify consistent 

fingerprints, which do not create mathematical inconsistencies in the potential modelling results. 

The reliability of these often used methods is however debated by (Latorre et al., 2021; Lizaga et 

al., 2020b), who proposed new methods for robust fingerprint selection, allowing non-erroneous, 

consistent and conservative input fingerprints for models.  

There are limitations on the total number of sources that can be accurately discriminated. There 

are specific suggestions to limit the number of sources, where e.g., Lees (1997) and Vale et al. (2022) 

suggested to include a maximum of four sources. Limiting the number of sources is related to the 

observed decrease in discrimination as sources are likely to become more similar when including 

an increasing number of sources (Vale et al., 2022). This means that finding a fingerprint property 

that strongly discriminates one source from all other sources is becoming increasingly difficult, 

resulting in less robust source apportionments results.  

The development of new fingerprint properties and the use of approaches such as composite 

fingerprints has contributed to an increasing range of potential SS sources being successfully 

discriminated (Walling, 2013). This development has thereby enhanced the sediment fingerprinting 

technique, providing more rigorous and robust source apportionment results (Owens, 2022). 

Therefore, the development of new fingerprints is likely to remain an important direction of 

research to progress developments for the sediment fingerprinting approach. 

1.4.4 Model Evaluation 

Sediment fingerprinting un-mixing models are used to quantitatively estimate the relative 

contributions of the potential sources to the target sediment. Modelling exercises were initially 

undertaken by applying frequentist-based approaches (e.g., Collins et al., 1997a; Walling et al., 

1999), using optimization techniques to minimize residuals between source and target SS 

properties to estimate relative source contributions. More recently, Bayesian modelling 

approaches have gained a more widespread attention in sediment fingerprinting (Cooper et al., 

2014a). The advantages of Bayesian un-mixing models include a better incorporation of prior 

information on source contributions (Cooper and Krueger, 2017), and a more robust incorporation 

of uncertainty (Nosrati et al., 2014; Rowan et al., 2012). Bayesian un-mixing models can thereby 

capture source uncertainties including spatial variability in sediment fingerprint properties across 

the study area, uncertainties associated with instrumental precision, covariances between 

properties of fingerprints, and residual model errors (Cooper et al., 2015). With several of these 

Bayesian un-mixing model frameworks (as well as several frequentist models) being open-source, 
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including standard operating procedures and graphical user interfaces, they provide the tools to 

achieve some sort of standardisation which should enable the reproduction and comparison of 

results (Owens et al., 2016).  

Uncertainties related to the use of un-mixing models and especially the estimation of un-mixing 

uncertainties, are not well quantified and remain difficult to assess. Peart and Walling (1988) 

already identified the need to use independent evidence to evaluate sediment fingerprinting 

results. With datasets becoming increasingly complex, the evaluation of the un-mixing model 

outcomes is becoming even more important (Gaspar et al., 2019). This is especially pertinent when 

trying to understand the sediment dynamics within complex landscapes, where soil erosion, storage 

and export of sediments are influenced by complicated topography and land use patterns (Gaspar 

and Navas, 2013; Navas et al., 2013). Subsequent evaluation can then support the managers and 

stakeholders who require both accurate (low error) and precise (low uncertainty) sediment source 

information. While model precision can often be evaluated from modelling frameworks based on 

Bayesian and/or Monte Carlo based methods (Batista et al., 2022), evaluating the subsequent 

accuracy is more challenging. To help evaluate this accuracy of sediment fingerprinting model 

outcomes, artificial mixtures consisting of known proportions of sediment sources can be used (e.g., 

Franks and Rowan, 2000; Gaspar et al., 2019; Haddadchi et al., 2014b; Martínez-Carreras et al., 

2010c). These artificial mixtures can be created in the laboratory by combining known contributions 

of source material, with subsequent source proportions estimated by the un-mixing model then 

being compared to the known source input contributions to the artificial mixtures.  

To reduce the laboratory workloads involved in the preparation and analysis of fingerprints from 

artificial source mixtures, virtual mixtures have gained increasing attention in recent years (e.g., 

Batista et al., 2022; Palazón et al., 2015; Sherriff et al., 2015). In these virtual mixtures, fingerprint 

values are generated mathematically. Virtual mixtures can be easily created without additional 

costs, being of particular advantage when costs involving the analyses of fingerprint properties are 

rather high. Furthermore, virtual mixtures allow for the introduction of different uncertainties, and 

different levels of uncertainty effects on un-mixing model outcomes that can therefore be relatively 

easily evaluated. Batista et al. (2022) showed that the use of virtual mixtures was as robust as using 

laboratory artificial mixtures. 

With the application of artificial or virtual mixtures, both the accuracy of the un-mixing model 

procedures (Gaspar et al., 2019), or proof-of-concept experiments that propose novel sediment 

fingerprint approaches (Batista et al., 2022) can be assessed. Evaluation can thus help to provide a 

further strengthening of the un-mixing model used by assigning a measure of robustness to their 

predicted source apportionments. This is now increasingly seen as being crucial for the support of 
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decision making and advancing modelling approaches (Batista et al., 2022). However, only few 

studies have evaluated un-mixing model outputs by using real soil sources and artificial mixtures 

(e.g., Batista et al., 2022; Gaspar et al., 2019; Haddadchi et al., 2014b). 

Though artificial and virtual mixtures can be used to evaluate the ability of models to un-mix source 

apportionments in controlled settings, they cannot provide definite information with regard to the 

source apportion accuracy in real world situations. It could therefore be useful to pursue other 

means of evaluating the un-mixing modelling results. Other potential evaluation methods could be 

based on the use of alternative datasets such as sediment transport rates (Batista et al., 2021), 

sediment budgets (Tiecher et al., 2022), outputs of hydro-sedimentary models, modelled 

catchment erosion (Wynants et al., 2020), remote sensing data (Lizaga et al., 2020a), or simple 

knowledge based approaches depending on local knowledge and self-made observations (Evrard 

et al., 2022).  

1.4.5 Source Variability 

The number of sources used to discriminate amongst should be limited, though the number of 

sources need to provide meaningful insights into the erosion and sediment delivery processes that 

occur within a catchment (Evrard et al., 2022). To allow for a proper discrimination, Evrard et al. 

(2022) suggest that researchers make sure that the sources considered are sufficiently different to 

allow proper discrimination. To correctly characterize each source (i.e., land use), a sufficient 

number of samples should be collected, where samples should well represent the spatial variability 

of that particular source inside the catchment. 

To this end, various sampling methods are commonly used to ensure all major sources within a field 

are being sampled (see review by Collins et al., 2020). Collins et al. (2020) thereby suggest that the 

common practise of bulking replicate samples from the same field into a single composite sample 

should be avoided; there is no guarantee that a bulked sample value is similar to the average value 

of separately analysed samples. However, to investigate each collected sample separately requires 

more resources (i.e., related to sampling and analysis), which is often not feasible. Thus, limitations 

in the number of samples that can be collected and analysed can be a major restriction in gaining 

insights into the spatial variations of fingerprint properties. 

The same limitations apply to the characterisation of temporal changes in potential source 

properties. Source material sampling is mostly conducted during a single sampling campaign 

(Collins and Walling, 2004). For many fingerprints this sampling strategy might be sufficient, though, 

there are certain fingerprint properties (e.g., organic fingerprints) that are influenced by seasonal 

variations (Ben-David et al., 1998; Bilby et al., 1996), as well as by biotic and abiotic factors (Collins 
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et al., 2019; Lauber et al., 2013). Investigations into changes of source properties are often limited 

and there is a lack of understanding of their magnitude and predictability over space and time. 

Therefore, if repeat source sampling campaigns are absent, careful consideration might be needed 

regarding when certain fingerprints can be used. 

1.4.6 Non-Standardized Methods 

With an increasing number of publications over recent years, an expansion in methodologies has 

been reported in source fingerprinting studies (Collins et al., 2020; Owens, 2022). Diversity in 

method developments has originated from a growing number of groups working on the sediment 

fingerprinting approach (Collins et al., 2020). The method developments as outlined by Owens 

(2022) comprise several elements, involving: (i) the examination of potential new fingerprints, (ii) 

assessing ways to better sample and characterize sediment and source material, (iii) developing 

protocols, statistical approaches and models that provide more accurate source contribution 

estimates and information on their uncertainties, and (iv) evaluating the accuracy and precision of 

the results derived from models by using either artificial and virtual mixtures. These developments 

helped the sediment fingerprinting technique to evolve, allowing for a more robust and rigorous 

sediment source apportionment. However, too much method development can lead to a 

divergence of approaches and thereby a lack of method standardization. This has occurred despite 

calls for, and development of, more generic methodological steps (e.g., generic decision trees: 

Collins et al., 2017; Collins and Walling, 2004).  

For example, there is a lack of general agreement within the sediment fingerprinting community 

regarding the different fingerprint selection methods. The large ranges of applied methods and the 

lack in general of agreed methodological procedures challenges a more widespread uptake of the 

approach as a standard tool for scientific and management goals (Collins et al., 2017; Mukundan et 

al., 2012). Furthermore, as highlighted by Collins et al. (2017), many papers do not include the 

description of key methodological steps, increasing the possibility of major uncertainties related to 

the study outputs. This lack of standardisation is therefore undermining the credibility of the 

sediment fingerprinting approach (Collins et al., 2020). 

1.4.7 Disconnection between Science and Catchment Management 

Sediment source fingerprinting has gained widespread popularity in scientific research due to its 

potential to reduce problems of cost and representativeness of traditional sediment monitoring 

methods (Collins and Walling, 2004). Initially, the sediment fingerprinting approach was 

conceptually simple and cost-effective against other alternatives (Owens, 2022). With the current 
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developments creating increasingly complex methodologies, it is likely to be less appealing as a 

management or operational tool (Mukundan et al., 2012). This inhibits a more widespread 

application of the approach. 

One of the other major limitations preventing the widespread uptake by managers relates to the 

fact that the majority of fingerprint properties require labour intensive analysis using expensive 

equipment (Collins and Walling, 2004). This, together with the complex measurement methods and 

specific equipment needed, requiring expert knowledge (Pulley and Collins, 2021). Another reason 

that might explain the limited uptake beyond the academic field lies in the advanced statistical 

analyses and complicated modelling techniques used (Owens, 2022). To this end, the sediment 

fingerprinting approach is not used by managers and regulators as much as expected or desirable, 

causing a disconnection between science and practise (Owens, 2022).  

1.5 High Temporal Frequency Sediment Fingerprinting 

1.5.1 Limitations in Sampling and Analysis Procedures 

Resources needed for target sediment sampling and subsequent analyses limit the number of 

samples that are generally analysed. Consequently, single sampling campaigns or a restricted 

number of sampling campaigns are performed, giving rather limited insights in the temporal 

variability of source contributions to the target SS (Collins et al., 2020). These limitations are 

inherent to the applied sampling procedures for collecting target sediment samples, with sampling 

strategies including: (i) point sampling, (ii) time-integrated sampling, and (iii) the automated 

collection of water samples. Point sampling can be done by e.g., taking large stream water samples 

and extracting the SS by means of flow centrifuges (Devereux et al., 2010; Motha et al., 2003), or 

in-stream dewatering techniques using portable centrifuge or filtration systems (Horowitz et al., 

1989). Time-integrated sediment traps, e.g., as presented by Phillips et al. (2000) (Figure 1.6), rely 

on the large difference in diameter between the inlet of the samplers (4 mm) and the diameter of 

the sampler chamber (98 mm). This increase in diameter reduces the flow velocity and thereby 

leads to the settling of the SS. These samplers are often used for sampling during storm runoff 

events. The Phillips sediment trap has been shown to trap a representative SS sample with an 

effective particle size of <63 μm (Phillips et al., 2000; Russell et al., 2001). Automated water 

samplers (e.g., Oeurng et al., 2010) (Figure 1.6) collect stream water samples at fixed time intervals 

after starting a manual sampling programme, or can be triggered by a sensor signal (e.g., when a 

specified stream water level is surpassed). These samplers allow for discrete sampling, offering the 

potential of a finer temporal resolution (i.e., compared with a single composite sample over the 

whole hydrograph obtained by the sediment trap) when sampling at different times over the 
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hydrograph. However, automated samplers result in higher numbers of samples that need to be 

processed and analysed, adding to workloads and costs. Furthermore, the rather small mass of SS 

collected (i.e., stream water samples of only 0.5 or 1 L per sample bottle) might not be sufficient 

for specific fingerprint analysis.  

Besides the costs and workloads associated with the deployment and maintenance of the sampling 

equipment, subsequent costs involved in laboratory analysis can contribute significantly. For 

instance, geochemistry analyses are estimated at a cost of ca. US$10-$50 per sample (Owens, 

2022). The high costs involved in analysing each collected target SS sample is an important 

limitation in any research or monitoring budget, meaning that a limited number of samples can be 

analysed (e.g., Walling, 2013). As a consequence, information regarding high temporal resolution 

changes in source contributions to the target SS are sparse (e.g., Collins et al., 2020). 

1.5.2 Problems Associated with the Current Lack of High Temporal Resolution 

Observations 

Due to the aforementioned resource limitations, target SS samples are often collected during single 

measurement campaigns (Collins et al., 2020). This is despite many studies having shown that there 

is a potential large inter and/or intra event variability in source contributions (e.g., Cooper et al., 

2015; Legout et al., 2013; Navratil et al., 2012; Vale et al., 2020; Vercruysse and Grabowski, 2019). 

Single campaigns might thus miss information on how SS source contributions change over time.  

These temporal changes in SS source contributions can be related to the aforementioned changes 

in erosion and sediment transport due to e.g., variations in climatic conditions and prevailing 

sediment connectivity pathways (section 1.2.1 and 1.2.3). For example, when most sediment is 

transported during specific periods throughout the year (e.g., during extreme rainfall-runoff events 

or during certain seasons) (Gonzalez-Hidalgo et al., 2010), missing out on sampling these specific 

periods will therefore not provide the information needed to develop robust targeted management 

strategies. Successfully capturing the variability in source contributions thus requires 

methodological improvements concerning the application of high temporal frequency and/or long 

durational observations (Poulenard et al., 2012).  
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Figure 1.6 Commonly used SS sampling methods for sediment fingerprinting purposes. (a) and (b) 

show the schematic design of a time-integrated SS trap sampler (figure from Phillips 

et al., 2000) (a), and a time-integrated trap sampler installed in the Attert River at 

Everlange (Luxembourg) (b). (c) and (d) show an automated water sampler installed in 

the Roudbach River at Platen (Luxembourg) (c), and an example with filled bottles (d). 
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1.5.3 Low Cost Fingerprints and Resource Implications 

The analyses of conventionally used sediment fingerprints is often expensive due to the required 

expertise, workloads involved in the sampling and analysis, and the required analytical equipment 

(Collins et al., 2020; e.g., Walling, 2013). To partly solve this problem, several sediment fingerprints 

that are easy to use and require lower associated costs and workloads have been developed. These 

fingerprints, which are referred to as low-cost fingerprints, are mainly developed with the goal to 

reduce the costs and complexities involved in the analysis of the fingerprints, by allowing 

fingerprints to be measured in an easier and faster manner (Pulley and Collins, 2021). 

One such low-cost fingerprint is based on sediment colour, derived from scanned images obtained 

from an ordinary office scanner as presented in Pulley and Rowntree (2016) and further applied 

elsewhere (e.g., García-Comendador et al., 2021; Pulley and Collins, 2021, 2022). This method relies 

on commonly used approaches for sample preparation, including sieving and drying of the collected 

source and sediment samples. Samples are then simply placed into clear bags and scanned using 

an office scanner. From the scanned images, colour parameters are derived using an RGB colour 

model, where differences in colour parameters between the sources are then used for 

discrimination. Colour parameters have also been derived using different colour models from the 

VIS part of the reflectance spectra measured with a reflectance spectrophotometer (Legout et al., 

2013; Martínez-Carreras et al., 2010a, 2010b). Here, spectra were obtained from dried and sieved 

samples, which were placed on a reference white panel. From the raw reflectance data, colour 

coefficients were computed. Besides colour derived parameters, geochemical fingerprints were 

also derived from the reflectance measurement in the visible and near-infrared (Cooper et al., 

2014b, 2015; Martínez-Carreras et al., 2010b). Chemometrics (i.e., partial least-square regression 

models) were used to calibrate the spectral data with the source and SS chemistry data measured 

in the laboratory and later used in a predictive mode. 

These low-cost fingerprinting methods still require resource-intensive sampling workloads and 

initial preparation of the samples that are similar to conventionally applied fingerprinting methods. 

These remaining resource needs can thereby still pose limitations to a wider uptake of the sediment 

fingerprinting approach. Furthermore, they still pose limitations to feasible repeat sampling 

campaigns and subsequent analyses, hampering further insights into how source contributions to 

the target SS change at different temporal scales. To this end, there is further need to develop 

strategies and methods that, besides challenging resource needs related to the analysis of 

conventional fingerprints, overcome the resource needs related to the initial sampling and 

preparation of samples. 
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1.5.4 The Potential for High Temporal Resolution Sediment Fingerprinting 

Devices measuring e.g., discharge, SSC, turbidity and hydro-chemical data in situ and at high 

temporal resolution have supported significant improvements in the mechanistic understanding of 

catchment and stream functioning (Kirchner et al., 2004). Such approaches remove the needs for 

sampling and/or subsequent laboratory preparation of samples. However, instruments for 

measuring sediment-associated properties in situ and at high temporal frequency are limited and 

remain largely unexplored for sediment fingerprinting purposes (Martínez-Carreras et al., 2016).  

Submersible spectrophotometers could potentially fill this gap. Spectrophotometer probes are 

widely used for drinking water quality monitoring (e.g., D’Acunha and Johnson, 2019; González-

Morales et al., 2020; Prairie et al., 2020). They are used to detect and measure harmful metals, as 

well as for measuring a wide range of different inorganic, organic and biological chemicals, and 

colour (e.g., Prairie et al., 2020; Shi et al., 2022). Attempts to use the absorbance readings to 

estimate SS properties have been reported by (Bass et al., 2011; Martínez-Carreras et al., 2016; 

Sehgal et al., 2022). These studies used in situ measurements to predict concentrations of 

particulate organic carbon, SS loss-on-ignition, and SS carbon content and particle size, respectively.  

The working principle of spectrophotometer sensors is based on the emittance of a light beam (e.g., 

using a Xenon-flash light; Figure 1.7). In the optical measuring path, the emitted light passes 

through the medium that is to be analysed (e.g., water and SS). The detector, which is located at 

the other side of the optical measuring path measures the transmittance, calculating the absorption 

over the full wavelength range. In Figure 1.7, there is a second light beam that is guided through an 

internal comparison section within the spectrophotometer probe. The measurement through this 

internal section is used for the compensation of any disturbances (e.g., ageing of the lamp).  

 

Figure 1.7 Schematic representation of the working principle of an example submersible 

spectrophotometer (S::can spectro::lyserTM probe ; Scan Messtechnik GmbH, Vienna, 

Austria). From: Scan Messtechnik GmbH (2018). 
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Concentrations of substances are subsequently determined by the amount of light that is partially 

absorbed, in specific spectral regions (e.g., as shown in Figure 1.8), using the Beer-Lambert law 

(Equation 1.1; as described in e.g., Fuwa and Valle, 1963).  

A =  ε ×  l × c                              [Equation 1.1] 

where A is the total absorption of light, ε the absorptivity (i.e., measure on how strongly a chemical 

species absorbs), l the path length and c the concentration of the attenuating species. 

In this thesis, it is hypothesized that different SS properties (e.g., colour, geochemistry) influence 

the absorbance spectra at different ranges of wavelengths (i.e., fingerprints) in which the 

spectrophotometer measures (e.g., UV-VIS wavelength range; Figure 1.8). Differences in observed 

absorbance spectra, induced by differences in properties between SS sources, can then be used for 

discrimination, providing a basis for source apportionment of target SS. By directly measuring 

absorbance in situ, submersible spectrophotometers could potentially eliminate sampling and 

subsequent laboratory analysis needs. This approach may therefore offer the means to drastically 

increase insights in potentially changing SS source contributions through time. 

  

Figure 1.8 Example of an UV-VIS absorption spectrum, with examples of water quality 

parameters derived from the spectrum at specific wavelength ranges. From: Scan 

Messtechnik GmbH (2018). 

Particle size analysers are instruments that could also be used to obtain in situ and high temporal 

frequency observations on SS-associated properties (i.e., SS PSD). Differences in parent material, 

weathering and erosion processes can influence transported PSDs, and it is hypothesized in this 
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thesis that this information can be used to discriminate between potential SS sources (as suggested 

by Laceby et al., 2017). Particle size distributions of stream water samples can be measured using 

laboratory-based particle size analysers. These instruments require no initial sample preparation 

and analysis times are short. Additionally, submersible PSD analyser probes could help in even 

further reducing resource needs, eliminating sampling workloads and laboratory analysis needs. 

Particle size distribution analysers work on the principles of laser diffraction (Figure 1.9). The 

process relies on the emittance of a laser beam by a laser diode. The diffraction of the laser beam 

is subsequently influenced by the particles in suspension, where different sizes of particles diffract 

the light at different angles (i.e., with larger particles scattering the light at small angles relative to 

the laser beam and small particles scattering the light at large angles relative to the laser beam). 

The measured angular scattering intensity distribution data are then used to calculate the PSDs. 

The mathematical conversion of the scattering data into the PSDs is achieved by employing the Mie 

scattering model (Malvern Instruments, 2013; Sequoia Scientific, 2018). The Mie theory assumes 

scattering to be dependent on the size of the particle and its reflective index relative to the water. 

However, the Mie theory assumes particles to be spherical, whereas non-spherical particles are 

dominant in nature (Fettweis and Lee, 2017). Therefore, certain particle size analysers provide an 

alternative model, to convert the scattering under the assumption that the particles are 

randomly/irregularly shaped (e.g., Agrawal et al., 2008). This model can either be an empirically 

determined (e.g., Sequoia Scientific, 2018), or based on reference optical properties of the sample 

to be tested (e.g., Malvern Instruments, 2013). 

 

Figure 1.9 Principles of laser diffraction analysis for obtaining the particle size distribution. From 

Kongas (2003). 
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1.6 Aims and Objectives 

1.6.1 Main Aim 

Though the sediment fingerprinting approach is well-adopted globally, key challenges and 

uncertainties remain. One of the main challenges is the requirement for resources in the sampling 

and analysis procedures, which hampers the opportunities to gain high temporal insights into 

changing SS source contributions. Hence, the sediment fingerprinting technique is constantly 

testing new fingerprints, in combination with improved analysis techniques, to allow for an 

increasing number of samples to be analysed against limited budgets and with the need to manage 

workloads. The recent development of new, so-called low-cost fingerprints could potentially 

overcome some of these resource limitations. However, even with these low-cost methods, 

resource needs associated with source and target SS sampling, and subsequent laboratory sample 

preparation remain.  

While instruments that allow for in situ and high temporal frequency measurements have been 

shown to improve the mechanistic understanding of catchment-related processes, such 

instruments have, in the main, not been deployed for measuring sediment-associated properties, 

and are therefore absent from sediment fingerprinting studies. To this end, the main aim of this 

thesis is to investigate whether in situ instruments (i.e., UV-VIS spectrophotometer and particle size 

analyser probes) allow for long-term and high temporal resolution SS source apportionment, to 

ultimately provide a better understanding of catchment hydro-sedimentary dynamics and to 

facilitate the implementation of targeted management solutions.  

1.6.2 Research Questions 

The main aim of this thesis will be addressed by answering the following research questions (RQ), 

constituting the core chapters of this thesis: 

- RQ 1 (Chapter 2): How can absorbance readings of a submerged spectrophotometer be used 

as sediment fingerprints to estimate source contributions from artificially created sediment 

mixtures in a proof-of-concept laboratory experiment? 

- RQ 2 (Chapter 3): Can absorbance differences from source streams in confluences be used 

to apportion spatial SS sources at the catchment scale? 

- RQ 3 (Chapter 4): Can SS source particle size distributions be used as a sediment fingerprint, 

in combination with an end-member grain size un-mixing model? 
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1.7 Thesis Structure 

The overall structure (see also Figure 1.10) of the remainder of this thesis is as follows: 

Chapters 2 and 3 describe the use of absorbance measured over the 200-730 nm wavelength range 

as sediment fingerprints. Chapter 2 describes a proof-of-concept laboratory experiment, in which 

absorbance measurements were made on prepared laboratory soil samples and artificial mixtures 

consisting of known soil samples contributions. Artificial mixtures were un-mixed, using the 

MixSIAR Bayesian un-mixing model (Stock et al., 2018; Stock and Semmens, 2016), to evaluate the 

usability of absorbance data as a sediment fingerprint under controlled conditions. Chapter 3 then 

elaborates on the proof-of-concept laboratory study by using absorbance as a sediment fingerprint 

in a catchment scale study. Here, a confluence-based sampling strategy was applied to a series of 

confluences within a small catchment (44 km2), comprising of diverse lithologies and land uses. 

Absorbance measurements on grab water samples were used for un-mixing (using the MixSIAR 

model), with the tributary source contributions being evaluated against calculated sediment 

budgets. 

Chapter 4 describes an experiment study into the use of PSD as a sediment fingerprint. This study 

is composed of two parts. First, a proof-of-concept investigation was performed. Particle size 

distributions were measured on artificially created soil samples, sieved to three different fractions. 

Artificial mixtures, composed of soil samples sieved to different fractions, were then un-mixed using 

the AnalySize grain-size un-mixing model (version 1.2.1; Paterson and Heslop, 2015). Modelled 

source estimates were then evaluated against the known soil sample contributions in each mixture. 

Subsequently, the approach was applied in a catchment scale study, using a confluence-based 

sampling strategy. Herein, contributions to the confluence downstream SS were un-mixed (using 

the AnalySize model) based on the PSD differences in the upstream tributary sources. Un-mixing 

results were subsequently evaluated against calculated sediment budgets. 

Chapter 5 synthesises the overall findings of the study, reflecting on the research questions and the 

main aim of this thesis, and followed by conclusions. Finally, an outlook is provided on how the 

presented methodological approaches and findings could be used in future applications.  
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Figure 1.10 The organisational framework of the thesis. 
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Chapter 2 High Frequency Un-Mixing of Soil Samples 

using a Submerged Spectrophotometer in a 

Laboratory Setting—Implications for Sediment 

Fingerprinting  

Abstract 

This study tests the feasibility of using a submersible spectrophotometer as a novel method to trace 

and apportion suspended sediment sources in situ and at high temporal frequency. Laboratory 

experiments were designed to identify how absorbance at different wavelengths can be used to 

un-mix artificial mixtures of soil samples (i.e., sediment sources). The experiment consists of a tank 

containing 40 L of water, to which the soil samples and soil mixtures of known proportions were 

added in suspension. Absorbance measurements made using the submersible spectrophotometer 

were used to elucidate: (i) the effects of concentrations on absorbance, (ii) the relationship 

between absorbance and particle size, and (iii) the linear additivity of absorbance as a prerequisite 

for un-mixing. The observed relationships between soil sample concentrations and absorbance in 

the ultraviolet visible (UV-VIS) wavelength range (200-730 nm) indicated that differences in 

absorbance patterns are caused by soil-specific properties and particle size. Absorbance was found 

to be linearly additive and could be used to predict the known soil sample proportions in mixtures 

using the MixSIAR Bayesian tracer mixing model. Model results indicate that dominant 

contributions to mixtures containing two and three soil samples could be predicted well, while 

accuracy for four soil sample mixtures was lower (with respective mean absolute errors of 15.4%, 

12.9% and 17.0%). The results demonstrate the potential for using in situ submersible 

spectrophotometer sensors to trace suspended sediment sources at high temporal frequency. 

2.1 Introduction 

Suspended sediment (SS) plays an essential role in the hydrological, geomorphological and 

ecological functioning of aquatic ecosystems (Bilotta and Brazier, 2008; Owens et al., 2005; 

Vercruysse et al., 2017; Wohl et al., 2015). Suspended sediment export is mainly driven by hydro-

meteorological variables (Vercruysse and Grabowski, 2019) and factors such as hillslope erosion, 

sediment delivery to stream channels and stream channel bank or bed erosion (Fryirs, 2012; 

Mukundan et al., 2012). However, excessive amounts of SS can degrade aquatic ecosystems by 
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causing siltation, habitat deterioration or pollution, linked to the key role of SS in the transportation 

of contaminants and nutrients (e.g., Affandi and Ishak, 2019; Carter et al., 2006; House, 2003; 

Kronvang et al., 2003). Hence, the need to identify the sources of SS is increasingly recognised as a 

priority to support management strategies for stream ecology, geomorphology and water quality 

issues (Collins et al., 2017; Mukundan et al., 2012; Walling and Collins, 2008) in alignment with 

environmental policies (e.g., WFD; 2000/60/EC, 2000). 

Sediment fingerprinting is one direct approach to estimating SS contributions from catchment 

sources. This approach compares properties of potential source materials with properties of SS, 

using distinct diagnostic signatures or so-called ‘composite fingerprints’ comprising several 

constituent properties (e.g., Oldfield et al., 1979; Peart and Walling, 1986, 1988; Walling and 

Woodward, 1992). These properties are selected on the basis that they are clearly distinctive 

between individual sources, allowing for the un-mixing of SS to estimate source proportions.  

Despite the fingerprinting approach being increasingly adopted globally (see reviews by Collins et 

al., 2017, 2020; Guan et al., 2017; Haddadchi et al., 2013; Owens et al., 2016; Tang et al., 2019), 

there remain some major limitations that continue to hamper its use as either a scientific or 

management tool. These limitations include the pre-selection of the most robust fingerprints for 

different environmental settings (Collins et al., 2020; Koiter et al., 2013) and methods for SS 

sampling (Haddadchi et al., 2013). Robust fingerprint properties must both differentiate between 

potential SS sources and behave conservatively during mobilisation and delivery to the river, stream 

or lake (Walling et al., 1993). Conservative behaviour is important because erosion and SS transport 

processes are particle size selective which, in turn, influences sediment properties and the reliability 

of the direct comparisons between source materials and target SS samples (e.g., Collins et al., 2017; 

Laceby et al., 2017). A major limitation associated with common SS sampling methods concerns the 

limited insights they provide on how sediment sources change over short (i.e., minutes) time 

intervals and during longer (e.g., seasons or years) periods (e.g., Collins et al., 2020; Navratil et al., 

2012; Vercruysse et al., 2017). The commonplace deployment of time-integrating samplers (Phillips 

et al., 2000), for example, is limited with regard to the temporal resolution of the SS source 

estimates generated (often limited to one or a small number of samples per event; Collins and 

Walling, 2004). Furthermore, sediment particle size and geochemical properties might be altered 

during sampling deployment and sample storage prior to analysis (e.g., due to 

adsorption/desorption; Smith and Owens, 2014). The collection and use of high frequency 

instantaneous SS samples is constrained by the associated analytical costs for many fingerprint 

properties/tracers commonly used in source fingerprinting investigations (Collins and Walling, 

2004; Haddadchi et al., 2013). High frequency observations (minutes) for prolonged periods could 

contribute to the understanding of catchment sediment dynamics (e.g., which SS sources are active 
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under what conditions), which is key to eventually taking suitable countermeasures against 

excessive sediment input to rivers and streams (Navratil et al., 2012; Vercruysse et al., 2017). 

The current absence of well-established methods to measure SS properties in situ at high frequency 

compounds the current limited capacity to document SS source contributions over short time 

intervals for longer durations of measurement. Thus far, attempts to overcome this limitation still 

rely on the collection of physical samples in the field at high frequency, in conjunction with 

subsequent laboratory analyses of tracer properties. Such work has included the use of diffuse 

reflectance infrared Fourier transform spectrometry (e.g., Cooper et al., 2014b, 2015; Poulenard et 

al., 2012), spectral reflectance analysis of sediment chemical properties on samples placed on glass 

fibre filters (Cooper et al., 2014b; Martínez-Carreras et al., 2010b), colour parameters obtained 

from spectro-colorimetry (Martínez-Carreras et al., 2010c), colour parameters derived from office 

scanners (Pulley and Rowntree, 2016) and deployment of handheld XRF instruments (Smith and 

Blake, 2014). Whilst these procedures reduce resource needs for the analysis of tracer properties 

in numerous target sediment samples, they do not overcome the resource needs pertaining to high 

frequency collection of such samples. 

Submersible spectrophotometer sensors, widely used for drinking water quality monitoring (e.g., 

D’Acunha and Johnson, 2019; González-Morales et al., 2020; Prairie et al., 2020), may, however, 

offer a reliable means to provide data on SS fingerprint properties at high frequency. Bass et al. 

(2011) and Martínez-Carreras et al. (2016) used submersible spectrophotometer sensors, 

measuring absorbance in the ultraviolet visible (UV-VIS) range, to estimate SS properties in situ. The 

former used such a sensor to estimate particulate organic carbon content, whilst the latter 

estimated sediment loss-on-ignition, with both studies calibrating the sensor readings using 

physical samples. This work demonstrated the potential value of such sensors to discriminate 

between sediment sources with contrasting tracer properties and for un-mixing source 

proportions. The ability of these sensors to measure in situ suggests limited physical SS sampling is 

only required for sensor validation. Furthermore, given the facility to measure at high frequency 

(e.g., minutes) for long duration, since maintenance needs of the sensor are low, a 

spectrophotometer sensor has the potential to resolve current constraints pertaining to both 

sediment sampling and ensuing tracer analysis. 

When the influence of dissolved species in water is negligible, absorbance measurements are 

mainly affected by SS concentration (Thomas et al., 2017) and the size of the SS particles (Berho et 

al., 2004). Thomas et al. (2017) reported that absorbance increases with SS concentrations. Berho 

et al. (2004) showed that smaller particles resulted in higher absorbance values than coarser 

particles with the same minerology. These studies clearly demonstrated that the exact relationships 
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between absorbance and both concentration and particle size warrant detailed investigation to 

determine if, and to what extent, absorbance values need to be compensated to facilitate high 

frequency sediment source fingerprinting. 

Given the above context and the ongoing need to continue testing devices for assembling high 

temporal resolution data on SS properties in situ, we conjecture that the absorbance readings of a 

submerged spectrophotometer can be used as sediment fingerprints to estimate SS sources. 

Herein, we present a proof-of-concept laboratory experiment where we use absorbance data to 

un-mix artificial mixtures of soil samples sieved to three different particle size fractions. To this end, 

we tested how the absorbance data is influenced by SS concentration and particle size distribution 

(PSD), as well as the suitability of the absorbance data for estimating sediment source proportions. 

2.2 Materials and Methods 

Experimental assessment of the submersible spectrophotometer was undertaken in a series of 

laboratory tests. Soil samples of known origin and composition were used to create a series of water 

samples containing SS of differing composition and concentration; measurements of absorbance 

spectra in situ could then be interpreted in relation to the composition and concentration, and to 

the expected outcomes in terms of the spectra. 

2.2.1 Soil Samples and Artificial Mixtures 

Six soils samples were collected in Luxembourg based on differences in colour (visual inspection) 

and differences in underlying geology (Figure 2.1). Soils were air-dried at room temperature before 

being disaggregated manually using a pestle and mortar. Samples were then dry sieved to three 

different size fractions: <32 μm, 32-63 μm and 63-125 μm. Due to its PSD, retrieving the 63–125 μm 

fraction of soil 6 was not possible and this soil sample was therefore omitted, resulting in 17 size-

fractionated soil samples. The fractions were selected based on commonly used upper particle size 

boundaries in sediment fingerprinting studies (see Laceby et al., 2017). Minerology of the soil 

samples is shown in Table A.1 (Appendix A). 

From the resulting 17 size-fractionated soil samples, we created artificial mixtures of two, three and 

four different samples. Mixtures were classified into two groups: (i) mixtures of soil samples sieved 

to the same particle size fraction, and; (ii) mixtures of soil samples sieved to different size fractions. 

The soil sample contributions to the artificial mixtures were based on having either a clearly 

dominant sample or more equal contributions (see Table A.2). 

https://www.google.com/search?client=firefox-b-ab&q=micrometre+1+%CE%BCm+in&sa=X&ved=2ahUKEwic9L7e9d7kAhUOLewKHfpACo8Q6BMoADAYegQIDRAG
https://www.google.com/search?client=firefox-b-ab&q=micrometre+1+%CE%BCm+in&sa=X&ved=2ahUKEwic9L7e9d7kAhUOLewKHfpACo8Q6BMoADAYegQIDRAG
https://www.google.com/search?client=firefox-b-ab&q=micrometre+1+%CE%BCm+in&sa=X&ved=2ahUKEwic9L7e9d7kAhUOLewKHfpACo8Q6BMoADAYegQIDRAG
https://www.google.com/search?client=firefox-b-ab&q=micrometre+1+%CE%BCm+in&sa=X&ved=2ahUKEwic9L7e9d7kAhUOLewKHfpACo8Q6BMoADAYegQIDRAG
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Figure 2.1 Soil sampling locations within Luxembourg (a) and images of the six collected soils (b). 

Source N.W. Europe map (a) adapted from: ArcGIS online (Europe_data_WG_NPS); 

source geological map of Luxembourg (a): Service Géologique du Luxembourg. 

2.2.2 Sensors 

Laboratory experiments used the S::can spectro::lyserTM probe (Scan Messtechnik GmbH, Vienna, 

Austria) submersible spectrophotometer. This sensor measures transmittance of a light beam (i.e., 

xenon-flash light) after contact with water in the optical measurement window, which is then 

converted to absorption over the UV-VIS wavelength range (200-730 nm, at 2.5 nm intervals). The 

detector is located at the opposite side of the optical window. Measurement frequency was set at 

2 minute intervals, which is the smallest interval possible. Measured absorbance data were saved 

onto the corresponding Con::cube logger (Scan Messtechnik GmbH, Vienna, Austria). 

In tandem with the spectrophotometer, a LISST-200X laser diffraction (Agrawal and Pottsmith, 

2000) sensor (Sequoia Scientific, Bellevue, WA, United States) was used to measure PSD. This 

instrument works on the principle of laser diffraction with a laser beam emitted by a laser diode 

(Agrawal and Pottsmith, 2000). The LISST sensor assigns the diffracted laser beams into one of 36 

sediment sizes classes, providing estimates of PSD and average particle size. Measurements were 

taken at 1.5 second intervals using the random shape model algorithm (Sequoia Scientific, 2018). 
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2.2.3 Laboratory Set-Up 

The laboratory set-up consisted of a 75.4 L capacity, round tank. The spectrophotometer and LISST 

sensor were installed in a horizontal orientation to prevent sedimentation of particles on the 

measuring windows (Figure 2.2a, c). Using 40 L of demineralised water, both sensors were located 

more than 10 cm below the water surface as advised by the manufacturers. 

 

Figure 2.2 Laboratory setup: side view schematic representation with dimensions in cm (a); top 

view schematic representation with water sampling locations #1, #2 and #3 (b), and 

photograph (c). 

Homogeneous concentrations inside the tank were established using a Fundamix vibromixer (DrM, 

Dr. Mueller AG, Switzerland), a vibrating device. This method avoids cone and vortex formation 

which are possible with rotational stirring techniques (Orlewski et al., 2018). To test homogeneity 

of concentrations during the experiments, water samples were collected at three locations within 

the tank set-up (Figure 2.2c) using a pipette (see Figure A.1, A.2 and A.3 for initial testing on 

vibromixer speed and position, and homogeneity of concentrations at different depth and 

locations; supplementary material). These samples were subsequently transferred into pre-

weighted aluminium buckets, dried, and weighed again to determine concentrations. These 

concentrations (hereafter referred to as ‘measured concentrations’) were determined for all 

theoretical concentrations (10 concentrations in total; 100 mg L-1 – 1000 mg L-1 at 100 mg L-1 

increments) for all experiments (20 values associated with erroneous measurements were 

omitted). Selected theoretical concentrations are representative of SS concentrations values 

measured across Luxembourgish rivers (Martínez-Carreras, 2010). The experiments consisted of 

testing the 17 soil samples individually, followed by testing the 25 artificial soil sample mixtures 

(see Table A.2 for a detailed overview of the experiments and known soil sample contributions in 
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the artificial mixtures and Protocol A.1 for more detail of the steps adopted during the experiments 

and specific equipment settings). 

2.2.4 Data Pre-Treatment 

LISST background measurements, taken before each experiment, were saved onto the instrument 

and automatically compensated for by the LISST software during subsequent measurements. 

Accordingly, the spectrophotometer absorbance data were compensated by using the data 

collected before the start of the actual experiment (i.e., subtracting the background readings from 

all consecutive absorbance data readings acquired during each experiment). Data obtained from 

the spectrophotometer and LISST sensors were thus only affected by the soil sample materials 

added to the experimental tank, and not influenced by the properties of the demineralised water. 

Absorbance data were measured over a 10 minute period at 2 minute intervals; only the last four 

measurements were used for analysis (allowing time for the soil sample material to become fully 

mixed). LISST data were measured over the same 10 minute period, with only the last 6 minutes of 

measurements used in subsequent analyses.  

2.2.5 Concentrations and Relationship with Absorbance 

Both theoretical and measured concentrations do not fully represent the actual concentrations 

inside the experimental tank. The former is subject to the settling of particles during mixing, 

whereas the latter is subject to uncertainties associated with pipette sampling and the weighing of 

aluminium cups. Three steps were used to quantify to what extent measured concentrations (see 

section 2.2.3) deviated from theoretical concentrations, and if deviations differed for the three 

particle size fractions investigated (i.e., <32 μm, 32-63 μm and 63-125 μm). Firstly, differences 

between measured and theoretical concentrations were calculated for the experiments using only 

soil samples. Measured concentrations were expressed as a percentage of theoretical 

concentrations, to assess whether there is a consistency in soil sample material losses. Secondly, 

‘expected’ mixture concentrations were then calculated using a mass-balance (Equation 2.1), using 

the measured concentrations of the soil samples and their known contributions to the artificial 

mixture. This value was then compared with the directly measured concentration of the mixture 

itself.  

Expected mixture concentration = ∑ w𝑗  × conc𝑗

𝑛

𝑗=1
              [Equation 2.1] 

https://www.google.com/search?client=firefox-b-ab&q=micrometre+1+%CE%BCm+in&sa=X&ved=2ahUKEwic9L7e9d7kAhUOLewKHfpACo8Q6BMoADAYegQIDRAG
https://www.google.com/search?client=firefox-b-ab&q=micrometre+1+%CE%BCm+in&sa=X&ved=2ahUKEwic9L7e9d7kAhUOLewKHfpACo8Q6BMoADAYegQIDRAG
https://www.google.com/search?client=firefox-b-ab&q=micrometre+1+%CE%BCm+in&sa=X&ved=2ahUKEwic9L7e9d7kAhUOLewKHfpACo8Q6BMoADAYegQIDRAG
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where wj is the relative contribution of each soil sample to the artificial mixture (j = 1 to n, with n 

being the number of soil samples mixed), and concj is the measured concentration for soil sample j 

(resulting from the individual soil sample experiments).  

As a final step, we investigated the relationship of absorbance with both concentration and sieved 

particle size. To analyse patterns in the absorbance spectra for the 17 soil samples, the responses 

to increasing concentrations and particle size were examined. Randomly-selected absorbance 

values were used at low, medium and high range spectra (210 nm, 400 nm and 700 nm, 

respectively, example shown in Figure A.4; supplementary material). Besides these three randomly-

selected absorbance values, the average absorbance value over the whole range of measured 

wavelengths (200-730 nm) was used. These values were scaled, dividing the absorbance values by 

their respective theoretical concentrations, to obtain average increases in absorbance per mg L-1 (n 

= 10, for the 10 concentrations) for each soil sample, with accompanying standard deviations. This 

process was designed to obtain more insight into how absorbance changes with concentration at 

the different selected wavelengths for all soil samples. These scaled absorbance values were then 

related to the particle size measured at every concentration in every experiment. Using a Mann-

Whitney test, we tested if the absorbance values (n = 10, for the 10 concentrations) from the 17 

soil samples were significantly different (p < 0.05). This test was carried out for the average 

absorbance values, as well as for the absorbance values resulting from the three selected 

wavelengths (210 nm, 400 nm and 700 nm). Absorbance data in this analysis were compensated 

for theoretical concentrations (see section 2.3.1). 

2.2.6 Linear Additivity 

The directly measured absorbance values from the artificial mixtures were compared with the 

absorbance values resulting from the individual soil sample experiments to test if: (i) absorbance 

behaves as a linearly additivity property, and; (ii) the combination of relative absorbance values of 

the individual soil samples, as used in the artificial mixtures, results in similar absorbance values 

when directly measured on the mixture (Equation 2.2).  

Expected mixture absorbance = ∑ w𝑗  × Abs𝑗

𝑛

𝑗=1
              [Equation 2.2] 

where wj is the relative contribution of each soil sample to the artificial mixture (j = 1 to n), and Absj 

represents the absorbance value of that particular soil sample j when measured individually. The 

absorbance data over the whole wavelength range (200-730 nm) was used (example shown in 

Figure A.4). This comparison was undertaken for all 10 different concentrations, for each mixture 
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experiment, and compared with the measured mixture absorbance data corresponding to the same 

theoretical concentrations.  

2.2.7 Un-mixing Artificial Mixtures using the MixSIAR Model 

The MixSIAR Bayesian un-mixing model (Stock et al., 2018; Stock and Semmens, 2016) open source 

R-package was used to un-mix the artificial mixtures, and investigate how a well-established model 

for sediment fingerprinting (e.g., Upadhayay et al., 2020; Wynants et al., 2020) deals with the highly 

collinear absorbance data. As model input, data obtained from the mixture experiments (mixture 

data) were used, together with the absorbance data from the single soil samples (i.e., soil source 

data). To investigate performances between concentrations, only sources and mixture absorbance 

data from the same theoretical concentrations were used. Source data were represented by the 

mean, variance and sample size (Blake et al., 2018). The MixSIAR model calculates the relative 

average contributions of each sample mixed and the corresponding standard deviations. For all 

model runs, the Markov Chain Monte Carlo parameters were used according to the predefined 

‘short’ settings (chain length = 50000, burn = 25000, thin = 25, chains = 3). Model convergence was 

evaluated using the Gelman-Rubin diagnostics (variables <1.1). All models were run using the High 

Performance Computing facility at the Luxembourg Institute of Science and Technology. For the 

MixSIAR runs, the whole range of absorbance values was used, with each wavelength being 

regarded as a tracer. This resulted in 213 tracer values (wavelength range 200-730 nm, with 2.5 nm 

intervals). The known source contributions to each artificial mixture were compared with the 

source contributions estimated by the model. This comparison was made by calculating the 

absolute error (AE); the absolute difference between the known soil source contributions and the 

predicted source contributions generated by MixSIAR. 

2.3 Results 

2.3.1 Concentrations and Relationship with Absorbance 

The measured concentrations inside the tank were generally lower than the theoretical 

concentrations intended (Figure 2.3); measured concentration decreased with increasing particle 

size. The relationship between measured and theoretical concentrations varied little at increasing 

concentrations for all soil samples in the <32 µm fraction (Figure 2.3). Measured concentrations 

represented ca. 90% of the theoretical concentrations. Corresponding standard deviations ranged 

up to 4% (for 95% of all measured concentration values), with the remaining 5% of the values having 

higher deviations (observed at lower theoretical concentrations; i.e., 100-300 mg L-1).  
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For the two coarser fractions, measured concentrations showed larger deviations from the 

theoretical concentrations (Figure 2.3). For the 32-63 µm fraction, average measured 

concentrations mostly ranged between 60 to 90% of the theoretical concentrations. The average 

measured concentrations for the 63-125 µm fraction mostly ranged from 30% to 75%, with soil 5 

giving very low measured concentrations compared with the other soil samples. Despite the larger 

differences, the relationship between measured and theoretical concentrations remained constant 

with increasing concentrations for the separate soil samples (Figure 2.3). These average values had 

low standard deviations (i.e., <10% for 97.5% of the values and <5% for 81% of the values for the 

32-63 µm fraction; <10% for 95% of the values and <5% for 56% of the values for the 63-125 µm 

fraction).  

Deviations between expected and measured mixture concentrations (Equation 2.1) are shown in 

Table 2.1. Around 50% of the expected mixture concentrations showed a deviation of <5% 

compared with the measured mixtures concentrations. Around two thirds of mixtures showed a 

deviation <10%, and around 90% a deviation <20%. Furthermore, deviations between expected and 

measured mixture concentrations decreased slightly when the number of soil samples in the 

artificial mixtures was increased. 

 

Table 2.1 Deviations between expected and measured artificial mixture concentrations. 

 
Total n 
values 

n values 
<5% deviation  

(in %) 

n values 
<10% deviation (in 

%) 

n values 
<20% deviation (in 

%) 

2 sample mixture 115 50 (43.5%) 71 (61.7%) 100 (87.0%) 
3 sample mixture 65 30 (46.2%) 43 (66.1%) 60 (92.3%) 
4 sample mixture 50 29 (58.0%) 35 (70.0%) 45 (90.0%) 
All mixtures  230 108 (47.0%) 147 (63.9%) 201 (87.4%) 

 

Both when using theoretical (Figure A.5) and measured (Figure A.6) concentrations, strong 

correlations with absorbance measured at the three selected wavelengths (i.e., 210, 400, 700 nm) 

were observed, as well as for the average absorbance over all wavelengths. Using theoretical 

concentrations (Figure A.5), r2 values were >0.99, with the exception of soil sample #5.3 (soil 5, 63-

125 µm fraction), where the r2 values decreased to ca. 0.96-0.97.
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Figure 2.3 Average and standard deviation (n = 3) of measured concentrations inside the 

experimental tank expressed as a percentage of the theoretical concentrations for the 

six test soils (Figure 2.1), sieved to < 32 µm (a), 32–63 µm (b) and 63–125 µm (c). Error 

bars are plotted adjacent to the dots which represent the mean values. 
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Taking into consideration the finding that absorbance showed a slightly stronger correlation with 

theoretical concentration, together with the data presented above, it was decided to compensate 

absorbance data using the theoretical concentrations in the following final results of this laboratory 

experiment. For reference, figures using similar analysis as shown in section 2.3.2 and section 2.3.3 

using measured rather than theoretical concentration, are available for consultation in the 

supplementary material. Since deviations between measured and theoretical concentrations are 

essentially constant for each tested soil sample (i.e., deviation percentages are independent of 

theoretical concentrations; see Figure 2.3), the calculated ‘expected’ mixture concentrations and 

the measured mixture concentrations should correspond (Table 2.1). These results confirm that 

there is no need to compensate absorbance readings for concentration effects when comparing 

soil samples and mixtures that are using the same theoretical concentrations.  

2.3.2 Patterns in Absorbance Spectra 

Average increases in absorbance were found to be greater for smaller than larger particle sizes 

(Figure 2.4). Standard deviations for all soil samples were relatively small, with values mostly <10% 

compared with their average values. The exceptions here were standard deviations of 11.8%, 12.7% 

and 14.3% for soil samples #1.3, #6.2 and #5.3, respectively (Figure 2.4a). Furthermore, soil sample 

#1.3 showed a deviation exceeding 10% for the 210 nm (14.3%) and 400 nm (12.4%) wavelengths 

(Figure 2.4b, c). For the 700 nm wavelength (Figure 2.4d), only soil sample #5.3 showed a deviation 

exceeding 10% (10.3%).  

The Mann-Whitney test results (Table 2.2) showed that three pairs of soil samples were not 

significantly different (average of all wavelengths). Six pairs of samples were not significantly 

different for the 210 nm wavelength, and two pairs of samples were not significantly different for 

the 400 nm and 700 nm wavelengths, respectively. These pairs of soil samples (Table 2.2) were also 

not significantly different when analysing the average of all wavelengths. From the pairs shown in 

Table 2.2, only 1 combination (#3.1 - #5.1) was used together in an artificial mixture (Table A.2).  

Finer particle sizes (i.e., a smaller mean effective particle size measured with the LISST 200X sensor) 

resulted in larger average increases in absorbance per mg L-1, while coarser particle sizes showed 

smaller average increases per mg L-1. This relationship appears to be logarithmic, with an r2 value of 

0.78 (Figure 2.5). Analyses performed when using measured concentrations, instead of theoretical 

concentrations, showed rather similar outcomes (Figure A.7 and Figure A.8). 
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Figure 2.4 Average increases in absorbance per mg L−1 (absorbance values divided by theoretical 

concentrations) for average absorbance over all wavelengths (a), 210 nm (b), 400 nm 

(c) and 700 nm (d), for all 17 soil samples (indicated by #soil.fraction, with ‘soil’ 

representing the test soils (n = 6), and ‘fraction’ the sieved fraction size (.1 for < 32 μm; 

.2 for 32–63 μm; .3 for 63–125 μm). Values inside the plot (a) refer to the average and 

standard deviation of the measured particle size distribution (PSD) per sample and dry 

sieved fraction measured with the LISST sensor inside the experimental tank. 

 

Table 2.2 Mann–Whitney test results for soil samples that were not significantly different (p > 

0.05) for the average of all wavelengths, 210 nm, 400 nm and 700 nm. Soil samples are 

indicated by #soil.fraction, with ‘soil’ representing the test soils (n = 6, Figure 2.1), and 

‘fraction’ the sieved fraction size (.1 for < 32 μm; .2 for 32–63 μm; .3 for 63–125 μm). 

Average of all       p-value        

wavelengths 

210 nm                 p-value    

 

400 nm                 p-value    700 nm                 p-value    

#1.3 & #3.3         

#1.3 & #5.2         

#3.3 & #5.2         

0.58 

0.19 

0.44 

#2.1 & #4.1         

#3.1 & #5.1         

#1.2 & #4.2         

#1.3 & #3.3         

#1.3 & #4.3         

#2.3 & #3.2         

0.97 

0.44 

0.052 

0.12 

0.74 

0.089 

#1.3 & #3.3         

#3.3 & #5.2         

0.48 

0.85 

#1.3 & #3.3         

#3.3 & #5.2         

0.97 

0.25 
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Figure 2.5 Relationship between average increases in absorbance per mg L−1 (absorbance values 

divided by theoretical concentrations) as a function of average particle size measured 

with the LISST sensor inside the experimental tank. Particle size values and 

corresponding standard deviations were calculated for every sample and for every 

concentration separately. 

2.3.3 Linear Additivity 

Comparison of expected and measured mixture absorbance (Equation 2.2) generated deviations of 

generally <20% (Figure 2.6). This was true for all mixtures except for three values where the 

deviations were slightly higher. Furthermore, a high percentage of the values (57%, 63% and 82% 

for the two, three and four soil sample mixtures, respectively) showed deviations of <10%. 

Deviations of <5% were noted for 35% (two sample mixture), 25% (three sample mixture), and 6% 

(four sample mixture) of the artificial mixture values. Values can be positive or negative, indicating 

whether the expected absorbance (Equation 2.2) is higher or lower than the absorbance measured 

directly for the artificial mixture. In Figure A.9 the deviations between the expected and measured 

absorbance are shown, with absorbance being compensated for measured concentrations.
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Figure 2.6 Deviations between measured absorbance and ‘expected’ absorbance based on a 

single soil sample absorbance signal (mass-balance), shown for two- (a), three- (b) and 

four- (c) soil sample mixtures. Red dots (a) indicate those situations in which 

absorbance values from the artificial mixtures are larger or smaller than the 

absorbance values measured for both individual soil samples comprising that mixture 

(concerned mixtures are indicated by * in the legend). 
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2.3.4 Un-Mixing Artificial Mixtures (MixSIAR) 

The MixSIAR calculations using the two soil sample mixtures showed that dominant soil sample 

contributions were reliably predicted (Figure 2.7). MixSIAR predicted the correct dominant soil 

samples for ten out of eleven such mixtures. From these mixtures, eight showed an overestimation 

of the dominant soil sample. For mixture 11, the dominant sample was not well predicted, with 

MixSIAR outputting equal contributions of the soil samples mixed. For the one mixture using equal 

(50%) contributions (mixture 8), MixSIAR over (70%) and underpredicted (30%) the known relative 

contributions. The results of the tests using artificial mixtures with different particle size fractions 

(mixtures 10, 11 and 12) indicated there were no clear differences in MixSIAR predictions compared 

with those from the artificial mixtures using samples sieved to the same particle size fraction.  

For the eight artificial mixtures using three soil samples, MixSIAR predicted the dominant soil 

sample contribution well in six cases. From these six cases, MixSIAR over-predicted the contribution 

of the dominant soil for mixtures 18 and 20, whereas it under-predicted the contribution of the 

dominant contributing soil sample for mixtures 14, 15, 16, 17. Mixtures 18 and 20 were, together 

with mixture 17, the mixtures using samples sieved to different particle size fractions. In the case 

of mixture 19, MixSIAR predictions deviated from the known inputs, with the more dominant soil 

sample (50%) constantly being predicted by the model as the soil sample with least contribution.  

For the four soil sample mixtures, four out of five were mixed to have a clearly dominant 

contributing (70%) soil sample. Dominant contributions in mixtures 21 (under-estimated compared 

to known input) and 25 (over-estimated compared to known input) were predicted by MixSIAR. For 

mixture 22, the model failed to predict a dominant soil sample and for mixture 24, an erroneous 

soil sample was predicted as the dominant source. In the case of mixture 23, with known equal 

(25%) proportions for all four soil samples, the predictions from MixSIAR showed variable levels of 

agreement.  

Table A.3 presents an overview of the accuracy of the MixSIAR predictions relative to the known 

soil sample proportions comprising the different artificial mixtures. Absolute errors varied between 

6% and 26.7% for the two sample mixtures, 1.8% and 41.0% for the three sample mixtures, and 

between 2.8% and 48.8% for the four sample mixtures. Standard errors for the MixSIAR predictions 

were also calculated, returning values ranging up to 6.2%, 10.7% and 3.2% for the two, three and 

four soil sample mixtures, respectively. Not all models passed the Gelman-Rubin diagnostics, where 

variables exceeding the value of 1.1 were observed in one or several concentrations within five out 

of eight three-sample mixtures and in all five four-sample mixtures. Details on the Gelman-Rubin 

diagnostics are shown in Table A.4.  
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Figure 2.7 Un-mixing results for artificial mixtures of two soil samples (mixtures 1 and 12), three 

soil samples (mixtures 14 and 20) and four soil samples (mixtures 22 and 25) using 

MixSIAR at increasing theoretical concentrations. Model predictions are compared 

with the known proportions (theoretical input) of soil samples mixed (indicated by 

#soil.fraction, with ‘soil’ representing the test soils (n = 6), and ‘fraction’ the sieved 

fraction size (.1 for < 32 μm; .2 for 32–63 μm; .3 for 63–125 μm). 

2.4 Discussion 

2.4.1 Specific Consideration for Using the High Frequency Spectrophotometer Approach 

Absorbance data are known to be influenced by concentration (Thomas et al., 2017). Our results 

show that concentrations are strongly linearly correlated with absorbance (Figure A.4 and A.5). 

However, the correlations are soil sample-dependent, which renders it necessary to correct the 
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absorbance data from each soil sample with its specific concentration when comparing different 

soil samples. As the aim here was to un-mix artificial mixtures into the known individual 

contributions of the constituent samples, it is essential to make sure that compensation is made for 

the correct concentrations in order to avoid over- or under-estimations of contributions. To this 

end, theoretical input concentrations were compared with measured concentrations. Theoretical 

concentrations are subject to the mixing processes inside the tank and the possible incomplete 

suspension of particles. This latter process seems to be important in the measured concentration 

results, showing that samples sieved at a larger mesh size deviate more from theoretical 

concentrations (Figure 2.3). Despite this observation, and based on the data shown in Figure 2.3 

and Table 2.1, losses observed in measured concentrations were consistent. These concentrations 

were, however, subject to representative sampling and weighing errors, and show slightly weaker 

correlations with absorbance; hence, the use of theoretical concentrations in this study. 

In addition to the influence of concentration, particle size affects absorbance readings (Berho et al., 

2004). Finer particles, at the same concentrations, resulted in higher absorbance values over the 

whole range of wavelengths compared with particles with coarser sizes. Together with the influence 

that particle size can have on sediment properties (Collins et al., 2017; Laceby et al., 2017), different 

particle sizes can also induce different absorbance patterns over specific wavelength ranges, as 

certain wavelengths might be subject to specific SS properties (Byrne et al., 2011). These differences 

were, however, found to be rather small in the present study (Figure 2.4 and A.7) when compared 

with the effects of concentration and particle size. Since the LISST sensor measurements showed 

that particle size is an intrinsic SS property remaining unchanged (assuming minimal dissolution of 

particles and minimal breakdown of particles in suspension) during the experiments presented 

here, the analysis focused more on the compensation of absorbance in relation to concentration so 

as to allow proper comparisons between the absorbance values of the soil sources and between 

the absorbance values of the soil sources and target SS. 

Effective tracers or fingerprints should behave in a linearly additive manner (Lees, 1997; Walling et 

al., 1993). Our results show that the absorbance readings of particles suspended in distilled water 

are linearly additive (Figure 2.6) and consistently so over the range of concentrations tested. Some 

deviations were found, however, at the lower concentrations, which are likely to be due to the 

smaller amounts of particles and thus larger relative errors where mixing is inconsistent or 

incomplete. In testing the linear additivity, artificial mixtures containing samples sieved to the same 

or different particle size fractions were used. The two groups of samples did not show significantly 

different results for linear additivity (Figure 2.6). Tests in which only finer or only coarser size 

fractions were used did not result in clear differences in the linear additivity. 
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The un-mixing results using the MixSIAR model followed a similar pattern to the results for the 

linear additivity tests. Higher deviations between modelled and known soil sample proportions 

occurred at the lowest concentrations but were found to deviate less at higher concentrations. No 

significant difference in performance was found when un-mixing soil samples sieved to the same 

or different particle size fractions (Table A.3). These results contrast with observations reported by 

Gaspar et al. (2019), who found estimations were less reliable at finer particle sizes. Gaspar et al. 

(2019) tested the un-mixing performance of artificial soil mixtures (dry material), looking at 

geochemical composition, using estimations from the FingerPro model. However, these authors 

only sieved one mixture to three different size fractions (with 10 replicates for each fraction) 

whereas the source samples were sieved to just one fraction (<63 µm). On the contrary, in the 

present study the soil sources were sieved to different size fractions (no replicates, with different 

concentrations tested). Our approach thus results in a comparison between mixtures and sources 

with a common particle size range and helps to eliminate uncertainties in the un-mixing induced by 

particle size. 

It is informative to compare results of the present study to others with respect to the accuracy of 

un-mixing, although it is important to acknowledge that un-mixing model structures vary and this 

can influence performance. Haddadchi et al. (2014b) tested four different mixing models (Modified 

Hughes, Modified Collins, Landwehr and Distribution models) using the geochemical properties of 

sources and mixtures, with mixtures being artificially created. Maximum model deviations ranged 

from 10.8% to 29% depending on the model used, indicating that therefore the choice of the un-

mixing model is an important consideration, with the choice partially depending on the type of 

tracer used (Haddadchi et al., 2014b). Gaspar et al. (2019) reported a maximum AE of 10% for un-

mixing using both dominant and non-dominant mixtures (using elemental geochemistry). The 

present study, in comparison, found AE >10% in most of the 25 different mixtures (except 2 out of 

the 12 two-sample mixtures and 3 out of the 8 three-sample mixtures), with maximum AE up to 

26.7% for two-sample mixtures, 41.0% for three-sample mixtures and 48.8% for four-sample 

mixtures. The observed high AE for the three-sample mixtures is an extreme value however, since 

the second highest AE shows a value of 27.7%. Furthermore, the extreme outlier in the three-

sample mixtures was found in mixture 19 where soil sample contributions added were rather equal 

(20%, 30%, 50%), while the extremes in the four-sample mixtures were found in mixtures 22 and 

24 where there was a clear dominant soil sample present (70%, with other soil sample contributions 

of 10%). These results suggest that the absorbance readings from a submerged spectrophotometer 

can be used as fingerprints and thus to estimate the soil sample contributions of two and three-

sample artificial mixtures with similar accuracy than the existent methods. However, some of the 
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four-sample artificial mixtures showed unacceptably high AE, showing the limitation of the method 

to distinguish four soil samples when these present similar absorbance signals. 

Models for the three and four-sample mixtures did not always converge, exceeding the Gelman-

Rubin diagnostics threshold value. Tests showed that increasing the number of iterations (chain 

length) improved the diagnostics for certain mixtures. However, we decided not to extend beyond 

the selected ‘short’ settings due to long computation times (>5 days for each model run). 

Furthermore, we observed that, for all but one mixture, certain concentrations satisfied the 

diagnostics. Combined with the consistency in modelling results over the different concentrations 

within each mixture, this indicated the reliability of the modelling outcomes for those situations in 

which the diagnostics were not satisfied. 

These highest AE values found herein can be partly explained by examining the spectra in more 

detail. For the two source artificial mixtures, the high AE (20%) values were seen in situations where 

the mixture absorbance values did not fall in between the range of absorbance values of the 

individual soil samples mixed (i.e., the artificial mixture has lower or higher absorbance values 

compared to the values of the individual soil samples; see also red dots indicated in Figure 2.6). 

Failures can be due to small deviations in concentrations (e.g., settling), as expected and aimed 

concentration slightly differ (Figure 2.3). Such situations violate the so-called bracket or range test 

used as a conventional screening step in sediment source fingerprinting decision-trees (Collins et 

al., 2017). Failure of the bracket test was only observed in the case of mixtures using two soil 

samples (Figure 2.6a; for 23% of the total values here). Using measured instead of theoretical 

concentrations, did not improve this result, resulting in a larger number of violations (Figure A.9). 

In the three soil source mixtures, predicted soil source contributions seemed to vary between soil 

samples that show a similar course of absorbance values over the whole range of measured 

wavelengths. This was, for example, observed for mixtures 13 and 16. MixSIAR failed to predict one 

clear dominant soil sample in these mixtures (i.e., 70% and 80% dominant soil samples used as 

input), but rather predicted two soil samples each with relatively high contributions around 40-

50%. These two soil samples exhibit the same absorbance patterns (i.e., the absolute differences 

between the absorbance values of the soil samples are highly similar at all wavelengths tested); 

using the model to predict the dominant soil sample under such circumstances is problematic. The 

same pattern holds for the four-soil sample mixtures; in both mixtures 22 and 24 (with the highest 

reported AE values) the model failed to predict the dominant soil source. Both these mixtures used 

soil samples 1.1 and 3.1, which had absorbance values that showed minimal deviations between 

them (absolute values) and followed the same patterns (i.e., small absolute differences between all 

wavelengths tested), making it difficult for the model to differentiate between these two soil source 

samples. Furthermore, the mixture absorbance data in both these mixtures plotted exactly in 
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between the absorbance values of the two soil samples; this most likely caused the model to fail to 

predict the correct dominant soil source. This outcome can be observed in Figure 2.7, where model 

predictions show more equal contributions for the artificially mixed soil samples (mixture 22) and 

a more dominant soil sample 1.1 (mixture 24) despite soil sample 3.3 being the dominant soil source 

in both mixtures.  

Scaling up beyond the laboratory scale, it would be informative to use independent evidence to 

validate any source apportionment estimates using absorbance spectra (which need to be 

statistically significantly different for the individual sources in question). However, this requirement 

for independent evidence is difficult to fulfil meaning that many source fingerprinting studies 

continue to rely on the use of mixture tests as verification of predicted source proportions (Collins 

and Walling, 2004). 

2.4.2 Wider Implications for Suspended Sediment Fingerprinting 

The use of sensors that measure spectrophotometrically at high frequency in situ substantially 

reduces the need for extensive analyses in the laboratory in conjunction with the collection of 

conventional physical water samples; such sensors thereby allow much faster acquisition of tracer 

data (Martínez-Carreras et al., 2016), due to the in situ measurements. Therefore, despite the initial 

purchasing costs of the spectrophotometer (ca. US$20.000), and the need to control for sensor 

drifts to validate the absorbance data results (Gamerith et al., 2011), total costs decrease over time. 

This is in contrast to classical sediment fingerprinting approaches, wherein laboratory analyses of 

all samples is required (e.g., different geochemistry analyses estimated at as much as ca. US$1.500-

2.000 per sample; Horowitz, 2013), increasing both labour and analysis costs substantially when 

increasing measurement intervals and sampling campaign duration. The collection of absorbance 

data in situ could therefore improve the temporal resolution of sediment source fingerprinting and 

eventually give better insights into how sources of SS change over short time scales. This evidence 

gap has been highlighted by Navratil et al. (2012) and Vercruysse et al. (2017), who argued that a 

better understanding of sediment dynamics over short time scales is key to improving sediment 

transport modelling and for devising more robust solutions to catchment sediment management 

problems. With regard to the present study, it clearly remains important to test the use of the 

spectrophotometer for un-mixing source contributions in real world settings, including at 

catchment scales. In the experiments here, using Luxembourgish soil samples with differences in 

both colour and expected geochemistry, absorbance data of the soil samples were in most 

situations sufficiently different for un-mixing. It is therefore a prerequisite to investigate if 

absorbance spectra responses of potential SS sources in a real world setting are sufficiently 

different enough to allow source discrimination. 
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Initial steps to identify areas or sources that could permit robust discrimination could be based on, 

for instance, differences in underlying geology as was done in this study. Looking at the results 

presented herein, seeing the uncertainties associated with four samples mixtures, applying this 

approach in a field setting might require the selection of a limited number of potential sources to 

avoid poor discrimination and thus poor source apportionment results. Another approach that 

could potentially increase the ability to differentiate between sediment sources could be achieved 

by selecting only a number of wavelengths (i.e., selecting those tracers that best discriminate 

between sources). Reducing the number of tracers could also overcome issues with the long model 

calculation times faced when using all wavelengths as tracers.  

Dissolved compounds in natural waters (e.g., nitrates and DOC) will influence the absorbance 

readings of the spectrophotometer (D’Acunha and Johnson, 2019). Furthermore, the composition 

of the water (which was compensated for in the present study by subtracting the blank water 

background signal from the absorbance data) may well fluctuate in field settings (Wilson et al., 

2013). To establish this background signal in field conditions might be challenging and ways to 

overcome this remain to be investigated. One possible solution to this challenge might be to use 

only absorbance values from those wavelengths that are less responsive to dissolved compounds. 

This consideration warrants further research.  

In our proof-of-concept laboratory experiments, the individual soil sample (‘source’) absorbance 

spectra were sufficiently able to un-mix the majority of the absorbance spectra of the artificial soil 

mixtures. However, the absorbance signatures of potential SS sources (e.g., surface soils and 

channel banks) would be difficult to obtain because the spectrophotometer employed in this study 

is only able to measure while submerged. One approach here could be to sample material being 

mobilised and routed from potential sources towards the river channel (e.g., from rill erosion, or 

during/immediately after rainfall events when clear patterns of erosion or mobilisation of source 

materials have emerged). Such intermediate sampling would help address uncertainties associated 

with particle size selectivity (Laceby et al., 2017) and ensure, when measuring in a laboratory 

experiment as presented in this study, direct comparison of absorbance spectra representative of 

eroded material from individual sources with the spectra for SS. Clearly, however, the use of the 

approach reported herein would face challenges for some source types on this basis, with the 

obvious problematic source being eroding channel banks. Given the juxtaposition of banks to the 

river water, all particle size fractions are delivered to the water column, since there is no runoff 

pathway to result in selective delivery. Given this issue, it is more likely that the use of 

spectrophotometers in situ will be more relevant to un-mixing spatial SS sources using a confluence-

based approach (e.g., Wynants et al., 2020). Here, sensors could be placed near the outlets of 

tributaries to create an archive of absorbance spectra of tributary-based spatial sources and on the 
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main stem further downstream to represent the spectra of target SS. Concentration issues could 

be handled similarly to the laboratory experiment reported herein since by dividing the absorbance 

of both sources (i.e., tributaries) and the main stem measurements by the measured concentrations 

(which could be estimated using sediment rating curves, showing the relationships between SSC 

and turbidity using either turbidity meters or using the turbidity measured by the 

spectrophotometer itself), they can be scaled to the same SS concentrations (Figure 2.4). 

Spectrophotometers can be equipped with an automatic brush (ruck::sack; Scan Messtechnik 

GmbH, Vienna, Austria) that cleans the sensor lens before every measurement. Next to that, optical 

sensors require regular maintenance to avoid instrument drifts caused by biofouling (e.g., bi-weekly 

cleaning as proposed by Martínez-Carreras et al., 2016). 

2.5 Conclusions 

The following conclusions can be drawn from the laboratory experiments conducted herein: 

(1) Absorbance data and concentration show a strong linear relationship. It is thus essential to 

compensate absorbance data with concentration to un-mix different sources in artificial 

mixtures. 

(2) There is a logarithmic relationship between absorbance and particle size, with a strong 

influence of particle size on the absorbance data with increasing concentrations (e.g., finer 

particle sizes result in higher absorbance values per mg L-1). 

(3) Absorbance data behave in a linearly additive manner, with deviations between expected 

and measured absorbance for artificial mixtures being <20% for all comparisons and <10% 

for more than half of the cases. 

(4) The MixSIAR model mostly successfully un-mixed the artificial soil sources (with an average 

AE of 14.9% for all soil samples in all mixtures), correctly predicting dominant soil samples 

in the mixtures. The MixSIAR model worked better for the two and three soil sample 

mixtures in the present study. Results for the four sample mixtures were less promising, 

but most likely inherent to the choice of soil samples used in those mixtures. 

To be able to use the approach described in field settings, the following issues must be addressed: 

(1) There is a need to create robust methods to define sediment source absorbance signals. A 

key challenge here is the selection of the most appropriate sediment particle size to define 

source material absorbance. A prerequisite is that the sediment sources result in 

absorbance signals that are sufficiently different to provide a basis for robust source 

discrimination and apportionment. 
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(2) Concentrations of SS need to be measured accurately. This information is needed to 

compensate the absorbance data for concentration in order to compare source absorbance 

data with the corresponding target SS data.  
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Chapter 3 Use of a Submersible Spectrophotometer 

Probe to Fingerprint Spatial Suspended 

Sediment Sources at Catchment Scale  

Abstract 

Sediment fingerprinting is used to identify catchment sediment sources. Traditionally, it has been 

based on the collection and analysis of potential soil sources and target sediment. Differences 

between soil source properties (i.e., fingerprints) are then used to discriminate between sources, 

allowing the quantification of the relative source contributions to the target sediment. The 

traditional approach generally requires substantial resources for sampling and fingerprint analysis, 

when using conventional laboratory procedures. In pursuit of reducing the resources required, 

several new fingerprints have been tested and applied. However, despite the lower resource 

demands for analysis, most recently proposed fingerprints still require resource intensive sampling 

and laboratory analysis. Against this background, this study describes the use of UV-VIS absorbance 

spectra for sediment fingerprinting, which can be directly measured by submersible 

spectrophotometers on water samples in a rapid and non-destructive manner. To test the use of 

absorbance to estimate spatial source contributions to the target suspended sediment (SS), water 

samples were collected from a series of confluences during three sampling campaigns in which a 

confluence-based approach to source fingerprinting was undertaken. Water samples were 

measured in the laboratory and, after compensation for absorbance influenced by dissolved 

components and SS concentration, absorbance readings were used in combination with the 

MixSIAR Bayesian mixing model to quantify spatial source contributions. The contributions were 

compared with the sediment budget, to evaluate the potential use of absorbance for sediment 

fingerprinting at catchment scale. Overall deviations between the spatial source contributions using 

source fingerprinting and sediment budgeting were 18% for all confluences (n=11). However, some 

confluences showed much higher deviations (up to 52%), indicating the need for careful evaluation 

of the results using the spectrophotometer probe. Overall, this study shows the potential of using 

absorbance, directly obtained from grab water samples, for sediment fingerprinting in natural 

environments. 
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3.1 Introduction 

Sediment fingerprinting is commonly used to estimate suspended sediment (SS) sources (see e.g., 

reviews by Collins et al., 2017, 2020). It is increasingly used to assemble much needed information 

for targeting best management interventions for addressing issues resulting from excessive SS 

inputs, such as reduced light penetration in the water column (Owens et al., 2005) and increased 

siltation (Nones, 2019; Owens et al., 2010). Identifying SS sources is especially important in the 

pursuit of improving the ecological status of surface waters, as dictated by legislation such as the 

European Water Framework Directive (WFD; 2000/60/EC, 2000). The need to take action is 

becoming even more crucial in the context of global change, as human activities and related 

changes to land use are accelerating soil erosion and concomitant sediment delivery at global scale 

(Borrelli et al., 2017).  

The sediment fingerprinting approach is based on the identification and collection of samples of 

potential sediment sources, which, together with target SS samples, are analysed in the laboratory. 

Differences between the properties of the sampled sources, i.e., their fingerprints, are then used 

to estimate the relative contribution of each source to the target SS (e.g., Collins et al., 2020). 

However, collection of representative source material and SS sampling, and conventional 

laboratory analyses of commonly-used fingerprints generally require high workloads and generate 

substantive analytical costs (Collins et al., 2020; Evrard et al., 2022), therefore limiting their 

application beyond academic research (Pulley and Collins, 2021). There is thus a need for easier-to-

measure fingerprints in combination with simplified sampling procedures to allow for a wider 

uptake of the approach (Pulley and Collins, 2021). 

To this end, fingerprinting procedures based on cheaper and easier measurements have been 

developed and tested. These include, for instance, the use of conventional document scanners (e.g., 

Pulley and Collins, 2022; Pulley and Rowntree, 2016) to measure colour fingerprints, and 

spectrometers from which both colour (e.g., Legout et al., 2013; Martínez-Carreras et al., 2010c) 

and geochemical fingerprints (e.g., Cooper et al., 2014b, 2015; Martínez-Carreras et al., 2010b) have 

been derived. These less onerous techniques offer the potential to increase the number of 

observations to subsequently inform how SS sources change at finer temporal and spatial scales 

(e.g., Cooper et al., 2014b, 2015). High frequency temporal data might facilitate a better and fuller 

understanding of which SS sources contribute at which time and in what proportions to the target 

SS, as sediment delivery from sources to streams is complex, involving different processes at 

multiple spatial and temporal scales (Fryirs, 2012).  

While some techniques allow for fingerprints to be measured with relative ease, the need for SS 

sampling, preparation and laboratory analysis remains. In an attempt to overcome such resource 
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demands, Lake et al. (2022a) tested the novel use of a UV-VIS spectrophotometer sensor for 

sediment fingerprinting purposes. Artificially created mixtures were used, consisting of soil source 

samples with clear contrasts in colour and geochemistry, i.e., differences that were expected to 

influence the absorbance spectra at different wavelengths (i.e., fingerprints) (Lake et al., 2022a). 

Known soil source contributions for each mixture were used to evaluate the mixing model results 

(when using the MixSIAR Bayesian mixing model) (Stock et al., 2018; Stock and Semmens, 2016). 

Evaluation indicated satisfactory results for the un-mixing of mixtures consisting of two and three 

different soil samples (with respective mean absolute errors be- tween known inputs and model 

results of 15 % and 13 % respectively); but the un-mixing results for mixtures consisting of four soil 

samples were slightly less robust (with respective mean absolute errors of17%). Analysis showed 

that SS concentration, particle size and the water environment influenced the absorbance data. 

During these initial tests, only controlled experiments in a laboratory tank (with 40 L of water) were 

conducted. As the submersible spectrophotometer used was designed to conduct in-stream 

measurements, it was proposed that the spectrophotometer probe could be used in field studies 

to fingerprint SS source contributions at high temporal resolution. Contrary to other fingerprinting 

methods that require laboratory analysis, this approach could decrease the interval between 

measurements (e.g., measurement interval of minutes) without adding to resource needs for 

sampling and analysis (i.e., direct in-stream fingerprint measurements). Insights into temporal 

changes in SS source contributions changes and, specifically, a more detailed investigation into the 

activation of specific sources at different times might thus be improved (e.g., Cooper et al., 2015; 

Navratil et al., 2012; Vercruysse et al., 2017). This information is essential to understand the hydro-

sedimentary dynamics of a catchment (i.e., changes over short temporal scales), and important if 

targeted sediment control strategies are to be implemented (e.g., Vercruysse et al., 2017). 

Despite the reliable laboratory performance, it remains to be assessed how well the approach 

presented by Lake et al. (2022a) performs with ‘real world’ samples. Fingerprints do not always 

allow for accurate catchment source apportionment, even if they perform well in laboratory setting 

(Batista et al., 2022). The present study therefore tests if absorbance, measured on grab water 

samples and using a confluence-based sampling strategy, can be used to determine the relative 

contributions of individual spatial sediment sources. This sampling strategy considers in-stream SS 

from upstream tributaries as the spatial sources, and in-stream SS from the downstream channel 

as the target SS (e.g., Collins et al., 1996, 1997b; Klages and Hsieh, 1975). This procedure 

circumvents challenges in determining which soil sources are contributing to target SS by using 

tributary SS samples to represent the spatially-integrated fingerprints of sub-catchments. 

Furthermore, with the confluence-based approach, difficulties in determining which particle size 

fractions are transported from potential soil sources (i.e., source types rather than spatial sources) 
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to the stream are circumvented by only considering those fractions already delivered to the 

tributary catchment streams (Laceby et al., 2017). This facet is important since sediment 

fingerprints often vary with particle size (Collins et al., 2017; Laceby et al., 2017) : particle size 

directly influences absorbance values (Lake et al., 2022a; Sehgal et al., 2022).  

Building on the work of Lake et al. (2022a) and taking into account the aforementioned limitations 

regarding the resource needs in sediment fingerprinting, this study aims to obtain rapid absorbance 

measurements at the 200-730 nm wavelength range (i.e., sediment fingerprints) directly measured 

on grab water samples using a submersible UV-VIS spectrophotometer probe. These absorbance 

output readings will then be used directly to estimate spatial suspended sediment sources at 

catchment scale. To this end, we first evaluated the potential of the selected catchment to 

discriminate between spatial SS sources by investigating (i) differences in absorbance between 

source streams, and (ii) how absorbance patterns in same sampling sites compared during different 

campaigns, to investigate temporal (in)consistency in spatial SS source fingerprints. Secondly, 

modelled spatial source contributions, using the MixSIAR Bayesian mixing model (Stock et al., 2018; 

Stock and Semmens, 2016), were then compared with the calculated sediment budget, based on 

SS concentration and discharge measurements, to evaluate model performance.  

3.2 Materials and Methods 

Manual grab water samples were collected during storm runoff events at a series of confluences, 

following a confluence-based sampling strategy. The samples were analysed using a UV-VIS 

spectrophotometer installed in a custom-made laboratory test chamber. The absorbance spectra 

of the SS spatial source samples and downstream target SS sample were then used to estimate the 

relative contributions of each source using a Bayesian mixing model. 

3.2.1 Sampling Sites 

Sampling was performed in the Roudbach catchment (44 km2 at Platen), located in the western part 

of Luxembourg (Figure 3.1). Land use in the catchment consists of forest, grassland and cultivated 

land. Lithology is characterised by schist, slates and phyllites bedrock in the northern part, and by 

red sandstone (“Buntsandstein”) and marls in the middle and southern parts. Altitudes range 

between 553 m and 260 m above sea level. Land use, lithology and elevation data is made available 

by the ‘Administration du Cadastre et de la Topographie’ (ACT). The climate is semi-oceanic, with 

monthly maximum mean temperatures varying between 0 °C in January and 18 °C in July, and a 

long term average annual precipitation of 845 mm (1954-1996; Pfister et al., 2005). 
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At each confluence (n=11), manual grab water samples were collected at three sites: at the two 

upstream SS source sites (between 20 and 10 m upstream of the confluence), and at the 

downstream target SS site (between 10 and 20 m downstream of the confluence) (Figure 3.2). At 

each sampling site (n=33), a 2-L grab sample was collected during three storm runoff events: 

campaign 1 was carried out on 03/11/2021, campaign 2 on 04/01/2022 and campaign 3 on 

16/02/2022. Samples were stored in a dark, cold room (4-5 °C) and analysed in the following 2-5 

days. Precipitation records from the weather station at Reichlange (see Figure 3.1b,c) were made 

available by the ‘Administration de la Gestion de l’Eau’ (AGE). 

 

 

Figure 3.1 Location of the Roudbach catchment in Luxembourg (a), catchment lithology (b) and 

land use (c). 
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Figure 3.2 Sampling sites (numbers 1-33) within the Roudbach catchment. Each circle represents 

a confluence (letters A-K) enclosing the two upstream spatial source sampling sites and 

the downstream target suspended sediment sampling site (underlined number). 

Sampling site 8 is both a spatial source (confluence C) and target (confluence D) SS 

sampling site. The catchment outlet is located at sampling site 1. 

3.2.2 Laboratory Analyses 

A sub-sample of each grab water sample was filtered to determine its suspended sediment 

concentration (SSC) by filtering a known volume through pre-weighed 1.2 μm pore size Whatman 

GF/C glass fibre filters. Filters were dried at 105°C and weighed, and after filtration, again dried at 

105°C and weighed. The filtrate water for each sample was collected and stored for 1-3 days. 

Measured SSCs for all sampling sites, for the three campaigns, are shown in Table 3.1. 

Grab samples were analysed using a S::can spectro::lyserTM submersible spectrophotometer probe 

(Scan Messtechnik GmbH, Vienna, Austria), installed in a custom-made laboratory test chamber 

(Figure 3.3a). The spectrophotometer records on the absorbance over the UV-VIS wavelength range 

(200-730 nm) at 2.5 nm intervals by measuring the transmittance of a light beam (i.e., xenon-flash 

light) through the water sample. The spectrophotometer, with a 15 mm optical path length, was 

installed horizontally in the test chamber (inner dimensions 14x10x10 cm) to avoid potential 

settling of SS particles on the measurement window. A magnetic stirrer was used to make sure all 

particles were kept in suspension (visually checked for all samples tested). Grab water samples were 

shaken well by hand, and an aliquot of ca. 1.2 L was poured into the test chamber. After allowing 

homogenisation within the test chamber for 2 minutes, the spectrophotometer measured for 6 
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minutes at 2 minute intervals (n=4). After each grab sample, the test chamber was rinsed with milli-

Q water and dried. Absorbance at each measured wavelength was divided by measured SSCs to 

eliminate the effect of SSC on absorbance (see Lake et al., 2022a). 

The absorbance of the grab water samples after filtration was measured using the multifunctional 

slide provided by the manufacturer (Scan Messtechnik GmbH, Vienna, Austria; Figure 3.3b). 

Measurements were made over a 6 minute timeframe, at 2 minute intervals (n=4). After each 

sample, the slide was rinsed with milli-Q water and dried. Grab sample absorbance measurements 

were then compensated by subtracting the filtered water absorbance spectrum of the 

corresponding grab sample to eliminate the influence of the dissolved, non-SS components on 

absorbance spectra. Similarly, Lake et al. (2022a) compensated their absorbance measurements by 

subtracting the absorbance of the deionized water used during the experiments. 

 

Figure 3.3 Photograph of the self-made test chamber with the spectrophotometer probe and the 

magnetic stirrer during the measurements of the grab samples (a). Photograph of the 

spectrophotometer probe with the multifunctional slide during the measurements of the filtered 

water samples (b). 

3.2.3 Discharge Measurements 

At five sampling sites (sites 1, 3, 17, 23, 31; Figure 3.2), the water level was measured continuously 

at 15 minute intervals during the period 22/10/2021 – 22/03/2022 using ISCO 4120 pressure 

probes. Discharge time series were created by means of a rating curve between water level and 

discharge. Water levels and discharges were measured in parallel during the days of the sampling 

campaigns (n = 3), at different times during the day (n = 4) to cover relatively higher and lower 

discharges.  

Specific discharge was calculated for each site with available discharge measurements The surface 

catchment area (Table B.1) contributing to discharge at each site was calculated using ArcMap 10.5 

(ESRI, Redlands, CA). Specific discharge data and computed catchment areas were then used to 

estimate discharge at the ungauged sampling sites using the drainage area method (e.g., Emerson 

a) b) 
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et al., 2005). Estimated discharges for all sampling sites, for the three campaigns, are shown in Table 

3.1. 

3.2.4 Evaluating the Use of Absorbance Spectra for Sediment Source Fingerprinting 

The following analyses were carried out to evaluate the potential use of absorbance to fingerprint 

spatial SS sources under field conditions: analysis of the differences between spatial source 

absorbance values and patterns therein (section 3.2.4.1); evaluation of modelled spatial source 

contributions against the estimated sediment budgets (section 3.2.4.2), and; comparison of model 

results when using different wavelength selection procedures, to evaluate the possibility of 

omitting the need for absorbance compensation and to eventually reduce un-mixing calculation 

times (section 3.2.4.3).  

3.2.4.1 Absorbance Patterns 

Absorbance patterns were analysed in two different ways. First, average absorbance over the full 

range of wavelengths (200-730 nm) was calculated for each sampling site and compared. Second, 

for each confluence, mean absorbance differences between the two sources were calculated. These 

approaches permit the investigation of (i) differences in mean spatial source absorbances for the 

same sites during the different sampling campaigns, (ii) differences in mean source absorbances 

between the spatial sources merging at the confluences, and (iii) whether these differences 

influenced deviations between the modelled spatial source contributions and the sediment budget 

estimations (section 3.2.4.2).  

3.2.4.2 Sediment and water budgets 

Measured SSCs (section 3.2.2) and discharge data (at gauged and ungauged sites; section 3.2.3) 

were used to calculate the relative contribution of SS and water from the upstream tributaries to 

the downstream sampling sites (Table 3.1). The sediment budget was then used to evaluate the un-

mixing modelling predictions of spatial source contributions using the absorbance data as a 

fingerprint (section 3.2.4.3).  

3.2.4.3 Un-mixing modelling 

The MixSIAR model (Stock et al., 2018; Stock and Semmens, 2016) was used to un-mix the 

downstream target SS into the spatial source contributions using absorbance data. Model runs 

were executed for all sampled confluences, including when absorbance values from the target SS 

were outside the range of absorbance values of the spatial source streams. For all model runs, the 

Markov Chain Monte Carlo parameters were set as long (chain length = 300.000, burn = 200.000, 
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thin = 100, chains = 3). Model convergence was evaluated using the Gelman-Rubin diagnostic 

(variables <1.1). For each model run, MixSIAR output predicts a relative average contribution of 

each source with its corresponding standard deviations. All models were run using the High 

Performance Computing facility at the Luxembourg Institute of Science and Technology.  

The modelling approach applied herein used the wavelengths (with 2.5 nm intervals) in the 200-

730 nm range (Lake et al., 2022a) as fingerprints (n=213). Absorbance data for all grab samples 

were compensated for: (i) the absorbance of the filtered water to account only for the absorbance 

influenced by the SS (section 3.2.2; Lake et al., 2022a), and; (ii) the measured SSC to eliminate the 

effect of concentration (Lake et al., 2022a). Modelled spatial source contributions were compared 

with the sediment budgets. 

Two other modelling approaches were tested and reported in this study. These approaches focus 

on the use of the 390-730 nm wavelength range. This part of the absorbance spectrum, the visible 

light spectrum, is highly related to turbidity (e.g., Rieger et al., 2004) and is therefore mainly 

influenced by SS particles. Using only this part of the wavelength range, removes, in principle, the 

effect of dissolved components that primarily influence wavelengths in the 200-390 nm range (e.g., 

Byrne et al., 2011; Figure B.2). A modelling approach using only the 390-730 nm wavelengths range 

should not therefore require compensation for the filtered water to eliminate the influence of 

dissolved components on the spectra. This approach also reduces computation time due to the 

lower number of wavelengths (n=137). Subsequently, so as to further reduce computation times, a 

second modelling approach was tested using the absorbance measurements in the 390-730 nm 

range with a lower resolution (absorbance readings at 10 nm intervals; n=35). This approach 

maintained the broad patterns of the absorbance data, while reducing the number of input 

wavelengths considered.  

3.3 Results 

3.3.1 Water and sediment budget 

Total precipitation (in Reichlange) for the sampled storm runoff events was 10.9 mm for campaign 

1, 47.2 mm for campaign 2, and 18.1 mm for campaign 3. An overview of the precipitation records 

and measured discharge at the catchment outlet in Platen is provided in Figure 3.4. Campaign 1 

was conducted during one of the first storm runoff events of the hydrological year, during wetting-

up. Campaign 2 took place during a large storm runoff event with much higher discharges than 

campaigns 1 and 3. Campaign 3 was performed during a storm runoff event of similar magnitude 

to campaign 1, though with the catchment being in a wetted-up state before the start of the event. 
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Table 3.1 presents estimated discharges, measured SSCs and estimated SS fluxes plus the relative 

source contributions of discharge and SS at the time of sampling. The relative contribution of 

discharge delivered by each source was mostly stable during the three sampling campaigns at most 

confluences, with absolute deviations < 2%. There was, however, a clear exception observed in the 

case of confluence C, wherein campaign 2 the relative discharge deviated by 38% and 39% 

compared with campaigns 1 and 3, respectively. This deviation was also apparent in the relative 

contribution of SS loads. Site 8 was the dominant contributing SS source in confluence C (Figure 3.2) 

during campaign 1 and 3 (90 and 83%, respectively), while its contribution was much smaller (5%) 

during campaign 2. The relative contribution of SS loads to downstream sites showed overall higher 

variability than discharge, for all three campaigns. Sources that dominated in terms of discharge 

also dominated in terms of the SS load. However, SS load relative contributions showed higher 

variability, with for instance confluence K showing a constant contribution from site 30 in terms of 

discharge (ca. 71%) for all three campaigns, while the corresponding SS load contributions were 64, 

91 and 57% for campaigns 1, 2 and 3, respectively. 

 

Figure 3.4 Precipitation records from the weather station in Reichlange, and measured discharge 

at the Roudbach catchment outlet in Platen (Figure 3.2). The sampling campaigns are 

highlighted in grey, and indicated by the campaign number (1-3) above the graph. 

In Figure 3.5, a spatial overview of the SS fluxes within the catchment is shown for the three 

campaigns. At the downstream confluence (confluence A; Figure 3.2), most SS originated from the 

western tributary (contributing to sampling site 31). Here, during all three campaigns, the highest 

SS fluxes were measured in the southwestern streams (corresponding to sampling sites 15, 23 and 

24; Figure 3.2). In the eastern tributary (contributing to sampling site 3), most of the SS came from 

the southern areas, with the northern streams showing relatively lower sediment fluxes. As 

observed in the eastern branch of the catchment, most northern streams in the western branch 

showed as well relatively low SS fluxes for all three sampling campaigns. 
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Table 3.1 Summary of the hydro-sedimentological data at all sampled spatial source sites for the 

three sampling campaigns. Data shown are the measured suspended sediment 

concentrations (SSCs), estimated discharge values, relative source discharge 

contributions to the downstream target SS site (in %; computed using a mass-balance 

approach), the estimated sediment flux, and the relative spatial source sediment load 

contribution at the time of sampling. 
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A 1 31 35.1 0.44 68 15.5 60  G 1 19 8.9 0.05 55 0.4 40 

3 49.8 0.21 32 10.3 40  20 16.6 0.04 45 0.6 60 

2 31 683.6 3.32 70 2271 85  2 19 320.2 0.35 55 114 67 

3 281.8 1.43 30 403 15  20 196.8 0.29 45 57 33 

3 31 42.2 0.63 70 27 74  3 19 10.9 0.07 55 0.75 66 

3 35.2 0.27 30 9.7 26  20 6.6 0.06 45 0.39 34 

B 1  5 28.0 0.14 98 3.9 99  H 1 32 - - - - - 

6 11.4 0.004 2 0.04 1  33 - - - - - 

2  5 160.0 0.98 98 156 99  2  32 149.7 0.14 70 20.5 75 

6 60.7 0.02 2 1.5 1  33 132.2 0.06 30 7.0 25 

3  5 19.9 0.19 98 3.8 99  3 32 12.3 0.03 70 0.3 94 

6 6.8 0.005 2 0.03 1  33 2.0 0.01 60 0.02 6 

C 1 8 66.2 0.07 53 4.5 90  I 1 23 49.5 0.16 57 7.7 76 

9 8.3 0.06 47 0.5 10  24 18.1 0.12 43 2.4 24 

2 8 83.0 0.07 15 5.7 5  2 23 492.7 1.06 56 520 58 

9 279.6 0.39 85 108 95  24 453.8 0.83 44 375 42 

3  8 22.3 0.09 54 1.9 83  3  23 47.3 0.20 56 9.6 68 

9 5.9 0.07 46 0.4 17  24 28.9 0.16 44 4.6 32 

D 1 13 75.3 0.03 49 2.1 70  J 1 26 33.3 0.04 51 1.5 60 

14 30.6 0.03 51 0.9 30  27 23.6 0.04 49 1.0 40 

2  13 78.2 0.19 50 15.2 56  2  26 369.2 0.28 51 104 60 

14 60.4 0.20 50 11.9 44  27 256.7 0.27 49 68 40 

3 13 28.4 0.04 49 1.1 55  3 26 11.2 0.06 51 0.6 50 

14 23.5 0.04 51 0.9 45  27 11.3 0.05 49 0.6 50 

E 1 10 - - - - -  K 1 29 43.3 0.04 29 1.7 36 

11 - - - - -  30 31.2 0.10 71 3.0 64 

2 10 459.8 0.10 47 47.2 67  2  29 133.3 0.24 29 33 9 

11 200.7 0.11 53 22.9 33  30 567.5 0.61 71 344 91 

3 10 15.5 0.02 47 0.3 68  3 29 41.7 0.05 29 2.0 43 

11 6.4 0.02 53 0.14 32  30 22.5 0.12 71 2.7 57 

F 1  15 35.1 0.29 71 10.1 78 

17 24.8 0.12 29 2.9 22 

2 15 484.9 2.02 72 978 79 

17 328.4 0.79 28 259 21 

3 15 38.1 0.39 72 15 91 

17 9.0 0.15 28 1.4 9 



Chapter 3 

70 

 

Figure 3.5 Spatial overview of suspended sediment (SS) fluxes for the three sampling campaigns 

in the Roudbach catchment; campaign 1 (a), campaign 2 (b), campaign 3 (c). Areas 

depicted are the sub-catchments belonging to the different SS spatial source sites 

(n=22) for each of the confluences. Colour values represent the different ranges of SS 

loads, using the Jenks natural breaks classification method applied to 10 intervals 

(Jenks, 1967). 

 

a) 

c) 

b) b) 
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3.3.2 Absorbance patterns 

Average absorbance (per unit SS) for the same sites (Figure 3.6), measured during the three 

sampling campaigns, showed pronounced variability. The sites sampled during campaign 3 

generally had the highest average absorbance (except for sites 6 and 14 where highest average 

absorbance was measured during campaign 2). Average absorbance was lower during campaign 2 

than during campaigns 1 and 3 for most of the sites located on the western side of the catchment 

(sites 15-33). Exceptions in this regard were sites 18 and 20, where the average absorbance was 

highest for campaign 2 (by 18 and 33% respectively). For the sampling sites on the eastern side of 

the catchment (sites 1-14), the lowest absorbances were measured for either campaign 1 or 2, with 

the lowest average absorbances measured during campaign 1 at sampling sites 6, 9, 11 and 12. Site 

13 showed the lowest variability in average absorbance between the three campaigns (maximum 

difference of 15%). Average absorbance values per campaign, combining all sites, were significantly 

different (Mann-Whitney test; p < 0.05 for campaigns 1 and 2; p < 0.01 for campaigns 1 and 3, and 

2 and 3).  

 

Figure 3.6 Average absorbance (represented by circular symbols) for each of the sampling sites, 

per campaign. The horizontal lines represent the average absorbance of all sampling 

sites for each campaign. 

Figure 3.7 shows the difference in average absorbance between the two spatial sources 

contributing to each confluence, per campaign. For confluences in the northern and central parts 

of the catchment (Confluences B, C, D, F and K; Figure 3.2), samples collected during campaign 1 

had the largest difference in average source absorbance (0.082 Abs m-1 vs. 0.053 Abs m-1 for the 

other confluences). In contrast, for confluences A and I in the southern part of the catchment, 
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samples collected during campaign 3 showed the highest differences in average source absorbance. 

For confluences in the northern part of the catchment (Confluences G, J; Figure 3.2), samples 

collected during campaign 3 showed highest differences in average absorbances (0.083 vs 0.045 

Abs m-1) compared with other confluences (confluences E and H are discarded as no data were 

available for campaign 1). For campaign 2, differences in source absorbance values were generally 

lower than during the other campaigns, and none of the confluences in campaign 2 showed 

differences in source absorbance values being higher than those of campaign 1 or campaign 3. 

However, for several confluences located in the southern part of the catchment (confluences A, B, 

C, I and K; Figure 3.2) the average source difference (0.052 Abs m-1) during campaign 2 was much 

higher than in the northern part (confluences E, G, H and J) of the catchment (0.0064 Abs m-1).

 

Figure 3.7 Mean absorbance differences between the two sources (Δ source absorbance) at each 

confluence, per campaign. The catchment map locating each confluence (letters A-K) is shown for 

reference. 

Average source absorbance differences were significantly different for all confluences and 

campaigns (Mann-Whitney test, p < 0.01), except for campaign 1 at confluence F (p value=0.31), 

campaign 2 at confluence D (p value=0.31) and campaign 3 at confluence B (p value=1.00) where 

differences between the confluence sources were not statistically different.  

3.3.3 Spatial Sediment Source Fingerprinting: Outcomes and Evaluation 

The average difference ± standard deviation between the source fingerprinting modelling 

outcomes (Figure 3.8; Table B.2) and the SS budget estimates (Table 3.1) for all confluences during 

the three campaigns was 18 ± 15%. For individual campaigns, the corresponding average 

differences were 12 ± 15%, 20 ± 16% and 20 ± 12% for campaign 1, 2 and 3, respectively. The largest 

https://en.wiktionary.org/wiki/%CE%94
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differences during campaign 1 were found at confluence K (50%), during campaign 2 at confluences 

A, G and J (52, 32 and 38%, respectively), and during campaign 3 at confluences G and I (48 and 

32%, respectively) (Figure 3.8). Deviations between source fingerprinting modelling and the SS 

budget did not show statistically significant relationships with discharge, SSC or difference in 

average source absorbance when using the entire dataset (Figure B.1; Appendix B).  

From the sediment budget calculations, it was shown that relative contributions of spatial sources 

at specific confluences varied over the three campaigns; however, at most confluences one of the 

spatial SS source sites clearly contributes dominant discharge and SS loads. Exceptions in this regard 

were observed for confluence C and G, which showed a change in the dominant spatial source 

between campaigns. This change in dominant source was correctly identified by the model for 

confluence C, but was misclassified by the model for confluence G (Figure 3.8). The sediment 

budgets of confluences A, H, I and K showed relative high variability in relative contributions (≥ 20%) 

from same sources over the three campaigns (Table 3.1). Differences in these source contributions 

were correctly modelled for confluence H, with absolute deviations between modelling and the SS 

budget of 1% (campaign 2) and 4% (campaign 3). The dominant spatial source at confluence J 

(campaign 2) and confluence I (campaign 3) was correctly identified by the modelling, but 

overestimated when compared with the sediment budget (by 38 and 32% respectively). The 

sediment budget for confluences A and K showed the same dominant source for the three 

campaigns. This was not correctly identified by the fingerprinting model for confluence A, campaign 

2, as the model identified the incorrect dominant source. For confluence K, the sediment budget 

indicated that source 30 dominated during the three campaigns whereas the model predicted 

source 29 contributed more during campaigns 1 and 3 (Figure 3.8). 

3.3.4 Spatial Sediment Source Fingerprinting: Different Modelling Approaches 

Figure 3.9 shows the modelling results for each confluence (A-K) and sampling campaign when using 

three different methods to select which wavelengths are used as fingerprints (the three methods 

are described in section 3.2.4.3). The three different methods generated similar results. For 

campaign 1, only confluence A and confluence B showed differences in the dominant contributing 

SS source. Higher differences in source apportionment (deviation > 20%) between the different 

methods were observed for confluence A (campaign 2), confluence C (campaign 1 and 3), 

confluence D (campaign 2) and confluence G (campaign 2). Differences between the methods using 

all wavelengths in the 200-730 nm range and using all wavelengths in the 390-730 nm range were 

on average 12.5% (5.4% when omitting the above mentioned cases with differences >20%). 

Differences between the methods using all wavelengths in the 390-730 nm range and using 

wavelengths in the 390-730 nm range at intervals of 10 nm were only 1.6%.
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Figure 3.8 Relative modelled spatial source contributions for each of the confluences, for 

sampling campaigns 1 (a), 2 (c) and 3 I. Modelled source contributions are depicted in 

the pie-charts. Numbers within the pie-charts indicate the two upstream source 

sampling sites for each confluence. Percentage of deviation refers to the differences 

between the fingerprinting and sediment budget, based on relative estimates of 

source contributions, for sampling campaign 1 (b), 2 (d) and 3 (f). The colour of the 

confluence circles indicates the extent of deviation between the two approaches. 
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Figure 3.9 Modelling results for the sources at all confluences (A-K) for the three measurement 

campaigns. The results refer to the three different modelling procedures testing three 

different methods of fingerprint selection using different wavelengths: (M1) using 200-

730 nm at 2.5 nm intervals, (M2) using 390-730 nm at 2.5 nm intervals, and (M3) using 

390-730 nm at 10 nm intervals. During campaign 1, there was no data for confluences 

E and H. 
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3.4 Discussion 

3.4.1 Absorbance Patterns 

Absorbance values differed at the same sampling sites for the different campaigns. The results also 

indicated that differences between the sampling sites were generally less pronounced for campaign 

2, which took place during the event of highest precipitation (Figure 3.7). The lower differences 

could be linked to more constant contributions of certain SS sources during longer duration rainfall 

events over the catchment (e.g., Walling et al., 2000), thereby indicating the activation of different 

sources within the spatially defined SS sources areas during the different sampling campaigns (as 

observed in e.g., Cooper et al., 2014b, 2015; Vercruysse et al., 2017; Vercruysse and Grabowski, 

2019). Therefore, the findings of the present study highlight that a single measurement cannot 

represent the catchment dynamics over time, and thus that methods allowing higher temporal 

frequency observations are certainly valuable (e.g., Cooper et al., 2015; Pulley and Collins, 2021). 

Source absorbance data should be sufficiently different to provide a robust basis for source 

discrimination and apportionment (Lake et al., 2022a). Herein, absorbance readings for the 

contributing sources of three confluences did not show significant differences (confluence F in 

campaign 1, confluence D in campaign 2, and confluence B in campaign 3; Figure 3.7). However, 

these situations did not result in higher deviations in modelled source contributions (Figure 3.8) 

compared with the average deviations for all confluences and campaigns (18% ± 15). In contrast, 

confluence K (campaign 1) and confluence G and I (campaign 3) showed very high modelled 

deviations (respectively 50, 48 and 32%), even though differences in absorbance for the 

contributing sources of these confluences were relatively high. This indicates no clear relationship 

between modelling performance and differences between the absorbance spectra of individual 

source (Figure B.1). 

From the results, it was evident that there is a spatial pattern in absorbance differences between 

sources merging at different confluences. The main spatial pattern can be found when comparing 

the average absorbance for the confluences in the northern part of the catchment to those in the 

southern part. In the northern confluences, there is a relative low difference between sources (e.g., 

confluence E and H). This could potentially be explained by the more similar land uses and 

lithologies in the contributing areas (Figure 3.1; Tables B.1 and B.2). Source streams are thus more 

likely to transport sediment yielding similar absorbance spectra. With SS source properties 

influencing absorbance readings (Lake et al., 2022a; Martínez-Carreras et al., 2016; Sehgal et al., 

2022), similarity between sources thus provides a limited basis for source discrimination. 
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Nevertheless, similarities in land use and geology do not always seem to explain the small 

differences in source absorbances for all confluences. Sources at confluence J (Table B.3 and B.4) 

are for example largely influenced by the same land use (i.e., forest and cultivated lands) and 

lithology (i.e., schists, slates and phyllites), but resulted in clearly different absorbance patterns for 

campaigns 1 and 3 (Figure 3.7). These differences could be related to differences in source 

activations, or a better connectivity of specific sources to the streams under certain conditions (e.g., 

Fryirs, 2012). The different activation of sources can also be related to one stream (at sampling site 

26) starting immediately downstream of a small village, which, upon activation might deliver SS 

originating from damaged road verges (Collins et al., 2010) and urban sources (Charlesworth and 

Lees, 2001), thereby affecting the absorbance signal.  

3.4.2 Modelling Relative Spatial Source Contributions 

This work revealed reasonably small deviations between the spatial source estimates based on 

sediment fingerprinting and the alternative sediment budgeting approach, with an average 

deviation for all confluences and campaigns of 18 ± 15%. The magnitude of deviation was similar to 

results found by Lake et al. (2022a). Therein, the use of absorbance was evaluated by means of 

artificial mixtures in a laboratory set-up, reporting errors of 14.5 ± 13% compared with the known 

source contributions to artificial mixtures.  

There were several instances in which downstream absorbance values did not fall in between the 

absorbance values from the sources (for all wavelengths). It is common practise in many 

fingerprinting studies to discard these out of range fingerprints (e.g., Collins et al., 2020; Evrard et 

al., 2022), due to issues concerning non-conservative behaviour of SS properties. However, this was 

not deemed necessary in the work reported herein. The distance between the source SS sampling 

sites and the downstream target SS sampling site was small (20–40 m for confluences E-K, slightly 

larger for confluences A-D due to field situation/site accessibility). Therefore, logically, it seems 

unlikely that substantial alterations to SS properties had occurred when SS was transported over 

such short distances. Furthermore, no clear excessive erosion input was observed at the different 

confluences in question between the source and target sampling sites. Potential intermediate SS 

inputs that could have influenced the absorbance measurements were therefore not considered as 

being of concern.  

A more likely explanation for the out of range situations is related to one of the sources being highly 

dominant. It is expected that the absorbance values of the target SS would then be close to the 

absorbance values of this dominant source. However, absorbance values of the source and target 

SS samples are subject to sampling and laboratory measurement uncertainties. Sampling 
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uncertainties include the fact that the grab samples do not fully represent the stream cross-section 

(e.g., Bainbridge et al., 2012). Herein, we aimed to take samples from the middle of the cross-

section, which was especially challenging in the wider streams. After collection, samples were 

stored and flocculation might have occurred (Phillips and Walling, 1995), potentially influencing the 

SS particle size distribution. This, in turn, might have influenced the absorbance readings (Lake et 

al., 2022a) measured in the laboratory set-up, despite efforts to break-up flocs by shaking the 

samples and using a magnetic stirrer for sample resuspension and disaggregation. Furthermore, as 

absorbance data were compensated for SSC, uncertainty associated with the laboratory methods 

used to quantify SSC gravimetrically might help explain these out of range situations. Confluences 

failing the range test do show rather small differences in target SS absorbance compared with the 

dominant source (with percentage deviations ranging between 3% and 11%). These deviations were 

found to be within reasonable uncertainty ranges for determining SSC (Siu et al., 2008). Therefore, 

we argue that out of range absorbance situations could still provide valuable information for 

determining highly dominant source contributions. The latter logic is supported by, for example, 

Evrard et al. (2022), García-Comendador et al. (2021), Pulley and Collins (2022) who all argue that 

the identification of dominant SS sources can still be very informative. Similar out of range 

observations were made by Lake et al. (2022a), resulting in a contribution of ca. 100% for the 

dominant source.  

The MixSIAR model (Stock et al., 2018; Stock and Semmens, 2016) was used to apportion the target 

SS collected downstream at each confluence. Alternatively, a deconvolutional MixSIAR (Blake et al., 

2018) model can be applied, which allows accounting for structural hierarchy inside the catchment 

by progressively applying MixSIAR to downstream confluences. In this case, target SS samples can 

serve as sources for confluences downstream, thereby reducing the number of samples that need 

to be collected. In our case, however, the need to apply a deconvolutional MixSIAR approach was 

negated by the design of our proof-of-concept study.  

3.4.3 Comparison of Modelling Approaches 

In this study, we opted to use all wavelengths (200-730 nm, at 2.5 nm intervals) in the Bayesian 

modelling framework (MixSIAR) instead of selecting an optimal set of fingerprints through the 

application of statistical tests (e.g., using a Kruskal-Wallis test combined with a discriminant 

function analysis) as used in many sediment fingerprinting studies (e.g., Batista et al., 2022; Gaspar 

et al., 2022; Nosrati et al., 2022). Lake et al. (2022a) obtained accurate results using the same 

method. This is supported by other studies (e.g., Sherriff et al., 2015), in which it has been suggested 

that the inclusion of a higher number of fingerprints can improve model performance and decrease 

the uncertainty associated with the results. Here, the use of all wavelengths over a selected sub-
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set is also beneficial because it facilitates the implementation of a standardized approach allowing 

for comparisons between studies (Evrard et al., 2022). 

Despite the aforementioned advantages regarding the use of all wavelengths, there are some 

disadvantages. Using all wavelengths contributes to long model computation times, with 

collinearity between fingerprints. To account for these issues, two other modelling approaches 

were tested. The different modelling approaches tested compared well with each other, with 

similar modelling outcomes when comparing the 390-730 nm range with the whole range of 200-

730 nm (as proposed by Lake et al., 2022a). Limiting the range of wavelengths used has another 

advantage by removing the need for compensation for the absorbance of background water (i.e., 

filtered water); dissolved components mainly influence the 200-390 nm range (see Figure B.2, and 

e.g., Rieger et al., 2004). However, minimal effects of dissolved components were observed for 

measurements in the 390-730 nm range (Figure B.2). The use of the 390-730 nm range can thus 

contribute to reducing issues associated with laboratory workload by eliminating the need for 

filtering and measuring absorbance on filtered water samples.  

3.4.4 Outlook for High Spatial and Temporal Resolution Sediment Source Fingerprinting 

Applying the confluence-based approach directly addresses some known challenges associated 

with sediment fingerprinting, including issues concerning which particle size fraction is being 

transported from the sources to the channel system. Furthermore, the confluence based approach 

can provide a better spatial overview of SS origins (Figure 3.5), in contrast to most other (i.e., 

classical) sediment fingerprinting studies which have aimed to apportion SS contributions based on 

different land uses (i.e., individual source types). Applying this more classical approach would 

require the separation of the relevant particle size fractions to create proxy SS soil source samples 

(e.g., for distinguishing land uses) that can be measured with a submersible spectrophotometer. 

Exploration of this could be a potential future research topic. Such an approach has the advantage 

that only one spectrophotometer would be needed at the catchment outlet instead of three 

spectrophotometers, when measuring in situ, using a confluence-based approach. This would then 

reduce the initial purchasing costs of the spectrophotometer (ca. US$20.000 each). 

The results obtained using absorbance for tracing SS spatial sources were validated using a 

sediment budget approach (e.g., Lake et al., 2022b; Tiecher et al., 2022). The need for such 

independent evaluation when using sediment fingerprinting has been long emphasized (e.g., Collins 

and Walling, 2004). Estimation of the suspended sediment budget was possible because discharge 

data were available for some of the sites, permitting calculations of actual SS loads. For the sites 

where discharge data were not available, the drainage area method was used to estimate discharge 
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(e.g., Emerson et al., 2005). This simple method assumes that discharge is solely a function of 

catchment area, and will likely introduce uncertainties into the calculations. This is most likely for 

the sites located higher upstream in the catchment (northern sites), where discharges were low 

compared with the downstream sites. Despite such uncertainties, the discharge data combined 

with SSC measurements allowed for an independent evaluation of the contribution of the different 

SS sources estimated using source fingerprinting, whereas many SS fingerprinting studies do not 

evaluate predicted source proportions using independent evidence. Instead, an increasing number 

of recent publications rely on the results of either virtual or artificial mixture tests (e.g., Batista et 

al., 2022). Although this is an important step in state-of-the-art decision trees for applying sediment 

source fingerprinting, they have inherent uncertainties and limitations (Collins et al., 2017). 

Mixtures represent ideal situations (i.e., sources are known, negligible particle size selectivity 

effects and no out of range fingerprints), meaning that even ‘acceptable’ modelling results (i.e., 

modelled results are in agreement with the known proportions in the mixtures) do not always 

translate into accurate catchment source apportionments (Batista et al., 2022). Clearly, other 

means to evaluation the un-mixing results using the absorbance data could involve applying more 

classical sediment fingerprinting approaches and their conventional fingerprint properties. 

The approach tested in the present study can facilitate an increase in the temporal resolution of 

observations for elucidating potential changes in SS source contributions, due to the relatively easy 

analysis of the water samples. Such information can facilitate the reliable targeting of management 

solutions to prevent excessive SS transport (e.g., Vercruysse et al., 2017; Vercruysse and Grabowski, 

2019). To facilitate an increase in high frequency observations of SS source contributions even 

further, it is key to reduce sampling and laboratory analyses to a minimum. Here, the use of the 

absorbance in the 390-730 nm range eliminates the need for compensation for the absorbance of 

background (filtered) water (i.e., absorbance influenced by dissolved components). This could then 

allow the direct use of absorbance data collected in situ with a submerged spectrophotometer at 

high frequency (i.e., minutes) to fingerprint SS sources, further reducing sampling needs and 

laboratory workloads. Here, the use of in situ absorbance measurements would additionally reduce 

issues associated with potential alteration of SS properties during transport and storage (Smith and 

Owens, 2014). Clearly, however, regular sampling to confirm the reliability of the absorbance data 

would still be needed (Gamerith et al., 2011).  

There remains the need to compensate absorbance spectra for SSCs. When using a submerged 

spectrometer to trace SS sources at high frequency, compensation can be done by establishing a 

rating curve between SSC and turbidity (the latter also being measured by the spectrophotometer). 

To this end, a number of grab samples need to be collected and their SSCs need to be measured in 

the laboratory. Another consideration is the maintenance of the spectrophotometer while installed 
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in situ. The spectrophotometer used in this study can be equipped with an automatic cleaning brush 

(s::can GmbH, Vienna, Austria) that cleans the sensor lens before every measurement, to 

mechanically remove fouling (e.g., Sehgal et al., 2022). Additionally, regular manual cleaning is also 

advised, e.g., bi-weekly (Martínez-Carreras et al., 2016).  

3.5 Conclusions 

In this research, the use of absorbance at a range of wavelengths (i.e., fingerprints) to apportion SS 

spatial source contributions using a confluence-based sampling strategy was tested. This new 

research builds upon the work presented by Lake et al. (2022a), who tested and evaluated the 

absorbance approach in a laboratory setting using artificially created source samples and mixtures. 

The results presented herein suggested that confluences in the northern part of the study 

catchment exhibited lower differences between source absorbance compared with confluences in 

the southern part, indicating the potential influence of different spatial sources. Absorbance 

measured at the same sampling sites varied over time, indicating the need for repeat sampling if 

catchment SS dynamics are to be well understood. Modelled SS spatial source contributions 

showed deviations of 18 ± 15% from the corresponding source contributions estimated using 

sediment budgets. While dominant spatial sources were mostly well identified using the 

absorbance fingerprinting approach, some clear deviations from the budget approach were 

observed. Care is thus needed when using absorbance for fingerprinting and independent 

evaluation of the results should be undertaken on a regular basis.  

There were no clear indications of improved model performances with higher source absorbance 

differences, increasing discharges or higher SSCs. Furthermore, it was shown that different 

modelling procedures gave comparable spatial source estimates. Hence, computation times could 

be reduced by using a lower number of wavelengths as fingerprints. Overall, this research has 

shown that, despite some uncertainties in the modelling results, absorbance could potentially be 

used as a sediment fingerprint in natural environments, reducing the need for conventional 

resource intensive sampling and laboratory analyses. The method reported herein, using a 

submerged spectrophotometer, could thus contribute to easier ways of estimating SS source 

contributions and such information is urgently needed to improve the targeting of sediment control 

strategies in many river catchments.  
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Chapter 4 Using Particle Size Distributions to Fingerprint 

Suspended Sediment Sources – Evaluation at 

Laboratory and Catchment Scales 

Abstract 

Applications of sediment source fingerprinting studies are growing globally despite the high costs 

and workloads associated with the analyses of conventional fingerprint properties on target 

sediment samples collected using traditional methods. To this end, there is a need to test new 

fingerprint properties that can overcome these challenges. Sediment particle size could potentially 

contribute here since it is relatively easy to measure but, until now, has rarely been deployed as a 

fingerprint itself. Instead, particle size has been used to ensure that source and target sediment 

samples are more directly comparable on the basis of the fingerprints used. Accordingly, this work 

examined whether particle size distributions (PSDs) could be used as a reliable fingerprint for 

apportioning sediment sources, in combination with a grain size un-mixing model. Application of 

PSDs as a fingerprint was tested at two scales: (i) in a laboratory setting where soil samples with 

known PSDs were used to generate artificial mixtures to evaluate un-mixing model results, and (ii) 

a catchment setting comparing PSDs in a confluence-based approach to test if downstream target 

sediment PSDs could be un-mixed into the contributions of sediment coming from an upstream and 

a tributary sampling site. Laboratory results showed that the known proportions of the two, three 

and four soil samples in the artificial mixtures were predicted accurately using the AnalySize grain 

size un-mixing model, giving average absolute errors of 9%, 8% and 6%, respectively. Catchment 

results showed variable performances when comparing un-mixing results with sediment budget 

estimations, with the best results obtained at higher discharge values during storm runoff events. 

Overall, our results suggest the potential of using PSDs for estimating contributions of sediment 

sources delivering SS with distinct PSDs when sources are located at short distance to the 

downstream sampling site.  

4.1 Introduction 

Information on sediment origin can help target remedial actions to mitigate erosion in river 

catchments (Belmont et al., 2011). The sediment fingerprinting approach is a widely-adopted 

method to assemble this information, allowing the quantification of the relative contributions of 

different sources to target suspended sediment (SS) collected downstream (see reviews by e.g., 
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Collins et al., 2017, 2020; Haddadchi et al., 2013; Owens et al., 2016). To apply the method, both 

source and SS samples need to be collected. Potential sources are normally sampled manually, 

while SS is often collected using time-integrated sediment traps (e.g., García-Comendador et al., 

2021; Pulley and Collins, 2021), or automatic water samplers (e.g., Legout et al., 2021; Vale et al., 

2020). Selected properties or ‘fingerprints’ are then measured on the SS and compared with the 

corresponding fingerprint values measured on the potential source samples. This comparison 

allows for estimations of the relative contribution of each source to the target SS using un-mixing 

models. 

A wide range of soil and sediment properties has been used for source fingerprinting, e.g., 

geochemistry, fallout radionuclides, colour properties, stable isotopes, compound specific stable 

isotopes, and mineral magnetic properties (Blake et al., 2012; Collins et al., 1997c; Martínez-

Carreras et al., 2010a; Oldfield et al., 1985; Revel-Rolland et al., 2005; Upadhayay et al., 2022; 

Wallbrink et al., 1998). A common issue is selecting the particle size fraction to analyse (e.g., Collins 

et al., 2017; Koiter et al., 2013, 2018; Laceby et al., 2017; Smith and Blake, 2014). This relates to the 

essence of an effective fingerprinting property, where fingerprints must both differentiate between 

sources while behaving conservatively (Walling et al., 1993). However, fingerprint values often vary 

with particle size in a non-linear manner that is difficult to generalize (Horowitz and Elrick, 1987; 

Russell et al., 2001). For instance, total organic carbon (Wynn et al., 2005) and radionuclides 

(Horowitz and Elrick, 1987) are generally enriched in the finer particle size fractions, while different 

mineral magnetic properties (e.g., Hatfield and Maher, 2009) and colour parameters (e.g., Pulley 

and Rowntree, 2016) are linked to different particle size fractions.  

Various approaches have been adopted to account for particle size in sediment fingerprinting 

studies to facilitate direct comparison between the properties of target SS and possible sources. 

The most commonly-applied approach is to fractionate SS and source samples by sieving (Laceby et 

al., 2017). Here, source materials and target SS samples are commonly sieved to <63 μm (Walling 

et al., 1993), since this fraction is considered to account for most of the SS load transported by 

rivers (e.g., Legout et al., 2013; Walling et al., 2000). In other studies, samples are sieved to different 

fractions and separate fingerprint analyses performed for isolated fractions (e.g., Gaspar et al., 

2019, 2022; Motha et al., 2002). Another approach is to sieve and then apply correction factors 

(e.g., Collins et al., 1997a; He and Walling, 1996). However, the underlying assumptions used for 

these correction factors were challenged by Smith and Blake (2014) due to the fact that positive 

linear relationships between particle size and fingerprint concentrations do not apply to all 

fingerprint properties (Horowitz, 1991; Russell et al., 2001). Given these uncertainties, recent 

reviews have stressed the need to consider both the most representative particle size fraction for 
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the target sediment in question and to examine dependency of fingerprint properties on particle 

size, especially where a broad size fraction is used (Collins et al., 2017).  

Alternatively, the confluence-based sediment fingerprinting approach has been proposed to 

facilitate direct comparison between the properties of downstream target SS samples and possible 

sources (i.e., different tributaries used to represent upstream catchment sources) (Collins et al., 

1996, 1997b; Nosrati et al., 2018, 2019; Patault et al., 2019; Vale et al., 2016). Here, uncertainties 

regarding which particle size fractions are delivered from hillslope sources to streams are 

minimised, reducing potential uncertainties associated with particle size enrichment or depletion 

and the concomitant effects on fingerprint properties (Laceby et al., 2017). However, in-stream 

hydrodynamic processes result in mobilization of different SS size fractions and affect SS 

flocculation, that might still cause uncertainty as to which particle sizes are present at different 

sections of the stream (e.g., Droppo, 2004; Grangeon et al., 2014), challenging fingerprint 

conservation. 

While the consideration of particle size in sediment fingerprinting is mainly limited to investigating 

its controls on fingerprint values, there is evidence that particle size can be used directly as a 

fingerprint property or tracer (Kranck and Milligan, 1985; Laceby et al., 2017). For example, Vale et 

al. (2016) applied a confluence-based approach to the Manawatu River catchment (New Zealand), 

collecting fine sediments from the riverbed using a trowel. The authors showed that varying rock 

types, situated in different sub-catchments and drained by different tributaries, were linked to 

differences in SS D50 values. In the same catchment, Vale et al. (2020) linked patterns in SS dynamics 

during storm events to differences in particle sizes. They argued that the finer particle size of 

mudstone (D50 of 16 μm) likely allowed prolonged entrainment in the water during storm events, 

whereas the transport of coarser mountain range and unconsolidated sediment (D50 of 44 μm) 

ceased as the storm events progressed. The results of such studies therefore suggest that temporal 

changes in sediment source contributions can be fingerprinted using observed changes in particle 

sizes or particle size distributions (PSDs). Existing work that included particle size for the sole 

purpose of tracing (Li et al., 2020), reported the use of particle size statistics (e.g., D60, D70 and well 

as clay and silt percentages) for fingerprints to identify sediment sources of core sediment. Another 

study (Tang et al., 2018) looked at the spatial and temporal variability of SS source particle size input 

and the effects of sediment size sorting in reservoir dam deposits. Droppo et al. (2005) suggested 

rather than using particle size, particle shape and fractal dimension could be used to trace SS 

sources. Furthermore, the idea of using PSDs for sediment source fingerprinting purposes was 

raised in an abstract by Liu et al. (2014), where the possibility to measure PSDs from potential soil 

sources and compare those with the target SS collected by sediment traps was proposed. A 
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corresponding publication on this proposal has not been found at the time of publication of the 

present study. 

Many recent sediment fingerprinting studies underscore increasing opportunities to measure 

sediment PSDs. This can be achieved using laboratory equipment such as the Beckman Coulter LS 

13320 (Beckman Coulter, Inc., Fullerton, CA) and Mastersizer 3000 (Malvern Instruments Ltd, 

Worcestershire, UK) laser diffraction particle size analysers (as used by e.g., García-Comendador et 

al., 2021; Patault et al., 2019), and in-field equipment such as the LISST sensor (Sequoia Scientific, 

Bellevue, WA, USA), also based on laser diffraction (as used by e.g., Czuba et al., 2015; Upadhayay 

et al., 2021). Differences in sediment PSDs are regularly used in sedimentology to infer past 

sediment provenance and to reconstruct past changes in, for example, climatic conditions or 

tectonic processes (Beuscher et al., 2017; Dietze et al., 2012). To this end, Weltje (1997) first used 

PSD data together with an end-member mixing model (EMMA) to estimate the proportions of 

different sediment sources. Subsequent research led to the development of other end-member 

grain size un-mixing models such as DRS-unmixer (Heslop et al., 2007), EMMAgeo (Dietze et al., 

2012), AnalySize (Paterson and Heslop, 2015), BEMMA (Yu et al., 2016) and BasEMMA (Zhang et al., 

2020). These grain-size un-mixing models use the whole PSD data as input, whereas within the 

sediment fingerprinting community linear multivariate un-mixing models are used most widely 

(e.g., FingerPro and MixSIAR: Lizaga et al., 2020c; Stock et al., 2018; Stock and Semmens, 2016). 

We propose the use of tracing contemporary SS sources with PSDs as a fingerprint in combination 

with an end-member grain size un-mixing model (AnalySize). To this end, we: (i) evaluate un-mixing 

model performances using artificial laboratory mixtures, with known proportions of soil samples 

sieved to different size fractions, and; (ii) un-mix target SS samples from a catchment scale 

confluence-based approach based on differences in upstream source SS PSDs, while relating the 

un-mixing model performances to differences in upstream source D50 values and observed water 

discharges. 

4.2 Materials and Methods 

This study describes two approaches using complementary methods to measure PSD. First, a LISST 

sensor (Sequoia Scientific, Bellevue, WA, USA) was used in controlled laboratory experiments, 

where PSDs were measured inside a tank set-up to evaluate the un-mixing model (section 4.2.1). 

Second, a Mastersizer instrument (Malvern Instruments Ltd, Worcestershire, UK) was used to 

measure PSDs in discrete samples collected in a catchment scale field experiment, with the un-

mixing model then applied to estimate confluence sediment source contributions (section 4.2.2). 

The two approaches were deployed in parallel, not compared directly, with the approaches used 
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according to their different objectives comprising: (1) laboratory experiments aiming to measure 

in-tank PSDs in specified mixtures of source soils (section 4.2.1), and; (2) field experiments aiming 

to measure PSDs after applying ultrasound by taking sub-samples from a well-mixed environment 

(section 4.2.2). 

4.2.1 Laboratory Experiments 

Laboratory experiments were performed to evaluate the grain-size un-mixing model AnalySize 

under controlled conditions. Both soil samples and artificial mixtures, composed of these different 

soil samples, were suspended inside a tank set-up and PSD was measured using a LISST sensor. The 

PSDs of both the soil samples and mixtures were then used to evaluate the grain-size un-mixing 

model, according to the known soil sample contributions present in the mixtures. The tank set-up, 

as well as the soil samples and mixtures, were used previously in Lake et al. (2022a) to investigate 

the feasibility of using absorbance measurements obtained with a submerged spectrophotometer 

for un-mixing source soil sample contributions. 

4.2.1.1 Soil Samples and Artificial Mixtures 

Soil sampling was carried out at six different sites in Luxembourg (see Table C.1; Appendix 

C, for details on sampling site coordinates). Sites were selected based on differences in 

geochemistry and mineralogy (Lake et al., 2022a). Soil samples were collected using a 

trowel, after removal of the top layer of soil (0-5 cm). Care was taken to collect only 

material that appeared homogeneous in colour. The samples were then dried at room 

temperature, disaggregated with a pestle and mortar, and sieved into three different size 

fractions: <32 μm, 32-63 μm and 63-125 μm. This resulted in 17 soil samples (the 63-125 

μm fraction for soil 6 was omitted due to the low quantities present). Soil samples are 

hereafter indicated by #soil.fraction, with ‘soil’ representing the soils (n=6), and ‘fraction’ 

the sieved particle size fraction (.1 for <32 μm; .2 for 32-63 μm; .3 for 63-125 μm). Soil 

samples were used to create 25 artificial mixtures. The mixtures consisted of two, three or 

four soil samples, with contributions chosen in order to have a majority of mixtures with a 

dominant soil sample (Table 4.1). Mixtures 1-9 were composed of soil samples sieved to 

different size fractions. Mixtures 10-25 were composed of soil samples sieved to the same 

particle size fraction. These two approaches were tested to see if both distinct differences 

in source PSDs (soil sources sieved to different fractions) and small differences in source 

PSDs (soil sources sieved to same size fraction) could be used for un-mixing. 

https://www.google.com/search?client=firefox-b-ab&q=micrometre+1+%CE%BCm+in&sa=X&ved=2ahUKEwic9L7e9d7kAhUOLewKHfpACo8Q6BMoADAYegQIDRAG
https://www.google.com/search?client=firefox-b-ab&q=micrometre+1+%CE%BCm+in&sa=X&ved=2ahUKEwic9L7e9d7kAhUOLewKHfpACo8Q6BMoADAYegQIDRAG
https://www.google.com/search?client=firefox-b-ab&q=micrometre+1+%CE%BCm+in&sa=X&ved=2ahUKEwic9L7e9d7kAhUOLewKHfpACo8Q6BMoADAYegQIDRAG
https://www.google.com/search?client=firefox-b-ab&q=micrometre+1+%CE%BCm+in&sa=X&ved=2ahUKEwic9L7e9d7kAhUOLewKHfpACo8Q6BMoADAYegQIDRAG
https://www.google.com/search?client=firefox-b-ab&q=micrometre+1+%CE%BCm+in&sa=X&ved=2ahUKEwic9L7e9d7kAhUOLewKHfpACo8Q6BMoADAYegQIDRAG
https://www.google.com/search?client=firefox-b-ab&q=micrometre+1+%CE%BCm+in&sa=X&ved=2ahUKEwic9L7e9d7kAhUOLewKHfpACo8Q6BMoADAYegQIDRAG
https://www.google.com/search?client=firefox-b-ab&q=micrometre+1+%CE%BCm+in&sa=X&ved=2ahUKEwic9L7e9d7kAhUOLewKHfpACo8Q6BMoADAYegQIDRAG
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Table 4.1 Soil sample input contributions (%) for the mixtures 1-9, based on theoretical input 

contributions, and adapted input contributions (bold), based on measured 

concentrations in the tank set-up. 

 Mixture No. Soil sample (%)  Soil sample (%) Soil sample (%) Soil sample (%) 

Mixtures of samples sieved to different size fractions: 

2 soil 
samples 

1 #3.1 (80) (81.6) #4.2 (20) (18.4) - - 

2  #1.2 (80) (83.4) #2.3 (20) (16.6) - - 

3 #1.1 (30) (56.9) #5.3 (70) (43.1) - - 

3 soil 
samples 

4 #4.2 (10) (20.0) #5.3 (80) (57.3) #6.1 (10) (22.7) - 

5 #1.2 (20) (19.3) #3.1 (70) (74.2) #4.3 (10) (6.6) - 

6 #1.1 (30) (41.5) #3.3 (50) (49.5) #5.3 (20) (9.0) - 

7 #2.3 (80) (74.4) #3.1 (10) (12.9) #6.2 (10) (12.7) - 

4 soil 
samples 

8 #1.1 (10) (12.4) #2.3 (70) (62.9) #3.1 (10) (12.5) #6.2 (10) (12.3) 

9 #1.1 (10) (10.3) #2.3 (10) (7.4) #3.1 (70) (72.2) #6.2 (10) (10.2) 

4.2.1.2 Laboratory Set-Up 

A LISST 200X sensor (Sequoia Scientific, Bellevue, WA, United States) was used in the laboratory 

set-up (Figure 4.1) to measure PSDs. This sensor uses laser diffraction technology, whereby particles 

of different sizes diffract the laser beam at different angles (Agrawal and Pottsmith, 2000). The 

diffracted light is assigned to one of the 36 particle size classes, providing PSDs on the soil samples 

and mixtures tested (in the–1 - 500 μm range). The output value in each size class is given in μL L-1. 

Output values were converted into percentage of volume concentration to allow comparison 

between different measurements, with percentage of volume concentration being independent 

from mass concentration. 

The LISST sensor was instal–ed in a water tank (75.4 L capacity) filled with 40 L of demineralised 

water (Figure 4.1). The sensor was installed in a horizontal orientation to prevent the settling of 

particles on the sensor lens. The LISST sensor was equipped with the path reduction module to cope 

with all measured concentrations (Sequoia Scientific, 2018). Both individual soil samples and 

mixtures were tested for 10 different theoretical concentrations to investigate the influence of 

different concentrations on the un-mixing results (100 mg L-1 – 1000 mg L-1, at 100 mg L-1 

increments). A background signal (using demineralised water), measured before the start of every 

experiment, was saved onto the instrument and automatically compensated for during the 

experiments (to eliminate influence on the measurements of e.g., small scratches on the 

measurement window). For each theoretical concentration, the LISST sensor measured over a 10 

minute period at 1.5 second interval, using a random shape algorithm (Sequoia Scientific, 2018). 

https://www.google.com/search?client=firefox-b-ab&q=micrometre+1+%CE%BCm+in&sa=X&ved=2ahUKEwic9L7e9d7kAhUOLewKHfpACo8Q6BMoADAYegQIDRAG
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After each theoretical concentration was measured, three samples were collected using a pipette. 

Samples were transferred into pre-weighed aluminium buckets and dried to quantify the 

concentrations inside the tank (i.e., ‘measured concentrations’). 

A Vibromixer (DrM, Dr. Mueller AG, Switzerland) mixing device was used to keep the soil samples 

and mixtures in suspension (see Lake et al., 2022a for details on the settings and initial tests on 

mixing performances). From the results in Lake et al. (2022a), it appeared that measured 

concentrations were lower than the theoretical concentrations, with differences increasing with an 

increase in particle size. Soil samples sieved to the same size fractions presented similar differences 

between measured and theoretical concentrations. Since mixtures 1-9 used soil samples sieved to 

different size fractions, the actual in-tank contributions differed from the theoretical input 

contributions. Therefore, input contributions for these mixtures were compensated according to 

the measured soil sample concentrations. Table C.3 shows the measured concentrations and Table 

4.1 the associated compensated soil sample input contributions for the mixtures.

 

Figure 4.1 Photograph (a), and schematic representation (b) of the laboratory tank set-up. The 

data obtained from the spectrophotometer are discussed in Lake et al. (2022a). 

4.2.2 Field Experiments 

The field experiment was carried out at the confluence of a tributary draining a sub-catchment with 

different underlying geology, which was hypothesized to yield SS with distinct PSDs (as discussed in 

Walling et al., 2000) compared to the rest of the catchment. Field samples were collected using 

automatic water samplers (i.e., discrete samples) at pre-set times at the two upstream and 

downstream sites. PSDs, measured on the samples were introduced into the grain-size un-mixing 

model to identify the origin of the downstream target SS. A sediment budget, through a simple 

mass-balance, was used to evaluate the model results. 
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4.2.2.1 Study Area 

The study area is located in the Attert River basin (247 km2 at Useldange), in the western part of 

Luxembourg (Figure 4.2a). Land use is represented by forests (dominant in the higher sloping schist 

and sandstone areas), grasslands and croplands (Figure 4.2b). The catchment is underlain by schists, 

slate and phyllites bedrock in the north-west, and by red sandstone (‘Buntsandstein’), marls and 

Luxembourg sandstone in the central and southern parts (Figure 4.2c). Altitudes range from 553 m 

to 238 m above sea level. The climate is semi-oceanic, with maximum mean monthly temperatures 

ranging between 0 to 18 °C and an average annual rainfall of ca. 845 mm (1954-1996; Pfister et al., 

2005). Precipitation during the field experiments was measured at the weather station in Useldange 

(Figure 4.2b, 4.2c) by the ‘Administration des Services Techniques d’ l'Agriculture’ (ASTA). 

 

Figure 4.2 Location of the Attert River Basin in Luxembourg (a), land use and river network at 

Useldange (b), and lithology and river network at Useldange (c). Sampling sites (b & c) 

are indicated by the letters U (Upstream), T (Tributary), and D (Downstream). 

Three sites were instrumented for stream water sampling (Figure 4.2b, 4.2c). Two sampling sites 

were located along the Attert River, upstream and downstream of the Roudbach tributary junction. 

The third sampling site was located at the outlet of the Roudbach tributary. The Roudbach sub-

catchment drains an area of 44 km2 and is mainly underlain by red sandstone (‘Buntsandstein’), as 
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well as by schists, slate and phyllites bedrock in the northern part. Discrete water samples were 

collected during storm runoff events and low flow periods using automatic water samplers (ISCO 

6712 FS; Teledyne ISCO, Lincoln, Nebraska, U.S.A). Sampling at the three sites was undertaken at 

the same time. Until analyses, samples were stored in a cold room (4-5 °C). At each of the three 

sites, turbidity was measured at 5 minute intervals using a S::can spectro::lyserTM probe (Scan 

Messtechnik GmbH, Vienna, Austria).

4.2.2.2 Particle Size Distribution Measurements  

Particle size distributions of the SS contained within the discrete water samples were measured in 

the laboratory using a Mastersizer 3000 (Malvern Instruments, Malvern, UK). Discrete samples 

were shaken for homogenization and a sub-sample was introduced into the Mastersizer hydro LV 

unit (3000 rpm mixer rotation speed), collecting a total of 5 measurements per sample. Samples 

were introduced to the Mastersizer until a certain obscuration range was achieved (usually 

between 3-5%) to allow for consistency between measurements. For samples with low 

concentrations, this obscuration range was not always achieved. The PSD of each sample was 

measured after applying ultrasound for 60 seconds to disaggregate potential flocs and to measure 

the absolute particle size (representing the primary particles; Biggs and Lant, 2000).  

Organic matter (OM) was removed from a selection of samples to investigate (i) the influence of 

OM on the PSD shape, and (ii) to investigate whether PSDs measured from SS with OM removed 

improved un-mixing accuracy. To this end, a selection (n=12, 4 samples for each site) of discrete 

samples from period F (Figure 4.4; Table 4.2) were oven dried at 35°C. Subsequently, these samples 

were removed using Milli-Q water and transferred into a glass beaker. Hydrogen peroxide (H2O2) 

was added to these beakers, which were then placed on a hot plate (30-35°C). Samples were stirred 

and H2O2 was added until all OM was removed. Samples were then disaggregated in an ultrasonic 

bath and subsequently introduced into the Mastersizer. 

4.2.2.3 Suspended Sediment Budget 

A suspended sediment budget (mass-balance) was established to evaluate the un-mixing model 

performance. To this end, suspended sediment concentration (SSC) was measured from the 

discrete water samples by filtering a known volume through 1.2 μm Whatman GF/C glass fibre 

filters. These concentrations were used, together with the in-stream turbidity measurements, to 

establish a sediment calibration curve for each sampling site (Figure C.1; r2 = 0.84, 0.86 and 0.88 

and n= 126, 121 and 129 for the Upstream, Tributary and Downstream sites, respectively). 

Predicted SSCs and discharge data were used to calculate SS loads at 5 minute time steps. Total 

Downstream SS loads, based on the sum of Upstream and Tributary SS loads, were then divided 
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into the relative contributions of both the Upstream and Tributary sites (hereafter referred to as 

‘sediment budget’). At the Tributary site, turbidity values were not recorded during a 3-hour period 

due to very high sediment concentrations (04/06/2021 18:00 – 04/06/2021 21:00). Therefore, SSC 

predictions during that period were based on a linear interpolation between the available 

measured SSCs. Downstream discharge was calculated based on the sum of discharges from both 

the Upstream and Tributary sites (with half an hour delay applied as an estimate of river water 

travel time).  

4.2.3 AnalySize Modelling 

The AnalySize software (version 1.2.1; Paterson and Heslop, 2015) was used to perform the un-

mixing of: (i) the artificial laboratory mixtures into the soil samples contributions, and; (ii) the field 

Downstream samples into the contributions of the Upstream and Tributary sources. The AnalySize 

model was selected based on Van Hateren et al. (2018), wherein the authors compared the 

performances of different end-member mixing models with decomposed grain-size distribution 

data using an artificial data set with known source proportions. The authors concluded that the 

AnalySize algorithm provided the most accurate results. Furthermore, the algorithm allows 

accounting for the known end-member PSD data (i.e., the Tributary and Upstream sources in this 

case). AnalySize is a MATLAB based software tool, which is freely available for download (Paterson 

and Heslop, 2020a), together with a detailed manual (Paterson and Heslop, 2020b).  

The AnalySize algorithm is inspired by hyperspectral image analysis (Paterson and Heslop, 2015). 

Its un-mixing principle is similar to that of mass-balance un-mixing models widely used by the 

sediment fingerprinting community (e.g., Collins et al., 1997a; Lizaga et al., 2020c; Pulley and 

Collins, 2018; Stock et al., 2018), where data that are to be un-mixed can be described as a linear 

mixture of the contributing end-members. End-member abundance must be >0 and sum to 1 

(100%). In the AnalySize algorithm, the PSD data are expressed as relative abundances of each size 

class and must sum to one. The un-mixing principle (Equation 4.1) can be expressed in matrix 

notation (Paterson and Heslop, 2015): 

X = AS + E             [Equation 4.1] 

where X is the observed data (PSD of a target SS sample; one specimen per row), A the abundance 

matrix of the constituent end-members (i.e., relative contribution of each tributary) whose 

signatures are given by S (PSD of the tributaries; one end-member per row), and sampling and 

measurement errors are represented by E. As described by Paterson and Heslop (2015), due to the 

imposed constraints, there is no closed form solution to Equation 4.1, which thereby has to be 

solved numerically. 
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Within AnalySize, the target SS PSD data were loaded using the ‘Load Data’ button. End-member 

PSDs were entered using the ‘Defined’ end-member option, as source PSD was measured and could 

be directly used to determine its abundance. Based on the PSDs of the tributary sources and target 

SS, AnalySize displays several performance indicators, including EM-r2 (indicating the maximum 

squared linear correlation between the end member [EM] PSDs, being a measure of linear 

independence between the potential sources).  

4.2.3.1 Un-Mixing of Artificial Laboratory Mixtures 

The PSDs of the soil samples measured in the tank set-up were used as source data to un-mix the 

PSDs measured on the artificial mixtures. Source data were created by averaging all recorded PSDs 

over all concentrations. Mixture PSD data were introduced for each single measurement separately, 

with AnalySize predicting, for each measurement, the relative abundance of the soil samples mixed 

in the tank set-up. In the present study, size classes ranging from 1 to 500 μm were included for 

analysis. Modelled results were compared with the known relative soil sample contributions 

(section 4.2.1.2). 

4.2.3.2 Un-Mixing of Suspended Sediment Field Samples 

For consistency with the laboratory results, the upper size limit for the Mastersizer measurements 

on the field samples was set to 500 μm. This approach allowed the inclusion of the main PSD peak, 

while eliminating (smaller) peaks at larger particle size ranges (>500 µm) that were associated with 

small leaves or coarser particles (Figure C.2, Figure C.5). The five PSD measurements per sample 

were averaged for the source samples; all five individual measurements of the Downstream 

samples were used in AnalySize.  

4.3 Results 

4.3.1 Laboratory Experiments: Model Evaluation using Artificial Mixtures 

Modelled contributions for the respective soil samples, for mixtures consisting of soil samples 

sieved to different size fractions, are shown in Figure 4.3a. Overall, modelled contributions 

predicted the same dominant soil samples compared with the known input contributions. 

Differences between averaged modelled contributions and known input contributions to the 

mixtures were small (Table A.5), with deviations >10% only observed for soil samples in mixtures 3 

(14%, for soil samples #1.1 and #5.3), 4 (13%, for soil sample #5.3), 7 (11%, #2.3), 8 (10%, #1.1) and 

9 (10%, #1.1).  

https://www.google.com/search?client=firefox-b-ab&q=micrometre+1+%CE%BCm+in&sa=X&ved=2ahUKEwic9L7e9d7kAhUOLewKHfpACo8Q6BMoADAYegQIDRAG
https://www.google.com/search?client=firefox-b-ab&q=micrometre+1+%CE%BCm+in&sa=X&ved=2ahUKEwic9L7e9d7kAhUOLewKHfpACo8Q6BMoADAYegQIDRAG
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Mixture 2 differed from the other mixtures in terms of the high standard deviations associated with 

the modelled contributions (34%), which were <15% for all other soil samples (Table C.4). For 

Mixture 2, mixture D50 values (Figure C.4) unexpectedly increased with increasing concentrations 

(up to theoretical concentrations of 600 mg L-1). D50 values then returned to their starting values 

(observed at 100 mg L-1) and remained constant at the higher theoretical concentrations tested 

(600 mg L–1 - 1000 mg L-1). Following the patterns observed in the D50 values, modelled contributions 

(Figure C.4) for soil sample #1.2 (83% input contribution) started between 80%-100%, decreasing 

in a stepwise manner to ranges of 30-50%, 10-30% and 5-15%. Thereafter, for concentrations 

exceeding 600 mg L-1, modelled contributions for the soil sample returned to very high values of 

90-100%. Similar stepwise increases of D50 values were observed for several other mixtures and/or 

soil samples (e.g., soil sample #1.2, #3.1, #4.2 and #6.2). These patterns mostly occurred at lower 

theoretical concentrations (100-500 mg L-1), which caused a spread in the modelled soil sample 

contributions at these lower concentrations, although to a much smaller extent than observed for 

mixture 2.  

 

a) 
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Figure 4.3 Modelled contributions (boxplots, with median shown by central line, interquartile 

range by box, and range by whiskers) for the laboratory experiments using artificial 

mixtures consisting of soil samples sieved to different size fractions. These modelled 

contributions are compared with the known input contributions of soil samples in each 

of the mixtures (black crosses). Mixtures 1-9 consist of soil samples sieved to different 

fractions (a). Mixtures 10-25 consist of mixtures sieved to same fractions (b). 

b) 
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Modelled predictions for the mixtures with soil samples sieved to the same size fractions exhibited 

larger deviations from the known input contributions (Figure 4.3b). For those mixtures using four 

soil samples, several modelled soil sample contributions were estimated at 0%. Only a few modelled 

soil sample contributions were close to the known input contributions. This observation was, for 

example, notable for the soil samples in mixture 17. Particle sizes of the soil samples in mixture 17 

were, although sieved to same fractions, significantly different (t-test; p-value of < 0.001) showing 

a larger difference than the other soil samples sieved to the same size fractions (Figure C.3). 

4.3.2 Field Experiments: Model Evaluation using Sediment Budget Estimates 

An overview of discharge and precipitation data is shown in Figure 4.4, with selected periods in 

which field sampling was performed highlighted. Discharge and precipitation, as well as maximum 

measured SS concentrations (SSC) during the periods are shown in Table 4.2. Periods A, C, F and G 

were high discharge periods, associated with relatively high SSCs. Period B was a discharge 

recession. Periods D and E were small storm runoff events with measured SSC concentrations lower 

than during the high discharge periods. During period F, more than 20 mm of rainfall was measured 

within 2 hours, resulting in a relatively high discharge peak and elevated SSCs (with a maximum of 

2368 mg L-1) at the Tributary sampling site (Table 4.2). Period G was measured during the 2021 

extreme flood event in central Europe (14/07/2021 – 15/07/2021), with a return period of >20 years 

for the Attert River. During the storm runoff events, D50 values measured on the discrete samples 

showed an initial increase during the rising limb of the hydrograph and then a decrease before the 

discharge peak.  

Figure 4.5 presents the modelled predictions using the PSDs measured on the discrete samples to 

estimate the relative contributions of the Upstream and Tributary sites to the Downstream site. 

Samples collected at low and mid-flows showed a large variability in modelled contributions 

(periods A-F); for several cases, contributions reached 100% (and 0%) for both the Upstream and 

Tributary sites (e.g., periods B, E and F). During storm runoff events (periods A, C and F) the 

dominant modelled contributions were assigned to the Upstream site directly after the peak 

discharge. This aligned with the estimated sediment budget contributions, wherein the Upstream 

site is, in general, the dominant contributor (generally exceeding 60%) to the Downstream target 

SS. For the large flood event (period G), averaged modelled contributions and estimated 

contributions from the sediment budget demonstrated relatively small deviations over the whole 

measurement period (average deviation of 16%, n = 25). 
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Figure 4.4 Precipitation records from the weather station in Useldange, and discharge records at 

the three measurement sites. Periods in which field observations were made (A-G) are highlighted 

in yellow (a). Detail of discharge and precipitation records for the selected periods (A-G), in 

combination with the measured suspended sediment concentration of the collected samples (b). 

For period F, the highest value (Tributary) is omitted for visual purpose (2367 mg L-1, 04/06/2021 

19:30. This value precedes the shown 994 mg L-1 value; 04/06/2021 21:00). 

a) 

b) 
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Table 4.2 Summary hydro-sedimentological data for the measurement periods. 

Period Start  

- 

End dates and 
times 

Total 
precipitation 
(mm) 

Sampling site Maximum 
measured 
SSC  

(mg L-1)  

Maximum 
discharge 
(m3 s-1)  

Total 
sediment 
load (t) 

Total 
discharge 

(mm) 

A  

 

10/03/2021 21:00 

-  

15/03/2021 11:55 

30.4 Upstream 535 17.0 250.2 10.6 

Tributary 424 1.5 13.2 6.0 

Downstream 440 18.1 212.4 9.1 

B  

 

02/04/2021 14:15 

- 

09/04/2021 12:00 

1.6 Upstream 97 1.2 4.8 3.7 

Tributary 4 0.4 1.1 4.3 

Downstream 3 1.6 11.7 3.7 

C 

 

09/04/2021 12:00 

- 

13/04/2021 13:20 

35.1 Upstream 310 7.9 59.6 6.5 

Tributary 155 1.1 8.8 5.0 

Downstream 132 9.0 55.7 5.9 

D  

 

10/05/2021 00:00 

- 

12/05/2021 17:00 

4.7  Upstream 17 1.8 1.4 1.4 

Tributary 55 0.4 0.46 1.4 

Downstream 51 2.1 4.48 1.3 

E  

 

16/05/2021 00:00 

- 

18/05/2021 12:00 

17.6 Upstream 143 2.2 3.8 2.2 

Tributary 33 0.47 0.94 1.8 

Downstream 24 2.5 4.1 2.0 

F  

 

03/06/2021 13:00 

- 

06/06/2021 01:00 

44.2 Upstream 520 6.6 98.7 2.9 

Tributary 2368 1.1 31.4 2.2 

Downstream 455 7.4 102.2 2.6 

G  

 

13/07/2021 00:00 

- 

16/07/2021 12:00 

101.5 Upstream 410 69.1 1039.0 35.7 

Tributary 1162 10.1 382.4 22.9 

Downstream 700 79.3 1323.0 31.3 
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Figure 4.5 Modelled relative contributions of the Upstream and Tributary sites to the 

Downstream site calculated using PSDs measured on the discrete samples (periods A-

G). Modelled contributions are compared with the relative sediment loads (calculated 

sediment budget) of the Upstream and Tributary sites (red and blue lines) to the 

Downstream site. Coincidence of dots and lines of similar colour indicates good 

agreement between the two sets of data. Error bars showing modelled standard 

deviations. 
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There were several observations where increasing contributions from the Tributary, based on 

sediment budget estimates, coincided with either increasing modelled Tributary contributions or 

increasing modelling uncertainties. For period C, contributions according to the sediment budget 

were ca. 50% for both the Upstream and Tributary sources during the steeper rise of the 

hydrograph (at a discharge of ca. 4 m3 s-1). Modelled contributions exhibited large variations around 

that time, with subsequent contributions for the Tributary source of 1.2%, 86% and 38%. Period F 

exhibited high variability in modelled source predictions. During the initial stages of the rising limb, 

this period experienced high sediment loads from the Tributary site (Figure 4.4 and Table 4.2). 

Modelled contributions around that time predicted dominant contributions for the Tributary (with 

two values predicting a contribution of 100%). During period G, overall discharges were very high 

and modelled results closely coincided with the source contribution estimates from the sediment 

budget. At the peak of the hydrograph and during the falling limb, differences between the 

sediment budget and modelled contributions were, however, more pronounced (within a 20% 

range). During the rising limb of the hydrograph in period G, there were three times at which the 

modelled contributions predicted the Tributary as the dominant source. These results correspond 

to the variabilities observed in the sediment budget contributions, where the Tributary 

contributions increased and decreased three times to reach maximum values of 40-45%, and 

minimum values of ca. 25%, before showing a more stable relative contribution after the peak 

discharge. Similar patterns were found for period D, where a dominant contribution from the 

Tributary site was predicted by the model, in agreement with the sediment budget estimates.  

4.3.3 Field Experiments: Relationships between Model Performance, Discharge, Source 

Particle Size and Organic Matter Content 

Model performance improved with increasing discharge (Figure 4.6a). For discharges <4 m3 s-1, a 

wide range of model performances was observed. Above this discharge value, 40 samples out of 46 

returned a deviation between modelled and sediment budget-based estimates of <40%, 38 samples 

<30% and 33 samples <20%. Results (Figure 4.6a) indicate that model performance improved when 

discharge values exceeded 4 m3 s-1. Model performance did not improve when there were larger 

differences in source D50 values (Figure 4.6b) or when OM was removed before PSD measurements 

(Figure C.5; Table C.6).
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Figure 4.6 Model performance deviation (i.e., absolute difference between the modelling results 

and the calculated sediment budget) as (a) a function of discharge, and (b) ΔD50 (i.e., 

median particle size differences between both sources). A model performance 

deviation of 0% indicates no difference between the two sets of data. The discharge 

threshold values as discussed in the text are shown by a vertical dotted line (discharge: 

4 m3 s-1, (a)). Results for the largest events (periods A, C, F and G) are shown 

individually; smaller events and low flow (periods B, D and E) are shown together. 

4.4 Discussion 

4.4.1 Evaluating Model Performance using Artificial Mixtures 

Low absolute errors of 7 ± 4% were observed between the known and modelled contributions for 

the soil samples sieved to different size fractions (Figure 4.3a). Lake et al. (2022a) reported higher 

mean absolute errors of 14.5 ± 13.0% when using absorbance as a fingerprint property to model 

the relative source contributions of the same 9 mixtures. Here, our absolute errors between known 

a) 

b) 
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inputs and modelled outputs are comparable to other studies using artificial mixtures to evaluate 

un-mixing models, with absolute errors ranging between 10% (Gaspar et al., 2019), 9% to 11.8% 

(Haddadchi et al., 2014b) and 11.2% (Pulley et al., 2017). Our results herein thus indicate good 

accuracy and thus the suitability of the presented modelling approach to estimate the source 

contributions to the mixtures. On the other hand, our larger mean absolute errors of 22 ± 19% when 

un-mixing the laboratory mixtures consisting of soil samples sieved to the same size fractions (n= 

16; Figure 4.3), indicate that smaller differences in PSD and D50 between source samples 

understandably had a negative influence on the accuracy of modelling. This inaccuracy can also be 

observed in the modelled contributions of either 0% or 100%. This most likely indicates the inability 

of the model to distinguish between sources that are similar. This limitation has been observed in 

previous sediment fingerprinting studies (e.g., Cooper et al., 2014a) and suggests limitations of the 

un-mixing model principles. 

Particular consideration must be given to the fact that AnalySize predictions were mainly influenced 

by the measured variability in the PSDs of the mixtures. The soil samples (end-members) PSDs were 

averaged over all tested concentrations (100-1000 mg L-1 range), under the assumption that PSD 

remained constant during the experiment. However, with the observed variations in soil sample D50 

values, modelling of each concentration separately would have eventually resulted in larger model 

inaccuracies. This is pertinent when considering the lower concentrations tested, as the higher 

variations in D50 values were observed in the 100-500 mg L-1 range (Figure C.4). Consequently, 

results for the higher concentrations would in that scenario be more constant and more accurate. 

Similar observations (i.e., higher inaccuracy at lower concentrations) were reported in Lake et al. 

(2022a). 

In contrast to other studies using shear cells to investigate flocculation effects (e.g., Biggs and Lant, 

2000, who used activated sludge to analyse floc size in relation to shear), the experiments here did 

not show signs of floc formation or aggradation inside the tank set-up. This was supported by the 

continuous LISST measurements (Figure C.4), which showed that D50 values varied little 

(representing the absolute PSD obtained after disaggregation and sieving). Furthermore, SSCs also 

varied little during the course of the experiments; a constant percentage of added soil sample or 

mixture material being observed in suspension (see Lake et al., 2022a, Figure C.6). 

4.4.2 Un-mixing Field SS samples: Influence of Discharge, Source Particle Size, and Organic 

Matter Content on Model Performance 

The catchment scale field experiments suggested that discharge exerts a strong control on the 

model performance. Walling et al. (2000) argued that, during the initial phase of storm hydrographs 
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(i.e., rising limb), sediment is transported from a range of different sources, and subsequent 

changes in particle size could be linked to changes in contributions from those different sources. 

After these initial sources (e.g., sediment stored on the riverbed) are depleted, however, alternative 

sources within the catchment can become dominant. This can result in more constant source 

contributions and thus a more constant texture for sediment in the stream. The latter scenario 

provides better conditions for making reliable source contribution estimations using PSDs as a 

fingerprint property. The improved accuracy of sediment fingerprinting estimates during high 

discharges (>4 m3 s-1) could also be linked to the limited settling, and thereby, improved mixing of 

sediment being routed through the channel system (Agrawal and Pottsmith, 2000). Discharges 

exceeding this threshold were observed for 12% of the time (Downstream site) during the study 

period (Figure 4.4; 10/03/2021 – 21/07/2021), with a mean measured discharge during that period 

of 2.5 m3 s-1. During this 12% of the time, 82% of the total SS load (Downstream site) was 

transported. 

Besides the potential changes in SS source PSDs, different flocculation processes could affect the 

observed in-stream PSDs (e.g., Droppo, 2004; Grangeon et al., 2014). Suspended sediment floc 

sizes, in combination with their shape and density, determine the potential of particles to be 

transported due to their relationship with settling velocity (Williams et al., 2008). This corroborates 

with our observations that under high flow conditions, measured PSDs appeared to be more reliable 

for the use of un-mixing when compared with low flow conditions. Droppo (2004) argued that the 

aggregated sizes of SS particles are mostly being controlled by particle concentration and flow shear 

stress. However, the effect of these dominant in-channel flocculation processes on the measured 

PSDs (e.g., Grangeon et al., 2012) was assumed to be rather limited, as settling was assumed to be 

mostly absent (especially under high flow conditions). This suggests that most SS material observed 

at the source sites was transported to the downstream target SS site regardless of any flocculation 

occurring in between. To account for any of these in-stream flocculation processes between the 

sites, we hypothesized during this proof-of-concept study that these effects were minimized by 

measuring and comparing only the sources and downstream absolute PSDs (i.e., primary particles). 

Thereby, due to the absence of clear erosion or deposition between the source sites and the target 

SS sampling site (confirmed by visual observations), it was assumed here that the SS transported 

downstream was a simple sum of the SS from the upstream sources. 

An increase in the D50 values was observed at the start of the monitored storm events, which could 

suggest the remobilisation of sediment stored on the riverbed (e.g., Lawler et al., 2006; Walling et 

al., 2000). Thereafter, D50 values decreased, most probably due to the depletion of these sources. 

Temporal variability in PSDs during events, related to the activation of different sources during the 

storm hydrograph, has also been observed in other studies (e.g., Grangeon et al., 2012; Slattery and 
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Burt, 1997; Upadhayay et al., 2021; Vale et al., 2020). It is therefore important to have a good 

estimation of transport times between sampling sites when using PSDs for sediment source 

fingerprinting. This is to avoid time-related issues in the direct comparison of the PSDs of SS samples 

collected at different sites. Travel times between measurements points could be subject to change 

depending on flow conditions. In the present study, samples from the three sites collected at the 

same time were compared directly (i.e., no adjustment was used for travel times). This is because 

of the relatively short distances (ca. 3 km), and thus short travel times, from both sources (i.e., 

Upstream and Tributary sites) to the Downstream sampling site. These decisions might, however, 

have introduced some uncertainty in the estimated source contributions using the established 

mass-balance sediment budget.  

Previous work has shown that oxidation of organic matter can improve modelling results when 

fingerprinting SS sources (Pulley and Collins, 2022; Pulley and Rowntree, 2016). In the present 

study, the organic matter of some samples collected during period F was oxidised to investigate its 

effect on the PSDs (as discussed by Gray et al., 2010) and subsequent un-mixing results. Removal 

of the organic matter did not improve un-mixing model accuracies for those samples tested (Figure 

C.5; Table C.6). However, these results can be important to understand what size fractions in the 

PSDs were influenced by the OM. This information can then help to eliminate OM effects on the 

PSD, (>500 μm) to only investigate the primary particles that were hypothesized to better 

represents the sources. 

4.4.3 Critical Considerations for Using Particle Size Data for Sediment Source 

Fingerprinting 

Application of the approach presented herein uses differences in PSDs to discriminate between the 

sources. A first indication of potential differences in PSDs can be gained by looking at potential 

contrasts based on geology and soils (Walling et al., 2000), as was undertaken for the field 

experiment part of this study. This preliminary screening can help to avoid situations in which D50 

values for different tributaries or soil sources are not sufficiently differentiated (as observed in a 

recent confluence-based fingerprinting study by Patault et al., 2019). Results presented herein, 

nonetheless, indicated that to achieve accurate un-mixing results, differences in D50 values can be 

relatively small (Figure 4.6b). This is also true for period G, with a deviation between the un-mixing 

results and sediment budget of 16%; i.e., the sampling period with the best performing 

performance. Here differences in source D50 values were, on average, only 6 μm. 

Similarly, attention should be directed to collecting representative samples. Samples collected at 

different depths (Bainbridge et al., 2012) or at different distances from the channel bank (Walling 
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et al., 2000) can manifest distinctive SS particle sizes. This latter point relates to our suggestion that 

for period G, a higher level of turbulence could have resulted in better mixing of the SS in the water 

column, leading to more representative sampling and more representative PSD data. This situation 

appeared to improve the un-mixing results, even with the relatively small differences between 

source D50 values. Sampling is also affected by the field equipment used. Field samples were 

collected using automatic water samplers, for which installation was subject to sampling site 

limitations. The pumping might, as reported by Grangeon et al. (2012), create a vortex at the inlet 

opening of the tube that could affect the amount of SS collected and its corresponding particles 

sizes. This issue highlights the potential uncertainties associated with the automatic samplers 

deployed. 

To analyse particle size, different instruments are available (herein we presented the use of two 

instruments: the LISST and Mastersizer). As results may differ depending on the type of equipment 

used (Bieganowski et al., 2018), we recommend that due care and attention are exercised when 

PSDs or D50 values are compared both within and between studies. Furthermore, many different 

measurement protocols were found in existing literature that can affect measurements, including 

different machine settings (e.g, rotating stirrer speed), sample preparations (treatment with 

dispersive agent, duration of ultrasound) and sampling collections (number of measurements) 

(Cooper et al., 2014b; Dietze et al., 2012; García-Comendador et al., 2021; Grangeon et al., 2012; 

Patault et al., 2019; Pulley et al., 2017, 2018). Therefore, in the absence of a standard protocol to 

measure PSDs, it is a good practise to use the same equipment and apply similar measurement 

protocols when aiming to compare PSD data directly (Bieganowski et al., 2018). 

Sediment source fingerprinting results using PSD data could also be compared with un-mixing 

results using conventional fingerprinting properties and one of the current un-mixing models used 

by the international scientific community. This would allow some degree of independent validation 

of PSDs as a fingerprint. The independent validation of sediment source fingerprinting estimates 

has been rarely undertaken (e.g., Batista et al., 2022; Gaspar et al., 2019). To validate estimated 

source proportions using PSDs as a fingerprint herein, we used sediment budget estimates 

generated using conventional water sampling; this has, to date, been used in few sediment 

fingerprinting studies (e.g., Collins et al., 1998; Dabrin et al., 2021; Tiecher et al., 2022), mainly due 

to the extra costs associated with the installation of equipment and sampling (Collins et al., 2017, 

2020; Collins and Walling, 2004).  
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4.5 Conclusions 

In this research, the use of PSDs to fingerprint suspended sediment sources was tested at laboratory 

and catchment scales. To this end, we used an end-member grain size un-mixing modelling 

algorithm (AnalySize). The laboratory tests, using mixtures with soil samples sieved to different size 

fractions, resulted in accurate un-mixing results for the two, three and four soil samples mixtures 

tested. Observed absolute errors (7 ± 4%) were found to be in the same range or even smaller 

compared with other research using artificial mixtures to evaluate un-mixing model accuracy. Field 

data were collected using a confluence-based approach, with relatively short distances (ca. 3 km) 

between the source sampling sites and the target SS sampling site. The corresponding un-mixing 

results were more accurate at higher discharges (with an average deviation of 19% from the 

estimated sediment budget, for discharges >4 m3 s-1). The approach described herein, using PSDs 

in combination with a grain-size un-mixing model, could support the growing sediment 

fingerprinting community with an additional fingerprint that is relatively easy to obtain. This is 

especially of merit since PSD measurements are already routinely made in many sediment source 

fingerprinting studies. 
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Chapter 5 Synthesis, Conclusions and Outlook 

This chapter brings together the key outcomes of the core chapters of this thesis. A synthesis of the 

novel research, in relation to the research questions of this thesis (section 1.6), is presented. This is 

accompanied by conclusions for each research question and for the overall thesis aim. Finally, 

possible directions for future research are presented. 

5.1 Research Synthesis and Conclusions 

Instruments able to measure SS properties in situ and at high temporal resolution were first tested 

in the early 2010s. Submersible spectrophotometers were used, measuring absorbance in the UV-

VIS wavelength range (200 to 730 nm), to determine values of SS-associated properties (e.g., Bass 

et al., 2011; Martínez-Carreras et al., 2016; Sehgal et al., 2022). To determine the potential to use 

such submersible spectrophotometers for sediment source fingerprinting purposes, investigating 

whether absorbance values at different wavelengths can be used as sediment fingerprints, research 

question (RQ) 1 was proposed: 

How can absorbance readings of a submerged spectrophotometer be used as sediment 

fingerprints to estimate source contributions from artificially created sediment mixtures in 

a proof-of-concept laboratory experiment? 

Data obtained from the proof-of-concept laboratory experiments (Chapter 2; Lake et al., 2022a) 

were used to: (i) investigate the influence of concentration and particle size on the absorbance 

spectra (i.e., 200-730 nm at 2.5 nm intervals) to identify compensation/normalisation needs; (ii) 

test the linear additivity of the absorbance spectra, this being a pre-requisite for sediment 

fingerprinting (e.g., Lees, 1997; Walling et al., 1993); and; (iii) evaluate the un-mixing model 

predictions, using known soil sample contributions to the artificial mixtures.  

It is known that spectrophotometer absorbance data are influenced by SS concentration (SSC) 

(Thomas et al., 2017) and SS particle size (Berho et al., 2004; Bhargava and Mariam, 1994). Hence, 

concentration compensation is needed to remove the effect of SSC, to retain only the influence of 

SS properties on the absorbance spectrum. The experiments showed that absorbance over all 

wavelengths across the 200-730 nm spectrum increases linearly with increasing concentrations 

(Figure 2.4; related to the Beer-Lambert law, section 1.5.4), allowing compensation over all 

wavelengths through simply dividing the absorbance values by the SSC. Concentrations in the tank 

set-up were measured for all soil samples and mixtures (i.e., measured concentrations). When soil 

samples were measured independently in the tank set-up, measured concentrations were shown 
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to be a relative stable percentage of the theoretical input concentration (Figure 2.3). Based on these 

observations, similar percentages of the theoretical input concentration from the respective soil 

samples should remain in suspension when used in the artificial mixtures. Thus, as only soil sources 

and mixtures with the same theoretical concentrations were compared, compensation for 

(measured) concentrations was not needed (section 2.2.5). 

Particle size effects relate to the higher absorbance values associated with smaller particles. Smaller 

particles result in higher levels of turbidity/absorbance than larger particles at same SSC (Berho et 

al., 2004; Bhargava and Mariam, 1994). Besides, sediment properties vary with particle size 

(Horowitz and Elrick, 1987; Russell et al., 2001) and can thereby influence absorbance patterns. For 

instance, certain SS properties (e.g., particulate organic carbon, SS loss-on-ignition, and SS carbon 

content and particle size) might be linked to specific wavelengths or wavelength ranges (e.g., Bass 

et al., 2011; Martínez-Carreras et al., 2016; Sehgal et al., 2022). Compensation for particle size 

effects were not deemed necessary during these proof-of-concepts experiments (Chapter 2) 

because measurements showed that particle size is an intrinsic property of SS that remained 

unchanged during the experiments (i.e., negligible breakdown/dissolution of particles, as observed 

from the LISST sensor measurements; Figure C.4). Absence of particle size compensation needs are 

then related to the relatively stable proportions of the measured concentrations compared with 

the theoretical input concentrations. 

Furthermore, the laboratory tests showed that the blank water (i.e., demineralised water) in the 

tank set-up influenced the absorbance spectra due to its dissolved components (e.g., D’Acunha and 

Johnson, 2019; González-Morales et al., 2020; Prairie et al., 2020). To eliminate these effects on the 

absorbance readings (i.e., to only retain that part of the absorbance spectra influenced by the SS 

properties), this 'background' absorbance was subtracted from subsequent absorbance 

measurements. While this is an easy step to take in the laboratory experiments, compensating for 

the influence of dissolved components in natural waters is more challenging. This most likely 

requires additional measurements and thus adding extra laboratory analysis needs (e.g., 

measurements on filtered water as presented in Chapter 3; Lake et al., 2023), or by finding methods 

to eliminate those wavelengths that are mainly affected by dissolved, non-SS components present 

in natural waters (e.g., Rieger et al., 2004), as suggested in this study (Chapter 2). 

It was observed in the experiments that absorbance measurements on the soil source samples and 

mixtures showed a linear additive behaviour (i.e., relative contributions of soil source absorbance 

add up to absorbance values measured on the mixture), suggesting its potential use for sediment 

source fingerprinting purposes. However, some out-of-range situations (i.e., failing the 

conventional range test) were observed: in instances absorbance data measured on the artificial 
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mixtures were higher or lower than the absorbance of all contributing soil source samples. As 

differences were rather small, instances of out-of-range absorbance data were nonetheless 

included in analyses and interpretation: importantly, dominant source contributions to the 

mixtures were correctly identified in these cases. Out-of-range situations were likely induced by 

small concentration differences between the soil source samples and mixtures (i.e., a higher or 

lower percentage of soil sample settling).  

Finally, the un-mixing model results showed relatively accurate predictions when evaluated against 

the known soil source contributions. Model evaluation is used in sediment fingerprinting to assess 

model accuracy (e.g., Gaspar et al., 2019; Haddadchi et al., 2014b; Pulley et al., 2017) and can help 

in assessing the potential of novel fingerprints (Batista et al., 2022), as presented in Chapter 2. 

Absolute errors were on average 15%, for all soil samples in all mixtures when compared with the 

known soil source sample input contributions. Dominant contributions were always well-indicated 

by the modelling process. Analysis of mixtures consisting of two and three soil samples performed 

well (mean absolute errors of 15% and 13%, respectively), whereas analysis of mixtures consisting 

of four soil samples performed less well (with a mean absolute error of 17%). This outcome could 

relate to the decrease in discrimination potential upon increasing the number of sources (e.g., Lees, 

1997; Vale et al., 2022). Absolute errors were found to be in the same order of magnitude when 

compared with other studies aiming to evaluate mixing model accuracy using artificial mixtures: 

Gaspar et al. (2019) reported a maximum absolute error of 10%, Haddadchi et al. (2014b) reported 

and absolute error between 11-29% depending on the choice of the model and fingerprints used, 

and Pulley et al. (2017) reported and absolute error of 11.2%.  

Although this proof-of-concept laboratory experiment indicates the potential for using submersible 

spectrophotometers for sediment source fingerprinting purposes, issues remained to be addressed 

before the approach could be applied to a natural scale setting (i.e., Chapter 3). A first point of 

consideration was the choice of soil source samples used in the laboratory experiments. Soil 

samples were selected based on clear differences in both colour and geochemistry (Table A.1; soil 

sample minerology). These perhaps marked differences were hypothesized to influence the 

absorbance spectra, allowing discrimination between soil source samples. In real-world catchment 

systems, however, it is likely that differences between SS sources are more subtle. In Chapter 2, 

suggestions were made for selecting sources that could potentially give robust discrimination (i.e., 

based on differences in lithology). However, source selection could be further improved with a 

better understanding of what specific SS properties influence specific wavelengths. A more fully-

informed decision could then be made on whether wavelengths, influenced by those properties 

that allow discrimination between potential sources in a specific catchment, could then be robustly 

used as sediment fingerprints. Artificial mixtures (or virtual mixtures) could thereby be used to 
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evaluate further the potential of using absorbance spectra for sediment source fingerprinting in 

specific catchments (as proposed by Batista et al., 2022). 

Another important consideration is how to measure absorbance on SS source samples. Potential 

source samples (soil or channel banks) could be collected and tested in a laboratory set-up (as in 

Figure 2.2; Figure 4.1, or Figure 3.3a). However, particle size is of major concern due to its influence 

on absorbance through: (i) turbidity (Berho et al., 2004; Bhargava and Mariam, 1994), and; (ii) 

affecting potential SS fingerprint property concentrations (Horowitz and Elrick, 1987; Russell et al., 

2001). Source and target SS should, therefore, comprise comparable particle size fractions (i.e., as 

in the laboratory experiments). It is, however, difficult to know exactly which fractions are 

mobilised from these sources and transported towards the target SS (Stone and Walling, 1997), 

which is further complicated by SS size fractions changing temporally (e.g., Lawler et al., 2006; 

Walling et al., 2000), depending on e.g., prevailing flow conditions. Thereby, use of the 

spectrophotometer has shown that in laboratory conditions, using four distinctly different soil 

samples already resulted in less precise and less accurate un-mixing model results than with two 

and three soil samples in the artificial mixtures. The number of natural soil sources that can be 

accurately discriminated between is therefore also likely to be rather limited, especially considering 

the likelihood that there will be less marked differences between natural sources than in the 

laboratory samples tested. 

The observed out-of-range situations in the laboratory experiments (Figure 2.6) are likely a result 

of small deviations in measured concentrations (e.g., differences in settling) (Figure 2.3). Including 

these data in analysis and interpretation, obviously resulted in a clearly dominant contribution for 

the source presenting absorbance values similar to the out-of-range mixture absorbance. In the 

laboratory experiment, this mainly occurred for two sample mixtures with a clearly dominant soil 

sample contribution (i.e., 80%). Going forward, out-of-range situations observed in natural samples 

can be caused by similar problems related to concentration (compensation) issues. In the 

laboratory experiments, it is certain that there are no missing sources. Although, it would be 

challenging to argue that under catchment scale conditions dominant sources can still be identified 

using out-of-range data, as it can not be guaranteed that there is an additional contributing soil 

source that has simply not been sampled. Additionally, the range test might even be falsely satisfied 

when unidentified, and thus unsampled sources, contribute to the target SS sampled. 

To circumvent these aforementioned issues, it was proposed in Chapter 2 to use a confluence-

based sampling strategy (e.g., Collins et al., 1996, 1997b; Klages and Hsieh, 1975; Nosrati et al., 

2018, 2019; Patault et al., 2019; Vale et al., 2016). This strategy only considers in-stream SS, 

regarding SS from upstream tributaries as spatial sources and SS of the downstream channel as the 
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target SS. This approach thereby eliminates concerns regarding missing soil sources and issues 

related to which particle sizes are being transported from soil sources to the channel systems, 

avoiding potential related errors for corresponding source apportionment results.  

From the proof-of-concept laboratory experiments, it was concluded that submersible 

spectrophotometer absorbance readings, measured on artificial mixtures, can be used to provide 

robust apportionments of known soil source sample contributions. This proof-of-concept study only 

used controlled laboratory experiments, with clearly different soil samples. Therefore, the 

approach remained to be tested in natural, catchment scale conditions, keeping in mind source and 

target SS sampling strategies, together with issues related to particle size and concentration effects 

that impact the absorbance spectra and subsequent sediment fingerprinting results. 

Considering the outcomes and recommendations as outlined in Chapter 2, Chapter 3 scaled up the 

presented spectrophotometer approach to answer the following research question (RQ 2): 

Can absorbance differences from source streams in confluences be used to apportion spatial 

SS sources at the catchment scale? 

The study presented in Chapter 3 builds upon the proof-of-concept laboratory study presented in 

Chapter 2. Similarly, absorbance at the full range of UV-VIS wavelengths (i.e., 200-730 nm at 2.5 nm 

intervals) was used to discriminate between sources and to quantify tributary spatial source 

contributions in a confluence-based sampling. Grab water samples were collected at a series of 

confluences (n = 11) within a small (44 km2) catchment (Roudbach catchment, Luxembourg), during 

several storm runoff events. Absorbance spectra were measured in a small custom-made 

laboratory set-up (Figure 3.3a). Subsequently, spatial SS contributions were apportioned (Figure 

3.8) by un-mixing the downstream target SS absorbance into the tributary source contributions 

using their absorbance signals. 

As for investigations presented in Chapter 2, some out of-range situations were observed in the 

catchment scale experiments. Such situations could be due to the manual sampling, with samples 

perhaps not fully representing the stream cross-section variability (e.g., Haimann et al., 2014; 

Horowitz et al., 1990; Rovira et al., 2012). In-stream particle sizes can be influenced by different 

flocculation processes (e.g., Droppo, 2004; Grangeon et al., 2014). These influences on potential 

particle size differences between source and target SS sampling sites were assumed to be of low 

importance because of the small distances (20-40 m) between the source and target SS sampling 

sites. The same argument holds for the assumption that new SS inputs (i.e., 'new' sources) through 

overland flow or channel bank erosion were negligible over this small distance, which was also 

supported by visual observations. On the other hand, SSCs, shown to have a large influence on the 
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absorbance data (Chapter 2), most likely explained the out-of-range situations. Besides potential 

settling in the small custom-made laboratory set-up, uncertainties could have arisen from 

gravimetrically determining SSCs (with found percentage deviations to be within reasonable 

uncertainty ranges: see Siu et al., 2008). In the out-of-range situations, the target SS sample 

absorbance was shown to be always relatively close to the absorbance values measured on one of 

the tributary source samples. So, instead of strictly applying a range test and thus eliminating these 

confluences, retaining them provided information on dominant sources (similar as to Chapter 2). 

Information that can still be highly useful in sediment source fingerprinting studies (as argued by 

e.g., Evrard et al., 2022; García-Comendador et al., 2021; Pulley and Collins, 2022). 

The un-mixing modelling generated mean absolute errors of 18%, for all confluences (n=11) and 

events (n=3). This mean absolute error is in the same order of magnitude compared with those 

presented in Chapter 2 (15%). However, the catchment scale results in Chapter 3 wrongly identified 

several tributaries as being the dominant SS source. Consequently, this resulted in high modelled 

deviations (up to 52%; Figure 3.8) for several tributaries when comparing modelling outcomes with 

the sediment budget estimates. This highlights the need for an independent evaluation of 

modelling results when using absorbance for sediment source fingerprinting. An evaluation as 

presented in Chapter 3 might not, however, be feasible in many cases due to resource needs to 

measure discharge and SSCs at several sites within a catchment (i.e., to calculate a sediment 

budget). An alternative might be to use classical fingerprinting approaches and their conventional 

properties. Also, artificial and/or virtual mixtures could be used to evaluate the potential use of 

absorbance measurements for sediment fingerprinting purposes, based on catchment specific 

differences between sources.  

The study presented in Chapter 3, contrary to commonly applied sediment fingerprinting studies 

that rely on sources based on land use, lithology or soil type (Bravo-Linares et al., 2018; Haddadchi 

et al., 2014a; Martínez-Carreras et al., 2010a; Russell et al., 2001), can help to identify tributary SS 

contributions. These results can be more informative on the spatial origin(s) of SS, indicating which 

areas within the catchment contribute most to the target SS. This requires the sampling of several 

confluences (here, n=11, resulting in 33 samples for a single campaign), which, using conventional 

sediment fingerprints, could result in high costs of analysis. Analysing a range of geochemical 

properties for each soil sample and SS sample could cost ca. US$10-$50) (Owens, 2022). Here, 

despite the initial purchase costs of a spectrophotometer (ca. US$20.000), many samples can then 

be easily and rapidly measured.  

The presented method aims to facilitate fingerprint analysis by directly measuring absorbance on 

water samples. However, additional measurements are required on the filtered water to enable 
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compensation for the absorbance readings related directly to SS. Measurements on these filtered 

samples, supported by the literature (e.g., Rieger et al., 2004), indicated which wavelengths (i.e., 

200-390 nm) were particularly influenced by dissolved components (Figure B.2). Accordingly, the 

390-730 nm wavelength range (i.e., excluding that part of the spectrum most influenced by the 

dissolved components) was then used to apportion the tributary spatial source contributions, 

without filtered water compensation. Results showed broadly similar un-mixing results (i.e., overall 

deviations of 12.5%), compared with the un-mixing modelling using the full measured range 200-

730 nm and compensation for filtered water. This indicates that limitations related to sampling, 

preparation (i.e., filtering) and laboratory analyses (i.e., measurements on filtered water) could be 

eliminated by obtaining absorbance data directly from in situ installed spectrophotometer sensor 

probes as long as only absorbance in the 390-730 nm range is considered.  

Overall, Chapter 3 shows that absorbance could potentially be used for sediment source 

fingerprinting purposes in natural environments, and which reduces the needs for laboratory 

preparation and analysis that are incurred when using more conventional sediment fingerprints. 

The spectrophotometer method could therefore improve knowledge on catchment hydro-

sedimentary processes by contributing to easier ways of estimating SS spatial source contributions 

and allowing high frequency apportionments of source contributions.  

Particle size is an often considered challenge within sediment fingerprinting studies, given its 

controls on sediment fingerprint values (Horowitz and Elrick, 1987; Russell et al., 2001). Results 

presented in Chapter 2 furthermore demonstrated that particle size itself had an important 

influence on the absorbance readings (see also e.g., Berho et al., 2004; Bhargava and Mariam, 

1994). While the consideration of particle size in sediment fingerprinting studies is often limited to 

its role on fingerprint values, there are indications that particle size itself could be directly used as 

a SS fingerprint (Kranck and Milligan, 1985; Laceby et al., 2017). To this end, Chapter 4; Lake et al. 

(2022b) investigated the following research question (RQ 3): 

Can SS source particle size distributions be used as a sediment fingerprint, in combination 

with an end-member grain size un-mixing model? 

This research question was addressed using: (i) a proof-of-concept laboratory scale experiment, 

and; (ii) a catchment scale experiment.  

The proof-of-concept laboratory experiment (Figure 4.1, similar to the set-up as used in Chapter 2; 

Figure 2.2), evaluates the un-mixing model outcomes by means of known soil sample contributions 

in artificial mixtures. Herein, a compensation of the soil sample contributions, according to the 

measured concentrations, was needed. This because particle size was defined as the relative 
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proportions of different size classes, with the sum of proportions over all classes adding up to 100%. 

Particle size distribution measurements of the individual soil source samples are thus independent 

of the actual measured concentration (i.e., same PSDs are observed over the different theoretical 

concentrations). When measuring the PSDs on the artificial mixtures, the sum of the relative 

contributions of all size classes also sums to 100%. The relative contribution of each source sample 

in the mixture influences the PSD of the mixture, and a compensation according to the measured 

concentration is thus needed to allow robust evaluation of the un-mixing model results. 

The absolute errors of the modelling results when compared with the known (concentration-

compensated) soil source contributions were 7 ± 4% (mean absolute error ± mean standard 

deviation). Modelling results were more accurate and precise than the results obtained using the 

same samples and absorbance in Chapter 2 (15 ± 13%), showing the potential to un-mix target SS 

PSDs into the correct source (end-member) contributions. However, as discussed in Chapter 2, the 

source samples used to create the artificial mixtures were very different, with sources sieved to 

distinctly different size fractions (i.e., <32 μm, 32-63 μm and 63-125 μm). Therefore, at the 

laboratory stage of this work, it remained unknown if equally good results could be obtained in a 

real-world catchment scale setting with eventually more similar source PSDs. Catchments where 

the method is most likely to be suitable are those with distinct differences in parent material (as 

suggested by Laceby et al., 2017; and selected in catchment scale experiments in Chapter 4). This 

is further supported by (Vale et al., 2016), who performed a confluence-based sediment 

fingerprinting study in a New-Zealand catchment where different tributaries drained areas with 

distinct differences in underlying geology. Results therein showed clear differences in D50 values 

(median particle size) between some tributaries. 

Effects of flocculation and aggradation were assumed to be mostly absent in the laboratory 

experiments, supported by the LISST PSD measurements and D50 values (i.e., corresponding to 

expected sizes after sieving; Figure C.3). In the catchment scale experiments, flocculation processes 

could have affected particle sizes and composition between source and target SS sampling sites as 

sediment is generally transported as flocs, being under constant change due to physical, chemical 

and biological factors (Droppo, 2001). Modifications to these flocs can thereby affect SS 

transport/settling behaviour (Droppo, 2001, 2004). It was assumed that settling was rather limited, 

especially under high flow conditions, regardless of any flocculation processes (section 4.4.2). This, 

and the absence of (visual) clear erosion or SS inputs between the source and target SS sites (i.e., 

new contributing sources), suggested that the downstream target SS could be assumed as the 

simple combination of the upstream sources. Possible flocculation effects on the PSDs were then 

minimized for by only comparing absolute PSDs (i.e., representing the primary particles; Biggs and 

Lant, 2000) of the upstream and downstream sampling sites.  
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Observations presented in Chapter 4 highlight the importance in the timing of sample collection. 

Particle size distribution patterns are temporally variable, with D50 values generally higher at the 

start of storm run-off events, most likely due to the remobilisation of sediment stored on the river 

bed (e.g., Lawler et al., 2006; Walling et al., 2000). At later stages, D50 values then tend to decrease 

upon depletion of these sediments. Temporal variability in PSDs during storm runoff events, 

associated with the activation and deactivation of sources, has been observed in several studies 

(e.g., Grangeon et al., 2012; Slattery and Burt, 1997; Upadhayay et al., 2021; Vale et al., 2020). An 

accurate estimation of travel times between sources and target SS sampling sites is therefore 

recommended to avoid related issues when comparing PSDs. In Chapter 4, samples from the source 

and target SS sampling sites were, however, taken at the same time, which might have introduced 

some uncertainty to the un-mixing results. 

Besides rapid measurements directly on water samples, another advantage of the approach tested 

in Chapter 4 is that PSD measurements are already routinely made in sediment fingerprinting 

studies (see Collins et al., 2020). This indicates that the necessary data may already be available in 

some instances. Besides using PSDs as an independent fingerprint, it can also be used in parallel to 

other fingerprints. The un-mixing results of the PSDs can then serve as validation to the un-mixing 

results obtained using the other fingerprints, or used with other properties in a composite 

fingerprint to potentially improve source discrimination (e.g., Collins et al., 2020; Walling, 2013).  

The work presented in Chapter 4 shows that there is potential to use PSDs as a sediment fingerprint, 

especially during periods of higher discharge when source contributions are likely to be more stable 

and produce more constant SS PSDs (Walling et al., 2000). In combination with an end-member 

grain size un-mixing model, subsequent estimates of SS source contributions can be apportioned 

to the target SS. It is proposed that this approach works best in a confluence-based sampling 

strategy, as presented. Particle size distribution can thereby contribute to improving temporal 

insights into SS source contributions, through relatively easy and rapid measurements conducted 

directly on the water samples without pre-processing. 

The findings of the three research questions allow discussion of the main, over-arching aim of this 

thesis:  

Can the selected instruments (i.e., UV-VIS spectrophotometer and particle size analyser) 

allow for in situ and high temporal resolution SS source apportionment, to ultimately 

provide a better understanding of catchment hydro-sedimentary dynamics and to facilitate 

the implementation of targeted management solutions? 
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Collectively, the research presented in this thesis demonstrates the ability of spectrophotometers 

and particle size analysers to measure sediment fingerprints (i.e., absorbance at the UV-VIS 

wavelength range and PSD, respectively). Chapters 3 and 4 showed that the sediment fingerprints 

could be obtained directly from laboratory measurements on water samples (i.e., in the custom-

made laboratory test chamber for the spectrophotometer, or directly introduced into the 

Mastersizer), without any preparation needs (e.g., sieving, drying). The reduced resource needs 

related to laboratory preparation and analysis could thereby facilitate an increase in temporal 

observations of SS source contributions and changes therein. Collection of source and target SS 

samples, and subsequent laboratory measurements remained necessary. These remaining needs 

challenge SS source apportionments at even higher temporal resolutions, and over prolonged 

periods of time. Next steps therefore require an additional reduction or even elimination of 

sampling and remaining laboratory analysis needs, which could be achieved through the use of 

submersible sensor probes as suggested by Collins et al. (2020) and presented in the core chapters 

(2-4) of this thesis. 

Chapter 3 showed a clear potential to directly use in situ absorbance measurements for SS source 

fingerprinting. The absorbance measurements on the filtered water samples (Figure B.2), and data 

from existing literature (e.g., Rieger et al., 2004) showed that the 390-730 nm wavelength range is 

largely influenced by the SS, and dissolved components (e.g., nitrate, nitrite, DOC) mainly influence 

the 200-390 nm wavelength range. Modelling results were highly similar (12.5% overall mean 

absolute difference) when comparing: (i) absorbance over all wavelengths (i.e., 200-730 nm) and 

compensated for dissolved components by the filtered water, and; (ii) absorbance in the 390-730 

nm wavelength range, not compensated for the filtered water. Therefore, the use of this limited 

range of wavelengths (i.e., 390-730 nm) could drastically reduce sampling (i.e., in situ 

measurements) and laboratory analysis needs (i.e., direct use of absorbance, with no compensation 

needed). Together with the ability of the spectrophotometer to measure at high temporal 

resolution (i.e., minutes), this could then facilitate high temporal resolution source fingerprinting 

when measuring absorbance in situ. The spectrophotometer probe can furthermore allow for 

measurements of long duration, giving high temporal resolution insights of changing SS sources 

over e.g., different events or even different seasons. Information would thus be obtained that can 

subsequently be used to improve existing understanding of catchment hydro-sedimentary 

dynamics, supporting the implementation of targeted management solutions to prevent excessive 

sediment delivery and excessive SS loads in surface waters.  

For the particle size analyser, it is more challenging to use in situ observations for sediment source 

fingerprinting purposes. In Chapter 4, issues concerning changes to in-stream SS particle sizes (i.e., 

flocculation processes) are discussed. To that end, it was opted to apply ultrasound, to disaggregate 
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potential flocs before the measurements, to obtain absolute particle sizes (i.e., primary particles; 

Biggs and Lant, 2000). This is because in situ PSDs measurements are largely influenced by the 

presence of flocs and their respective size distribution (Droppo, 2001), resulting in generally larger 

D50 values (Figure 5.1) when compared with the D50 values of samples collected at the same site 

and time, and measured by the Mastersizer (after applying ultrasounds). However, patterns of D50 

values (Figure 5.1), measured in situ using the submersible LISST sensor probe (with a potential to 

measure at intervals as short as minutes or even seconds) follow rather similar patterns during the 

storm runoff events compared with the D50 values measured by the Mastersizer. It remains to be 

assessed how well these in situ measurements can actually be used to discriminate robustly 

between sources and thus allow for in situ and high frequency sediment fingerprinting, i.e., how 

well flocs/effective particle sizes represent different SS sources.  

 

Figure 5.1 Comparison of in situ measured median particle size values (D50 values measured with 

a LISST 200X) and laboratory measured median particle size values (D50 values measured with a 

Mastersizer) obtained from samples collected from the Attert River at Everlange. Values are plotted 

together with the measured discharge. 

With the use of a confluence-based sampling strategy (both when using absorbance and PSD), 

accurate estimations of SS travel times between sources and target SS sampling sites may be 

needed. In Chapter 3, due to the short distances between sampling sites (ca. 40 m), samples could 

be quickly collected after each other, with, in principle, limited effects of travel times. In Chapter 4, 
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despite distances between sampling sites being larger (ca. 3 km), travel times were not considered. 

It was discussed that this could have led to uncertainties in the SS source un-mixing results. An 

average travel time between the sites, valid for all conditions, could have been calculated and 

applied. An alternative approach would be to define condition specific travel times (e.g., depending 

on flow velocity), which might require additional measurements. 

Though both approaches presented herein show the potential to increase the temporal resolution 

of observations, there are some attendant disadvantages. Initial purchasing costs of the 

instruments are an important potential constraint, with the submersible spectrophotometer sensor 

used in this thesis costing ca. US$20,000, and the submersible particle size analyser (LISST) ca. 

US$25,000 (2022 prices). The laboratory based Mastersizer used in this study costs ca. US$50.000 

in 2022. These costs are rather high, especially considering that at least three submersible sensor 

probes are needed for measurements in a confluence-based approach (i.e., when aiming for in situ, 

high frequency measurements), which add up to initial investment costs. Conventional fingerprint 

costs can, however, over time, surpass the initial purchasing costs of these instruments when the 

costs per measurement are considered.  

The use of in situ measurements will not likely lead to full redundancy of sampling and laboratory 

measurements. First, specific sampling and/or laboratory analyses remain necessary to allow for an 

independent evaluation of the un-mixing model outcomes. This could be done by using SSC and 

discharge monitoring (e.g., Collins et al., 1998; Dabrin et al., 2021; Evrard et al., 2011; Tiecher et al., 

2022), which was also used in this thesis (i.e., calculated sediment budgets were used to evaluate 

the un-mixing model results; Chapters 3 and 4). As calculating sediment budgets require discharge 

and SSC data, additional measurement campaigns and/or installations are needed, which might not 

always be feasible (e.g., Collins et al., 2017, 2020; Collins and Walling, 2004). Other means of 

evaluation could be achieved through e.g., the use of more conventional fingerprints, whereby 

measurements of fingerprints on collected samples can then be used for evaluation at a number of 

times/samples. Secondly, additional resource needs remain, related to the maintenance of 

equipment. The sensor lenses need cleaning, for which the manufacturers of both sensor probes 

used in this thesis offer accessories to clean the lens mechanically to remove fouling before every 

measurement (e.g., Sehgal et al., 2022). Sensors can also be cleaned manually (e.g., bi-weekly; 

Martínez-Carreras et al., 2016) to remove attached debris. Thirdly, there remains a need to 

compensate the spectrophotometer absorbance data for SSC. Hence, the establishment of a 

calibration curve to estimate SSCs from turbidity is necessary. This generally requires the collection 

of samples over a range of different discharge values to account for differences in SS properties 

(e.g., size, shape) (Lacour et al., 2009; Lewis and Eads, 2008). Calibration curves of this ilk need 

confirmation on a regular basis (e.g., Collins and Walling, 2004; Navratil et al., 2011). As turbidity is 
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measured by the spectrophotometer itself, this offers the advantage that no additional sensor 

probe is needed.  

Sediment property conservation is an important requirement in sediment fingerprinting (see 

reviews by e.g., Collins et al., 2020; Koiter et al., 2013; Walling, 2013). The composition of sediment 

is thus assumed not to change (i.e., remain conservative) when sediment is transported from 

sources to sinks, and processes that link sediment sources to the target SS are often ignored and 

represented by a black-box conceptual model (e.g., Koiter et al., 2013). However, properties are 

often not conservative (e.g., Davis and Fox, 2009; Koiter et al., 2013; Motha et al., 2002), with 

various physical, chemical and biological processes altering the sediment properties when 

transported though the landscape (e.g., Dearing et al., 1996; Owens et al., 2012; Wilkinson et al., 

2009). These processes can have significant implications for sediment source fingerprinting because 

fingerprints measured on the SS samples may no longer be associated with the fingerprint values 

of the sources. A similar black-box representation was present between the source and target SS 

sites when using a confluence-based sampling strategy. Uncertainties were likely to be low as 

sediments were transported over small distances and only in-stream SS was considered: there is 

thus a higher likelihood that sediment properties remained stable during transport. 

Overall, both instrument types (i.e., submersible spectrophotometer and particle size analysers) 

aim to facilitate rapid and easy measurements of sediment fingerprint values (i.e., absorbance and 

PSD), whilst significantly reducing resource needs related to laboratory preparation and analysis. 

This could permit the analysis of a larger number of samples, and an increase in the temporal 

resolution of SS source ascription. Besides, this thesis aimed to deliver a preliminary assessment of 

whether the submersible spectrophotometer and particle size analyser probes, which can measure 

these newly proposed fingerprints, could permit in situ measurements and thereby further reduce 

resource needs related to SS sampling and laboratory workloads. In principle, this should allow for 

SS source apportionments to be determined at even higher temporal frequency observations (i.e., 

up to minutes) and for long periods of time, which is not feasible using conventional fingerprints.  

5.2 Future Research Directions 

Future research directions include the application and the investigation on the use of submerged 

spectrophotometers installed in situ, to apportion SS source contributions at high frequency and 

over long duration, thereby providing more detailed information on catchment hydro-sedimentary 

dynamics. Chapter 3 provides the basis for this: it was shown that results were broadly similar when 

using a reduced range of wavelengths (390-730 nm) without compensating for dissolved 

components, compared with using the full range of wavelengths (200-730 nm) with compensation 



Chapter 5 

120 

for dissolved components. This observation indicates the viability to directly use in situ measured 

absorbance in sediment source fingerprinting. Furthermore, there is a potential to further reduce 

the number of wavelengths used, with the objective of reducing mixing model calculation times 

(e.g., from ca. 4 days when using all wavelengths (n=213; 200-730 nm range), to ca. 1 hour when 

using wavelengths (n=35) in the 390-730 nm range with a reading every 10 nm). Calculation times 

were based on using the High Performance Computing facility at the Luxembourg Institute of 

Science and Technology. The choice for the latter selection of absorbance values (390-730 nm, at 

10 nm intervals) relates to the hypothesis that different SS properties affect absorbance values at 

different wavelengths. Choosing values over the whole range ensures that patterns in absorbance, 

and thus potential influences of different SS properties on the absorbance spectra, are retained and 

compared. Especially as links between specific SS properties and absorbance values at specific 

wavelength (ranges) remain to be determined (need to build on the work by e.g., Bass et al., 2011; 

Martínez-Carreras et al., 2016; Sehgal et al., 2022). If the response of absorbance spectra to specific 

SS properties is investigated in more detail, only those wavelengths influenced by properties 

discriminating between sources can then be used for sediment fingerprinting. Thereby leading to a 

potential further reduction in model calculation times, as well as a reduction in uncertainty due to 

the exclusion of wavelengths that are not useful (i.e., wavelengths that do not specifically relate to 

specific SS properties) or the exclusion of multiple wavelengths relating to a single property (i.e., 

over-parameterization). By creating a more standardised methodology that is easy to adopt, a 

wider uptake, potentially beyond the academic research domain, can be achieved (Evrard et al., 

2022), leading to a larger uptake by water managers and policy makers to address erosion and 

sediment transport processes (Owens, 2022). 

In Chapter 3, the approach of using a submersible spectrophotometer has only been applied to a 

small catchment with relatively distinct differences in sub-catchment lithologies. It therefore 

remains to be tested how well the presented method works (i.e., how well absorbance obtained 

from SS sources discriminate) in a variety of catchments (i.e., with more or less distinct differences 

between sources related to e.g., lithology and/or land uses). Investigating the suitability of 

submersible spectrophotometers in a variety of catchments relates to the suggestion made in 

Chapter 2, i.e., relating SS properties to absorbance values at specific wavelengths. Understanding 

absorbance responses of specific SS properties (e.g., from commonly used sediment fingerprint 

properties, such as geochemistry and colour parameters), can thereby thus indicate the likelihood 

that the proposed method could be successfully applied to specific catchments.  

Building upon the results presented in Chapters 2 and 3, a first investigation into the use of in situ 

absorbance measurements for sediment source fingerprinting purposes was performed. The same 

confluence-based sampling approach as presented in Chapter 4 was used, whereby submersible 



Chapter 5 

121 

spectrophotometers were installed in the three sampling sites. Measurements took place for a total 

duration of 5 months (from March 2021 to the end of July 2021), at 5 minute intervals. The first 

results showed that there were some problems associated with the calibration curves (Figure C.1), 

as SSC was estimated to compensate the absorbance spectra. Ideally, as was assumed in Chapter 

4, the sum of the SS loads of the tributary sources should correspond to the SS load observed at the 

downstream target SS site. However, calculated sediment loads were found to be much lower 

(Table 4.2) at the downstream target SS site compared with the sum of the tributary sources for all 

main rainfall-runoff periods. This suggests that large amounts of sediment were stored between 

the sampled sites, but this did not correspond with visual observations. Problems with the 

calibration curve at one of the sites is more likely, which could be associated with an inaccurate 

representation of the cross-sectional variation (i.e., from where samples are collected). This 

situation highlights the importance of selecting water sampling/measuring locations with due care 

and attention (e.g., Haimann et al., 2014; Horowitz et al., 1990; Rovira et al., 2012). 

Finally, an important consideration is the usability of the high frequency source fingerprinting data, 

and what novel information this data can provide. For instance, as seen in Chapter 4, the best 

results were obtained at relative high discharge values. This outcome raises the question as to 

whether the approaches might be reliable at relatively low flow conditions, together with the fact 

that most sediment is transported during the (more extreme) storm runoff events (e.g., section 

4.4.2; Gonzalez-Hidalgo et al., 2010). Further investigations are warranted to assess whether only 

absorbance data (and PSD data), obtained during certain storm runoff events (i.e., exceeding 

certain discharge threshold values), could eventually be used for sediment fingerprinting purposes. 

Furthermore, the use of high temporal resolution sediment source fingerprinting is likely to be 

warranted most in highly dynamic and most likely smaller catchments, where lower temporal 

measurement resolutions might miss important changes in source contributions. At larger spatial 

scales, on the other hand, averaging processes often mean that there is relatively less change in 

sediment dynamics and in source contributions over time, leading to a lower interest in high 

temporal resolution observations. 
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Appendix A Supplementary Information to Chapter 2 

A.1 Experimental protocol  

Before every experiment, the same protocol was adopted to ensure as consistent conditions as 

possible. 

Before starting the experiments: 

1. Demounting and cleaning the LISST path length reduction module (the path length 

reduction module provided by the manufacturer was installed due to the concentrations of 

SS used in the laboratory experiments). 

2. Cleaning of the inside of the tank set-up to ensure no particles from earlier experiments are 

remaining inside. 

3. Cleaning of the optical windows from both the spectrophotometer (using a 15 mm path 

length insert being appropriate for the SS concentrations as set (see section 2.2.4)) and the 

LISST (without the path length reduction module).  

4. Filling the tank with 40 L of demineralised water. 

5. Installation of the LISST path length reduction module (being submerged). 

6. Measuring after 5-10 minutes the background readings required for the LISST sensor, which 

should be measured in stagnant water.  

7. Starting of the vibromixer. 

8. Initiation of the spectrophotometer measurements to define the background readings (i.e., 

mixing demineralised water for a duration of 10 minutes; see section 2.2.4). 

Start of the experiments 

1. Adding soil sample material (either 1 soil sample or mixture) to the water in the tank set-

up to reach an initial theoretical concentration of 100 mg L-1. 

2. After 10 minutes of measurements, three water samples are collected with a pipette (see 

Figure 2.1b for sampling locations; Chapter 2), transferred into pre-weighted alumimium 

cups, and oven dried at at least 75°C, to determine concentrations. These ‘measured’ 

concentrations were defined as the weight of soil material present in the cups divided by 

the volume of water sampled and expressed in mg L-1. 

3. After collection of the water samples in the aluminium cups, the concentration within the 

tank was progressively increased at 100 mg L-1 intervals, up to 1000 mg L-1. After each 10 

minutes of measurement, three water samples were collected (step 2).  
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After the experiments 

1. Emptying water from the tank set-up after finishing the experiment. 

2. Weighing the dried water samples in the aluminium cups. These cups are weighed to 

determine ‘measured’ concentrations. These ‘measured’ concentrations were defined as 

the weight of the aluminium cups plus soil sample minus the weight of the clean aluminium 

cup (pre-weighted). This value, representing the weight of the soil material present in the 

dried water sample, is divided by the volume of water sampled to obtain the concentration 

(expressed in mg L-1). 

Set-up settings and water sampling considerations  

The vibromixer was installed at 10 cm above the bottom of the tank, which is slightly lower than 

the 13.5 cm recommended. We chose this height, however, as well as the chosen vibrating speed 

to obtain the best possible homogeneous mixing, based on preliminary tests. These tests also 

explored how the formation of air bubbles, which mainly affect the LISST sensor measurements, 

could be reduced together with the establishment of an optimal vibrating speed (Figure A.1 and 

A.2).  

The three water samples were collected at 20 cm below the water surface, as preliminary sampling 

results at three different depths (10, 20 and 30 cm; soil sample 2, 63-125 μm fraction) showed 

relatively homogenous concentrations with depth and with location (Figure A.3). Therefore, only 

the 20 cm depth was used 

 

Table A.1 Relative mineral content (%) of the soil samples (fraction 32-63 µm) obtained from 

semi-quantitative XRD-analyses using the DIFFRAC.EVA software (version 4.3), when 

relative content >4%: * 4-10%, **10-30%, and *** >30%. Analyses were carried out at 

the Institut Terre et Environnement de Strasbourg (ITES; France). 

 Quartz Goethite K-feldspar Muscovite Albite Montmorillonite Calcite 

Soil 1 *** ** *   * * 

Soil 2 ***  * * *   

Soil 3 ***  ** * *   

Soil 4 ***  **     

Soil 5 ***  *  *   

Soil 6 ***   ** *   

 

https://www.google.com/search?client=firefox-b-ab&q=micrometre+1+%CE%BCm+in&sa=X&ved=2ahUKEwic9L7e9d7kAhUOLewKHfpACo8Q6BMoADAYegQIDRAG
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Table A.2 Overview of the laboratory experiments: Individual soil samples and artificial mixtures 

using two, three and four soil sample mixtures with their known relative contributions. 

Individual soil sample 

Sample 
Known 

contribution 

#1.1 
#1.2 
#1.3 
#2.1  
#2.2 
#2.3 
#3.1 
#3.2 
#3.3 
#4.1 
#4.2 
#4.3 
#5.1 
#5.2 

100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 

#5.3 100% 

#6.1 100% 

#6.2 100% 

2 soil sample mixtures 

Mixture Sample 
Known 
contribution 

 
Sample 

Known 
contribution 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

#1.1 
#1.2 
#1.3 
#1.1 
#1.2 
#1.3 
#5.2 
#5.1 
#1.3 
#3.1 
#1.2 
#1.1 

80% 
80% 
80% 
20% 
20% 
20% 
80% 
50% 
60% 
80% 
80% 
30% 

#2.1 
#2.2 
#2.3 
#2.1 
#2.2 
#2.3 
#6.2 
#6.1 
#4.3 
#4.2 
#2.3 
#5.3 

20% 
20% 
20% 
80% 
80% 
80% 
20% 
50% 
40% 
20% 
20% 
70% 

3 soil sample mixtures 

Mixture Sample 
Known 
contribution 

 
Sample 

Known 
contribution 

 
Sample 

Known 
contribution 

13 
14 
15 
16 
17 
18 
19 
20 

#1.2 
#1.2 
#2.2 
#1.1 
#4.2 
#1.2 
#1.1 
#2.3 

70% 
20% 
60% 
10% 
10% 
20% 
30% 
80% 

#3.2 
#3.2 
#3.2 
#2.1 
#5.3 
#3.1 
#3.3 
#3.1 

20% 
10% 
20% 
80% 
80% 
70% 
50% 
10% 

#4.2 
#4.2 
#6.2 
#5.1 
#6.1 
#4.3 
#5.3 
#6.2 

10% 
70% 
20% 
10% 
10% 
10% 
20% 
10% 

4 soil sample mixtures 

Mixture Sample 
Known 
contribution 

 
Sample 

Known 
contribution 

 
Sample 

Known 
contribution 

 
Sample 

Known 
contribution 

21 
22 
23 
24 
25 

#2.2 
#1.1 
#3.1 
#1.1 
#1.1 

70% 
10% 
25% 
10% 
10% 

#3.2 
#2.1 
#4.1 
#2.3 
#2.3 

10% 
10% 
25% 
10% 
70% 

#5.2 
#3.1 
#5.1 
#3.1 
#3.1 

10% 
70% 
25% 
70% 
10% 

#6.2 
#5.1 
#6.1 
#6.2 
#6.2 

10% 
10% 
25% 
10% 
10% 
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Table A.3 Mean absolute errors (AE) between MixSIAR predicted and known soil sample 

(‘source’) contributions in the artificial mixtures, with associated standard errors (SE). 

 Source %     AE (SE) Source %     AE (SE) 

Mixture 1 80                  17.0 (0.8) 20                   17.0 (0.8) 

Mixture 2 80                  19.2 (0.3) 20                   19.2 (0.3) 

Mixture 3 80                  14.5 (2.5) 20                   14.5 (2.5) 

Mixture 4 20                    7.2 (2.7) 80                     7.2 (2.7) 

Mixture 5 20                  21.7 (6.2) 80                   21.7 (6.2) 

Mixture 6 20                  11.1 (4.1) 80                   11.1 (4.1) 

Mixture 7 80                  10.3 (1.3) 20                   10.3 (1.3) 

Mixture 8 50                  18.9 (0.2) 50                   18.9 (0.2) 

Mixture 9 60                  12.0 (4.1) 40                   12.0 (4.1) 

Mixture 10 80                  19.9 (0.0) 20                   19.9 (0.0) 

Mixture 11 80                  26.7 (2.6) 20                   26.7 (2.6) 

Mixture 12 30                    6.0 (0.2) 70                     6.0 (0.2) 

 Source %     AE (SE) Source %     AE (SE) Source %     AE (SE) 

Mixture 13 70                  20.3 (6.5) 20                   27.7 (1.8) 10                  7.5 (6.6)     

Mixture 14 20                    3.2 (4.7) 10                   12.1 (0.8) 70                11.5 (5.3) 

Mixture 15 60                    8.1 (5.2) 20                     8.9 (3.1) 20                  3.9 (2.4) 

Mixture 16 10                  27.0 (3.0) 80                   26.3 (5.6) 10                  2.6 (3.0) 

Mixture 17 10                    3.9 (6.5) 80                     3.3 (8.4) 10                  1.8 (0.4) 

Mixture 18 20                 11.8 (10.2) 70                 21.0 (11.5) 10                  8.8 (1.3) 

Mixture 19 30                  15.5 (4.1) 50                   41.0 (4.6) 20                25.5 (0.8) 

Mixture 20 80                  8.3 (10.7) 10                   3.7 (10.7)    10                  5.3 (0.5) 

 Source %     AE (SE) Source %     AE (SE) Source %     AE (SE) Source %     AE (SE) 

Mixture 21 70                  13.4 (2.4) 10                   15.5 (2.6)   10                    6.2 (2.4) 10                    5.1 (1.6) 

Mixture 22 10                  32.3 (2.7) 10                   14.3 (1.0) 70                  48.8 (3.2) 10                    3.9 (1.2) 

Mixture 23 25                  25.1 (2.1) 25                   16.6 (2.8) 25                  21.8 (0.7) 25                  11.5 (0.5) 

Mixture 24 10                  45.5 (2.7) 10                     9.1 (0.4) 70                  40.7 (3.1) 10                    4.3 (0.4) 

Mixture 25 10                    2.8 (0.5) 70                   13.0 (1.3) 10                    4.2 (0.8) 10                    6.1 (0.7) 
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Table A.4 Overview of mixtures and those concentrations where the Gelman-Rubin diagnostics 

value exceed the threshold value of 1.1, including the number of variables exceeding 

this threshold. 

Mixture Gelman-Rubin 

1 - 

2 - 

3 - 

4 - 

5 - 

6 - 

7 - 

8 - 

9 - 

10 - 

11 - 

12 - 

13 200, 1000 mg L-1: 1>1.1 
700, 800, 900 mg L-1: 2>1.1 
300, 600 mg L-1: 3>1.1 

14 - 

15 - 

16 300 mg L-1: 3>1.1 

17 100, 400–900 mg L-1: 3>1.1 

18 700 mg L-1: 3>1.1 

19 100-400, 600-1000 mg L-1: 3>1.1 
 

20 - 

21 100, 600mg L-1: 2>1.1 
200-500, 700, 900 mg L-1: 2>1.1 

22 100, 300, mg L-1: 4>1.1 
200 mg L-1: 2>1.1 
400 mg L-1: 3>1.1 

23 100-500, 800-1000 mg L -1: 4>1.1 
600 mg L-1: 2>1.1 
700 mg L-1: 3>1.1 

24 200 mg L-1: 3>1.1 

25 200, 500, 700, 900, 1000 mg L-1: 3>1.1 
400 mg L-1: 1>1.1 
600 mg L-1: 4>1.1 
800 mg L-1: 2>1.1 
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Figure A.1 Speed 1 and Speed 2 comparison (vibromixer) to decide which speed best mixes soil 

material introduced into the experimental tank. Lower speeds were not considered 

due to clear visible deposition of soil material. Tests were executed with <63 μm 

material (not used in the experiments described here). 

 

 

Figure A.2 Bubble influences from the vibromixer at speed 2. Based on less bubbles and therefore 

less influence on the LISST measurements (left), the 10 cm height for installing the 

virbomixer plate was selected in these experiments given the more severe bubble 

problem observed at the 13.5 cm height (right).  
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Figure A.3 Homogeneity of concentration. Results show the variability of measured 

concentrations at 10 different position inside the experimental tank set-up (3 heights 

at 3 locations, additional sample 5 cm above the bottom). Test here used soil sample 

#2.3 (soil 2, 63-125 μm). 
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Figure A.4 Absorbance response over the whole range of measured wavelengths (200-730 nm) 

for soil sample #2.3 (soil 2, 63-125 μm) at the ten different (theoretical) 

concentrations, compensated for background absorbance (demineralised water; 0 mg 

L-1). Dashed lines indicate those wavelengths, beside the average over all wavelengths, 

that are used for analysis  
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Figure A.5 Absorbance values plotted against theoretical concentrations, for particle sizes <32 μm 

(left), 32-63 μm (middle) and 63-125 μm (right). Dotted lines show the linear 

regression, with the corresponding r2 values (r-sq) shown in the legend.  
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Figure A.6 Absorbance values plotted against measured concentrations, for particle sizes <32 μm 

(left), 32-63 μm (middle) and 63-125 μm (right). Dotted lines show the linear 

regression, with the corresponding r2 values (r-sq) shown in the legend.  
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Figure A.7 Average increases in absorbance per mg L-1 (absorbance values divided by measured 

concentrations) for average absorbance over (a) all wavelengths, (b) 210 nm, (c) 400 

nm, and (d) 700 nm, for all 17 soil samples (indicated by #soil.fraction, with ‘soil’ 

representing the test soils (n=6), and ‘fraction’ the sieved fraction size (.1 for <32 μm; 

.2 for 32-63 μm; .3 for 63-125 μm). Values inside the plot refer to the average (PSD) 

and standard deviation (SD) of measured particle size distributions per sample and dry 

sieved fraction measured with the LISST sensor inside the experimental tank.  
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Figure A.8 Relationship between average increases in absorbance per mg L-1 (absorbance values 

divided by measured concentrations) as a function of average particle size measured 

with the LISST sensor inside the experimental tank. Particle size values and 

corresponding standard deviations were calculated for every sample and for every 

concentration separately.  
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Figure A.9 Un-mixing of artificial mixtures; deviations between measured absorbance and 

‘expected’ absorbance based on a single soil sample absorbance signal (mass-balance), 

shown for 2 (a), 3 (b) and 4 (c) soil sample mixtures. Red dots (a, b and c) indicate those 

situations in which absorbance values from the artificial mixtures are larger or smaller 

than the absorbance values measured for both individual soil samples comprising that 

mixture (concerned mixtures are indicated by * in the legend).
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Appendix B Supplementary Information to Chapter 3 

 

Figure B.1 Relationships between model performance deviation (being the difference between 

the modelling outcomes and the sediment budget) and: difference in source 

absorbance (a), suspended sediment concentration (SSC) (b), discharge (c) with outlier 

highlighted in black not used in relation. 

a) 

b) 

c) 
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Figure B.2 Overview of absorbance spectra of the filtered water samples per campaign. Spectra 

are shown over the whole range of measured wavelengths (200-730 nm): campaign 1 

(a), campaign 2 (c), campaign 3 (e). Details on the spectra beyond 390 nm (indicated 

by the dotted lines in a, c and e), are shown for campaign 1 (b), campaign 2 (d), 

campaign 3 (f). 

  

a) b) 

c) 

e) 

d) 

f) 
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Table B.1 Drainage area for each sampling site. 

Sampling site Drainage area 
each sampling 
site (km2) 

1 44.0 

2 37.6 

3 10.9 

4 8.3 

5 7.5 

6 0.2 

7 6.7 

8 3.4 

9 2.9 

10 0.8 

11 0.9 

12 2.0 

13 1.5 

14 1.5 

15 16.1 

16 22.5 

17 6.3 

18 4.9 

19 2.7 

20 2.2 

21 1.5 

22 14.8 

23 8.3 

24 6.5 

25 4.2 

26 2.2 

27 2.0 

28 6.6 

29 1.9 

30 4.7 

31 25.5 

32 1.1 

33 0.5 
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Table B.2 Predicted suspended sediment modelled contributions (%) for each confluence 

(outcomes MixSIAR model), with modelled standard deviations (%). Sediment load 

(%) represents the outcomes from the sediment budget calculations. 
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A 1 31 55.7 0.7 60  G 1 19 27.5 0.8 40 

3 44.3 0.7 40  20 72.5 0.8 60 

2 31 33 1.3 85  2 19 98.1 1.7 67 

3 67 1.3 15  20 1.9 1.7 33 

3 31 86.5 0.3 74  3 19 19.2 1.7 66 

3 13.5 0.3 26  20 80.8 1.7 34 

B 1  5 99.1 0.9 99  H 1 32 NaN NaN - 

6 0.9 0.9 1  33 NaN NaN - 

2  5 99.4 0.6 99  2  32 75.1 0.3 75 

6 0.6 0.6 1  33 24.9 0.3 25 

3  5 79.6 1.9 99  3 32 89.6 2 94 

6 20.4 1.9 1  33 10.4 2 6 

C 1 8 99.9 0.1 90  I 1 23 70.6 0.6 76 

9 0.1 0.1 10  24 29.4 0.6 24 

2 8 26.8 0.5 5  2 23 66.6 0.2 58 

9 73.2 0.5 95  24 33.4 0.2 42 

3  8 99.4 0.6 83  3  23 99.9 0.1 68 

9 0.6 0.6 17  24 0.1 0.1 32 

D 1 13 60 0.3 70  J 1 26 58.5 1.6 60 

14 40 0.3 30  27 41.5 1.6 40 

2  13 29.5 4.2 56  2  26 98.3 1.5 60 

14 70.5 4.2 44  27 1.7 1.5 40 

3 13 76.4 0.3 55  3 26 42.4 0.9 50 

14 23.6 0.3 45  27 57.6 0.9 50 

E 1 10 NaN NaN -  K 1 29 86.1 1 36 

11 NaN NaN -  30 13.9 1 64 

2 10 89.7 3 67  2  29 0.1 0.1 9 

11 10.3 3 33  30 99.9 0.1 91 

3 10 52.8 0.9 68  3 29 66.7 0.3 43 

11 47.2 0.9 32  30 33.3 0.3 57 

F 1  15 63.8 1.7 78 

17 36.2 1.7 22 

2 15 70.4 0.7 79 

17 29.6 0.7 21 

3 15 99.8 0.2 91 

17 0.2 0.2 9 
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Table B.3 Percentage of different land uses for each SS source stream site, shown per 

confluence. Data used was made available by the ‘Administration du Cadastre et de la 

Topographie’ (ACT), (Corine Land Cover 2018). 

Confluence A Site 3 Site 31  Confluence B Site 5 Site 6 

Land use Contribution 
(%) 

Contribution 
(%) 

Land use Contribution 
(%) 

Contribution 
(%) 

Forest 34 44 Forest 30 66 

Cultivated 45 47 Cultivated 49 7 

Pasture 20 6 Pasture 21 27 

Build 0 2 Build 0 0 

Sand mining 0 1 Sand mining 0 0 

Confluence C Site 8 Site 9 Confluence D Site 13 Site 14 

Land use Contribution 
(%) 

Contribution 
(%) 

Land use Contribution 
(%) 

Contribution 
(%) 

Forest 22 39 Forest 22 23 

Cultivated 70 43 Cultivated 77 71 

Pasture 8 18 Pasture 1 6 

Build 0 0 Build 0 0 

Sand mining 0 0 Sand mining 0 0 

Confluence E Site 10 Site 11 Confluence F Site 15 Site 17 

Land use Contribution 
(%) 

Contribution 
(%) 

Land use Contribution 
(%) 

Contribution 
(%) 

Forest 12 32 Forest 38 53 

Cultivated 79 64 Cultivated 51 40 

Pasture 9 4 Pasture 7 4 

Build 0 0 Build 3 0 

Sand mining 0 0 Sand mining 1 3 

Confluence G Site 19 Site 20 Confluence H Site 32 Site 33 

Land use Contribution 
(%) 

Contribution 
(%) 

Land use Contribution 
(%) 

Contribution 
(%) 

Forest 35 56 Forest 23 21 

Cultivated 55 44 Cultivated 77 79 

Pasture 10 0 Pasture 0 0 

Build 0 0 Build 0 0 

Sand mining 0 0 Sand mining 0 0 

Confluence I Site 23 Site 24 Confluence J Site 26 Site 27 

Land use Contribution 
(%) 

Contribution 
(%) 

Land use Contribution 
(%) 

Contribution 
(%) 

Forest 38 37 Forest 29 48 

Cultivated 47 57 Cultivated 61 45 

Pasture 12 2 Pasture 0 0 

Build 3 4 Build 10 2 

Sand mining 0 0 Sand mining 0 0 

Confluence K Site 29 Site 30 

Land use Contribution 
(%) 

Contribution 
(%) 

Forest 50 24 

Cultivated 45 52 

Pasture 5 18 

Build 0 5 

Sand mining 0 0 
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Table B.4 Percentage of different lithologies for each SS source stream site, shown per 

confluence. Data used was made available by the ‘Service Géologique du Luxembourg.’ 

Confluence A Site 3 Site 31  Confluence B Site 5 Site 6 

Lithology Contribution 
(%) 

Contribution 
(%) 

Lithology Contribution 
(%) 

Contribution 
(%) 

Marls 16 26 Marls 0 0 

Schists 35 49 Schists 50 0 

Buntsandstein 44 23 Buntsandstein 45 99 

Alluvials 5 1 Alluvials 5 1 

Confluence C Site 8 Site 9 Confluence D Site 13 Site 14 

Lithology Contribution 
(%) 

Contribution 
(%) 

Lithology Contribution 
(%) 

Contribution 
(%) 

Marls 0 0 Marls 0 0 

Schists 57 57 Schists 56 64 

Buntsandstein 39 41 Buntsandstein 43 32 

Alluvials 5 2 Alluvials 1 3 

Confluence E Site 10 Site 11 Confluence F Site 15 Site 17 

Lithology Contribution 
(%) 

Contribution 
(%) 

Lithology Contribution 
(%) 

Contribution 
(%) 

Marls 0 0 Marls 42 0 

Schists 76 87 Schists 46 73 

Buntsandstein 24 13 Buntsandstein 12 27 

Alluvials 0 0 Alluvials 1 0 

Confluence G Site 19 Site 20 Confluence H Site 32 Site 33 

Lithology Contribution 
(%) 

Contribution 
(%) 

Lithology Contribution 
(%) 

Contribution 
(%) 

Marls 0 0 Marls 0 0 

Schists 85 89 Schists 100 100 

Buntsandstein 15 11 Buntsandstein 0 0 

Alluvials 0 0 Alluvials 0 0 

Confluence I Site 23 Site 24 Confluence J Site 26 Site 27 

Lithology Contribution 
(%) 

Contribution 
(%) 

Lithology Contribution 
(%) 

Contribution 
(%) 

Marls 60 63 Marls 0 0 

Schists 38 0 Schists 96 94 

Buntsandstein 2 37 Buntsandstein 4 6 

Alluvials 0 0 Alluvials 0 0 

Confluence K Site 29 Site 30 

Lithology Contribution 
(%) 

Contribution 
(%) 

Marls 77 42 

Schists 23 58 

Buntsandstein 0 0 

Alluvials 0 0 
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Appendix C Supplementary Information to Chapter 4 

Table C.1 Coordinates of and baseline information for soil sampling sites. Geology data retrieved 

from ‘Service Géologique du Luxembourg.’ 

Soil  Latitude Longitude Land use Geology  

1 49.497028 6.005050 Forest Oolitic iron stone 
(Minette) 

2 49.483854 6.054251 Agriculture 
(cropland) 

Marls, argillites and 
iron ore 

3 49.456871 5.990764 Forest Marls and limestone 

4 49.746973 5.870103 Forest Marls and sandstone 

5 49.715606 5.90043 Forest Calcereous 
sandstone 
(Luxembourg 
sandstone) 

6 49.835121 5.799219 Forest Schists, and siliceous 
sandstones 
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Table C.2 Mixtures with component soil samples and their known relative contributions. Soil 

samples are indicated by #soil.fraction, representing the (original) collected soil (n=6), 

and fraction representing the sieved particle size (.1 for <32 μm, .2 for 32-63 μm and 

.3 for 63-125 μm). 

 Mixture No. Soil sample (%) Soil sample (%) Soil sample (%) Soil sample (%) 

Mixtures of samples sieved to different size fractions: 

2 soil 
samples 

1 #3.1 (80%) #4.2 (20%) - - 

2  #1.2 (80%) #2.3 (20%) - - 

3 #1.1 (30%) #5.3 (70%) - - 

3 soil 
samples 

4 #4.2 (10%) #5.3 (80%) #6.1 (10%) - 

5 #1.2 (20%) #3.1 (70%) #4.3 (10%) - 

6 #1.1 (30%) #3.3 (50%) #5.3 (20%) - 

7 #2.3 (80%) #3.1 (10%) #6.2 (10%) - 

4 soil 
samples 

8 #1.1 (10%) #2.3 (70%) #3.1 (10%) #6.2 (10%) 

9 #1.1 (10%) #2.3 (10%) #3.1 (70%) #6.2 (10%) 

Mixtures of samples sieved to the same size fraction: 

2 soil 
samples 

10 #1.1 (80%) #2.1 (20%) - - 

11 #1.2 (80%) #2.2 (20%) - - 

12 #1.3 (80%) #2.3 (20%) - - 

13 #1.1 (20%) #2.1 (80%) - - 

14 #1.2 (20%) #2.2 (80%) - - 

15 #1.3 (20%) #2.3 (80%) - - 

16 #5.2 (80%) #6.2 (20%) - - 

17 #5.1 (50%) #6.1 (50%) - - 

18 #1.3 (60%)  #4.3 (40%) - - 

3 soil 
samples 

19 #1.2 (70%) #3.2 (20%) #4.2 (10%) - 

20 #1.2 (20%) #3.2 (10%) #4.2 (70%) - 

21 #2.2 (60%) #3.2 (20%) #6.2 (20%) - 

22 #1.1 (10%) #2.1 (80%) #5.1 (10%) - 

4 soil 
samples 

23 #2.2 (70%) #3.2 (10%) #5.2 (10%) #6.2 (10%) 

24 #1.1 (10%) #2.1 (10%) #3.1 (70%) #5.1 (10%) 

25 #3.1 (25%) #4.1 (25%) #5.1 (25%) #6.1 (25%) 
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Table C.3 Upper part: concentrations measured in the tank set-up, presented as a percentage of 

theoretical (target) concentrations. Lower part: input concentrations, based on 

theoretical input concentrations, and adapted input concentrations (bold), based on 

measured concentrations. 

Soil 
sample 

Concentration measured in tank 
set-up (in %) compared with 
input (theoretical) concentrations 

Soil sample Concentration measured in tank 
set-up (in %) compared with input 
(theoretical) concentrations 

#1.1 88.4 #4.1 86.7 

#1.2 80.8 #4.2 80.1 

#2.3 63.9 #4.3 55.0 

#2.1 90.2 #4.1 94.9 

#2.2 64.2 #4.2 70.9 

#2.3 64.1 #4.3 28.7 

#3.1 88.9 #5.1 90.8 

#3.2 84.0 #6.2 87.6 

#3.3 63.2 #6.3 - 

    

 Mixture No. Soil sample (%)  Soil sample (%) Soil sample (%) Soil sample (%) 

Mixtures of samples sieved to different size fractions: 

2 soil 
samples 

1 #3.1 (80) (81.6) #4.2 (20) (18.4) - - 

2  #1.2 (80) (83.4) #2.3 (20) (16.6) - - 

3 #1.1 (30) (56.9) #5.3 (70) (43.1) - - 

3 soil 
samples 

4 #4.2 (10) (20.0) #5.3 (80) (57.3) #6.1 (10) (22.7) - 

5 #1.2 (20) (19.3) #3.1 (70) (74.2) #4.3 (10) (6.6) - 

6 #1.1 (30) (41.5) #3.3 (50) (49.5) #5.3 (20) (9.0) - 

7 #2.3 (80) (74.4) #3.1 (10) (12.9) #6.2 (10) (12.7) - 

4 soil 
samples 

8 #1.1 (10) (12.4) #2.3 (70) (62.9) #3.1 (10) (12.5) #6.2 (10) (12.3) 

9 #1.1 (10) (10.3) #2.3 (10) (7.4) #3.1 (70) (72.2) #6.2 (10) (10.2) 
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Table C.4 Modelled contributions and standard deviations (AnalySize), for the artificial mixtures 

using soil samples sieved to different fractions. 

 Mixture No. Soil sample (%)  Soil sample (%) Soil sample (%) Soil sample (%) 

2 soil 
samples 

1 #3.1 (76.7 ± 3.8) #4.2 (23.3 ± 3.8)  - - 

2  #1.2 (76.3 ± 34.3) #2.3 (23.7 ± 34.3)  - - 

3 #1.1 (70.7 ± 7.9)  #5.3 (29.3 ± 7.9)  - - 

3 soil 
samples 

4 #4.2 (29.5 ± 6.4)  #5.3 (43.9 ± 11.5)  #6.1 (26.6 ± 10.5)  - 

5 #1.2 (31.2 ± 6.7)  #3.1 (67.1 ± 6.9)  #4.3 (1.8 ± 2.3)  - 

6 #1.1 (45.5 ± 7.4)  #3.3 (54.3 ± 7.4)  #5.3 (0.1 ± 1.2)  - 

7 #2.3 (85.3 ± 8.9)  #3.1 (5.5±4.0)  #6.2 (9.1 ± 8.8)  - 

4 soil 
samples 

8 #1.1 (1.9 ± 3.1)  #2.3 (72.6 ± 14.6) #3.1 (11.2 ± 8.5)  #6.2 (14.2 ± 9.3)  

9 #1.1 (0.0 ± 0.4)  #2.3 (5.7 ± 7.1)  #3.1 (81.0 ± 11.8)  #6.2 (13.3 ± 9.9)  

 

 

Table C.5 Differences between the average modelled and compensated known soil sample 

contributions. 

 

 

 Mixture No. Soil sample 
(difference)  

Soil sample 
(difference) 

Soil sample 
(difference) 

Soil sample 
(difference) 

2 soil 
samples 

1 #3.1 (4.9%) #4.2 (4.9%)  - - 

2  #1.2 (7.1%) #2.3 (7.1%)  - - 

3 #1.1 (13.8%)  #5.3 (13.8%)  - - 

3 soil 
samples 

4 #4.2 (9.5%)  #5.3 (13.4%)  #6.1 (3.9%)  - 

5 #1.2 (11.9%)  #3.1 (7.1%)  #4.3 (4.8%)  - 

6 #1.1 (4.0%)  #3.3 (4.8%)  #5.3 (8.9%)  - 

7 #2.3 (10.9%)  #3.1 (7.4%)  #6.2 (3.6%)  - 

4 soil 
samples 

8 #1.1 (10.5%)  #2.3 (9.7%) #3.1 (1.3%)  #6.2 (1.9%)  

9 #1.1 (10.3%)  #2.3 (1.7%)  #3.1 (8.8%)  #6.2 (3.1%)  
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Figure C.1 Calibration relationships between turbidity (measured from spectro::lyser) and 

measured SSC for the Upstream, Tributary and Downstream measurement sites. Red 

dashed lines represent the 95% confidence intervals. 
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Figure C.2 Overview for decision selecting the upper particle size boundary using the Mastersizer 

data. Top: Period C, below: period E. Distribution shown after applying Ultrasound 

(US), with the vertical dotted line showing the particle size distribution patterns at 500 

μm. This limit was selected as the upper size limit to exclude the influence of unknown 

peaks observed above this size. Second peaks observed at the higher particle sizes ( 

>500 μm) were often only observed after applying ultrasounds.  



Appendix C 

149 

 

Figure C.3 Average particle size distributions of the 17 soil samples, plotted against the mean 

particle size (μm) for the 36 classes. Distributions of the different soil samples are 

shown according to test soil (indicated by colour; top right) and the fraction the soil 

sample was sieved to (indicated by line type; top left). 
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Figure C.4 Patterns of D50 values and modelled contribution percentages for the different 

theoretical input concentrations, for those mixtures consisting of soil samples sieved 

to different fractions (mixtures 1 to 9; top to bottom). In brackets after each soil 

sample is the theoretical input contribution shown.  
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Figure C.5 Particle size distributions for a selection of samples from Period F, with and without 

Organic Matter (OM) oxidation. Left figures: PSD before and after OM oxidation shown 

for all particle size classes (0-3500 μm). Right figures: same PSD shown for maximum 

particle size classes of 500 μm.  
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Table C.6 Un-mixing results from AnalySize before and after oxidation (using H2O2) of organic 

matter. Comparisons only showed a clear difference for one out of four instances 

(sample collected 04/06/2021 at 22:30). Here, the average contribution for the 

Upstream site decreased from 80% (before oxidation) to 43% (after oxidation). Results 

for period F showed that the modelled contributions without Organic Matter (OM) 

oxidation were more consistent with the sediment budget calculations (Figure 4.5). 

Timing Upstream (% ± 
st.deviation) 

Before oxidation 

Tributary (% ± 
st.deviation) 

Before oxidation 

 Upstream (% ± 
st.deviation) 

After oxidation 

Tributary (% ± 
st.deviation) 

After oxidation 

04/06/2021 21:00 99.56 ± 0.92 0.44 ± 0.92  100.00 ± 0 0.00 ± 0 

04/06/2021 22:30 79.69 ± 6.47 20.31 ± 6.47  42.51 ± 0.94 57.49 ± 0.94 

05/06/2021 00:00 16.25 ± 0.77 83.75 ± 0.77  0.72 ± 1.47 99.28 ± 1.47 

05/06/2021 01:30 0.00 ± 0 100.00 ± 0  8.55 ± 0.93 91.45 ± 0.93 

 

 

 

Figure C.6 Percentage deviations of mass-balance (estimation for mixture concentrations based 

on measured concentrations from individual soil sample tests, relative to their input 

contribution) against measured mixture concentrations. Positive values here indicate 

a higher expected mixture concentration (mass-balance) compared to the real 

measured mixture concentration. Data shown are median values, 25th and 75th 

percentiles (boxes) and 5th and 95th percentiles (whiskers). 
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