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Abstract 

Forty-one participants explored a novel square-shaped environment containing five identical 

boxes each hiding a visually distinct object. After an initial free exploration the participants 

were required to locate the objects first in a predetermined and subsequently in an optional 

order task. Two distinct exploration strategies emerged: participants explored either along the 

main axes of the room (Axial), or in a more spatially spread, circular pattern around the edges 

of the room (Circular). These initial exploration strategies influenced the optimality of spatial 

navigation performance in the subsequent optional order task. The results reflect a trade-off 

between memory demands and distance efficiency. The more sequential Axial strategy 

resulted in less demands on spatial memory but required more distance to be travelled.  The 

Circular strategy was more demanding on memory but required less subsequent travelling 

distance. The findings are discussed in terms of spatial knowledge acquisition and optimality 

of strategy representations. 



Spatial Exploration Patterns and Efficiency 
3 

Strategies reflect both structural commonalities and programmatic patterns in cognitive 

processes (Gordon, 2004). The value of a strategy reflects an optimized trade-off between the 

costs and benefits of the utilized behaviour. In the case of spatial navigation, a strategy refers 

to a mental representation of the navigator’s own position in relation to the surrounding 

spatial environment including a goal position and an intentional plan to reach that goal in an 

optimal way.  

In previous studies of spatial search and navigation, the time in which a task is solved was 

taken as a rough indicator of underlying spatial ability – such as learning (e.g., Morris, 1981) 

or mental manipulations (e.g., Shepard & Cooper, 1982). Decreasing escape latencies in a 

water maze study, for example, would suggest that the animals are learning the spatial layout 

of the pool. However, it does not reveal much about the nature of learning, whether it was a 

qualitative or quantitative change (Thinus-Blanc & Gaunet, 1997). To analyse patterns of 

behaviour in spatial navigation further measures are required over the commonly applied 

method of latency.  

Visible indices of navigation – like path choices or object visit sequences – are also 

measured with video recordings and independent observation tools with defined sets of 

coding guidelines (Graziano, Petrosini, & Bartoletti, 2003; Makany & Kallai, 2004). 

Alternatively, automated algorithms can identify behavioural patterns within large datasets of 

spatial information, such as video surveillance of pedestrian movements (Helbing, Keltsch, & 

Molnar, 1997; Sas, O’Hare, & Reilly, 2003). In fact, pattern formation of any complex spatial 

system can be described by the inherent syntax that determines their physical appearance 

(Hillier, 1996). Exploratory patterns are the behavioural manifestations of spatial strategies, 

and the frequency of reoccurrence is a quantitative indicator of how well that spatial 

knowledge is being utilized. 
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An earlier study of navigation behaviour found that global patterns change over time as a 

result of spatial learning (Tellevik, 1992). Three patterns were observed while blindfolded 

participants searched for target objects inside a room. Two of them (perimeter and gridline) 

were determined by the size and the shape of the environment. In the perimeter case, the 

participants limited exploration to the border of the environment, while the gridline referred 

to a strategy where participants followed straight line from one side of the environment to the 

other. The third type of pattern was referred to as the reference-point strategy, where an 

object served as a point for each significant directional change. Tellevik argued that 

familiarity with the space allowed the participants to utilize object-to-object relationships 

rather than being preoccupied with the spatial characteristics of the environment (i.e. shape). 

Object based searching led to a better performance with a wider array of specific strategy 

patterns.  

In a study by Kallai, Makany, Karadi, and Jacobs (2005) reoccurring patterns of 

exploration behaviour were found to be good predictors of navigation performance and also 

as indicators for the temporal dynamics of spatial knowledge acquisition.  Some patterns 

appeared more often during the early phases of spatial learning, such as the wall-following 

strategy, while others (e.g., visual scanning strategy) became more apparent, when a reliable 

representation of the space was formed. The authors concluded that human participants with 

poorer spatial abilities needed to periodically re-stabilize their positions in relation to the 

fixed perimeter, therefore they used the wall-following strategy more extensively. Whereas 

advanced navigators could benefit from linking the allocentric external landmarks to each 

other, which allowed them to reduce their walking distances and to switch to a more memory 

dependent strategy. 

Thinus-Blanc and Gaunet (1997) suggested that changes in exploratory patterns 

correspond to a multi-level acquisition and representation of spatial knowledge . A cyclic 
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strategy enables a rough comprehension of the spatial relations, while back-and-forth 

movements refine the spatial knowledge, allowing a detailed and well-organized encoding. 

Consequently, the latter strategy leads to more efficient performance. 

It should be noted however, that the reported optimal cyclic strategy in baboons by 

Gouteux, Vauclair, and Thinus-Blanc (1999) was, in fact, found to be non-optimal in the 

human data (Gaunet & Thinus-Blanc, 1996). This suggests that while animals utilize a more 

sequential exploratory strategy as their optimal foraging behaviour, humans achieve better 

scores if they were more concerned with constructing a detailed representation of the space. 

One interpretation of the discrepancy between the two sets of results could be that a 

compromising mechanism sets the balance between cognitive load and travelled distance 

costs, in a sense that humans utilize their cognitive abilities better in spatial navigation tasks 

(Thinus-Blanc & Gaunet, 1997).  

Despite the growing interest in recognising patterns of navigation, there is little 

understanding on how spatial knowledge acquisition and representation correspond to 

observable exploratory behaviour. Although a number of studies focusing on the 

representation of spatial cues, such as landmarks or environmental geometry (e.g., Cheng & 

Newcombe, 2005), and on identifiable patterns during navigation (e.g., Thinus-Blanc & 

Gaunet, 1997) have been performed, investigations are needed to understand the relation 

between these two levels of spatial cognition.  

Cognitive modelling of strategy representations offers a domain-independent analysis, 

which could be effectively utilised in any domain-specific system, such as the spatial domain 

(Gordon, 2004). A spatial strategy should simultaneously reflect the structural pattern of 

navigational behaviour and an intentional act of a cognitive plan. These patterns should be 

observable and meaningful in their functions. The focus of the present study is to connect 



Spatial Exploration Patterns and Efficiency 
6 

behavioural performance with certain patterns of exploratory activity, and to provide 

plausible interpretations to how strategies manifest on each level of spatial navigation. 

In this paper, we analysed initial exploratory patterns of human spatial navigation and 

related them to navigation patterns in a subsequent search task. Our first question was 

whether there are distinct patterns in initial exploration of a novel environment. We 

implemented an automated clustering algorithm in order to investigate emerging structural 

regularities within the routes of spatial exploration. The visual characteristics of these 

patterns would reflect on the preferred exploratory strategy. We further examined whether 

any pattern type during initial exploration would determine performance in subsequent 

structured navigation. A more intensive and spatially extensive search strategy would result 

in a better representation of the space, hence better performance scores in specific navigation 

tasks. However, human navigation performance and efficiency cannot be unequivocally 

determined by means of heuristic algorithms (see Mitchell, 2004 for a computational 

explanation of these algorithms), thus the measurements are dependent on how optimal 

performance is defined (MacGregor & Ormerod, 1996). Due to the complex nature of 

navigation behaviour, we measured performance in two different ways: one examined the 

size of the search space (Binary measure) and the other focused on the total travelled distance 

(Frequency measure). Conclusions about the human cognitive and energy cost-and-benefit 

optimization in spatial navigation tasks were drawn from the findings. 

 

Method 

Participants 

Forty-one university students participated in the study. They were 17 males and 24 

females, who ranged in age from 18 to 50 (mean age = 29.81; SD = 9.23). Participants 

received either course credits or payment. 
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Apparatus 

The experiment was conducted in a square room (L 3.5 m x W 3.5 m x H 2.5 m) with 

walls covered by black curtains that masked all spatial information outside the room.  

The room was evenly illuminated from the four corners by neon lights set in the ceiling. A 

speaker was hidden behind the curtains to communicate the tasks to the participants. A video 

camcorder was placed in the centre of the ceiling, to record the navigation activity from a 

bird’s eye-view perspective. 

The room contained five visually identical open cardboard boxes placed in an irregular 

array on the floor. The dimension of the boxes was L 55 x W 55 x H 150 cm. A different 

object was placed inside each box. The five objects were similar sized coloured toys: a 

gorilla, a yellow bird, a ball, a frog and a puffin. An object could only be seen by leaning 

over the top of the box. This ensured that participants had to walk close to the box to explore 

its content.  

 

Procedure 

The participants were led by the experimenter to a starting position in the room with their 

eyes closed. The starting position was a fixed location in the closest corner to the entrance 

door throughout the whole experiment. On a spoken signal from the experimenter who had 

returned to the adjacent control room, the participants opened their eyes to begin their 

exploration. The camera on the ceiling recorded all navigation activity.  

There were three phases in the experiment. Phase 1: For 1 minute, the participants were 

asked to freely explore the novel environment. Participants were instructed to walk around 

the room and familiarize themselves with the location of the five objects inside each box. 

Phase 2: participants were instructed to perform simple navigation tasks, whereby they were 
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required to visit the objects in a predefined order. They first visited each object one-by-one 

(single) and then they had to link two or three (multiple) objects by visiting them in a fixed 

order. The required sequence of visits was the same for all participants. Participants carried 

out 5 single object and 6 multiple object visits. The purpose of this phase was to ensure that 

all participants have learnt the spatial layout of the room and the location of the objects. All 

participants finished at the position from where they had begun in Phase 1. Phase 3: 

Participants were asked to visit 3 objects in any order they wished. This task was repeated 3 

times (3 x 3 visits) with different combination of objects on each trial. All participants were 

given the same combinations whereupon they could choose their preferred order of visit. 

Throughout the experiment, the participants were asked to find the objects as quickly and 

efficiently as possible, however there was no specific time limit on Phase 2 and Phase 3. 

After the last task was completed, the experimenter entered the room and lead the participant 

out.  

Results 

Transcribing data 

First, the navigation activity, recorded on videotape, was transcribed to a quantifiable 

format. The transcription implemented a 6x6 grid matrix, which represented the squared 

room from the perspective of the camera and the spatial positions of the participant was 

coded within this grid.  

With such partition of the room, each of the five identical boxes occupied one square of 

the grid, leaving 31 positions free for navigation. The coding required that a participant could 

only occupy one square at a time, but stepping from one square to another could have 

happened in either horizontally, vertically, or diagonally in any directions, within the limits 

of this 6x6 structure. 
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At the start, all 31 possible navigation positions were set to 0, and as the navigator 

entered a square, that value changed to either 1 (Binary measure: number of squares visited), 

or increased by 1 (Frequency measure: total number of visits). This numerical matrix 

representation of the space allowed us to monitor the dynamics of the utilized spatial areas 

during both exploration and navigation (Phase 1 & 3, respectively).  

Determining Exploratory Patterns: Hierarchical Cluster Analysis 

Initial exploration patterns were grouped with a hierarchical cluster analysis. The 

clustering method was the complete linkage (furthest neighbour) with squared Euclidean 

distances. All the computations were carried out with the statistical software package SPSS 

14.0 (SPSS Inc., 2005) A good clustering solution was deemed to have small within-cluster 

distances, and large between-cluster distances (Everitt, Landau, & Leese, 2001).  

An inconsistently large jump within the similarity measure between joined clusters 

indicated a good termination point for the clustering procedure (Clatworthy, Buick, Hankins, 

Weinman, & Horne, 2005). In this study a rescaled distance cluster value of 20 was used to 

determine the termination of cluster splitting. With this criterion two clusters of recurring 

patterns were found, Axial and Circular labelled according to their visual appearance. There 

were 11 participants in the prior and 28 in the latter group. One participant’s (number 22) 

pattern did not belong to either of these clusters, and was excluded from further analysis. In 

the case of another participant (number 8), there was a videotape error resulting in this data 

also being omitted. 

Determining Spatial Efficiency 

Two measures of spatial efficiency were adopted in the present study. Binary efficiency 

measure focused on the spatial expansion of the exploration activity. This involved counting 

the number of squares, in which the participant entered at least once during the navigation 

test, without considering how many times that position was visited in total. A Binary score 
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represented the sum of squares with a maximum possible of 31 (all 36 squares minus the 5 

squares with an object on them). The most spatially efficient score could be associated with 

the smallest size of the actively used space, whereat the task was still solvable. 

Another way to measure efficiency is counting the actual frequencies of all the square 

visits within the grid (Frequency measure). Practically, this measure expressed the total travel 

distance in addition to its spatial distribution on the matrix. The sum could have infinitely 

increased, however the most efficient strategy reduced both the number of visited squares and 

the frequency to the possible minimum.  

 

Figure 1 about here 

 

Differences in Spatial Efficiency Based on the Exploratory Patterns 

In the case of the Binary efficiency measure, where the matrix contained only 1 or 0, the 

independent groups two-tailed t-test revealed a significant difference between the mean 

spatial efficiency scores of the two pattern clusters [t (37) = 8.03, p<.001] with lower group 

means for the participants classed as Axial [Maxial = 10.64; SDaxial = 1.86] than for the 

participants classed as Circular [Mcircular = 15.14; SDcircular = 1.46].  

A different outcome was found when the Frequency measure was used where the matrix 

contained the number of visits for each position. The two exploratory pattern groups had 

significantly different spatial efficiency mean scores [t (37) = -2.12, p<.05]. The Axial group 

had longer paths (worse efficiency) [Maxial = 23.45; SDaxial = 3.42] than the Circular group 

[Mcircular = 21.14; SDcircular = 2.93]. These group means for both Binary and Axial groups can 

be seen in Figure 2. 

By calculating the z-scores for the spatial efficiency measures (Binary and Frequency) the 

two different scales became comparable. A two way mixed design analysis of variance based 
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on the z-scores with Binary versus Frequency scores (within) and Axial versus Circular 

patterns as the independent measures revealed a significant interaction between the efficiency 

measures and the exploratory patterns [F (1, 37) = 38.36, p<.001]. The main effect of scores 

was also found to be significant [F (1, 37) = 7.29, p<.05], so as the effect of exploratory 

patterns [F (1,37) = 6.29, p<.05] (see Figure 2 for the interaction). 

 

Figure 2 about here 

 

Further Data Considerations: Gender Effects 

The results were further analysed to examine possible gender effects. There was no 

difference between the genders [t (37) = .89, n.s.] on the two exploration patterns. Binary task 

efficiency showed no gender effect either [t (37) = .14, n.s]. However, the Frequency measure 

revealed that males solved the navigation task more efficiently than females [t (37) = 3.50, 

p=.001; Mmale = 19.80; SDmale = 2.18; Mfemale = 23.04; SDfemale = 3.14]. 

  

Discussion 

The present study investigated navigation task efficiency as a function of initial spatial 

exploration in a novel environment. Two distinct clusters of exploratory patterns (Axial & 

Circular) were found based on their emergent visual appearance. The data showed that search 

patterns reflect different strategies of spatial information acquisition and representation that 

determined subsequent navigation efficiency. Furthermore, a significant interaction in our 

data showed that navigation efficiency depended not only on initial exploratory patterns, but 

also on how optimal performance is defined. 

The method used in this paper to classify the exploratory patterns was similar to the 

techniques applied in artificial intelligence research of way-finding trajectory analysis 
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(Helbing et al., 1997; Sas et al., 2003). However, these derived cluster patterns reflect only 

probabilistic categories based on the global visual features of the travelling paths. 

Nevertheless, they are only meaningful in their functions, if they have an effect on navigation 

performance (Thinus-Blanc & Gaunet, 1997). The two exploratory patterns identified in our 

study were found to determine the subsequent navigation efficiency of participants.  

Participants of each group subsequently performed differently in the navigational tasks 

(Figure 1).  

Members of the Axial group were exploring only a limited region of the space, without 

expanding their search area (top left corner of Figure 1). The explorations were mostly 

registered on the two main lateral axes of the room and focused around these artificial lines 

of the room geometry. Axial explorers preferred walking on these few routes, where objects 

could be remembered in a fixed sequence (low memory demand). Such an exploratory 

pattern indicates a cognitively economical, route-following strategy of spatial knowledge 

acquisition. They remained anchored to the centre of the space that served as a base (bottom 

left corner of Figure 1). Consequently, they had to make more journeys on the same routes, 

which resulted in higher overall distance travelled costs.  

Circular explorers spread out to the more peripheral regions of the space, and included 

more closed circle trajectories around the centre of the room (right side of Figure 1). This 

group initially explored the space more intensively, which could have resulted in a more 

flexible spatial representation. Such exploratory pattern reflects a strategy with initially high 

memory and distance investments. In return, this exploratory pattern allowed Circulars to 

perform subsequent navigational tasks with less walking via more flexible route choices than 

Axials. 

As we mentioned earlier, optimality of spatial performance can be evaluated in at least 

two different ways, depending on whether distance or memory costs are measured. In our 
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experiment these two approaches were represented by the Binary and Frequency measures, 

and the results were analysed both ways. The significant interaction between the two 

efficiency measures on the exploratory patterns suggests that efficiency in navigation 

depends on how optimal performance (energy optimum or cognitive optimum) is defined 

(Figure 2). 

Furthermore, there is a relationship between the level of task complexity and the 

optimization of the spatial strategies (Hartley, Maguire, Spiers, & Burgess, 2003). In complex 

navigation tasks, where inferential relations have to be represented (i.e., the cinema is in the 

downtown, a few blocks away from the central library), a flexible exploration strategy could 

enhance way-finding accuracy and efficiency. In such cases, reasonable cognitive effort has 

to be made to compute a novel route or select a previously learnt path. However, if the task is 

easy enough to be solved by the use of only simple action-based representations, a more rigid 

and routine series of spatial actions (i.e., following a few axial paths) could lead to a good 

level of performance. In such cases, any extra cognitive load would rather disturb the 

execution of well-learnt route following. In simple tasks, a sequential solution could provide 

the best strategy with the most efficient paths. However, relying only on a single route for 

more complex navigation tasks could reduce the chance of finding the most optimal way.  

In fact, humans seem to apply more than one strategy for orientation and wayfinding, 

depending on both environmental and individual factors (see Lawton, 1996, for examples of 

navigational strategies). This flexibility and range of strategy representations has its 

drawback when an inappropriate strategy is chosen, and when a simple solution provides 

efficient behaviour. The present study confirmed that humans applied more than one strategy 

to explore novel spatial layouts, as they either used the main axes of the room (Axial), or a 

more spread and circular pattern (Circular). Spatial strategy pattern formation depends on 

how physical and cognitive factors are set at the initial phase of exploration. Based on the 
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presented results, we argue that these early exploratory patterns determine subsequent 

navigation task performances.  

Some aspects of spatial navigation are sensitive to gender differences (for a review, see 

Maguire, Burgess, & O’Keefe, 1999). Males are often found to be better in mental image 

maintenance and manipulation, whereas females have more rapid access and retrieval 

capabilities in spatial tasks (Loring-Meier & Halpern, 1999). In the present study, there was 

no difference between the exploratory patterns of males and females. The only difference in 

task efficiency that was found here showed that males could perform the navigation task with 

less intensive search (Frequency measure) than females. This result was however, not due to 

any difference in the spatial expansion of the search area, as the result on Binary measure did  

not show a significant gender effect. This suggests that initial spatial strategies are similar in 

the two genders and differences in performance are due to subsequent variations in 

information processing that deserve more thorough investigation. 

Recent studies of spatial learning also showed that the local features in an array of spatial 

landmarks could be determinant for place learning (Esber, McGregor, Good, Hayward, & 

Pearce, 2005). The configuration of the objects in our experiment could have induced more 

centre-based patterns, as one of the five boxes was in a relative centre position. Further 

studies are needed to investigate the role of spatial arrangement onto the efficiency of 

navigation strategy patterns. Similarly, further investigations are required to decide whether 

the utilization of a particular strategy could increase spatial efficiency or individual cognitive 

decision-making styles have a more significant role in spatial knowledge acquisition.  
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Figure 1. Superimposed matrices of the two patterns (Axial & Circular) found during the first 

minute of exploration (Phase 1). The Binary measure shows only if a grid within the matrix 

was either visited (grey) or not-visited (white). The Frequency measure includes grey 

shadings according to how frequently that particular grid was visited (white = not visited; 

light grey = 1-10 visits; dark grey = 11-40 visits; black = over 40 visits). 

 

      Exploratory pattern 

 Axial (N = 11) Circular (N = 28) 
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Note. The five objects are marked with a black ‘X’ on their grids. 
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 Figure 2. Significant interaction (p<.001) between measures of spatial navigation efficiency 

(Binary: expansion of search; Frequency: intensity of the search) and performance by the two 

exploratory patterns (Axial and Circular). According to the Binary measure, the Axial group 

was significantly (p<.001) more efficient during navigation, as they used fewer squares while 

visiting the required objects compared to the Circular group. In contrast, Circulars were 

significantly (p<.05) more efficient navigators according to the Frequency measure, which 

counted the total number of crossings into squares. 

 

 


