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On the BPS Sector in AdS3/CFT2 Holography

Emil J. Martinec, Stefano Massai,* and David Turton

The BPS sector in AdS3∕CFT2 duality has been fertile ground for the
exploration of gauge/gravity duality, from the match between black hole
entropy and the CFT elliptic genus to the construction of large families of
geometrical microstates and the identification of the corresponding states in
the CFT. Worldsheet methods provide a tool to further explore the relation
between string theory in the bulk and corresponding CFT quantities. We show
how to match individual BPS strings to their counterparts in the symmetric
product orbifold CFT. In the process, we find an exact match between known
constructions of microstate geometries and condensates of BPS
supergraviton strings, and discuss their role in the broader collection of BPS
states. In particular, we explore how microstate geometries develop
singularities; and how string theory resolves these singularities through the
appearance of “tensionless” string dynamics, which is the continuation of
structures found in the weak-coupling CFT into the strongly coupled regime
described by string theory in the bulk. We argue that such “tensionless”
strings are responsible for black hole microstructure in the bulk description.

1. Introduction and Summary

The AdS3∕CFT2 duality of the string theory onebrane-fivebrane
system exhibits an extensively developed holographic dictionary
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(reviews include [1–4]). In particular,
there is a rich variety of examples of
CFT microstates that have been matched
to corresponding smooth horizonless ge-
ometries with AdS3 × 𝕊3 × asymp-
totics, where = 𝕋 4 or K3 (see [3, 4] for
recent overviews and further references).
In early work, the 1/2-BPS ground

states of the system were studied.1

The different brane bound state con-
figurations source supergravity solutions
known as supertubes.[5–8] There is an ex-
plicit map between CFT ground states
and supergravity solutions, which we re-
view in Section 4.1 below. The entropy
of these ground states is given in terms
of the charge quanta n1, n5 of onebranes
and fivebranes, as well as angular mo-
mentum JL on 𝕊3, by [9, 10]

S 1
2
-BPS = 2𝜋

√
c
6

(
n5n1 − |JL|) (1.1)

where c = 12 for 𝕋 4, and c = 24 for K3.
Exciting the system1 away from any of these ground states by

adding momentum-carrying supergravity waves leads to a col-
lection of horizonless 1/4-BPS NS5-F1-P geometries known as
superstrata[11–16] (for a review, see [3]). Each geometry has a well-
understood holographic map to a (coherent) state in the symmet-
ric product CFT; this map is reviewed and elaborated upon in
Section 5 below. 2

Both supertubes and superstrata are examples of smooth, hori-
zonless BPS microstate geometries. The matching of 1/2-BPS states
was the first example where the microstates in the CFT were
mapped one-for-one onto fully back-reacted supergravity geome-
tries. One can think of the superstratum construction as extend-
ing this holographic map to a much larger class of 1/4-BPS

1 Our normalization of the fraction of supersymmetry preserved is rel-
ative to the SL(2,ℝ) invariant NS-NS vacuum state. Thus Ramond-
Ramond ground states are 1/2-BPS, and breaking the left-moving half
of the remaining supersymmetry via chiral momentum excitations re-
sults in 1/4-BPS states.

2 As we review in Section 2, the symmetric product CFT and the bulk
effective string theory occupy complementary regions of the moduli
space; however, BPS protected quantities such as index states are ro-
bust and can thus be compared. In addition to superstrata, multi-
centered, bubbled geometries[17] have also been constructed, which are
BPS for particular values of the moduli but lift off the BPS bound as
the moduli are deformed to generic values.[18] Because they are only
accidentally BPS at a particular locus in the moduli space, these bub-
bled geometries are not protected and it is not guaranteed that they
should map to some well-defined collection of states in the symmetric
product CFT.
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CFT states for which the fully back-reacted supergravity solution
is known.
Furthermore, an analysis[19] of the elliptic genus,

ZEG(q, y) = tr
[
(−1)FL+FR qnp−

c
24 yJ0

]
, (1.2)

exhibits an exact match between the spacetime CFT and the cor-
responding index of BPS states in a gas of supergravitons, up to
level np =

1
4
n1n5. Superstrata provide a fully back-reacted bulk re-

alization of a coherent state basis of this supergraviton gas, which
includes the index states.
However, the superstratum construction is not restricted to the

regime np < 1
4
n1n5. The quantum numbers can be extended far

into the regime where the number of momentum quanta np is
much larger than either n1n5 or JL, and in particular into the
regime n1n5np > J2L. In this regime, the generic element of the
density of states is a BTZ×𝕊3 black string in 6d, which reduces to
a BMPV[20] black hole in 5d. The entropy of superstratum states
in this regime has been estimated to be [21]

Sgeom ∼
√
n5n1 n

1∕4
p , (1.3)

which for generic large charges ismuch smaller than the 1/4-BPS
BTZ black hole entropy,

SBTZ = 2𝜋
√
n5n1np − J2L. (1.4)

In the BTZ regime n1n5np > J2L, the CFT elliptic genus has the
same asymptotic growth as the black hole density of states (thus,
almost all 1/4-BPS BTZ black holes are bosons).
The fact that the number of smooth supergravity geometries is

subleading in the entropy answers a question that has sometimes
been asked, namely whether to include the black hole geometry
in the sum over saddles in the Euclidean gravitational path inte-
gral, if one is proposing to replace the black hole by an ensem-
ble of stringy “fuzzball” states. The answer is yes, it should be
included – the Euclidean black hole solution represents all the
generic members of the ensemble that can’t be distinguished
at the level of supergravity. The geometrical microstates repre-
sent auxiliary complex saddles in the Euclidean path integral,
and don’t result in overcounting since they represent a vastly
subleading contribution. The use of the black hole solution does
not necessarily mean that the microstates so represented lack the
horizon-scale structure posited by the fuzzball proposal; it sim-
ply means that, as seen from outside by supergravity probes, any
such structure will appear to be well-approximated by the black
hole solution and its properties.
The 1/4-BPS black hole solution accounts for the bulk of the

1/4-BPS entropy. As yet, we don’t have a bulk picture of the mi-
crostates, or a detailed understanding of the holographic map.
These states appear to have a horizon in their effective super-
gravity description; however, the fuzzball proposal posits that all
microstates are fundamentally horizonless. This issue is perhaps
the central open question of the fuzzball program – whether the
internal degrees of freedom of any microstate are in causal con-
tact with the exterior spacetime.
While BTZ black holes are the generic elements of the en-

semble of states above the BTZ threshold n5n1np = J2L, below this

51n n 

BTZ Black Holes

2−charge SupertubesBH+ST

L

Black Rings

0

2JL

Figure 1. Additional BPS black objects inhabit the region between the BTZ
threshold and the BPS ground states.

threshold there are other 1/4-BPS black objects[22] which domi-
nate the density of states. Depending on the regime of parame-
ters, the dominant configuration is either a zero-angularmomen-
tum black hole surrounded by a supertube that carries the angu-
lar momentum, or a black ring; see Figure 1. The corresponding
entropies are

SBH+ST = 2𝜋
√
n5n1np

⎛⎜⎜⎝1 −
√

2JL − np
n1n5

⎞⎟⎟⎠,
0 < JL <

n1n5
2

,

Sring = 2𝜋
√
n5n1(n5n1 + np − 2JL)

(
1 −

√
n5n1 − np
n1n5

)
,

n1n5
2

< JL < n1n5.

(1.5)

Initially, the portions of the phase diagram below the BTZ thresh-
old were not well understood, and so they became known as enig-
matic phases. There are also smooth microstate geometries in
these sub-BTZ regimes; once again their entropy is generically
subleading, e.g. for JL ≪ n1n5∕2 one has [21]

Sgeom ∼ (n5n1)
1∕4n1∕2p , np ≪ n1n5. (1.6)

As mentioned above, the elliptic genus in the regime near the
maximally spinning ground state 3 ( n1n5

4
<np<J, with n1n5

4
<J<

3n1n5
4
) is accounted for by smooth supergravity solutions. The

growth of index states is even slower than the growth of the 1/4-
BPS supergravity partition function (1.6), let alone that of the rel-
evant black object (1.5); for instance, along the line J = 1

2
n1n5,

one has the density of index states (computed either in the CFT
or in supergravity)[23,24]

𝜌EG

SN(K3)(np) ∼ N exp
(
2𝜋
√
12np

)
. (1.7)

3 This regime is the spectral flow of the NS-NS sector states with np<
n1n5
4

to the R-R sector.
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As a consequence, none of the 1/4-BPS black holes dominating
the enigmatic phases are index states, and might not lie exactly
on the BPS bound; for instance, they could be lifted slightly away
from the BPS bound by perturbative corrections to the classical
solution. Regardless, there are exponentially many more of them
than the index states, with the latter being entirely accounted for
by the supergravity solutions in this triangular region. In fact,
we see from (1.6) that there are also exponentially more 1/4-BPS
supergravity states than there are index states. 4

Given that the geometrical index states are interspersed with
a large collection of unprotected black hole states at and near the
BPS bound, one expects that a slight perturbation of the former
will thermalize into the latter. This feature provides a key ratio-
nale for the exploration of horizonless geometries – they lie deep
within the black hole phase, while being amenable to analysis in
the bulk description. They thus provide a portal to the regime of
generic black hole states, and we can ask what processes are at
work as they access this regime. We will explore in Section 7 a
particular mechanism, in which singularities which can develop
in the bulk geometry signal the onset of a deconfinement transi-
tion in the underlying fivebrane dynamics. The deconfined phase
is expected to describe generic black hole states.
In this work, we review and expand upon the above detailed

picture of the BPS sector in AdS3∕CFT2 holography, concentrat-
ing on the enigmatic regime below the BTZ threshold. The zool-
ogy of these states can be organized into three general classes.
Smooth geometrical microstates are the least entropic, while
black holes are the most entropic; in between one has what
one might call perturbative stringy horizonless microstates. These
consist of a BPS gas of perturbative strings placed in any mi-
crostate geometry. The back-reaction of these string sources leads
to classical singularities that are resolved by perturbative string
effects. The entropy of such strings exceeds the supergravity en-
tropy (1.6), but again falls short of the black object entropy (1.5).
We estimate this entropy in Section 6 and find a Hagedorn spec-
trum of 1/4-BPS string states; in particular, near JL = n1n5∕2, we
find

Spert = 2𝜋

√
2
n5
np
(
np + n1n5 − 2JL

)
, (1.8)

which indeed lies between (1.6) and (1.5).
Our analysis employs the methods of worldsheet string theory

to explore these different families of BPS states, and the connec-
tions between them. The main tool in this analysis is the world-
sheet construction of supersymmetric ground states developed
in [26–32]. After reviewing relevant aspects of the spacetime CFT
in Section 2, we provide an overview of the gauged WZWmodel
on the worldsheet that describes a family of heavy BPS ground
states in Section 3.

4 Indeed, recent analysis of the AdS2 near-horizon region of the BTZ
solution[25] suggests that the index states are separated by a gap of
order 1∕(n1n5) from a quasi-continuum of slightly non-BPS states.
Naively, this gap prevents unprotected states from lying exactly on the
BPS bound, otherwise they could not lift smoothly as one deforms
the CFT moduli. It would be interesting to see whether indeed per-
turbative corrections to classically BPS states lift them slightly off the
BPS bound.

As a warmup exercise, we review in Section 4 the construc-
tion in [29] of worldsheet vertex operators that describe 1/2-BPS
deformations of 1/2-BPS supertube backgrounds. The BPS ver-
tex operator spectrum of the worldsheet theory mediates tran-
sitions between BPS states, perturbatively around a given BPS
state. Condensation of 1/2-BPS vertex operators (i.e. exponenti-
ating them into the worldsheet action) allows us to explore the
nearby 1/2-BPS configuration space of supertubes, out to some
finite distance.
The family of 1/2-BPSNS5-F1 backgrounds is well-understood

at the level of bulk supergravity.[5–8] One can think of them as
being specified in part by the shape of the fivebranes that re-
sults from their back-reaction on the condensate of fundamental
strings they are carrying. We show how the worldsheet theory ex-
hibits the stringier aspects of these configurations, such as how
the worldsheet theory codes the source profile and is thus able to
determine the location of the fivebranes in the background.
We then extend the analysis to 1/4-BPS excitations, which add

momentum charge to the system. In Section 5 we consider the
1/4-BPS worldsheet vertex operators that describe deformations
within supergravity. These operators have (say) BPS polarization
states on the right-movers and arbitrary polarization on the left-
moving side. We elaborate a precise map between the 1/4-BPS
vertex operators that describe supergravity modes and the known
methods of constructing superstrata.
Condensing these 1/4-BPS excitations into the background

generates the smooth NS5-F1-P superstratum geometries. We
exhibit a one-to-one correspondence between the 1/4-BPS spec-
trum and the superstratum modes that have been studied in the
literature, and thus provide evidence that all the smooth 1/4-BPS
geometries in a finite neighborhood of the initial 1/2-BPS back-
ground have in principle been found. As we noted above, the
result of [19] shows that these geometries saturate the elliptic
genus up to level 1

4
n1n5, and thus provide the explicit bulk geome-

tries that contribute to this supersymmetric index in the sub-BTZ
regime where (1.7) holds.
There are also 1/4-BPS vertex operators describing excited

string states. In Section 6, we consider these 1/4-BPS perturba-
tive string excitations that lie outside of supergravity. These are
described by worldsheet vertex operators that are in BPS ground
states for say the worldsheet right-movers but have arbitrary os-
cillator excitation for the left-movers, subject to the BRST con-
straints. The backgrounds sourced by BPS ensembles of such
strings fall into an intermediate category, in between that of mi-
crostate geometries and that of generic fuzzballs, that we call
“perturbatively stringy horizonless microstates”. We will show
that the number of perturbatively stringy microstates has the
Hagedorn entropy (1.8), and so is parametrically larger than that
of microstate geometries (1.6) while still falling short of that of
generic fuzzballs (1.5).
These perturbative stringy microstates are unable to realize

the maximal degree of fractionation of momentum carriers seen
in the weakly coupled CFT. It is these highly fractionated mo-
mentum carriers that are responsible for the BTZ entropy in the
weakly coupled CFT. The lower degree of fractionation in the
smooth geometries and the perturbative stringy microstates dis-
tinguishes them from generic microstates.
The worldsheet also allows us to see some of the stringy phe-

nomena that occur as the geometrical approximation begins to
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break down. In Section 7, we consider potential singularities that
might arise at the non-linear level when we deform away from
the points in configuration space described by exactly solvable
worldsheet theories. One possibility, discussed in [33, 34], is an
“instability” in which excitations pile up at the locus of deepest
redshift in the background. We show how these analyses con-
nect to the worldsheet theory, which resolves the singularities by
showing, as suggested in [34], that these lowest energy excitations
are simply thosewhich smoothly deform the initial 1/2-BPS back-
ground along the 1/2-BPS configuration space, and that having
them pile up in the depths of the geometry and backreact is sim-
ply the mechanism by which they exponentiate into finite defor-
mations of the background, rather than a singularity that signals
the onset of the black hole phase.
We also show how actual singularities can arise, when five-

branes in a supertube background self-intersect. At the intersec-
tion locus, the supertube develops a vanishing two-cycle. Wrap-
ping D3-branes around this two-cycle leads to a “tensionless”
string. 5 These strings are similar in many respects to the weak-
coupling “tensionless” strings described by the symmetric orb-
ifold. 6

This “tensionless” string singularity signals the Hawing-Page
phase transition in which the non-abelian degrees of freedom of
the underlying fivebrane dynamics are liberated. The regime of
smooth, horizonless geometry is one where the fivebranes are
slightly separated (as one sees for instance in the construction of
1/2-BPS backgrounds reviewed in Section 4.1), which abelianizes
the fivebrane dynamics by giving mass to these effective strings.
The regime of smooth horizonless geometries thus appears to
be intermingled with but distinct from the regime of generic mi-
crostates.
We will argue that the bulk of the entropy in the black hole

regime comes from a gas of these effective strings, that arises as
the geometrical approximation breaks down.[28,29] These strings
appear to be the avatar of the entropic degrees of freedom of the
symmetric product CFT in the regime of CFT strong coupling.
These light effective strings are the “W-strings” of little string

theory, the strongly-coupled 6d self-dual string dynamics that gov-
erns a stack of decoupled fivebranes[36–39] (for reviews, see [40,
41]). Thus the black hole phase transition in AdS3∕CFT2 is con-
ceptually no different than its cousins in AdS4 and above, in
which the black hole phase is associated to the deconfinement
of non-abelian constituents of the underlying brane dynamics.
We can see all this structure in bulk string theory on AdS3 ×

𝕊3 × realized as the decoupling limit of the NS5-F1 system,
because NS5-branes are solitonic objects of closed string dynam-
ics. Their tension scales as 1∕g2s , and so worldsheet string theory
necessarily incorporates their back-reaction on geometry. 7 While

5 We put quotes around “tensionless” because it does not imply that
there is no gap in the spectrum; see for instance.[35]

6 A major theme running through the analysis is the close relation be-
tween individual BPS strings in the bulk description and cycles of the
symmetric product CFT. Of course, one is comparing states at vastly
disparate points in the moduli space of the theory; it is the BPS prop-
erty and associated non-renormalization theorems that permit a com-
parison of appropriate protected quantities.

7 Different duality frames realize the light effective string differently. In
the NS5-F1 frame the little string is a fractional fundamental string; in
the D5-D1 frame it is a fractional D1 realized as an instanton string in

it is often said that the background branes “dissolve into flux” in
AdS/CFT, the worldsheet dynamics is smart enough to keep track
of where the fivebranes are in the background (information that
is non-perturbative in 𝛼′), and to exhibit the mechanism of the
deconfinement transition of the CFT, deep down at the bottom
of the AdS3 throat in the bulk description.

2. The Symmetric Product Orbifold and Its BPS
Spectrum

2.1. Structure of The Moduli Space

We begin with a discussion of where the symmetric product orb-
ifold lies in the moduli space of NS5-F1 backgrounds. The NS5-
F1 charge quanta (n5, n1) are components of a charge vector q
transforming in the 10 of the O(5, 5;ℤ) U-duality group of type
II string theory on 𝕋 4. The CFT central charge c = 6N is a U-
duality invariant written in terms of the symplectic inner product
N = ⟨q, q⟩.
Themoduli space of the spacetime CFT has a number of weak-

coupling cusps, one for each factorization of N into a pair of in-
tegers N = n5n1. The background charge q breaks the U-duality
symmetry down to the “little group” Γq that fixes the charge
vector q, which is a proper subgroup of the naive little group
O(5, 4;ℤ). The moduli space of the spacetime CFT is then

O(5, 4;ℝ)
O(5,ℝ) ×O(4,ℝ)

/
Γq. (2.1)

On the other hand, the vacuummoduli space of string theory on
𝕋 4 is

O(5, 5;ℝ)
O(5,ℝ) ×O(5,ℝ)

/
O(5, 5;ℤ), (2.2)

which has a single cusp at weak string coupling (the attractor
mechanism in the presence in the background branes turns five
of the moduli into fixed scalars[42,43]). The reduced U-duality
group Γq ⊂ O(5, 4;ℤ) implies that the elements 𝛾 ∈ O(5, 4;ℤ)
that are not in Γq map this weak coupling cusp to another weak-
coupling cusp of the moduli space.[43,44] One can either regard
this other cusp as a region of the moduli space with the same
background charge and different moduli, or as having the same
moduli and different charges. 8 Adopting the latter interpretation,
q′ = 𝛾 q is another charge vector having the same symplectic in-
ner product N. Thus each factorization N = n5n1 corresponds to
a different weak-coupling cusp.

the D5 gauge theory. Our ability to see the details of microstates varies
from frame to frame; we choose the NS5-F1 frame precisely because
stringy aspects of microstructure are more readily apparent. It would
be interesting to understand whether and how themechanisms we dis-
cuss here are manifested in other duality frames.

8 An elementary example of this phenomenon is string theory on a circle,
where string momentum and winding charges (p, w) are a doublet un-
der theℤ2 T-duality group. In the presence of a winding string of wind-
ing w = n1, the T-duality group is broken; the moduli space at fixed
winding charge has two asymptotic regions, R → ∞ and R → 0. Alter-
natively, one can divide the moduli space into two disjoint domains,
with charges (0, n1) and (n1, 0), both having the usual vacuum moduli
space R > 1.
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Figure 2. Effective descriptions appropriate to various domains in the
moduli space.

The symmetric product orbifold lies in the cusp of the moduli
space with charges n5 = 1, n1 = N.[44] The RNS worldsheet for-
malism describes weakly coupled string theory in other cusps of
the moduli space, having n5 > 1.
Within a given cusp, themoduli space has several subdomains.

The low-energy string theory that applies is the one for which the
fundamental string has the lightest tension among the branes
that canwrap 𝕋 4. In theNS5-F1 frame, the six-dimensional string
coupling is one of the fixed scalars, pinned to

g26 =
g2s
v4

=
n5
n1
, (2.3)

while the compactification volume in string units v4 is a mod-
ulus. As one increases v4, the string coupling increases until at
v4 = g−26 = n1

n5
(gs = 1), a D1-brane wrapping 𝕋 4 becomes as light

as an F1 string wrapping the same cycle. Beyond this point the S-
dual D5-D1 frame is appropriate; in the process, the fixed scalar
g−26 and the modulus v4 interchange roles. Increasing the NS5-
F1 frame volume v4 further (i.e. in the D5-D1 frame, increasing
g−26 ), one reaches a correspondence transition at v4 = n5n1 beyond
which the effective field theory on the D-branes becomes weakly
coupled. This sequence is depicted in Figure 2. We see that NS5-
F1 tends to be the appropriate description over most of the super-
gravity regime for n5 ≪ n1, while the D5-D1 frame is appropriate
over most of that regime when n5 ∼ n1. Again, the symmetric
product orbifold N∕SN ,  = 𝕋 4 or K3, sits in the cusp with
n5 = 1, n1 = N, where the NS5-F1 description is appropriate (al-
beit stringy) in the entire range of validity of the low-energy bulk
description. Indeed, recently a worldsheet string theory realiza-
tion of this regime has been proposed.[45,46]

2.2. BPS Ground States of the Symmetric Product Orbifold

The twisted sectors of the symmetric orbifold on a spatial circle
𝕊1
y are labelled by conjugacy classes of the symmetric group, cor-

responding to a choice of twisted boundary condition in which
the N copies of the SCFT on  are partitioned into N𝜅 groups
of 𝜅 copies each of  which are cyclically sewn together, with∑

𝜅 𝜅N𝜅 =N. Each resulting 𝜅-cycle is effectively a copy of the
SCFT on a spatial circle 𝜅 times longer. In particular, the 1/2-BPS
Ramond ground states are the same as those of a single copy of
the SCFT; these are labeled by the cohomology of the target space
, with even (odd) cohomology associated to bosonic (fermionic)
ground states. One thus has eight bosonic and eight fermionic
states for 𝕋 4 and 24 bosonic states for K3. Labeling the ground

states of a single copy of  by I, the Ramond ground states of
the symmetric product are given by

|||Ψ⟩ =
∏
𝜅,I

(|||I⟩𝜅

)NI
𝜅

,
∑
𝜅,I

𝜅NI
𝜅
= N. (2.4)

Regardless of the effective supergravity description that applies in
a particular domain, the 1/2-BPS spectrum is robust across the
moduli space – the BPS states in any other regime of the moduli
space can be written in a basis that uses the same labelling as
that of the symmetric product. The symmetric product describes
a regime in which the appropriate effective description has a sin-
gle fivebrane; then the cycle lengths 𝜅 correspond to F1 winding
𝜅. 9 The cusps whose interpretation has n5 > 1 can be labelled by
the same data (2.4). However, in the regime where the number of
fivebrane quanta in the effective supergravity is n5, it is natural to
interpret the cycle length 𝜅 in (2.4) as a fractional string winding
number, since F1 charge is only integral when 𝜅 is a multiple of
n5.

[36,38]

Indeed, it has been proposed[36–39] that the internal dynamics
of a stack of n5 NS5-branes is governed by a 6d self-dual string dy-
namics known as little string theory. When a fundamental string is
absorbed into the stack of fivebranes, it fractionates into n5 con-
stituent little strings. 10 F1 winding w then becomes little string
winding n5w.
Stringwinding fractionatesmomentumaccording to thewind-

ing quantum. The 1/4-BPS excitations above these Ramond
ground states consist of oscillator excitations on each 𝜅-cycle, and
the 𝜅-cycle itself carries 𝜅∕n5 units of fundamental string wind-
ing. Thus the oscillator mode numbers (and the resulting y mo-
mentum quantization) come in fractions of 𝜅

|||{nAȦ𝓁 }, {mB𝛽
j }, I

⟩
𝜅⋅cycle

=
∏

𝓁,AȦ;j,B𝛽

(
𝛼AȦ
−𝓁∕𝜅

)nAȦ𝓁 (
𝜓B𝛽
−j∕𝜅

)mB𝛽
j |||I⟩𝜅

. (2.5)

Here 𝛼AȦ
p are modes of the 𝕋 4 currents, and 𝜓B𝛽

p are their super-
partners. The full 1/4-BPS state of the symmetric product is then
a symmtrized tensor product of such excited 𝜅-cycles.
The entropy of these 1/4-BPS states will be discussed below in

Section 6.

3. Worldsheet Setup

The gauged Wess-Zumino-Witten (WZW) model for the group
quotient


 =

SL(2,ℝ) × SU(2) ×ℝt × 𝕊1
y

U(1)L ×U(1)R
, (3.1)

9 This fact lies at the heart of the worldsheet description of AdS3 × 𝕊3 × at n5 = 1 constructed in [45, 46].
10 The qualitative explanation of this phenomenon varies with the du-

ality frame. In type IIA, the little strings are realized in the M-theory
lift of the strong-coupling region near the fivebranes as M2-branes
stretching between M5-branes. In type IIB, one can think of them as
codimension four instantons in the effective 5+1d super Yang-Mills
theory on the fivebranes.
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with  consisting of a pair of null isometries of , describes a
family of BPS backgrounds of the NS5-F1 system.[26–30] The tar-
get space of the worldsheet theory consists of this coset model
times  = 𝕋 4 or K3 (the latter is most conveniently realized as
the orbifold 𝕋 4∕ℤ2).
The radius Ry of 𝕊1

y is a modulus of this background, which
characterizes the crossover between a geometry which is ap-
proximately [(AdS3 × 𝕊3)∕ℤk] × at small radius, rolling over
to a fivebrane throat ℝ𝜌 ×ℝt × 𝕊1

y × 𝕊3 × with a linear dila-
ton in the radial coordinate 𝜌 at large radius. The discrete pa-
rameter k characterizes the choice of embedding of  ⊂ . One
can think of the crossover point 𝜌 ∼ 1

2
log(

kRy

n5
) as the charge ra-

dius of the background strings. The full geometry is given in
Appendix A. The AdS3 decoupling limit is the limit Ry → ∞.
The worldsheet theory describes perturbative excitations around
a particular background 1/2-BPS state, whose bulk geometry is
(AdS3 × 𝕊3)∕ℤk × in the AdS3 decoupling limit. The corre-
sponding CFT state in the description (2.4) will be given below,
after we develop more of the holographic map.
Physical vertex operators in worldsheet string theory on this

background (for details of the construction, see [29]) lie in the
cohomology of the BRST operator

BRST = ∮ dz
[(
cT + 𝛾G + ghosts

)
+ (c̃ + �̃�𝝀)

]
(3.2)

and its right-moving counterpart. The first set of terms imple-
ment the usual (super)reparametrization constraints, while sec-
ond set implement the constraints under the gauged null cur-
rents  , ̄ and their superpartners 𝝀, �̄�

 = J3sl + l2J
3
su + l3 i𝜕t + l4 i𝜕y, 𝝀 = 𝜓3

sl + l2 𝜓
3
su + l3 𝜓

t + l4 𝜓
y

̄ = J̄3sl + r2J̄
3
su + r3 i�̄�t + r4 i�̄�y, �̄� = �̄�3

sl + r2 �̄�
3
su + r3 �̄�

t + r4 �̄�
y.

(3.3)

Our choice of null vector coefficients describing BPS supertubes
is [26]

l2 = −1, l3 = −l4 = −kRy; r2 = −1, r3 = r4 = −kRy. (3.4)

Our conventions on SL(2,ℝ) and SU(2) current algebra and its
representation theory, null gauging choices, etc, largely paral-
lel those of [29], with some differences that are detailed in Ap-
pendix A. We set 𝛼′ = 1.
The construction of vertex operators begins with a center of

mass wavefunction

Φ(w)
j;m,m̄ Ψ(w′ ,w̄′)

j′ ;m′ ,m̄′ e
−iEt+iPyy+iP̄y ȳ (3.5)

where y(z), ȳ(z̄) are the (anti-)holomorphic parts of the boson y;
Φ(w)

j;m,m̄ is an SL(2,ℝ) primary of the bosonic WZW model in the

spectral flow sector w; and Ψ(w′ ,w̄′)
j′ ;m′ ,m̄′ is a bosonic SU(2) primary

in the (L,R) spectral flow sector (w′, w̄′). In particular j, m, m̄ are
quantum numbers under the bosonic SL(2,ℝ) currents jasl and

similarly j′, m′, m̄′ under the bosonic currents jasu. The total cur-
rents e.g. appearing in (3.3) are then

Jasl = jasl −
i
2
(𝜖sl)

a
bc𝜓

b
sl𝜓

c
sl, Jasu = jasu −

i
2
(𝜖su)

a
bc𝜓

b
su𝜓

c
su, (3.6)

where the totally antisymmetric symbols have 𝜖123sl = 𝜖123su = 1,
and indices are raised and lowered with the relevant Killing met-
ric. We then denote the total spins by J, J′ respectively. The (L,R)
y-circle momenta are given by

Py =
ny
Ry

+ wyRy, P̄y =
ny
Ry

− wyRy. (3.7)

We specialize to vanishing 𝕋 4 momentum, as there are no BPS
vertex operators carrying such momenta in the fivebrane decou-
pling limit.[44] Note that the y-circle momentum quantum ny is
the contribution of the vertex operator to the conserved momen-
tum charge np carried by the system.
One then decorates these center-of-mass operators with oscil-

lator excitations for the NS sector, or a spin field plus oscillator
excitations for the R sector, and asks that they commute with the
BRST operator.
We will largely work in the (−1) picture for the 𝛽𝛾 ghosts in the

NS sector, and the (− 1
2
) picture for the R sector; we denote by 𝜑

the scalar that bosonizes the ghost number current 𝛽𝛾 . There are
analogous ghosts 𝛽, �̃� , �̃� for gauging the fermionic null currents,
which appear in the Ramond sector vertex operators (for the NS
sector, one can work in the zero picture for these ghosts since
there is no ghost number anomaly).

3.1. The NS-NS Sector

Supergravity vertex operators in the NS sector have a single
fermionic excitation of each chirality. There are 12 such fermions
𝜓a
sl,𝜓

a
su,𝜓t,𝜓y,𝜓

i
𝕋 4 for the left movers, which the BRST con-

straints winnow down to 8 physical polarizations; similarly for
the right-movers. These were analyzed in [27, 29, 32]. One can
choose a gauge such that w = 0, and we will do so in what fol-
lows. The SU(2) spectral flows parametrized by w′, w̄′ label inner
automorphisms of the current algebra representations; nonzero
values are realized as current algebra descendants (oscillator ex-
citations), and so we can set w′ = w̄′ when discussing supergrav-
ity modes.
The four 𝕋 4 polarizations are manifestly transverse, leading

to the left-moving vertex operator structure (here and below, we
suppress the right-moving structure whenever possible to reduce
notational clutter)

AȦ
j,m;j′ ,m′ = e−𝜑 𝜓AȦ

𝕋 4 Φ(w)
j;m Ψ(w′)

j′ ;m′ e
−iEt+iPyy, A, Ȧ = ±. (3.8)

The mass-shell condition (the Virasoro zero mode constraint on
L0+L̄0) sets j = j′ + 1.
The remaining four polarizations are most conveniently ana-

lyzed by projecting the products of SL(2,ℝ) and SU(2) fermions
with the c.o.m. wavefunction (3.5) onto operators of fixed total
spin

J = j + 𝜖, J′ = j′ + 𝜖′, 𝜖, 𝜖′ = ±1, 0, (3.9)

Fortschr. Phys. 2023, 2300015 2300015 (6 of 23) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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and denote the resulting operators by

(𝜓slΦj)j+𝜖,m, (𝜓suΨj′ )j′+𝜖′ ,m′ (3.10)

wherem,m′ now refer to the total J3sl, J
3
su quantum number rather

than the bosonic one. This is useful for the analysis of the BRST
constraints because the worldsheet supercurrent G in the BRST
operator (3.2) is a singlet of the total spin. As a result, the zero
mode of the left null constraint reads

0 = m + l2m
′ + l3

E
2
+ l4

Py

2

= m −m′ − 1
2
kRy

(
E −

ny
Ry

− wyRy

)
. (3.11)

One thus trades the polarization labels a, a′ of 𝜓a
sl,𝜓

a′
su for 𝜖, 𝜖′.

It turns out that 𝜖 = 0 and 𝜖′ = 0 lead to states which are either
not BRST invariant, or are BRST exact. One is left with the four
physical polarizations[32]

 𝜖
j,m;j′ ,m′ = e−𝜑

[(
𝜓slΦj

)
j+𝜖,m

Ψj′ ,m′ +
(
ct
𝜖
𝜓 t + cy

𝜖
𝜓 y
)
Φj,m Ψj′ ,m′

]
× e−iEt+iPyy

 𝜖′

j,m;j′ ,m′ = e−𝜑
[
Φj,m

(
𝜓suΨj′

)
j′+𝜖′ ,m′ +

(
dt
𝜖′
𝜓 t + dy

𝜖′
𝜓 y
)
Φj,m Ψj′ ,m′

]
× e−iEt+iPyy (3.12)

labelled by the choices of 𝜖, 𝜖′ = ±1. The mass shell condition
again sets j = j′ + 1. The specific form of the Clebsches projecting
onto definite spin in SL(2,ℝ) and SU(2), as well as the values of
ct,y, dt,y, can be found in [32]; in particular, one finds that the latter
are of order n5∕kRy and so vanish in the AdS3 limit Ry → ∞.
Complete vertex operators combine one of the eight choices

AȦ, 𝜖 , 𝜖′ for left-movers with an independent choice
̄AȦ, ̄ 𝜖 , 𝜖′ for right-movers.

3.2. The R-R Sector

The left-moving part of a supergravity R-R vertex operator takes
the form

𝜀1…𝜀6 = e−
1
2
𝜑+ 1

2
�̃� S⟂

𝜀1𝜀2𝜀3
S||
𝜀4𝜀5𝜀6

Φj,m− 1
2
𝜀1
Ψj′ ,m′− 1

2
𝜀2
e−iEt+iPyy, (3.13)

where

S⟂
𝜀1𝜀2𝜀3

= e
i
2
(𝜀1H1+𝜀2H2+𝜀3H3), S||

𝜀4𝜀5𝜀6
= e

i
2
(𝜀4H4+𝜀5H5+𝜀6H6) (3.14)

are spin fields for AdS3 × 𝕊3 and ℝt × 𝕊1
y × 𝕋 4, respectively. Our

bosonization conventions set

𝜓±
sl = e±iH1 , 𝜓±

su = e±iH2 , 𝜓3
su ± 𝜓3

sl = e±iH3

𝜓6 ± i𝜓7 = e±iH4 , 𝜓8 ± i𝜓9 = e±iH5 , 𝜓 y ± 𝜓 t = e±iH6 ,
(3.15)

where directions 6,7,8,9 span 𝕋 4. The mass-shell condition again
sets j = j′ + 1. We choose a GSO projection

6∏
𝛼=1

𝜀𝛼 = −1 (3.16)

in order that the 10d GSO projection on physical states turns out
to select positive chirality 10d spinors in the AdS3 decoupling
limit Ry → ∞. We will also find it useful to define the AdS3 × 𝕊3

chirality

𝜀 = 𝜀1𝜀2𝜀3 (3.17)

and eliminate 𝜀3, 𝜀6 via

𝜀3 = 𝜀𝜀1𝜀2, 𝜀6 = −𝜀𝜀4𝜀5. (3.18)

One can characterize operators by their leading terms in the large
Ry (AdS3) limit, in which one again trades the polarizations 𝜀1, 𝜀2
for projections onto definite SL(2,ℝ) and SU(2) spins

J = j + 𝜖, J′ = j′ + 𝜖′, 𝜖, 𝜖′ = ±1
2
. (3.19)

The physical RR vertex operators in the AdS3 limit can then be
written as

𝜀,𝜀4;𝜖,𝜖
′

j,m;j′ ,m′ = e−
1
2
𝜑+ 1

2
�̃�
(
S⟂ΦjΨj′

)𝜀
j+𝜖,m;j′+𝜖′ ,m′ S

||
𝜀4 ,𝜀5=𝜀𝜀4

e−iEt+iPyy

+O(1∕Ry) (3.20)

with 𝜀6 = −1 determined by (3.18) via the solutions to the
fermionic null constraint. For details, see [32]. 11

The fermionic constraints from Virasoro and null gauging
leave eight physical left-moving polarizations. One finds that, for
the leading terms (3.20) in 1∕Ry, these have 𝜀 = + for 𝜖 = −𝜖′

(and 𝜀 = − for 𝜖 = +𝜖′) for any choice of 𝜀4. These comprise the
eight left-moving physical Ramond polarizations; one has a sim-
ilar set for the right-movers.
We should note that the flipped sign r4 = −l4 for the right-

movers leads to a flipped sign for �̄�6 in the solution to the con-
straints. This leads to the opposite choice for GSO projection in
12d:

6∏
i=1

�̄�i = +1. (3.21)

4. 1/2-BPS Spectrum

The backgrounds (3.1) with the gauged null currents specified
in (3.4) describe particular 1/2-BPS Ramond ground states in the
spacetime CFT. We now consider vertex operators that preserve
the same supersymmetries as the background. These spacetime
supersymmetries are described in Appendix C. Maximally BPS

11 Note that our conventions for null vector coefficients l2, r2, l4, r4 have
different signs compared to the choices made in [32]. This results in a
flip in the signs of 𝜀3, 𝜀6 in the solutions to the constraints.
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 15213978, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prop.202300015 by U

niversity O
f Southam

pton, W
iley O

nline L
ibrary on [19/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

vertex operators carry winding that contributes to the F1 charge,
but no 𝕊1

y momentum as this would break another half of the su-
persymmetry.
The vertex operators among (3.12), (3.20) that preserve the

background supersymmetry have

ny = 0, E = wyRy. (4.1)

The left null constraint  = 0, Equation (3.11), then
imposes[27,29]

0 = m −m′ = −𝗇 − 𝜖 −𝗆 + 𝜖′ − 1, (4.2)

where we define 𝗆 and 𝗇 through 12

m = −J − 𝗇, 𝗇 = 0, 1, 2,… ;

m′ = −J′ +𝗆, 𝗆 = 0, 1,… , 2J′ + 1, (4.3)

and recall j = j′ + 1. The only solutions are 𝗆 = 𝗇 = 0 with 𝜖′ =
𝜖 + 1, giving rise to the choices

𝜖 = −1, 𝜖′ = 0; 𝜖 = 0, 𝜖′ = +1; 𝜖 = −𝜖′ = −1
2
. (4.4)

The BPS polarization states are then

+
j′ ,wy

≡ −
j′+1,−j′ ;j′ ,−j′

−
j′ ,wy

≡ +
j′+1,−j′−1;j′ ,−j′−1 (4.5)

A
j′ ,wy

≡ 𝜀=+,𝜀4=𝜀5=A;𝜖=−,𝜖′=+
j′+ 1

2
,j′+ 1

2
;j′+ 1

2
,−j′− 1

2

, A = ±.

There are thus two NS and two R left-BPS polarizations, for each
value of SU(2) c.o.m. spin j′. The Clebsches of the polarization
vector with the center-of-mass wavefunction result in the total
spins J = J′

+ : J = j − 1 = j′, J′ = j′

− : J = j = j′ + 1, J′ = j′ + 1 (4.6)

A : J = j − 1
2
= j′ + 1

2
, J′ = j′ + 1

2
.

1/2-BPS operators are of the form (4.5) on both left and right.
Among the bosonic operators, there are four NS-NS and four R-
R operators. As we recall in the next subsection, these match the
deformations of supertubes, the 1/2-BPS geometries of the NS5-
F1 system. This deformation spectrum is easy to understand via
T-duality along 𝕊1

y , which converts the background into NS5-P.
13 The excitations are now BPS momentum waves on the five-

12 The choice of conjugate discrete series representations−
j
for SL(2,ℝ)

corresponds to string creation operators.
13 Note that this T-duality is trivial in the worldsheet theory, correspond-

ing to a flip in the relative sign between l4 and r4 in the null gauge
currents.[26]

brane – four transverse scalars X𝛼�̇� (in a bispinor labeling of the
transverse ℝ4), whose mode excitations are related to

𝛼�̇�
j′ ,wy

= 𝛼
j′ ,wy

̄ �̇�
j′ ,wy

, (4.7)

and four polarizations of the type IIA NS5 gauge multiplet (a
scalar and a self-dual antisymmetric tensor) whose mode exci-
tations are related to

AB
j′ ,wy

= A
j′ ,wy

̄B
j′ ,wy

. (4.8)

The internal gauge excitations are R-R because they carry the flux
sourced by D-branes which can end on NS5-branes. After the T-
duality, wy is now the momentum quantum on the T-dual circle,
and the vertex operator describes a supergravity mode in space-
time, but this is simply a relabelling of the worldsheet data.
For K3 realized as 𝕋 4∕ℤ2, there are an additional 16 R-R gauge

modes coming from the orbifold fixed point cohomology,[47] and
sourced by D-branes wrapping the orbifold vanishing cycles.[48,49]

4.1. Nonlinear Deformation: Supertubes

The 1/2-BPS supergravity solutions sourced by these excited five-
branes were enumerated in [5–8]. The metric is given by

ds210 = −
Z5


[
(du+𝜔)(dv+𝛽)

]
+ Z5 ds

2
⟂ + ds2, (4.9)

where

 ≡ Z1 Z5 − Z2
0 − Z2

(𝛾). (4.10)

Here ds210 is the ten-dimensional string-frame metric; ds2⟂ is the
metric on the space ℝ4 transverse to the branes, parametrized
by x𝛼�̇� ; ds2 is the metric on the 𝕋 4 or K3 compactification; and
we denote u, v = t±y. For the rest of the supergravity fields, see
Appendix B; and for further discussion, see [11, 50–54].
The harmonic functions and forms appearing in the ge-

ometry are expressed in terms of a set of source func-
tions 𝖥𝛼�̇�(v̂), 𝖥AB(v̂) for the bosonic supergravity fields (and
𝖥𝛼B(v̂), 𝖥A�̇�(v̂) for fermions), through a set of Green’s function in-
tegrals

Z5 =
n5
L ∫

L

0

dv̂|x𝛼�̇� − 𝖥𝛼�̇�(v̂)|2
𝖠𝛼�̇� =

n5
L ∫

L

0

dv̂ �̇�𝛼�̇�(v̂)|x − 𝖥(v̂)|2 ,
d𝖡 =∗⟂ d𝖠, 𝛽 = 𝖠 + 𝖡, 𝜔 = 𝖠 − 𝖡 (4.11)

Z1 = 1 +
n5
L ∫

L

0

dv̂ (�̇�𝛼�̇� �̇�𝛼�̇� + �̇�(I)�̇�(I))|x − 𝖥(v̂)|2 ,

I = 0, 𝛾 ; 𝛾 = 1,… , b−2 ,

Z(I) =
n5
L ∫

L

0

dv̂ �̇�(I)(v̂)|x − 𝖥(v̂)|2
Fortschr. Phys. 2023, 2300015 2300015 (8 of 23) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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Figure 3. (a) Typical source profile 𝖥(v̂), with successive windings along 𝕊1y color coded with evolving hue around the color wheel to indicate their
connectivity. (b) Circular supertube source profile, in which only a single mode is excited (in this case, k = 3 and n5 = 25), so that the fivebranes spiral
around a torus in (y, x1, x2) shaded in pink.

where b−2 is the rank of the anti-selfdual middle chomology of
. For 𝕋 4, we can relabel the Z(I) into a bispinor ZAB, where
0 = [AB] is the antisymmetric singlet and 𝛾 = 1, 2, 3 comprise the
symmetric triplet (AB). Inwhat follows, wemostly concentrate on
this case, and mention differences for K3 where appropriate.
The onebrane charge is in general given by

Q1 =
Q5

L ∫
L

0

(|�̇�𝛼�̇�(v̂)|2 + |�̇�AB(v̂)|2)dv̂. (4.12)

The quantitiesQ1,Q5 are related to quantized onebrane and five-
brane numbers n1, n5 by

Q1 =
n1 g

2
s 𝛼

′3

v4
, Q5 = n5 𝛼

′, (4.13)

where v4 is the volume of 𝕋 4 in string units.
The polarizations 𝖥𝛼�̇� specify the location of the fivebranes in

their transverse space. To bind all the fivebranes together, one im-
poses a twisted boundary condition so that the fivebrane charge
is realized by a single fivebrane that wraps the y-circle n5 times.
This structure is depicted in Figure 3a. This figure should

be thought of as describing the T-dual NS5-P source configura-
tion, where the momentum waves on the fivebrane indeed spec-
ify the wiggling shape of the fivebrane in its transverse space.
One should then mentally T-dualize this picture to NS5-F1 (in
particular we have L = 2𝜋n5∕Ry). Since the fivebrane source is
partly along and partly transverse to the circle being dualized,
the dual geometry has a local KKmonopole structure (there is no
net KKM charge). The separation of the fivebranes along the dual
ỹ-circle is coded in B-fluxes through two-cycles in the KKM struc-
ture. For instance, in Figure 3b there are k = 3 NS5’s vertically
along the y-circle, leading to three coincident KKM’s after the T-
duality; this is one way to see why the NS5-F1 geometry sourced
by the profile is (AdS3 × 𝕊3)∕ℤk (with the fivebrane separation
along the dual ỹ-circle transforming into B-fluxes through the
vanishing cycles, rendering the orbifold non-singular in string
theory).
A basis of states is specified by the set of occupation numbers

{N𝛼�̇�
p , NAB

p } for the Fourier modes of these source functions (and

{N𝛼B
p , NA�̇�

p } for their fermionic superpartners)

|||Ψ⟩ =
∏
p,q,r,𝓁
𝛼,�̇�,A,B

( |𝛼�̇�⟩
p

)N𝛼�̇�
p
( |AB⟩

q

)NAB
q
( |𝛼B⟩

r

)N𝛼B
r
( |A�̇�⟩

𝓁

)NA�̇�
𝓁
.

(4.14)

For the extension to fermionic modes, see [7]. The eight bosonic
and eight fermionic polarization states match those of the sym-
metric product (2.4).
In the T-dual NS5-P frame, the NI

p are simply the mode oc-
cupation numbers for a BPS wave on a single fivebrane wrap-
ping the y-circle n5 times, with modes labelled by p contributing
a fractional amount p∕n5 to the quantized y-momentum due to
the multiple covering. In the NS5-F1 frame, the corresponding
F1 modes carried on the fivebrane have fractional string winding
p∕n5, and so might be interpreted as modes of the fractionated
little string that is thought to underlie the dynamics of decou-
pled fivebranes.
The worldsheet formalism transpires in the grand canonical

ensemble of fixed chemical potential for F1 winding, rather than
fixed winding.[55] The Legendre transform to fixed winding im-
poses the constraint

N ≡ n1n5 = pN𝛼�̇�
p + qNAB

q + rN𝛼B
r + 𝓁NA�̇�

𝓁 , (4.15)

but we will work in the ensemble that is natural to the world-
sheet. A vertex operator with winding wy on the y-circle intro-
duces/extracts that winding at the spacetime boundary. On the
other hand, the vertex operators can also redistribute the string
winding already in the initial state among the variousmode num-
bers.
The round supertube background described by the null-

gauged WZW model is a coherent state built on a single mode
14

|||Ψ bkgd

⟩
=
∑
N++
k

(ak)
N++
k

(N++
k )!

(|||𝛼�̇�=++
⟩
k

)N++
k
, (4.16)

14 The worldsheet formalism works in the grand canonical ensemble
with respect to F1 winding.[56]
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so that ⟨N⟩ = k⟨N++
k ⟩ = kak. This source profile is depicted in Fig-

ure 3b. In [29], it was argued that the 1/2-BPS operators (4.5) ex-
tract 2j′+1 background modes, in addition to adding F1 winding
wy (which due tomode fractionation adds wyn5 to themode num-
ber), resulting in a single mode with winding

(2j′+1)k + wyn5. (4.17)

At the same time, they implement a change in the polarization
state according to [29]

𝛼�̇�
j′ ,wy

:
(|++⟩k)2j′+1 ←→ |||𝛼�̇�⟩(2j′+1)k+wyn5

AB
j′ ,wy

:
(|++⟩k)2j′+1 ←→ |||AB⟩(2j′+1)k+wyn5

.

(4.18)

The identification of these vertex operators as mediating these
transitions is consistent with the conservation of string winding
charge on 𝕊1

y , as well as the difference in J
3
su, J̄

3
su charges between

the LHS and RHS.
Note that, in order for the background to consist of a sin-

gle (multiply wound) fivebrane source, k and n5 must be rela-
tively prime (otherwise, one has gcd(k, n5) interleaved fivebrane
sources). Therefore, by adjusting j′, wy one can generate any de-
siredmode number of fractional F1 winding from applying these
operators to the background, in the regime where perturbative
string theory applies. More precisely, one can generate any mode
number that is not a multiple of n5; the range of j

′ is

j′ = 0, 1,… , 1
2
n5 − 1 (4.19)

and so such mode numbers cannot be realized in perturbative
string theory. Little string winding that is a multiple of n5 corre-
sponds to integer F1winding; suchmodes lie at the threshold of a
continuum of long string states, and as such their wavefunctions
are not normalizable.[57] 15

The exponentiation of these vertex operators into the world-
sheet action formally generates the complete ensemble of 1/2-
BPS backgrounds over a finite domain of their configuration
space. This is particularly clear when the R-R fields are turned off;
purely NS backgrounds yield worldsheet nonlinear sigma mod-
els that are conformal to all orders in sigma mode perturbation
theory[58,59] (i.e. to all orders in the 𝛼′ expansion; see in particular
the discussion around equations 7-9 of the second reference).
Effects such as the near-source geometry and effects such as

the location of the fivebranes on the T-dual to the y-circle, are
captured by non-perturbative properties of the sigma model. In
the subset of configurations where the background is purely
NS and sourced by fivebrane wiggling in a two-dimensional
plane (of which the background (4.16) is an example), these
non-perturbative aspects are captured by a dual superpoten-
tial, in a generalization of the Calabi-Yau/Landau-Ginsburg

15 In other words, these fivebrane modes mix with those of unbound F1
string states. Thesemodes are in normalizable bound states at generic
moduli, but are unbound at the codimension four locus in moduli
space described by the worldsheet formalism, which has all the R-R
moduli set to zero. The fractionally moded strings, on the other hand,
are always bound to the fivebranes.

correspondence.[29,60–63] We will review this construction in Sec-
tion 7.

5. 1/4-BPS Supergravity Spectrum

Among the 1/4-BPS deformations of the round supertube, there
are a large number of supergravity vertex operators. These
arise from combining (say) any of the four BPS polariza-
tions (4.5) among the right-movers, with an arbitrary polariza-
tion state (3.12), (3.20) among the left-movers. In particular,
the center-of-mass contribution to the vertex operator need no
longer be highest weight in SL(2,ℝ) or SU(2). The vertex opera-
tors (3.12), (3.20) pick a particular Clebsch (3.9) or (3.19), which
need not be the same for the left- and right-movers. The BPS con-
straint on the right forces

m̄ = −J̄ = −(j + 𝜖), m̄′ = −J̄′ = −(j′ + 𝜖′). (5.1)

and recall the mass shell condition sets j = j′ + 1. The axial (L0 −
L̄0) Virasoro constraint is the usual level-matching requirement

nywy +m′w′ − m̄′w̄′ +
n5
4

[
(w′)2 − (w̄′)2

]
+ NL − NR = 0 (5.2)

where NL,R are the left- and right-moving oscillator excitation
levels, and we work in the zero spectral flow sector w = 0 for
SL(2,ℝ). For a supergravity operator, there is no SU(2) winding
w′ = w̄′ = 0, andNL = NR = 1

2
in the (−1) picture NS sector; simi-

larly in the R sector one has a ground state spin field on both sides
in the (− 1

2
) picture. The constraint then requires either ny = 0 or

wy = 0. The axial ( − ̄ ) null gauge constraint then imposes

𝗆 + 𝗇 + (𝜖 − 𝜖) − (𝜖′ − 𝜖′) = kny, (5.3)

which will require ny > 0 if𝗆 + 𝗇 ≠ 0 (a case-by-case analysis be-
low shows that the net effect of the 𝜖’s on the LHS is a non-
negative contribution).16 Thus, in order to turn on a 1/4-BPS
supergravity deformation by exciting the center-of-mass zero
modes on the left, we must have no winding on the y-circle,

wy = 0. (5.4)

Interestingly, for the 1/2-BPS vertex operators, one must set ny =
0 but is allowed wy ≠ 0, while for 1/4-BPS supergravity vertex op-
erators one has wy = 0 but nonzero ny. The difference lies in the
roles played by these two sets of operators. On the one hand, the
1/2-BPS operators deform the winding string condensate in the
background, and thus in general carries winding on the y-circle
(special cases, where the winding is a low multiple of k, may be
generated solely by extracting strings from the background, but
for general winding one needs nonzero wy). On the other hand,
the 1/4-BPS deformations add a supergravity wave on top of the
winding string condensate, carrying momentum on the y-circle;
in order to be a supergravity excitation rather than an excited
string state, the operator cannot have both winding andmomen-
tum along 𝕊1

y .

16 In our conventions, left-moving excitations carry negative momen-
tum. However, the modes corresponding to left-moving creation op-
erators have positive ny.
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5.1. Nonlinear Deformation: Superstrata

Just as the exponentiation of 1/2-BPS vertex operators into the
action coherently deforms the background to a nearby supertube
background, the exponentiation of the 1/4-BPS supergravity ver-
tex operators deforms the background into a nearby superstratum
background. These are smooth supergravity solutions carrying all
three charges NS5-F1-P; for instance, themetric (4.9) generalizes
to

ds2 = −
2Z5


[
(dv+𝛽)

(
du+𝜔 − 1

2
 (dv+𝛽)

)]
+ Z5 ds

2
⟂ + ds2,

(5.5)

with similar generalizations for the other fields.[13,52]

The most studied family of superstratum solutions consider
supergravity backgrounds that excite 6d tensor supermultiplets
in addition to the 6d gravity supermultiplet. Originally, solutions
involving the same four NS and four R polarizations as one has
for the 1/2-BPS deformations (4.7), (4.8) were considered.[11–13]

Let us denote these operators by

𝛼�̇�
j′ ;𝗇,𝗆, AB

j′ ;𝗇,𝗆, (5.6)

where 𝗆, 𝗇 denote the c.o.m. excitations discussed above.
Because the polarization state remains the same, the vertex

operators implement the same transitions (4.18), but there are
now left-moving excitations above the ground state in the final
state. The corresponding excitations of the symmetric product
were identified in [11–13] as cycles of the form 17

|||𝗆, 𝗇; I⟩(2j′+1)k = (𝖩+−1∕k)𝗆(
𝖫−1∕k − 𝖩3−1∕k

)𝗇|||I⟩(2j′+1)k (5.7)

where the polarization state is I = 𝛼�̇� for the NS-NS sector and
I = AB for the R-R sector; and 𝖫, 𝖩 are modes of the spacetime
superconformal algebra.18 The vertex operators (5.6) again im-
plement transformations that conserve y-circle winding as well
as J3su, J̄

3
su. The excitation structure matches as well, in that the 𝗇

units of excitation of the zero mode vertex operators (5.6) are im-
plemented by the global SL(2,ℝ) lowering operator (J−sl)0, which
corresponds to 𝖫−1 in spacetime; similarly the 𝗆 units of excita-
tion in SU(2) are implemented by (J+su)0, which maps to 𝖩+−1 in the
Ramond sector of the spacetime CFT.
It was subsequently realized that in order to solve the BPS

equations in the presence of multiple modes of the form (5.6),
onemust expand the set of deformations to include their bosonic
superpartners (so-called “supercharged” modes[14,15,67]) having
the analogous polarization structure, but choosing the other

17 More precisely, initially only solutions built on excitations of the
ground state 𝜖AB|AB⟩ ≡ |00⟩ were considered, as these preserve more
symmetry and are more straightforward to construct explicitly. More
recently, the generalization to other ground states has been analyzed
in [64, 65].

18 For k > 1, a special case

𝗇 = 0, 𝗆 = pk, 2j′+1 = pk, ny = p

of these deformations was considered in [66]. The general case was
discussed in [3].

Clebsch in SL(2,ℝ) and SU(2) (i.e. switching the signs of 𝜖, 𝜖′

in (3.12), (3.20)). Each of the two supercharges applied to the
highest weight of the supermultiplet acts to raise the SL(2,ℝ)
spin and lower the SU(2) spin. The resulting left-moving po-
larization states (lying in the same supermultiplet as the corre-
sponding modes (5.6)) thus have the total spins

̂− ≡ + : J = j + 1 = j′ + 2, J′ = j′

̂+ ≡ − : J = j = j′ + 1, J′ = j′ − 1 (5.8)

̂A ≡ 𝜀=+,𝜀4=A;𝜖=+,𝜖′=− : J = j + 1
2
= j′ + 3

2
, J′ = j′ − 1

2

leading to another set of vertex operators

̂𝛼�̇�
j′ ;𝗇,𝗆 = ̂𝛼

j′ ;𝗆,𝗇̄ �̇�
j′ ,wy=0

, ̂AB
j′ ;𝗇,𝗆 = ̂A

j′ ;𝗇,𝗆̄B
j′ ,wy=0

. (5.9)

Because the contribution of 𝜖 − 𝜖′ to the axial null constraint (5.3)
changes sign from −1 to +1, this constraint now reads

𝗆 + 𝗇 + 2 = kny, (5.10)

implying that the corresponding symmetric product CFT state
has two additional units of left-movingmomentum excitation rel-
ative to (5.7). Similarly, in the R-R vertex operator the Clebsches
of the spin field S with the center-of-mass operator ΦjΨj′ has the
opposite sign in both SL(2,ℝ) and SU(2) relative to (4.5), once
again leading to (5.10).
The symmetric product description of the supercharged

modes is given by [14, 15, 67](
𝖦+1

− 1
k

𝖦+2
− 1

k

+ 1
k
𝖩+
− 1

k

(
𝖫− 1

k
− 𝖩3

− 1
k

)) |||𝗆, 𝗇; I⟩(2j′+1)k (5.11)

where |𝗆, 𝗇; I⟩(2j′+1)k is given in (5.7), and 𝖦 is the spacetime CFT
supercurrent. Indeed, the two additional (fractional) units of left-
moving momentum match the quantum numbers of the vertex
operator (5.10).
Note also that we have flipped the assignments between ̂±

and+,− in (4.5). (5.6) relative to ± and−,+ in (5.9). This
choice is motivated by the difference of SU(2) spins between the
initial and final states – the value of J′ for+ is one less than+,
and similarly that of − is one less than−. This corresponds to
the fact that the mode (5.11) has SU(2) spin which is one more
than that of (5.7) due to the application of the two 𝖦’s.
All told, these deformations comprise 8 NS-NS and 8 R-R de-

formations for each choice of j′,𝗆, 𝗇 allowed by (4.3), (4.19) (half
each from the original superstratum modes, and half each from
the supercharged modes). These comprise half of the 32 bosonic
1/4-BPS supergravity modes. The remainder are associated to 6d
vector multiplets, as we now describe.

5.2. Nonlinear Deformation: 6d Vector Multiplets

The remaining 1/4-BPS supergravity deformations are modes
of 6d vector multiplets. Half of these are straightforward to de-
scribe – they are NS-NS operators that combine a BPS polariza-
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tion ̄± of (4.5) for the right-movers with one of the 𝕋 4 polariza-
tions AȦ of (3.8) for the left-movers. In addition, there are eight
more R-R vector modes that arise when the 6d chiralities of the
spin fields are opposite on left and right, �̄� = + for the BPS right-
movers and 𝜀 = − for the non-BPS left-movers. 19

The NS-NS vectors have SL(2,ℝ) and SU(2) total spins

AǠ+ : −m = j+𝗇 = j′+1+𝗇, m′ = −j′+𝗆,

− m̄ = j − 1 = j′, m̄′ = −j′

AǠ− : −m = j+𝗇 = j′+1+𝗇, m′ = −j′+𝗆,

− m̄ = j = j′ + 1, m̄′ = −j′ − 1

(5.12)

These modes belong to the NS-NS sector and are clearly 6d vec-
tors – the worldsheet NS-NS supergravity vertex operators rep-
resent perturbations of (G + B)LR; the above modes have the R
index in 6d and the L index on the 𝕋 4 (or K3) compactification,
and so dimensionally reduce to 6d vectors.
The axial null constraint sets

𝗆 + 𝗇 + 1 = kny. (5.13)

These quantum numbers match those of the symmetric product
cycle where a ground state is excited by a single supercurrent ap-
plied to a fermionic ground state

|||𝗆, 𝗇; �̇�, AȦ⟩(2j′+1)k = (𝖩+−1∕k)𝗆(
𝖫−1∕k − 𝖩3−1∕k

)𝗇

𝖦𝛼Ȧ
−1∕k

|||A�̇�⟩(2j′+1)k,
𝛼 = + (5.14)

which carries the quantumnumbersAȦ of a vector on 𝕋 4 coming
from the left-moving sector. Note that the SU(2) spin of (5.14) is
the same as for the NS modes (5.7) for 𝛼 = +. This is consistent
with the fact that (5.12) and +�̇�

j′ ;𝗇,𝗆 have the same SU(2) spin. In
other words, the F1 winding and SU(2) spins are consistent with
the proposed identification of the transition of 1/4-BPS states im-
plemented by the vertex operators (5.12)

AǠ �̇� :
(|||++⟩)2j′+1 ←→ |||𝗆, 𝗇; �̇�, AȦ⟩(2j′+1)k. (5.15)

In the R-R sector, the remaining physical vertex operators that are
right-BPS consist of

𝜀=−,𝜀4=Ȧ;𝜖=𝜖′ ̄A : −m = j+ 𝜖

2
+𝗇 = j′+1+ 𝜖

2
+𝗇,

m′ = −j′− 𝜖

2
+𝗆, (5.16)

−m̄ = j− 1
2
= j′+ 1

2
, m̄′ = −j′− 1

2
.

19 Note that the excitations charged under the NS-NS vectors are mo-
mentum and F1 winding on 𝕋 4. For the R-R vectors, the left and right
spin fields have opposite 𝕋 4 chirality and so comprise odd rank anti-
symmetric tensors that couple to D1 and D3-branes entirely wrapped
on 𝕋 4. For type IIA, the 𝕋 4 chiralities are flipped: �̄� = +, 𝜀 = − corre-
spond to the same 𝕋 4 chirality, leading to even rank antisymmetric
tensors coupling to D0, D2 and D4-branes wrapping the torus.

The natural candidate for the corresponding symmetric product
state is again a supercurrent acting on a fermionic ground state

|||𝗆, 𝗇; 𝛽, BȦ⟩(2j′+1)k = (𝖩+−1∕k)𝗆(
𝖫−1∕k − 𝖩3−1∕k

)𝗇

𝖦𝛼Ȧ
−1∕k

|||𝛽B⟩(2j′+1)k,
𝛼 = + (5.17)

(with 𝛽 = 𝜖) which again carries a vector index on the 𝕋 4, but
now the bispinor ȦB comes half from the left-movers and half
from the right-movers as one expects for a R-R operator. 20 The
𝛼, 𝛽 SU(2) spins combine to make JL − JR equal to zero or one
as in (5.16). Again one can check that all the remaining con-
served quantum numbers are compatible with the identification
of the vertex operator (5.16) as mediating the transition from
(| + +⟩)2j′+1 to (5.17).
The SU(2) spins of the symmetric product states (5.17) are ei-

ther one more than (𝛽 = +), or the same as (𝛽 = −) that of the
R-R states in (5.7). In other words, we identify the transition im-
plemented by (5.16) as having the final state (5.17), with 𝜖 = 𝛽.
These R-R fields are also 6d vectors. In type IIB, the R-R fields

are even rank antisymmetric tensors in 10d; the vertex opera-
tors (5.16) are vectors on the internal space, and thus odd rank
antisymmetric tensors in 6d – either vectors or three form poten-
tials that are electric-magnetic duals of vector potentials.
The 1/4-BPS 6d vector perturbations (5.12), (5.16) can be

exponentiated into smooth, nonlinear deformations of the
background.[16] With only gravitational and 6d tensor multiplet
perturbations, one can cast the BPS field equations as a three-step
hierarchy of linear equations, with the unknown harmonic forms
in each subsequent layer of the hierarchy having sources bilinear
in harmonic forms solved for in previous layers. The core idea is
that the coefficients of homogeneous solutions to the lower level
equations can be adjusted to ensure the smoothness of the so-
lutions to higher level equations. The work of [16] extends this
structure to include 6d vector multiplets as well as tensor multi-
plets; the hierarchy of linear equations now has five layers, but
otherwise the structure is similar.
For compactification on K3, there are no 6d vectors in the ef-

fective supergravity theory. In the symmetric orbifold, there are
no fermionic ground states on which to build the states (5.14)
or (5.17). On the worldsheet, if one realizes K3 as 𝕋 4∕ℤ2, the ver-
tex operators (5.12), (5.16) are projected out by the ℤ2 orbifold.
Instead, one has an additional 16 tensor multiplets in 6d – one
for each of the supersymmetric ground states arising from the
fixed points of 𝕋 4∕ℤ2 and their orbifold cohomology. These will
lead to an additional set of 1/4-BPS RR vertex operators coming
from the use of the BPS polarizations on both left and right, and
their supercharged counterparts where one flips the Clebsches
on the left.

20 Note that the left- and right-moving NS/R parities of a vertex oper-
ator correspond to left and right fermion parities in the spacetime
CFT. Furthermore, we assign fermion parity (−1)F=+1 to the trans-
verse ground state polarizations 𝛼, �̇� and (−1)F=−1 for the internal
polarizations A, B (on 𝕋 4, the fermion zero modes implement tran-
sitions between these ground states and thus fix these assignments).
Thus (5.14) has even fermion parity on both left and right, while (5.17)
has odd fermion parity on both sides.
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6. Stringy 1/4-BPS Spectrum

The general 1/4-BPS vertex operator allows both ny and wy to be
nonzero, and combines a right-moving vertex operator

̄ �̇�
j′ ,wy,ny

, ̄B
j′ ,wy,ny

(6.1)

generalizing (4.5) with a general left-moving vertex operator

e−𝜑 (L osc.)Φsl
j+1,m Ψsu

j′ ,m′ ,w′ e−iEt+iPyy (6.2)

for the NS sector, and similarly for the Ramond sector, subject
to the Virasoro and null gauging BRST constraints. Here  is a
polynomial in (derivatives of) the currents and their superpart-
ners. The axial Virasoro constraint (5.2) determines the level NL
of the left-moving oscillator excitations.
One sees that the momentum carried by the oscillator excita-

tions is fractionated by 1∕wy, as opposed to the c.o.m. excitations,
which are fractionated by 1∕k due to the axial null constraint (5.3),
(5.13). Note that neither of these fractionations reaches the max-
imum one might expect based on the symmetric product cy-
cles (2.5) for the corresponding cycle length (4.17), by a factor
of order n5 for the longest cycles (noting the range of j

′, Equa-
tion (4.19)).
This shortfall in momentum fractionation is perhaps not so

surprising, as these 1/4-BPS operators are adding fundamental
strings to the background rather than fractional “little string” ex-
citations. The surprise is that the 1/2-BPS vertex operators (4.7),
(4.8) were able to capture generic fractional winding. This was
possible due to the n5-fold winding of the background profile
𝖥𝛼�̇�(v) in (4.11). The worldsheet physical state constraints do not
allow a simultaneous fractionation of bothmomentumandwind-
ing beyond what one would expect from a fundamental string on
a ℤk orbifold spacetime, and/or wrapping a circle.
It could be that some states with the most finely fractionated

excitations lift off the BPS bound as onemoves from the symmet-
ric orbifold point to the supergravity regime, but it is unlikely that
all of them do since they are essential to explaining black hole
entropy. It may just be that states with such highly fractionated
excitations are not realized among themicrostate geometries and
perturbatively stringy microstates.
It is natural to conjecture that a coherent excitation of 1/4-

BPS strings (6.2) would lead to something along the lines of a
geometry with an explicit F1-P macroscopic string source as in
[68], but now in an ambient spacetime with AdS3 × 𝕊3 asymp-
totics. One imagines that a suitable generalization of the super-
stratum construction might exist, where one relaxes the condi-
tion of complete smoothness of the geometry in favor of allowing
perturbative string singularities sourcing momentum and wind-
ing charge.
Note that the operators (6.2) do not create index states. The su-

pergravity 1/4-BPS states enumerated in the previous section sat-
urate the elliptic genus, up to level n1n5∕4.[19] Thus none of these
stringy BPS states are protected aswemove around theCFTmod-
uli space, at least up to this level. Nevertheless, they lie on the BPS
bound at least at this point in the moduli space and at tree level
in string perturbation theory. In this respect, they join the major-
ity of 1/4-BPS supergravity states, which also vastly outnumber
index states (comparing (1.7) to (1.6); see for instance [21, 24]).

The growth of the elliptic genus at low level 1 ≪ np ≪ 6N in
the K3 symmetric product is given by (1.7) (at JL = N∕2 in the R
sector, equivalently JL = 0 in the NS sector). At levels up to N∕4,
this is also the growth of the elliptic genus in supergravity. Amore
general quantity known as the “Hodge elliptic genus”[24,69]

ZHEG = tr
[
(−1)FL+FRqL0−

c
24 yJ0uJ̄0

]
(6.3)

(the elliptic genus is ZHEG(u = 1)) is not in general an index, but
counts BPS states; in supergravity, it has (at the same point in JL)
the growth[24]

𝜌HEG

sugra(np) ∼

⎧⎪⎪⎨⎪⎪⎩
N exp

[
4𝜋
3

(
12 n3p

)1∕4]
K3

N exp
[
4𝜋
3

(
8 n3p

)1∕4]
𝕋 4

(6.4)

while in the symmetric product it has Hagedorn growth[24]

𝜌HEG

SN()(np) ∼ exp
(
2𝜋np

)
. (6.5)

An ansatz explaining this growth in the symmetric product BPS
density of states was given in [22] (and generalized to include the
effects of angular momentum). Suppose that the cycles of the
symmetric product are split into two groups – a set of 𝓁 short
cycles of winding k that carry the angular momentum, and a
long cycle that carries the more entropic excitations. Subtracting
the portion of the charges residing in the short strings, the long
string entropy is

Slong = 2𝜋
√
(n1n5 − 𝓁k)np − (JL − 𝓁∕2)2. (6.6)

Extremizing with respect to 𝓁, one finds 𝓁 = 2(JL − knp), and so

Slong = 2𝜋
√
np(npk2 + n1n5 − 2JLk), (6.7)

which recovers the result (6.5) at JL = n1n5∕2 for k = 1, and gen-
eralizes it to general angular momentum and short string length.
The fact that this result differs from the enigmatic black hole en-
tropy (1.5) shows that these states indeed domove onto and off of
the BPS bound as we move around the moduli space of the the-
ory.
One also sees an analogous Hagedorn growth from the per-

turbative 1/4-BPS string spectrum. The Fock space of perturba-
tive strings has a symmetric product structure, with the restric-
tion that the winding comes in the form (2j′+1)k + wyn5 (with
0 ≤ j′ ≤ 1

2
n5 − 1). Thus the BPS strings don’t have windings that

are a multiple of n5, as mentioned above around (4.19); for large
n5, this is a relatively minor restriction. The oscillator spectrum
is gapped by 1∕wy rather than the cycle length in symmetric prod-
uct terms, which is approximately n5 times longer at largewy. The
worldsheet L0−L̄0 constraint (5.2) shows that the angular mo-
mentum subtracts from the available oscillator energy in much
the same way that it does for the long cycles in the symmetric
product (here we have as usual set j = j′ + 1). One more effect –
there are twice as many oscillator polarizations on a perturbative
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string as compared to the little string. Assuming that the entropy
is carried by a single long perturbative string, one has a wind-
ing budget n1n5 = 𝓁k + (2j′+1)k + wyn5 and an angular momen-
tum budget JL =

1
2
𝓁 +m′ + 1

2
n5w

′ (noting that the 𝓁 background
cycles have length k in little string units, and angular momen-
tum 1∕2). Again extremizing with respect to 𝓁, and for simplicity
ignoring the small effect of j′ for large ny, wy, one finds a pertur-
bative 1/4-BPS string entropy

Spert = 2𝜋

√
2
n5
np
(
npk2 + n1n5 − 2JLk

)
. (6.8)

Partitioning the entropy into several long strings leads to a simi-
lar result.
Not surprisingly, the extra factor of n5 in the fractionation of

little string excitations relative to those of fundamental strings
contributes to the larger BPS entropy (6.7) relative to (6.8) for k =
1. For k > 1, the energy of the string redshifts by a factor k; and so
perturbatively around the orbifold point JL =

n1n5
2k
, the entropy is

S = 2𝜋
√
2∕n5 Elocal, where Elocal = knp is the local energy around

the orbifold cap of the geometry.
Of course, this comparison is not really appropriate, since the

two are evaluated at different points in the moduli space of the
theory. The proper comparison is between (6.8) and the dominant
black hole ensemble (1.5). Comparison of these two entropies
at JL =

n1n5
2k

shows that (in the regime of validity 2JL > np) the
enigma entropy dominates; for larger np the BTZ entropy (1.4)
dominates. Thus there is no regime where the density of states is
dominated by perturbative strings, and thus no correspondence
transition in the spectrum of 1/4-BPS states in this system.

7. Singularities and Non-Singularities

7.1. Nonlinear (Non)instabilities

An analysis performed in [33] suggested that the microstate ge-
ometries (4.9), (4.11) might be classically unstable towards de-
veloping a singularity, through a nonlinear process whereby the
system traps excitations near the “evanescent ergosurface”, the
supertube locus where the deepest redshift occurs. Further inves-
tigation using an analysis of 1/2-BPS shockwave deformations of
the supertube[34] showed that the suggested non-linear instability
is nothing more than evolution in the supertube configurations
space, and argued that this evolution would proceed until the su-
pertube reached a generic configuration.
The considerations here and in [29] allow us to see what is go-

ing on in stringy detail. The analysis of [33] considered a limit of
large 𝕊3 angular momentum j′. In this limit, the center-of-mass
wavefunction of string vertex operators

Φsl
j;−j,−j Ψ

su
j′ ;−j′ ,−j′ = e2ij𝜏+2ij

′𝜙

(
a2

r2 + a2

)j

sin2j
′
𝜃 (7.1)

localizes on the the fivebrane source at r = 0, 𝜃 = 𝜋

2
. 21 As we

saw above, the effect of the vertex operator is to lower the SU(2)

21 This result generalizes to the class of three-charge geometries also an-
alyzed in [33]; see Appendix D.2.

spin of the system by j′, by changing the moding (4.16) accord-
ing to (4.18). The SU(2) spin j′ is bounded by 1

2
n5 − 1 according

to (4.19); the mass shell condition sets j = j′ + 1.
In the supergravity limit where n5 ismacroscopic, one can con-

sider macroscopic j′ and the perturbation can be extremely well
localized near the “evanescent ergosurface”. This is the situation
analyzed in [33]. At the same time, the perturbation looks like a
shockwave in this limit.We canwrite the perturbed source profile
as

𝖥𝛼�̇�(v) = ak 𝛿
𝛼�̇�,++ eikv∕n5 +

∑
j′
f 𝛼�̇�j′ ei(2j

′+1)kv∕n5

𝖥AB(v) =
∑
j′
f ABj′ ei(2j

′+1)kv∕n5

(7.2)

R-R deformations f AB are somewhat simpler to consider, since
they don’t change the location of the fivebrane source. The con-
tributions to the harmonic functions ZAB are evaluated in Ap-
pendix D.1; they are highly oscillating along the source, as well
as being highly localized there according to (7.1). In addition,
there is a contribution to the onebrane harmonic function Z1
via the stress tensor of the perturbation in the numerator of the
integrand in (4.11). If the product of perturbations has no low-
frequency components other than the zero mode, this deforma-
tion is also highly localized near the supertube source, and yields
a slight change in the radius of the supertube from the zero
mode, plus a high-frequency perturbation. If we ignore the high-
frequency terms, we find precisely the shockwave solutions of
[70].
For NS-NS perturbations, the transverse position of the five-

brane is modified by high-frequency wiggles, so the Lunin-
Mathur integrals are more complicated. Nevertheless, one finds
much the same result – the solution is only modified near the
source, apart from the contribution of the stress tensor zeromode
to the winding charge. One can see this via coarse-graining over
the high-frequency wiggles in the source introduced by the de-
formation.
Thus, we see that the limit of large angular momentum ana-

lyzed in [33] is a variant of the shockwave limit analyzed in [34,
70]. Both are part of a larger story about how bulk 1/2-BPS pertur-
bations modify the state of the system, and how the correspon-
dence between the bulk string theory and the CFT is manifested
in the worldsheet vertex operators. The phenomenon observed in
[33] is not an instability so much as an indication that it costs no
energy for the system to evolve along the 1/2-BPS configuration
space. The perturbations they analyze are simply a special case
of (4.18). The evolution described in [34] has the system shed-
ding angular momentum; the entropy increases as the angular
momentum decreases, and the larger phase space of final states
drives the evolution in this direction. Note that to shed angular
momentum, it must be radiated away, which costs energy. There
is thus no instability of this sort for the decoupled system. How-
ever, if we excite the isolated system away from the BPS bound,
it will evolve along the configuration space at fixed angular mo-
mentum, at a rate governed by the available energy.
We also see that the shockwave singularity is resolved by

stringy effects. The worldsheet dynamics places constraints on
the localizability of excitations.We don’t expect to be able tomake
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string states localized to less than the string scale. In the AdS3
context, the AdS curvature radius in units of the string length is
the level of the SL(2,ℝ) WZWmodel

ksl =
(
RAdS

𝓁s

)2

(7.3)

Normalizable discrete series affine representations ±
j have

SL(2,ℝ) spins bounded by

1
2

< j <
ksl + 1
2

. (7.4)

Since the corresponding zero-mode wavefunctions behave as
in (7.1), the wavefunction can’t be localized to a region smaller
than of order the string scale, and to achieve that resolution in-
volves j ∼ O(ksl).
There is furthermore a stringy property of affine SL(2,ℝ) rep-

resentation theory (see [29, 63] for recent discussions and further
references) that results in an identification of representations in
adjacent spectral flow sectors

±
j,w ≡ ∓

1
2
ksl+1−j,w∓1

, (7.5)

where w is a “winding” (spectral flow) quantum number. What
this means is that the wavefunction for a given pointlike string
state with winding zero, having a wavefunction scaling as r−2j at
large radius, has another branch of the wavefunction involving
strings that wind once around theAdS3 azimuthal direction, scal-
ing at large radius as r−(

1
2
ksl+1−j). The two scalings exchange dom-

inance at j ∼ 1
4
ksl; for larger spins, the winding component of the

wavefunction is more delocalized and at j = 1
2
(ksl + 1) the wound

string merges with a continuum of radially unbound strings in
plane-wave states having j = 1

2
+ is.

Thus, the localizability of string states bounces between the
AdS scale for j near a zero or 1

2
ksl, and the string scale for j ∼

1
4
ksl.

If we want a localized shock, we should take j large but smaller
than of order 1

4
ksl and take the large ksl limit. Since in the crit-

ical dimension we have ksl = n5 + 2 for the level of the bosonic
SL(2,ℝ) WZW model, we have to take the limit of a large num-
ber of fivebranes.
Naively, one might have hoped to increasingly localize the

source by devoting an ever larger fraction of the winding bud-
get to deformations f I in (7.2), noting the constraint (4.12),
(4.13). However, as we increase the winding on the y-circle, or
equivalantly in SL(2,ℝ), the localizability of the shock is always
bounded by the string scale. Stringy effects (non-perturbative in
𝛼′ but leading order in gs) resolve the shockwave singularity.
To summarize, ground state deformations localize to the ex-

tent possible in the most redshifted parts of the geometry, where
they backreact to affect the source configuration by changing
the string condensate carried by the fivebranes. The long-term
trapping of these deformations seen in supergravity is simply a
manifestation of motion along the 1/2-BPS configuration space.
The shockwave limit is one where the deformation has no low-
frequency components; stringy effects resolve the shockwave
over distances of order the string scale.

While this evolution takes the system along generically nonsin-
gular configurations, singularities can arise at particular points in
the configuration space. We discuss these next.

7.2. Singularities at Fivebrane Intersections

In Section 4.1, we saw that the geometry has a collection of
KK monopole cores extending along a one-dimensional contour
(these are the T-duals of NS5 windings in the NS5-P frame). A
pair of windings along the contour forms a two-sphere in which
the KKM fibered circle forms the azimuthal direction, and the in-
terval between the two windings forms the polar direction. The
size of this two-sphere is governed by the separation of the two
strands of the source profile, and vanishes when the strands inter-
sect. See Figure 4. Recall that the figure depicts source profile in
the T-dual NS5-P frame, with the separation of the strands along
𝕊1
ỹ in the figure indicating the amount of NS B-flux through this

two-sphere in the NS5-F1 frame supertube.
Let us exhibit this structure in a bit more detail. Isolating the

vicinity of a nearly self-intersecting profile as in the middle fig-
ure of Figure 4, one can locally approximate each component of
the source as a linear density 𝜅i, i = 1, 2 of fivebranes along a
line in the transverse ℝ4. Let us consider the first of these two
line sources. Let x1 parametrize the line, which sits at the origin
in the transverse ℝ3 parametrized by x2,3,4; we work in spherical
coordinates (𝜌, 𝜗,𝜑) in this ℝ3. The harmonic functions arising
from this line source are

Z5 =
𝜅

𝜌
, Z1 =

1
𝜅𝜌

, 𝖠 =
dx1
𝜌
, 𝖡 = cos 𝜗 d𝜑 (7.6)

so that the metric is

ds2 = 𝜅

[
−𝜌 dt2 − 2dt dx + 𝜌(dy + cos 𝜗 d𝜑)2 + d𝜌2

𝜌
+ 𝜌 dΩ 2

2

]
+ ds2𝕋 4 . (7.7)

The geometry along the directions (y, 𝜌, 𝜗,𝜑) is that of a Kaluza-
Klein monopole, with y parametrizing the fibered circle that
shrinks away at 𝜌 = 0. There is a similar structure for the other
line source, which we take to lie along a line in ℝ4 that is dis-
placed by an amount b along x2 and then rotated relative to the
first line source about the origin in the x1-x3 plane. The harmonic
forms for this second line source are again (7.6) in the displaced
and rotated coordinates, and the geometry is then determined by
the superposition of these two sources. The fibered y-circle grows
from zero size, reaches amaximum, and shrinks back to zero size
as onemoves along a path fromone line source to the other, form-
ing a homological 𝕊2. This 𝕊2 has minimal size along the x2 axis
between the two line sources at their point of closest approach.
The 𝕊2 shrinks to zero size as b → 0, leading to an A1 singularity.
The fivebrane source is actually spiralling along the T-dual of

the y-circle and x1 as in Figure 3b (the pitch of this spiral is related
to the parameter 𝜅), and the B-flux through the homological 𝕊2

is determined by the separation of the source strands along the
dual geometry. When the source strands intersect along ℝ4, they
intersect along the dual geometry and thus theB-flux through the
minimal 𝕊2 vanishes.

Fortschr. Phys. 2023, 2300015 2300015 (15 of 23) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

 15213978, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prop.202300015 by U

niversity O
f Southam

pton, W
iley O

nline L
ibrary on [19/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

Figure 4. Zooming in on fivebrane singularities. Right figure: The wiggly fivebrane source profile may come close to self-intersecting; the profile specifies
the location of a codimension four KK monopole core where a fibered circle degenerates. Middle figure: The fibered circle together with the interval
between strands of the source contour form the azimuthal and polar directions of a local 𝕊2 which has minimal area at the near-intersection. Left figure:
D3-branes wrapping this 𝕊2 have their remaining leg wiggling along the 𝕋 4 compactification, making an effective tensionless string when the profiles
do self-intersect – the W-string of little string theory.

D3-branes wrapping this cycle have vanishing tension. These
branes are pinned to the fivebrane worldvolume; they have one
remaining worldvolume direction, which wanders along the 𝕋 4;
when the profile self-intersects in the five spatial dimensions of
AdS3 × 𝕊3, such a brane becomes an effective tensionless string
bound to the pair of fivebranes at their intersection. 22 This is the
realization of a “W-string” of the nonabelian little string dynam-
ics that governs coincident fivebranes.
Our picture of singularity development is thus somewhat dif-

ferent from that envisioned in [34]. Rather than shedding angu-
lar momentum to become more compact, the system can simply
wander the supertube configuration space at fixed angular mo-
mentum until it reaches a point of self-intersection of the source
profile. At this point a “tensionless” string singularity arises, lead-
ing to strong-coupling dynamics. These strings can trap the five-
branes, binding them together and making a small black hole;
they may also condense and split the single wrapped fivebrane
into two fivebranes.
As in other examples of AdS/CFT duality, the transition to the

black hole phase is one of deconfinement of non-abelian degrees
of freedom in the underlying brane dynamics. In this case, those
non-abelian excitations are little strings. Here we see the realiza-
tion of this phenomenon on the bulk side of the duality. One ex-
pects that the injection of energy above extremality will lead to a
thermal gas of such W-strings which traps the pair of fivebranes
and realizes a small black hole in AdS3 × 𝕊3. 23

These strings are the strong-coupling version of the cycles in
the weak-coupling symmetric product orbifold which describes
fractionated strings oscillating along 𝕋 4, whose entropy accounts
for the black hole density of states.
One can find indirect support for this picture of the strong-

coupling dynamics by asking what happens when one elimi-

22 More precisely, the tension is not zero, rather when n5 fivebranes
come together the tension is n5 times smaller than that of the fun-
damental string. This is the scale of the radius of curvatuce of the am-
bient AdS3 × 𝕊3 geometry, and so where deconfined, these effective
strings are at their correspondence point.[28]

23 Another phenomenon implemented by the condensation of these
strings is the NS5 splitting transition in which the single wound five-
brane splits in two by reconnecting the intersecting strands. This D-
brane condensation is the S-dual of the corresponding topological
transition of D-branes mediated by the condensation of open strings
at their intersection.

nates the 𝕋 4 from the background.[71,72] The worldsheet sees a
6d target space AdS3 × 𝕊3

♭
, i.e. one has a non-critical string back-

ground. 24 This background is thought to arise when n5 NS5-
branes wrap a vanishing four-cycle in a non-compact Calabi-Yau
fourfold.[73] The dual CFT is a deformation of the symmetric
product (ℝ × 𝕊3

♭
)N∕SN that describes a Fock space of fundamen-

tal strings in the decoupled fivebranes’ throat. The AdS3 radius
of curvature is less than the string scale, thus the system lives on
the stringy side of the correspondence transition[74] where there
are no black holes in the spectrum - the asymptotic density of
states is a Hagedorn gas of fundamental strings[75] rather than an
ensemble of BTZ black holes. The D-branes which could poten-
tially make little string excitations have no transverse oscillations
in this case since there is no 𝕋 4 or K3 for them to oscillate in, and
hence have little entropy. Thus we see that when there is such a
little string configuration space, there is a BTZ spectrum; when
there is no such configuration space, BTZ black holes are absent
from the spectrum.

7.3. A Landau-Ginsburg Dual

One might worry that the 1/2-BPS near-source geometry is un-
reliable due to possibly large 𝛼′ corrections as a result of large
curvatures there. However, perturbative corrections in 𝛼′ of this
sort are forbiddent by the amount of symmetry in these back-
grounds – the hyperkähler nature of the transverse space geom-
etry ds2⟂ in (B.1a) together with the presence of two null Killing
vectors.[58,59]

Non-perturbatively, the near-source structure is captured by
a worldsheet dual description[29,60,61,63,76] in a non-compact ver-
sion of the Calabi-Yau/Landau-Ginsburg correspondence.[77–79]

The duality of SL(2,ℝ) representations (7.5) in the circular su-
pertube is associated to a dual description of the background
in terms of the fundamental string winding condensate, repre-
sented by a = 2 supersymmetric worldsheet superpotential

 =
n5∏
𝓁=1

(
𝖹 eik𝗏∕n5 − 𝜇𝓁 e

𝖷
)
, 𝜇𝓁 = e2𝜋i𝓁∕n5 , (7.8)

24 The musical “flat” designation indicates that spacetime supersymme-
try requires that the three-sphere transverse to the fivebranes has to
be squashed.
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where 𝗏 = v∕Ry. Note that the zeroes of the superpotential spiral
along the y direction exactly as in Figure 3b. Deformations (4.7)
with polarizations in a single two-dimensional plane, 𝛼�̇� = ++
or −−, have FZZ duals corresponding to deformations of this
superpotential 𝜇𝓁 → 𝜇𝓁(𝗏) with the twisted boundary condition
𝜇𝓁(𝗏 + 2𝜋) = e−2𝜋ik∕n5𝜇𝓁+k(𝗏).

25 The function 𝜇𝓁(𝗏) on the n5-fold
cover of the y-circle is equivalent to 𝖥++(𝗏).[29] The deformed su-
perpotential takes us in the direction of the more generic source
exemplified by Figure 3a.
The original non-compact CY/LG correspondence[60,61] related

a nonlinear sigma model on an An singularity to an  =
(2, 2) scalar field theory with a Liouville-like superpotential, ba-
sically (7.8) with k = 0, with 𝜇𝓁 parametrizing half of the moduli
(the other half are twisted chiral deformations). In the present
context, one allows the couplings 𝜇𝓁 in the superpotential to de-
pend adiabatically on the null coordinate 𝗏 subject to the twisted
boundary condition.
The extension of the 𝜇𝓁(𝗏) to their n5-fold covering space is

the supertube profile 𝖥++(𝗏), whose Fourier mode amplitudes are
the coherent state parameters for a 1/2-BPS ground state (along
the lines of (4.16)) in which only the |𝛼�̇�⟩p = |++⟩p and |−−⟩p
modes are excited. The superpotential zeroes code the locations
of the fivebranes in their transverse space, and fivebrane inter-
sections result when two zeroes coincide, i.e. 𝜇𝓁(𝗏) = 𝜇𝓁′ (𝗏) for
some 𝗏 along 𝕊1

y and 𝓁 ≠ 𝓁′. When this happens, a flat direction
opens up in the bosonic potential |∇|2 that runs off to strong
coupling[29] – the Liouville-like wall recedes, and the effective cou-
pling at the wall grows due to the running of the dilaton in the
direction of the Liouville field 𝖷.
This dual representation of the worldsheet theory encodes

effects that are non-perturbative in 𝛼′ in the non-linear sigma
model on the supertube geometry, and ensure that we have the
correct picture of the degeneration of the supertube background.

7.4. Enigmatic Phases

Since the “tensionless” effective strings can engineer a split-
ting/joining transition of the background fivebranes, they can for
instance allow the system to findmore entropically favorable con-
figurations, even on or very near the BPS bound. It is known that
below the BTZ black hole threshold there are additional highly
entropic phases, see Figure 1, known as enigmatic phases. For low
angular momentum JL <

n5n1
2
, the entropically favored configu-

ration consists of a zero angular momentum black hole, with the
angular momentum carried by a supertube; for high angular mo-
mentum JL >

n5n1
2
, a black ring is favored. Note that spectral flow

L0 ←→ L0 + 𝛼JL +
N
4
𝛼2, JL ←→ JL + 𝛼N (7.9)

with 𝛼 = 1 relates the black-hole/supertube states with negative
angular momentum to the black ring states with positive angular
momentum. The entropy in the black-hole/supertube phase is
given as follows.[22] Let the black hole and supertube have charge

25 In particular, they are the lowest components of  = 2 worldsheet
chiral multiplets.

Figure 5. A wiggly fivebrane source in a configuration where just a few
fivebrane windings carry most of the angular momentum. After exciting
the system, a splitting interaction could result in two fivebranes, one of
which carries most of the angular momentum, and the other most of the
entropy.

vectors

ΓBH =
{
1, (0, 0, 0), (Q5, Q1, np), m

}
,

ΓST =
{
0, (0, 0, 1), (q5, q1, 0), q1q5

}
. (7.10)

Here the first entry is the KKM charge, the first triplet lists the
(F1, NS5, KKM) dipole charges, the second triplet the monopole
charges (NS5, F1, P), and the last entry is the intrinsic angular
momentum 2JL of the object. The total charges carried by the
system are determined by the BPS conditions to be [22]

n5 = Q5 + q5, n1 = Q1 + q1,

2JL = m + q1q5 + np, 2JR = q1q5 − np. (7.11)

The entropy carried by the black hole is given by

SBH = 2𝜋
√
Q5Q1np −m2∕4 ≡ 2𝜋

√
D, (7.12)

which is extremized for

n5q1 = n1q5, m = 0, (7.13)

with the value

D = Q5Q1np −m2∕4 = n5n1np

(
1 −

√
q5q1
n5n1

)2

, (7.14)

where from (7.11) we have q1q5 = 2JL − np. Thus we repro-
duce SBH+ST in (1.5); the expression for Sring follows from spec-
tral flow (7.9). This entropy is parametrically smaller than the
symmetric product enigmatic phase entropy (6.7) (setting k = 1
there), indicating that indeed some states have been lifted in the
deformation across moduli space from the weakly-coupled CFT
to the supergravity regime.
We can imagine this phase of two-center solutions being

reached starting from an excited supertube as it wanders its con-
figuration space and finds a point where it can split into two
pieces, one of which carries away the angular momentum and
the other of which carries the entropy. See Figure 5.
Of course, the supertube that carries away the angularmomen-

tum need not be made out of F1 strings and NS5-branes; it could
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also carry F1-P charges (q1, qp) and have zero fivebrane charge. In
other words, it can be a perturbative string carrying winding and
momentum along the y-circle, as well as F1 dipole charge, which
offloads the angular momentum of the background:

np = Qp + qp, n1 = Q1 + q1, 2JL = m +
q1qp
d

+ dn5,

2JR =
q1qp
d

− dn5. (7.15)

The BPS equations work the same way, with the interchange of
onebrane and fivebrane quantities in the various expressions,
and thus

D = Q5Q1np −m2∕4 = n5n1np

(
1 −

√
qpq1
npn1

)2

. (7.16)

7.5. Elliptical Training

An example illustrating the above structure is the elliptical defor-
mation of a round supertube, analyzed in [29]. The ellipse with
semi-major and semi-minor axes a1, a2, respectively, corresponds
to the symmetric product state

|||{a1, a2}⟩ =
N∕k∑
n=0

[
(N∕k)!

n!((N∕k) − n)!

] 1
2
(
a1 + a2

2

) N
k
−n(a1 − a2

2

)n
(|++⟩k) N

k
−n(|−−⟩k)n (7.17)

(up to normalization).
In the limit a2∕a1 → 0 where the ellipse degenerates, the num-

ber of ++ and −− polarization modes become equal, and the an-
gular momentum vanishes: JL=JR=0. There are minimal 𝕊2’s
of the sort depicted in Figure 4 whose polar direction spans the
interval between the two sides of the ellipse. These 𝕊2’s collapse
to zero size when the ellipse degenerates. It was indeed seen in
[29] that the D-branes stretching across the semi-minor axis of
the ellipse become massless in the DBI approximation.
Superstrata built on the elliptical supertube were constructed

recently in [80]. Starting with the supertube base (7.17) con-
structed in [29], momentum was introduced via excitations
(𝖫−1∕k)

𝗇 on each of the |−−⟩k cycles. 26 The corresponding su-
pergravity solution was obtained by solving the hierarchy of BPS

26 The parametrization of the solution in Section 5 of [80] (after the spec-
tral flow of Section 4.4) is related to that of [29] as follows: The elliptical
superstratum is characterized by a set of parameters and coordinates

2n + 1 = q1, 𝛽 = 𝜆q1, 𝛾1 = 𝜆2, 𝛾2 = 1. (7.18)

The elliptical supertube then corresponds to the specialization n = 0,
with the parameters and coordinates (a, 𝛽; 𝜉,𝜑,𝜒) of the this supertube
limit of the superstratum[80] related to the parameters and coordinates
(k, a1, a2; r,𝜙,𝜓) of the elliptical supertube solution of [29] via

k = 1 , a1a2 = a2,
a21 − a22
2a2

= 2𝛽
1 − 𝛽2

r2 = −a2F(𝜉) = a2

2

[
1 + 𝜉2

1 − 𝜉2
− 1 + 𝜆2𝜉2

1 − 𝜆2𝜉2

]
, 𝜙 = 𝜑, 𝜓 = 𝜒.

(7.19)

supergravity equations in a consistent truncation to three dimen-
sions, and then lifting the solution back up to 6d. 27

The limit a2∕a1 → 0 in the supertube leads to zero angular
momentum, a degeneration of the geometry with collapsed cy-
cle singularities and tensionless strings. In the superstratum, in
this same zero angular momentum limit, one finds instead that a
capped AdS2 throat develops and lengthens; at strictly zero angu-
lar momentum the cap descends to infinite redshift, while the ec-
centricity of the ellipse stays finite, puffed up by the back-reaction
of the momentum wave carried by the background.
This result sharpens a central question in the fuzzball pro-

gram: Do the stringy degrees of freedom responsible for black
hole entropy have a coherent wavefunction that persists out to
the horizon scale of the geometry deduced from effective field
theory? Here we have seen how stringy degrees of freedom, hav-
ing the same properties as those that account for the entropy at
weak coupling in the CFT, arise at particular points in the space
of NS5-F1 supersymmetric ground states where the geometry de-
generates. These stringy degrees of freedom are those of the non-
abelian dynamics of coincident fivebranes, consistent with the
idea that the Hawking-Page phase transition on the gravity side
of the duality corresponds to the deconfinement transition of the
gauge theory side. The CFT is of course strongly coupled in the
geometric regimes of the moduli space.
But now we also see that if we add momentum along the y-

circle to the background – the third charge needed to make a
BPS black hole with a macroscopic horizon – then in the same
limit that exhibited tensionless strings in the two-charge NS5-
F1 solution, in the three-charge NS5-F1-P supergravity solution
an extremal AdS2 black hole throat develops. Is this horizon in
the three-charge states a manifestation of the same tensionless
strings that appear in the two-charge states? How does one rec-
oncile this with the apparent smoothness of the horizon in the
three-charge geometry? A goal of future work will be to look for
evidence of tensionless strings at the horizon of this three-charge
geometry, which would indicate that the horizon seen in the bulk
effective field theory is not actually a horizon for the fundamental
black hole constituents.

Appendix A: Conventions

In this paper we use conventions largely in parallel with those
of [29], with some differences that we record below. Denoting
quantities in [29] with tildes, and those of the present work with-
out tildes, the conventions for the Cartan angles of the target-
space 𝕊3 are related by

𝜓 = −�̃� , 𝜙 = −�̃� , 𝜃 = 𝜋

2
− 𝜃 . (A.1)

We have used l2 = −1 in (3.4), while l̃2 = 1 was used in [29]; sim-
ilarly, compared to [32], we have opposite signs for the null vec-
tor coefficients l2, r2. We have chosen this convention in order to
work with lowest-weight states in SU(2), see e.g. Equation (4.5).

27 More precisely, what was constructed is a spectral flowed solution that
turns out to be v-independent and thus simpler to analyze; the un-
flowed background is then a large gauge transformation of this solu-
tion, described in [80]. None of this changes the essential physics of
the limit under discussion, namely the lengthening AdS2 throat.
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The NS5-F1 circular supertube supergravity fields, in the five-
brane decoupling limit, in our conventions are

ds2 =
(
−dudv + ds2

T4

)
+ n5

[
d𝜌2 + d𝜃2 + 1

Σ

(
cosh2𝜌 sin2𝜃 d𝜙2 + sinh2𝜌 cos2𝜃 d𝜓2

)]
+ 2𝝂

Σ

(
cos2𝜃 dy d𝜓 − sin2𝜃 dt d𝜙

)
+ 𝝂2

n5Σ

[
n5 sin

2𝜃 d𝜙2 + n5 cos
2𝜃 d𝜓2 + dudv

]
,

B =
cos2𝜃(𝝂2 + n5 cosh

2𝜌)
Σ

d𝜙 ∧ d𝜓 + 𝝂2

n5Σ
dt ∧ dy − 𝝂 cos2𝜃

Σ
dt ∧ d𝜓 + 𝝂 sin2𝜃

Σ
dy ∧ d𝜙, u = t + y , v = t − y ,

e−2Φ =
n1Σ

k2R2
y V4

, Σ = 𝝂2

n5
+ sinh2𝜌 + cos2 𝜃, 𝝂 ≡ kRy . (A.2)

The periodic identification of y, namely y ∼ y + 2𝜋Ry, induces a
local ℤk orbifold singularity at the supertube location 𝜌 = 0, 𝜃 =
𝜋∕2. The gravitational angular momenta are

J3 = 1
2
(J𝜙 − J𝜓 ) = 1

2
n1n5
k

,

J̄3 = 1
2
(J𝜙 + J𝜓 ) = 1

2
n1n5
k

.

(A.3)

After taking the AdS3 × 𝕊3 limit, the holographically dual state of
the symmetric product orbifold CFT is (| + +⟩k)N∕k.

Appendix B: Supertube Geometry

The ten-dimensional geometry sourced by the NS5-F1 super-
tube source is given by [8, 11, 50–53] (see also [64])

ds210 = −
Z5


[
(du+𝜔)(dv+𝛽)

]
+ Z5 ds

2
⟂ + ds2, (B.1a)

e2Φ = g2s
Z2
5

 (B.1b)

B2 =
Z5

2 (du + 𝜔) ∧ (dv + 𝛽) + 𝖻ij dx
i ∧ dxj (B.1c)

C0 = −
Z0

Z5
(B.1d)

C2 = +
Z(𝛾)

Z5
Ω(𝛾) +

Z0

2 (du + 𝜔) ∧ (dv + 𝛽) + 𝖼ij dx
i ∧ dxj (B.1e)

C4 = −
Z0

Z5
v̂ol4

−
Z0

2
[
(du + 𝜔) ∧ (dv + 𝛽) ∧

(
𝖻 + 1

2
𝜔 ∧ 𝛽

)
− 𝜔 ∧ 𝛽 ∧ 𝖻

]
+ 1
2
(du + 𝜔) ∧ (dv + 𝛽) ∧

(
𝖼 +

Z(𝛾)

Z5
Ω(𝛾)

)

−
(
𝖼(𝛾) +

Z(𝛾)

Z5
𝖻

)
∧ Ω(𝛾) (B.1f )

with

 ≡ Z1 Z5 − Z 2
0 − Z 2

(𝛾). (B.2)

Here ds210 is the ten-dimensional string-frame metric, ds2⟂ is the
metric on the space transverse to the branes, Φ is the dilaton, Bp
and Cp are the NS-NS and R-R gauge forms. The volume form

on  is denoted by v̂ol4, and Ω(𝛾) is a basis of anti-selfdual two-
forms on (so 3 for 𝕋 4, 19 for K3). The various harmonic forms
and functions are related by

d𝖻 =∗⟂ dZ5, d𝖼 =∗⟂ dZ0, d𝖼(𝛾) =∗⟂ dZ(𝛾) ; (B.3)

also, 𝜔 is self-dual while 𝛽 is anti-selfdual in the transverse ℝ4

parametrized by xi. All of these harmonic forms and functions
are determined in terms of source profile functions 𝖥𝛼�̇� , 𝖥(I) via
the Green’s function integrals (4.11). The R-R fields are odd un-
der Z0 → −Z0, Z(𝛾) → −Z(𝛾), while the NS-NS fields are even.
The bosonic field content of  = (2, 2) 6d supergravity ob-

tained upon dimensional reduction on  = 𝕋 4 consists of the
graviton, 10 tensors (5 SD and 5 ASD, one each NS-NS and
the rest R-R), 16 vector multiplets (8 NS-NS and 8 R-R), and 25
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scalars. Of the latter, 5 are fixed scalars and the remaining 20
parametrize the moduli space ( O(5,4)

O(5)×O(4)
)∕Γ𝗊.

The content of the = (2, 0) 6d supergravity for = K3 con-
sists of the supergravity multiplet (the metric plus 5 SD tensors)
together with 21 ASD tensor multiplets (each with 1 ASD tensor
and 5 scalars). Themoduli space is ( O(5,21)

O(5)×O(21)
)∕Γq, and again there

are 5 fixed scalars.

Appendix C: Spacetime Supersymmetries

The spacetime supersymmetry charges take the worldsheet form
[29, 81–83]

𝖰�⃗� = ∮ dz e−(𝜑−�̃�)∕2 S�⃗�, S�⃗� = exp

(
i
2

6∑
i=1

𝜀iHi

)
. (C.1)

These operators are then subject to the GSO projection and the
BRST constraints.
The usual type IIB GSO projection in the worldsheet theory on

global AdS3 × 𝕊3[81] sets

5∏
i=1

𝜀i = 1,
5∏
i=1

�̄�i = 1, (C.2)

hence in the null-gauged WZWmodel we should have the same
requirement, at least to leading order in 1∕Ry. In thisAdS3 decou-
pling limit, the three-fermion term in the 𝛾G BRST constraint
then enforces

𝜀 ≡ 𝜀1𝜀2𝜀3 = −1, (C.3)

and similarly �̄� ≡ �̄�1�̄�2�̄�3 = −1. The null currents  , ̄ constrain

𝜀1 + 𝜀2l2 = 0, �̄�1 + �̄�2r2 = 0. (C.4)

The superpartners of the null currents are given by

𝝀 =
√
n5
(
𝜓3
sl + l2𝜓

3
su

)
+ l3𝜓

t + l4𝜓
y = −

√
n5 e

−iH3 + kRy e
−iH6 ,

�̄� =
√
n5
(
�̄�3
sl + r2�̄�

3
su

)
+ r3�̄�

t + r4�̄�
y = −

√
n5 e

−iH̄3 − kRy e
iH̄6 ,
(C.5)

where we have used the NS5-F1 supertube null vector coeffi-
cients (3.4) and the bosonization formulae (3.15).
The null BRST supercurrents �̃�𝝀, �̃��̄� constrain linear combi-

nations c�⃗�S�⃗�. Denoting the coefficients c𝜀3𝜀6 and suppressing the
labels 𝜀1, 𝜀2, 𝜀4, 𝜀5 (which we hold fixed), the allowed nonzero co-
efficients are

c−−, c−+ =
√
n5

kRy
c+−; c̄−+, c̄−− = −

√
n5

kRy
c̄++, (C.6)

in particular 𝜀6 = −�̄�6 for the corresponding solutions. Only the
first solution in each left/right chirality is compatible with (C.3),
(C.4), which set 𝜀3 = �̄�3 = −1 and so c+− = c̄++ = 0. Note that in
order to impose the 10d GSO projection (C.2), we must have op-

posite 12d GSO projections on left and right. From (3.16), (3.21)
we have

6∏
i=1

𝜀i = −1,
6∏
i=1

�̄�i = +1, (C.7)

Overall, the physical supercharges (C.1) are labeled by (at leading
order in 1∕Ry)

𝜀1 = 𝜀2 ≡ 𝛼, 𝜀3 = −1, 𝜀6 = −1, 𝜀4 = −𝜀5 ≡ Ȧ

�̄�1 = �̄�2 ≡ �̇�, �̄�3 = −1, �̄�6 = +1, �̄�4 = −�̄�5 ≡ Ḃ
(C.8)

Spectral flow in the spacetime R-charge by an amount 𝛿 shifts
the supercurrent modings via

𝖦𝛼Ȧ
n ←→ 𝖦𝛼Ȧ

n−𝛼𝛿
. (C.9)

The supertubes correspond to Ramond ground states with R-
charge betweenN∕2 andN, which in the NS sector are antichiral
states with R-charge between−N∕2 and 0. These antichiral states
are annihilated by 𝖦−Ȧ

−1∕2 and 𝖦+Ȧ
+1∕2, and so the corresponding su-

pertube states are annihilated by

𝖦−Ȧ
0 , 𝖦+Ȧ

0 , �̄�−Ḃ
0 , �̄�+Ḃ

0 . (C.10)

These are precisely the global supercharge operators (C.1) with
the polarization states (C.8). 28

The bosonized ghost exponential e−𝜑∕2 of the supercharge (C.1)
has a square root singularity with respect to the (−1) picture NS-
NS vertex operators (3.12). For a vertex operator to commute with
the supercharge, the fermion 𝜓 should have a square root zero
𝜓(z)S(w) ∼

√
z − w. Similarly, for the (−1∕2) picture R-R oper-

ators in the specified null superghost pictures ((+1∕2) for both
the supercharge and the vertex operator), one gets a bosonized
ghost OPE singularity (z − w)−1∕2, requiring a spin field OPE
(z − w)+1∕2.
Vertex operators that preserve the BPS property should com-

mute with these supercharges. In (3.12), the SU(2) fermion po-
larization in  should be 𝜓−

su in order to be BPS (this is the op-
erator + for which there is only one term in the Clebsch); then
the fermion polarization is such that the OPE with the spin field
scales as

√
z − w, and the vertex operator commutes with the su-

percharges. Similarly, the Clebsch of the SL(2,ℝ) fermion in−

guarantees that it also commutes with the supercharges. These
two polarization choices correspond to the operators ± defined
in (4.5).
Similarly, the spin field polarizations in (3.20) that commute

with the above supercharges are the A of (4.5). Adding up the
spin field contribution �⃗�Q ⋅ �⃗� to the OPE singularity, one sees

that indeed the spin field OPE contributes
√
z − w and indeed

the supercharges commute with A.
One can further check that the other vertex operators we have

described above do not commute with some of these super-
charges.

28 Note that the SL(2,ℝ) and SU(2) polarizations reflect the quantum
numbers before spectral flow, n = 1

2
𝜀1, 𝛼 = 𝜀2.
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Appendix D: The Shockwave Limit

D.1. The Lunin-Mathur Source Integrals

Our analysis follows that in [66, 84]. The circular supertube pro-
file is given by

𝖥++ = ak exp[2𝜋ikv̂∕L]. (D.1)

where v̂ ∈ [0, L], L = 2𝜋n5∕Ry parametrizes the n5-fold covering
space of the y-circle in the NS5-P duality frame. It will prove con-
venient to denote 𝗑 = x++, 𝗒 = x+−, and parametrize the profile
by 𝜉 ≡ 2𝜋kv̂∕L. Since the supertubes of interest run around the
same profile k times, the integral is simply k times the integral
over the range 𝜉 ∈ [0, 2𝜋). The further change of variables z = ei𝜉 ,
and the use of z̄ = 1∕z for an integral along the unit circle in z,
converts the integrals into contour integrals for which we can use
the method of residues, for example

Z5 =
Q5

2𝜋i ∮
dz
z

1
(𝗑 − az)(�̄� − a∕z) + 𝗒�̄�

=
Q5√

w̃2 − 4𝗑�̄�a2
. (D.2)

where w̃ = 𝗑�̄� + 𝗒�̄� + a2. Converting from Cartesian coordinates
to spherical bipolar ones

𝗑 =
√
a2 + r2 sin 𝜃 ei𝜙 , 𝗒 = r cos 𝜃 ei𝜓 (D.3)

leads to

Z5 =
Q5

r2 + a2 cos2 𝜃
=

Q5

Σ
. (D.4)

Next, we introduce an 𝖥0 term to the profile function,

𝖥0(v̂) = 𝜖ABFAB(v̂) = −
2b0
𝜈kRy

sin
(
2𝜋k
L

𝜈 v̂
)

=
−b0
i𝜈kRy

(z𝜈 − z−𝜈) , (D.5)

where b0 is real. The 𝖥0 term in the profile function gives rise to
the following contour integral expression for the harmonic func-
tion Z0:

Z0 =
b0
2𝜋i ∮

dz
z

z𝜈 + z−𝜈

(𝗑 − az)(�̄� − a∕z) + 𝗒�̄�

= 2b0

(
a2 sin2 𝜃
r2 + a2

)𝜈∕2 cos 𝜈𝜙
Σ

. (D.6)

One also has the fibration one-form, 𝛽, given by

𝛽 =
Ry a

2√
2Σ

( sin2 𝜃 d𝜙 − cos2 𝜃 d𝜓 ) , (D.7)

and the angular momentum one-form

𝜔 = 𝜔0 , 𝜔0 ≡ a2 Ry√
2Σ

(sin2 𝜃 d𝜙 + cos2 𝜃 d𝜓) . (D.8)

The shockwave limit takes 𝜈 to be extremely large, so that the
profile (D.6) localizes around the circular supertube source at r =
0, 𝜃 = 𝜋

2
. Note that not only are the R-R fields (B.1d)-(B.1f) highly

localized as a result, they are also rapidly oscillating along this
circle, so that on average the R-R fields are essentially invisible.
The source function 𝖥0 also contributes to the one-brane har-

monic function Z1

|�̇�0|2 = ( 2b0
kRy

)2

⋅
1
2

[
1 + cos

(
4𝜋k
L

𝜈v̂
)]

. (D.9)

The cosine term leads to another highly localized, rapidly oscillat-
ing contribution that is invisible in the large 𝜈 limit. The constant
term contributes a term identical to the |�̇�𝛼�̇�|2 contribution, lead-
ing to a relation between the scales a, b0 and the charges Q1, Q5

a2 +
2|b0|2
k2R2

y

=
Q1Q5

k2R2
y

. (D.10)

This equation is simply the F1 winding budget kn++k + (𝜈k)n00
𝜈k =

n1n5, expressed in terms of coherent state parameters; or equiv-
alently the specialization of (4.12) to the case at hand.
When b0 ≠ 0, the coefficients of the harmonic function are al-

tered, in that the radius a of the supertube is reduced due to the
devotion of some of the winding budget (D.10) to cycles of type
𝜖AB|AB⟩𝜈k (also called “|00⟩” cycles in the literature); this changes
the coefficient of Z5 relative to Z1. As a result, the metric no
longer has the tuning of coefficients that allows the supertube
locus at r = 0, 𝜃 = 𝜋

2
to be nonsingular, and instead one finds a

shockwave singularity there [84,85]. Restoring the rapidly oscillat-
ing terms in (D.9), which according to (D.6) only contribute close
to the source locus, smooths out the singularity.
Note that if we had not a single mode but a distribution of high

frequency modes, then in |�̇�0|2 two high frequency modes can
generate a low but non-zero frequency in their product which
would lead to a low-frequencymodulation ofZ1. In order to avoid
this, and just have a shockwave, we can for instance have all the
high frequency modes be multiples of some large 𝜅 ≫ 1, with
ki ∝ 𝜅 and then |�̇�0|2 has a constant frequency piece and then
higher modes of frequency at least 𝜅.

D.2. Shockwaves in 3-Charge Backgrounds

The analysis of trapping behavior in [33] included a class of
NS5-F1-P 3-charge geometries obtained by “fractional spectral
flow” of the 1/2-BPS ground states (4.16), [86–90]. Shockwaves in
these geometries were considered in [70]. These backgrounds
also have an exact worldsheet description as null-gauged WZW
models,[26–28] and as in Section 7.1, one can again ask where the
vertex operator wavefunctions localize in the large j′ limit, and
make a shockwave that is regularized by stringy effects.
The fractional SU(2) spectral flow of the state by an amount

s∕k makes an allowed state in the spacetime CFT,[89] see also
[90]. In the worldsheet description, the null vector coefficients are

Fortschr. Phys. 2023, 2300015 2300015 (21 of 23) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

 15213978, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prop.202300015 by U

niversity O
f Southam

pton, W
iley O

nline L
ibrary on [19/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

modified to

l2 = −(2s + 1), r2 = −1, l3 = r3 = −

(
kRy +

n5s(s + 1)
kRy

)

l4 = kRy −
n5s(s + 1)

kRy
, r4 = −kRy −

n5s(s + 1)
kRy

.

(D.11)

The geometry has an evanescent ergosurface (a quadratic vanish-
ing of the metric coefficient guv; or geometrically, the surface on
which the Killing vectors 𝜕y and 𝜕u are orthogonal) on the locus

r = 0, tan2 𝜃 = s + 1
s

. (D.12)

The vertex operators must satisfy the null constraints  = ̄ = 0
with these modified coefficients in the null vectors. These con-
straints were analyzed in [27]. Supergravity vertex operators again
have wy = 0. The axial null constraint imposes

m − m̄ = −kny + (2s + 1)m′ − m̄′ (D.13)

up to shifts of order one.
Let us look for vertex operators concentrated on the evanescent

ergosurface (D.12). The 1/4-BPS center-of-mass wavefunctions
are

Φsl
j;−j−𝗇,−j = ei(2j+𝗇)𝜏−i𝗇𝜎 r𝗇

(
a2

r2 + a2

)j+𝗇∕2

+O(1∕j)

Ψsu
j′ ;−j′+𝗆,−j′ = ei(2j

′−𝗆)𝜙+i𝗆𝜓 (sin 𝜃)2j
′−𝗆(cos 𝜃)𝗆

(D.14)

The null constraint (D.13) is solved for large j′ by

m ∼ m̄ ∼ j, ny ∼ 0, m′ ∼
j′

2s + 1
, m̄′ ∼ j′, (D.15)

for which the peak is at (D.12). For large j′ (and thus large n5), the
string wavefunction is concentrated within a string scale distance
of the evanescent ergosurface, just as we saw for the 1/2-BPS two-
charge geometries.
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