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The aim of this thesis is to propose efficient methods for scheduling a long-term hy-
dropower production. Managing hydropower is challenging, as it consists of various
variables and constraints. The hydropower studied here consist of storage water, re-
lease water, and pumping storage. Moreover, uncertainty regarding the amount of
inflow water to the reservoir makes the problem more difficult. Therefore, it is essen-
tial to model the problem which taking into account the uncertainty in the problem.
Consequently, We model the problem using Robust Optimization (RO) and Stochastic
Dynamic Programming (SDP) and compare the results. The result shows that RO per-
forms better than SDP. Hence, we focus on solely using the RO model for the rest of the
research.

We also investigate two types of decision making, namely risk averse and risk-neutral,
then capture their behaviour in our model. Because of the uncertainty regarding inflow
water, we want our decision to be able to adapt to any realisation of inflow. Therefore,
we define the decision variables as an affine function of inflow water. These decision
variables depend on a series of τ of inflow, where τ is the time window of how far we
look back into the history of inflow. The result shows that an increase in τ causes an
improvement in the result in training set. However, it is shown that there stops being
an improvement at some point of τ and that too large of τ causes a degradation in the
quality of the result when it is applied to validation set.

The phenomenon of the decreasing quality of result in validation set when τ is increas-
ing prove that there is an overfitting on the model. Therefore, we add a regularisation to
the model to prevent the overfitting. We add the constraints to restrict that the amount
inflow water today give more effect to the decision on how much water should be re-
leased today rather than the amount of inflow water yesterday. Adding this constraints
to the model improves the quality of the solution in the validation set.
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Furthermore, we add the spill variable to the problem. This variable is bounded by
a function called as evacuation curve. The evacuation curve is a function of the max-
imum amount of water to be spilled at specific level of storage at a specific time and
scenario of inflow. This function is increasing and non-linear. However, we approxim-
ate it to an affine function to keep the model linear. The numerical result suggests that
the spill variable is not useful when the average water in the storage is not close to the
maximum capacity.

Finally, we add the waterhead variable to the model. Previously, the problem assumes
that the waterhead is constant. However, in reality, the waterhead is not fixed and de-
pends on the water level in the storage. The variable waterhead then is described as an
affine function of storage variable. Thus, this converts the model to a non-linear and
non-convex model. We combine this non linear model with a rolling horizon algorithm
to solve the problem. We propose two rolling horizon algorithms: Simple Rolling hori-
zon (SRH) and Dynamic Rolling Horizon (DRH). The result shows that considering the
rolling horizon algorithms, SRH and DRH, leads to better revenue and shorter time to
run than when the problem is solved in full time horizon at once. Moreover, compar-
ing the result of the model considering waterhead and the linear model with constant
waterhead, it is found that considering waterhead gives better revenue. Lastly, by com-
paring two rolling horizon algorithms, it can be shown that DRH produces better result
rather than SRH.
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1

Chapter 1

Introduction

The rapid development of the world has caused an increase in the amount of energy
needed. In addition, it has become evident that there is a need to produce energy that
can be renewed since energy produced from fossil fuel is increasingly becoming scarce
and cannot be renewed. Therefore, lots of researches focus on producing energy from
hydropower, wind power, geothermal, etc which can be sources of renewable energy.
Renewable energy has some advantages such as the fact it can minimize dependency
on energy coming from fossil fuels and reduce carbon emissions which contribute to
global warming (Baños et al., 2011).

In 2018, carbon emissions reportedly increased by 2.7 percent around the world (Mul-
vaney, 2019). There will be a number of detrimental effects if global warming continues
in this way, such as rising sea levels which are predicted to rise between 10 to 32 inches
or perhaps higher by the end of the century. In addition, hurricanes are expected to be-
come stronger, and floods as well as droughts will happen more frequently. Therefore,
reducing carbon emissions is urgently required. Indeed, it has been reported that emis-
sions could be reduced by up to 30 percent by 2050 by building more efficient buildings.
We can also reduce another 30 percent by moving from fossil fuels to renewable sources
(Borunda, 2019).

Hydropower, an example of renewable energy resources, is basically the power gener-
ated through the movement of water and may be used for various purposes. Currently,
hydropower is the largest renewable source of electricity in the world and contributes
to almost 20 percent of the world’s electricity production. Given the fact that water is
denser than air, even small movements of the water can generate a huge amount of
energy. Nowadays, there are several forms of waterpower that are used to produce
electricity such as hydroelectricity and ocean energy. Hydroelectricity produces elec-
trical power using the gravitational force of flowing water, while ocean energy is the
energy produced from ocean waves (Baños et al., 2011).



2 Chapter 1. Introduction

Hydropower systems are constructed from various components such as reservoirs, tun-
nels, pipes, and pumping stations, etc. Managing these systems is demanding because
they include many complicated variables such as water inflows and outflows, pump-
ing facility, storage capacity, and water supply demands. This problem becomes harder
to solve computationally because of the uncertainty of the variables. This uncertainty
is due to the unpredictability of inflows which measures of how much water flows into
reservoirs (Rani and Moreira, 2010). Water inflows is hard to predict as it is impacted
by the weather conditions. Thus, it is challenging to do so for the long-time, because
generally the accuracy of a weather forecast decreases against the time horizon.

The problem of hydropower optimization can be modelled using Linear Programming
(LP). In LP, the objective function and all of the constraints should be in a linear form.
It is well-known that LP is used to solve problems in various disciplines because it is
simple to implement and can be solved with any LP solvers.

The major drawback of employing LP to solve hydropower optimization problems is
that LP does not take into account the uncertainty. This may cause a problem because
the important aspect of hydropower optimization is inflow which includes the uncer-
tainty. Neglecting uncertainty can result in a solution that is not optimal or even infeas-
ible. Consider the example below.

Example 1.1. Let T = 1 and there are two scenarios for inflow. The water balance constraint
(defined later on equation (3.10)) at time t = 1 for each scenario is:

ω = 1 → f 1
1 + s0 = o1 + s1 (1.1)

ω = 2 → f 2
1 + s0 = o1 + s1 (1.2)

Assume that s0 = 0. Therefore, we get:

s1 = f 1
1 − o1 (1.3)

s1 = f 2
1 − o1. (1.4)

If f 1
1 ̸= f 2

1 then the equation (1.3) and (1.4) have different values or in other words,
they are inconsistent. The example above shows that neglecting uncertainty leads to
infeasibility in the problem with ω ≥ 2. Therefore, a method which accommodate un-
certainty is needed.

Two well-known methods for handling uncertainty are Robust optimization (RO) and
Stochastic Programming (SP). RO works with uncertain sets to capture the uncertainty
and obtains the best solution under the worst case scenario. On the other hand, SP tries
to obtain a solution with the optimal expected value.

Moreover, RO is also a commonly used method to solve the problem associated with
hydropower. Patino (2017) in her thesis studied the performance of two-stage RO on



3

problems related to hydropower problem and found that RO performs well when ap-
plied to these issues. Her work showed that the result she obtained is immune to almost
all of the realizations of inflow.

The aim of this thesis is to propose efficient methods to determine a long-term hy-
dropower production schedule that maximizes the revenue from energy selling. The
revenue is defined by a multiplication between the electricity price and the electricity
produced at each time. Furthermore, the rate of electricity production at each time de-
pends on the amount of water released, the waterhead, efficiency of the turbine, water
density, and gravitational constant. To simplify the model, the waterhead is usually as-
sumed as a constant such as in the work done by Patino (2017). However, in reality the
waterhead is not constant. Gauvin et al. (2018), Zambelli et al. (2011), and De Ladur-
antaye et al. (2009) considered the variable waterhead into their models. Nonetheless,
considering the variable waterhead causes the complexity in the model as the variable
waterhead are generally non-linear and non-convex.

Solving non-linear model can be challenging. Moreover, solving non-linear model un-
der long time period is more complicated because the model will be too hard and too
large to be solved at once. Therefore, a rolling-horizon algorithm is considered. In
the later part of this work, we consider using a rolling horizon algorithm to solve the
model. The idea of a rolling horizon algorithm is to divide the entire time period into
smaller intervals of time and solve the problem iteratively within the shorter time ho-
rizon.

A rolling horizon algorithm is useful when solving either a problem that contains un-
certainty or a huge problem which is hard to solve at once. The benefit of this method
is that it can solve problems in a faster computational time (Bischi et al., 2019). Because
of this advantage, this algorithm has been applied in many fields, such as finance (Jofre
et al., 2017), energy storage planning (Wakui et al., 2022), water management (Arena
et al., 2017), and hydropower scheduling (Gauvin et al., 2018).

To begin with in this study, we focus on hydropower systems in a single reservoir. We
solve this problem using Robust optimization and Stochastic Dynamic Programming.
Then, we propose to solve this problem with affine rules. Following that, we extend our
study to cover a hydropower system with two-basin, two turbines, and one pumping
pipe. Spillage and variable waterhead are considered to make the model more realistic.
As mentioned before, a water-head variable is non-convex. Therefore, the combination
of non-linear robust affine and rolling horizon is proposed to solve the problem. Thus,
our model will allow an understanding of what affects the various variables and dif-
ferent dataset time-window will bring to hydropower production and its profit. Also,
this study may give the knowledge on what model is the best for scheduling the hydro
system so that it can maximize the profit.

We then do the case study on Mattmark Hydropower System to see the performance of
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the models discussed. Mattmark is one of the largest hydropower systems in Switzer-
land. The setup of Mattmark hydropower system is a representative of other hydro-
power systems in Switzerland which is one of the highest hydroelectricity producers
in Europe. The hydropower systems in Switzerland are well-designed, however, they
are prone to climate change and socio-economic changes Anghileri, Botter et al. (2018).
Therefore, understanding how the strategies studied here can be adapted on Mattmark
hydropower system becomes interesting to explore.

The rest of the thesis is organised as follows. In the next chapter (Chapter 2), the liter-
ature review on hydropower, Robust Optimization, SDP, and rolling horizon is presen-
ted. Then, the main content of the thesis is divided into two parts. The first part dis-
cusses single-basin hydropower problems including the model, from robust model,
affine model, and SDP model, as well as the numerical results. These are covered in
chapter 3.

The second part explains about the problem associated with two-basins hydropower
problem and the case study on Mattmark hydropower system and presented in Chapter
4. This chapter covers the model including the linear model, the model with the spill-
variables and the variable waterhead. We also propose a two algorithms of rolling
horizon to solve the non-linear model considering variable waterhead. The numerical
result and discussion related to the result obtained is also reviewed there. The last
chapter, Chapter 5, concludes all of the discussion on the thesis.

1.1 Related Work and Positioning

Recently, the interest in the subject of hydropower systems has seen an increase. Based
on its objective function, the work on hydropower optimization can be divided into two
groups: maximizing the revenue or profit and minimizing operational cost. Research
into maximizing profits from hydropower has been done by a number of researchers
including Faber, Patino, and De Ladurantaye. Faber and Stedinger (2001) studied max-
imizing the profit with SDP and ensemble streamflow prediction, while Patino (2017)
solved the problem using Robust Optimization method. She solved one-year hydro-
power production for a two-reservoir system. The model she worked on included
storage variables, released water variables, and pumping variables. She modeled her
problem with the deterministic model and the robust model, then compared the result
obtained. She showed that the quality of the result obtained by RO is better than the
result obtained by the deterministic model.

De Ladurantaye et al. (2009) also studied maximizing profit from energy selling using
two models, deterministic and stochastic to a short-term hydropower production. Her
models included storage variables, released water variables, spillage variables, and wa-
terhead variables. She then compared the result obtained from both models. Her work
showed that the result from the stochastic model was better in quality than the result
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from the deterministic model.

Anghileri, Castelletti et al. (2018) studied balancing the revenue and electricity pro-
duction in hydropower. The hydropower systems they used included two storages,
released facilities, and pumping facilities. However, she neglected the pumping facil-
ity and did not include it in the model.

Zambelli et al. (2011) attempted to solve a single-hydropower system using Stochastic
Dynamic Programming (SDP) and Deterministic Dynamic Programming (DDP). Stor-
age variables, released water variables, spillage variables, and variable waterhead are
the variables included in their model. The purpose is to solve a long-term hydropower
scheduling with the objective is to minimize the production cost. The problem is solved
over one year period in monthly schedule. They later found that SDP tends to discharge
more water and maintain the reservoir at a lower level. On the other hand, DDP tried
to preserve more storage and it affects the efficiency in the hydropower because the
waterhead is maintained higher. In the case of a wet scenario, the result produced by
SDP is better because it provides more storage for the water inflows. However, in dry
weather, DDP provides better results because it ensured more water in storage, while
SDP suffers from water depletion.

Braaten et al. (2016) in their work, studied maximizing the profit from a two-basin hy-
dropower system. The aim is to generate a weekly schedule over one year period.
The variables considered in the model are storage variables, released water variables,
pumping variables, and spillage variables. They solved the problem with a robust op-
timization problem and approximated the discharge variable with an affine rule. They
found that the results are robust while considering the deviations in inflow and price.

Gauvin et al. (2017) also worked with affine rule to solve a short-term hydropower
scheduling problem. The objective of their model is minimizing the risk of flood.
They approximated the solutions with standard affine decision rules and lifted decision
rules. They, then concluded that affine rule produced good solutions while preserving
tractability on the model.

The purpose of employing affine policy to the decision variable is so that the result ob-
tained can adapt to any realisation of inflow. Therefore, the decision variable is defined
as an affine function of the previous inflow. In this case, Gauvin et al. (2017) and Braaten
et al. (2016) included all the previous data of inflows from the beginning period to the
one-time step before. This may work for short-term period or include relatively small
data. However, for a long-term period including large data set, it may affect the per-
formance.

Moreover, in his later work, Gauvin et al. (2018) also studied the hydropower problem
with waterhead variables. As mentioned before that waterhead variables are generally
non-convex and non-linear. Therefore, They employed successive linear programming
and combined it with a rolling horizon.
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1.2 Contributions

Our study involves solving a long-term hydropower production scheduling problem.
The problem is solved over one year period based on 4-hourly schedule and subject
to some constraints as well as boundaries. The hydropower systems we work on in-
volve two reservoirs, two storages, and one pumping facility. We model the problems
with Robust based affine decision rule and SDP and then compare the performance
from both models. For the robust model, we consider two types of decision mak-
ing strategies, namely risk-averse and risk-neutral in the objective function. Different
from other previous works, we study the influence of look back time windows into the
model. Moreover, we use several values of time windows instead of choosing just one
time window. Therefore, we are able to analyse how this look-back time window may
affect to the problem and this yields to our first contribution.

The result obtained from affine rules based on robust optimization shows that the in-
crease in look back time-window affects its performance in the validation set where
we test the solution. Based on the result, we find that the model suffers from overfit-
ting. Therefore, we model a new problem by adding a regularization constraint and
this leads to our second contribution.

In the next part, we add spill variables and water-head variables. This water-head vari-
able makes model non-linear and non-convex. To solve this model, we use non-linear
programming instead of try to linearize it as was the case in Gauvin’s work. This model
is large and not easy because its non linearity. Therefore, we apply the rolling horizon
and non-linear affine robust to solve the problem and it brings to our third contribution.
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Chapter 2

Literature Review

2.1 Review of Hydropower Production System

Energy plays an important rule on the world’s development. The rapid growth of hu-
man population and the acceleration of industrialization around the world affect the
increasing demand of energy. While depending solely on fossil fuels as an energy re-
source is not enough because fossil fuel will become scarce and rare by the time. Also,
it affects the environment by releasing pollutants into nature. On the other hand, the
renewable energy sources, such as hydropower, wind, and solar power are clearer, non-
polluting in nature, more abundant and can be renewed more easily. Therefore, the dir-
ection of the development in energy moves toward renewable energy resources. One
of the most widely used of renewable energy sources is Hydropower. It contributes to
almost 17% of the world energy production (Kumar and Saini, 2022).

Hydropower is, simply put, a conversion of the potential energy of flowing water into
electricity. There are 4 types of hydropower: run-of-river (RoR) hydropower, storage
hydropower, pumped-storage hydropower, and offshore hydropower. In RoR hydro-
power, the water from the river flows through a canal into a turbine. It typically either
has only a small storage facility or none at all. Storage hydropower is a type of hy-
dropower that has a reservoir for water storage. Electricity is produced by releasing
water from the reservoir through a turbine. Pumped storage hydropower connects
two or more reservoirs. In this type of hydropower, the water can be pumped back
from the lower reservoir into the higher reservoir. Generally, water is discharged when
the electricity price is high and pumped back when the price is low. The last type of
hydropower, offshore hydropower produces electricity from the power of the waves in
the sea (Pelkola, 2018).

Among those types of Hydropower, the pumped hydropower plant is the most widely
used because it can store the big amount of potential energy, the efficiency of the energy
conversion, and the cost of each unit of power (Pérez-Dı́az et al., 2015). The pumped
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hydropower plant is pumping the water when the demand is low. Therefore, the same
water can be used again to produce electricity when the price is high. However, one
of three main challenges mentioned by Pérez-Dı́az et al. (2015) is the need of the more
accurate model for pumped hydropower problem.

FIGURE 2.1: Illustration of Hydropower Syste (Yaseen et al., 2020)

Hydropower systems usually consist of various component, such as reservoir, the tur-
bine, pumping pipe, spillway, etc. Hydropower utilises the potential energy of flowing
water from a higher place to a lower place and transforms it into electricity. The process
is illustrated in Figure 2.1. Water is stored in the reservoir and released through a pen-
stock. The force of falling water causes the turbine to spin. At the end of the penstock
is a generator which spins when the turbine spins. The generator converts the energy
from the turbine into electricity (Pelkola, 2018). The main objective of solving hydro-
power problem is to schedule the water turbined at each point in time so that it can
generate the maximum profit from energy selling. This objective should be maximized
while satisfying several constraints. Tahanan et al. (2015) distinguished the constraints
of the hydro system as static or dynamic. The typical static constraints of the hydro
system are:

1. Reservoir level which indicates the level of the water stored in each reservoir.
This has to be maintained to remain between a fixed lower and upper bound.

2. Bounds that limit the turbine and pumps because of their physical constraints.

While the type of dynamic constraints explained by Tahanan et al. (2015) such as:
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1. Flow equations which involve the balance constraint of the reservoir level. This
reservoir level is updated based on the natural inflow, amount of water that is
turbined and spilled, also the amount of water pumped from lower reservoir to
upper reservoir. However, spilling and pumping might not be applied for all
reservoirs.

2. Flow delay which indicates the time delay for the turbined water to reach the next
reservoir. It can be hours or even more.

3. Ramp rate which regulates that each adjacent turbining levels should be close to
each other.

4. Smooth turbining. This constraints is needed to avoid extreme strain on the sys-
tem.

The hydropower scheduling problem is solved under a specific time horizon which
usually is divided into three terms, namely short-term, mid-term, and long-term. The
short-term scheduling covers planning for hydropower production over 2-14 days,
while mid-term includes planning for 3-18 months, and long-term covers planning for
1-5 years (Hammid et al., 2020). This research, will focus on solving a long-term hydro-
power production problem.

Zambelli et al. (2011) proposed to solve a long-term hydropower scheduling using
stochastic dynamic programming and compared the results with deterministic dynamic
programming. They solved a single-basin hydropower system under one year period
with monthly basis. The hydropower they solved included water storage, waterhead,
water discharged, and water spillage. They found that SDP attempted to produce the
operation policy which maintain the water storage at the lower level, while DDP tend
to preserve more water in the storage. In case of wet scenario, SDP gave a better oper-
ation policy because it provided more storage for water inflows. On the other hand, in
the dry weather, DDP performs better by maintaining more water in the storage, while
SDP suffered from water depletion.

Another work on a long-term hydropower scheduling was done by He et al. (2022) who
proposed Improved Dynamic Programming (IDP) with relaxation strategy to solve the
model. The result showed that the computational time increased linearly with the in-
creasing of discretization on states variable. However, this method proved to be able
to reduce the computational burden and improve the efficiency compared to the usual
dynamic programming.

2.1.1 Spillway

Spillway is a structure in a hydropower system that allows water to be spilled through
the spillway and not turbinated. The purpose of spillway is to prevent flooding in the
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reservoir above the plant. For example, if the turbine is not working because it is under
maintenance so the water cannot be released to be turbinated, but it can still flow in to
the reservoir. If the water in the basin continues to increase and exceeds the maximum
storage capacity, then flooding can occur. Therefore, to prevent flooding in the reser-
voir, a spillway is built to allow some water to be spill out.

Therefore, the spill variable is essentially a function of the storage volume variable.
However, water discharged through a spillway does not contribute to energy produc-
tion. Therefore, it should be avoided if it is possible.

Gauvin et al. (2017) modeled the spillage variable to be bounded by a function called
evacuation curve. This function represents maximum amount of water allowed to be
spilled from each water storage at a specific time for a given water storage level. He
suggested that the maximum water to be spilled is correlated with the structure of the
basin. He proposed to model the evacuation curve as a linear function of the storage
level to ensure the linearity in the model. On the other hand, Feng et al. (2018) modeled
the spillage variables to be bounded by some specific minimum and maximum values.

2.1.2 Variable Waterhead

The amount of the electricity that hydropower plant produce depends on two factors,
specifically how far the water falls and how much water falls. The higher the water falls
from, the more power it produces. The height of waterfalls ( h) is defined as the differ-
ence between the reservoir level and the tailrace, while the reservoir level depends on
the volume of water stored. Thus, in the last few chapters, we will discuss the problem
of water-head sensitive. For this problem, we define the rate of energy production as:

Pt =
1

3600
.10−6ηγ g ht ot (2.1)

where ht is the water-head variable at time t.

De Ladurantaye et al. (2009) and Zambelli et al. (2011) considered water head variables
on their models and solved them with SDP. Zambelli et al. (2011) modeled waterhead
variables as the difference between forebay, tailrace and penstock head loss, where the
forebay and tailrace functions are approximated by fourth degree of polynomial func-
tions and the penstock is approximated by a quadratic function. On the contrary, Zam-
belli defined the waterhead variables by second degree polynomial function of storage
volume.

Gauvin et al. (2018), Feng et al. (2018) and Anghileri, Castelletti et al. (2018) also in-
cluded waterhead variables in their models. Gauvin attempted to solve it using a suc-
cessive linear programming model. Gauvin formulated the waterhead variables as the
division between the net waterhead and the reference waterhead. The net waterhead is
calculated by the difference between the forebay and tailrace elevation at each time.
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Moreover, the tailrace and forebay elevations are approximated by affine functions
of the water storage. While Feng defined the water head variables as the difference
between the current storage level now and the storage level one previous point of time
divided by a function of released water. On the other hand, Anghileri assumed that the
waterhead variable at each time can be computed from the storage-stage rating curve.

2.2 Robust Optimization

The real optimization problem, often includes some uncertain data sets. In hydropower
optimization, uncertainty arises regarding the amount of water inflows. The most use-
ful method to deal with issues of uncertainty such as hydropower optimization prob-
lem is Robust Optimization (RO). In RO, it is assumed that uncertain data belongs to a
certain set and the aim is to create a solution that is feasible for any possible scenarios.
One way to obtain a solution that will perform well for any realisation is by implement-
ing the worst case scenario approach (Gabrel et al., 2014).

There are two types of uncertainty: uncertainty on the feasibility solution and uncer-
tainty on the objective value. If uncertainty affects the feasibility solution, robust optim-
ization will endeavour to identify the solution that will be feasible for any realisation.
Furthermore, RO focuses on obtaining the solution that is feasible for any realisation
from the unknown coefficient within a smaller, realistic set which is called an uncer-
tainty set. This uncertainty set is centred around the nominal value of the uncertain
parameters. The aim is to optimize the objective over the set of solutions that are feas-
ible for all of the coefficients in the uncertainty set. The choice of the set plays a crucial
role and has to be thought about carefully to ensure the computational tractability of
the robust problem and to restrict the deterioration of the objective at optimality. If
the uncertainty affects the optimality of the solution, RO tries to find a solution that
performs well for any realisation. One common approach is to optimize the worst-case
objective, while another approach is by creating a new inequality that brings the ob-
jective into the feasible set (Gabrel et al., 2014).

Consider a Linear Programming (LP) problem as shown belows:

Minimize f (x) (2.2)

Subject to : g(x) ≤ 0 (2.3)

(2.4)

where x ∈ Rn is the vector of decision variables.

The general RO formulation for LP under uncertainty U is:

Minimize f (x) (2.5)

Subject to : g(x, ζ) ∀ζ ∈ U (2.6)
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There are several types of uncertainty sets (U ), such as finite uncertainty, interval un-
certainty, bounded uncertainty, or ellipsoidal uncertainty. Finite uncertainty means that
the uncertainty sets consist of a finite list of different scenarios. Interval uncertainty set
defines intervals for the parameters. While bounded uncertainty set bounds the devi-
ation of the parameters and an ellipsoidal uncertainty set is used to cut off the unlikely
corners (Chassein and Goerigk, 2016).

RO has been applied in many fields such as finance, energy, engineering, etc. RO has
became very popular because of its tractability on many classes of uncertainty sets and
problem types (Gorissen et al., 2015). Moreover, RO creates a solution that is immune
to all realisation under uncertainty when the parameter of uncertainty is not stochastics
or the distribution is unknown (Bertsimas et al., 2011).

The solutions obtained from RO are designed to be immune to any realisation of inputs.
Therefore, the result tends to be conservative particularly for the decisions which are
made sequentially. To overcome this issue, a two-stage approach is needed. Because
of the difficulty involved in solving multiple-stage problems using RO, many theoret-
ical works focus on two-stage optimization. Two-stage optimization includes two sets
of decision variables, which are the ’here and now’ variables in the first stage and the
’wait and see’ variables in the second stage. However, the very simple two-stage RO
can be an NP-hard problem.

2.3 Adjustable Robustness

In two-stage robust optimization, not all of the decision variables are revealed at once.
Some of the variables are decided after the realization of other variables. For example,
in the study of hydropower optimization, the amount of water discharged today is
depended on how much water goes into the system yesterday. This variable is called
wait-and-see variables. Therefore, some of the decision variables can be adapted a
while later, which is a function of the uncertain data. This is usually called as the
Adjustable Robust Counterpart (ARC).

The ARC is defined by Ben-Tal et al. (2004) as below:

min
x,y(.)

{cTx : A (ω) x + By (ω) ≤ d ∀ω ∈ Ω}, (2.7)

where x ∈ Rn and is the first-stage decision variables (here-and-now) which is decided
before ω is realized, whereas y is the second-stage variables (wait-and-see) which can
be adjusted according to the realization of the actual data. Notice that y may depend
on some or all of the uncertain data ω. (Yanıkoğlu et al., 2019, Ben-Tal et al., 2004)

It can be seen that ARC is more flexible than RO since it yields to more flexible decision
that can be adjusted depending on the realization of the uncertain data. ARC also
produces a better optimal objective values that at least as good as the one produced
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by classic RO. It shows that ARC produces more flexible decision that can be adjusted
with the realization of the uncertain data at the current stage. (Yanıkoğlu et al., 2019,
Ben-Tal et al., 2004)

However, ARC is a complex problem because it is allowed to the variable y(ω) to adjust
themself into the realization of the data. Consider a second-stage decision problem, as
seen in the process below.

decision (x1) → observation (η2) → decision (x2) → (2.8)

... → observation (ηT) → decision (xT) (2.9)

where ηt represents the data history up to time t. At each time t, we observe the data ηt,
however the future data ηt+1 is uncertain. Therefore, our decision at time t should only
depend on the information at that time and should not depend on future observation.
This is usually referred as anticipative. In addition, we can apply the affine policies to
avoid an anticipative solution.

The use of affine policies for Robust Optimization was introduced by Ben-Tal et al.
(2004). The idea behind this is that the second-stage decisions are assumed to be a
simple function. For example, suppose there is a two-stage robust optimization prob-
lem:

max
x∈χ,y(ζ)

min
ζ∈U

cTx + dTy (ζ) (2.10)

s.t.Ax + By ≤ Ψ (x) ζ, ∀ζ ∈ U (2.11)

where x is the first stage variable, while y is the decision under the scenario (ζ) and U
is the uncertainty set. The adjustable decisions are forced to become affine functions of
the data, which is then called an affine decision rule:

y (ζ) = Yζ + y (2.12)

Therefore, the problem 2.10 can be approximated with:

max
x∈χ,y,Y

min
ζ∈U

cTx + dT (Yζ + y) (2.13)

s.t. Ax + B (Yζ + y) ≤ Ψ (x) ζ, ∀ζ ∈ U (2.14)

The affine policy has been used by many researchers to solve hydropower schedul-
ing problems. The idea of employing affine rules for hydropower problem is that the
decision variable will be able to adapt to the realisation of inflow. This function will
depend on realisation of inflow of all or some previous data.

Gauvin et al. (2017) in his research applied affine policies based on robust optimization
on the decision variables. The problem they solved is a 30-day hydropower scheduling
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problem. The variables included in the problem are release variables, storage variables,
and spillage variables. They found that applying affine rule on the model can produce
good solutions and at the same time, can maintain the tractability of the model.

Braaten et al. (2016) also solved hydropower scheduling problem using affine decision
rule based on robust optimization. He solved the problem including 1-year horizon in
weekly basis (52 weeks). His problem included releasing water pipe, pumping facility,
and storage. He also found that a model with affine policy produces a good solution.

2.4 Epigraph Reformulation

However, computing the second-stage optimization problem is not easy. One way to
deal with that problem is by transforming a convex problem into an equivalent one.
This is useful to find an explicit solution or for algorithmic purpose. There are various
transformation approaches and not all of them can preserve the convexity. One of the
transformation approaches that can preserve convexity is the Epigraph reformulation
(Ghaoui, 2012).

Let f : Rn → R is a convex function and is defined as:

graph f = {(x, f (x))
⃓⃓
x ∈ X}, (2.15)

then, the equivalent epigraph form for those functions is defined as (Wei, 2020 ):

epi f = {(x, t)
⃓⃓
x ∈ X , f (x) ≤ t}. (2.16)

FIGURE 2.2: Illustration of the graph of function f (x) (solid line) and its epigraph
reformulation (shaded area) (Wei, 2020)

Epigraph is usually used to reformulate optimization problems. A problem whose
objective function is nonlinear can be reformulated by a linear objective and an extra
constraint in the epigraph form. Consider the maximization problem as:

max
x

f ( x) , x ∈ χ (2.17)
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Moreover, the objective function 2.17 can be reformulated through epigraph reformu-
lation:

max
ψ, x

ψ (2.18)

s.t. ψ ≤ f ( x) (2.19)

x ∈ χ (2.20)

2.5 Stochastic Dynamic Programming

Similarly to RO, stochastic programming is a powerful method used to deal with un-
certain data. The difference is that stochastic programming makes it necessary to know
or estimate the probability of the uncertain data. Often, this method is applied to a
problem that involves making decisions repeatedly on the same occasions.

Stochastic Dynamic Programming (SDP) has been applied to various type of problems,
such as asset allocation problems (Infanger, 2016), planning problems (Cristobal et al.,
2009), and reservoir optimization problems. Indeed, the popularity of SDP lies in its
capability to be applied to a wide range problems.

SDP is usually applied to a problem which requires the decisions to be made sequen-
tially and when the aim is to make a decision that will perform well on average. Moreover,
SDP is often applied to two-stage problems. The idea is that an optimal solution will
be obtained based on the data available at the time of the decision and that it does not
depend on future observation. Please refer to A.1 to see the simple example process of
dynamic programming.

The example in A.1 is an application from deterministic dynamic programming. The
difference between deterministic and stochastic programming is that stochastic pro-
gramming needs the probability to be known or assumed. The SDP problem can be
formulated as below:

min
x∈X

{︂
g(x) = cTx + E[Q(x, ζ)]

}︂
, (2.21)

where Q(x, ζ) is the optimal value of the second stage

min
y

qTy subject to Tx + Wy ≤ h (2.22)

where x represents the first stage decision variables, while y is the second stage de-
cision variables, and ζ = (q, T, W, h) contains the data from the second stage problem.
In the first stage, we have to make a decision x before a realisation of the uncertain
data ξ. In this stage, we optimize the cost cTx of the first stage decision, in addition
to the expected cost of the second stage decision. After a realization of ξ, we optimize
the behaviour by solving an appropriate problem at the second stage. The problem of
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this stage can be described as an optimization of the optimal behaviour when uncer-
tain data is revealed. In other words, we can say that the solution of the second stage
problem is an action that can be done recursively, where Wy influences a possibility of
inconsistency on the Tx ≤ h and qTy is the cost of this action. The formulation above
includes the assumption that the second stage data ξ can be modeled as a random vec-
tor and its probability distribution is known.

The SDP algorithm is easy to implement. However, the SDP has one main drawback
that it cannot be applied to a large problem because the state variables need to be dis-
cretized. This problem is usually referred as the curse of dimensionality. The curse of
dimensionality is a typical challenge faced when solving dynamic programming. This
term was first introduced by Bellman. The curse of dimensionality refers to the expo-
nential increase in the data that has to be observed as the dimension is increased (Chen,
2009). This will affect the computational performance and increase the time needed to
find the optimal solution.

SDP has been widely used to solve hydropower production problems because of its
capability. SDP can handle problems that are non-linear, constraints act in both the
state and the control, and when there is a random disturbance on the problem. How-
ever, SDP requires that the sets of state, control, and random disturbance must be finite
in time t. Therefore, those variables must be discretized. Moreover, the computing
time increases as the number of the state, control, and disturbance variables increases
(Castelletti et al., 2008).

De Ladurantaye et al. (2009) solved a hydropower production problem that maximizes
profit using the Stochastic model. Their research aimed to find a 24-hour production
plan. The problem included released water variables, storage variables, spillage, and
water-head variables. They conclude that the solution obtained from the stochastic
model outperformed the deterministic one.

Another research done by Zambelli et al. (2011) also studied SDP on solving hydro-
power scheduling problems. The problem they solved is aimed to minimize the op-
erational cost with several variables including released water variables, spillage, and
storage variables. They applied the SDP to a single reservoir system over a 1-year
period. They then compared the result gained with Deterministic Dynamic Program-
ming (DDP). They found that the result from SDP maintained the storage at a low level
which minimizes the spillage, this, therefore, implied greater discharged water. While
DDP tends to produce a solution that preserves the storage to a higher level which af-
fects the performance in wet scenarios. Despite those differences, both SDP and DDP
shared similar performances.
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2.6 Rolling Horizon Algorithm

The rolling horizon algorithm was first introduced by Le and Day (1982). They presen-
ted the method to solve an expansion problem for electric generators (Le and Day,
1982). The idea of a rolling horizon is to split the whole time horizon into multiple
and smaller subsets of the horizon and then solve the subproblems sequentially. The
solution for the full-time horizon is obtained by connecting the solutions from each of
the subproblems. This approach is useful when solving a problem with uncertainty or
a large scale problem (Bischi et al., 2019).

Wakui et al. (2022) applied a rolling horizon algorithm to solve long-term operational
planning of energy storage and supply systems. At the beginning, they solved the
simplified version of the original problem to find the bound. After that, they solved
the subproblem within a shorter time frame and used the bound found previously as
the terminal condition. This step was done sequentially over each time slots in which
the initial and end conditions are determined by the previous time slot result and the
simplified problem result. They found that the result obtained by applying a rolling
horizon algorithm is better and faster than one obtained using a conventional method
(a method without applying rolling horizon algorithm).

Bischi et al. (2019) also applied a rolling-horizon algorithm to solve a long-term schedul-
ing of cogeneration systems. The problem was originally over a yearly basis. They, then
split the horizon into weekly basis. The result they obtained proves that a rolling hori-
zon algorithm allows for an improvement in objective function by almost 3%.

In addition, Silvente et al. (2015) also utilised rolling horizon algorithms in their work.
They used it to solve the planning of energy supply and demand in microgrids. They
also found that a rolling horizon produces a better result more rapidly than other meth-
ods.

Moreover, Gauvin et al. (2017) also worked with rolling horizon algorithm to solve hy-
dropower scheduling problem. Their work involved solving a non-convex problem.
He combine rolling-horizon and successive linear programming to solve the problem.
The result obtained is compared with the historical decisions made and found that the
result provides better solution on minimizing the flood.
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Chapter 3

Single-Basin Hydropower
Optimization Models

In this chapter, we consider a simplified system with a single basin and a linear object-
ive function. A more realistic case in which the Swiss Mattmark hydropower system is
analyzed in the next chapter.

3.1 Deterministic Model for Single-Basin Hydropower Optim-
ization Model

The hydropower system which we consider here consists of a basin/water storage fa-
cility. Let T be the set of time steps. At each time t ∈ T, ot represents the amount of
water released from the water storage, while ft represents the units of water flows into
basin 1 from the environment. The amount of water in the storage at each time t ∈ T is
denoted by st. The typical hydropower situation discussed here can be seen at Figure
3.1.

FIGURE 3.1: A Typical Single Basin Hydropower
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Hydropower uses the potential energy of water movement from a higher place to a
lower place. Those potential energy is then transformed into electricity. The potential
energy (E) of the water movement is defined as:

E = γ g h V (3.1)

where:
η: the efficiency of the turbine
γ: the water density

(︁
kg/m3)︁

g: gravitational constant
(︁
m/s2)︁

h: the distance of the waterfall (m)

V: the amount of water discharged
(︁
m3)︁.

Meanwhile, the power is defined as the rate of energy production. Therefore, the power
output of the reservoir at each time ( t) can be written as:

Pt = ηγ g h ot (3.2)

where η is the efficiency of the turbine, ot is the amount of water turbinated (m3/s) and
therefore, the unit of Pt is m2.kg/s3 or Joules.

The objective of the hydropower optimization is to decide the amount (ot) of water to
be released from the water storage at each point in time t ∈ T which maximizes the
revenue from selling energy to the market during every period. This revenue can be
described as the total energy price times the rate of energy production over a period
of time. However the price of electricity is defined in Euro per MWh. Therefore, we
have to convert the unit of Pt in (3.2) from Joules to Mwh by multiplying it by 1

3600 .10−6.
Hence the total revenue is:

r =
t=T

∑
t=1

πt.
1

3600
.10−6Pt =

t=T

∑
t=1

πt.
1

3600
.10−6ηγ g h ot (3.3)

where: πt is the price of energy selling at time t (Euro/MWh) and Pt is the rate of en-
ergy production at time t in MWh. Therefore, for simplicity, the objective function will
be written as:

r =
t=T

∑
t=1

πtξηγ g h ot (3.4)

where ξ is the coefficient to convert Joule to Mwh, which is 1
3600 10−6 .

Balance Constraints

The volume of water inflows plus that of water available at time t in the water storage
must be equal to the volume of water outflows plus that of water still available in that
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storage at next time period. Therefore, the balance equation can be written as:

ft + st−1 = ot + st, ∀t ∈ T (3.5)

Boundaries

The water released from each basin is bounded by the maximum capacity of the tur-
bines. This means that in every time periods, the amount of water released from the
storage cannot exceed the maximum capacity of the turbines:

omin ≤ ot ≤ omax ∀t ∈ T (3.6)

Additionally, the amount of water available in the storage cannot exceed the maximum
volume of the storage and should not go below a certain lower bound:

smin ≤ st ≤ smax ∀t ∈ T (3.7)

Initial/Final Storage Conditions

The water stored in the basin at the end of time period |T| must be guaranteed to be
enough so that the hydropower plant can keep running for the next cycle.

s|T| ≥ s0 (3.8)

Therefore, the complete model of deterministic formulation for single-basin hydro-
power optimization can be written as:

Complete Model

max
T

∑
t=1

πtξη gγ h ot (3.9)

s.t ft + st−1 = ot + st ∀t ∈ T (3.10)

0 ≤ ot ≤ omax ∀t ∈ T (3.11)

smin ≤ st ≤ smax ∀t ∈ T (3.12)

s0 ≤ s|T| (3.13)

3.2 Robust Model for Single-Basin Hydropower Problem

The model in Eq. (3.9-3.13) does not take into account the uncertainty in inflow water.
While in reality, how much water will go into the system is uncertain. We do not know
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for sure the amount of water flowing to the basin at the time. Therefore, we will con-
sider the uncertainty into the model.

The uncertainty in this problem appears on inflow variables. Therefore, we should
consider that the realisation of inflow depends on the scenario. Therefore, in this RO
model, the inflow variable f and the storage level s are the second stage variable and
depend on the scenarios, while the decision variable o is the first stage variable. The
aim of this model is to find the solution which is immune to any realisation of inflow.

We write f ω
t as the amount of water inflow to the reservoir at time t ∈ T under scenario

ω ∈ Ω and sω
t as the amount of water in the storage at time t ∈ T under the scenario

ω ∈ Ω, where Ω represents the set of all possible scenarios.

Moreover, the objective function can be written as:

max
T

∑
t=1

πt. Pt (3.14)

which aims to maximizing the revenue by multiplying the price at each time t ∈ T and
the rate of electricity production.
Subject to:
(Balance constraints)

f ω
t + sω

t−1 = ot + sω
t , ∀t ∈ T; ∀ω ∈ Ω (3.15)

This constraint explains that the amount of water in the basin at time t is depend on the
scenario. Therefore, the amount of water in the basin at time t for scenario ω is equal
to the total of amount of water in the basin at time t − 1 for related scenario, and the
inflow water for the same scenario, minus the amount of water released.
(Boundaries)

omin ≤ ot ≤ omax ∀t ∈ T (3.16)

smin ≤ sω
t ≤ smax ∀t ∈ T, ∀ω ∈ Ω (3.17)

These constraints bound both the released water and the stored water because of their
physical construction. Therefore, both ot and sω

t are bounded by some minimum and
maximum number.
(Initial Storage Conditions)

s0 ≤ sω
|T| ∀ω ∈ Ω (3.18)

This constraints restricts that the amount of water stored in the basin at the end of
period should not be less than its amount in the beginning of period. This is to ensure
that the system has enough water to run for the next cycle (cyclostationerity). The com-
plete robust model for this problem can be seen on Appendix A.2.
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3.3 Affine Decision Rule Model for Single-Basin Hydropower
Problem

In the previous section, the decision variable ot is a first stage variable. ot does not
depend on the scenarios and is aimed to be immune towards any realisations of inflow.
However, this may lead to an anticipative solution. Consider the following example.

Example 3.1. :
Consider these two scenarios of inflow and its optimal outflows:

TABLE 3.1: Example of an Anticipative Problem

t 1 2 3 4

scenario 1
inflow 1 2 7 9

outflow 5 9 25 28

scenario 2
inflow 1 2 8 25

outflow 5 11 27 29

The table above shows an example of two scenarios of inflows and their optimal outflows. For
example in the first scenario at time t = 1, there is 1 unit of water inflows into the reservoir and
the optimal water released at that time is 5. Moreover, at time t = 2, there are 2 units of inflow
water and the optimal amount of water released is 9 unit, and so on.

If you compare scenario 1 and scenario 2, the inflow in both scenarios at time t = 1 and t = 2
are similar. Therefore, at time t = 1 the optimal released water is the same regardless of the
scenario. However, at time t = 2, in order to decide how much water we should release, we have
to know how much water is flowing to the reservoir at the next period. If the amount of inflow
water at time t = 3 is 7, it means we are in scenario 1 and the optimal amount of water should
be released at time t = 2 is 9. While, if the water inflows at time t = 3 is 8 units, it means that
we are in scenario 2, so the optimal amount of water to be discharged at time t = 2 is 11. This is
what it is called as anticipativity, that is the optimal solution requires knowledge of the future.

Therefore, to prevent the anticipative solution, in this section we formulate the decision
variable ot to be determined by a non-anticipative function. Here, the decision variable
oω

t is a two stage variable and depends on the scenario. We want our decision variable
to adapt to the realisation of inflow. Hence, the new variables αt and βtt′ are introduced,
so to:

oω
t = αt +

t−1

∑
t′=1

βtt′ f ′ωt ∀ω ∈ Ω, t ∈ T. (3.19)

Hereinafter, oω
t is an affine function and depends on the scenario. Looking in more

details, for each t ∈ T, the outflow variable depends on the summation of variable
β and the corresponding inflow from time 1 until t − 1. Hence, variable β will be of
dimension |T| × |T| which is very large. This may affect the computation time. To
overcome this issue, we can restrict ot to only depend on τ numbers of β variables and
the corresponding inflows. In other words, ot is formed from the summation of β and
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the corresponding inflow from time t − τ to time t − 1 for some given value of τ. This
restriction lead to β with smaller dimension than before. Therefore, the equation (3.20)
now is:

oω
t = αt +

t−1

∑
t′=t−τ

βtt′ f ′ωt ∀ω ∈ Ω, t ∈ T. (3.20)

Based on how the decision makers tolerate the risk, there are three types of risk: risk-
averse, risk-neutral, and risk-taking (Harris and Wu, 2014). A risk-averse decision
maker tends to avoid any risks. A risk-averse decision makes usually considers the
objective function in the worst-case scenario.

max
x

min
ω

f (x; ω) , (3.21)

While a risk-neutral decision maker neither takes too much risk or avoid taking risks.
The problem for a risk-averse decision maker is modelled by taking expectation in the
objective function.

max
x,ω

E [ f (x; ω)] (3.22)

Moreover, a risk-taking decision maker is not afraid to accept the risk. The objective
function for a risk-taking decision maker is modelled as:

max
x

max
ω

f (x; ω) . (3.23)

In this research, we consider two types of objectives, which are risk-averse and risk-
neutral. In the risk-averse, the objective is to find the released water schedule which
maximizes the revenue under the worst-case scenario.

3.3.1 Affine Decision Rule for Risk-Averse Decisions

In this subsection, the single-basin hydropower optimization is modeled with affine
decision rule. Therefore, the decision variable o is defined with an affine function as in
Eq. (3.20) and now is a two-stage variable which depends on scenario. The purpose is
so that the decision variable is able to adapt to any realization of inflow. The model is
basically similar with the robust model shown in A.2 except that now the decision vari-
able is an affine function. Therefore, the ot in A.2 is substituted with the function (3.20).
The complete model of the Affine Decision Rule Model for Single-Basin Hydropower
Optimization Problem can bee seen below.
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Problem 3.1 (Affine Decision Rule Model for Single-Basin Hydropower Optimization
Problem).

max
α,β,s

min
ω∈Ω

|T|

∑
t=1

πt ξη g γ h

(︄
αt +

t−1

∑
t′=t−τ

βtt′ f ω
t′

)︄
(3.24)

s.t. f ω
t + sω

t−1 =

(︄
αt +

t−1

∑
t′=t−τ

βtt′ f ω
t′

)︄
+ sω

t ∀t ∈ T, ω ∈ Ω (3.25)

smin ≤ sω
t ≤ smax ∀t ∈ T, ∀ω ∈ Ω (3.26)

omin ≤ αt +
t−1

∑
t′=t−τ

βtt′ f ω
t′ ≤ omax ∀t ∈ T, ∀ω ∈ Ω (3.27)

sω
|T| ≥ s0 ∀t ∈ T, ∀ω ∈ Ω (3.28)

where ξ is the parameter to convert Joules into MWh which is ( 1
3600 .10−6), while omin

and omax represent the minimum and maximum amount of water allowed to be re-
leased respectively. smin is the minimum amount of water should remain on the storage.
On the other hand, because each basin has maximum capacity, therefore smax describes
the maximum capacity of basin.

Notice that if we set τ = 0, then model 3.1 is equivalent to the model in A.2.

The objective function in equation (3.24) includes maximization and minimization prob-
lem. Hence, it makes this problem complicated. Therefore, we can convert the equation
(3.24) through epigraph reformulation to make the problem easier to solve. Epigraph is
one of the transformation approaches used to change a problem into an equivalent one.
The epigraph reformulation is supposed to convert a convex problem to its equivalent
problem. In other words, we will convert the objective function (3.24) to an equivalent
one. To do so, we introduce a new variable ψ for epigraph reformulation.

The objective function (3.24) shows that the model is supposed to maximize the rev-
enue in the worst case scenario or maximizing the minimum revenue for all scenarios.
Therefore, we can rewrite it with the epigraph reformulation into:

max ψ (3.29)

s.t ψ ≤ min
ω∈Ω

(︄
|T|

∑
t=1

πt ξη g γ h

(︄
αt +

t−1

∑
t′=t−τ

βtt′ f ω
t

)︄)︄
(3.30)

Those two equations (3.29)-(3.30) aims to maximize ψ where ψ is less than the minimum
revenue for all scenarios ω ∈ Ω. Notice that the equation (3.30) still has a ’min’ function
which thus makes the overall model is difficult to solve. Therefore, we need further
reformulation to make the problem easier to be solved.

Equation (3.30) implies that the value of ψ should be no more than the minimum value
of ∑|T|

t=1 πt ξη g γ h
(︂

αt + ∑t−1
t′=t−τ βtt′ f ω

t

)︂
. We can paraphrase the previous sentence as:
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the value of ψ should be no more than the value of ∑|T|
t=1 πt ξη g γ h

(︂
αt + ∑t−1

t′=t−τ βtt′ f ω
t

)︂
over all ω ∈ Ω, or it can be written mathematically as:

max
ψ,α,β,s

ψ (3.31)

s.t ψ ≤
(︄

|T|

∑
t=1

πt ξη g γ h

(︄
αt +

t−1

∑
t′=t−τ

βtt′ f ω
t

)︄)︄
∀ω ∈ Ω (3.32)

Now, we have a new model by reformulating the equation (3.24) into its equivalent re-
formulation (3.31)-(3.32) through an epigraph reformulation. We called this new model
as the Epigraph Reformulation Model of Affine Decision Rule Model for Single-Basin
Hydropower Optimization Problem as follow.

Problem 3.2 (Affine Decision Rule Model for Single-Basin Hydropower Optimization
Problem).

max
ψ,α,β,s

ψ (3.33)

s.t ψ ≤
(︄

|T|

∑
t=1

πt ξη g γ h

(︄
αt +

t−1

∑
t′=t−τ

βtt′ f ω
t

)︄)︄
∀ω ∈ Ω (3.34)

f ω
t + sω

t−1 =

(︄
αt +

t−1

∑
t′=t−τ

βtt′ f ω
t′

)︄
+ sω

t ∀t ∈ T, ω ∈ Ω (3.35)

smin ≤ sω
t ≤ smax ∀t ∈ T, ∀ω ∈ Ω (3.36)

omin ≤ αt +
t−1

∑
t′=t−τ

βtt′ f ω
t′ ≤ omax ∀t ∈ T, ∀ω ∈ Ω (3.37)

sω
|T| ≥ s0 ∀ω ∈ Ω. (3.38)

3.3.2 Affine Decision Rule for Risk Neutral Single-Basin Hydropower Op-
timization Problem

A risk-neutral decision maker tends to consider the objective function is optimized
on its expected value over all scenarios. Therefore, the objective function of this new
model is to maximize the expected value of the profit. The overall model is similar to
the risk-averse model in 3.24-3.28. The difference lays in the objective, where in the
risk-averse model, the objective is to maximize in the worst-case scenario, while in the
risk-neutral, the objective is maximizing under the expectation.

Therefore, the objective function in this risk-neutral model is:

max
α,β,s

∑
t∈T

∑
ω∈Ω

pω

(︄
πt ξη gγ h

(︄
αt +

t−1

∑
t′=t−τ

βtt′ f ω
t

)︄)︄
(3.39)

Where pω is the probability of scenario ω happening. The complete model of the Affine
decision rule for risk-neutral single-basin hydropower optimization can be seen below.
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Problem 3.3 (Affine Decision Rule for Risk Neutral Single-Basin Hydropower Optim-
ization Problem).

max
α,β,s

∑
t∈T

∑
ω∈Ω

pω

(︄
πt ξη gγ h

(︄
αt +

t−1

∑
t′=t−τ

βtt′ f ω
t

)︄)︄
(3.40)

s.t. f ω
t + sω

t−1 =

(︄
αt +

t−1

∑
t′=t−τ

βtt′ f ω
t′

)︄
+ sω

t ∀t ∈ T, ω ∈ Ω (3.41)

smin ≤ sω
t ≤ smax ∀t ∈ T, ∀ω ∈ Ω (3.42)

omin ≤ αt +
t−1

∑
t′=t−τ

βtt′ f ω
t ≤ omax ∀t ∈ T, ∀ω ∈ Ω (3.43)

sω
|T| ≥ s0 ∀ω ∈ Ω. (3.44)

3.4 Stochastic Dynamic Programming (SDP) Approach for Single-
Basin Hydropower Problem

In previous sections, we studied the problem where the decision variable depends on
the inflow f , while in this chapter, we study another approach that involves the de-
cision variable depends on the storage level s and time t.

Problem 3.4 (SDP Model for single basin hydropower problem). Let st ∈ {0, ..., smax} , ∀t ∈
|T| and rt (st) to be the optimal solution at t ∈ T. For all t ∈ {1, 2, ..., |T|}:

rt(st) =max
o

πt ξ(η g γ h ot) + ∑
ω∈Ω

pωrt+1 (st+1) (3.45)

s.t. st − smax + max
ω∈Ω

{ f ω
t } ≤ ot ∀t ∈ T (3.46)

ot ≤ st − smin + min
ω∈Ω

{ f ω
t } ∀t ∈ T (3.47)

ot ≥ omin ∀t ∈ T (3.48)

where the first term of (3.45) denotes the profits made at time t, while the second term
of (3.45) denotes the expected value of the optimal profit from time t + 1.

Proof. Before solving Problem 3.4, we have to prove that this problem is feasible and
the result is optimal.

Let st+1 be the state variable at time t+ 1. The state variables from time t to t+ 1 should
satisfy the mass balance conditions as below:

st+1 = st + f ω
t − ot (3.49)
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and the bounds constraints:
smin ≤ st+1 ≤ smax (3.50)

where f ω
t is inflow at time t and under scenario ω ∈ Ω. From equation (3.49) and

equation (3.50), we get:
smin ≤ st + f ω

t − ot ≤ smax. (3.51)

Therefore, the lower bound for ot is

ot ≥ st + f ω
t − smax (3.52)

and the upper bound is:
ot ≤ st + f ω

t − smin (3.53)

If we want ot to satisfy both bounds for all ω ∈ Ω, we have to consider the worst-case
scenario that gives the lowest restriction for lower and upper bounds on ot. Therefore,
ot should satisfy:

ot ≥ max
ω∈Ω

{st + f ω
t − Smax} = st − smax + max

ω∈Ω
{ f ω

t } (3.54)

and
ot ≤ min

ω∈Ω
{st + f ω

t − Smin} = st − smin + min
ω∈Ω

{ f ω
t }. (3.55)

Because we derive Equation (3.54) and (3.55) from Equation (3.50), it shows that whatever
the realization of ot is, st+1 is always non-negative. Therefore, the problem is feasible.

Furthermore, we have to prove the optimality. At time t = |T|:

r|T|
(︁
s|T|
)︁
= max

o

{︁
π|T| o

}︁
(3.56)

is optimal.
Let us assume that o∗ =

(︂
o∗t , o∗t+1, ..., o∗|T|

)︂
is optimal for rt (st) and ϕt (s, o) is the solu-

tion value of the rt (st) corresponding to o. Let us also assume that o∗ =
(︂

o∗t , o∗t+1, ..., o∗|T|
)︂

is not optimal for rt+1 (st+1). Therefore, there is some ô =
(︁
ôt+1, ..., ô|T|

)︁
such that

ϕt (s, ô) is strictly larger than ϕt (s, o∗). However, then, the solution
(︁
o∗t , ôt+1, ..., ô|T|

)︁
is a better solution to rt (st). This contradicts our assumption that o∗ is optimal for
rt (st).

The SDP model (3.45) - (3.48) is solved through backward recursion. The computational
procedure starts at the end of the time horizon. The pseudocode for SDP model can be
seen at Algorithm 1. This approach produces a release decision for every possible state
at each stage rather than only a single release schedule. Therefore, the state variable
st and the control variable ot should be simplified to make the algorithm is computa-
tionally feasible. The state variable will be evaluated on each possible discrete level for
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every stage. At each stage and state, a released water ot is decided to maximize current
benefit and the expected future benefit rt+1 (st+1, ft+1). This function is usually called
as cost-to-go function or Bellman function and is described as a recursive function.

The purpose of this approach is to find a set of solutions which can be defined as a set
of functions: {︁

Ψ1 (s1, f1) , Ψ2 (s2, f2) , ..., Ψ|T|
(︁
s|T|, f|T|

)︁}︁
(3.57)

where ot = Ψt (st, ft) is the vector of water discharged at time t that depends on the
amount of water in the storage (st) and the amount of inflow.

Algorithm 1: Pseudocode for SDP for Single-Basin Hydropower Problem
Data: f ω

t , πt, ∀ω ∈ Ωts, t ∈ T, omin, omax, smin, smax, steps, stepo
for t: T, T-1, ..., 1 do

if t = T-1 then
for s in range (smin, smax, steps) do

for o in range (omin, omax, stepo) do
rt(s, o) = πt ξ(η g γ h ot);

end
rt(s) = max(rt(s, o)) and o(t, s) is o maximizing rt(s)

end
else

for s in range (smin, smax, steps) do
omin = 0;
omax = s − smin + minω∈Ω f ω

t ;
rt(s) = 0;
for o in range (omin, omax, stepo) do

for ω ∈ Ω do
s′ = s + f ω

t − o;
rt(s, o) = πt ξ(η g γ h ot) + ∑

ω∈Ω
pωrt+1 (st+1);

if rt(s, o) > rt(s) then
rt(s) = rt(s, o) and o(t, s) = o

end
end

end
end

end
Result: Matrix t × s of r, matrix t × s of o

3.5 Numerical Result and Discussion

In this section, we implement the models introduced in the previous sections to solve
scheduling problems in a hydropower plant with a single basin. The typical single-
basin hydropower system can be seen in figure 3.1. The models are applied into Mattmark
hydropower system but with some simplification. This system actually consist of 2
basins and 1 pumping storage and the more detailed discussion can be seen on Chapter
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4. However, for this chapter, we only use the inflow data of upstream basin and the
electricity price. The input data covers one year data of electricity price and inflow
data based on an hourly schedule. We consider 20 scenarios of inflow data which 14 of
them are used for training, while the rest is used for validation.

The validation is aimed to observe the performance of the result obtained when it is
applied to the data that are not used in the optimization (validation set). The idea is
to substitute the result obtained to the original model while observing whether they
are violating the constraints or bounds and keeps track the number of violations. The
pseudocode for the validation process can be seen on Algorithm 4. To do the optimiz-
ation, we set the initial storage as 1 × 107 m3.

First, we apply the SDP model and discretize the state and control dimensions. In this
case, we discretize the state dimension into several values which are 10, 100, and 1000,
while we discretize the control variable into fixed numbers, 19. We try to apply the SDP
model with the input data of hourly schedule of inflow. However, it takes very long
time to run this model. As we predict, this model suffers from curse of dimensionality.
Therefore, to practicality, we apply granularity of the input data and we choose to take
4 hourly data. To do so, we take the average of each 4 consecutive points in the data.
Hence, now the data we have is the schedule of inflow water over one year in 4 hourly
basis.

(A) Day 1 (B) Day 2

FIGURE 3.2: The Electricity Price on Day 1 and Day 2

Figure 3.2 shows the typical of the electricity on each day. If you see at those figures,
they show that the price behaviour is the same every day. Above, we present the pic-
ture for day 1 and day 2 for the illustration. The other days also have typical behaviour
with those 2 days we present here. Let take a closer look to Figure 3.2a, in the first 4
hour, the electricity price tend to decrease. Then, the next 4 hours, the price is increas-
ing. From hour 9 to 12, the price seems to steady and start to decrease in the next 4
hour. Then, the price increase in the next 4 hour and then decrease for the rest of the
day. We want to preserve this behaviour on the price, therefore we choose the granu-
larity specifically to 4 hours.

For robust models, we test them in Problem 3.2 and 3.3 and run them with τ from 0 to
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100 in increments of 10. Then, we compare the results and apply the result obtained
from each model to the validation set.

(A) RA vs RN: Objectives in Training Set

(B) RA vs RN: Running Time

(C) RA vs RN: Violations in Validation Set

FIGURE 3.3: The Comparison between the result of RA and RN models

First, we compare the performance of RA and RN models. Figure 3.3 shows the com-
parison between RA and RN models in terms of objective value, running time, and
violation. If we refer to Figure 3.3a and Figure 3.3b, RN performs better than RA. It
gives better objective value and takes less time to run. Even though the running time
for both models increases over τ, but the increasing in RN is not as sharp as the increas-
ing in RA. However, with this better performance, RN suffers from more violations as
shown in Figure 3.3c.

In addition, the performance of RA and RN in a training set are compared and they can
be seen on Figure 3.4 - 3.7. Figure 3.4 and Figure 3.5 plot the results of RA model in the
training set for τ equal to 0 and 100, respectively. While Figure 3.6 and Figure 3.7 are
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FIGURE 3.4: RA τ = 0 in Training Set

FIGURE 3.5: RA τ = 100 in Training Set

graphic for the RN model in the training set with τ equal to 0 and 100, respectively. In
each figure, 4 diagrams are embedded which show the amount of water released, the
amount of water in the storage, the inflow, and the price consecutively.

As mentioned before, the model with τ = 0 is the robust model without affine vari-
ables. Because with τ = 0 meaning that we force all β to be equal to 0. Therefore, this
model does not depend on the scenario. Hence, we can see that Figure 3.4 and 3.6 share
similarities.
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FIGURE 3.6: RN τ = 0 in Training Set

FIGURE 3.7: RN τ = 100 in Training Set

Moreover, comparing the graphic of storage s on Figure 3.5 and Figure 3.7, we can
see that RN tends to force the amount of water in the storage to be equal to the initial
storage value for all of the scenarios at the end of the horizon. While in RA, at the
end of the horizon, the amount of water in the storage for all scenarios is greater than
the initial storage value yet they are divergent, not pointing towards the same value in
every scenario. However, it is evident that both RA and RN tend to release water when
the price is high, for example at the beginning and end of the horizon.
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FIGURE 3.8: RA τ = 0 in Validation Set

FIGURE 3.9: RA τ = 100 in Validation Set

Figure 3.13 - 3.15 illustrates the performance of SDP in the validation set for the dis-
cretization of state variables as 10, 100, and 1000. In Figure 3.13, SDP does not release
water at the beginning of the period, but does release a large amount of water in the
end of period when the price is high. In addition, it also releases some water during
the middle of the period when there is more water flowing into the basin. Figure 3.14
shows the result of validation set for SDP with a discretization of the storage values in
100 values. The result seems to be similar to the result from the robust-affine model
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FIGURE 3.10: RN τ = 0 in Validation Set

FIGURE 3.11: RN τ = 100 in Validation Set

during which more water is released at the beginning and the end period when the
price is high. However, SDP also release less water during the middle period. The wa-
ter released here is not great in quantity because the price is not high, yet it is enough
to ensure the amount of water in the storage is less than maximum capacity during the
wet period.

Moreover, for SDP with 1000 discretizations, as captured in Figure 3.15, it shows that
a great deal of water is released during the first and second trimester which causes the
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(A) Statistics of RA in Validation Set

(B) Statistics of RN in Validation Set

FIGURE 3.12: The Statistics of RA and RN models in Validation Set

FIGURE 3.13: SDP with 10 discretization in Validation Set

violations in the amount of water in the storage in the end of period. If we refer to the
graph, we can see that the amount of water in the storage at the end of period is less
than the initial amount of water. This is crucial because this constraint is to ensure that
the hydropower saves enough water for the next cycle.

Table 3.2 shows the comparison between the three aforementioned models regarding
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FIGURE 3.14: SDP with 100 discretization in Validation Set

FIGURE 3.15: SDP with 1000 discretization in Validation Set

TABLE 3.2: Comparison between SDP, RA, and RN

SDP“““““““
RA (τ = 10) RN (τ = 10)

10 100 1000
Time (s) 5.93 58.81 536.55 43.28 42.40
Obj 2342351.17 3036429.17 5061960.0 6256582.56 7234953.48

their running time and objectives. Overall, robust models take less time to run while
produce better result than SDP. Moreover, when the discretization of state dimensions
of SDP is increased 10 times, the running time also increases with almost the same
increment. With the running time needed by SDP, the objective value that is produced
is lower than RA or RN. This can be explained by the fact that in SDP, the varieties
of variable s to be chosen is limited because of the discretization. For example, in 10
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discretizations of state variables, there are only 10 possible value of states of variables.
While in RA and RN is more flexible because variable s is continuous. Therefore, with
the limitation of SDP, we decide to not to include SDP in our next study.
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Chapter 4

Two-Basin Hydropower
Optimization Models

FIGURE 4.1: Mattmark Hydropower System (Anghileri, Castelletti et al., 2018)

In this chapter, we study the more realistic hydropower system in which we consider
studying the Switzerland Mattmark hydropower system. The Mattmark Hydropower
system can be seen in Figure 4.1. This system consists of two basins, two power plants
and a pumping plant. Therefore, we will extend our study to consider two water stor-
age, spillway, waterhead dependancy, and pumping system.

The purpose of pumping in hydropower system is to connect the lower and upper
reservoir so that water can be pumped from downstream reservoir back to upstream
reservoir. This Mattmark Hydropower system work as follow: The natural inflow wa-
ter goes Mattmark dam and Zermeiggern dam. Mattmark is the upstraim dam abd the
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Zeirmeggern is in the lower place. From Mattmark dam, some water are released and
turbinated and then goes to Zermeiggern dam. While from Zermeiggern dam, some
water is released and turbinated then goes to the river, also some water is pumped back
to Mattmark dam.

The benefit from pumping is that the same water can be used multiple times to produce
energy. However, pumping does not produce energy yet requires electricity. Therefore,
pumping is usually done in the nighttime when the electricity demand and price is low,
while in the daytime when the price is high, the hydropower system produces energy
by releasing and turbinating the water (Hunt et al., 2022). Hence, our objective now
is to maximize the profit of the hydropower system which is defined as the difference
between the revenue from energy selling and the cost for pumping. Thus, we intro-
duce a new variable pt as the amount of water pumped back from basin 2 to basin 1
at time t ∈ T. Thus, the aim is to find the water release scheduling from both basin
and also pumping scheduling with respect to balance constraints and the physical con-
straints of turbines, pumping pipe, and water storages. The robust formulation for the
hydropower problem with two-basin hydropower system is written below.

4.1 Robust Model for Two Basins Hydropower Optimization
Problem

Problem 4.1 (Robust model for Two-Basin Hydropower Problem).

max
|T|

∑
t=1

πt ξ(η1 gγ h1 o1
t + η2 gγ h2 o2

t −

1
ηp gγ h1 pt) (4.1)

s.t. f 1ω
t + pt + s1ω

t−1 = o1
t + s1ω

t ∀t ∈ Tω ∈ Ω (4.2)

o1
t + f 2ω

t + sω
t−1 = o2

t + pt + s2ω
t ∀t ∈ T, ω ∈ Ω (4.3)

siω
|T| ≥ siω

0 i = 1, 2, ∀ω ∈ Ω (4.4)

omin ≤ oi
t ≤ oi

max i = 1, 2, ∀t ∈ T, ω ∈ Ω (4.5)

pmin ≤ pt ≤ pmax i = 1, 2, ∀t ∈ T, ω ∈ Ω (4.6)

smin ≤ siω
t ≤ siω

max i = 1, 2, ∀t ∈ T, ω ∈ Ω (4.7)

The Equation (4.1) is the objective which aims to maximize the profit from the energy
selling. This function is defined by multiplying the price and the total energy pro-
duction where the total energy production is calculated by summing the total outflow
water from both basins minus the total water pumped back from basin 2 to basin 1.

Equation (4.2) and (4.3) are the balance constraints for basin 1 and basin 2 respectively.
These constraints differ from the balance constrain (3.15) in terms of it now depends
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on pumping and water released from both basins. Equation (4.2) describes the amount
of water in basin 1 at time t as the amount of water in that basin at time t − 1 plus
the amount of water flowing to the basin plus the amount of water pumped back from
downstream basin minus the amount of water released at time t. While Equation (4.3)
defines the amount of water in basin 2 at time t is equal to the amount of water in
the basin at the previous time plus the amount of water flows to the basin minus the
amount of water released at that time.

Furthermore, constraint (4.4) ensures that the amount of water in the storage at the end
of time horizon is at least the amount of water at the initial period. This constraint
is needed to guarantee that the hydropower system has enough water to run for the
next cycle. Moreover, constraints (4.5)-(4.7) are the boundary constraints for o, p, and s
accordingly which ensure that those variables must be within the some fixed numbers
because of its physical limitation.

4.2 Affine Decision Rule Model for Two-Basin Hydropower
Optimization Problem

As mentioned in the previous section, we want our policy to be able to adapt to any
realization of the inflows. Therefore, we now model the decision variables o and p as
affine functions of inflow water variables.

oiω
t = αi

t +
T

∑
t′=0

βi1
tt′ f 1ω

t′ +
T

∑
t′=0

βi2
tt′ f 2ω

t′ i = 1, 2, ∀t ∈ T, ω ∈ Ω (4.8)

pω
t = α3

t +
T

∑
t′=0

β31
tt′ f 1ω

t +
T

∑
t′=0

β32
tt′ f 2ω

t ∀t ∈ T, ω ∈ Ω (4.9)

To ensure that the decision variables represent the real implementable decisions that
are non-anticipative, it is enough to force βtt′ = 0, ∀t′ ≥ t. This is because in reality,
we never know the future. Hence, our decision variables must be non-anticipative,
meaning that they cannot depend on the future.

oiω
t = αi

t +
t−1

∑
t′=0

βi1
tt′ f 1ω

t′ +
t−1

∑
t′=0

βi2
tt′ f 2ω

t′ i = 1, 2, ∀t ∈ T, ω ∈ Ω (4.10)

pω
t = α3

t +
t−1

∑
t′=0

β31
tt′ f 1ω

t +
t−1

∑
t′=0

β32
tt′ f 2ω

t ∀t ∈ T, ω ∈ Ω (4.11)

In (4.10) and (4.11) both o and p variables depend on the history data of inflow from
the beginning of the cycle to one time step before. This causes variables o and p to be
dense and thus causes problems in running time. Therefore, we want to restrict these
variables, so that the affine decision variables depend only on the history data of inflow



44 Chapter 4. Two-Basin Hydropower Optimization Models

from specific time window τ.

oiω
t = αi

t +
t−1

∑
t′=t−τ

βi1
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

βi2
tt′ f 2ω

t′ i = 1, 2, ∀t ∈ T, ω ∈ Ω (4.12)

pω
t = α3

t +
t−1

∑
t′=t−τ

β31
tt′ f 1ω

t +
t−1

∑
t′=t−τ

β32
tt′ f 2ω

t ∀t ∈ T, ω ∈ Ω (4.13)

Thenceforth, we transform all decision variables o and p in the models to affine de-
cision variables defined in equation 4.12 and 4.13.

4.2.1 Risk-Averse for two-basin Hydropower Problem

Moreover, similarly to what we did in the previous section, we also consider two
types of decision-making here, namely risk-averse and risk-neutral decision-making.
As mentioned before, the difference between those two models lies in the objective
functions. In risk-averse, the objective is to maximize the revenue under the worst-case
scenario. From a Mathematical perspective, the objective for risk-averse can be written
as:

max min
ω∈Ω

|T|

∑
t=1

πt ξ(η1 gγ h1(α1
t +

t−1

∑
t′=t−τ

β11
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

β12
tt′ f 2ω

t′ )

+η2 gγ h2(α2
t +

t−1

∑
t′=t−τ

β21
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

β22
tt′ f 2ω

t′ )

− 1
ηp gγ h1(α3

t +
t−1

∑
t′=t−τ

β31
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

β32
tt′ f 2ω

t′ )) (4.14)

However, this objective includes the max and min functions which makes this function
hard to solve. Therefore, with the epigraph reformulation as mentioned in the previous
section, we will reformulate the objective into another equivalent function. For that
purpose, we introduce a new variable ψ so that:

max ψ (4.15)

s.t ψ ≤ min
ω∈Ω

|T|

∑
t=1

πt ξ(η1 gγ h1(α1
t +

t−1

∑
t′=t−τ

β11
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

β12
tt′ f 2ω

t′ )

+ η2 gγ h2(α2
t +

t−1

∑
t′=t−τ

β21
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

β22
tt′ f 2ω

t′ )

− 1
ηp gγ h1(α3

t +
t−1

∑
t′=t−τ

β31
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

β32
tt′ f 2ω

t′ )) (4.16)

This objective aims to maximize ψ where ψ is less than the minimum of the revenue for
all ω ∈ Ω. Those equations still include min function. Accordingly, we need to rewrite
the equations to omit the ’min’ function. Thus, the objective in equation 4.15-4.16 can
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be rewritten as:

max ψ (4.17)

s.t ψ − (min
ω∈Ω

|T|

∑
t=1

πt ξ(η1 gγ h1(α1
t +

t−1

∑
t′=t−τ

β11
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

β12
tt′ f 2ω

t′ )

+ η2 gγ h2(α2
t +

t−1

∑
t′=t−τ

β21
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

β22
tt′ f 2ω

t′ )

− 1
ηp gγ h1(α3

t +
t−1

∑
t′=t−τ

β31
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

β32
tt′ f 2ω

t′ ))) ≤ 0 ∀ω ∈ Ω

(4.18)

Hence, the risk-averse two-basin hydropower model aims to find the optimal released
water and pumping scheduling from both basins which maximize the aforementioned
objective and satisfy some constraints:
Balance Constraints

f 1ω
t + (α3

t +
t−1

∑
t′=t−τ

β31
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

β32
tt′ f 2ω

t′ ) + s1ω
t−1 =

(α1
t +

t−1

∑
t′=t−τ

β11
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

β12
tt′ f 2ω

t′ ) + s1ω
t ∀t ∈ T, ω ∈ Ω (4.19)

This constraint denotes the balance constraint for the upper basin. It explains that the
amount of water in the basin at time t is defined as the total of amount of water inflow
and pumped to the basin at that time plus the remaining water in the basin from time
t − 1 minus the water released from the basin.
While the balance constraint for the lower basin describes that the amount of water in
the basin at time t is equal to the total amount of water inflow, the water released from
the upper basin and the remaining water in the basin at time t − 1 minus the water
released and pumped at time t. Mathematically, it can be written as:

(α1
t +

t−1

∑
t′=t−τ

β11
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

β12
tt′ f 2ω

t′ ) + f 2ω
t + s2ω

t−1 =

(α2
t +

t−1

∑
t′=t−τ

β21
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

β22
tt′ f 2ω

t′ )

+(α3
t +

t−1

∑
t′=t−τ

β31
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

β32
tt′ f 2ω

t′ ) + s2ω
t ∀t ∈ T, ω ∈ Ω (4.20)
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Boundaries

omin ≤ αi
t +

t−1

∑
t′=t−τ

βi1
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

βi2
tt′ f 2ω

t′ ≤ oi
max i = 1, 2, ∀t ∈ T, ω ∈ Ω (4.21)

pmin ≤ α3
t +

t−1

∑
t′=t−τ

β31
tt′ f 1ω

t +
t−1

∑
t′=t−τ

β32
tt′ f 2ω

t ≤ pmax ∀t ∈ T, ω ∈ Ω (4.22)

smin ≤ siω
t ≤ siω

max i = 1, 2, ∀t ∈ T, ω ∈ Ω. (4.23)

Those three equations describe the physical limitations of the turbines, pumping pipe,
and water storage. Those contraints denote the boundaries for variables o, p, and s
respectively. It shows that the decision variables are bounded between some specific
values.
Cyclostationary Constraint

siω
|T| ≥ siω

0 , i = 1, 2, ∀ω ∈ Ω (4.24)

This equation aims to manage the amount of water in each basin at the end of time
horizon should not be less than the amount of water in the respective basin at the be-
ginning of the period. This is to ensure that the system has enough water to run for the
next cycle.
Furthermore, the complete mathematical model for risk-averse for two-basin hydro-
power problem can be seen in A.4.

4.2.2 Risk-Neutral for Two-Basin Hydropower Problem

This model differs from the previous model on the objective. In risk-neutral, the object-
ive function is in the form of expectation. Here, we will maximize the revenue under
the expectation. Therefore, the objective function for the risk-neutral is as follows.

max ∑
ω∈Ω

(
1

Prω

|T|

∑
t=1

πt ξ(η1 gγ h1(α1
t +

t−1

∑
t′=t−τ

β11
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

β12
tt′ f 2ω

t′ )+

η2 gγ h2(α2
t +

t−1

∑
t′=t−τ

β21
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

β22
tt′ f 2ω

t′ )−

1
ηp gγ h1(α3

t +
t−1

∑
t′=t−τ

β31
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

β32
tt′ f 2ω

t′ ))) (4.25)

where Prω denotes the probability of scenario ω to be happened. While the constraints
for the model are similar to the constraints in the risk-averse model. Therefore, the
complete model for the risk-neutral for two-basin hydropower problem is shown in
A.5.
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4.3 Two Basin Hydropower Model with Spillage Variables

In this section, we consider spillage in our problem. The idea is that the hydropower
system will be allowed to spill some water if the amount of water in the storage is above
a certain point. The aim of spillage is to prevent flooding caused by excessive water in
the storage because, for example the turbine is not working.

Feng et al. (2018) modeled the spill variable to be bounded by a specific minimum
and maximum values. While Zambelli et al. (2011) modeled the spill variable to be
at least 0 without maximum bound. Moreover, De Ladurantaye et al. (2009) modeled
spill variable to be between 0 and a maximum value. Whereas Gauvin et al. (2017)
defined that the maximum amount of water can be spilled is bounded by an evacuation
curve function C (t, ω) which follow the specific structure of the basin. Evacuation
curve function models the maximum amount of water allowed to be spilled at time t
given the specific amount of water stored in the storage. This function is increasing,
non-convex, and non-linear function. This non linearity complicates the problem even
more. Therefore, he decide to approximate the function using an affine function to
preserve the linear structure in the problem

Thus, we introduce a new variable liω
t , ∀t ∈ T, ω ∈ Ω, i ∈ {1, 2} which defines water

spilled from reservoir i at time t and scenario ω. Moreover, we adopt the evacuation
curve from Gauvin et al. (2017) which bounds the spillage variable.

Ci(t, ω) = x1
i + y1

i siω
t , ∀t ∈ T, ω ∈ Ω, i ∈ 1, 2, (4.26)

where x1
i , y1

i ∈ R Therefore, the boundary constraints for spill variables are:

liω
t ≤ x1

i + y1
i siω

t , ∀t ∈ T, ω ∈ ω, i ∈ {1, 2}. (4.27)

Accordingly, the amount of water in the storage now also depends on the amount of
water spilled. Thus, the amount of water in the first basin at time t is equal to the total
amount of water in the storage at time t − 1 and the amount of water pumped back as
well as the water flows to the basin at time t minus the amount of water released and
spilled at time t.

f 1ω
t + (α3

t +
t−1

∑
t′=t−τ

β31
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

β32
tt′ f 2ω

t′ ) + s1ω
t−1 =

(α1
t +

t−1

∑
t′=t−τ

β11
tt′ f 1ω

t′ +
t−1

∑
t′=t−τ

β12
tt′ f 2ω

t′ ) + s1ω
t + l1ω

t ,∀t ∈ T, ω ∈ Ω. (4.28)

At the same time, the amount of water in the second basin at time t is equal to the total
amount of water in the second basin at time t − 1, and the amount of water released
from the first basin, as well as the amount of water, flows to the basin at time t minus
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the amount of water released, pumped, and spilled from the basin at time t.
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t , ∀t ∈ T, ω ∈ Ω.

(4.29)

We then embed the Equation (4.27) to Problem (A.4) - (A.5) and adjust the balance
constraints for the basins according to the aforesaid explanation. The complete model
for hydropower problem with spill variable can be seen on A.6 for the risk-averse two-
basin hydropower problem with spill variable and A.7 for the risk-neutral two-basin
hydropower problem with spill variable.

4.4 Two Basin Hydropower Model with Variable Waterhead

In this section, we extend our model by considering variable waterhead. Unlike in pre-
vious sections where the height of the basin is assumed to be constant, here we consider
the fact that a variety of waterhead affects the energy production.

The water-head, also known as the hydraulic variable, is defined as the difference
between the headwater level in an upstream reservoir where water is released and
turbinated. It is measured vertically in meters. Considering this variable is important
as it explains the fact that water released from a higher level will produce more energy
than the same amount of water released from the lower level.

Therefore, we approximate the waterhead using an affine function of the water storage.

hiω
t = x2

i + y2
i s1ω

t , ∀i ∈ {1, 2} , t ∈ T, ω ∈ Ω, (4.30)

where hiω
t is the water-head level at basin i at time t under scenario ω and xi, yi ∈ R.

Equataion 4.30 shows that the water-head at each time depends on the amount of wa-
ter in the storage at that time. Therefore, the waterhead varies based on the amount of
water stored in the basin. However, if you see on Figure 4.1, it is seen that Zermeiggern
dam is relatively small compared to Mattmark dam. Therefore, on this study, we will
conside waterhead variable on Mattmark dam and assume that the waterhead is con-
stant in Zermeiggern dam.

Then the variables h1 on (A.13) and (A.14) are changed to the variable waterhead
defined on Equation 4.30. Therefore, the revenue for the hydropower is now defined
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as:
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Equation 4.31 is the revenue when the variable waterhead is considered. Multiply-
ing (x2

1 + y2
1sω1

t ) with α1
t in the equation above leads to a multiplication between two

variables, sω1
t and α1

t . This multiplication between two variables is usually called as a
bilinear term. Because of this bilinear term, the Equation 4.31 becomes non-linear and
thus, makes the overall problem no longer linear.

Then, for the hydropower model with waterhead variable, we adjust the revenue for-
mula in (A.13) for risk-averse problem and (A.14) for risk-neutral problem to hiω

t in
equation (4.30) to Equation 4.31. Therefore, the complete formulation of the Risk-
Averse two-basin hydropower problem with variable waterhead can be seen on A.9,
while for Risk-Neutral can be seen on A.10.

Model Variables Constraints
Robust Model for Linear f iω

t Balance Constraints
Two Basin Hydropower oi

t Cyclostationery Constraints
Optimization Problem pt Boundary Constraints
(4.1) siω

t
Affine Decision Rule Model Linear f iω

t Balance Constraints
for Two Basins Hydropower oiω

t Cyclostationery Constraints
Optimization Problem pω

t Boundary Constraints
(4.2) siω

t
Two Basin Hydropower Model Linear f iω

t Balance Constraints
with Spillage Variables oi

t Cyclostationery Constraints
(4.3) pt Boundary Constraints

siω
t Spillage Boundary

liω
t

Two Basin Hydropower Model Non Linear f iω
t Balance Constraints

with Variable oi
t Cyclostationery Constraints

waterhead pt Boundary Constraints
(4.4) siω

t
hiω

t

TABLE 4.1: The Comparison between the Models
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4.5 Rolling Horizon

Adding Equation (4.30) to the problem makes the problem non-linear. If we look at
(A.29) and (A.30), those equations contain bilinear term wich is the multiplication of
storage variables and α as well as β variable. Furthermore, we test these problems
into scheduling a one-year hydropower production based on 4 hourly schedule. The
problem is quite large and takes very long time to run. Therefore, we apply a rolling
horizon algorithm to solve the problem.

We propose two rolling-horizon algorithms which we call as simple rolling horizon
(SRH) algorithm and dynamic rolling-horizon (DRH) algorithm.

4.5.1 Simple Rolling Horizon (SRH) Algorithm

FIGURE 4.2: The Diagram of Simple Rolling-Horizon (SRH) Algorithm

The rolling-horizon algorithm process we propose here can be seen in Figure 4.2. This
algorithm consists of two main processes, the Tracking phase and the Optimization
phase. Let Ti as the time-window for the subproblem i

Tracking Phase: During this phase, the simplified model is solved and its result is
tracked. The simplified model used is Problem A.4 for risk-averse problem and
Problem A.5 for risk-neutral problem. Let s∗ =

(︂
s∗1 , ..., s∗|T|

)︂
be the storage vari-

ables obtained from solving simplified model.

Optimization Phase: In this phase, Problem (A.9) for risk-averse and (A.10) for risk-
neutral is solved iteratively under the smaller time window.

First Iteration: For the first iteration, the initial and end condition for the sub-
problem is obtained from the result of the simplified problem. Set s1

init = s∗0
and s1

end = s∗T1
These conditions are essential since if we do not fix the end

condition to some values, the algorithm tends to release maximum amount
of water by leaving a small amount of water or even empty storage. This
should be avoided because we need to ensure that the hydropower system
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always has enough water to run the production. Let s′i =
(︂

s′i1 , ..., s′iT1

)︂
be the

storage variables obtained from solving the variable waterhead model.

Next Iterations: From the second iteration onward, the initial condition is ob-
tained from the last condition of the previous subproblem and the end con-
dition is obtained from the simplified problem. Let Ti = (Ti−1 + 1, ...., Ti)

be the time window of the subproblem on iteration i. Set si
init = s′i−1

Ti
and

si
end = s∗i−1

Ti
and solve the model in Problem A.9 or A.10 under those condi-

tions.

We drop constraints (A.45) and (A.54) and change them with the end condition ex-
plained above. This algorithm shares similarities with shrinking and reciding hori-
zon approach proposed by Wakui et al. (2022). Our algorithm differs from that pro-
posed by Wakui et al. (2022) in terms of the final horizon. Let us assume that T is
the whole horizon and it is divided into several time windows for the subproblems
[t0, t0 + K1] , [t0 + K1, t0 + K2] , ..., [t0 + Kn−1, t0 + Kn] where Kn ≥ T. Wakui consider
this condition to ensure the cyclostationarity of the process in the model and use the
corresponding time for [T, t0 + Kn].

Moreover, in SRH algorihtm proposed here, the simplified model solved in initializa-
tion phase has to satisfies the initial/final condition stated in Equation (A.9) or Equa-
tion (A.17). The purpose of this constraints is to ensure that at the end of period, the
amount of water in the storage is at least the amount of water at the beginning period so
that the hydropower system has enough water to continue to the next cycle (cyclosta-
tionary process). Hence, fixing the end condition of the storage at each time window
to be equal to the amount of water in storage at the corresponding time obtained from
simplified model is sufficient to ensure the cyclostationary process.

4.5.2 Dynamic Rolling Horizon (DRH) Algorithm

FIGURE 4.3: The Diagram of Rolling-Horizon Algorithm
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Algorithm 2: Pseudocode for Simple Rolling Horizon (SRH)

Tracking Phase;
Data: f ω

t , πt, ∀ω ∈ Ωts, t ∈ T, omin, omax, smin, smax
Optimize A.4 for Risk-Averse and A.5 for Risk-Neutral
Result: st, αt, βt,t′ , ∀t ∈ T, t′ ∈ (t − τ, t − 1)
Optimization Phase;
Split T into n subsets so that

T1 =
(︂

T0, T |T|
n

)︂
, T2 =

(︂
T |T|

n −1
, T

2 |T|
n

)︂
, ..., Tn =

(︂
T
(n−1) |T|n −1

, T|T|

)︂
Data: f ω

t , πt, ∀ω ∈ Ωts, t ∈ T, omin, omax, smin, smax, si∗ =(︂
si∗

1 , si∗
2 , ..., si∗

|T|

)︂
from the tracking phase for i = 1, 2

for k in range n do
if k = 1 then

Set si
|T1| = si∗

|T1|
Optimize A.9 for Risk-Averse and A.10 for Risk-Neutral in range (0, T − 1)
Result: si′

t , αt, βt,t′ , ∀t ∈ T1, t′ ∈ (t − τ, t − 1), i = 1, 2
else

Set:
si

0 = si′Tk−1

si
|Tk |

= si∗
|Tk |

Optimize A.9 for Risk-Averse and A.10 for Risk-Neutral in range (Tk−1, Tk)
Result: si′

t , αt, βt,t′ , ∀t ∈ Tk, t′ ∈ (t − τ, t − 1), i = 1, 2
end

end

This algorithm is basically the extension of the previous algorithm, however the result
from simplified model is updated at each iteration. The algorithm consists of two main
processes at each iteration which are Tracking phase, and Optimization phase. Let T be
the whole horizon and it is divided into n time window where Ti be time window for
the subproblem at iteration i = {1, .., n}.

i=1 Tracking phase: In this phase, the simplified model Problem (A.4) or (A.5) is solved
for the whole horizon T. Let s∗ be the storage variables obtained from the
result of the simplified model

Optimization phase: Set sinit = s∗0 and send = s∗T1
. Then, the constraint in Equa-

tion (A.9) or (A.17) is changed to siω
|T| = siω

end and the non-linear model with
variable waterhead in Problem (A.9) or (A.10) is solved with those condi-
tions. Let s′ be the storage variables obtained from the result in this phase.

i=2,...,n Tracking phase: the simplified model Problem (A.4) or (A.5) is solved for the
horizon (Ti−1 + 1, ..., T) and sinit = s′Ti−1

Optimization phase: Set sinit = s′Ti−1
and send = s∗Ti

. Then, the constraint in Equa-
tion A.9 or A.17 is changed to siω

| T| = siω
end and the non-linear model with

variable waterhead in Problem A.9 or A.10 is solved with those conditions.
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Algorithm 3: Pseudocode for Dynamic Rolling Horizon (DRH)
Split T into n subsets so that

T1 =
(︂

T0, T |T|
n

)︂
, T2 =

(︂
T |T|

n −1
, T

2 |T|
n

)︂
, ..., Tn =

(︂
T
(n−1) |T|n −1

, T|T|

)︂
for k in range n do

if k = 1 then
Tracking Phase;
Optimize A.4 for Risk-Averse and A.5 for Risk-Neutral in range (0, T)
Result: si∗

t , αt, βt,t′ , ∀t ∈ T, t′ ∈ (t − τ, t − 1), i = 1, 2
Otimization Phase;
Data: f ω

t , πt, ∀ω ∈ Ωts, t ∈ T, omin, omax, smin, smax, si∗ =(︂
si∗

1 , si∗
2 , ..., si∗

|T|

)︂
from the tracking phase, for i = 1, 2

Set:
si
|T1| = si∗

|T1|
Optimize A.9 for Risk-Averse and A.10 for Risk-Neutral
Result: si′

t , αt, βt,t′ , ∀t ∈ T1, t′ ∈ (t − τ, t − 1), i = 1, 2
else

Tracking Phase;
Set:
si

0 = si′
|Tk−1|

Optimize A.4 for Risk-Averse and A.5 for Risk-Neutral in range (Tk−1, T)
Result: si∗

t , αt, βt,t′ , ∀t ∈ T, t′ ∈ (t − τ, t − 1), i = 1, 2
Optimization Phase;
Set:
si

0 = si′
Tk−1

si
|Tk |

= si∗
|Tk |

Optimize A.9 for Risk-Averse and A.10 for Risk-Neutral
Result: si′

t , αt, βt,t′ , ∀t ∈ Tk, t′ ∈ (t − τ, t − 1), i = 1, 2
end

end

4.6 Numerical Result and Discussion

We test the models to the Switzerland Mattmark Hydropower system which can be
seen on Figure 4.1. This hydropower system consists of 2 basins, and one pumping
system. The upper basin, which is Mattmark dam, has maximum capacity of storage
around 108 m3 and its associated power plant, the Zeirmeggern power plant, is loc-
ated just below the Mattmark dam and has the hydraulic head between 370 and 460
m.The downstream basin which is Zeirmeggern dam has the storage capacity around
100,000 m3 and its associated power plant, Stalden power plant, is located at the end of
the valley and has a hydraulic head close to 1,000 m (Anghileri, Castelletti et al., 2018).

We apply the models to scheduling those hydropower system over a one-year period.
The input data consist of inflow data and the electricity data. The model parameters
for the hydropower reservoirs and plants were set to values available in the literature
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(Anghileri, Castelletti et al., 2018, Anghileri, Botter et al., 2018) and on the website ht-
tps://www.kraftwerkemattmarkag.ch/anlagen/. Reasonable assumptions whenever
information was not publicly available. The inflow data is the data of inflow on two
basins on hourly schedule. There are 20 different scenarios of inflow and we use the
first 14 scenarios as training set and the rest as the validation set. The inflow scenarios
used in the training and validation set were stochastically generated using the model
published in Anghileri, Castelletti et al. (2018).

We set the initial water storage on the Mattmark dam as 70,000,000 m3 and on Zermeig-
gern dam as 50,066 m3. For Problem A.4 - A.7, where we assume that the water-head
variable is constant, we fix the height for Mattmark power plant as 400 m and as 980
m for Zermeiggern power plant. We gradually run the problem with τ from 0 to 100.
The result obtained then is applied to the validation set. Validation is aimed to see the
performance of the result obtained with it is applied to the data outside the data used
for optimization (training set). It keeps tracking of how many violations made. The
process of validation can be seen on A.8.

4.6.1 Robust-Affine Model

In this section, we present the results from the aforementioned data to the model shown
in Problem A.4 and A.5. To compare the result obtained from optimizing RA (A.4) and
RN (A.5) of two-basin hydropower system, one can look at Figure 4.4.

From Figure 4.4a, it can be seen that the objectives of RA remain the same throughout
τ. On the other hand, the objective of RN increases in parallel with the increasing in τ.
However, the increment on the objective after τ = 10 is not as sharp as before τ = 10.

Regarding the running time, both RA and RN experience a sharp rise along the τ.
Furthermore, we can expect that the running time in RA is higher than in RN because
RA has one more constraint for each scenario. Therefore, there are 14 more constraints
in RA than in RN and it affects the running time.

(A) Objectives (B) Running Time

FIGURE 4.4: Comparison between RA (A.4) and RN (A.5)
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(A) Scenario 15 (B) Scenario 16 (C) Scenario 17

(D) Scenario 18 (E) Scenario 19 (F) Scenario 20

FIGURE 4.5: Violation on RA

The result obtained from the optimization, then is applied to the data in the validation
set. Furthermore, the number of violations when the result is applied to the validation
set is calculated. If the variables violate the maximum bound, then we fix the variables
to be equal the maximum bound for practical perspective reasons.

Figure 4.5 shows the number of violations for each scenario in the validation set. As
can be seen in the Figure that there is no violation in the storage for all scenarios in all
τ. Also, the number of violations increases when τ is increased.

Figures 4.6 - 4.11 show the results from the RA Model. The first two illustrate the result
in the training set, while the rest present the application of the result into the validation
set. For each graph, there are 6 different plots. The first three plots show the amount
of water released from the first basin, from the second basin and the water pumped
back each time and across all scenarios in the training set. The next two plots show the
amount of water remaining in the first basin and in the second basin, while the last plot
illustratess the price of electricity at each point in time.

Figure 4.12c plots the revenue on the validation set for each scenario over each τ from
0 to 100. We can see that from τ = 0 to τ = 10 the revenue for each scenario in the
validation set increases. This trend continues until τ = 40 except in scenario 16. This
scenario produces the lowest revenue compared to the other scenarios and it starts to
decrease from τ = 10, then decreases more rapidly from τ = 40 onwards.

Figure 4.12a and 4.12b show the statistics of the revenue of RA in the training set and
validation set respectively. The ’Minimum’, ’Average’, and ’Maximum’ describe the
minimum, average, and revenue for all scenarios in the related set, namely training or
validation. While the objective shows the objective value obtained from the optimiza-
tion process.



56 Chapter 4. Two-Basin Hydropower Optimization Models

FIGURE 4.6: RA τ = 0 in Training Set

FIGURE 4.7: RA τ = 10 in Training Set

In Figure 4.12a, the objective found is equal to the minimum revenue in the training
set. This can be explained because in the RA model, we are looking for the solution for
the worst-case scenario. If we look at both in Training and in validation set, in average,
the revenue increase until τ = 40 from which point it begins to fall.

If we refer to the violation pictured in Figure 4.5, applying τ = 0 may be good in terms
of there is no violation on it. However, if we refer to Figure 4.12c and 4.12b, it shows
that fixing the τ to be zero may lead to missing a chance to get better profit. As seen in
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FIGURE 4.8: RA τ = 100 in Training Set

FIGURE 4.9: RA τ = 0 in Validation Set

that figure that we can gain better revenue for fixing τ between 10 to 40.

Compared with RA, RN does better performance. Refer to Figure 4.4, RN produces
better objectives with less running time. Figure 4.13 below shows the violations for
each scenario when the result is applied to the validation set. It can be seen that there
are no violations in the storage variable. The violations only occurs on the decision
variables. It seems that the decision variables tend to violate the maximum bounds
and it can be fixed by force them to be equal to the maximum amount allowed.
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FIGURE 4.10: RA τ = 10 in Validation Set

FIGURE 4.11: RA τ = 100 in Validation Set

The violations rise along with the increase in τ. We suspect that the model suffers from
an overfitting phenomenon. Therefore, in the next section, we will apply regularization
to prevent overfitting and obtain a better performance on the validation set.

Looking closer at Figure 4.16, it shows that the storage variables is convergent at the
end of the horizon. RN tried to force the storage variable for each scenario to be equal
to the initial amount of storage. This is very beneficial in practice since this turns the
problem into a cyclostationery process. It can guarantee that the result obtained for this
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(A) Statistics of RA in The Train-
ing Set

(B) Statistics of RA in The Valid-
ation Set

(C) Revenue of RA Model for each scenario
in The Validation Set

FIGURE 4.12: Performance of RA

(A) Scenario 15 (B) Scenario 16 (C) Scenario 17

(D) Scenario 18 (E) Scenario 19 (F) Scenario 20

FIGURE 4.13: Violations for RN Model

horizon can be mimicked to the next time horizon as the storage amount at the end of
this horizon means the storage amount at the start of the next horizon.

If we analyse the performance of RN by looking at Figure 4.20, it is evident that the
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FIGURE 4.14: RN τ = 0 in the Training Set

FIGURE 4.15: RN τ = 10 in the Training Set

objective value achieved from the optimization process is equal to the average revenue
for all scenarios in the training set. This is because in the RN model, we optimize under
the expectation.

Moreover, the revenue gained by applying the RN result to the scenarios in the valida-
tion set increased from τ = 0. On average, revenue increases before it starts to decrease
at τ = 100.
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FIGURE 4.16: RN τ = 100 in the Training Set

FIGURE 4.17: RN τ = 0 in the Validation Set

4.6.2 Two-Basin Hydropower Model with Spill Variable

This problem is an extension of the previous problem. In this problem, a spill variable
is added to the model. The idea of the spill variable is to allow some water to be spilled
when the amount of water in the storage reaches some fixed point.

Gauvin et al. (2017) showed that the spill variable is bounded by a function called as
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FIGURE 4.18: RN τ = 10 in the Validation Set

FIGURE 4.19: RN τ = 100 in the Validation Set

Evacuation curve. This function is generally smooth, non-linear, non-convex, and in-
creasing. Therefore, to preserve the linearity in the model, we approximate the curve
using an affine function. Thus, this evacuation curve is a function of the amount of
water in the storage.

C (t, ω) = xi + yisiω
t , ∀ω ∈ ω, t ∈ T, i ∈ {1, 2} (4.32)
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(A) Statistics of RN in the Train-
ing Set

(B) Statistics of RN in the Valid-
ation Set

(C) Revenue of RN Model for each scen-
ario in the Validation Set

FIGURE 4.20: Performance of RN

FIGURE 4.21: RN with Spill Variable τ = 0 in the Training Set

Figure 4.22 - 4.24 show the performance of RN with the spill variable where the first
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FIGURE 4.22: RN with Spill Variable τ = 100 in the Training Set

FIGURE 4.23: RN with Spill Variable τ = 0 in the Validation Set

two graphs are the result in the training set, while the remaining is in the validation
set. There are 8 plots in each figure. The first three graphs plot the amount of water
released from basin 1, basin 2, and water pumped back to the first basin at each time t
for all scenarios in the related set. The next two draw the amount of water in basin 1
and 2 respectively, while the next two plots present the amount of water spilled from
the related basin. Then, the last plot shows the electricity price over time.

The fifth and sixth plot in Figure 4.22 indicate that there is no water spilled. If the
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FIGURE 4.24: RN with Spill Variable τ = 100 in the Validation Set

(A) Scenario 15 (B) Scenario 16 (C) Scenario 17

(D) Scenario 18 (E) Scenario 19 (F) Scenario 20

FIGURE 4.25: Violations for RN with Spill Variable Model

spill variable is not present in the model, then the model is essentially an RN model in
Problem A.5. Therefore, we can see that Figure 4.22 shares similarities with Figure 4.16.

Furthermore, we compare the performance of RN for τ = 0 in Figure 4.14 and 4.21 and
analyse the result. It shows that in model with spill variable, the storage variable is
convergence in the end of the horizon. The spill variable appears to force the conver-
gence in the storage variable.

Comparing Figure 4.20c and 4.25, as well as Figure 4.20 and 4.20, we can see that they
are similar. Therefore, we can say that the performance of RN with and without the
spill variables is identical even in the validation set. Furthermore, Figure 4.27 present
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(A) Statistics of RN with Spill
Variable in the Training Set

(B) Statistics of RN with Spill
Variable in the Validation Set

(C) Revenue of RN with Spill Variable
Model for each scenario in the Validation

Set

FIGURE 4.26: Performance of RN with Spill Variable

FIGURE 4.27: Running Time of RN without Spill Variable Vs with Spill Variable

the running time needed by both RN with and without spill variables for each τ. In ad-
dition, it is evident that RN with spill variables took more time to run compared with a
similar model without spill variable. This is to be expected because in the model with
the spill variable, there are more constraints and this undoubtedly affects the running
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FIGURE 4.28: RA with Spill Variable τ = 0 in the Training Set

FIGURE 4.29: RA with Spill Variable τ = 100 in the Training Set

time. Although they are different, we can see that the running time for both models
follow the same pattern.

Moreover, this result is also similar on the RA model. If we compare Figure 4.29 to 4.8,
we can see that they are almost the same. However, it seems that the spill variables
tried to force the storage variable to become equal to the initial storage amount at the
end of the horizon. Furthermore, if we look at the performance of RA model with spill
variable shown in Figure 4.32, it is almost identical to the performance of RA without
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FIGURE 4.30: RA with Spill Variable τ = 0 in the Validation Set

FIGURE 4.31: RA with Spill Variable τ = 100 in the Validation Set

spill variable in Figure 4.12c - 4.12b.

Therefore, we can conclude that in both RA and RN cases, the spill variable does not
give much effect to the model. If we look at the average amount of water in the storage,
we find that the average amount of water in the first basin is around 70% of maximum
capacity, while the average amount of water in the second basin is around 51% of its
maximum limit. Thus, we can deduce that the spill variable is not significant in the
model because the average amount of water in the storage throughout the year is far
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(A) Statistics of RA with Spill
Variable in the Training Set

(B) Statistics of RA with Spill
Variable in the Validation Set

(C) Revenue of RA with Spill Variable
Model for each scenario in the Validation

Set

FIGURE 4.32: Performance of RA with Spill Variable

from maximum storage limit, thus meaning that there is no condition for the spill vari-
able to be active.

4.6.3 Regularization

As discussed above, the models suffer from overfitting phenomenon. Therefore, we
will apply regularization on β variables to prevent overfitting. We add

βi
t,t′−1 ≤ βi

t,t′ (4.33)

as the regularization constraints. The purpose of Equation (4.33) is to restrict β vari-
ables. This equation implies that the amount of inflow water today affects more to the
decision about how much water to release now rather than yesterday’s inflow water.

Figures 4.33-4.34 plots the result of RN in training set and validation set for τ equal
to 0 and 100. If we compare them with Figures 4.16 and 4.19, we can see that those
figures are quite similar. Moreover, Figure 4.35 shows the performance of RN with
regularization. From that figure, we can see that both in the validation and training set,
the performance is quite stable after τ = 10.
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FIGURE 4.33: RN with Regularization τ = 100 in the Training Set

FIGURE 4.34: RN with Regularization τ = 100 in the Validation Set

Table 4.2 presents the comparison between RN without and with regularization in
terms of their objectives, violations, and running time. The third column of the table
shows the objective obtained from both models for each τ from 0 to 100. We can see
that the objective produced from RN is better than from RN with regularization.

Columns 4-6 of Table 4.2 present the statistics in the validation set from RN and RN
with regularization. We can see that the result obtained from RN is still better than
from RN with regularization model, but the difference is not that big like the one in the
training set. However, if we see column 7 of Table 4.2 which shows the number of vi-
olations in each τ, it can be seen that the number of violations produced from RN with
regularization is less than from RN model without regularization. Therefore, we can
conclude that RN model with regularization performs better in the validation set than
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(A) Statistics of RN with Regu-
larization in the Training Set

(B) Statistics of RN with Regu-
larization in the Validation Set

(C) Revenue of RN with Regularization
Model for each scenario in the Validation

Set

FIGURE 4.35: Performance of RN with regularization

the same model without regularization. In terms of running time shown in column 8
of the Table, we can expect that the running time needed for RN with regularization
is longer than it is needed for RN model because the presence of the regularization
constraints in Equation 4.33 for the model with regularization.

Table 4.3 shows the results obtained by RA without and with regularization. The third
column present the objective value obtained from both models, while columns 4-6 of
the table present the minimum, average, and maximum revenue in the validation set
for both RA models without and with regularization, and the last two columns show
the violations and running time.

Column 3 in Table 4.3 indicates that there is no difference on the performance of RA
without and with regularization in the training set, however, if we look further into the
validation set, columns 5 of table 4.33 report that in average, the revenue produced by
RA with regularization in the validation set is better than that produced by RA without
regularization. Moreover, the violations from RA with regularization is less than it
is from model without regularization. This indicates that model with regularization
produces solution that performs better in the validation set with the cost of longer in
running time.
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TABLE 4.2: The Comparison between RN without and with Regularization

τ obj Min Val Ave Val Max Val Viol Time
10 27164674.8 24004677.6 26111734.8 27215686.8 455 74.1
20 27413848.8 24040778.4 26172426.0 27008107.2 523 136.8
30 27566100.0 24022335.6 26196035.4 27044208.0 528 206.6
40 27662630.4 23906577.6 26200090.2 27138776.4 559 358.1

RN 50 27750135.6 23890096.8 26253652.8 27236484.0 587 492.1
60 27824691.6 23856350.4 26315913.6 27297306.0 617 574.4
70 27884336.4 23846540.4 26315194.2 27333799.2 641 709.1
80 27930247.2 23884210.8 26347763.4 27407178.0 652 783.4
90 27973411.2 23868514.8 26384191.2 27483696.0 706 898.0
100 28008334.8 23802591.6 26315521.2 27466822.8 727 1006.1
10 26747553.6 23968576.8 26102382.6 27240800.4 417 139.1
20 26831919.6 23869299.6 26084528.4 27294559.2 422 338.4
30 26882931.6 23878717.2 26126776.8 27260028.0 410 621.9

RN 40 26917070.4 23845363.2 26141949.6 27256104.0 405 1111.4
with 50 26943361.2 23818287.6 26146331.4 27287888.4 416 1437.2
Reg 60 26961804.0 23771199.6 26146658.4 27256104.0 411 1761.2

70 26976715.2 23760212.4 26162943.0 27302014.8 415 2404.8
80 26985348.0 23763351.6 26169679.2 27305546.4 429 2976.9
90 26992018.8 23733921.6 26171248.8 27305546.4 427 3263.4
100 26997904.8 23708808.0 26189103.0 27336546.0 443 3508.0

TABLE 4.3: The Comparison between RA without and with regularization

τ obj Min Val Ave Val Max Val Viol Time
10 23589910.8 23591088.0 23621237.4 23658973.2 18 68.4
20 23589910.8 23578138.8 23667736.8 23756680.8 96 161.4
30 23589910.8 23568328.8 23717833.2 23848894.8 206 246.4
40 23589910.8 23583240.0 23734575.6 23875185.6 227 445.6

RA 50 23589910.8 23440014.0 23694943.2 23835945.6 342 590.0
60 23589910.8 23356040.4 23660346.6 23815148.4 420 779.6
70 23589910.8 23316408.0 23657534.4 23855565.6 492 909.0
80 23589910.8 23205358.8 23591872.8 23814363.6 491 1100.9
90 23589910.8 23013082.8 23539683.6 23839084.8 712 1279.6
100 23589910.8 22990716.0 23543738.4 23917957.2 672 1473.7
10 23589910.8 23613454.8 23621629.8 23629543.2 13 154.4
20 23589910.8 23606391.6 23621695.2 23644062.0 31 377.4
30 23589910.8 23593834.8 23630262.6 23684871.6 43 604.7

RA 40 23589910.8 23603252.4 23636017.8 23689580.4 60 1117.9
with 50 23589910.8 23609138.4 23652825.6 23729605.2 72 1450.1
Reg 60 23589910.8 23705276.4 23744254.8 23834376.0 100 1914.3

70 23589910.8 23606391.6 23652891.0 23715478.8 83 2606.6
80 23589910.8 23611492.8 23666428.8 23739022.8 90 3149.8
90 23589910.8 23608353.6 23696839.8 23786110.8 141 3435.1
100 23589910.8 23649948.0 23729278.2 23818680.0 141 3643.0

From both results in RA and RN model with regularization, therefore, we can say that
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employing the regularization equation shown in Equation 4.33 to the model can pro-
duce the solution which will do better in the validation set. The model with regulariza-
tion can produce the solution that produces similar revenue in the training set with the
model without regularization but with better quality because the model can keep the
violations small when it is applied to the validation set.

4.6.4 Two-Basin Hydropower Problem with Variable Waterhead

Refer to figure 4.1, it can be seen that the Zeirmeggern dam is relatively small com-
pared to the Mattmark dam. Therefore, we will consider the waterhead as a variable in
basin 1 and ignore its effect in basin 2. In other words, we will assume that waterhead
is constant in basin 2.

In this section, we will test the models in Problem (A.9) and (A.10). Before we continue
to solve the problem with a variable waterhead, we take solutions obtained from lin-
ear model in Problem (A.5) and then reevaluate the profits with assuming a variable
waterhead.

FIGURE 4.36: The comparison of the profit with and without waterhead variables

Figure 4.36 shows the comparison of the profit if the result obtained from the linear
model is applied to the objective function without and with variable waterhead. The
first plot presents the profit in the training set for all scenarios. The plot shows that the
profit is better when the variable waterhead is taken into account. The second plot dis-
plays the profit for the scenarios in the validation set. It also shows that when variable
waterhead is taken into consideration, the profit goes up by 600,000 Euro higher. There-
fore, it is evident that with the same amount of water released, considering waterhead
variables will lead to better profits than ignoring them. Hence, it becomes important to
bring the waterhead variables into the models.
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First, we test the proposed algorithms to solve Problem A.9 under τ = 2. We solved
the problem A.9 as a non-convex MIP model in a full horizon at once with the help of
Gurobi 9.5.0. Then, we compare the result with the result obtained from solving the
same model using the proposed rolling horizon algorithm, SRH and DRH. It can be
seen from Table 4.4 that both models with rolling horizon produce a better result than
when the problem is solved in the full horizon. The rolling horizon algorithms produce
500, 000Euro more than the result when the problem is solved at once. Also in terms of
running time, the model with a rolling horizon takes less time to run.

Moreover, comparing the result from SRH and DRH, it was found that DRH produces
better revenue and fewer violations than SRH. However, DRH takes a longer time to
run. It can be expected since at each iteration, DRH solves two problems which are
the simplified model and the non-linear model. Furthermore, if we see to Figure 4.37
which shows the comparison of the performance of SRH and DRH in the validation, it
shows that DRH makes better profit than SRH for each scenario in the validation set.
Therefore, we can conclude that DRH performs better than SRH and henceforth, we
will test DRH with τ = 10 and compare the result with the linear model A.4 and A.5.

TABLE 4.4: The Comparison of the Results from SRH and DRH

Model obj Viol Time
Linear 23668905.7 15 5667.23
SRH 24171580.2 14 2603.80
DRH 24180626.9 13 3170.87

FIGURE 4.37: SRH vs DRH in the Validation Set

Figures 4.38-4.39 show the results from the RA model with variable waterhead solved
by DRH in the training set and validation set. Compared with Figure 4.7 which shows
the result for the RA model without waterhead variables in the training set, it can be
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seen that both of them produce a similar policy. However, if we refer to Table 4.5, we
can see that RA model with variable waterhead produces a better objective than the
model without waterhead variables. Moreover, the RA model with waterhead vari-
ables also outperforms the RA model without waterhead variables when the result is
applied to the validation set. It produce better profit in the validation set and even
less violation. The same goes with RN model. Considering waterhead variables in RN
model yields to almost 200,000 Euro more in the revenue. And even more, it generates
an extra more than 600,000 Euro in the revenue when waterhead variable is considered
in RA model. However, because of the non-linearity in the constraints, the RA model
with variable waterhead takes a longer time to run.

FIGURE 4.38: RA with variable waterhead, τ = 10 in the Training Set

TABLE 4.5: The Comparison between Linear Models and Models with Variable Water-
head

Model obj Min Val Ave Val Max Val Viol Time
RA Linear 23589910.8 23591088.0 23621237.4 23658973.2 18 68.40
RA-DRH 24190771.3 24188409.6 24218043.5 24231471.4 17 5718.60
RN Linear 27164674.8 24004677.6 26111734.8 27215686.8 445 74.10
RN-DRH 27330660.0 24081195.6 26178246.6 27250156.0 346 4409.52

Figures 4.40 and 4.41 show the performance of RN model with variable waterhead
solved by DRH algorithm in the training set and validation set. If we compare Figure
4.40 and 4.15 which shows the performance of RN with τ = 10 but without considering
variable waterhead, it shows that the result from RN model without variable waterhead
tends to release water more frequently even in the time when the price is low. It can
be seen around time 1100 to 1500, when the price is relatively low, the linear RN model
keeps releasing the water, while the RN model with variable waterhead tends to wait
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FIGURE 4.39: RA with variable waterhead, τ = 10 in the Validation Set

FIGURE 4.40: RN with variable waterhead, τ = 10 in the Training Set

until the basin is full and then releases the water when the basin is full. This is because,
when considering variable waterhead, releasing water when the basin is full will pro-
duce more energy than releasing it when it is not full.

Moreover, the RN model with variable waterhead produces a higher profit than the
model without variable waterhead. Even in the validation set, the RA model with
variable waterhead performs better, as it leads to a higher profit and a smaller viola-
tion. However, the price for such a better performance is a longer time for solving the
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FIGURE 4.41: RN with variable waterhead, τ = 10 in the Validation Set

model. It can be expected since RN model with variable waterhead contains bilinear
terms in the objective.

Therefore, from those results, it is shown that considering variable waterhead in hy-
dropower optimization problem is important. It can lead to a better result which also
performs better in the validation set.
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Chapter 5

Conclusions

At the beginning of this work, we modeled a long-term hydropower production prob-
lem that includes a single basin using a robust optimization (RO) model. this model is
the simplification of the real-world model we will do later. We modeled the decision
variable o to be a second-stage variable and dependent on the inflows up to τ time
steps in the past so that the decision variable can adapt to any realization of the in-
flows. Then, we compared the results with various values of τ and concluded that the
performance of the model is increasing in parallel with the increase of τ. However, we
also saw from the numerical result that the bigger the τ is, the bigger the violations
when the result is applied to the validation set. The results showed that at some point
of τ, the performance of the model stops increasing and even starts to decrease. This
yields to our first contribution. Therefore, we suspected that the model experienced an
overfitting phenomenon.

We also modeled the problem with a stochastic method and solved it using Stochastic
Dynamic Programming (SDP). However, as expected, SDP experienced what was re-
ferred as the curse of dimensionality which caused a very long running time. We com-
pared the results obtained from SDP and RO and it showed that even with longer run-
ning time, the results obtained from SDP are not better than those from RO. Therefore,
it is not worth continuing the research on SDP and we focus our research on the robust
model.

The research then was extended to the multi-basin hydropower optimization problem.
We modeled a hydropower system that consists of two basins, two release water pipes,
and one pumping system. The decision variables for the problem were the amount of
water released from both basins and the amount of water pumped back to the upstream
basin. We modeled them to be second-stage variables and inflow dependent. The result
showed that the models suffered from overfitting as the violations increased in parallel
with an increment in the time window. Therefore, we applied regularization to prevent
the overfitting phenomenon in the model. We added constraints that restrict the effect
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of water inflow at time t − 1 to the decision made at time t is less than the effect of the
amount of water inflow at time t. Adding this regularization constraint improved the
quality of the result in the validation set which is shown by fewer violations. This leads
to our second contribution.

Moreover, we added the spill variable to the model which aimed to account for some
water being spilled if the water in the storage reaches a certain point. This spill variable
is bounded by a function called an evacuation curve. The evacuation curve models the
maximum amount of water to be allowed to spill at time t for scenario ω. This func-
tion is increasing and non-convex. Therefore, to preserve the linearity of the model we
approximated the function by an affine function. However, the result showed that the
spill variable is unnecessary when the average amount of water in the storage is far
from maximum capacity.

In the aforementioned models, we assumed that the height of the reservoir, also known
as waterhead, is constant. However, in reality, the waterhead is not constant as it de-
pends on how much water is in storage. Therefore, in this stage, we modeled the prob-
lem with non-linearity in the waterhead. The water head variable is defined as an affine
function of the storage level. Adding this variable made the model to be non-convex
and non-linear.

Solving the non-linear model is challenging. Moreover, solving the non-linear model
for a large horizon is even more difficult. Therefore, we applied a rolling horizon tech-
nique to split the problem into smaller subproblems. These problems are then solved
sequentially. This leads to our third contribution. We introduce 2 types of Rolling ho-
rizons, namely Simple Rolling horizon (SRH) and Dynamic Rolling Horizon (DRH).
Both SRH and DRH consist of 2 phases, tracking phase and optimization phase. The
difference is that in SRH, the tracking phase is done once at the beginning, whereas in
DRH, the tracking phase is done iteratively along with the optimization phase.

First, we compare SRH and DRH for a small value of τ and find that DRH produces a
better result but needs a longer time to run rather than SRH. Therefore, we take only
DRH for the next experiment. We, then compare the result of affine models and the
models with waterhead. The computational result shows that the improvement is
significant when the model with variable waterhead is employed rather than ignor-
ing them. Considering variable waterhead generates 100,000Euro more in RN and
600,000Euro more in RA than when it is ignored. However, as it can be expected, the
time to solve the models is much longer.
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Appendix A

A.1 Example of the Process of Dynamic Programming

Consider this problem: We want to optimize our profit from energy selling at time
T = 0, 1, 2 with a unit of water inflow at every time, thus t is 1, 2, 3 and the price is
10, 5, 8. The capacity storage at time t = 0 is 1, while the minimum capacity of the
storage is 0 and maximum capacity of the storage is 3.

To solve this problem, we do a backward recursion. We start from time 2 with the
capacity of storage is 0. At time t = 2, there are 3 units of water inflows. Therefore, we
have 3 total units of water in the basin. We have 4 scenarios for this: (1) we keep all of
the water from the basin which means releasing 0 unit of water, (2) we release 1 unit
of water, so there are 2 units of water remaining in the basin, (3) we release 2 units of
water and keep 1 unit of water in the basin, (4) we release all of the water, so there is
no more water in the basin. For scenario (1), we do not release any water so we make
0 profit. For scenario (2) we release 1 unit of water so we make 1 × 8 = 8 in profit (8
is the price at time t). For scenario (3), we make 2 × 8 = 16 in profit. For scenario (4),
we make 3 × 8 = 24 in profit. From those 4 scenarios, we will get the highest profit by
releasing 3 units of water. We continue to calculate this by assuming the capacity of the
water in the storage is 1, 2, and 3. After that, we move to time t = 1 with the respective
unit of water inflow and the price being 2 and 5. Starting by assuming no water is in
the storage, we have 2 units of water in total because there is 2 units of water inflows.
In these circumstances, we have 3 scenarios: (1) we keep all of the water and do not
release any water, (2) we keep 1 unit of water and release 1 unit, (3) we release all of
the water. For scenario (1), by keeping all of the water, we will get 0 profit and have
2 units of water in the storage at time 2. By having 2 units of water at time 2 we will
get 40 in profit. In total, we obtain 40 in profit from 0 profit at time 1 and 40 in profit
at time 2. For scenario (2), at time t = 1 we make 1 × 5 = 5 in profit and have 1 water
in the storage at time t = 2 which means we make 32 in profit. Therefore, we make
5 + 32 = 37 in profit in total. For scenario (3), we make 2 × 5 = 10 in profit at time
1 and have no water in the storage at time 2 thus making 24 in profit. In total, we get
10+ 24 = 34 profit. From all of those 3 scenarios, the best one is to keep all of the water
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in order to make 40 in profit. We continue this work until time t = 0. The result of this
can be seen in Table A.1 and A.2.

TABLE A.1: Table for profit

Capacity t = 0 t = 1 t = 2
0 50 40 24
1 60 48 32
2 70 53 40
3 80 58 48

TABLE A.2: Table for unit of water outflows

Capacity t = 0 t = 1 t = 2
0 1 0 3
1 2 0 4
2 3 1 5
3 4 2 6

A.2 Robust Model for Single Basin Hydropower Problem

max
|T|

∑
t=1

πt. Pt (A.1)

s.t. f ω
t + sω

t−1 = ot + sω
t ∀t ∈ T, ω ∈ Ω (A.2)

smin ≤ sω
t ≤ smax ∀t ∈ T, ∀ω ∈ Ω (A.3)

s0 ≤ sω
|T| ∀t ∈ T, ∀ω ∈ Ω (A.4)

omin ≤ ot ≤ omax ∀t ∈ T (A.5)
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A.3 Pseudocode for Validation process on Single-Basin Hydro-
power Problem

Algorithm 4: Pseudocode for Validation process on Single-Basin Hydropower Prob-
lem
Optimization;
Data: f ω

t , πt, ∀ω ∈ Ωts, t ∈ T, omin, omax, smin, smax

if Risk-Averse then
Solve ??;

else if Risk-Neutral then
Solve 3.3

end
Result: αt, βt,t′ , ∀t ∈ T, t′ ∈ (t − τ, t − 1)
Validation;
Data: f ω

t ∀t ∈ T, ω ∈ Ωvs

violation = 0;
for ω ∈ Ωvs do

for t ∈ T do
oω

t = αt + ∑t−1
t′=t−τ βtt′ f ω

t′ ;
if oω

t < omin then
violation += 1;
oω

t = omin

else if oω
t > omax then

violation += 1;
oω

t = omax

end
sω

t = f ω
t + sω

t−1 − oω
t ;

if sω
t < smin then
violation += 1;
δ = smin − sω

t oω
t = oω

t − δ sω
t = 0

else if sω
t > smax then

violation += 1;
δ = sω

t − smax oω
t = oω

t + δ sω
t = smax;

if oω
t > omax then
oω

t = omax

end

end

end
Revenue = ∑t∈T πt.oω

t

end
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A.8 Pseudocode for Validation on Two-Basin Hydropower

Algorithm 5: Pseudocode for Validation on Two-Basin Hydropower Problem

Validation;
Data: f ω

t , πt, ∀ω ∈ Ωts, t ∈ T, oi
min, oi

max, si
min, si

max and
αi

t, βik
tt′ , ∀t ∈ T, i = 1, 2, 3, k = 1, 2

violation = 0;
for ω ∈ Ωvs do

for t ∈ T do
for i in range 2 do

oiω
t = αi

t + ∑k=1,2

(︂
∑t−1

t′=t−τ βik
tt′ f kω

t′

)︂
;

if oiω
t < oi

min then
violation += 1;
oω

t = omin

else if oiω
t > oi

max then
violation += 1;
oiω

t = oi
max

end

end

pω
t = α3

t + ∑k=1,2

(︂
∑t−1

t′=t−τ β3k
tt′ f kω

t′

)︂
;

if pω
t < pmin then
violation += 1;
pω

t = pmin

else if pω
t > pmax then

violation += 1;
pω

t = pmax

end

s1ω
t = f 1ω

t + s1ω
t−1 + ∑i=1,3

(︂
αi

t + ∑k=1,2

(︂
∑t−1

t′=t−τ βik
tt′ f kω

t′

)︂)︂
;

s2ω
t = f ω

t + sω
t−1 + ∑3

i=1

(︂
(−1)i=1

(︂
αi

t

(︂
∑t−1

t′=t−τ βik
tt′ f kω

t

)︂)︂)︂
;

for i = 1,2 do
if siω

t < si
min then

violation += 1;
δ = si

min − siω
t ; oiω

t = oiω
t − δ; siω

t = si
min

else if siω
t > si

max then
violation += 1;
δ = siω

t − smax; oiω
t = oiω

t + δ; siω
t = si

max;
if oω

t > oi
max then

oiω
t = oi

max

end

end

end

end
Revenue = ∑t∈T πt

(︁
o1ω

t + o2ω
t + pω

t
)︁

end
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(A) Inflow in Basin 1 in Training Set

(B) Inflow in Basin 1 in Validation Set

FIGURE B.1: Inflow in Basin 1
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(A) Inflow in Basin 2 in Training Set

(B) Inflow in Basin 2 in Validation Set

FIGURE B.2: Inflow in Basin 2
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FIGURE B.3: Electricity Price

FIGURE B.4: Objective, RA Single
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FIGURE B.5: Running Time, RA Single

FIGURE B.6: Revenue in Training Set, RA Single
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FIGURE B.7: Revenue in Validation Set, RA Single

FIGURE B.8: Objective, RN Single
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FIGURE B.9: Running Time, RN Single

FIGURE B.10: Revenue in Training Set, RN Single
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FIGURE B.11: Revenue in Validation Set, RN Single

FIGURE B.12: Objective, RA Two-Basin Hydropower problem
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FIGURE B.13: Running Time, RA Two-Basin Hydropower problem

FIGURE B.14: Revenue in Training Set, RA Two-Basin Hydropower problem
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FIGURE B.15: Revenue in Validation Set, RA Two-Basin Hydropower problem

FIGURE B.16: Objective, RN Two-Basin Hydropower problem
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FIGURE B.17: Running Time, RN Two-Basin Hydropower problem

FIGURE B.18: Revenue in Training Set, RN Two-Basin Hydropower problem
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FIGURE B.19: Revenue in Validation Set, RN Two-Basin Hydropower problem

FIGURE B.20: Objective, RA Two-Basin Hydropower problem with regularization
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FIGURE B.21: Running Time, RA Two-Basin Hydropower problem with regularization

FIGURE B.22: Revenue in Training Set, RA Two-Basin Hydropower problem with reg-
ularization
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FIGURE B.23: Revenue in Validation Set, RA Two-Basin Hydropower problem with
regularization

FIGURE B.24: Objective, RN Two-Basin Hydropower problem with regularization
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FIGURE B.25: Running Time, RN Two-Basin Hydropower problem with regulariza-
tion

FIGURE B.26: Revenue in Training Set, RN Two-Basin Hydropower problem with reg-
ularization
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FIGURE B.27: Revenue in Validation Set, RN Two-Basin Hydropower problem with
regularization

FIGURE B.28: Objective, RA Two-Basin Hydropower problem with Spillage Variable
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FIGURE B.29: Running Time, RA Two-Basin Hydropower problem with Spillage Vari-
able

FIGURE B.30: Revenue in Training Set, RA Two-Basin Hydropower problem with
Spillage Variable
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FIGURE B.31: Revenue in Validation Set, RA Two-Basin Hydropower problem with
Spillage Variable

FIGURE B.32: Objective, RN Two-Basin Hydropower problem with Spillage Variable
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FIGURE B.33: Running Time, RN Two-Basin Hydropower problem with Spillage Vari-
able

FIGURE B.34: Revenue in Training Set, RN Two-Basin Hydropower problem with
Spillage Variable
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FIGURE B.35: Revenue in Validation Set, RN Two-Basin Hydropower problem with
Spillage Variable



113

Bibliography

Anghileri, D., Botter, M., Castelletti, A., Weigt, H., & Burlando, P. (2018). A comparative
assessment of the impact of climate change and energy policies on alpine hy-
dropower. Water Resources Research, 54(11), 9144–9161. https://doi.org/https:
//doi.org/10.1029/2017WR022289

Anghileri, D., Castelletti, A., & Burlando, P. (2018). Alpine Hydropower in the Decline
of the Nuclear Era: Trade-Off between Revenue and Production in the Swiss
Alps. Journal of Water Resources Planning and Management, 144(8), 04018037. https:
//doi.org/10.1061/(asce)wr.1943-5452.0000944

Arena, C., Cannarozzo, M., & Mazzola, M. R. (2017). Exploring the potential and the
boundaries of the rolling horizon technique for the management of reservoir
systems with over-year behaviour. Water Resources Management, 31, 867–884.
https://doi.org/10.1007/s11269-016-1550-0

Baños, R., Manzano-Agugliaro, F., Montoya, F. G., Gil, C., Alcayde, A., & Gómez, J.
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