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ABSTRACT 16 

A systematic investigation of the sound radiation of orthogonally stiffened plates 17 

is presented using a numerical procedure that combines the finite element method with 18 

the Rayleigh integral. Results are computed for stiffened plates with different numbers of 19 

stiffeners, stiffener depth, and plate thickness to investigate the dependence on the most 20 

important parameters. Differences between the radiation efficiency of stiffened plates 21 

and unstiffened panels are seen. In the monopole region, the result depends on the mode 22 

that dominates the response. For excitation within a bay, the radiation efficiency is 23 

reduced to that of the single bay if the stiffeners are stiff enough. If excited on a stiffener, 24 

the plate tends to radiate sound over its full surface area. In the short-circuiting region, 25 

on average, the radiation efficiency is equal to that of a smaller bay-sized panel with 26 

clamped edges, regardless of the excitation position. Results from the systematic study 27 

of 120 numerical cases are used to develop asymptotic formulae for the radiation 28 

efficiency of stiffened plates based on existing formulae for unstiffened panels. For all 29 

tested configurations, the average difference between the formulae and the numerical 30 

calculations was 0.3 dB over the whole frequency spectrum, with a standard deviation of 31 

±1.5 dB. Between the frequency bands, the mean value varied between −2 and 3 dB, 32 

with a standard deviation of up to ±1.5 dB in the monopole region and up to ±5 dB in 33 

the short-circuiting region. 34 

Keywords: Stiffened plates; sound radiation; radiation efficiency 35 

  36 
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1. Introduction 37 

Stiffened plates are commonly used in many structures as they can provide a 38 

high strength-to-weight ratio. This makes them attractive in aeronautics applications, 39 

e.g. in the fuselage of aircraft, but also in civil structures. The stiffeners alter the 40 

dynamic properties of the plate and hence its ability to radiate sound [1, 2]. Although 41 

stiffened plates have received wide attention in the literature, an easy-to-implement 42 

model to estimate their radiation efficiency is still lacking. While for rectangular uniform 43 

panels simple analytical expressions for the radiation efficiency are available, to the 44 

authors’ knowledge an equivalent procedure does not exist for stiffened plates. The 45 

development of a new engineering model for estimating the radiation efficiency of 46 

stiffened plates is presented in this paper to overcome this gap. 47 

The sound radiation efficiency of a structure can be written as [2] 48 

 𝜎 =
𝑊

𝜌0𝑐0𝑆〈𝑣2̅̅ ̅〉
=
𝑅rad
𝜌0𝑐0𝑆

  (1) 

where 𝑊 is the radiated sound power, 𝜌0 and 𝑐0 are the density and the speed of sound 49 

in air, 𝑆 is the surface area and 〈𝑣2̅̅ ̅〉 is the spatially averaged mean square velocity. The 50 

radiation resistance 𝑅rad is the ratio of the radiated sound power to the mean-square 51 

velocity. 52 

In one of the first investigations of sound radiation from stiffened plates, 53 

Maidanik [1] found that these were characterised by a larger radiation resistance than 54 

unstiffened panels. He derived asymptotic formulae to predict the radiation efficiency of 55 

simply supported unstiffened panels in an infinite rigid baffle, assuming high modal 56 

densities. These formulae require knowledge of the material properties, the surface 57 
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area and the perimeter of the panel and are divided into different frequency regions. 58 

Important frequencies delimiting the radiation behaviour are the first panel resonance 59 

and the critical frequency, the latter of which can be calculated as [2] 60 

 𝑓𝑐 =
𝑐0
2

2𝜋
(
𝜇

𝐷
)
1/2

, (2) 

where 𝜇 is the mass per unit area and 𝐷 the bending stiffness of the plate. 61 

A panel radiates most efficiently around and above its critical frequency, with 62 

values of 𝜎 exceeding unity. Between the first panel resonance and the critical 63 

frequency cancellation due to acoustic short-circuiting occurs; this frequency region can 64 

be divided into the ‘corner mode’ and ‘edge mode’ regions [2]. Below its first natural 65 

frequency, the panel responds according to its fundamental mode shape and, when 66 

mounted in an infinite baffle, radiates sound like a monopole. This frequency range is 67 

therefore known as the ‘monopole region’. For stiffened plates, Maidanik suggested 68 

that the same formulae could be adopted by increasing the perimeter of the panel by 69 

twice the length of the stiffeners. Only a few specific cases were addressed, for which an 70 

exact solution was possible. 71 

Comparable results for the radiation resistance of a simply supported panel in a 72 

baffle were found by Wallace [3], who evaluated the far-field radiation of single plate 73 

modes using the Rayleigh integral [4]. Leppington et al. [5] found that Maidanik’s 74 

analysis gave an overestimation around the coincidence region and derived new 75 

approximate formulae. The asymptotic formulae from the combined work of [1, 3, 5] 76 

are commonly used for the prediction of the radiation efficiency of simply supported 77 

panels. They give an estimate of the trend of radiation efficiency over frequency without 78 
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considering modal behaviour. For simplicity, they will be referred to as Maidanik 79 

formulae in this paper. While adapting Maidanik’s formulae to plates of very large 80 

aspect ratio, Xie et al. [6] demonstrated that the cross-modal contributions can be 81 

neglected when considering an average over several excitation positions. 82 

In modelling stiffened plates, narrow stiffeners may be represented by pinned 83 

line supports. According to Egle and Sewall [7], this is a suitable assumption if the width 84 

of the connection between the stiffener and the plate does not exceed the plate 85 

thickness. However, this may not be adequate in a realistic stiffened plate.  86 

In literature, e.g. [8-11], stiffened plates are commonly represented by a system 87 

of flexible beams coupled to a plate, which allows for analytical formulations of an 88 

idealised stiffened plate. Du et al. [11] investigated the vibration characteristics of 89 

stiffened plates for different stiffener placements and plate boundary conditions and 90 

verified results by comparison with other models (e.g. Dozio and Ricciardi [8]), and 91 

measurements. 92 

Heckl [10] suggested replacing the beam-stiffened plate with an equivalent 93 

orthotropic plate unless the distance between adjacent beams is larger than one-94 

quarter of the bending wavelength. In [12], Heckl found pass- and stopband 95 

characteristics in periodic arrangements of orthogonally aligned beams. Consequently, 96 

wave propagation is possible in distinct frequency regions but highly attenuated in 97 

others. Similar behaviour can be expected in a beam-stiffened plate. 98 

Mace [13-15] studied the sound radiation of orthogonally stiffened plates for a 99 

point force and the response due to an incident pressure field. Compared with the 100 
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unstiffened panel, he found an increased far-field sound pressure for a given direction, 101 

at frequencies where the acoustic wavenumber coincided with the wave propagation 102 

constants of the infinite stiffened plate. 103 

The sound radiation of stiffened plates is addressed by Fahy in [2]. Based on the 104 

results of Mead [16], Fahy concluded that Maidanik’s results in [1] only roughly describe 105 

the actual behaviour of stiffened plates. Further he mentions that treating a stiffened 106 

plate as a set of smaller equally-sized panels would be tempting, but requires frequency-107 

dependent boundary conditions. 108 

The finite element method (FEM) allows complex geometries to be modelled, 109 

that cannot be solved analytically. Olson and Hazell [17] studied the vibration of 110 

orthogonally stiffened plates using the FEM, showing reasonably good agreement 111 

compared with measurements. Reynders et al. [18] investigated sound transmission 112 

through rib-stiffened plates using the FEM and an equivalent orthotropic plate model. 113 

The FE models produced accurate results after adjusting parameters using experimental 114 

modal analysis, whereas the orthotropic plate was only acceptable at frequencies 115 

corresponding to a few low-order modes. Compared with analytical models, the FEM 116 

allows stiffened plates to be modelled more accurately. 117 

Mencik and Gobert [19] used a wave finite element to model the vibration of 118 

stiffened plates. They calculated the acoustic radiation of the rectangular plates in an 119 

infinite rigid baffle by an elementary source representation. 120 

The aim of this work is to use a systematic set of numerical calculations to 121 

provide insight into the radiation efficiency of orthogonally stiffened plates. The results 122 
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are used to derive a straightforward engineering model to estimate the radiation 123 

efficiency of stiffened plates. The asymptotic formulae of Maidanik form the basis of this 124 

model and empirical corrections are developed, which combine the influence of 125 

important plate and stiffener parameters.  126 

The remainder of the paper is structured as follows. The numerical procedure 127 

adopted to calculate the radiation efficiency is presented in Section 2 and the results are 128 

shown in Section 3 for different stiffening configurations. In Section 4, the influence of 129 

the plate and stiffener stiffness on the radiation efficiency is investigated. In Section 5, 130 

the influence of plate boundary conditions is addressed. Empirical corrections to allow 131 

the radiation efficiency of stiffened plates to be estimated based on existing engineering 132 

formulae are proposed and verified in Section 6. 133 

2. Methodology 134 

In this section, the methodology used to calculate the vibration and radiation 135 

efficiency of the stiffened plates is outlined. Numerically calculated modes are 136 

combined with the Rayleigh integral to determine the sound radiated by the plate and 137 

obtain its radiation efficiency. 138 

2.1. Free Vibration 139 

An FE model of a stiffened plate has been implemented in COMSOL Multiphysics 140 

5.4 to obtain the natural frequencies and mode shapes from a free vibration analysis. 141 

The plate and the stiffeners are modelled using shell elements, with the stiffeners 142 

connected to one side of the panel. The stiffeners have a C-shaped cross-section, and 143 
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they are connected to the panel by joining shell elements together. This approach 144 

represents the connecting strip between the stiffener and the plate more accurately 145 

than a beam model and can include cross-sectional deformation of the stiffener [18]. 146 

Clamped boundary conditions are applied to the plate edges, while the stiffener ends 147 

are left free. The structure is discretized using triangular elements with a minimum of 148 

four second-order elements per structural wavelength [20]. The element size was 149 

determined by the highest frequency of observation, which was set to 10 kHz. For 150 

consistency between different stiffener configurations, the mode shapes were sampled 151 

on a regularly spaced point grid on the plate. An example of the FE model with the mesh 152 

and the sampling grid is illustrated in Fig. 1. 153 

2.2. Forced vibration  154 

Using the natural frequencies and mode shapes obtained from the FE model, the 155 

plate velocity amplitude at the 𝑖-th sampling position due to a harmonic point force of 156 

circular frequency 𝜔 at the 𝑘-th forcing position can be calculated using a modal 157 

summation [2] 158 

 𝑣𝑖 = j𝜔∑
𝜓𝑛,𝑖𝜓𝑛,𝑘

𝜔𝑛2(1 + j𝜂) − 𝜔2
𝐹𝑘,

𝑁

𝑛=1

 (3) 

where j = √−1 is the imaginary unit, 𝜓𝑛 the mass-normalized mode shape of the 𝑛-th 159 

mode at the 𝑖-th or 𝑘-th sampling position on the plate, 𝜔𝑛 the corresponding natural 160 

angular frequency and 𝜂 the damping loss factor. In the remainder of this paper results 161 

are reported for a unit amplitude point force applied to the 𝑘-th position (𝐹𝑘 = 1 N), 162 
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making the velocity equivalent to the mobility. The force is always assumed to be acting 163 

on the side of the plate without stiffeners. 164 

The spatially averaged mean-square velocity of the plate, which is used to 165 

calculate its radiation efficiency, is determined by [2] 166 

 〈𝑣2̅̅ ̅〉 =
1

𝑎𝑏
∫
1

2
|𝑣(𝐱0)|

2 d𝐱0,
 

𝑆

 (4) 

where 𝑎 and 𝑏 are the length of the plate in the x-direction and y-direction, S is the 167 

surface area of the plate and 𝑣 is the velocity normal to the plate surface. 168 

2.3. Radiation efficiency 169 

The sound radiation is calculated by assuming that the plate is mounted in an 170 

infinite rigid baffle with the radiating side being the one without stiffeners. The sound 171 

pressure can be obtained using the Rayleigh integral [4], and discretizing the plate into 172 

small equally-sized piston radiators of area Δ𝑆 = Δ𝑥Δ𝑦 [2]. They are chosen so 𝜅Δ𝑥 < 1 173 

and 𝜅Δ𝑦 < 1, where 𝜅 is the acoustic wavenumber. The corresponding coordinate 174 

system is illustrated in Fig. 2. 175 

The sound pressure field can be calculated as [2] 176 

 𝐩(𝐱) = 𝐙(𝐱0|𝐱)𝐯(𝐱0), (5) 

where 𝐩 contains the pressures at all acoustic field points, 𝐯 the normal plate velocities 177 

obtained from the sampling grid of the FE model and 𝐙 is an impedance matrix of terms 178 

that link the plate velocities at 𝐱0 to the sound pressures at 𝐱. The impedance term that 179 

links the 𝑖-th elemental source with the 𝑗-th receiver is defined as [2] 180 
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 𝑍𝑖𝑗(𝜔) = j𝜔𝜌0
𝑒−j𝜅𝑅𝑖𝑗

2𝜋𝑅𝑖𝑗
Δ𝑆𝑖 , (6) 

where 𝜌0 is the density of air, 𝑅𝑖𝑗 is the distance between the 𝑖-th and 𝑗-th element, and 181 

Δ𝑆𝑖 is the surface area of the 𝑖-th element of the plate. 182 

The acoustic power is approximated by a discrete integration of the far-field 183 

intensity over the small surface elements associated with each receiver as [2] 184 

 𝑊 =∑
|𝑝𝑗|

2

2𝜌0𝑐0

𝐽

𝑗=1

Δ𝑆𝑗, (7) 

where Δ𝑆𝑗 is the surface area of the 𝑗-th receiver, with Δ𝑆𝑗 = 𝑟𝑗
2 sin 𝜃𝑗 Δ𝜃𝑗Δ𝜙𝑗 on a 185 

hemisphere. 186 

Finally, the radiation efficiency of the plate can be obtained from Eq.(1). The 187 

spatially averaged radiation efficiency is calculated as [21] 188 

 𝜎 =
𝑊

𝜌0𝑐0𝑎𝑏〈𝑣2̅̅ ̅〉
 , (8) 

where 〈𝑣2̅̅ ̅〉 and 𝑊 indicate an average over various forcing positions. 189 

2.4. Parametric study 190 

Stiffened plates are considered here with a regular stiffener spacing. The center 191 

line of the stiffeners is aligned at an equal distance and all C-shaped stiffeners are 192 

oriented in the same direction. Due to the non-centered web that connects the two 193 

flanges, the stiffened plate is not symmetric. The stiffeners divide the panel into smaller 194 

sections, or ‘bays’. 195 
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Four different stiffening configurations are studied, with increasing numbers of 196 

stiffeners, as shown in Fig. 3. They will be referred to as ‘Cases’. For each of the cases, 197 

three different plate thicknesses and ten stiffener depths are considered, while 198 

maintaining the plate surface area. In total, therefore, 120 configurations of stiffened 199 

plates are studied. Twenty forcing positions are used, distributed in the bay regions and 200 

on the stiffeners, to obtain average radiation efficiencies. As the topography of the plate 201 

varies for each case, the forcing positions were adjusted to keep similar numbers of 202 

positions on the stiffeners and in the bays in each case. The parameters adopted in the 203 

numerical studies are listed in Table 1. 204 

3. Sound radiation for different numbers of stiffeners 205 

The effect of the number of stiffeners attached to a thin plate on its radiation 206 

efficiency is first evaluated for different forcing positions. The depth of the stiffeners is 207 

set to 40 mm in this section, and a relatively thin plate of 1.5 mm thickness is used to 208 

emphasise the effect of adding the stiffeners. 209 

For each case, the average radiation efficiencies are obtained by averaging over 210 

the forcing positions on the bays and stiffeners separately, as marked in Fig. 3. These 211 

two excitation configurations are analysed separately, as the frequency response (not 212 

shown here) showed significant differences in magnitude and number of resonances in 213 

the response depending on the position of the forcing points. The low-order modes of 214 

stiffened plates occur in clusters with several modes in a narrow frequency range, but 215 

their contribution to the response depends largely on whether the forcing point is on a 216 

stiffener or in a bay between stiffeners. As an example, the radiation efficiencies of 217 
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Case 3 are presented in Fig. 4 (in the form of radiation index 𝐿𝜎 = 10 log10 𝜎). They are 218 

compared with the unstiffened panel and a smaller panel of size equal to a single bay 219 

with clamped edges. 220 

In the low-frequency monopole region, the radiation efficiencies rise at 221 

20 dB/decade (~𝑓2) up to the frequency of the fundamental mode. This natural 222 

frequency is increased from around 30 Hz for the unstiffened panel to 260 Hz in the 223 

presence of the stiffeners. In the monopole region, the stiffener-excited plate follows 224 

the trend of the unstiffened panel, whereas radiation efficiency is lower and close to the 225 

bay-sized unstiffened panel when excited in the bays. This behaviour is a consequence 226 

of the mode type that dominates the low-frequency response. In the case of bay 227 

excitation, a “plate-dominated” mode responds, where the stiffeners remain mostly 228 

rigid and restrict the motion to the excited bay. For stiffener excitation, a “stiffener-229 

dominated” mode determines the response, with the stiffeners imposing displacement 230 

over the whole plate. The response shapes for the unstiffened panel and stiffened plate 231 

are added in Fig. 4 for a single excitation position on a stiffener and in a bay to highlight 232 

this behaviour. 233 

In the short-circuiting region, the radiation efficiency of the stiffened plate is 234 

similar for both forcing locations and agrees closely with that of the smaller clamped 235 

panel with the size of a single bay. Due to the stiffeners, the bays radiate sound more 236 

independently in this frequency region. Above the critical frequency (8 kHz for this 237 

thickness) all the results converge towards unity or 0 dB. 238 



VIB-22-1370 Knuth 13 

The results of Cases 1-4 are presented in Fig. 5. They are shown in a one-third 239 

octave band frequency resolution to allow differences to be seen more clearly. Although 240 

the general trends are similar to those seen in Fig. 4, there are substantial differences 241 

between the radiation due to bay excitation in Fig. 5(a) and stiffener excitation in Fig. 242 

5(b), particularly at low frequency.  243 

For bay excitation, Fig. 5(a), as the number of stiffeners is increased, the 244 

monopole region extends to higher frequencies due to the higher fundamental natural 245 

frequency. Moreover, the radiation efficiency in this region is reduced in proportion to 246 

the ratio of bay-to-plate surface areas 𝑆bay 𝑆⁄ . This is demonstrated in Table 2, where 247 

the reduction in the monopole region at the example frequency of 10 Hz is estimated 248 

correctly within ±0.5 dB by the ratio 𝑆bay 𝑆⁄ . In the short-circuiting region, the radiation 249 

efficiency increases if the bay surface area is reduced. This is also demonstrated at an 250 

example frequency of 2 kHz in Table 2. However, the radiation efficiency can vary 251 

strongly within the short-circuiting region due to the modal dips and peaks. Above the 252 

critical frequency, the radiation efficiency of all the plates becomes similar to that of the 253 

unstiffened panel. 254 

For stiffener excitation, Fig. 5(b), the radiation efficiency in the monopole region 255 

is roughly equal to that of the unstiffened panel but the monopole-like behaviour again 256 

extends up to higher frequencies. In the short-circuiting region, the results are almost 257 

identical to those found for bay excitation.  258 

The results show changes in the radiation efficiency of stiffened plates compared 259 

with an unstiffened panel of the same thickness. The excitation position determines the 260 
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low-frequency radiation of sound, which can be decreased to that of a monopole having 261 

the size of a single bay only for excitation in a bay. At higher frequencies, the radiation 262 

efficiency increases as the bay size decreases. 263 

4. Effect of plate and stiffener flexibility on the radiation efficiency 264 

The role of the plate thickness and stiffener depth, which define their respective 265 

bending stiffness, is analysed in this section. The stiffened plate of Case 3 is first used to 266 

assess both effects for some example configurations. Thereafter, the results of all 120 267 

configurations are summarised in non-dimensional form. 268 

4.1. Effect of plate thickness  269 

The effect of the plate bending stiffness on the radiation efficiency is 270 

investigated by increasing the thickness from 1.5 to 3 and 6 mm in the FE model, while 271 

keeping the stiffener depth at 40 mm. The calculations are also performed for 272 

unstiffened panels of the same thicknesses. 273 

The radiation efficiencies of the 3 mm and 6 mm stiffened plates and unstiffened 274 

panels are shown in Fig. 6; the 1.5 mm plate of Case 3 can be found in Fig. 5. In the 275 

monopole region, both stiffened plates have the same radiation efficiency as the 276 

unstiffened panel when excited on a stiffener. Considering excitation in the bays, the 277 

radiation efficiency in the monopole region is significantly affected by the plate 278 

thickness. The 3 mm plate is reduced by around 5 dB compared with the unstiffened 279 

plate of the same thickness, while the 6 mm plate radiates almost unreduced. In the 280 

case of the 1.5 mm plate, the reduction was 9-10 dB, i.e. the radiating surface 281 
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corresponded to that of the bay. The low-frequency response of the thicker stiffened 282 

plates is dominated by a fundamental mode, where almost the whole plate vibrates, like 283 

an orthotropic plate. With increasing plate thickness, the vibration is less constrained by 284 

the stiffeners. Hence, a surface area larger than the forced bay can radiate sound, which 285 

explains the lesser reduction for bay excitation. 286 

In the short-circuiting region, an increase in radiation efficiency can be seen 287 

compared with the unstiffened panel and it is again similar for excitation in the bay and 288 

on the stiffener. The critical frequency of the 3 mm plates is around 4 kHz and for the 289 

6 mm near 2 kHz. The radiation efficiency of the 6 mm plate reaches unity (0 dB) already 290 

below the critical frequency, due to the extended monopole region. Above coincidence, 291 

the differences with the unstiffened panel vanish in each case. 292 

4.2. Effect of stiffener depth  293 

The effect of the stiffener flexibility on the radiation efficiency of the stiffened 294 

plate is shown by comparing the radiation efficiency with stiffener depths ℎ𝑠 between 295 

20 and 100 mm for Case 3 with a plate thickness of 3 mm. 296 

The results are shown in Fig. 7(a) for bay excitation. With increasing stiffener 297 

depth, the radiation efficiency decreases in the monopole region, as the vibration 298 

becomes increasingly constrained by the stiffeners, until it is restricted to a single bay. 299 

This is analogous to the effect of reduced plate thickness for a constant stiffener depth, 300 

as discussed in Section 4.1. For ℎ𝑠 > 60 mm, the monopole-like trend of the radiation 301 

efficiency extends beyond the first natural frequency. The first few modes of these 302 

plates have lower natural frequencies than the other plates with ℎ𝑠 ≤ 60 mm and are 303 
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associated almost entirely with the deformation of the stiffeners, which does not induce 304 

significant motion on the surrounding bays. The dip around 400 Hz for ℎ𝑠 = 100 mm 305 

corresponds to a cluster of such stiffener-dominated modes. The short-circuiting region 306 

effectively starts at the frequency of the first mode that principally involves vibration in 307 

the plate. For ℎ𝑠 = 100 mm, this occurs above the 630 Hz band. Above 1 kHz, the 308 

results converge to similar values, irrespective of the stiffener depth, owing to the 309 

higher-order plate-dominated modes of the stiffened plate, which has the same 310 

thickness and bay dimensions in the presented cases. 311 

For stiffener excitation, Fig. 7(b), the main differences from bay excitation are 312 

visible below the fundamental mode. For ℎ𝑠 ≤ 60 mm, the plates radiate as efficiently 313 

as the unstiffened panel in the monopole region, as already shown in Fig. 5 and Fig. 6. 314 

For deeper stiffeners, in the studied cases for ℎ𝑠 > 60 mm, the radiation efficiency is 315 

reduced from the unstiffened panel result. This occurs because higher-order modes 316 

contribute significantly to the low-frequency response and the net sound radiation 317 

decreases from the monopole efficiency, due to some cancellation effects. The 318 

reduction is case-dependent but more pronounced for thinner plates, where the 319 

stiffeners are relatively stiff compared with the plate. 320 

4.3. The difference in the monopole region 321 

The results in Sections 4.1 and 4.2 showed that changes in plate thickness or 322 

stiffener depth have a large impact on the monopole region. This region extends to 323 

higher frequencies for stiffened plates and can therefore be of more relevance than for 324 

unstiffened panels.  325 
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To analyse this phenomenon, the ratio of the radiation efficiencies 𝜎 𝜎0⁄  326 

between the stiffened (𝜎) and unstiffened plates (𝜎0) was averaged over frequency 327 

bands below the first mode. The results of Cases 1 and 4 are shown in Fig. 8 for different 328 

plate thicknesses and stiffener depths. The horizontal axis represents the ratio 𝐸𝐼𝑏/𝐷 of 329 

the stiffener (𝐸𝐼𝑏) to the plate (𝐷) bending stiffness on a logarithmic scale. For bay 330 

excitation, the results form two distinct groups according to the case considered. At 331 

large values of 𝐸𝐼𝑏/𝐷, the results reduce to -6 dB for Case 1 and -10 dB for Case 4. This 332 

corresponds approximately to 10 log10(𝑆bay/𝑆). For the stiffener excitation, the results 333 

initially increase marginally with increasing 𝐸𝐼𝑏/𝐷 and then they start to drop at 334 

different values of 𝐸𝐼𝑏/𝐷, causing a larger spread of the data. A misalignment between 335 

the cases can be seen, which suggests that the ratios 𝜎 𝜎0⁄  and 𝐸𝐼𝑏/𝐷 do not 336 

sufficiently capture the overall trends. 337 

To align the results vertically, a non-dimensional parameter 𝛾 is established 338 

based on the ratio 𝜎 𝜎0⁄ . Table 2 and Fig. 8 showed that the maximum expected 339 

reduction of radiation efficiency is equal to the ratio of the plate-to-bay surface areas. 340 

Therefore, 𝛾 is defined as 341 

 𝛾 =
10log10(𝜎 𝜎0⁄ )

10log10(𝑆 𝑆bay⁄ )
 , (9) 

which has a value of 𝛾 = 0 for 𝜎 = 𝜎0 and 𝛾 = −1 for 𝜎 𝜎0⁄ = 𝑆bay 𝑆⁄ . 342 

To align the results horizontally, the ratio 𝐸𝐼𝑏/𝐷 (which has units of metres) is 343 

normalised by the total length of all stiffeners. For bay excitation, a better 344 

representation is found when further normalising by the number of bays. This results in 345 
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two additional non-dimensional parameters, 𝛽 for bay excitation and 𝛽̂ for stiffener 346 

excitation, defined as 347 

 
𝛽 = log10 (

𝐸𝐼𝑏
𝐷 𝐿𝑠𝑁bay

), (10) 

 
𝛽̂ = log10 (

𝐸𝐼𝑏
𝐷 𝐿𝑠 

), (11) 

where 𝐿𝑠 is the total length of all stiffeners and 𝑁bay the number of bays. 348 

The results from all 120 cases are summarized in this non-dimensional form in 349 

Fig. 9. Compared with Fig. 8, a smaller spread of the data can be seen. A value of 𝛾 = 0 350 

indicates that the radiation efficiency equals that of the unstiffened panel, while for 𝛾 =351 

−1 it corresponds to that of a bay-sized panel. Positive values are possible and denote 352 

an increase compared with the unstiffened panel. For example, a change of 𝛾 by ±0.2 353 

corresponds to a change in radiation efficiency of approximately ±1 dB for Case 1 354 

(largest bay size) and ±2 dB for Case 4 (smallest bay size).  355 

For bay excitation, Fig. 9(a), all the results merge into an inverted S-shaped curve 356 

which can be broadly divided into three regions of 𝛽. The data can be approximated by 357 

an asymptotic function that consists of two constants and a linear function of the 358 

normalised bending stiffness ratio 𝛽. From curve fitting it is obtained as 359 

 𝛾fit,1 = {

 0 for 𝛽 < −0.52,
 −0.60𝛽 − 0.31 for − 0.52 ≤ 𝛽 ≤ 1.14,
 −1 for 𝛽 > 1.14.

 (12) 

The first region extends up to 𝛽 < −0.52 with 𝛾 ≈ 0. It includes cases with thick 360 

plates and relatively shallow stiffeners, where the plates tend to vibrate over their full 361 

surface area due to stiffener-dominated modes. The second region, between 𝛽 ≥362 
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−0.52 and 𝛽 ≤ 1.14, corresponds to a transition of the low-frequency behaviour from 363 

stiffener-dominated to plate-dominated fundamental modes. Thus, 𝛾 decreases 364 

gradually with increasing 𝛽. Both regions are well represented by Eq. (12). In the third 365 

region where 𝛽 > 1.14, the stiffeners are stiff enough to constrain the plate motion and 366 

cause the first modes to be plate-dominated. Hence, the radiation efficiency is 367 

equivalent to, or lower than, that of a single bay. Although the constant 𝛾 = −1 368 

adopted in Eq. (12) deviates from the data, it is preferred here to give the physical 369 

limitation of a single vibrating bay. The reduction is due to complex vibration patterns 370 

arising from the interaction between the deep stiffeners and the thin plate. The 371 

expected error is in the range of 1-3 dB for the four cases analysed. 372 

For stiffener excitation, Fig. 9(b), the curve has a different shape and can be 373 

divided into two regions of 𝛽̂. To approximate the numerical data, an asymptotic 374 

function that consists of two linear curves has been obtained from curve fitting as 375 

 𝛾fit,2 = {
   0.01𝛽̂ + 0.08 for 𝛽̂ ≤ 1.80,

−0.64𝛽̂ + 1.25 for 𝛽̂ > 1.80.
  (13) 

Up to 𝛽̂ ≈ 1.8, 𝛾 increases slightly with increasing stiffness ratio, whereas there 376 

is a decreasing trend starting from about 𝛽̂ > 1.8. This range includes cases with very 377 

stiff stiffeners on a rather flexible plate. Although all the cases analysed present a 378 

general decreasing trend with increasing 𝛽̂ in this range, the scatter is high. The plate 379 

configurations with 𝛽̂ ≫ 1.8 are assumed to be rather extreme, and a common 380 

behaviour is not found. Stiffened plates belonging to this region may need to be studied 381 

on a case-by-case basis. 382 
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In summary, changing either the thickness of the plate or the depth of the 383 

stiffeners alters the low-frequency sound radiation of the stiffened plates. The more 384 

constrained is the vibration of the plate, the smaller its radiating monopole surface area. 385 

The radiation efficiency decreases from that of a plate vibrating over its whole surface 386 

area roughly to that of a single bay, a trend that is found to be proportional to the ratio 387 

of stiffener-to-plate bending stiffness. 388 

5. Effect of structural boundary conditions 389 

Further numerical calculations are presented in this section to demonstrate the 390 

influence of the boundary conditions at the plate edges on the radiation efficiency of 391 

stiffened plates. Some of the calculations initially performed with clamped edges are 392 

repeated with simply supported edges. In support of this discussion and to introduce 393 

approximations for the radiation efficiency of stiffened plates, the results obtained with 394 

the Maidanik formulae, see Eq. (18a-d) in Appendix A, are used for comparison.  395 

The results of Fig. 4 indicate that a clamped bay-sized panel may offer a more 396 

suitable approximation for the radiation of stiffened plates in the short-circuiting region. 397 

It is therefore necessary to adapt Maidanik’s formulae to the case of clamped edges. 398 

This procedure is presented in Appendix A. To account for clamped edges, the 399 

monopole region of Eq. (18a-d) is replaced with Eq. (19), and short-circuiting region with 400 

Eq.(20).  401 

In Fig. 10, the radiation efficiencies of two stiffened plates with either clamped 402 

or simply supported boundaries are shown for bay excitation; the stiffening 403 

configurations correspond to cases with 𝛽 = −0.47 in (a) and 𝛽 = 1.28 in (b). Results 404 
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from the Maidanik formulae for a simply supported panel and a clamped panel are 405 

added for comparison, using the fundamental natural frequency 𝑓1 of the stiffened 406 

plates and reducing the plate surface area and perimeter to that of a single bay for both 407 

regions 𝑓 < 𝑓1 and 𝑓1 < 𝑓 < 𝑓𝑐. Different observations can be made about the 408 

behaviour in the monopole and short-circuiting regions. 409 

In the monopole region, for configurations with 𝛾 ≈ 0, the stiffened plates tend 410 

to vibrate over their full surface area, and the boundary conditions at the outer edges 411 

can result in different radiation ratios. This can be seen in Fig. 10(a), where the simply 412 

supported stiffened plate has a higher radiation efficiency than the clamped one. The 413 

difference is only about 1 dB, which agrees with the results for unstiffened panels in 414 

[21]. This result holds irrespective of the forcing position; an equivalent result was found 415 

for excitation on the stiffeners. The approximation with the bay-sized panels does not 416 

work in this frequency range. The results for the bay-sized panels jump at 250 Hz 417 

because the monopole region is delimited by 𝑓1 of the stiffened plates. 418 

For the configurations characterised by 𝛾 ≈ −1, for example Fig. 10(b), the 419 

boundary conditions at the plate edges have a less important role in the monopole 420 

region. In these cases, the vibration is confined within the single bays and the radiation 421 

efficiency of the whole plate is well represented by bay-sized panels. The simply 422 

supported bay-sized panel would slightly overestimate the result for the stiffened plate 423 

in the monopole region, suggesting the stiffeners add conditions to the bay that are 424 

rather clamped-like. 425 
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In both plates considered in Fig. 10, the efficiency in the short-circuiting region 426 

remains similar for simply supported and clamped edges. In the corner mode region, 427 

below 1 kHz where the radiation efficiency on average remains flat, the simply 428 

supported bay-sized panel underestimates the stiffened plate result, while the clamped 429 

panel gives on average a good estimation. In the edge mode region above 1 kHz, where 430 

efficiency increases as frequency approaches the critical frequency, the clamped panel 431 

also provides the better approximation. Around the coincidence, both bay-sized panels 432 

converge to the same value. 433 

In conclusion, a simply supported bay-sized panel is not well suited to 434 

approximate the stiffened plate in the short-circuiting region, and a better solution is 435 

found using clamped boundaries. The monopole region needs a correction that 436 

accounts for the decrease of the radiating surface area of the plate, which is not in all 437 

cases as simple as reducing it to the bay-sized panel. 438 

6. Engineering formulae for radiation efficiency 439 

Similar trends were found for the radiation efficiency of stiffened plates and 440 

unstiffened panels. This allows the Maidanik formulae for unstiffened panels to be used 441 

and adapted for the stiffened plates. Empirical corrections based on the results from the 442 

previous sections are combined with the Maidanik formulae. The extended formulae are 443 

tested over a wide range of configurations to establish the applicability of the 444 

predictions. 445 



VIB-22-1370 Knuth 23 

6.1. Correction in the monopole region 446 

Considering the monopole region (𝑓 < 𝑓1), for bay excitation the trend of the 447 

radiation efficiency shown in Fig. 9(a) can be approximated by Eq. (12) and for stiffener 448 

excitation with Eq. (13), see Fig. 9(b). The values of the fitted asymptotic function 𝛾fit 449 

can be used to derive a correction for the monopole region if stiffeners are added to the 450 

plate. 451 

Re-arranging Eq. (9) and using 𝛾fit,𝑖 from either Eq. (12) or Eq. (13), the change in 452 

radiation ratio due to the introduction of stiffeners can be expressed as 453 

 ∆𝐿𝜎 = 10log10(𝜎 𝜎0⁄ ) = 𝛾fit,𝑖 10log10(𝑆 𝑆bay⁄ ). (14) 

Hence, the radiation efficiency of stiffened plates in the monopole region 454 

becomes 455 

 𝜎 =
𝜀𝑓2𝑆

𝑐02
(
𝑆bay

𝑆
)
−𝛾fit,𝑖

, (15) 

where 𝑖 indicates that the excitation is either within the bays (𝑖 = 1) or on the stiffeners 456 

(𝑖 = 2) and an additional factor 𝜀 is added to account for the boundary conditions on 457 

the plate edges. If 𝛾fit = 0, the monopole radiation efficiency is calculated for a plate 458 

radiating over its whole surface area, and for 𝛾fit = −1 the area of a single bay is used. 459 

For simply supported plate edges, if 𝛾fit ≈ 0, the value 𝜀 = 4 should be used. Otherwise, 460 

𝜀 = 3 of the clamped panel is more appropriate. However, the difference in radiation 461 

ratio between 𝜀 = 3 and 𝜀 = 4 is only about 1.3 dB. This is usually small compared with 462 

∆𝐿𝜎 and of lesser importance if the correct boundary condition of the bay edges is 463 

uncertain. 464 
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6.2. Correction in the short-circuiting region 465 

A correction to account for the increase of the radiation efficiency in the short-466 

circuiting region (𝑓1 < 𝑓 < 𝑓𝑐) due to the presence of stiffeners is presented here. The 467 

results from Sections 3-5 showed that, irrespective of the excitation position, the 468 

radiation efficiency of the stiffened plate is increased when decreasing the bay size. On 469 

average, regardless of the boundary conditions at the plate edges, the radiation 470 

efficiency in the short-circuiting region was found to be reasonably well approximated 471 

by that of a bay-sized panel with clamped edges. Thus, the radiation efficiency in the 472 

short-circuiting region can be calculated by 473 

𝜎 = max(
8𝜋2

𝑐02𝑆bay

𝐷

𝜇
,
𝑋𝑃bay

4𝜋2𝑆bay𝑓𝑐

(1 − 𝛼2) ln (
1 + 𝛼
1 − 𝛼) + 2𝛼

(1 − 𝛼2)3/2
), (16) 

where 𝑃bay is the perimeter of a single bay, 𝑆bay is its surface area and the factor of 𝑋 is 474 

introduced in Eq. (21) in Appendix A to account for the radiation efficiency of clamped 475 

edges in the edge mode region, while in the corner mode region the factor of 2 is 476 

applied. 477 

6.3. Accuracy of the prediction based on proposed corrections 478 

In this section, the extended Maidanik formulae with the corrections derived in 479 

Sections 6.1 and 6.2 are tested against the more exact numerical calculations. In 480 

summary, the extended asymptotic formulae to estimate the radiation efficiency of 481 

orthogonally stiffened plates are given as 482 
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𝜎 =

{
 
 
 
 
 

 
 
 
 
 
𝜀𝑓2𝑆

𝑐0
2
(
𝑆bay

𝑆
)

−𝛾fit

for 𝑓 < 𝑓1,

max(
8𝜋2

𝑐0
2𝑆bay

𝐷

𝜇
,
𝑋𝑃bay

4𝜋2𝑆bay𝑓𝑐

(1 − 𝛼2) ln (
1 + 𝛼
1 − 𝛼) + 2𝛼

(1 − 𝛼2)3/2
) for 𝑓1 < 𝑓 < 𝑓𝑐 ,

0.45√
𝑃𝑓𝑐
𝑐0
(
𝑏

𝑎
)
1/4

for 𝑓 ≈ 𝑓𝑐 ,

(1 −
𝑓𝑐
𝑓
)
−1/2

for 𝑓 > 𝑓𝑐 .

 (17a-d) 

They apply to stiffened plates with clamped or simply supported boundaries and allow 483 

predictions at a much lower computational cost than the full numerical procedure. The 484 

delimiting value of 𝑓1 needs to be obtained from an FE or analytical model of the 485 

stiffened plate. In the monopole region, the value of 𝛾fit is based on Eq. (12) for bay 486 

excitation and Eq. (13) for stiffener excitation. In the short-circuiting region, the increase 487 

relative to the simply supported unstiffened panel is accounted for by the factor 𝑋, see 488 

Eq. (21). The coincidence region and above were not adjusted. 489 

The level differences in decibels between the results obtained from Eq. (17a-d) and the 490 

numerical models are determined for the 120 configurations in each one-third octave 491 

band. Over all 120 cases and all the frequency bands the average error has a mean value 492 

of 0.3 dB with a standard deviation of ±1.5 dB, while in single frequency bands the 493 

mean value ranges from −0.3 and 1.1 dB and the standard deviation can be as large as 494 

±3.5 dB. The engineering model of stiffened plates in Eq. (17a-d) tends to overestimate 495 

the radiation efficiency slightly on average.  496 

There are differences in the average error when the results are separated for different 497 

plate thicknesses; this avoids overlapping the frequency regions below and above 498 

coincidence. In Fig. 11 the error is shown as the mean values and a range of +/- one 499 
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standard deviation per frequency band, separately for bay and stiffener excitation. The 500 

minimum and maximum differences are also shown. Positive values denote an 501 

overestimation compared with the numerical results.  502 

Below 80 Hz, where the stiffened plates radiate as monopoles, the average error lies 503 

within a band of ±2 dB for each of the three different thicknesses. The standard 504 

deviation is largest for the 1.5 mm plates for stiffener excitation, due to the larger 505 

scatter of 𝛾 in the region with 𝛽̂ > 1.8, where many of these plates lie. For the 3 and 506 

6 mm plates the standard deviation is closer to ±1 dB. 507 

Between 80 Hz and 400 Hz, the stiffened plates have a transition from the monopole to 508 

the short-circuiting region. Some plates are still radiating like monopoles, while others 509 

are already in the short-circuiting region, where the error increases. In the short-510 

circuiting region, the mean value of the error lies between −2 and 3 dB. The standard 511 

deviation varies for the three plate thicknesses and can be as high as ±5 in case of the 512 

1.5 mm plate. For the 3 and 6 mm plates it decreases to about ±4 and ±3 dB 513 

respectively. The errors in this region are similar for bay and stiffener excitation. A 514 

maximum error of 10-15 dB can be found in some frequency bands due to the modal 515 

behaviour of the plate. Similar peak errors were identified in [21] for unstiffened panels. 516 

Close to the critical frequency, the average error reduces and tends back to a value 517 

around ±1.5 dB. Above coincidence, the error vanishes, see Fig. 11(b,c). 518 

7. Conclusions 519 

The radiation efficiency of stiffened plates has been studied numerically using an 520 

FE model and the Rayleigh integral. An extensive parametric study covered 120 different 521 
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combinations of stiffened plates with different numbers of stiffeners, and varying 522 

bending stiffness of both stiffeners and plate, to cover relevant parameter ranges. 523 

Empirical corrections for the effect of stiffeners were determined from the numerical 524 

data to expand existing asymptotic formulae for the prediction of the radiation 525 

efficiency for application to stiffened plates in different frequency regions.  526 

The radiation efficiency of stiffened plates differs from unstiffened panels; it 527 

depends on whether the plate is forced on a stiffener or within a bay, on the flexibility 528 

of the stiffeners and the plate, and the number of stiffeners. In the low-frequency 529 

monopole region, for bay excitation the radiation efficiency depends on the ratio of 530 

stiffener and plate flexibility. As this increases, the effective radiating surface gradually 531 

reduces to that of a single bay and the radiation efficiency reduces correspondingly. For 532 

stiffener excitation, the radiation efficiency follows that of the unstiffened panel, but in 533 

rather extreme cases of very thin plates with deep stiffeners it can be reduced. These 534 

trends are accounted for by an empirical correction derived from curve fitting through 535 

results for 120 different stiffened plate configurations. In the short-circuiting region, the 536 

radiation efficiency is increased in comparison with the unstiffened panel, regardless of 537 

the excitation position. On average it is well approximated by an unstiffened bay-sized 538 

panel with clamped boundary conditions. When the frequency approaches the critical 539 

frequency, the radiation efficiency tends to that of the simply supported bay-sized 540 

panel. 541 

The error between the proposed engineering model and the numerical 542 

simulations over all 120 cases has a mean value of 0.3 dB with a standard deviation of 543 
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±1.5 dB over all frequency bands, which can be justified by the reduced calculation 544 

time. In single one-third octave bands the mean value of the error lies between −2 and 545 

3 dB. The standard deviation is largest in the short-circuiting region with variations up to 546 

±5 dB, while in the monopole region it reaches up to ±1.5 dB. The error decreases near 547 

coincidence and vanishes above the critical frequency. 548 

Appendix A - Maidanik’s formulae for clamped panels 549 

To approximate the clamped panel with Maidanik’s formulae, it was initially 550 

suggested to multiply the result of the simply supported panel by a factor of 2 (+3 dB) 551 

below the critical frequency [1]. This was found inadequate over the whole frequency 552 

region in [21], and overpredicts the results in the monopole region and near the critical 553 

frequency. To adapt the Maidanik formulae to clamped panels, suitable corrections for 554 

the monopole and short-circuiting regions are proposed here. The Maidanik formulae 555 

for a simply supported panel, found in [22] and based upon [1, 3, 5], are given as 556 

𝜎 =

{
 
 
 
 
 

 
 
 
 
 
4𝑓2𝑆

𝑐02
for 𝑓 < 𝑓1,

max(
4𝜋2

𝑐02𝑆

𝐷

𝜇
 ,

𝑃

4𝜋2𝑆𝑓𝑐

(1 − 𝛼2) ln (
1 + 𝛼
1 − 𝛼) + 2𝛼

(1 − 𝛼2)3/2
) for 𝑓1 < 𝑓 < 𝑓𝑐,

0.45√
𝑃𝑓𝑐
𝑐0
(
𝑏

𝑎
)
1/4

for 𝑓 ≈ 𝑓𝑐,

(1 −
𝑓𝑐
𝑓
)
−1/2

for 𝑓 > 𝑓𝑐 ,

 (18a-d) 

where 𝑆 is the surface area, 𝑃 is the perimeter, 𝑎 the longer and 𝑏 the shorter side 557 

length of the panel, 𝑓1 the fundamental natural frequency and 𝛼 = √𝑓 𝑓𝑐⁄ . In the short-558 

circuiting region (𝑓1 < 𝑓 < 𝑓𝑐), the first part approximates the corner mode region and 559 
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the second the edge mode region. The value around the coincidence region, where 𝑓 ≈560 

𝑓𝑐, is used to limit the radiation efficiency. These formulae are normally used in an 561 

average sense with a one-third octave band resolution. 562 

A.1 Monopole region 563 

In the monopole region, where 𝑓 < 𝑓1, a reduction of radiation efficiency was 564 

found with clamped edges [21]. Due to the increased constraint, the effective radiating 565 

surface area of the monopole reduces. An equivalent radiating surface area 𝑆𝑒𝑞 of the 566 

clamped panel can be obtained by comparison with the simply supported panel. To 567 

calculate 𝑆𝑒𝑞, the fundamental mode shapes have been numerically integrated over the 568 

panel surface. The ratio of their squares, which is proportional to the ratio of sound 569 

powers, gives 𝑆𝑒𝑞 ≈ 3 4 𝑆⁄ , and this is substituted into Eq. (18a). Thus, a more general 570 

approximation of the radiation efficiency of an unstiffened panel is 571 

 𝜎 =
𝜀𝑓2𝑆

𝑐02
, (19) 

where simply supported edges have 𝜀 = 4 and clamped edges 𝜀 = 3. 572 

A.2 Short-circuiting region 573 

In the corner mode region, the radiation efficiency is well approximated by 574 

Maidanik’s suggested factor of 2 (+3 dB) but this needs correction when approaching 575 

the critical frequency in the edge mode region. This is addressed here in a simplified 576 

way. Instead of the additional +3 dB, the increase is reduced by 1 dB per one-third 577 

octave band in the two frequency bands immediately below the critical frequency. The 578 
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corrected radiation efficiency in the short-circuiting region 𝑓1 < 𝑓 < 𝑓𝑐  can thus be 579 

written as 580 

𝜎 = max(
8𝜋2

𝑐02𝑆

𝐷

𝜇
 ,

𝑋𝑃

4𝜋2𝑆𝑓𝑐

(1 − 𝛼2) ln (
1 + 𝛼
1 − 𝛼) + 2𝛼

(1 − 𝛼2)3/2
), (20) 

where 𝑋 corresponds to a factor of 2 (+3 dB) well below the critical frequency (𝑓 ≪ 𝑓𝑐), 581 

but closer to the critical frequency is reduced by 1 dB per band. It is given by 582 

 

𝑋 =

{
 
 

 
 10

3/10 for 𝑓 ≤ 10(𝑛𝑓𝑐−3)/10

102/10 for 𝑓 = 10(𝑛𝑓𝑐−2)/10

101/10 for 𝑓 = 10(𝑛𝑓𝑐−1)/10

1 for 𝑓 ≥ 10𝑛𝑓𝑐/10  ,     

 (21) 

where 𝑛𝑓𝑐  is the band number of the one-third octave band that includes the critical 583 

frequency.  584 

In Fig. 12 the numerical results obtained for the simply supported and clamped 585 

unstiffened panels with 3 mm thickness are compared with the Maidanik formulae in 586 

Eq. (18a-d) for the simply supported panel and the clamped panel by using the 587 

corrections proposed above. It shows that the monopole region is well approximated 588 

with 𝜀 = 3, to correct the radiating surface area of the clamped panel. In the short-589 

circuiting region, the factor of 2 with the additional roll-off below the critical frequency 590 

captures the radiation efficiency of the clamped panel on average very well. Results for 591 

different panel thicknesses gave similar agreement. 592 
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Table caption list 691 

Table 1 Parameters used in the FE model and Rayleigh integral for numerical 
calculations 

Table 2 Change of radiation efficiency, relative to the unstiffened panel (𝜎0), for 
bay excitation in the monopole region (10 Hz) and the short-circuiting 
region (2 kHz). Also listed is the ratio of bay-to-plate surface areas 
expressed in decibels 
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Figure caption list 693 

Fig. 1 Finite element model of a stiffened plate with a zoomed view of the 
sampling grid (dots) and the FE mesh adopted in the calculations 

Fig. 2 Coordinate system used to evaluate the Rayleigh integral for a baffled 
plate divided into small elemental sound sources of area ΔS𝑖 

Fig. 3 Stiffened plate configurations of Cases 1-4 with the 20 excitation 

positions; ○, bay positions; ×, stiffener positions 

Fig. 4 Radiation efficiency of the stiffened plate Case 3 compared with the 

unstiffened panel; ⎯, bay-excited stiffened plate; − − −, stiffener-excited 

stiffened plate;   , unstiffened clamped panel; −  −, unstiffened 
clamped bay-sized panel 

Fig. 5 Radiation efficiency of the stiffened plate Cases 1-4 compared to the 
unstiffened panel for (a) bay and (b) stiffener excitation; ▬, unstiffened 

panel; ⎯, Case 1;    , Case 2; − − −, Case 3; −  −, Case 4 

Fig. 6 Radiation efficiency of Case 3 with a plate thickness of (a) ℎ = 3.0 mm, 
and (b) ℎ = 6.0 mm and a stiffener depth of 40 mm compared to an 

unstiffened panel of the same thickness; ⎯, bay-excited stiffened plate; 

− − −, stiffener-excited stiffened plate;    , unstiffened clamped panel 

Fig. 7 Radiation efficiency over frequency of Case 3 with a plate thickness of 
3 mm and varying stiffener depth compared to the unstiffened panel for 

(a) bay excitation and (b) stiffener excitation; ▬, unstiffened panel; ⎯, 

ℎ𝑠 = 20 mm;    , ℎ𝑠 = 40 mm; − − −, ℎ𝑠 = 60 mm; −  −, ℎ𝑠 = 100 mm 

Fig. 8 Change of radiation efficiency in the monopole region plotted against the 
ratio of stiffener to plate bending stiffness for varying stiffener depth (20, 

40, 60, 80, 100 mm) and plate thickness (1.5, 3.0, 6.0 mm); black bay 

excitation; grey stiffener excitation; ×, Case 1; ○, Case 4 

Fig. 9 Non-dimensional change in radiation efficiency in the monopole region 
plotted against the non-dimensional ratio of stiffener and plate bending 
stiffness for Cases 1-4 with varying plate thickness and stiffener depth for 
(a) bay excitation and (b) stiffener excitation; ○, ℎ = 1.5 mm; □, ℎ = 3 

mm; Δ, ℎ = 6 mm; ▬, fitted asymptotic function 𝛾𝑓𝑖𝑡; − − −, limiting 

values between the different regions 

Fig. 10 Radiation efficiency of stiffened plates excited in the bay with different 
boundary conditions and values of 𝛽, (a) 𝛽 = −0.47 and (b) 𝛽 = 1.28; 

▬, clamped stiffened plate; ⁃ ⁃ ⁃, simply supported stiffened plate; ⎯, 

simply supported bay-sized panel with Eq. (18a-d);    , clamped bay-
sized panel with Eq. (18a-d) and the corrections from Eqs. (19) and (20) 
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Fig. 11 Differences of the predictions based on Eq. (17a-d) compared with the 
numerical results (FE model with Rayleigh integral) for (a) 1.5 mm, (b) 

3 mm, and (c) 6 mm plate thickness; ◻, mean value (bay excitation); ⎯ 

error bars (bay excitation), +/- one standard deviation range; ●, mean 

value (stiffener excitation);     error bars (stiffener excitation), +/- one 

standard deviation range;− − −, minimum and maximum difference 

Fig. 12 Radiation efficiency of an unstiffened panel of 3 mm thickness; ▬, 

clamped edges; ⁃ ⁃ ⁃, simply supported edges; ⎯, simply supported 

approximated with Eq. (18a-d);    , clamped approximated with 
Eq. (18a-d) and the corrections from Eqs. (19) and (20) 
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Tables 696 

Table 1 Parameters used in the FE model and Rayleigh integral for numerical 

calculations 

Symbol Variable Value 

𝑎 Plate length (x-axis) 0.8 m 

𝑏 Plate width (y-axis) 0.6 m 

ℎ Plate thickness 1.5, 3 and 6 mm 

𝑤𝑠 Stiffener width 20 mm 

ℎ𝑠 Stiffener depth 10, 20, …, 100 mm 

𝑡𝑠 Stiffener thickness (flange & web) 3 mm 

𝐸 Young’s modulus 71 GPa 

𝜌 Density 2700 kg/m3 

𝜈 Poisson’s ratio 0.3 

𝜂 Damping loss factor 0.01 

𝜌0 Density of air 1.21 kg/m3 

𝑐0 Speed of sound in air 343 m/s 
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Table 2 Change of radiation efficiency, relative to the unstiffened panel (𝜎0), for bay 

excitation in the monopole region (10 Hz) and the short-circuiting region (2 kHz). Also 

listed is the ratio of bay-to-plate surface areas expressed in decibels 

 Case 1 Case 2 Case 3 Case 4 
10log10(𝑆bay 𝑆⁄ ) −6.1 dB −7.8 dB −9.3 dB −10.3 dB 

10log10(𝜎 𝜎0⁄ ) at 10 Hz −6.6 dB −8.0 dB −9.1 dB −9.8 dB 

10log10(𝜎 𝜎0⁄ ) at 2 kHz 3.0 dB 3.6 dB 5.4 dB 6.4 dB 
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Figures 699 

 

Fig. 1 Finite element model of a stiffened plate with a zoomed view of the FE mesh 

and the sampling grid (dots) adopted in the calculations 

  700 



VIB-22-1370 Knuth 41 

 

Fig. 2 Coordinate system used to evaluate the Rayleigh integral for a baffled plate 

divided into small elemental sound sources of area ΔS𝑖 
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Fig. 3 Stiffened plate configurations of Cases 1-4 with the 20 excitation positions; ○, 

bay positions; ×, stiffener positions 
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Fig. 4 Radiation efficiency of the stiffened plate Case 3 compared with the unstiffened 

panel; ⎯, bay-excited stiffened plate; − − −, stiffener-excited stiffened plate;   , 

unstiffened clamped panel; −  −, unstiffened clamped bay-sized panel 
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(a) (b) 

Fig. 5 Radiation efficiency of the stiffened plate Cases 1-4 compared to the 

unstiffened panel for (a) bay and (b) stiffener excitation; ▬, unstiffened panel; ⎯, 

Case 1;    , Case 2; − − −, Case 3; −  −, Case 4 

  704 



VIB-22-1370 Knuth 45 

  

(a) (b) 

Fig. 6 Radiation efficiency of Case 3 with a plate thickness of (a) ℎ = 3.0 mm, and 

(b) ℎ = 6.0 mm and a stiffener depth of 40 mm compared to an unstiffened panel of 

the same thickness; ⎯, bay-excited stiffened plate; − − −, stiffener-excited stiffened 

plate;    , unstiffened clamped panel 
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(a) (b) 

Fig. 7 Radiation efficiency over frequency of Case 3 with a plate thickness of 3 mm and 

varying stiffener depth compared to the unstiffened panel for (a) bay excitation and 

(b) stiffener excitation; ▬, unstiffened panel; ⎯, ℎ𝑠 = 20 mm;    , ℎ𝑠 = 40 mm; 

− − −, ℎ𝑠 = 60 mm; −  −, 100 mm 
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Fig. 8 Change of radiation efficiency in the monopole region plotted against the ratio 

of stiffener to plate bending stiffness for varying stiffener depth (20, 40, 60, 80, 

100 mm) and plate thickness (1.5, 3.0, 6.0 mm); black bay excitation; grey stiffener 

excitation; ×, Case 1; ○, Case 4 
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(a) (b) 

Fig. 9 Non-dimensional change in radiation efficiency in the monopole region plotted 

against the non-dimensional ratio of stiffener and plate bending stiffness for Cases 1-4 

with varying plate thickness and stiffener depth for (a) bay excitation and (b) stiffener 

excitation; ○, ℎ = 1.5 mm; □, ℎ = 3 mm; Δ, ℎ = 6 mm; ▬, fitted asymptotic function 

𝛾𝑓𝑖𝑡; − − −, limiting values between the different regions 
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(a) (b) 

Fig. 10 Radiation efficiency of stiffened plates excited in the bay with different 

boundary conditions and values of 𝛽, (a) 𝛽 = −0.47 and (b) 𝛽 = 1.28; ▬, clamped 

stiffened plate; ⁃ ⁃ ⁃, simply supported stiffened plate; ⎯, simply supported bay-sized 

panel with Eq. (18a-d);    , clamped bay-sized panel with Eq. (18a-d) and the 

corrections from Eqs. (19) and (20) 
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(a) 

 
(b) 

 
(c) 

Fig. 11 Differences of the predictions based on Eq. (17a-d) compared with the 

numerical results (FE model with Rayleigh integral) for (a) 1.5 mm, (b) 3 mm, and (c) 

6 mm plate thickness; ◻, mean value (bay excitation); ⎯ error bars (bay excitation), 

+/- one standard deviation range; ●, mean value (stiffener excitation);     error bars 

(stiffener excitation), +/- one standard deviation range;− − −, minimum and maximum 

difference 
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Fig. 12 Radiation efficiency of an unstiffened panel of 3 mm thickness; ▬, clamped 

edges; ⁃ ⁃ ⁃, simply supported edges; ⎯, simply supported approximated with 

Eq. (18a-d);    , clamped approximated with Eq. (18a-d) and the corrections from 

Eqs. (19) and (20) 
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