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Occupying over 12% of the global cropland area, rice is the predominant crop in many 
regions of the world. Southeast Asia alone accounts for 31% of the world’s rice harvesting area, 
making this region vital for the food security of the growing global population. Current literature 
in the field indicates that there are several factors impacting rice productivity, however there are 
gaps pertaining to country-specific studies, namely the impact of climate change and challenges 
regarding effective monitoring. Therefore, this study focuses on four research questions, they are: 
(1) the climate parameters influencing rice productivity in Thailand; (2) the correlation between 
rice biophysical variables and growth rate as a determinant to overall rice yield; (3) the potential 
of satellite sensors for rice yield; and (4) the development of a regression model for rice yield 
estimations. 

For the first question, climate data (measured by two rainfall parameters and six crucial 
temperature parameters) and rice yield data, which were collected at the provincial level 
between the years 1981-2015, are used to determine the impacts of the climate on rice 
productivity in Thailand. The result indicates a significance increasing/decreasing trend in the 
mean minimum temperature, mean maximum temperature, and cumulative rainfall. The study 
further investigates the importance of geographical variation by adopting spatial autocorrelation 
(Moran’s I index). The result reveals that in 1992 there was a significant shift in cumulative rainfall 
and the average temperature. 

Furthermore, field experiments were conducted on rice crops in Thailand during the wet 
season of 2017 to explore the correlation between rice biophysical variables and growth rate. The 
temporality of rice biophysical variables is demonstrated by separating rice variety and irrigation 
system. The leaf area index (LAI) peaks in the flowering stage and LAI development can be slightly 
different depending on the rice variety and irrigation system. The correlation between yield and 
other rice biophysical elements on a specific variety (RD41) is highly correlated to rice age, stem 
density, height, chlorophyll contents, and wet and dry biomass. The correlation between yield, 
and wet and dry biomass during the harvesting stage was the strongest.  

To develop a rice yield prediction model, data collected from the time series of two 
different satellite sensors: Sentinel-2 (optical) and Sentinel-1 (Synthetic Aperture Radar, or SAR) 
were utilised. The vegetation indices (NDVI and EVI) and backscatter coefficient (sigma nought; 
σ0) usefully tracked rice phenology. The study furthers develop a linear regression model for rice 
yield estimations based on different sensors and yields from in-situ measurements via Crop 
Cutting Experiments (CCEs). The accuracy of the results is compared to official rice yields.  

The correlation between vegetation indices, backscatter coefficient, and rice yield variables 
is investigated in different growth stages and irrigation systems. Based on the simple regression 
model for the optical sensors, the developed yield estimation model is correlated with NDVI in the 
panicle stage (r = 0.37 and SEE = 0.70 tonnes/ha). While SAR (σ0) is significant in the ascending 
VV/VH ratio during the harvesting stage (r = 0.54 and SEE = 0.68 tonnes/ha). The findings suggest 
remotely sensed data can be a good predictor for rice yield during the booting and mature stages. 





Table of Contents 

i 

Table of Contents 

Table of Contents .......................................................................................................... i 

Table of Tables .............................................................................................................ix 

Table of Figures ............................................................................................................xi 

List of Accompanying Materials ................................................................................. xvii 

Research Thesis: Declaration of Authorship ................................................................ xix 

Acknowledgements .................................................................................................... xxi 

Definitions and Abbreviations ................................................................................... xxiii 

Chapter 1 Introduction ............................................................................................... 1 

1.1 Research problems ..................................................................................................... 3 

1.1.1 Why is research needed on the impact of climate change on rice production? 3 

1.1.2 Understanding the influence of irrigation on rice cultivation ............................ 5 

1.1.3 Remote sensing for yield estimation .................................................................. 5 

1.2 Research questions .................................................................................................... 8 

1.3 Thesis scope and structure ......................................................................................... 8 

Chapter 2 Literature review ..................................................................................... 11 

2.1 Rice ecosystem ......................................................................................................... 11 

2.2 Rice phenology ......................................................................................................... 14 

2.2.1 Vegetative phase ............................................................................................... 16 

2.2.2 Reproductive phase ........................................................................................... 16 

2.2.3 Ripening phase .................................................................................................. 17 

2.3 Rice farming system in Thailand............................................................................... 17 

2.3.1 Timing of planting and transplanting ................................................................ 18 

2.3.2 Rice cropping patterns ...................................................................................... 18 

2.3.2.1 Transplanting-flooded rice .................................................................... 18 

2.3.2.2 Dry direct seeding.................................................................................. 19 

2.3.2.3 Wet direct seeding ................................................................................ 19 

2.3.3 Post-harvest rice processing in Thailand ........................................................... 19 

2.4 Factors affecting rice production ............................................................................. 22 



Table of Contents 

ii 

 

2.4.1 Weather and climate ........................................................................................ 22 

2.4.2 Geographic and soil characteristics .................................................................. 26 

2.4.3 Diseases and pests ............................................................................................ 27 

2.4.4 Weeding ............................................................................................................ 27 

2.4.5 Rice variety ........................................................................................................ 27 

2.4.6 Government policies, economic conditions and market factors ..................... 28 

2.5 Agricultural data collection in Thailand ................................................................... 30 

2.5.1 Using lists of villages ......................................................................................... 30 

2.5.2 Crop cutting experiment ................................................................................... 31 

2.6 Remote sensing within rice crop mapping and rice yield estimation ..................... 32 

2.6.1 Introduction to remote sensing ........................................................................ 32 

2.6.2 Spectral vegetation indices ............................................................................... 33 

2.6.3 Estimation of vegetation biophysical variables ................................................ 36 

2.6.4 Crop yield estimation using optical data .......................................................... 38 

2.6.5 Application of active remote sensing for vegetation monitoring and crop yield 

estimation ......................................................................................................... 40 

2.6.6 Integrating SAR and optical imagery for rice mapping and yield estimation ... 44 

2.7 Conclusion ................................................................................................................ 45 

Chapter 3 Analysis of the impact of rainfall and temperature on rice production in 

Thailand.................................................................................................... 47 

3.1 Background of the study area region ...................................................................... 48 

3.1.1 Climatic conditions in Thailand ......................................................................... 49 

3.1.2 Rice cultivation system in Thailand .................................................................. 50 

3.2 Methodology ............................................................................................................ 53 

3.2.1 Data ................................................................................................................... 53 

3.2.1.1 Agricultural data.................................................................................... 53 

3.2.1.2 Weather data ........................................................................................ 56 

3.2.1.3 Irrigation data ....................................................................................... 56 

3.2.2 Data preparation ............................................................................................... 57 

3.2.2.1 Detrending rice yield and rice production ............................................ 57 



Table of Contents 

iii 

3.2.2.2 Calculation the other important weather variables.............................. 59 

3.2.2.3 Setting thresholds of rice cultivated area and grouping provinces by 

percentage of rice cultivated area and irrigation system ..................... 59 

3.2.2.4 Calculation changes on rice production ................................................ 60 

3.2.2.5 Defining variables of the impact of weather on rice production .......... 60 

3.2.2.6 Correlation analysis ............................................................................... 60 

3.2.2.7 Analysis spatial autocorrelation with Global Moran’s I index .............. 61 

3.2.2.8 Analysis and summary of the study ...................................................... 62 

3.3 Results ...................................................................................................................... 63 

3.3.1 Trend analysis .................................................................................................... 63 

3.3.1.1 Rice trends ............................................................................................. 63 

3.3.1.2 Weather trends ..................................................................................... 66 

3.3.2 Correlation between rice production and weather parameters ...................... 71 

3.3.3 Spatial autocorrelation ...................................................................................... 83 

3.3.4 Summary the susceptible provinces on climate change ................................... 84 

3.4 Discussion ................................................................................................................. 86 

3.4.1 Why does the detrended data have less weather agreement than raw data? 87 

3.4.2 Impact of rice variety ........................................................................................ 88 

3.4.3 Role of irrigation in rice cultivation ................................................................... 89 

3.4.4 Representative of weather data ....................................................................... 91 

3.5 Conclusion ................................................................................................................ 92 

Chapter 4 The dynamics of rice biophysical variables in irrigated and non-irrigated 

systems during the growing season .......................................................... 95 

4.1 Background of study area ........................................................................................ 97 

4.2 Methodology .......................................................................................................... 100 

4.2.1 Primary data .................................................................................................... 100 

4.2.2 Research methodology ................................................................................... 101 

4.2.2.1 Definition of rice phenology and sampling units ................................ 101 

4.2.2.2 Measurement of rice biophysical variables ........................................ 102 

4.3 Results .................................................................................................................... 106 



Table of Contents 

iv 

 

4.3.1 Rice planting characteristics ........................................................................... 106 

4.3.2 Rice biophysical variable measurements ....................................................... 114 

4.3.2.1 Stem density........................................................................................ 114 

4.3.2.2 Dynamics of photosynthetically active radiation (PAR) and leaf area 

index (LAI) ........................................................................................... 115 

4.3.2.3 Chlorophyll content ............................................................................ 117 

4.3.2.4 Wet and dry biomass .......................................................................... 121 

4.3.2.5 Rice yield ............................................................................................. 125 

4.3.3 Correlation on rice biophysical variables ........................................................ 125 

4.4 Discussion............................................................................................................... 129 

4.5 Conclusion .............................................................................................................. 131 

Chapter 5 The potential of optical and radar satellite observations to estimate rice 

biophysical variables and rice yield estimation ........................................ 133 

5.1 Introduction ........................................................................................................... 133 

5.2 Methodology .......................................................................................................... 135 

5.2.1 Data ................................................................................................................. 135 

5.2.1.1 Primary data ........................................................................................ 135 

5.2.1.2 Secondary data ................................................................................... 136 

5.2.2 Satellite data and statistic data preparation .................................................. 136 

5.2.2.1 Satellite data download and preparation ........................................... 136 

5.2.2.2 Statistical data preparation ................................................................. 138 

5.2.3 Field survey data collection ............................................................................ 139 

5.2.4 Digital image pre-processing .......................................................................... 139 

5.2.5 Vegetation indices and sigma nought backscatter value extraction (field level) 

and descriptive statistics................................................................................. 142 

5.2.6 Satellite data sample site averaging ............................................................... 143 

5.2.7 Phenological trends of vegetation indices and backscatter coefficient ......... 144 

5.2.8 Correlation analysis......................................................................................... 146 

5.2.9 Estimation of rice yield using regression analysis .......................................... 146 

5.2.10 Model validation ............................................................................................. 150 



Table of Contents 

v 

5.3 Results .................................................................................................................... 151 

5.3.1 Pattern of vegetation indices and backscatter coefficients ............................ 152 

5.3.1.1 Phenological profile of vegetation indices .......................................... 152 

5.3.1.2 Temporal pattern of backscatter coefficients (σ0) .............................. 155 

5.3.2 Correlation between vegetation indices, backscatter coefficients, and rice 

biophysical variables ....................................................................................... 160 

5.3.2.1 Correlation of vegetation indices and rice yield biophysical variables

 ............................................................................................................. 160 

5.3.2.2 Correlation of vegetation indices and rice yield biophysical variables

 ............................................................................................................. 162 

5.3.2.3 Correlation of SAR (Sentinel-1) backscatter coefficient and yield ...... 164 

5.3.3 Develop simple linear regression model ......................................................... 167 

5.3.4 Validation of yield estimates derived using the simple regression model ..... 169 

5.4 Discussion ............................................................................................................... 180 

5.4.1 Seasonal changes in satellite data according to rice growth .......................... 180 

5.4.2 Relation between rice yield variables and satellite ........................................ 182 

5.4.3 Potential of satellite data to develop rice yield estimation model based on 

simple linear regression .................................................................................. 183 

5.5 Conclusion .............................................................................................................. 185 

Chapter 6 Discussion and conclusions......................................................................187 

6.1 Summary of findings............................................................................................... 187 

6.1.1 Analysis of the impact of rainfall and temperature on rice production ......... 187 

6.1.2 Dynamics of rice biophysical variables in irrigated and non-irrigated systems 

during the growing season .............................................................................. 190 

6.1.3 Potential of optical and radar satellite observation in rice yield estimation.. 193 

6.2 Limitations .............................................................................................................. 197 

6.3 Future works........................................................................................................... 199 

6.4 Conclusions ............................................................................................................. 202 

Appendix A Average seasonal temperature in different seasons in Thailand ...............205 



Table of Contents 

vi 

 

Appendix B Summary of Pearson’s correlation and P-value between temperature 

metrics and weather parameters at provincial level ................................ 207 

Appendix C Correlation coefficient of significant weather and rice yield and rice 

production .............................................................................................. 209 

C.1 Correlation coefficient of significant weather and rice yield ................................ 209 

C.2 Correlation coefficient of significant weather and rice production ...................... 211 

Appendix D Correlation between rice yield/production and weather in significant 

provinces ................................................................................................ 213 

D.1 Cumulative rainfall ................................................................................................. 213 

D.2 Average rainy day .................................................................................................. 214 

D.3 Mean minimum temperature ................................................................................ 215 

D.4 Mean maximum temperature ............................................................................... 216 

D.5 Differences between mean maximum and mean minimum temperature ........... 217 

Appendix E Spatial auto-correlation with Moran’s I index............................................. 219 

E.1 Moran’s I index of average rainfall ........................................................................ 219 

E.2 Moran’s I index of cumulative rainfall ................................................................... 220 

E.3 Moran’s I index of average temperature ............................................................... 221 

Appendix F Correlation between yield and rice biophysical ....................................... 222 

F.1 Correlation between yield and rice biophysical variables as a function of growth 

stage ....................................................................................................................... 222 

F.2 Correlation between yield and rice biophysical variables as a function of rice 

variety in irrigated areas. ....................................................................................... 223 

F.3 Correlation coefficient between yields with rice biophysical variables in non-

irrigated areas for different rice varieties.............................................................. 224 

F.4 Correlation of RD41 overall and in each growth stage. ......................................... 224 

Appendix G Histogram of backscatter coefficient ....................................................... 225 

G.1 Phichit province ..................................................................................................... 225 

G.2 Ang Thong province ............................................................................................... 226 

G.3 Pathum Thani province .......................................................................................... 227 

Appendix H Sentinel-2 and Sentinel-1 specifications .................................................. 229 



Table of Contents 

vii 

H.1 Sentinel-2 wavelength ............................................................................................ 229 

H.2 Sentinel-1 characteristic of each sub-swath .......................................................... 230 

H.3 Sentinel-1 main properties on IW mode ................................................................ 230 

Appendix I Photo of sample field during the study period .........................................231 

Appendix J Average of satellite values during growing season ...................................243 

J.1 Average of VI values during growing season ......................................................... 243 

J.2 Average of backscatter values during growing season .......................................... 243 

Appendix K Rice yield and rice production in 2017 in 3 representative provinces ........245 

Appendix L Correlation between satellite and rice biophysical variables ....................247 

L.1 Correlation between vegetation indices and rice biophysical variables in overall 

areas, irrigated areas, and non-irrigated areas across growth stages. .................. 247 

L.2 Correlation between vegetation indices and rice yield in overall areas, irrigated 

areas, and non-irrigated areas across growth stages. ........................................... 251 

L.3 Correlation between vegetation indices and rice yield in overall area, irrigated 

areas and non-irrigated areas across growth stages specific growth stage. ......... 252 

Appendix M Descriptive statistical table based on Sentinel-2 and Sentinel-1 ...............253 

M.1 Descriptive statistical table based on Sentinel-2 ................................................... 253 

M.1.1 Descriptive statistical table based on Sentinel-2: EVI (seeding stage) ........... 253 

M.1.2 Descriptive statistical table based on Sentinel-2: NDVI (panicle stage) ......... 254 

M.2 Descriptive statistical table based on Sentinel-1 ................................................... 255 

Glossary of Terms ......................................................................................................257 

List of References ......................................................................................................259 

 





Table of Tables 

ix 

Table of Tables 

Table 3.1 List of weather variables and the basis for analysis considering between May and 

October ............................................................................................................ 60 

Table 3.2 Amount of significant provinces in focus group (>40% cultivated rice) with 

Pearson’s correlation and P-value between temperature metrics and weather 

parameter. ....................................................................................................... 72 

Table 3.3 Result of Moran’s I in significant weather parameter at significant year during 

study period. .................................................................................................... 83 

Table 4.1 Characteristics of rice varieties planted in the study area (Rice Department, 

2017). ............................................................................................................... 99 

Table 4.2 Rice phenological stages ................................................................................ 102 

Table 4.3 Planting date of sampling fields in Phichit (PC), Ang Thong (AT), and Pathum Thani 

(PT). ................................................................................................................ 107 

Table 4.4 Summary of rice height, water depth, and difference in rice height and water 

depth at different rice phenological stages. .................................................. 113 

Table 4.5 LAI converted from PAR measurement. ........................................................ 115 

Table 4.6 Chlorophyll content as a function of growth stage for all field sites, irrigated and 

non-irrigated sites. ......................................................................................... 118 

Table 4.7 Correlation between yield and rice biophysical variables as a function of growth 

stage............................................................................................................... 126 

Table 4.8 Correlation between yield and rice biophysical variables as a function of rice 

variety in irrigated areas. ............................................................................... 127 

Table 4.9 Correlation coefficient between yields with rice biophysical variables in non-

irrigated areas for different rice varieties. .................................................... 127 

Table 4.10 Correlation of RD41 overall and in each growth stage. ................................. 128 

Table 5.1 Field survey and acquisition dates of satellite data. ..................................... 137 



Table of Tables 

x 

 

Table 5.2 Rice yield and rice production statistics in 2017 in three representative provinces 

(OAE, 2017a). ................................................................................................. 138 

Table 5.3 Correlation between vegetation indices and rice biophysical variables in overall 

area, irrigated areas and non-irrigated areas across growth stages. ............ 161 

Table 5.4 Correlation between vegetation indices and rice yield in overall area, irrigated 

areas and non-irrigated areas across growth stages. ................................... 162 

Table 5.5 Correlation between vegetation indices and rice yield in overall area, irrigated 

areas, and non-irrigated areas across growth stage specific growth stage. . 164 

Table 5.6 Correlation between backscatter coefficient and rice biophysical variables in 

overall areas, irrigated areas only, and non-irrigated areas. ........................ 164 

Table 5.7 Correlation between backscatter coefficients and rice biophysical variables in all 

areas, irrigated areas only, and non-irrigated areas sepreated rice varieties.166 

Table 5.8 Model expression based on a simple regression model based on different 

remotely sensed data. ................................................................................... 167 

Table 5.9 Accuracy assessments on a simple regression model based on ascending VV/VH and 

government’s yield statistic in 2017. ............................................................... 170 

 



Table of Figures 

xi 

Table of Figures 

Figure 2.1 Four main types of rice-based cropping system during growing season (Halwart 

& Gupta, 2004). ............................................................................................... 12 

Figure 2.2 Cross-section of rice grain (Rosentrater & Evers, 2017). ................................. 14 

Figure 2.3 Rice development stages. The top left image illustrates the development of root 

internodes elongation and panicle and the large image illustrates the 

development of rice growth stage in vegetative, reproductive, and grain filling & 

maturation stages (Hardke, 2013). .................................................................. 15 

Figure 2.4 Rice price at farm gate- directed purchase from farmer (at 15% humidity) 

between 1997-2017. ........................................................................................ 20 

Figure 2.5 Flowchart illustrating the rice supply chain in Thailand (Titapiwatanakun, 2012).

 ......................................................................................................................... 21 

Figure 2.6 Global mean estimates based on land and ocean data between 1880-2020. Black 

line is the global annual mean, the red line is the five-year running average, and 

the grey boundary is the total (LSAT and SST) annual uncertainty at a 95% 

confidence interval (NASA, 2019). ................................................................... 25 

Figure 2.7 Development of agricultural policies in Thailand between 1981-2015. ......... 29 

Figure 2.8 Two-stratified random sampling (OAE, 2014a). .............................................. 31 

Figure 2.9 Spectral response of soil, vegetation, and water in the visible and infrared 

wavelength range (Remote Sensing Applications Consultants Ltd (RSAC) (2021)).

 ......................................................................................................................... 32 

Figure 2.10 Phenology metrics derived from VI measurements showing the key phenological 

stages (Weng, 2011). ....................................................................................... 34 

Figure 3.1 Map showing the area Thailand (left) and the direction of the passage of the 

monsoons (right) (TMD, 2015). ....................................................................... 50 

Figure 3.2 Rice productions across Thailand, showing areas that rely on precipitation 

(yellow) or irrigation (green areas in blue are irrigated areas not under rice 

cultivation). ...................................................................................................... 52 

Figure 3.3 Annual time-series on rice productivity. ......................................................... 54 



Table of Figures 

xii 

 

Figure 3.4 Rice productivity for 2015. a) Rice planted area (ha), b) Rice yield (kg/rai), and c) 

Rice production (tonnes). ................................................................................ 55 

Figure 3.5 Illustration of the rice detrending in different irrigation systems. ................. 59 

Figure 3.6 Flowchart showing the methodology of identifying provinces for analysis of the 

relationship between rice production and weather parameters.................... 62 

Figure 3.7 Average rice yield (ton/ha) at the provincial level between 1981 and 2015. 

Provinces in green are those that use large and medium irrigation; those in 

yellow are non-irrigated provinces (small irrigation). ..................................... 64 

Figure 3.8 Differences in rice cultivated area and rice production between 1981 and 2015. 

Red circles represent differences of rice area and blue bars represent differences 

on rice production. .......................................................................................... 66 

Figure 3.9 Mean monthly amount of rainfall in Thailand (1981-2015). ........................... 67 

Figure 3.10 Mean monthly rainy days in Thailand (1981-2015). ....................................... 68 

Figure 3.11 Temperature and mean monthly average temperature in Thailand (1981 to 

2015). a) Mean minimum temperature, b) Mean maximum temperature, c) 

Difference in mean maximum and mean minimum temperature, d) Mean 

temperature, e) Extra-minimum temperature, f) Extra-maximum temperature, and 

g) Difference in extra-maximum and extra-minimum temperature. .................. 70 

Figure 3.12 Correlation between rice yield, rice production, and cumulative of rainfall 

between May and October. ............................................................................ 74 

Figure 3.13 Correlation coefficient of rainfall with rice agricultural area over 40% with 

different irrigation systems. ............................................................................ 74 

Figure 3.14 Correlations between rice yield and rice production and average rainy days 

between May and October. ............................................................................ 75 

Figure 3.15 Correlation coefficient of rainy day with rice agricultural area over 40% with 

different irrigation systems. ............................................................................ 76 

Figure 3.16 Correlations between rice yield, rice production, and cumulative mean minimum 

temperature using data between May and October. ..................................... 77 



Table of Figures 

xiii 

Figure 3.17 Correlation coefficient variation between the mean minimum temperature and 

rice production with > 40% rice cultivated area (star symbols describe outlier 

values). ............................................................................................................. 78 

Figure 3.18 Correlations between rice yield, rice production, and mean maximum 

temperature during May and October. ........................................................... 79 

Figure 3.19 Correlation coefficient of mean maximum temperature with rice agricultural 

area over 40% in different irrigation systems. ................................................ 80 

Figure 3.20 Correlations between rice yield, rice production, and difference between mean 

maximum and mean minimum temperature during May and October. ........ 81 

Figure 3.21 Correlation coefficient of difference between mean maximum and mean 

minimum temperature with rice agricultural area over 40% in different irrigation 

systems. ........................................................................................................... 82 

Figure 3.22 Result of spatial autocorrelation using Global Moran’s I demonstrated in a 

significant year. ................................................................................................ 83 

Figure 3.23 Monitored provinces’ rainfall, mean minimum temperature and mean maximum 

temperature, specific to rice production and rice yield (irrigated in red colour and 

non-irrigated in orange colour). ......................................................................... 85 

Figure 4.1 The Chao Phraya River delta, comprising 11 provinces in Central Thailand. The 

red circles on map on the left indicate the locations of the field experiments 

conducted in 2017. .......................................................................................... 97 

Figure 4.2 Time-series of rice yield and production during 1981-2015 for Phichit, Ang Thong 

and Pathum Thani. a) Average rice yield and b) Average rice production. ...... 98 

Figure 4.3 Field survey dates in Phichit, Ang Thong and Pathum Thani. ........................ 101 

Figure 4.4 Field and plant measurements made at each growth stages........................ 103 

Figure 4.5 Above (a) and below (b) canopy PAR measurement in the flowering stage. 104 

Figure 4.6 Destructive biomass measurement of a 1 m x 1 m sample plot. .................. 105 

Figure 4.7 Flowchart illustrating the analysis. ................................................................ 106 

Figure 4.8 Rice varieties in study area: Phichit (blue), Ang Thong (orange), and Pathum Thani 

(grey). ............................................................................................................. 107 



Table of Figures 

xiv 

 

Figure 4.9 Rice cropping pattern in study area derived from farmer interviews. ......... 109 

Figure 4.10 Average rice height (cm), water depth (cm), and height difference between rice 

height and water depth (cm). a) Overall provinces and different irrigation system,  

b) Phichit, c) Ang Thong, and d) Pathum Thani. .............................................. 112 

Figure 4.11 Rice stems density in all provinces (a), Phichit (b), Ang Thong (c), and Pathum 

Thani (d). ........................................................................................................ 114 

Figure 4.12 PAR-derived LAI for all field sites highlighting the influence of rice variety on the 

magnitude and seasonal evolution of LAI. .................................................... 116 

Figure 4.13 Chlorophyll content stratified according to rice variety and irrigation system. a) 

Chlorophyll content according to irrigation system (all sites), b) Phichit, c) Ang 

Thong and d) Pathum Thani. ......................................................................... 120 

Figure 4.14 Wet and dry biomass. a) Mean of total wet and dry biomass in overall study 

area, b) Mean of total wet and dry biomass in different irrigation systems. 122 

Figure 4.15 a) Wet and dry biomass in overall study area, b) Wet and dry biomass in the 

different irrigation systems by specific rice variety. ........................................ 124 

Figure 4.16 Rice yield separate by the irrigation system and province ........................... 125 

Figure 4.17 Correlation between yield and wet and dry biomass for the RD41 rice variety.

 ....................................................................................................................... 128 

Figure 5.1 Location of the Sentinel-2 (left) and Sentinel-1 (right) image tiles over the study 

area. ............................................................................................................... 137 

Figure 5.2 Flowchart of the data pre-processing applied satellite image data prior to 

relating satellite measurements with rice biophysical variables. ................. 142 

Figure 5.3 Example of backscatter coefficients and NDVI subsets showing the locations of 

the sample points within a sample unit in the panicle stage. ....................... 143 

Figure 5.4 Comparisons of the phenological variations of vegetation indices (blue represents 

NDVI and red represents EVI) and radar backscattering for a selected field in Phichit.

 ....................................................................................................................... 145 

Figure 5.5 Rice cultivated areas in three representative provinces (Phichit, Ang Thong, and 

Pathum Thani) interpreted with LANDSAT 8 OLI/TIRS in 2017. .................... 149 



Table of Figures 

xv 

Figure 5.6 Research flowchart analysis. ......................................................................... 151 

Figure 5.7 Seasonal NDVI and EVI phenological profiles in the study area. a) Average for all 

field sites, b) Average in Phichit, c) Average in Ang Thong, and d) Average in 

Pathum Thani. ................................................................................................ 154 

Figure 5.8 Temporal trend in the backscatter coefficients (sigma nought) for different 

orbital directions and polarisations for: a) Overall area, b) Phichit, c) Ang Thong, 

and d) Pathum Thani. .................................................................................... 159 

Figure 5.9 Scatter plots between observed rice yield and significant Sentinel-2. a) NDVI in 

the panicle stage and b) EVI in the seeding stage. ........................................ 163 

Figure 5.10 Scatter plots between observed rice yield and significant Sentine-1. a) 

Descending VV in the seeding stage and b) Ascending VV/VH in the harvesting 

stage............................................................................................................... 166 

Figure 5.11 Photos of sample fields in the panicle (booting and heading) and harvesting 

(maturity) stage (example sample unit 1 in Phichit). .................................... 168 

Figure 5.12 Rice yield estimation and MAPE in three representative provinces by applying 

simple linear regression model to optical imageries with NDVI in the panicle 

stage............................................................................................................... 176 

Figure 5.13 Rice yield estimation and MAPE in three representative provinces by applying 

simple linear regression model to SAR imageries in the harvesting stage. ... 179 





List of Accompanying Materials 

xvii 

List of Accompanying Materials 

Proceedings Volume 10783, Remote Sensing for Agriculture, Ecosystems, and Hydrology XX; 

107832K (2019) http://doi.org/10.1117/12.2513281 

Event: SPIE Remote Sensing, 2018, Berlin, Germany.

http://doi.org/10.1117/12.2513281




Research Thesis: Declaration of Authorship 

xix 

Research Thesis: Declaration of Authorship 

Print name: JATUPORN NONTASIRI 

Title of thesis: Estimation of Rice Crop Yield in Thailand Using Satellite Data 

I declare that this thesis and the work presented in it are my own and have been generated by me 

as the result of my own original research. 

I confirm that: 

1. This work was done wholly or mainly while in candidature for a research degree at this

University;

2. Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated;

3. Where I have consulted the published work of others, this is always clearly attributed;

4. Where I have quoted from the work of others, the source is always given. With the exception

of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as:-

Proceeding Volume 10783, Remote Sensing for Agriculture, Ecosystems, and Hydrology XX; 

107832K (2018) https://doi.org/10.1117/12.2513281 

Signature: ..........................  Date:  ……27 March 2023 ........................... 





Acknowledgements 

xxi 

Acknowledgements 

After an intensive period of studying, today is an important day to thank everyone involved in my 

PhD study. I would like to take this opportunity to thank those who have supported me 

throughout this period. 

First, I would like to express my sincere gratitude to my supervisory team, Prof. Jadu Dash and     

Dr Gareth Roberts, for all their Geo-informatics knowledge, academic support and suggestions, 

field survey design, motivation, and patience with my studies and the writing of this thesis. 

Without their guidance, this PhD would not have been possible. 

Besides my supervisors, I would like to thank my internal and external examiners: Dr Jim Wright 

and Dr Booker Ogutu, for their comments to fill my research gaps during my PhD upgrade 

examination and Dr Paul Aplin and Dr Booker Ogutu, for the viva examination. I would like to 

thank the Geography and Environmental Science laboratory staff for providing field equipment. 

My sincere thanks to the Office of Agricultural Economics, Ministry of Agricultural and 

Cooperatives, Thailand, for providing greatest opportunity to this PhD study and regional office 

for ground experiments during the 2017 growing season. I am pleased to thank the Rice Research 

Centre in Suphan Buri for providing equipment, and would like to acknowledge the Thai 

Meteorological Department, Ministry of Digital Economy and Society, for weather data support. 

In particular, I gratefully acknowledge the funding received from the Office of the Civil Service 

Commission and Royal Thai government, for financial support and suggestions during my study. 

Without their support, this research would not have been completed. 

Last but not the least, I would like to thank my mom and family, who continue to support me 

spiritually, encourage my PhD study, and even joined in my field survey. 

 





Definitions and Abbreviations 

xxiii 

Definitions and Abbreviations 

σ0 ................................................................ Normalised backscatter coefficients 

σVV ............................................................. Backscatter coefficient for VV polarisation 

σVH ............................................................. Backscatter coefficient for VH polarisation 

σVV/VH ....................................................... Ratio of backscatter coefficient for VV and VH polarisation 

CCE ....................................... Crop cutting experiment 

CI .......................................... Change index 

DEM ...................................... Digital elevation model 

DOS....................................... Day of sowing 

DOY ...................................... Day of year 

EO ......................................... Earth observation 

EOS ....................................... End of season 

ESA ....................................... European space agency 

ET .......................................... Evapotranspiration 

EVI ........................................ Enhanced vegetation index 

FAPAR ................................... Fraction absorbed photosynthetically active radiation 

GDB ...................................... Grain dry biomass 

GDP ...................................... Gross domestic product 

GEOGLAM ............................ Group on earth observations global agricultural monitoring initiative 

GHGs .................................... Greenhouse gases 

GIS ........................................ Geographic information system 

GMSL .................................... Global mean sea level 

GWB ..................................... Grain wet biomass 

HH ........................................ Horizontal emitted, horizontal received polarisation 

HNT ...................................... High night-time temperature 

HV ......................................... Horizontal emitted, vertical received polarisation 

HYVs ..................................... High-yielding rice varieties 



Definitions and Abbreviations 

xxiv 

 

IPCC ...................................... Intergovernmental panel on climate change 

IRRI ....................................... International rice research institute 

IW......................................... Interferometric wide swath 

LAD ....................................... Leaf angle distribution 

LAI ........................................ Leaf area index 

MSI ....................................... Multi-spectral instrument 

NASA .................................... National aeronautics and space administration 

NDVI ..................................... Normalised difference vegetation index 

PAR ....................................... Photosynthetically active radiation 

PDF ....................................... Possibility distribution function 

POS ....................................... Peak of season 

RCSM .................................... Rice canopy scattering model 

RIICE ..................................... Remote sensing-based information and insurance for crops in 

emerging economies 

RUE ...................................... Radiation use efficiency 

RVI ........................................ Radar vegetation index 

SAR ....................................... Synthetic aperture radar 

SLC ....................................... Single look complex 

SDB ....................................... Stem dry biomass 

SOA ...................................... Start of season 

SRI ........................................ System of rice intensification 

SRTM ........................................ Shuttle radar terrain mission 

SWB...................................... Stem wet biomass 

TOPSAR ................................ Terrain observation with progressive scanning 

TRMM .................................. Tropical rainfall measuring mission 

TDB....................................... Total dry biomass 

TWB ..................................... Total wet biomass 

UTM ..................................... Universal transverse mercator 



Definitions and Abbreviations 

xxv 

VV ......................................... Vertical emitted, vertical received polarisation 

VH ......................................... Vertical emitted, horizontal received polarisation 

WGS...................................... World geodetic system





Chapter 1 

1 

Chapter 1 Introduction 

Globally, climate change and extreme weather events, which are linked to increasing 

concentrations of greenhouse gases (GHGs), are becoming more widespread, occurring more 

frequently and having significant environmental and societal impact (Enríquez-de-Salamanca et 

al., 2017; Halsnas & Trarup, 2009; Malhi et al., 2020; Reser & Swim, 2011). Extreme weather 

events include intense heatwaves, heavy rainfalls, long-spell droughts, and wildfires, which 

directly and indirectly impacts the environment, economy, biodiversity, agricultural production, 

and human health. The consequences of climate change are a major problem in most countries 

and threaten food production. In order to develop strategies to mitigate the impacts of climate 

change, evaluating its impact on regional and country levels is necessary. For example, some 

countries employ national surveys to understand public perceptions and attitudes, as well as the 

impact of climate change, and based on the results governments can implement efficiency 

strategies for climate change adaptation (Laukkonen et al., 2009; Lawler, 2009; Masud et al., 

2017; Morecroft et al., 2019). Climate change-induced weather events have a significant impact 

on the agricultural sector and food security - including an increase in pests, weeds, disease, and 

water stress- which serves to reduce crop yield and increase food insecurity. Therefore, improved 

understanding of the influence of climate on crop production is necessary if improvements in food 

security are to be made through climate mitigation adaptations. 

Cereal grains (e.g. barley, wheat, rice, sorghum, and maize) are the world’s dominant agricultural 

crops and have seen an increase in demand due to growing population. Rice is the world’s major 

staple food crop, with paddies accounting for over 12% of global cropland; nearly 90% of the 

world’s rice is produced and consumed in Asia (FAOSTAT, 2010). There, rice is grown in two 

seasons (i.e. the wet and dry season) with the wet season coinciding with the monsoon rainfall 

(between May and October). The dry season lasts from November to April and rice planting 

depends on irrigation schemes. Rice cultivation is dependent on the availability of sufficient 

water, so most farmers plant their crop in the wet season, while those with access to irrigation 

may cultivate throughout the year. Increasing demand from the growing population has resulted 

in rice production continuously increasing in Asia, achieved through the expansion of areas under 

cultivation, increasing cropping intensity, use of high-yielding rice varieties (HYVs), and the 

adoption of mechanised practices after the Green Revolution during the 1930s and 1960s. The 

Green Revolution played an important role in developing countries through the growth of high 

yield varieties (Evenson & Gollin, 2003), use of fertiliser (Murgai, Ali, & Byerlee, 2001; Tilman, 

1998), water supply improvements (e.g. irrigation systems), and implementation of improved 

cultivation methods (e.g. system of rice intensification; SRI) (Satyanarayana, Thiyagarajan, & 
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Uphoff, 2007). These developments have increased the potential of rice yield and reduced 

agricultural production costs. 

In Thailand, the main agricultural commodities are rice, cassava, sugarcane, maize, para rubber, 

and oil palm, which serve both consumption within the country and export to foreign markets. 

Rice production in Thailand has increased from 6.74 to 24.93 million tonnes between 1960 and 

2020, and the export of rice and related products now accounts for 10.69% of the export value of 

major agricultural product (OAE, 2020b). Rice cultivation is largely located in the Chao Phraya 

River Delta, which covers area of 15,986 km2 containing ten rice varieties with an average annual 

yield 3.79 ton/ha. The Chao Phraya River delta largely consists of lowland irrigated rice areas 

covering ~6 million rai (0.96 million hectares), of which 70% of the cultivated area is irrigated. The 

prevalence of irrigation systems in this region enables farmers to increase rice production through 

double-rice and triple-rice cropping. However, this is not the case in all areas of Thailand, where 

rice production methods vary according to the local climate (e.g. precipitation), topography, 

availability of irrigation systems, farming practices, and government policies. Water availability 

influences rice development, particularly the structure of plants and yield (Belder et al., 2004; 

Monaco et al., 2016; Pourgholam-Amiji et al., 2021); therefore, regions with limited water 

availability plant rice varieties resilient to lower rainfall conditions. 

Agriculture- including crops, livestock, and fisheries- is the largest economic sector in Thailand, 

providing gross revenue of approximately 1,343.5 million Baht ($41.98 million) per year. 

Agricultural monitoring and yield prediction and estimation are vital to ensure food security and 

agricultural trade, and to provide early warnings of issues concerning production. A key concern is 

the growing demand from a rapidly increasing global population, which is estimated to increase to 

9.8 billion by 2050 (United Nations, 2017). To meet this demand, increased agricultural 

production in the order of 60-110% is needed (Ray, Mueller, West, & Foley, 2013). The 

government, agricultural policy planners, and agricultural associations require accurate and timely 

agricultural statistics for decision making. In Thailand, agricultural information is collected 

concerning the cultivated area, harvested area, yield, production, and timing of harvested 

production, which is used to balance the production capability and demand-supply of crops in 

domestic and foreign markets. At present, the cultivated area in Thailand is estimated using a list 

frame survey (or list of farm holdings) as the main sampling frame via stratified two-stage 

sampling and using remotely-sensed images to measure the cultivated and harvested area 

(Gallego et al., 2014; Pradhan, 2001; Tsiligirides, 1998). Yield estimations have traditionally been 

derived using crop cutting experiments (CCE) at designated ground sample plots during 

harvesting. The CCE method involves harvesting the crop in each sampling plot and measuring the 

yield, which is then extrapolated to a larger spatial extent to estimate the final yield of a region. 
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However, the CCE approach is expensive, time-consuming, covers a limited spatial extent, and 

only provides yield estimates at the end of the growing season, which can result in outdated 

information with respect to predictions and to developing any interventions. On the other hand, 

remotely-sensed data have the ability to provide information on the crop aerial extent at a 

particular stage of the growing season over large regions, and therefore have potential to lead to 

improved crop monitoring and yield estimation. Numerous methods exist for monitoring rice 

production using either optical or microwave data and for deriving estimates of vegetation 

biophysical variables such as leaf area index (LAI). Yield estimation can be derived using remotely- 

sensed data, either via the development of the empirical models that relate remotely-sensed 

measurement or biophysical variable estimates (e.g. LAI) to yield (Erten et al., 2016; Li et al., 2016; 

Yuzugullu et al., 2017) or through crop growth models, which are parameterised using remotely 

sensed biophysical variable estimates (Curnel et al., 2011; Launay & Guerif, 2005; Setiyono et al., 

2019). In the optical domain, time-series of vegetation indices, which are sensitive to vegetation 

health and vigour, are often used to monitor crop production and estimate crop yield 

(Feizolahpour et al., 2019; Panda et al., 2010; Wiegand et al., 1991). A limitation of optical 

measurements is their inability to see through clouds, which is a major challenge to providing 

coverage in many parts of Asia, particularly during the monsoon season. Longer wavelength 

microwave backscatter observations are able to penetrate cloud cover and have been successfully 

used to monitor rice cultivation and to estimate rice yield (Aschbacher et al., 1995; Setiyono et al., 

2019; Wiseman, McNairn, Homayoun, & Shang, 2014). Improved and timely estimates of the area 

under rice cultivation and rice yield using remotely-sensed data will provide a more cost-effective 

method for gathering agricultural statistics and would lead to improved food security. 

1.1 Research problems 

1.1.1 Why is research needed on the impact of climate change on rice production? 

This section highlights the important role of climate change in rice production. Climate change is 

an adverse effect caused by long-term changes in temperature due to increasing concentrations 

of greenhouse gases (GHGs) in the atmosphere by natural and anthropogenic activities. One 

consequence of climate change has been an increase in global mean sea level (GMSL) of around 8-

9 inches since 1880 due to meltwater from glaciers and ice sheets (Vermeer & Rahmstorf, 2009; 

Wigley & Raper, 1987).  

Climate change has the potential of positively or negatively influencing crop production at local, 

national, and regional levels. For example, Kukal and Irmak (2018) found climate-induced 

temperature trends in the United States (U.S.) Great Plains to be beneficial to some crops but 
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detrimental to others, whilst precipitation increases were found to be beneficial to all crops. 

However, short-term weather extremes (e.g. drought and flooding) due to climate change 

typically have negative impacts on agricultural production, and these events are forecast to occur 

with increasing frequency (Liu et al., 2018; Zhao et al., 2020). Precipitation and temperature both 

influence rice production with the former influencing the planting date, crop development, and  

yield (Dharmarathna et al., 2014; Huang et al., 2017; Laux, Jäckel, Tingem, & Kunstmann, 2010; 

Mahmood et al., 2012) whilst temperature influences grain quality (size and completeness of 

grain) (Cooper et al., 2006; Lanning et al., 2011). In recent years, the impact of climate change on 

rice production in Southeast Asia has been investigated through different climate change 

scenarios. For example, Felkner, Tazhibayeva, & Townsend (2009) found that both high and low 

future global anthropogenic pollution emission scenarios led to increased daily temperature, with 

the high emission scenario resulting in 40% higher temperatures. The impact on precipitation was 

to increase throughout the year in the low emission scenario, but to reduce in the second half of 

the year in the high emission scenarios, which coincides with the month of critical rainfall (June) 

for the rice growing season. This could be interpreted as low emission scenarios being positive for 

rice production, whilst high emission scenarios, with increased temperature and decreased 

rainfall, being negative. Previous studies (Amien et al., 1999; Roy et al., 2012; Zhang & Tao, 2013) 

analysed the impacts of climate change on rice yield by applying various climate scenarios to crop 

growth models (e.g. dry matter, planting date, rainfall, temperature, production, and amount of 

CO2). Kang, Khan, & Ma (2009) investigated the relationship between crop production (e.g. rice, 

wheat, and maize) and climatic variables in regional and global food production such as impacts 

on crop water productivity and soil water balance. The results found were either increased or 

decreased crop yields, depending on latitude and irrigation applications. 

Natural disasters, such as drought and flooding, also severely impact crop production, and these 

are forecast to increase with the changing climate. For example, drought stress has a crucial 

influence on water deficit and strains (e.g. leaf heating) and biomass (Loo, Billa, & Singh, 2015). 

However, to date, there have been few detailed assessments of climatic trends and their impact 

on agriculture across Thailand. One study investigated the impact of low and high emission 

scenarios on rice yield estimation using the Decision Support System for Agro-technology Transfer 

(DSSAT) model. This showed reductions in rice yield by 3.53% and 13.79% for the high and low 

emission scenarios, respectively (Felkner, Tazhibayeva, & Townsend, 2009). Further to this, 

Polthanee and Promkhambut (2014) investigated the impact of climate change on rice and 

evaluated farmers’ adaptation strategies in northeast Thailand. They found an increase in mean 

minimum and maximum temperature, which is extreme in the winter season, whilst the rainfall 

increased in intensity and changed their beginning of rainy season from previous. The limited 
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number of studies on climate impact on rice production in Thailand with regard to precipitation 

and temperature highlights the research gaps; identifying the impacts would enable development 

of methods to mitigate the effects. It is important that the agricultural sector is resilient and able 

to adapt to changes in climate, where the main pattern of adaptation has been through shifting of 

planting period, crop rotation, introducing tolerant varieties, water management, and improved 

farming practices. 

1.1.2 Understanding the influence of irrigation on rice cultivation 

Variations in rice biophysical variables may occur for several reasons, including changes in 

precipitation. Investigating the influence of irrigation on rice production provides a means to 

indirectly assess the role of climate (precipitation) on rice production. The implementation of 

irrigation systems guarantees sufficient water resources throughout the growing season. It is 

important to have sufficient water at the start of the planting season during the vegetative phase. 

In beginning of the growing season, flooded paddy fields are essential for the decay of organic 

matter and increasing the mineral absorptivity of the crop. In more arid regions or those without 

irrigation, the paddy field is bare soil, in which case rice is seeded in a nursery and transplanted to 

the paddy when water is available. This influences the variety of rice planted, and potentially the 

yield, where the majority of long duration rice is planted in irrigated areas whilst medium and 

short duration rice varieties are planted in both irrigated and non-irrigated areas. This highlights 

the role that water availability and irrigation system provision play in rice cultivation and in rice 

variety, biophysical variables, and yield (Belder et al., 2004; Dangi et al., 2017; Kropff & Cassman, 

1994; Ohe et al., 2010). This research aims to investigate the different patterns of rice biophysical 

variables in irrigated areas and non-irrigated areas, as this can influence yield and therefore needs 

to be considered. This study will investigate the variation of a number of rice biophysical variables 

(e.g. plant height, leaf area index [LAI], biomass, and yield) with irrigation systems. Later chapters 

will explore the estimation of rice yield using remotely-sensed estimates of some of these 

biophysical variables. 

1.1.3 Remote sensing for yield estimation 

Yield information, which describes the production per unit area, is essential for agricultural 

planning and is normally used to calculate rice production by multiplying rice yield by cultivated 

area. In general, the yield data are derived from Crop Cutting Experiments (CCE), which involve 

cutting and measuring the rice grain in representative sample plots. However, these yield 

estimates are derived close to the harvesting period, which hinders forward planning for 

exporting rice and ensuring sufficient availability for the population. Therefore, developing 
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methods to estimate yield earlier in the season would be advantageous in supporting the 

decision-making process with respect to agricultural markets. 

One technique, which has been widely adopted for crop monitoring and yield estimation, is via 

remotely-sensed measurements (Awad, 2019; Doraiswamy et al., 2003; Holzman et al., 2018). 

Conceptually, remote sensing involves using spectral measurements in wavebands that are 

sensitive to vegetation biophysical characteristics, such as visible and near-infrared (NIR) 

wavelengths, to monitor crop growth and estimate vegetation biophysical variables. Over the last 

ten years, remote sensing has been increasingly applied to monitor agricultural rice production 

due to the availability of moderate and high spatial resolution imagery. Owing to their moderate 

spatial resolution (< 30 m), Landsat Thematic Mapper (TM) and SPOT High Resolution Visible 

(HRV) satellite sensors have been applied to map the surface area under rice production due to 

the typically small size of paddy fields (Frolking et al., 2002; Nguyen et al., 2012; Shiu & Chuang, 

2019; Torbick et al., 2011). Despite its low (250 m) spatial resolution, the Moderate Resolution 

Imaging Spectroradiometer (MODIS) is widely applied to map rice production and offers the 

advantage of daily temporal resolution, which improves the probability of cloud-free acquisitions 

(Boschetti, Stroppiana, Brivio, & Bocchi, 2009; Nuarsa, Si, & Nuarsa, 2011; Son et al., 2013). High-

temporal resolution also enables monitoring of crop phenology (Boschetti et al., 2017; Hmimina 

et al., 2013; Pan et al., 2012; Sakamoto et al., 2005; Zhang et al., 2003) and cropping intensity (e.g. 

single-crop, double-crop, or triple-crop) (Boschetti et al., 2017; Nguyen et al., 2012; Pan et al., 

2012). Integrating the Earth Observation (EO)-derived information, such as vegetation indices, 

with in-situ measurements (empirical approach) or crop growth models enables estimation of the 

importance of rice biophysical variables (e.g. rice height, LAI, and biomass). A key aspect of this 

approach is to understand the relationship between rice biophysical variables and remote sensing 

data at different growth phases to facilitate predictions of yield prior to harvest. Wang et al. 

(2019) selected three main rice growth stages- the vegetative, reproductive pre-heading, and 

reproductive post-harvesting stages- to estimate LAI using machine learning methods. The results 

revealed the random forest was preferable in LAI estimation during the vegetative stage. 

Rice yield can be estimated by using econometric models and crop growth models. Econometric 

models simulate crop yield by inputting previous agricultural areas, fuel costs, price, and weather 

data (Allen & Fildes, 2001). Crop growth models are more widely applied and can be either 

empirically based and driven by climatic variables, or physically based, where plant physiological 

development is simulated throughout the growing season based on a range of soil, 

meteorological, and vegetation inputs (Singh et al., 2014). A number of these models exist, such 

as estimate Environmental Policy Integrated Climate Model (EPIC) (Williams, Jones, Kiniry, & 

Spanel, 1989), Crop-Environment Resource Synthesis (CERES) (Jones et al., 2003), and ORYZA 2000 
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(Li et al., 2017). These models require parameterisation using meteorological information, soil 

characteristics, land management practices, and plant biophysical variables. Earth Observation 

(EO) sensors play a key role in the provision of crop biophysical variables used to parameterise 

crop simulation models and can do so throughout the growing season. A number of studies have 

demonstrated such benefits. For example, LAI and biomass of wheat were assimilated from 

remote sensing data (e.g. ASAR (Advanced SAR) and MERIS (Medium Resolution Imaging  

Spectrometer) data) and CERES-Wheat model; the simulated LAI and biomass data were then 

validated with ground and remote sensing data to seek the optimal set of input parameters 

(Dente, Satalino, Mattia, & Rinaldi, 2008). To improve parameterising crop growth models using 

remote sensing data, data assimilation methods, such as Ensemble Kalman Filter (EnKF), have 

been used to improve LAI monitoring and crop yield estimation. Using the CERES-wheat model, 

He et al. (2017) employed an EnKF to assimilated LAI estimates to predict yield, and found strong 

correlations with in-situ measurements. Data assimilation has been applied to LAI and canopy 

nitrogen accumulation from hyperspectral data using the DSSAT-CERES model with an excellent 

prediction accuracy (Li et al., 2015). 

As a result of the benefits brought by EO sensors, satellite observations have been employed to 

monitor rice production at regional and global scales. For example, the Group on Earth 

Observation (GEO) Global Agricultural Monitoring Initiative (GEOGLAM) project utilises daily 

satellite and meteorological data to monitor global rice production and current crop conditions 

for four main crops (maize, soybeans, rice, and wheat) to generate Agricultural Market 

Information System (AMIS) of member organisations (CEOS, 2013). The main obstacle of remote 

sensing for rice monitoring using optical data is cloud cover, particularly during the wet season, 

which can be mitigated by the use of microwave observations through Synthetic Aperture Radar 

(SAR) sensors. SAR data have been successfully applied to map areas under rice cultivation and 

has been carried out in Kanchanaburi province with a classification accuracy of 89% (Aschbacher 

et al., 1995). A pilot project in Lao People’s Democratic Republic, the Philippines, Thailand, and 

Viet Nam explored the potential of PALSAR-2 satellite images to estimate paddy rice cultivation 

area and production via developed INAHOR-AD (an advanced version of INternational Asian 

Harvest mOnitoring system for Rice) software based on remote sensed data (Rotairo et al., 2019). 

Estimates of vegetation biophysical variables have been widely derived using optical 

measurements and spectral vegetation indices. However, cloud cover limits observations during 

key stages of the phenological cycle, and it is therefore important to assess the potential of both 

optical and microwave methods for estimating vegetation biophysical variables. In this research, 

the utility of vegetation indices (VIs; Normalised Difference Vegetation Index, NDVI; and Enhanced 

Vegetation Index, EVI) and backscatter (sigma nought) to estimate rice biophysical variables (e.g. 
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rice height, density, leaf area index, chlorophyll content, and biomass) will be investigated. The 

field experiments were conducted in the main cultivation area, an irrigated lowland rice area in 

the middle region. 

1.2 Research questions 

The research questions listed below are based on analysis of the scientific literature. 

Research question 1: What is the role of changes in rainfall and temperature on rice yield and rice 

production, and how does this vary with the irrigation system in Thailand? 

Research question 2: How does the irrigation system influence rice plant growth and 

development of biophysical variables during the growing season, and which rice biophysical 

variable is the best predictor of rice yield? 

Research question 3: What is the potential of optical and SAR data for estimating rice biophysical 

variables in Thailand, and how does this vary between rice growth phases? 

Research question 4: What is the potential of remote sensing estimates of biophysical variables to 

estimate rice yield?  

This thesis sets out to contribute to our understanding of the importance of rice monitoring, rice 

farming systems, and the potential of remote sensing for rice yield prediction. A description of the 

thesis structure that highlights the content of each chapter is provided below; limitations and 

suggestions for future research build upon these new analyses. 

1.3 Thesis scope and structure 

The literature review (Chapter 2) found that precipitation and temperature are crucial factors in 

crop yield and production. This thesis aims to investigate the role of climatic parameters 

(temperature and rainfall) on annual rice yield and rice production in Thailand over 35 years 

(1981-2015) at the provincial level (Chapter 3). To provide a better understanding of the influence 

of climate on rice production, the analysis is stratified according to the percentage of cultivated 

rice area under irrigation.  

Current methods for predicting rice yield are based on crop cutting experiments, which are time 

consuming and carried out close to crop harvesting. A field campaign was carried out during the 

growing season wherein a number of rice biophysical variables were measured during difference 

rice growth stages (Chapter 4). This allowed assessment of how rice development varied 
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throughout the growing season, under irrigated/non-irrigated conditions, and with rice variety. An 

analysis (Chapter 5) of the relationship between remote sensing observations and the in-situ 

measurements was carried out to investigate the potential of remote sensing to estimate rice 

biophysical variables at different stages of the growing season. The rice yield estimation approach 

developed in Chapter 5, based on the development of linear regression models using satellite 

observations and in-situ crop biophysical variables, aims to provide a timely and spatially dense 

approach for estimating yield than that currently provided by crop cutting experiments.  
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Chapter 2 Literature review 

The purpose of this chapter is to critically review existing research on the relationship between 

climatic variables and rice production, with a specific focus on Thailand. Central to this is assessing 

state-of-the-art research on the potential to estimate rice biophysical variables using earth 

observation (EO) data and methods for estimating rice yield, specifically focusing on the Chao 

Phraya River delta. The structure of this chapter is as follows: Section 2.1 defines the rice 

ecosystem and the specifically categorised rice land ecosystem across the agro-ecological zones 

(AEZs) of the world. Section 2.2 sets out rice crop phenology and associated rice crop productivity 

stages, while Section 2.3 discusses the rice farming system in Thailand with respect to the timing 

of rice farming practices (e.g. planting/transplanting and weeding) and how these rice systems are 

linked. Section 2.4 investigates the factors that influence rice production and focuses on the role 

of meteorology and the impact of climate change on agriculture. Section 2.5 describes current 

methods for estimating rice productivity through surveying and, finally, Section 2.6 assesses the 

remote sensing techniques used for rice crop monitoring and yield estimation.  

2.1 Rice ecosystem 

There are 111 countries growing rice across the world, including most Asian countries, most 

countries of West and North Africa, some countries in Central and East Africa, most South and 

Central American countries, Australia, and some states in the U.S. Rice production occurs in wet, 

tropical and temperate climates due to appropriate temperatures and adequate rainfall. Rice is 

usually grown between 25° North and 25° South and from sea level to 2,500 m. The largest, and 

highest proportion of rice growing areas are located in South and Southeast Asia, where rice is 

cultivated in lowland areas and where monsoons ensure sufficient water. 

Moormann and Breemen (1978) classify rice areas based on rice physiography and hydrology, 

with the latter separated into irrigated and non-irrigated areas. By determining physiographic and 

hydrology, the non-irrigated rice area is classified as pluvial (well drained and typically located in 

upland areas), phreatic (naturally slope or flat), and fluvial (lower or flat areas and most flooding). 
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Figure 2.1 Four main types of rice-based cropping system during growing season (Halwart & 

Gupta, 2004). 

Figure 2.1 illustrates the characteristics of rice-based cropping systems based on water availability 

and topography: upland, rainfed lowland, irrigated, and flood-prone. Irrigated rice areas mean 

rice is grown with adequate water supply and is flooded throughout the growing season. Under 

these conditions, rice is transplanted or direct seeded in the puddle soil. The rainfed rice areas or 

non-irrigated areas mean rice growth is reliant on rainfall, with non-continuous flooding and 

duration of the rice fields. Paddies are normally bundled to store water in the field not exceeding 

50 cm depth for a maximum of 10 consecutive days. In upland areas, rice is grown on level to 

steeply-sloped fields and typically depends on rainfall. Finally, in flood-prone areas, rice is grown 

on level to slightly-sloping or depressed fields and is located near rivers where water depth 

exceeds 100 cm between >10 days to several months. Barker and Herdt (1979) classified rice 

cultivated areas in South and Southeast Asia into four main groups: irrigated, shallow rainfed, 

deep-water, and upland rice growing areas. In these regions, rice cropping is divided into two 

main seasons, wet and dry. The wet season is when the main proportion of rice is cultivated 

globally, as rainfall is the main restriction for rice cultivation in non-irrigated environments. The 

main limitation in the dry season is rainfall, and therefore there are fewer rice cultivated areas in 

the dry season. The proportion of rice cultivation in shallow rainfed, double cropping irrigated, 

and medium deep rainfed and deep-water is 34%, 19%, and 15%, respectively. With respect to 
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rice production in each of the groups, shallow rainfed, double crop irrigated, and single crop 

irrigated account for 33%, 31%, and 19%, respectively. These figures reveal that rice yield in 

irrigated areas is typically higher than non-irrigated areas. 

In principle, rice is grown under different conditions, from waterlogged and poorly drained soils to 

well drained soils. The soil’s physical properties are an important factor in rice-based cropping 

systems. In a rice growing environment, rice cultivated area is categorised into lowland (wetland 

preparation on rice fields) and upland (dryland preparation on rice fields) based on water supply 

and water management practices. Rice lands have been classified according to water regimes into 

upland (with standing water), lowland (with 5-50 cm of standing water), and deep water (with 

more than 51 cm to 5 m of standing water). Within this, rice cultivation is divided, based on the 

rice variety planted, into three main groups: lowland rice (with plants of semi-dwarf variety of 

medium to tall structure (100 cm to 2 m height)), upland rice with plants of medium to tall structure 

(130-150 cm height), deep water rice (with plants of medium to tall structure in different standing 

water (120-150 cm without standing water and 2-3 m height with rising water level)), and floating 

rice, with tall structures above 150 cm without standing water and 5-6 m with rising flood water.  

In lowland rice areas, the paddy field is prepared either in wet or dry conditions; however, water 

is held and stored by bunds. In the pre-germination process, rice seeds are soaked in water for 24 

hours and then incubated for 48 hours before being placed in the seedbed. This process assures a 

quick start in the seedbed. Most countries adopt the wet bed pattern for growing seedlings, in 

which pre-germinated rice seeds and are sown in puddled soil where the seedlings are ready for 

transplanting ~20-25 days after being sown. The current establishment techniques differ between 

non-irrigated and irrigated lowland rice. In non-irrigated lowland rice, the current establishes 

technique classified into transplanted in puddle soil, direct-seeded on puddled soil, and direct-

seeded on dry soil. While irrigated lowland rice, the farmer directly seedling rice sprouts onto 

puddle soil, drill seeding into dry soil, broadcast seedling onto dry or moist soils, and water-

seeded rice.  

Each rice ecosystem utilises different methods of land preparation, which is relevant to the 

planting method and water availability and is influenced by precipitation availability and irrigation 

systems. Land and water management systems and tillage practices vary with the rice system, 

with the latter varying according to water availability, soil texture, topography, resources 

available to farmers, and farmers’ preference for cropping pattern (Badshah et al., 2014; 

Chakraborty et al., 2017; Dou et al., 2016; Ye et al., 2013). The timeliness and quality of land 

preparation are important factors controlling rice growth and yield which result in differences in 

yield of up to 56.85% (Nwite et al., 2016). 
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2.2 Rice phenology 

Rice is an annual grass with round, jointed culms, flat leaves, and panicles. The organism consists 

of the root, clump, and leaves. Tillers or panicles grow from the main clump and the primary tiller 

grows from the lowermost nodes, rising to secondary and tertiary tillers. Rice leaves, which grow 

at each node, consist of a blade, leaf sheath, flag leaf, auricles, and ligule. The panicle is enlarged 

beyond the flag leaf sheath. The spikelet is a unit of the panicle and continues to develop rice 

grains in a ripened ovary. Rice is a caryopsis in which a single rice seed is fused with a wall to form 

rice grain. A caryopsis is covered by two main leaves, the palea and lemma. There are three layers 

which cover the caryopsis coat: the pericarp, seed coat, and nucellus. 

 

Figure 2.2 Cross-section of rice grain (Rosentrater & Evers, 2017). 

The length of the phenological cycle of rice varies depending on environmental conditions, the 

rice variety, and management practice. Understanding rice phenology is essential for evaluating 

crop productivity and management practice. Changes in phenological period and length of 

growing season can lead to crop intensification and irrigated area. Normally, the duration from 

seeding to harvesting is 3-6 months, and is characterised by three physiologically distinct stages: 

vegetative, reproductive, and ripening. Rice variety controls the length of growing season and 

these are usually are defined as short-duration and long-duration rice varieties (Chen et al., 2020). 

Research found the shorter length of growing on short-duration rice to be 11-12 days and similar 

grain yield to long-duration rice. Other factors (e.g. spikelet filling rates, high harvest index, 
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biomass accumulation, crop growth rate, and radiation use efficiency (RUE)) are higher in short-

duration rice than long-duration rice. Further studies found the delay of flowering on long-

duration rice corresponds with photoperiods (Vergara & Chang, 1985). 

 

Figure 2.3 Rice development stages. The top left image illustrates the development of root 

internodes elongation and panicle and the large image illustrates the development of 

rice growth stage in vegetative, reproductive, and grain filling & maturation stages 

(Hardke, 2013). 

Figure 2.3 represents the rice development stages, with different structures over the growing 

season. In the vegetative stage, rice is normally in the germination process and develops leaves 

and tillers. The vegetative stage ends with the development of the panicle initiation and 

differentiation. This is followed by the reproductive stage; rice in this stage is developing heading 

and active pollination. In the ripening stage, the rice grains develop, such as milk, dough, and 

mature grains. These stages are discussed in more detail below. 
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2.2.1 Vegetative phase 

The vegetative phase occurs from germination to panicle initiation. Rice seeds are germinated and 

the radicle through the coleorhiza; young leaves then emerge under suitable warm and moist 

conditions. Tropical rice varieties have periods of dormancy, and some rice varieties protect rice 

lodging (when plant stems weaken and are unable support grain weight) during the ripening 

stage. When the rice grain is germinated, two or more seminal roots emerge from the rice seed. 

In the seeding phase, the rice emerges from soil and seeding develops seminal roots. After ten 

days, two or more rice leaves will have developed, and leaves continue to develop every 3-4 days 

in the early stages; with adequate water and temperature, five leaves will typically develop by the 

end of vegetative stage. 

The tillering stage follows the seeding stage and begins with the appearance of the first tiller from 

the axillary bud and the development of secondary and tertiary tillers. The development of 

tertiary tillers is classified into two sub-stages: the maximum tillering stage and stem elongation 

stage. After the maximum tillering stage, some tillers gradually die, the number of tillers 

decreases, and vertical growth ceases. The stem elongation stage starts before panicle initiation; 

however, the stem elongation and panicle initiation stages occur simultaneously in short rice 

varieties. In this stage, the rice root system consists of two major categories: crown roots and 

nodal roots. The crown root develops from nodes below the soil surface and nodal roots which 

develop above soil surface (De Datta, 1981). 

2.2.2 Reproductive phase 

De Datta (1981) clarified that the reproductive stage begins after the maximum tillering stage and 

depends on the rice variety and environmental conditions. Panicle initiation is noticeable when the 

rice is a differentiated of primordium. Then, the panicle occurs in the main clump, followed by other 

clumps with no exact pattern. 

In the panicle initiation stage, the rice stem ceases vertical growth to develop rice grains following 

the growth phase and panicle initiation occurs simultaneously. The significant structures that 

develop during the panicle stage are the base, axis, primary and secondary branches, pedicel, 

rudimentary glumes, and spikelet. Rice plants have a fully developed flower per spikelet 

approximately 52 days after sowing in the panicle stage. During the panicle stage, the spikelet 

develops inside a flag leaf sheath and continues to develop the panicle slowly. There are three sub-

phases within the reproductive stage: booting, heading, and flowering. The booting stage begins 

when the flag leaf sheath is a well-developed and other below leaf is senescence. The heading 

stage occurs with the emergence of the panicle on the flag leaf sheath, and the flowering stage 
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occurs when the rice begins anthesis and panicles occur at the top, middle, and lower portion of 

the rice structure. However, the period of the flowering stage is dependent on the rice variety and 

environment. 

2.2.3 Ripening phase 

The ripening phase is the growth phase that occurs between the flowering and maturity stages 

and usually lasts ~30 days (De Datta, 1981). Several factors influence the duration of ripening, 

such as the number of rainy days, temperature, fertiliser use, and rice variety (Okamura et al., 

2018; Rathnayaka, Iqbal, & Rifnas, 2018; Sabaruddin et al., 2002; Vergara et al., 1966) with the 

latter varying the ripening period by between 35-50 days  (Moldenhauer & Slaton, 2001). High 

temperature during the grain filling and ripening stages produces imperfect or empty grain, 

especially in the upper and lower part of grain. There are three sub-phases which are relevant to 

grain colour: the milk grain stage, dough grain stage, and mature grain stage. In the milk grain 

stage, the caryopses are watery and develop a milky substance on grains; during the dough grain 

stage the grains turn into soft and hard dough. During the mature stage, between 90-100% of the 

filled spikelet, rice turn into yellow and harder grains, and the senescence of the upper leaves is 

apparent; however, the clumps and upper rice leaves remain healthy with green colour while the 

grain is fully ripened. 

The growth phase of rice is distinguished by the number of leaves and varies between short and 

long duration rice. The length of the vegetative and reproductive period varies depending on rice 

varieties; however, the ripening stage is equal among rice varieties, about 30 days. In principle, 

the order of rice leaves is positioned as the first, second, and third leaf, and so on in the order 

they emerge. The physiological growth stage is determined when rice have fully developed their 

leaves on the main culm. 

2.3 Rice farming system in Thailand 

In Southeast Asia, most rice cultivation occurs in lowland rice systems found in both humid and 

moist sub-humid agro-ecological zones, where farmers are typically small holders. Rice cultivation 

accounts for 71 million ha, and approximately 45% of irrigated areas are found in Indonesia, 

Vietnam, the Philippines, and Thailand. In Thailand, the lowland rice area, irrigated and non-

irrigated area, is 2,075 ha and 6,792 ha, respectively (Redfern, Azzu, & Binamira, 2012). This 

section discusses the rice farming systems in Thailand in terms of the timing of 

planting/transplanting, weeding, cropping patterns, and rice farm business. 
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2.3.1 Timing of planting and transplanting 

The rice growing season is defined as being either wet or dry, with more rice grown during the 

wet season. Planting dates in wet season are usually based on the start of monsoon season, 

especially in transplanted non-irrigated rice areas. In tropical and sub-tropical climatic zones, the 

day length for photoperiod-insensitive rice varieties is suitable all year, allowing farmers to plant 

rice in all periods in irrigated areas. By definition, rice cropping in Thailand is divided into rainy 

season, which occurs between May and October in most areas, except the southern part of 

Thailand, where rice grows between June and February. Dry season occurs between November to 

April in most areas, except the southern part of Thailand (OAE, 2014b). 

The growing period of rice in the wet season begins when monsoons hit, at which time farmers 

prepare their paddies for planting by ploughing the soil and releasing the standing water. The 

traditional rice cropping pattern in Thailand involves farmers soaking and incubating the rice seed 

in water and then seeding the rice directly into the fields, defined as wet or dry seeding. In wet 

seeding, the most common method, rice seeds are sown into flooded fields, whilst dry seeding 

involves sowing rice seeds into dry bare soil and waiting for rainfall to germinate the rice.  

2.3.2 Rice cropping patterns 

As mentioned above, the methods of rice planting in Thailand depend on several factors. The rice 

cropping pattern influences the timing of the sowing and harvesting periods, and the land 

preparation varies according to the rice cropping pattern. The latter is classified into three main 

types – transplanting-flooded rice, dry direct seeding, and wet direct seeding. 

2.3.2.1 Transplanting-flooded rice 

Transplanting flooded rice is the method used when young rice sprouts from the nursery are 

transplanted into paddy fields in a row pattern. Transplanting is either carried out manually (using 

a random or straight-row method) or by machine, with the former being labour-intensive whilst the 

latter increases the farmers’ costs. At present, the “system of rice intensification” (SRI, Upboff, 

2008) has been adopted, which allows a farmer to plant rice seeds in a small pot and sow the rice 

stems directly into the field, potentially increasing yield (Latif, Islam, Ali, & Saleque, 2005; Sinha & 

Talati, 2007), reducing labour inputs (Sinha & Talati, 2007), and saving water usage. Rice yield is 

dependent on farm management practices as when best management practices are 

implemented. The best management practice experiment was conducted on irrigated and non-

irrigated lowland rice in Bangladesh between System of Rice Intensification (SRI) and Best 

Management Practices (BMPs) by evaluating varied practices (e.g. seeding age, plant spacing, 
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application of organic manure, seeding density, duration of planting, planting shape, and time of 

planting). The result proved no useful impact on yield with SRI, because there were individual 

crop management techniques (Latif et al., 2009). 

2.3.2.2 Dry direct seeding 

Direct seeding is a method wherein dry seeds are sown directly into paddies, suitable in non-

irrigated drought-prone areas (Pandey, 2002). Typically, this cropping pattern requires rainfall 

after seeding for germination. After seeding, the farmer ploughs the topsoil in their field and rice 

seed is rather deep and uses moisture in the soil to penetrate the root system. Another technique 

involves the farmer direct seeding after rainfall has flooded the paddy. Research comparing 

parameters such as LAI, yield, and water productivity between dry direct seeded rice (DDSR) and 

traditional transplanted rice (TPR) found DDSR had a higher yield (13.18%) and reduced total 

water input (8-12%) in comparison with TPR (Ishfaq et al., 2020). Conversely, other research 

proved the rice yield of direct-seeded rice (DSR) was 12% lower than conventional transplanted 

rice (TPR) and yield loss of DSR and TPR depended on management practices, soil type, and 

climate conditions (Xu et al., 2019). In addition, there were differences in the panicle number 

among dry direct-seeded and transplanted-flooded rice across rice varieties (Liu et al., 2014). 

2.3.2.3 Wet direct seeding 

Wet direct seeding involves seeding rice for germination in soil with 2-3 cm of standing water in 

the fields. Farmers in irrigated areas utilise this technique to increase their chances of achieving 

improved rice production; it also has the advantage of screening sub-optimal rice seeds and 

eliminating weeds before planting. The paddy needs to be flooded at least two weeks prior to 

planting to ensure the decay of organic soil matter. 

2.3.3 Post-harvest rice processing in Thailand 

After harvesting, farmers transport rice grains to rice mills. Rice mills in Thailand are divided into 

three classes based on production capability: small (1-12 tonnes/24 hours), medium (30-60 

tonnes/24 hours), and large (more than 60 tonnes/24 hours). Normally, medium and large rice 

mills are located in essential rice growing areas in the central region, while most rice farmers in 

the north and northeast regions bring their produce to small rice mills, with most of the grains 

consumed within the household. In local areas, there are commission merchants who buy rice 

grains directly from farmers for quality approval. Rice grain markets include farmers, merchants, 

and the owners of rice mills, and farmer and rice mill owner join the negotiation for an acceptable 

price. Finally, rice production transport to the rice markets for domestic and export markets. The 
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Office of Agricultural Economics (OAE) analyses rice prices and publishes the information on a 

daily, weekly, and monthly basis for crops. 

 

Figure 2.4 Rice price at farm gate- directed purchase from farmer (at 15% humidity) between 

1997-2017. 

Figure 2.4 illustrates the fluctuation of the farm gate price of rice grains at 15% humidity between 

1997-2017. The minimum, maximum, and average farm gate price were 7,040 THB/ton (November), 

7,421 THB/ton (August), and 7,201 THB/ton, respectively. This figure reveals two price peaks after 

the adoption of the rice mortgage policy (March 2011) and a period of flooding (October 2011). 

The rice mortgage policy guaranteed a rice price of 15,000 THB/ton, which is nearly double the 

price in earlier years. Also, government policy influenced the rice price between 2008-2009 and 

price range from 8,460 THB/ton (October 2009) to 13,259 THB/ton (April 2008). In addition, 

Thailand was severely affected by flooding in Chao Phraya River delta in 2011 (Komori et al., 2012) 

which severely impacted rice production (Son et al., 2013) and caused high prices the following 

year. Prices ranged between 9,641 THB/ton in January and 10,584 THB/ton in September, which is 

dependent on the export situation and rice stocks. 
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Figure 2.5 Flowchart illustrating the rice supply chain in Thailand (Titapiwatanakun, 2012). 

Figure 2.5 shows the intermediaries involved in the rice farming and supply system in Thailand 

(Titapiwatanakun, 2012). At the local level, intermediaries are local buyers, local commission 

agents, cooperatives, farmer groups, local assembling markets, and millers. After harvesting, 

farmers sell their product directly to small rice mills or silos in the local area, although due to 

transportation issues some sell to local merchants who then negotiate the price with mill owners. 

Most local assemblers are shopkeepers who provide credit to farmers or production inputs (ADB, 

2012). In the main rice cultivation areas, government agencies and business sectors establish rice 

mills and warehouses for use by local farmers, local assemblers, and merchants. Central paddy 

markets also provide labour, moisture gauges, drying lawns, warehouses, and loan systems. After 

processing the rice packaging, the rice is distributed to wholesalers or middlemen who sell the 

rice to modern trade markets or traditional markets. On a national scale, the rice remaining after 
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consumption is exported to foreign markets, typically 44.61% of the total rice produced (OAE, 

2018a). In 2018, annual rice production was 34.5 million tonnes (22.8 million tonnes; milled basis) 

(FAO, 2018). 

2.4 Factors affecting rice production 

Rice production is influenced by both natural and agricultural practices. Farmers maximise crop 

growth and grain yield using fertiliser and pesticide for increasing incomes on their agricultural 

product. However, weather, soil characteristics, biotic conditions, and agricultural practices all 

impact rice production. This section discusses the role of weather, geography, water availability, 

disease and pests, rice variety, and government policy on annual rice production. 

2.4.1 Weather and climate 

Rainfall is essential for rice cultivation, and in areas with suboptimal rainfall, irrigation is 

necessary to ensure sufficient water is available throughout the growing season. Dams and 

irrigation canals are constructed by government to meet this requirement, and in Thailand 25.68% 

of the rice cultivated area relies on irrigation (OAE, 2018c). In tropical regions such as Thailand, 

rice areas are divided into two climatic types based on rainfall distribution: tropical rainy and 

tropical wet-dry. The former has sufficient rainfall throughout the growing season and is not 

considered drought-prone, while the latter receives adequate rainfall but the variability in rainfall 

distribution is the main restriction of rice planting. Most rice grown in the tropics depends on the 

monsoon rains and planting dates coincide with the onset of the rainy season. Variability in the 

amount and distribution of rainfall is a major factor influencing yield. Excessive rainfall is the main 

cause of flooding, which reduces yield and severely damages the crop when the rice develops milk 

or dough grains (see Section 2.2.3).  

Several studies have investigated the impact of rainfall on crop yield and agricultural production. 

A study simulating hydrological conditions in the Lower Mekong Basin found evaporation-

transpiration increased in the baseline between 1985-2000 and the climate change scenario in 

2010-2050 and 90% cumulative probability value raising the irrigation demand. Larger variation in 

annual rainfall causes water shortages at the crucial time of rice planting, thus delaying the 

transplanting date in non-irrigated rice areas, and longer dry spells during the wet season raise 

drought risks in the same. These factors impact reducing rice yield and production in terms of 

delaying rice transplanting and increasing drought risks, which depend on photoperiod lengths 

(Yamauchi, 2014). This study highlighted how sensitive the planting dates are to the onset of 

rainfall; they can be shifted earlier or delayed to avoid crop damage. Mainuddin et al. (2012) 
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simulated the AquaCrop models by shifting planting dates plus or minus two weeks in Cambodia 

and Vietnam; their results indicated that shifting the planting dates increased crop yield per unit of 

actual evapotranspiration (WPET; kg m-3), but also greatly increased WPET and had an impact on 

spikelet sterility. Water scarcity can lead to delaying of anthesis, resulting in a reduction of the 

number of spikelets per panicle by up to 60% and decreasing grain yield to 20% (Boonjung & 

Fukai, 1996). These studies highlight the value of irrigation systems in areas with less stable 

rainfall patterns, which typically result in higher rice productivity (Laux, Jäckel, Tingem, & 

Kunstmann, 2010; Rockström et al., 2010; Sharma et al., 2010). Bouman and Tuong (2001) 

analysed a method for water-saving irrigation in India and the Philippines by suggesting a 

reduction of pond water depth and alternating cropping patterns into wetting/drying.  

Solar radiation is the radiant spectral energy directly emitted from the sun, which varies 

according to geographic location, time, and local topographic and weather conditions. Solar 

radiation in the visible wavelength (380-720 nm) is essential for crop photosynthesis; thus, the 

intensity of solar radiation is closely related to crop growth. There are slightly differences in solar 

radiation between tropical and temperate regions and the beginning of planting determines the 

suitable crop ripening period (Wang et al., 2016). Chen, Baethgen, and Robertson (2013) 

examined the impact of inter-annual variability and temperature/solar radiation/precipitation 

trends of wheat and maize yield in the double cropping systems from 1961-2003 developed 129 

climate scenarios, and simulated crop yield with Agricultural Production Systems Simulator 

(APSIM). The result proved the reduction of simulated yield on both wheat and maize and led to 

the reduction of potential yield for both crops. Islam and Morison (1992) examined the impact of 

total incident solar radiation (irradiance) and temperature on irrigated rice grain yield in 

Bangladesh by developing the linear relationship between grain yield and irradiance in the 

reproductive and ripening stages. The photo thermal quotient, which was calculated from the 

ratio between mean daily irradiance and mean temperature above base temperature, was related 

to rice yield. The result illustrated the varied relationship due to rice variety influenced the 

number of spikelets, grain weight, and percentage of sterile spikelets. Other important research 

investigated the influences of low solar radiation (10 days before and 25 days after the flowering 

stage); then, a reduction in amount and weight of spikelets occurred and led to a reduction in the 

final yield. Because this stage requires high solar radiation for photo assimilation, the result 

suggested rice variety improvement and shifting of planting date for the properly amount of solar 

radiation in the reproductive and grain filling stages (Santos et al., 2017). 

Temperature is a crucial factor for crop growth, affecting the degradation of pollen viability,  

spikelet and filling grain quality, and decreasing grain yield (Yang et al., 2017). Analysis of the 

impact of daytime and night-time temperatures on crop growth have found reductions in grain 
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yield by 10% for each 1°Celsius increase in minimum temperature in the dry season, but little 

impact was found when the maximum temperature increased (Laza, Peng, Akita, & Saka, 2004). 

Night-time post-anthesis warming influenced rice productivity and grain quality. Using two rice 

cultivars in east China, an increase in temperature by 3°Celsius led to greater night-time 

respiration rates and decreased photosynthesis rates, resulting in a decrease in aboveground 

biomass accumulation of 22% on average and reduced rates of seed setting and grain filling (Dong 

et al., 2014). High maximum daytime temperatures affect rice yield via spikelet sterility and grain 

quality (Rang et al., 2011), while night-time temperatures decrease grain yield by 10% for each 

1°Celsius increase in minimum temperature due to physiological effects (Peng et al., 2004).  

Droughts often occur with high temperatures and reduced precipitation, and drought 

observations between 1980-2008 identified several regions worldwide as being a high agricultural 

drought hazard for various crops (Geng et al., 2016). International agencies have programmes to 

monitor and forecast trends in global temperature. The National Oceanic and Atmospheric 

Administration (NOAA) analysed global temperatures in several regions, revealing Asia observed 

its warmest year in 2015. The Asia-Pacific region has increasingly endured heat waves, tropical 

cyclones, prolonged dry spells, intense rainfall, tornadoes, snow avalanches, thunderstorms, and 

severe dust storms (IFAD, 2016). Figure 2.6 illustrates the change in temperature witnessed since 

1880, wherein the positive values indicate an increase in temperature while negative values 

indicate a lower temperature. Climate models have forecast temperature increases in the Asia-

Pacific area of approximately 0.5-2°Celsius by 2030 and 1-7°Celsius by 2070 (Preston, Suppiah, 

Macadam, & Bathols, 2006). Studies investigating the potential impact of future temperature 

increases on rice production have found temperature increase and reduced soil moisture impacts 

driven by El Niño–Southern Oscillation (ENSO). By 10% variance in anomalous rice production 

linked soil moisture variability. The rice production proved strong negative correlated with El Niño 
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3.4 index and production in non-irrigated upland rice production was high responded than 

irrigated rice production (Stuecker et al., 2018). 

 

Figure 2.6 Global mean estimates based on land and ocean data between 1880-2020. Black line 

is the global annual mean, the red line is the five-year running average, and the grey 

boundary is the total (LSAT and SST) annual uncertainty at a 95% confidence interval 

(NASA, 2019). 

It is widely recognised that climate change has had negative consequences on water resources, 

with seasonal decreases in global rainfall and runoff particularly apparent in south and southeast 

Asia (Gistemp Team., 2020). Arnell, Lindberg, and Grimmond (1999) simulated numerous climate 

change scenarios using Hadley Centre climate simulations and found an increase in annual runoff 

in high latitudes, equatorial Africa and Asia, and southeast Asia, with a decrease in annual runoff 

in mid-latitudes and sub-tropical regions. A number of studies (Loo et al., 2015; Singh & Qin, 2020) 

have also found seasonal decreases in rainfall and runoff in south and southeast Asia have directly 

affected water resources and freshwater availability. The impact of water viability on crops is 

noticeable on different scales. Here, it has been revealed that there have been negative impacts 

of climate change, especially yield reduction (e.g. wheat, rice, and maize) in the tropical and 

temperature regions for every 2°Celsius increase. Whilst some areas are benefits from climate 

change in the medium confidence (IPCC, 2014). 

Climate change- induced changes in agricultural production can impact the price of commodities. 

For example, the price of agricultural product is forecast to increase by approximately 32-37% with 

rice yield losses of between 10-15% by 2050 (IFPRI, 2017). Regarding, reduction in crop yield, 

farmers will inevitably have to adapt their practices for traditional rice varieties or begin breeding 

new rice varieties tolerant to higher temperatures, use of irrigation systems, shifting planting 

dates, utilising fertiliser, and applying management practices (Chun et al., 2016; Redfern, Azzu, & 
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Binamira, 2012). The Asian Development Bank (ADB) predicted that without instigating climate 

change policies in Indonesia and Thailand, these countries’ Gross Domestic Product (GDP) would 

reduce by around 6.7% by 2010 (Weiss, 2009). Therefore, it is essential to mitigate and adapt 

agricultural practices for changes in climate.  

Lobell, Schlenker, and Costa-Roberts (2011) studied trends in climate and global crop production 

on a national scale between 1980 – 2008 for four crops. The study demonstrated that the impact of 

climate varied spatially for wheat and maize, whereby reduction on production 3.8% and 5.5% of 

global net losses. With respect to rice, high latitude areas benefitted from global warming, 

whereas there were no significant impacts found on rice productivity in Asia. Ye et al. (2019) 

investigated the phenological date of median length of nursery, vegetative, and reproductive 

stages with changing date to -1.9%, 2.7 and 0 day/decade. Ye et al. (2015) evaluated the effects of 

climate change on rice areas, cropping systems, and crop water requirements by exploring the 

ratio of Potential Growing Season Length (PGSL) and ideal growing season length (IGSL). This 

study indicated that both the growing season length and paddy water consumption would increase 

with rising temperatures. Other studies have found that differences in the maximum and minimum 

temperature can reduce rice growth in different cropping system. The night-time warming was 

shortening in the pre-flowering and prolonged in the post-flowering. The increase of temperature 

was increment grain yield 16.2%, 12.7%, and 12% in the late rice in the rice-rice cropping system, 

wheat in the rice-wheat cropping system, and rice in single rice cropping system; then, there were 

decreasing on grain yield 4.5% and 6.5% in the early rice in the rice-rice cropping system and rice 

in rice-wheat cropping system (Chen et al., 2017). Fang et al. (2015) proved the increase in global 

temperature increases aboveground biomass, grain yield, plant height, and panicle number while 

decreasing harvest index (HI). 

2.4.2 Geographic and soil characteristics 

Local geographic conditions, such as altitude and soil characteristics, can play an important role in 

crop production. Most rice is grown in tropical wetland areas, which results in higher yields than 

other zones. Altitude also affects rice grain yield with the yield 1.7 times higher in the mid-altitude 

than in high and low altitude, which few upland rice cultivated areas due to difficulties concerning 

planting and management. The flowering duration fluctuates at different altitudes, with averages 

in low altitude, mid-altitude, and high altitude areas of 12 days, 16 days, and 24 days, respectively 

(Shrestha et al., 2012). Soil characteristics influence the capacity of rice and maize to absorb water 

and nutrients and therefore impact crop development (Egamberdiyeva, 2007; Yang, Yang, Yang, & 

Ouyang, 2004). Soil characteristics such as texture, density, organic matter, salinity, and acidity 

also influence crop development, with enriched soils typically having 24% increased yields than 
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those are sub-optimal (Oladele, Adeyemo, & Awodun, 2019). ‘Soil horizon’ refers to a layer of soil 

parallel to the surface, and there are several horizons, such as O (organic), A (surface or topsoil), E 

(eluviation), B (subsoil), C (sub-stratum), and R (bedrock). The A horizon is a suitable environment 

for crop root growth due to water and nutrient absorption. The mineral or organic matter 

transmits to other soil horizons throughout water and wind erosions. Rice has a shallow root 

structure (below 20 cm), so its roots spread across the A and B horizons. 

2.4.3 Diseases and pests 

Disease- mainly caused by bacteria, viruses, or fungi- and pests- such as golden snails, birds, and 

nematodes- serve to reduce yield. Pesticides and insecticides are used but are often only applied 

once damage is visible, which may be too late. It is estimated that pests and disease reduce rice 

yield by 37% annually (IRRI, 2017). To mitigate this, some farmers adopt hybrid rice more resistant 

to pests, which reduces the cost for insecticides and rice variety can be more productive (Huang 

et al., 2005). 

The overuse of fertiliser, especially nitrogen, can lead to an increase in pests and disease and a 

decrease in grain yield, while also reducing the biodiversity of the rice ecosystem (Peng et al., 

2009). The misuse of pesticide has inequitable ecological consequences; therefore, agricultural 

practices and post-harvest management need to be implemented to address physical spoilage 

and grain contamination. 

2.4.4 Weeding 

Weeds in paddy fields can reduce rice productivity, increase costs, and reduce grain quality by 

competing with rice plants for nutrients, soil, and solar radiation. Typically, direct seeding has a 

higher proportion of weeds than transplanting rice, as the latter involves greater input in land 

preparation. There are different methods to control weeds, such as ploughing the topsoil and 

abandoning land for seed germination, after which farmers plough the soil to bury the weeds and 

harrow remaining weeds from the fields. This improves soil characteristics and levels the fields. 

Weeds also affect soil moisture, and so farmers must release water into their fields approximately 

seven days prior to planting to prevent weed development. 

2.4.5 Rice variety 

The variety of rice has an impact on its yield, characteristics, and resistance to damage from 

stressful conditions. Some countries have developed new rice varieties to be more tolerant of 

extreme conditions such as drought, cold, heat, salt, and flooding (Ahuja, de Vos, Bones, & Hall, 
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2010). There are two main species of rice: Oryza Sativa (O.Sativa, Asian rice) and Oryza 

Glaberimma (O. Glaberimma, African rice). O. Sativa is the most common, containing and more 

than 100 rice varieties (Wei & Huang, 2019). Rice varieties are classified into two main categories: 

sensitive and non-sensitive. The difference between these categories comes down to genotypic 

variation and influences on length of panicle emergence and panicle initiation (Collinson, Ellis, 

Summerfield, & Roberts, 1992). Sensitive rice varieties have nearby flowering dates despite 

differences in planting dates, and as their photoperiod is shorter, almost all are planted in the wet 

season. Sensitive rice varieties flower when the daytime is shorter than 12 hours, with less 

sensitive varieties having a photoperiod of 11 hours 40 minutes and more sensitive varieties 

having a photoperiod of 11 hours 10-20 minutes. These sensitive rice varieties are planted once a 

year and are the most common rice variety. Non-sensitive varieties can be planted in all conditions 

where there is adequate water for planting. The main difference between photoperiod-sensitive 

and photoperiod-insensitive rice is panicle emergence (Collinson, Ellis, Summerfield, & Roberts, 

1992) depending on day length and temperature (Vergara & Chang, 1985) 

2.4.6 Government policies, economic conditions and market factors 

Government policy and economic conditions influence agricultural areas and, consequently, yield. 

Government policy is influenced by agricultural production demand, both internal and external; 

for example, low rice production can raise consumption demand, requiring the government to 

implement policies to motivate farmers to increase their planting area or frequency of planting 

(i.e. double or triple cropping). Such government policies include price incentives, tax reductions, 

provision of seeds, technology, and expert knowledge to support farmers. 

Thailand is continuously establishing agricultural policies to balance production and guarantee 

good performance by farmers. The “farmer aid committee” has existed since 1965 to support 

farmers (e.g. increasing rice yield, supporting rice prices, and agricultural credits); in 1966, the 

Bank for Agriculture and Agricultural Cooperatives (BAAC) was established to provide farm 

credits. Between 1974-83, the Thai government intervened in rice markets through the Marketing 

Organization of Farmers (MOF) and indirectly through buffer stocks of the Public Warehouse 

Organization (PWO). In 1985, a minimum farm price was introduced and provided rice millers with 

low-interest rate loans to motivate buying paddies at minimal cost. In 1984, the Warehousing and 

Pledging policy was implemented to provide high prices with low-interest rates for farmers. In 

1986, premiums, export quotas, and export stocks were cancelled (Wiboonpongse & 

Chaovanapoonphol, 2001). 
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Recently, Thailand has adopted agricultural policies (Figure 2.7) which mainly impact rice 

production, such as rice mortgage (regulation in 2008), agricultural zoning (regulation in 2009 - 

2012), crop insurance (2016), and reduction of rice cultivated areas in the dry season (2017). Rice 

mortgage policies have resulted in rice prices higher than the average (15,000 THB/ton), 

motivating farmers to plant rice instead other crops and thus increasing the rice cultivated area. 

In 2013, rice harvested area, production, and yield increased by 57.50 million rai (9.2 million ha), 

23.43 million milled tonnes, 436 kilogram/rai (69.76 kilogram/ha) increased 1.6%, 3.53%, and 

1.83%, respectively. Other significant policies include a new project that links farmers in 

important rice areas to local markets, with the aim reducing cost (20%) and increasing rice 

production (20%) (2018). 

At present, government policies aim to reduce rice cultivated areas by promoting rezoning of 

agricultural areas to encourage farmers to plant other suitable crops, aiming to reduce rice 

cultivated area reduce by 6 million rai (0.96 million hectares) between 2017-36 by using several 

Geographic Information System (GIS) layers (e.g. natural resources, soil characteristic, existing 

crop areas, production, demand and supply). To reduce unsuitable rice area, government 

motivated farmers changing to plant the other crops; then, government provides infrastructure, 

subsidy, low rate of interest charged, and facilitates knowledge on agricultural and markets. 

 

Figure 2.7 Development of agricultural policies in Thailand between 1981-2015. 

Figure 2.7 enumerates several agricultural policies from 1965-2017; the rice-pledging and 

agricultural zonings have had a significant effect on rice cultivated area and production in 

1965 •Set "Farmers aid 
committee"

1974-1983 •Establish MOF and PWO

1999-2000 •Price motivation

2003-2006 •Market intervention
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Thailand. Rice-pledging is guaranteeing the high selling price; thus, there are increasing in rice 

cultivated area. While the agricultural zoning controls farmer to plant rice in suitable area. 

2.5 Agricultural data collection in Thailand 

The Office of Agricultural Economics (OAE) is the government department responsible for 

providing agricultural information, collecting information on rice, upland crops, and tree 

perennials using stratified two-stage random sampling at a village level for selected crops. A first 

step is a random village. The second step is a random household who plant specific crop by using 

simple random sampling without replacement. Several techniques for obtaining agricultural 

information, such as lists of cropping villages or areas, are used for defining the sampling frame. 

The survey data collected include the cultivated agricultural area, harvested area, total 

production, fertiliser application, amount of crop seeds usage, and plant and harvest date (OAE, 

2014). Two approaches are used to collect agricultural information: using lists of villages, and crop 

cutting experiments. 

2.5.1 Using lists of villages 

A survey based on lists of villages, referred to as a ‘list frame survey’, is developed using stratified 

sampling of villages who plant particular crops obtained from production reports at sub-district 

and district level. The list samples independently select crop commodities by listing of units (e.g. 

farm, household, and population census). The time-surveyed for each crop is different throughout 

the year. The advantage of the list frame survey is that it lists the interested farm/household and 

is properly representative of the population (stratum). In addition, the list frame survey reduces 

survey costs; thus, it is the most common method of obtaining agricultural information. However, 

this method may lead to errors in the sample frame selection. The questionnaire should be testing 

for reduction on ambiguous/unclear inquiry. Figure 2.8 illustrates the agricultural sampling 

procedure applied to calculate the agricultural statistics. Farmers register their land area under 

cultivation, and the central office sends a list of samples to the regional office listing all farmers 

who plant particular crops. Further, the household sampling is adopting by random without 

replacement. The surveyed data is summarised into cultivated agricultural areas, production, and 

yield at the district level. To account for variations in population density, the survey areas are 

grouped into small, middle, and large agricultural areas and villages are selected that are 

representative of each group (‘first stratified random sampling’); from this the random household 

stratification is applied. 
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Figure 2.8 Two-stratified random sampling (OAE, 2014a). 

2.5.2 Crop cutting experiment 

Yield surveys are conducted using crop cutting experiment (CCE) (FAO, 1982; Fermont & Benson, 

2011), a survey method to estimate approximate crop yield in specific areas using sampling plots 

in fields. The CCE is widely used and conducting on field crops. The advantage of CCE is to derive 

the average yield in the district or state level before the end of growing season; a limitation is 

partial or complete crop damage sample unit by winds, animal, etc. There are several steps in the 

CCE technique to determine yield: selection (village and field), identification of sample plot 

location, measurement, harvesting from the sample plot, threshing crops, cleaning, and weighting 

(Ahmad, Sahoo, Singh, & Biswas, 2021). The sample plot size is defined as 1 m x 1 m for rice and 

soybean yield, while the sample size of cassava, sugarcane, and maize is bigger with sample plot size 

as 3 m x 3 m. At each sample plot, the crop is harvested, and yield is measured by removing and 

weighting all grains. The yield per unit area estimates is then extrapolated to estimate yields at 

sub-district, district, and provincial levels based on the area of land under rice cultivation. This is 

derived from interviews with farmers and spatial mapping using satellite observations (Section 

2.6.2). Several researchers have applied the CCE technique to gain crop yield information and 

estimate crop yield using satellite data (Bhutada, Kohirepatli, & Chavan, 2016; Ranjan & Parida, 

2021). 
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2.6 Remote sensing within rice crop mapping and rice yield estimation 

2.6.1 Introduction to remote sensing 

Remote sensing is a technique for gaining information on the Earth’s environment using 

measurements of spectral reflected and emitted radiance and, in the context of terrestrial remote 

sensing, has been widely applied in areas such as forestry, natural resources, agriculture, and 

urban planning. The Sun is the main source of electromagnetic radiation but all materials above 

absolute zero emit radiation which can be measured. The electromagnetic spectrum, part of 

which is shown in Figure 2.9, ranges from very short, high intensity Gamma wavelengths through 

to longer, low intensity radio wavelengths. Remote sensing instruments are either passive or 

active, with the former measuring reflected or emitted radiation. Most passive remote sensing 

instruments collect measurements in the visible, near-infrared (NIR), and longwave parts of the 

spectrum, which include parts of the spectrum most sensitive to characterising vegetation 

properties (Richards, 2013). The optical wavelengths occur between 0.4-2.5 µm with the 

reflectance profiles of a number of different land surface types shown in Figure 2.9. Remote 

sensing exploits the differing optical properties of surface objects to differentiate them and 

characterise their crop status.  

 

Figure 2.9 Spectral response of soil, vegetation, and water in the visible and infrared 

wavelength range (Remote Sensing Applications Consultants Ltd (RSAC) (2021)). 

Figure 2.9 depicts the reflectance profiles of three of Earth’s surface materials in visible and 

infrared spectrum. Water has low reflectance (< 10%) in visible wavelengths, which varies according 

to the concentrations of sediment, organic matter and water depth; while energy in the NIR is 

absorbed, soil reflectance typically increases with wavelength, and water absorption features at 1.4 

µm, 1.9 µm, and 2.7 µm. Finally, vegetation reflectance in the visible spectrum is controlled by its 
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composition of pigments such as chlorophyll, which absorb energy in the red and blue 

wavelengths for use in photosynthesis (Liu & Iersel, 2021). When vegetation senescence, the 

pigment concentration reduces, and this results in greater red reflectance, turning the leaves 

shades of orange and red. In the NIR (0.7 - 1.2 µm), leaf structure and morphology influence the 

transmission and reflectance properties of vegetation, whilst in shortwave infrared, vegetation 

moisture content defines the magnitude of reflectance. The variation of reflectance at different 

wavelengths enables the inference of the materials being measured and their properties, which in 

the case of vegetation may relate to its health and vigour. The boundary between the red and NIR 

wavelengths is referred to as the ‘red-edge’ and the position of the inflection points has been 

found to be sensitive to chlorophyll concentration in the leaves (Curran, Dungan, Macler, & 

Plummer, 1991; Li et al., 2015) and this has led to the development of sensors that contain 

wavebands in this region, such as the Multispectral Instrument (MSI) on Sentinel-2.  

2.6.2 Spectral vegetation indices 

While individual spectral wavebands provide useful information for monitoring the environment, 

combining two or more spectral wavebands can improve the available information. These are 

referred to as spectral indices, which utilise waveband combinations to facilitate the 

characterisation of surface types such as water bodies or geological features. Vegetation indices 

(VI) are spectral transformations of remotely-sensed images using arithmetic operations among 

pixel brightness, such as subtraction or division of brightness, for two or more spectral bands 

(Schowengerdt, 2007; Xue & Su, 2017). The ratio of different spectral bands relates to the 

influence of ‘noise’, such as view and illumination angles, whilst enhancing the detectability of the 

feature of interest. A number of vegetation indices have been developed over time, including the 

simple ratio (SR; Chen (1996)), normalised difference vegetation index (NDVI; Rouse, Haas, Schell, 

& Deering (1974)), soil adjusted vegetation index (SAVI; Huete (1988)) and enhanced vegetation 

index (EVI; Huete, Liu, Batchily, & Leeuwen (1997)). Two of the most commonly applied 

vegetation indices are the NDVI and EVI. The NDVI, proposed by Rouse and Tucker (Rouse et al., 

1974; Tucker, 1979), utilises red and NIR wavebands and has been applied to estimate vegetation 

cover (Ding, Zhao, Zheng, & Jiang, 2014; Jafari, Lewis, & Ostendorf, 2007; Zhu et al., 2008) and 

land use changes (Chen et al., 2006; Shalaby & Tateishi, 2007), to assess the impact of droughts 

(Peters et al., 2002; Singh et al., 2003; Yagci et al., 2011), and to estimate biomass (Bao et al., 

2019; van der Meer et al., 2000). The EVI was developed to exploit MODIS spectral bands, to 

minimise the influence of vegetation canopy background variations, and to maintain sensitivity 

over dense vegetation canopies (Huete et al., 2002).  
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Currently, there is a wide range of vegetation indices that utilise combinations of different 

spectral bands to enhance specific characteristics of vegetation. As noted previously, VIs is often 

used to estimate vegetation biophysical variables using empirical models. Nguy-Robertson et al. 

(2014) assessed the potential of estimating LAI using ten vegetation indices, including the simple 

ratio, green NDVI (GNDVI), red edge NDVI, red edge chlorophyll index (CLred edge), and MERIS 

Terrestrial Chlorophyll Index (MTCI). The results revealed a strong relationship between 

vegetation indices and green LAI over four crop canopies (potato, wheat, soybean, and maize) 

with R2 > 0.8. However, the drawback of some VIs tends to saturated at high LAIs by using the 

Scattering of Arbitrarily Inclined Leaves (SAIL) model. Baret and Guyot ( 1991) investigated the 

sensitivity of different spectral indices to vegetation canopy characteristics and found, for 

example, the soil-adjusted vegetation index (SAVI) and transformed soil-adjusted vegetation index 

(TSAVI) were less effected by soil background reflectance and thereby offered benefits in low 

vegetation cover environments compared to other indices. 

One of the main applications of vegetation indices is monitoring crop phenology (Figure 2.10), 

which is associated with time detection of biological events of plant growth by exploiting the 

frequency (e.g. daily, weekly) of satellite overpasses (Weng, 2011). These measurements provide 

information on the start, peak, end, and length of the growing season, which can be used to, for 

example, identify changes in planting patterns (Gim et al., 2020). Vegetation index measurements 

during the growing season have been used to classify crops by exploiting their different seasonal 

cycles (Gumma, Nelson, & Yamano, 2019) and to identify areas under different cropping 

intensities (Kotsuki & Tanaka, 2015; Li et al., 2014; Pan et al., 2021; Yan et al., 2019).  

 

Figure 2.10 Phenology metrics derived from VI measurements showing the key phenological 

stages (Weng, 2011). 
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The dynamics of rice growth have three main periods: 1) flooding and transplanting period, 2) 

growing including the vegetative, reproductive, and ripening stages, and 3) fallow after 

harvesting. Despite its low spatial resolution (250-500 m), the daily temporal resolution of MODIS 

has seen it widely applied to monitoring the phenological cycle using vegetation indices in order 

to detect areas under rice cultivation by detecting the different growth stages (Son et al., 2013; 

Son et al., 2012; Tingting & Chuang, 2010; Xiao et al., 2006). These researchers created a time-

series of MODIS data vital to processing the noise filtering. Then, there were adopt Empirical 

Mode Decomposition (EMD) and developed the vegetation indices (e.g. NDVI, EVI, LSWI, and 

NDSI) to monitor rice crop and classify land use/land cover. The Artificial Neural Networks (ANNs) 

technique, which is nonlinear mapping structure based on the human brain (Lek, 2008), was 

applied for land use/land cover classification. There were temporal characteristics of rice cropping 

pattern through year. The phenology-based classification approach based on MODIS data was 

compared with ground reference data and national census data, which allowed researchers to 

assess the accuracy via overall accuracy, Kappa coefficient, or relative error. 

Medium spatial resolution optical imagery (Landsat 7, Landsat 8, SPOT, and HJ 1A/B) is also used 

to study crop phenology, which has the advantage of more reliably mapping individual fields but is 

constrained by fewer temporal observations (Dao & Liou, 2015). Using an NDVI time-series, 

reconstructed using a Fast Fourier Transformation (FFT),  Zhao et al. (2016) developed a 

classification to map the key transitions of rice cultivation areas: 1) double-season early stage rice 

cultivation where paddy fields were inundated with water; 2) a single-season middle rice-

transplanting stage; and 3) double-season late rice wherein the field still contains standing water 

but some fields show existence other aquatic plant. The study then compared relative error in 

different cities located in the Dongting Lake basin in Hunan and Yanjiang and found the relative 

error in three growth phases in Hunan were -10.99%, 1.46%, and -5.87%, respectively, whilst in 

Yanjiang these errors were 12.1%, 16.7%, and 0.8%, respectively. The transplanting and heading is 

preferable for time-series analysis. Similar research has been carried out by Zhang et al. (2015), 

who developed an algorithm that utilised pixel and phenological information to classify rice areas 

into three phases: 1) flooding and rice transplanting; 2) rapid plant growth and canopy closure 

after transplanting; and 3) fallow after harvesting. An area of 39,239 km2 in northeast China was 

mapped as being under rice cultivation with an overall accuracy of 97%, producer accuracy 92%, 

and user accuracy 96%, with omission and commission of errors of 8% and 4%, respectively. 

In addition to mapping the location of areas under rice cultivation, remote sensing phenological 

data also enable mapping of the intensity of farming in terms of single, double, or triple cropping. 

A study investigated the relationship between phenology-based classification and remotely- 

sensed data by developing time-series of EVI from MODIS data during 2001-2012. The Empirical 



Chapter 2 

36 

Mode Decomposition (EMD) was then related with EVI in the paddy fields to determine the 

temporal characteristics of the rice. The rice cultivated areas in single-cropped rainfed rice, 

double-cropped irrigated rice, and double-cropped rainfed rice decreased -5%, -19.2%, and -

0.74%, respectively (Son et al., 2013). Minh et al. (2019) studied the rice cropping system in the 

An Giang province of the Vietnamese Mekong Delta (VMD) from March 2017 to March 2018 

based on dual-polarisation Sentinel-1 and considered backscatter coefficients. The VH backscatter 

coefficients were associated with all growth phases, especially the reproductive phase, because 

there was less influence from soil moisture and water in paddies. The Support Vector Machine 

(SVM) classified the rice cultivated area with 80.7% overall accuracy and 0.78 Kappa coefficient. 

2.6.3 Estimation of vegetation biophysical variables 

Plants intercept direct and diffuse sunlight, with the upper leaves receiving higher amounts of 

radiation compared to lower leaves, which influences the morphology of leaves of different crop 

species, particularly leaf area and colour (Burgess et al., 2017; Chang et al., 2019). Canopy 

biophysical variables relevant to vegetation characteristics include vegetation fraction (Fv), leaf 

area index (LAI), fraction of absorbed photosynthetically active radiation (fAPAR), chlorophyll 

content, and water content. The spectral profile of healthy green vegetation is influenced by the 

level of pigment concentration (visible), cell structure (NIR) and moisture content (SWIR), and 

changes to plant health can be identified by changes in the reflectance characteristics in these 

spectral regions. Such measurements also enable estimates of vegetation biophysical variables to 

be made, which in turn can be used in forecasting yield. The vegetation fraction (Fv) defines 

ground surface covered with vegetation and considers the distribution and properties in a 

horizontal perspective of crop canopy, and is therefore useful for evapotranspiration (Et), rainfall 

interception, and energy transfer assessment (Olioso et al., 2019). The leaf area index (LAI) or green 

leaf area index (GLAI) are defined as the one-sided green leaf area per unit of ground surface 

(Chen & Black, 1992). In principle, the LAI is an excellent indicator of crop development and is 

widely used as an input parameter in crop growth models (Saseendran et al., 1998; Setiyono et 

al., 2018; Raoufi et al., 2018; Tang et al., 2009). LAI is one of the crop biophysical variables 

routinely retrieved using remote sensing observations, with operational products produced by 

using coarse MODIS (Knyazikhin et al., 1999; Yan et al., 2016) and Sentinel-3/PROBA data (Fuster 

et al., 2020). Higher spatial resolution LAI retrievals can also be derived using Sentinel-1 and 

Sentinel-2 data. Campos-Taberner et al. (2017) derived LAI estimates over rice canopies in Italy, 

Spain, and Greece using Sentinel-2A and Sentinel-1A; SAR data from Sentinel-1A were used to map 

rice cultivated areas due to the strong separability of backscatter in water inundated paddy fields, 

while reflectance observations from Landsat and Sentinel-2 were used to invert the PROSAIL 
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(Baret, Jacquemoud, Guyot, & Leprieur, 1992) model, which is a combination of the PROSPECT 

and SAIL models for shifting red-edge region analysis. When compared to in-situ ground LAI 

measurements, the LAI retrievals had an overall RMSE 0.69 m2 m-2, with the time-series of LAI 

reaching a maximum of 5.3 m2 m-2 using Sentinel-2 data and 4.3 m2 m-2 using Landsat data.  

The boundary between red and NIR wavelengths, referred to as the ‘red-edge’ (0.7-0.74 µm), 

changes position as the chlorophyll content of the leaves changes due to the influence of 

chlorophyll absorption in red wavelengths. The chlorophyll content at leaf and canopy level is an 

indicator of the health of plant communities, which can change in response to stress imposed by 

climate extremes or disease. The launch of the Medium Resolution Imaging Spectrometer 

(MERIS), and more recently the MSI on Sentinel-2, provided instruments with wavebands located 

in the red-edge, which have been exploited to derive chlorophyll estimates using VIs such as the 

MERIS Terrestrial Chlorophyll Index (MTCI; Dash & Curran (2004)). Croft, Chen, and Zhang (2014) 

investigated chlorophyll content on needle leaf and broadleaf in Ontario, Canada in 2004 by 

adopting 47 vegetation indices by using MERIS. High correlation was found between chlorophyll 

content and the Double Difference (DD)-index (R2 = 0.78 and RMSE = 3.56 µg cm-2), although 

poorer relationships were found in needle leaf canopies (Dred R2 = 0.71 and RMSE = 2.32 µg cm-2). 

Numerous studies have utilised spectral vegetation indices to identify stressed crops by detecting 

the shift of the red-edge toward shorter wavelengths, referred to as the “blue shift”. This study 

then simulated the PROSPECT model with canopy reflectance and MNDVI8 (Modified NDVI) 

revealed a strong relationship between dynamics of chlorophyll and leaf structure. The vegetation 

indices were stable when LAI > 4 m2 m-2. The spectral regions, especially red and near-infrared, 

estimated chlorophyll content; high chlorophyll content reflected red saturation. The estimation 

chlorophyll contents conducted during growing season of 2001, 2002, and 2003 at University of 

Nebraska-Lincoln research facility in maize and soybean and the result proved chlorophyll content 

((RNIR/Rred edge)-1) with RMSE less than 61 mg m-2) (Gitelson et al., 2005). Xu et al. (2011) 

investigated five vegetation indices (e.g. Normalised Difference Vegetation Index (NDVI), Modified 

Simple Ratio Index (MSR), Modified Chlorophyll Absorption Ratio Index (MCARI), Transformed 

Chlorophyll Absorption Ratio Index (TCARI), and Optimized Soil-Adjusted Vegetation Index 

(OSAVI)) on rice in Qianjin and Youyi farm, Heilongjiang Nongken, China in 2009. All five were 

closely related with chlorophyll content: the study then estimated with Weight Optimization 

Combination (WOC) method and there was improved performance in OSAVI and MSR. 

The fraction of Photosynthetically Active Radiation Absorbed (ƒAPAR) is related to primary 

productivity as a function of the light-use efficiency (LUE) coefficient, which defines the amount of 

carbon fixed per unit radiation intercepted (Landsberg et al., 1997). Approximately 50% of 

incident photosynthetically active radiation (PAR) is absorbed for photosynthesis. Ehammer, 
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Fritsch, Conrad, Lamers, and Dech (2010) estimated the fraction of photosynthetic active 

radiation (ƒPAR) and LAI for cotton and rice canopies in Amu Darya Delta, Uzbekistan using 

RapidEye imagery, findings that increased plant height coincided with increased ƒPAR and LAI, 

whilst on the field scale, strong correlations (R2 = 0.95 and R2 = 0.92) were found using a linear 

regression between VIs and ƒPAR and LAI, respectively. Similar results were found by Gitelson, 

Vina, Ciganda, Rundquist, and Arkebauer (2005) when assessing the relationship between NDVI 

and ƒAPAR on maize and soybean by using MODIS and MERIS.  

Biomass is an essential variable to estimate crop production in terms of wet and dry biomass. 

Several studies have investigated the relationship between biomass, LAI, and production using 

linear and non-linear regression to describe the relationship between two or more variables. 

Marshall and Thenkabail (2015) estimated above-water biomass (AWB) using multiple regressions 

between non-remotely sensed variables (e.g. aboveground biomass, visible canopy, background 

RGB light intensity, height, and above-below canopy irradiance) and remotely-sensed variables 

and in-situ measurements. The hyperspectral narrowband (HNBs), between 350-2,500 nm, were 

combined (height and HNBs in the NIR region, height, FAPAR, and HNBs in NIR region, height and 

HNBs in visible and NIR region, and Fraction of Vegetation Cover (FVC) in the visible). The results 

indicated that the correlation coefficient (R2) of rice, maize, cotton, and alfalfa yield were 0.84, 

0.59, 0.91, and 0.86, respectively. Compared with using HNBs alone, there was improved the 

aboveground wet biomass variance of rice, maize, cotton, and alfalfa: 12%, 29%, 14%, and 6%, 

respectively.   

2.6.4 Crop yield estimation using optical data 

There are a range of approaches that can be utilised to relate the crop canopy with remotely- 

sensed data. A commonly applied approach to estimate crop yield is through the development of 

regression models between remotely-sensed metrics and in-situ measurements. Often these have 

involved relating vegetation index values to vegetation biophysical variables. Bolton and Friedl 

(2013) developed maize and soybean yield models based on linear regressions between three VIs 

(NDVI, two-band Enhanced Vegetation Index (EVI2), and NDWI) and yield, using a time-series of 

MODIS data. The results revealed the EVI2 predicted yield for maize in non-semi-arid countries 

with R2 = 0.67 (cross-validated calculating 2004-2006 versus 2007-2009, R2 = 0.59) whilst the 

NDWI had better agreement in semi-arid countries (R2 = 0.69, cross-validated calculating, R2 = 

0.62). The relationship between the NDVI and EVI2 and soybean yield was also good and the same 

as cross-validated (R2 = 0.69 and 0.7). The phenological measurements using vegetation indices 

have also proved their utility in estimating crop yield. Zheng et al. (2016) derived the red-edge 

chlorophyll index (CIred edge) and NDVI in the National Engineering and Technology Centre for 
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Information Agriculture in 2013 from two different handheld spectrometer measurements 

throughout the growing season to characterise the phenology of a rice canopy. These data 

detected the main phenological in the tillering, middle heading, and maturity, at which point the 

temporal of indices and phonological date was adopted. The performance of CIred edge with RMSE 

2.3-4.6 days proved excellent in indica rice than japonica rice cultivar for middle booting date and 

dough grain date estimation; thus, the result assumed rice cultivars influenced their relation. 

Dash and Curran (2007) estimated crop yield in South Dakota, U.S. in 2003 by using a time-series 

of two spectral vegetation indices: the MERIS Global Vegetation Index (MGVI) and MTCI. Key 

metrics extracted from the VI time-series are the maximum VI value and the area under curve: the 

relationship correlation between yield and area under the curve to peak VI value were 0.61 and 

0.69 for the MGVI and MTCI, respectively. The correlation between yield and area under the 

whole VI time-series was stronger, at 0.83 and 0.85 for the MGVI and MTCI, respectively. 

Mechanistic models simulate the time-series of crop state variables (e.g. LAI, dimension and 

biomass of various organs, and crop development), energy, carbon, water, and nutrient fluxes on 

crop, soil, and atmosphere. One of the key parameters used in these models is LAI, which is 

influenced for the absorption of solar radiation, evapotranspiration, and carbon assimilation. In 

terms of remote sensing, the spectral bands are useful for analysis crop canopy structure and 

photosynthesis activity, thermal infrared on water status, and microwave on water contents, soil 

moisture, and canopy structure (Moulin, Bondeau, & Delecolle, 1998). Crop growth models (e.g. 

ORYZA2000, DSSAT, EPIC, and WOFOST model) (Jin et al., 2018; Kasampalis et al., 2018; Launay & 

Guerif, 2005) and volume scattering model (Wang et al., 2009; Zhang, Yang, Liu, & Wang, 2016) 

are widely used to simulate daily crop growth in terms of crop photosynthesis, respiration, 

transpiration, and morphogenesis growth. Crop growth models, parameterised using remotely- 

sensed LAI estimates, have been applied to estimate yield for winter wheat using the WOFOST 

model (Huang et al., 2015) and maize using the Agricultural Production Systems SIMulator 

(APSIM; Machwitz et al. (2014)) with good results. Similar methods have also been applied to 

estimate rice yield in Terai districts of Nepal between 2016-2018 using the multi-temporal of 

Sentinel-2 data and 3D Convolutionmal Neural Network (CNN) under several conditions (e.g. using 

satellite data, combining with climate or soil data, or combining satellite with climate and soil data) 

in four experiments and the CNN-3D is better results than CNN-2D (Fernandez-Beltran et al., 2021). 

The remote sensed data are develop vegetation index. Nuarsa, Nishio, and Hongo (2011) study the 

NDVI development based on Landsat Enhanced Thematic Mapper Plus (ETM+) image with field 

observation data by using the exponential equation on model development based on NDVI. The 

result compared with reference data in the linear relationship and proved strong agreement 

between NDVI and reference data. Jing-feng et al. (2002) applied the crop simulation model to 
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describe the relationship between physiological processes and environmental growing conditions. 

The Rice-SRS based on ORYZA model was developed and combined with 3 sources of NDVI - NOAA 

AVHRR (LAC) NDVI, NOAA AVHRR (GAC) NDVI, and radiometric measurement NDVI (measured in 

the tillering, booting, heading, and milk stages). The result proved a reduction in estimating error by 

1.03%, 0.79%, and -0.79% for early, single, and late rice season. The NOAA AVHRR (GAC) NDVI was 

an excellent input, with an average error of -7.43%. 

2.6.5 Application of active remote sensing for vegetation monitoring and crop yield 

estimation 

Active remote sensing involves transmitting a pulse of energy from an instrument and measuring 

the return signal, often focused on NIR or radio wavelength, termed LiDAR and radar respectively. 

Radar sensors measure the strength of the signal scattered back from the surface, which is 

influenced by the surface structure (e.g. canopy geometry and topography) and surface moisture 

content (Martinez-Agirre, Álvarez-Mozos, & Lievens, 2017; Martinez-Agirre & Álvarez-Mozos, 

2017) and the angle by which the surface is viewed, also influence the backscatter signal. The 

advantages of microwave sensors include their longer wavelengths, which can penetrate cloud 

cover and light rain, thereby enabling imagery to be acquired in all weather conditions and at 

night. This attribute has led to radar sensors being widely applied in tropical environments. 

Volume scattering from crop canopies is comparatively low, with the backscatter coefficient largely 

influenced by the surface underneath the canopy (Choudhury & Chakraborty, 2006; Liu et al., 

2019; Phan, 2018). Moisture content influences electrical properties of the surface, and this called 

“complex permittivity”. The scattering mechanism combines four reflections: specular, diffuse, 

corner reflector, and volume scatter. The specular reflection occurs on smooth and flat surfaces, 

while diffuse reflection occurs over rough surfaces which scatter the signal in all directions. These 

scattering effects reflect the different signals that occur during growing season, since they are 

influenced by the rice canopy structure composed of stem, stalk, and grain (Inoue et al., 2014; 

Yuzugullu et al., 2016). The polarisation of a radar sensor is configured to transmit either 

horizontal (H) or vertical (V) signals and receive these data either horizontal or vertical 

polarisation. In principle, the polarimetric radar measures scattering of transmitting and receiving 

polarisation combinations, which include is HH, VV, HV, and VH combinations. These 

combinations of different polarisations influence the scattering coefficient and the ratio between 

scattered and transmitted fields in each polarisation.  

The scattering of microwave wavelengths from crop canopies is influenced by three components: 

1) direct backscatter from an object; 2) multiple volume scattering from canopy; and 3) double-

bounce effects, when the edge of a reflection on rice to water surface and off-rice to water 
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surface (Pichierri, Hajnsek, Zwieback, & Rabus, 2018; Zhao & Cui, 2013). The maximum 

backscatter depends on the dielectric constant of materials, distribution size and orientation of 

scattering elements in the canopy, and surface roughness (Marghany, 2020). Rice is a semi-

aquatic plant whose temporal dynamics of backscatter will differ from other crops, and this has 

often been exploited by using radar data to map areas under rice production (Boschetti et al., 

2014). In the seeding stage, paddy fields are highly reflected with water surface and quasi-

vertical/quasi-horizontal structures in tillers and leaves, and the backscatter demonstrates an 

incoherent sum of interactions. As the rice develops in height and density, the backscatter 

coefficients increase due to greater volume scattering within the canopy and increased multiple 

scattering between stems (include tillers) until a reduction in moisture content during the 

ripening phase. 

Several studies have been successful in using SAR data to map areas under rice cultivation. Hoang, 

Bernier, Duchesne, and Tran (2013) classified rice fields in Vietnam between 2009-2010 by using 

RADARSAT-2 C-band data with a Support Vector Machine (SVM) approach that exploited the 

narrow dynamic range of radar backscatter found over residential and forested areas, which 

contrasted with the large dynamic range found over paddy fields. Corresponding classification 

accuracy of 71% and 80% was achieved for HH and quad-polarised imagery, respectively. Clauss et 

al. (2018), using Sentinel-1 Interferometric Wide (IW) mode and Ground Range Detected (GRD) in 

VV and VH polarisation, mapped areas of rice cultivation using super-pixel segmentation and 

phenology-based decision tree and a random forest model. High correlation was found between 

area measurements at the district level (R2 = 0.93) for winter-spring rice and for autumn-winter 

rice (R2 = 0.87). Numerous studies that utilise SAR imagery with different polarisations illustrate 

the importance of canopy structure on the success of the rice classification. Bouvet, Le Toan, and 

Dao (2014) investigated the influence of polarisation for mapping rice cultivation and estimating 

biophysical variables in Vietnam. The HH and VV polarisation increased at the beginning of the 

season and decreased in the tillering stage, whereas the VV backscatter decreased due to the 

vertical structure of the rice stem and increased when the panicle emerged approximately 60 days 

after sowing. Changes in the backscatter due to changes in the structure of the rice canopy 

enabled mapping the sowing date based on the ratio of HH/VV backscatter. The ratio of polarised 

signals was also exploited by Zheng et al. (2016b) who classified the winter-spring and summer-

autumn cropping season in Vietnam using the ratio of VH/VV polarisation. This study developed a 

normalised difference between the sowing dates (SD) and heading dates (HD) index (NDSH) 

(NDSH = HD-SD/HD+SD) for use in classification and achieved an overall accuracy and Kappa 

coefficient of 86.2% and 0.72, respectively. 
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There are three types of radar signal: gamma nought, beta nought, and sigma nought. Sigma 

nought (σ0) refers to the scattering coefficient and illustrates the amount of average 

backscattered power compared to power of incident field. Several factors influence the 

magnitude of σ0 including the physical and electrical properties of target, wavelength, 

polarisation, and incidence angles (Lusch, 1999). The strong influence of canopy structure on 

radar signals has led to radar being used to estimate several structural biophysical vegetation 

variables. Many studies have focused on forest canopies, although several have applied radar 

data from crop canopies to estimate crop biophysical variables, such as height, water content, LAI, 

and biomass (Inoue et al., 2014; Inoue & Sakaiya, 2013; Kim et al., 2012;  Li et al., 2016; Zhang et 

al., 2009; Zhang et al., 2014). One of the key biophysical variables is LAI, as this is a factor in many 

crops growth models, and retrieving estimates of LAI is often carried out using empirical methods 

or canopy scattering models, which simulate the radiative transfer. 

Hosseini, McNairn, Merzouki, and Pacheco (2015) adopted multi-polarisation of different 

frequency SAR sensors such as C-band (RADARSAT-2) and L-band (Uninhabited Aerial Vehicle 

Synthetic Aperture Radar; UAVSAR) to estimate LAI of soybeans and corn in the Red River 

Watershed of Winnipeg, Canada using radar canopy reflectance models. The correlation between 

LAI and RADARSAT-2 over corn canopies was moderate at 0.40 (HH), 0.46 (VV), and 0.82 (HV), 

respectively. Similar results were found when estimating LAI using RADARSAT-2 for soybean - 0.45 

(HH), 0.47 (VV), and 0.80 (HV), respectively. Previous research has revealed that C-band 

backscatter is significantly associated between LAI and leaf biomass and σ0 in all rice growth 

stages (Inoue, Sakiya, & Wang, 2014a), whilst other studies have found better correlation 

between LAI and σ0 for VV/HH polarisation when LAI < 3.5 m2 m-2 (Chen, Lin, Huang, & Fang, 

2009). Hirooka, Homma, Maki, and Sekiguchi (2015) examined backscatter coefficients of X-band 

from COSMO-SkyMed and found a reasonable correlation (r = 0.58) between backscatter with LAI 

(r = 0.58). 

Some rice biophysical variables (e.g. row spacing) remain stable throughout the growing season, 

while others, such as water content, height, and leaf length, change considerably. To understand 

their effect on radar backscatter, Shao et al. (2001) measured a number of rice variables (e.g. leaf 

length and canopy height) throughout growing season. Rice height increased from 20 to 100 cm, 

peaking during the heading stage, before decreasing by 5 cm prior to harvesting. The length of 

leaves varied, with upper leaves increasing consistently with lower leaves gradually increasing and 

reaching the maximum of ear differentiation stage. Vegetation moisture content was highest in 

the seeding (80%) and ear differentiation (85%) stages before decreasing during the mature stage 

(55%). These changes impacted the backscatter, which was 9 dB higher for late mature rice than 

medium mature rice. RADARSAT backscatter coefficients were then used to estimate yield by using 
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an empirical backscatter model. The total rice productions in late mature rice, medium-late 

mature rice, early mature rice were 208,548 tonnes, 174,636 tonnes, and 17,978 tonnes, 

respectively. This classification in average accuracy and overall accuracy were 90.1% and 91.49%, 

respectively. Developing regression models between in-situ measurements and remote sensing 

metrics is a widely applied approach to estimate yield. Nguyen, Phung, Huth, and Phung (2012) 

analysed the correlation between backscatter coefficients (σ°) of multi-date images with in-situ 

yield by using multiple linear regression. Rice yield estimation requires a minimum of three rice 

growth stages and at least two first stages, or two final stages, and band combinations between 

images. The coefficient determination and standard error estimation were 0.795, 0.781 and 0.18, 

0.16 ton/ha, respectively. The rice yield estimates were 0.5-10 ton/ha which compared favourably 

with in-situ measurements. Li et al. (2016) studied the temporal RADARSAT-2, which is C-band 

frequency, covering critical growth stages in southwest China, and observed the rice biophysical 

variables (e.g. LAI, Fraction of Photosynthetically Active Radiation (FPAR), height, biomass, and 

canopy water contents (WC)). The backscatter coefficients in HH, VV, VH and ratio between VV 

and VH were then developed and related with rice biophysical variables. The VV and VH ratio was 

significant when determining the Pearson correlation in each growth stage. The regression model 

with exponential curve was applied to rice biophysical variables and found no significant 

correlation with water content in their ratio σ0
VV/σ0

VH. Guo et al. (2018) investigated the capability 

of the compact-polarimetric (CP) SAR in the inversion of rice biophysical variables by adopting the 

various models (e.g. Water Cloud Model (WCM), Modified Water Cloud Model (MWCM), and 

Genetic Algorithm (GA)). The result found MWCM were highly correlated with rice height (R2 = 

0.92 and RMSE = 5.81 cm), volumetric water content of rice canopy (R2 = 0.95 and RMSE = 0.31 kg 

m-3), m-χdecomposition with ear biomass (R2 = 0.89 and RMSE = 0.17 kg m-2), and LAI with RH 

(right circular transmit and horizontal linear receive) (R2 = 0.79 and RMSE = 0.33). 

In addition to estimating yield using empirical models, a number of studies have integrated 

backscatter data with crop models. Pazhanivelan et al. (2015) combined the multi-temporal of 

SAR data with ORYZA2000 in India; SAR data were used to estimate the seasonal rice area, start of 

season (SoS) and rice growth rate, whilst the ORYZA2000 model was parameterised with daily 

weather data, soil properties, rice variety, water availability, and management practices. Model-

derived yield estimations compared well with those from CCE, with accuracy of 99%, 88%, and 

86.7%, in Cuddalore, Sivaganga, and Thanjavur, respectively. A similar approach was taken by 

Setiyono et al. (2017), who developed a rice yield interface for southeast Asia using Sentinel-1A 

data and the ORYZA Crop Growth Simulation Model (CGSM). The LAI estimates used to 

parameterise CGSM were derived using a water cloud vegetation model and the resulting yield 

estimation was accurate to 81-93% when compared with the official yield. Using the same 
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approach, Quicho et al. (2015) utilised of Sentinel-1 LAI and start of season (SoS) estimates to 

parameterise the ORYZA crop growth model. The maximum LAI was 10-12 m2 m-2, which occurred 

at the flowering stage for hybrid rice varieties, but which was lower (6-7 m2 m-2) for typical rice 

varieties. The accuracy in yield estimates in the Red River Delta was 89%, with RMSE of 630 kg/ha 

whilst in Cambodia, the accuracy was 84% with RMSE of 560 kg/ha. Overall, yield estimation was 

81- 94% and RMSE was 340-1,110 kg/ha. 

2.6.6 Integrating SAR and optical imagery for rice mapping and yield estimation 

The previous sections have discussed the applications of either optical or radar backscatter data in 

monitoring rice production. Many studies have integrated both optical and SAR imagery to 

monitor rice production to reap the benefits provided by observations in different spectral 

regions. Sentinel-1 and Landsat 8 data have been applied to maps in Poyang Lake Plain, China 

using VH polarisation and NDVI measurements at three stages of the growing season (Tian, Wu, 

Wang, & Niu, 2018). The adjusted multi-season rice planting area, adjusted middle rice planting 

area, and adjusted late rice planting area were 1,630.84 (+ 58.21) km2, 556.21 (+24.7) km2, 

3,138.37 (+77.62) km2, respectively. The overall accuracy was 98.10% and Kappa coefficient was 

0.94. The unbiased error for early, middle, and early rice were 0.18, 0.07, and 0.35, respectively, 

while standard error of the estimated area was 0.003, 0.001, and 0.004, respectively. The 

advantage of using both SAR and optical data is increased satellite imagery for analysis, as there 

was uncertainty of optical remotely-sensed data from clouds or cloud shadow, and led to the 

insufficient cloud-free images, whilst the SAR data were less affected by cloud coverage. 

A similar study was carried out by Yang et al. (2017), who integrated NDVI from the HJ-1A/B and 

backscatter coefficients from RADARSAT-2 to classify eight phenological stages of rice growth.  

The benefit of using data from both instruments is that the NDVI and backscatter measurements 

behave differently at different stages of growth, which improves the ability to distinguish them. 

For example, in the heading to flowering stage (canopy height 50-69 cm), the NDVI was very high 

due to the green rice canopy and canopy density; the SAR signature σHV was also high but the σVV 

was low due to the significant attenuation from the dense canopy. Therefore, the increased 

information content provided by the measurements allowed greater differentiation of growth 

stages. This is supported by the work of Gebhardt et al. (2012), who analysed the relationship 

between TerraSAR-X quad-polarised (Quadpol) backscatter and RapidEye derived multispectral 

vegetation indices (without ground truth data and setting these vegetation indices as reference) 

and found weak agreement between the optical metrics and different polarisation combinations. 

However, the modified chlorophyll absorption ration index (MCARI)/second modified triangular 

vegetation index (MTVI2) and transformed chlorophyll absorption in reflectance index 
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(TCARI)/optimized soil-adjusted vegetation index (OSAVI) proved correlation with VV, HV and VH 

backscatter model (R2 > 0.6) and HH/VV ratio model (R2 = 0.5). This result concluded the canopy 

architecture parameters potentially from SAR images. 

2.7 Conclusion 

Rice is particularly important in Southeast Asia, with the largest producing countries being China, 

India, Indonesia, Bangladesh, Vietnam and Thailand (ASEAN Information Center, 2021). Thailand is 

an agriculture-based country, and its main source of income is from agricultural exports; rice is 

the major crop, and rice ecosystems are dominated by non-irrigated and irrigated lowland areas, 

with a small proportion of rice in upland and deep-water areas. The rice season depends on the 

monsoon rains; thus, the planting date coincides with the onset of the rainy season. The rice 

growing season is classified into two seasons: wet (May-October) and dry (November-April). 

Precise and timely rice production data is vital to the food security and economy of the country. 

Rice agricultural areas and production data are derived from several methods, including remote 

sensing, which provides an essential technology to monitor rice cultivated area and yield 

estimation due to its scientific accuracy, speed, and large coverage capabilities.  

This chapter presented an overview of the literature on how remote sensing contributes to the 

rice yield estimation. Numerous studies have implemented for individual satellite sensors, while 

others have integrated several together. However, the potential of optical and SAR sensors has 

not been fully investigated in the relationship between rice biophysical characteristics and yield 

estimation in Thailand. Further, a basic study on the regression model for yield forecasting is still 

lacking. All sections from the literature review address the factors’ impact on rice productivity, in 

particular weather factors; thus, it is important to investigate the relationship between weather 

and rice variables. Further, the importance of remote sensing on rice yield estimation is vital for 

investigation, as it can contribute to precise rice yield and the assessment of dynamics of rice 

growth; however, the analyses of growth stages, satellite sensors, spectral vegetation index 

(optical), and differences in orbital direction and polarisation (SAR) require further investigation. 
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Chapter 3 Analysis of the impact of rainfall and 

temperature on rice production in Thailand 

As discussed in the literature review, climate change affects agriculture and food production 

systems. To ensure global food security, it is essential to monitor the impact of climatic variables 

(e.g. temperature, precipitation, relative humidity, and solar radiation) on crop production. In 

addition, the global population is projected to reach 9.8 billion in 2050 (Roberts, 2011) and the 

total agricultural food production needs to be significantly increased to ensure adequate food 

supplies to meet the demands from the rapidly growing population.  

Over the past 40 years, the global average temperature has increased by 0.2°Celsius per decade, 

with the most enormous changes occurring in the Western Equatorial Pacific (WEP) than in the 

Eastern Equatorial Pacific (EEP) (Hansen et al., 2006). Increasing temperatures have been found to 

have a detrimental effect on crop development and production, with a decrease in productivity 

between 11 and 14% for every 1°Celsius increase (Yuliawan & Handoko, 2016). Meanwhile, 

precipitation influences the availability of adequate water supply for agricultural activities in many 

parts of the world. Changes in global precipitation patterns in terms of precipitation intensity and 

frequency have also impacted agricultural production worldwide. In particular, water availability 

is a crucial requirement for planting rice. For example, in some areas relying on monsoon rainfall, 

a delay in the monsoon onset (Naylor et al., 2007) can cause severe water shortage required 

during the plantation. Especially some regions in Thailand have altered their planting dates to 

accommodate changes in precipitation seasonality which shifted up to 54 days (Ding et al., 2020). 

Over the past 40 years, the frequency of extreme precipitation events has increased (Myhre et al., 

2019), and these can have a negative impact on crop production through flooding (Banerjee, 

2010; Khan et al., 2012) and soil erosion (Bauer & Quinton, 2019; Mullan et al., 2019). An example 

is the flooding disaster in Thailand in 2011, which was caused by a strong summer Southeast Asia 

monsoon, which resulted in 143% higher than average rainfall during the rainy season. These 

flooding events affected 9,700,000 hectares of cropland in the lower Chao Phraya River delta and 

caused approximately 30 million dollars of damage to rice crops (Gale & Saunders, 2013; Jular, 

2017). Severe flooding is significant abiotic stress and can also encourage farmers to harvest 

production earlier where possible to avoid complete damage, it adversely impacts crop structure 

which can reduce yield by as much as 2.66-2.71%  (Lang, Yang, Wang, & Zhu, 2012). This can 

significantly impact whole grain (head rice) milling yield and eventually, a reduction in the 

market’s price (Salassi et al., 2013). 
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Extreme weather events frequently occur and seriously impact rice production (Dong et al., 2018; 

Wu et al., 2020). As a result of the risks, there is increasing awareness for planning adaptation 

measures to cope with these climatic events. Numerous studies have attempted to quantify the 

appropriate adaptation strategies under different climate change scenarios, i.e. shifting earlier or 

lately sowing/planting date, supplementary irrigation system, nutrients management, other 

inputs (fertiliser, tillage methods, grain drying, and field operations), and adopting new breeding 

rice cultivars. However, the success of these adaptation measures depends on farmers 

experiences and knowledge of the impact at the local scale and their view on climate change 

(Niles et al., 2015). 

Limited research has been conducted to investigate the impact of climate change on crop 

production in Thailand. This chapter seeks to fill that gap by investigating how climatic variables 

such as rainfall and temperature impact rice production in Thailand. It further analyses the role of 

irrigation as an adaptation strategy in controlling the relationship between rice production and 

climatic variables. This chapter aims to investigate the variation in rice productivity over the past 

four decades concerning climate factors (i.e. precipitation and temperature) and cultivation 

methods (i.e. irrigated vs non-irrigated). 

This chapter first provides a description of the climate and rice production in Thailand, followed 

by a description of the climatic and rice production data, the pre-processing steps carried out, and 

the methodology applied in assessing the relationship between weather (temperature and 

precipitation) and rice production data. This study was conducted at a provincial level, of which 

there are 77 in Thailand, using annual data from 1981-2015.  

3.1 Background of the study area region 

Thailand is located in the tropical region in Southeast Asia between latitude 5°37’ North and 

20°27’ North and longitude 97°22’ East and 105°37’ East, covering an area of 500,000 square 

kilometres (Table 3.1). Thailand has 77 provinces, which are the primary local government units, that 

vary in size from <500 km2 (Samut Songkhram) to >20,000 km2 (Nakhon Ratchasima) and which are 

then further divided into amphoe (sub-district).  

According to the Thai Department of Provincial Administration (DOPA), Thailand is broadly divided 

into four geographic regions (north, northeast, central, and south region), with different topographic 

characteristics. The north region is mountainous, comprising natural forests, hill ridges, and alluvial 

valleys and has 18 provinces. The northeast region consisting of 19 provinces is mainly arid, and 

the Phu Phan ridge separates the region into two basins: the northern Sakhon Nakhon basin and 

the southern Khorat basin. The central region is a low-level fertile valley located around the Chao 
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Phraya River delta, containing 26 provinces. Finally, the south region comprises 14 provinces of 

mountainous areas with thick forests. The south region is a peninsula along two seas: the west 

side is the Andaman Sea, and the east side is the Thai Gulf; thus, the south region separates into 

the south east coast and west east coast. 

3.1.1 Climatic conditions in Thailand 

Thailand has a tropical climate influenced by two monsoons, whose direction across Thailand is 

shown in Figure 3.1, along with the passage of tropical cyclones, all of which influence 

temperature and precipitation (Appendix A) across Thailand. The southwest monsoon (mid-May 

to mid-October) and the northeast monsoon (mid-October to mid-February) have different origins 

and wind directions. The southwest monsoon, which occurs between mid-May and mid-October, 

usually originates over the Indian Ocean and brings cloudy conditions and rainfall to the mainland. 

The northeast monsoon, which occurs from mid-October to mid-February, begins after the fading 

influences of the southwest monsoon and brings cooler temperatures and generally causes low 

rainfall. Therefore, the seasons are categorised into the summer, rainy, and winter seasons, and 

the monsoon influences each. The summer season runs from mid-February to mid-May and is 

influenced by the north-eastern and south-western monsoon. Typically, the weather is dry, with 

cold air masses from China affecting northern Thailand. The rainy season, in which rainfall varies 

between 680 and 1,400 mm, occurs between mid-May to mid-October and results from the 

influence of the south-western monsoon. These phenomena cause widespread rains across 

Thailand. Finally, winter spans from mid-October to mid-February. The north-eastern monsoon 

passes Thailand around mid-October for 1-2 weeks and leads to cold air within the country or 

storm rains in some areas especially in the lower central and eastern regions. The monsoon 

direction and passage of tropical cyclones influence Thailand, as demonstrated in Figure 3.1. 
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Figure 3.1 Map showing the area Thailand (left) and the direction of the passage of the 

monsoons (right) (TMD, 2015). 

Most regions experience the highest temperatures in the summer season, although the highest 

average minimum temperature occurs in the rainy season. Large differences in the amount of 

rainfall are evident between the winter or summer season and the rainy season, which vary by up 

to ~ a factor of 10. However, it is evident that most regions have similar amounts of seasonal 

precipitation. 

3.1.2 Rice cultivation system in Thailand 

In Thailand, most rice cultivation occurs in lowland areas in the tropical zone with varying soil 

characteristics, environment, and topography. For example, soils in the Central plain are 

Tropaquepts and comprise ~ 50% acid sulphate soil, whereas, in the northeast Plateau, Paleaqults 

and Plinthagults soils dominate the landscape (Piyapakorn, n.d.). Therefore, land preparation is an 

important process to accommodate different soil types and typically varies for rice growing, such 

as soil management, tillage practices, and land levelling. As a result, soil management practices 

are one critical management practice and vary management in rice-cultivated areas to achieve 

high crop productivity. For example, dry-seeded rice should be prepared wet ploughed at 30-50 

days after emergence and land levelled in the non-irrigated area in the Eastern India (Siopongco, 

Ingram, Pablico, & Moody, 1994). Another essential soil management practice is puddling by 

destroying the topsoil structure in wetland rice (Sanchez, 2019). Another potential agricultural 
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practice is direct-seeded rice (DSR) which involves sowing pre-germinated seed into the puddled 

soil surface, water seeding and dry seeding because of their low inputs (Farooq et al., 2011; 

Kakumanu et al., 2019).   

In Thailand, rice cropping can be irrigated or non-irrigated depending on whether there is 

sufficient rainfall for cultivation and whether the environment is suitable for the irrigation 

infrastructure required for water storage and water delivery (e.g. main and lateral canals). The 

majority (80%) of the cultivated rice area in Thailand is non-irrigated (Suwanmontri et al., 2020). It 

relies on precipitation, which is generally supported by the construction of dykes or small ponds 

to store water. Water availability is vital in the seeding stage of rice, where rice seeds are sowed 

into a flooded paddy field or, if the area is experiencing low precipitation, growing in a nursery and 

then transplanting the sprouts into paddies. Irrigated rice constitutes around 25% of the area and 

is concentrated mainly around the Chao Phraya River delta (Figure 4.1); with sufficient 

precipitation for planting rice, this region also has the potential for double or triple rice crops. One 

of the benefits of using irrigation systems is that they reduce the sensitivity to planting date to the 

arrival of monsoon onset and the respective length of growing season is also important in rice 

production and yield (Uzzaman et al., 2015). The length of the growing season depends on 

environmental constraints and is broadly categorised into three groups: short-duration (100-120 

days), medium-duration (120-140 days), and long-duration (140-160 days). The most common 

varieties grown in Thailand are short-duration and medium-duration, which facilitates double 

cropping systems and broadly adapt in drought and flood-prone areas (Bera & Kelley, 1990), 

which occur in 25% of the cultivated rice area. 
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Figure 3.2 Rice productions across Thailand, showing areas that rely on precipitation (yellow) or 

irrigation (green areas in blue are irrigated areas not under rice cultivation). 

The figure 3.2 shows the cultivated rice area across Thailand and the different irrigation systems 

(i.e. irrigated and non-irrigated areas) used. Irrigation stations, which focus on irrigation facilities 

on a large scale (>100 million m3 water storage volume) and medium scale (<100 million m3 water 

storage volume) and provide water resources, are distributed throughout Thailand. Nevertheless, 

the majority (25%) of rice cultivated area does not use these irrigation methods. This is 

particularly the case in north-eastern Thailand, where only 75% of the area under rice cultivation 

does not use irrigation methods and is dependent on rainfall (OAE, 2018a). This region also has 

lower levels of double or triple cropping systems (Suwanmontri, Kamoshita, & Fukai, 2021) and 
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rice productivity is lower than that found elsewhere in Thailand (Figure 3.4). Also shown in Figure 

3.2 is the spatial distribution of the 129 weather stations across Thailand, which provide the 

precipitation and temperature data, used in the analysis in this chapter. 

3.2 Methodology 

3.2.1 Data 

To understand the relationship between rice productivity with climate data at the provincial level, 

the agricultural productivity, and climatic data for the period 1981-2015 have been acquired from 

government agencies on the provincial level. These data are discussed in detail below. 

3.2.1.1 Agricultural data 

The agricultural data consisted of seasonal yield and production estimates at the provincial level 

between 1981 and 2015 and was obtained from the Office of Agricultural Economics (OAE), 

Ministry of Agriculture and Cooperatives, Thailand. The primary agricultural data collection 

provides information on the seed’s rate usage, rice cultivated area, harvested area, production, 

yield (i.e. the weight of grain per unit of land area using standard moisture content), percentage 

of cultivated area (monthly), and the cultivated area stratified by irrigation system. The 

agricultural data are based on statistical analysis wherein each agricultural area adopts a stratified 

two-stage sampling approach to select sample fields for the yield survey (Crop Cutting 

Experiments, CCE). The number of sample fields depends on the agricultural area at the amphoe 

(sub-district) level. In this analysis, we utilise information on rice production and rice yield 

between 1981 and 2015 at the provincial level, of which there are 77 in Thailand. 

To achieve the pattern of rice productivity during the study period, the present study prepares the 

historical data on agricultural data. It demonstrates the time-series pattern as in Figure 3.3.  
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Figure 3.3 Annual time-series on rice productivity. 

The annual time series is a summation of rice production and yield in Thailand from 1981 to 2015. 

Figure 3.3 demonstrates the fluctuation of rice yield and production during 1981-2000; then, rice 

productivity increasing trends until 2015. The changes in rice yield/production are associated with 

improved rice variety, higher crop intensity, control of rice weeds, and changes in the rice farming 

system from subsistence farming to commercial farming (Titapiwatanakun, 2012). 

As an example, Figure 3.4 shows rice plantation area (a), yield (b), and production (c) across 

Thailand in 2015, where the rice cultivated and harvested area comprised 8,913,576 ha and 

8,414,975 ha, respectively, with 22,893,719 tonnes of rice produced, providing an average yield of 

3.1 tonnes/ha. In the northeast region, provinces with the largest cultivated area include Ubon 

Ratchathani (617,744 ha), Nakhon Ratchasima (617,744 ha), Roi Et (523,024 ha), and Surin 

(786,611 ha). Farmers in this area typically plant photoperiod-sensitive rice varieties with less 

input and low yield potential. The provinces with the highest rice yield per unit area are located in 

the central region. The average yield was ~ 4.5-5 tonnes/ha, and most cultivated areas utilise 

b) Annual time-series on rice yield 

a) Annual time-series on rice production 
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irrigation for sufficient water. However, not all high-yield areas utilise irrigation, suggesting that 

proper agricultural practices and the rice variety may also play an important role. However, 

information on rice variety and agricultural practices are not collected by government agencies, 

and therefore their influence cannot be accounted for in the production and yield statistics.  

 

Figure 3.4 Rice productivity for 2015. a) Rice planted area (ha), b) Rice yield (kg/rai), and c) Rice 

production (tonnes). 

c) Rice production 

b) Rice yield a) Rice planted area 
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3.2.1.2 Weather data 

Weather data at the provincial level covering the study period was obtained from the Thai 

Meteorological Department (TMD), Ministry of Digital Economy and Society, Thailand. Weather 

data were used to assess the role of climate on rice production and yield between 1981 and 2015. 

The dataset is derived from 129 weather stations across the country, which provides 

measurements of precipitation and temperature, amongst other variables. The weather data used 

here are daily measurements of total precipitation (mm), the number of rainy days (day), and 

daily maximum and minimum temperature. The present study then calculated additional 

temperature variables on a monthly basis, e.g. monthly mean temperature (°Celsius), monthly 

mean maximum temperature (°Celsius), monthly mean minimum temperature (°Celsius), and 

differences between maximum and minimum temperature (°Celsius). There are no weather stations 

in 11 provinces in the middle and north-eastern regions of Thailand; therefore, these provinces 

were not used in the analysis. 

3.2.1.3 Irrigation data 

The irrigation dataset was derived from the Royal Irrigation Department (RID), Ministry of 

Agriculture and Cooperatives, Thailand, and contains information on the irrigation stations and 

the boundaries of serviced irrigated areas. Irrigated area is defined as the area that water can be 

delivered for agricultural activities within the irrigation project which is classified in several levels 

i.e. large scale (water storage dam, irrigation dam, pumping, water supply/drainage system, and 

irrigation in paddy in the function water storage >100 million m3 or supporting irrigation area 

>12,800 ha), medium scale (water storage dam, irrigation dam, pumping, water supply/drainage 

system, and irrigation in paddy in the capacity function water storage <100 million m3 or 

supporting irrigation area <12,800 ha), and small scale irrigation (development on small water 

body on resilient water consumption and agricultural activities (Royal Irrigation Department, 

2007).  The irrigation data allows calculation of the cultivated rice area reliant on irrigation for 

water supply and directly influences irrigated rice and production. In this study, we focused on 

cultivated agricultural areas located in large and medium irrigation systems. It provides a means 

to assess the impact of the irrigation system on the relationship between precipitation and rice 

yield.  
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3.2.2 Data preparation 

Prior to any analysis, the time-series data were pre-processed to improve data quality. The daily 

weather data were first averaged into monthly and then organised three seasonal periods – 

summer (mid-February to mid-May), rainy (mid-May to mid-October), and winter (mid-October to 

mid-February). Here, we focused on the rainy season as this period has the most significant 

impact on rice production (FAO, 2000) due to the majority of rice planting in Thailand coinciding 

with this season.  

As there is often more than one weather station present in each province, the average rainfall and 

temperature at the provincial level are calculated using all weather station data in the province:  

   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1+ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2+...+𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛
𝑛𝑛

   Equation 3.1 

Where Mean is the average precipitation or temperature at the provincial level, the station is the 

weather station located within the province, and n is the number of weather stations in the 

province. At the beginning of the year (January to May) for two specific years, i.e. 1983 and 1999, 

several months of data were missing and therefore these years were excluded from further 

analysis. Using the monthly averages for precipitation and temperature, each variable’s 

cumulative and annual average value was calculated during the rainy season only. In the case of 

precipitation, the number of rainy days was also determined for our study because there is a 

strong relationship when integrating with total precipitation (Fishman, 2016).  

Further, spatial autocorrelation statistics have also been investigated at the province level for 

obtaining the spatial clustering association.  

3.2.2.1 Detrending rice yield and rice production 

Determining trends and detrending the data are essential for comprehensive statistical analysis. 

There are two classes of trends: deterministic trends (which show consistent increases and 

decreases) and stochastic trends (which show increases and decreases without consistency). Rice 

yield and production are defined as deterministic trends since agricultural production is 

inconsistent over the study period for many reasons, such as government policy instability 

(Abdulwaheed et al., 2017; Longtau, 2003), agricultural technology improvements (e.g. seeds and 

machinery development), and rice farm diversification. For example, the Thai government 

reformed the structure of agricultural production on the area-based approach by introducing 

effectiveness of large-scale rice production or big paddy field plot policy during 2017- 2021. This 

policy assists farmers in gathering agricultural groups/enterprises and collaborates with their 

management by guaranteeing agricultural markets and helps Thai farmers reduce agricultural 
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costs to enhance the quality standard of agricultural products. Due to changes in rice yield and 

production, detrending the yield and production data mitigates agricultural fluctuations not 

caused by climatic variations. Detrending is an approach that involves eliminating trends from 

time-series data, referred to as change or distortion of mean values. The detrending technique is 

a reliable method using the multifractal scaling behaviour of time-series data and is frequently 

applied in data analysis to remove systematic changes. A wide variety of techniques exists for 

detrending data, including the application of filters such as the low-pass Kolmogorov-Zurbenko 

filter (Botlaguduru & Kommalapati, 2020), regression analysis (Ye et al., 2015) and Detrended 

Fluctuation Analysis (DFA) (Horvatic et al., 2011). Thus, the approach is necessary to formulate 

rice yield and production (Chung et al., 2015; Ye et al., 2015). To reduce the influences of 

agricultural development, the study creates more variables on rice yield and rice production 

based on detrending approaches. Two standard methods of detrended analysis: detrended by 

differencing and detrended by model fitting. Firstly, the detrended by differencing creates a new 

dataset where each value is based on differences between the original and previous observations. 

The disadvantage of differencing is that the process loses one observation in each time difference. 

Secondly, detrended by model fitting calculates by fitting with linear regression model; then, 

calculates the differences between the observed values and predicted values or applies more 

advanced models (e.g. Empirical Mode Decomposition (EMD) and Detrended Window 

Autocorrelation (DWA) (Lemoine & Delignieres, 2009)). Several researchers investigated climate 

change impacts using crop yield data (Lobell & Field, 2007; Lu et al., 2017).  

The detrended by differencing between yield and production in the current time step and the 

previous time step applies under the present study. The objective of weather detrended is 

removing non-weather effects such as technology improvement, agronomics practices, and rice 

cultivars changes. The approach applied to detrend the data follows that of Mills (2011) and 

detrends the data by differencing on an annual basis: 

∆ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥 −  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥−1 Equation 3.2 

Where 𝑥𝑥 is the present year and 𝑥𝑥 − 1 is the previous year for the variable of interest a particular 

province.  First, an evaluation of the detrended data will be carried out through an analysis of the 

correlation between rice yield/production and rice detrended yield/production. Figure 3.5 

provides an example of a time series of rice yield and detrended rice yield over two 

representative provinces in the different irrigation systems. Then, the detrended rice productivity 

(rice yield/production adjusted for trend) is regressed with weather variables. 
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Figure 3.5 Illustration of the rice detrending in different irrigation systems. 

3.2.2.2 Calculation the other important weather variables 

The differences between the maximum (day-time) and minimum (night-time) temperature have 

also been shown to impact on rice production through changes in evapotranspiration (ETo; the 

sum of evaporation from the soil and transpiration from crop), and in some cases it was found to 

be associated with 6% declined in yield (Saseendran et al., 2000). Two additional temperature 

parameters, which are based on maximum and minimum temperature, are also calculated: 1) 

differences between extra-maximum temperature (highest temperature during the month) and 

extra-minimum temperature (lowest temperature during the month) and 2) differences in mean 

monthly maximum and mean monthly minimum temperature in the provincial level. 

3.2.2.3 Setting thresholds of rice cultivated area and grouping provinces by percentage of 

rice cultivated area and irrigation system 

To consider irrigation systems’ impact on rice yield, it was crucial to identify those provinces 

located in different irrigated areas by overlaying irrigation and existing rice cultivated boundaries. 

The underlying assumption is that using irrigation systems ensures sufficient water throughout the 

growing season and is therefore beneficial for rice productivity. In contrast, rice cultivated in non-

irrigation areas is more susceptible to changes in precipitation which may impact crop production. 

Based on this, a threshold of >40% rice cultivated area was used to identify provinces for further 

analysis, which were subsequently grouped into provinces containing large and medium irrigation 

projects. 
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To account for different irrigation systems in this analysis, the provinces were categorised into 

four groups considering only >40% rice cultivated area: rice cultivated area >40% and located in 

the irrigated area (8 provinces) and rice cultivated area >40% and located in the non-irrigated 

area (27 provinces). Here, we focus on the 35 provinces that met this requirement with >40% 

planted rice area per province in both irrigated and non-irrigated areas, which are primarily 

located in the Chao Phraya River delta. 

3.2.2.4 Calculation changes on rice production 

To perceive the temporal changes in weather data over the past 35 years, the data are grouped 

into those provinces with a >10% reduction in rice cultivation, those with +/-10% differences in 

rice cultivation and those that experience a >10% increase in rice cultivation during 1981-2015. 

3.2.2.5 Defining variables of the impact of weather on rice production 

Table 3.1 List of weather variables and the basis for analysis considering between May and 

October 

Variable Purpose 
Rainfall To study if increasing rainfall leads to rice production 

increase 
Rainy day To study if an increasing number of rainy days increases rice 

production 
Extra-maximum temperature Assess whether greater maximum increase temperatures 

result in a decrease in rice production  
Extra-minimum temperature Assess if minimum temperature increase reduces rice 

production  
Difference in extra-maximum 
and extra-minimum temperature 

To study if greater extreme of  temperature increase leads 
to rice production decrease and influence photosynthesis’s 
rate of crop (Sheehy & Mitchell, 2015) 

Mean temperature Analyse whether greater average temperatures reduce rice 
productivity 

Mean maximum temperature Assess if the increases in the average maximum 
temperature reduce rice productivity 

Mean minimum temperature To study if average minimum temperature increase leads to 
rice production decrease in terms of total biomass 
production 

Difference in mean maximum 
and mean minimum 
temperature 

Investigate whether differences in temperature leads to 
rice production decreases 

3.2.2.6 Correlation analysis 

Having detrended the data, a correlation analysis was conducted between the weather and rice 

parameters which have been carried out previously for various crops (Choudhury et al., 2015; 

Gurung et al., 2017; Ye et al., 2019)  With regards to rainfall, positive correlations are assumed to 



Chapter 3 

61 

indicate that increases in rainfall have increased rice yield. However, it is known that high rainfall 

prior to harvesting can have a negative effect on rice production, which is not accounted for 

(Asada, Matsumoto, & Rahman, 2009). With respect to temperature, a positive correlation 

indicates that higher temperatures result in an increase in rice yield. The analysis uses the 

parametric bivariate Pearson Correlation to characterise the strength and direction of the 

relationship and a P-value of 0.05 for the two-tailed significance. 

3.2.2.7 Analysis spatial autocorrelation with Global Moran’s I index 

Spatial autocorrelation refers to the systematic spatial variation of a variable and enables the 

assessment of whether features with similar values are clustered, random, or dispersed (Du, 

Wang, Zhuang, & Jiang, 2017; Mathur, 2015). The aim of this analysis is to assess the spatial 

variation on a provincial level of the relationship among weather parameters on a provincial level 

based on feature location and their weather attribute values. To do so, the adjacent provinces are 

given a weight of 1, whilst all non-adjacent provinces are given a weight of 0. To measure the 

relationship between selected weather variables and the surrounding value, Moran’s I statistic is 

used, which identifies local measures for analysing the clustering multivariate on spatial data 

(Scrucca, 2005). 

For n observations on a variable x at locations i, j, the Global Moran’s I calculated as follows 

(Anselin, 1995): 

    𝐼𝐼 =  𝑛𝑛
𝑆𝑆0

 
∑ ∑ 𝑊𝑊𝑖𝑖,𝑗𝑗 𝑍𝑍𝑖𝑖𝑍𝑍𝑗𝑗  

𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

∑ 𝑍𝑍𝑖𝑖
2𝑛𝑛

𝑖𝑖=1
    Equation 3.3 

    𝑆𝑆0 =  ∑ ∑ 𝑤𝑤𝑤𝑤𝑤𝑤𝑛𝑛
𝑗𝑗

𝑛𝑛
𝑖𝑖        Equation 3.4 

Where Zi is the deviation of an attribute for feature i from its mean, wi,j is the spatial weight 

between feature i and j, n is equal to the total number of features (total of administrative units), 

and S0 is the aggregate of all spatial weights. The observed value of I compared to its distribution 

under the null hypothesis of no spatial autocorrelation. 

The spatial pattern analysis tool in ArcGIS Pro was used to calculate Moran’s I Index, expected 

index, and scale of significance level (i.e. Z-score and P-value) and optionally generate reports. An 

explanation of Moran’s Index value is near 1.0 indicates clustering, whilst a value near -1.0 

indicates the variable is dispersed, and a value around 0 indicates a random distribution. The 

present study sets the null hypothesis and states that there is no spatial clustering in the location. 

The Moran’s I value is computed on an annual basis. The critical value (i.e. Z-score) and P-value 

are determined for inferential spatial pattern analysis techniques. The null hypothesis is that 

weather influences in neighbouring provinces. Some spatial analysis methods require the 
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specification of a distance threshold to characterise the sphere of influence, which in this instance 

is unknown. To mitigate this, the contiguity edge only or Rooks case is used to characterise the 

conceptualization of spatial autocorrelation between polygons that share an edge with the target 

polygon or overlap will influence on computation for neighbouring polygon features that share 

the boundary of the administrative polygon. The spatial autocorrelation is important for the 

present study because the result presents the level of relationship between one object with the 

neighbouring objects by assuming the nearby objects have high correlation than the distance 

objects. Besides, the positive and negative correlation able to prove the random or cluster on the 

map. Thus, the study investigated the influences of weather parameters on the neighboring in 

terms of adjacent polygon of administrative boundary. The main purpose of spatial autocorrelation is 

determined the importance of geographical variation both sign and strength of their relationship. 

3.2.2.8 Analysis and summary of the study 

The following sections provide an analysis of the relationship between the climate parameters 

and rice production across Thailand with reference to the research questions identified in Chapter 1. 

 

Figure 3.6 Flowchart showing the methodology of identifying provinces for analysis of the 

relationship between rice production and weather parameters.
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3.3 Results 

The number of provinces where the correlation analysis was carried out varies according to the 

availability of data on rice yield and rice production (77 provinces), rainfall (65 provinces), and 

temperature (63 provinces). Consequently, the analysis was carried out in the 63 provinces where 

data was available for all parameters. To understand the climate trend at the regional level, the 

study is specific to rainfall and temperature variations over the study period. Therefore, the 

statistical analysis is split into two sections, detailing the trend analysis and the correlation 

analysis (both in statistical correlation and spatial autocorrelation). 

3.3.1 Trend analysis 

This section analyses the temporal trends in rice productivity and weather during the study period 

using the data described in Sections 3.2.1.1 and 3.2.1.2. 

3.3.1.1 Rice trends 

The cultivated rice area is predominantly found in the central and north-eastern regions of 

Thailand. As shown in Figure 3.4, illustrates the low rice yield found in the north-eastern region, 

where the average rice yield is ~ 1.9 tonnes/ha whilst higher rice yields (3.6 – 3.9 tonnes/ha) are 

found in provinces located in close proximity to irrigation systems. Figure 3.7 shows the provinces 

that utilise irrigation (green; 14 provinces) and non-irrigation agricultural methods (yellow), where 

rice yield is typically higher in the former, as these areas may double or triple plant due to the 

availability of sufficient water throughout the year (Suwanmontri, Kamoshita, & Fukai, 2021). The 

remaining 63 provinces that do not utilise full irrigation typically have lower yields, resulting in a 

yield gap of 1.5-2 tonnes/ha. 
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Figure 3.7 Average rice yield (ton/ha) at the provincial level between 1981 and 2015. Provinces 

in green are those that use large and medium irrigation; those in yellow are non-

irrigated provinces (small irrigation). 

An analysis of the difference between rice cultivated area and production between 1981 and 2015 

was carried out to determine which provinces show the greatest differences, which may be 

indicative of improved agricultural practices and differences in the variety of rice grown. The 
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result, shown in Figure 3.7, reveals that the east, northernmost part of the north-east, and 

southern regions had the greatest changes in cultivated rice area. Overall, most provinces (42) 

have seen a >10% reduction in cultivated rice area; 15 have seen increases and decreases of +/-

10%, and 20 have seen rice cultivated area increase by >10%. A number of provinces, such as 

Chiang Mai, Lop Buri, Prachin Buri, Chachoengsao, Surat Thani, and Phatthalung, showed the 

largest decreases in cultivated rice area due to a combination of urban expansion  (Jiang et al., 

2013; Shi & Jiang, 2016), farmers’ decision-making (Beretta et al., 2013; Johnson et al., 2019), and 

governmental policies (Ahuja, de Vos, Bones, & Hall, 2010; Lencucha et al., 2020). The latter 

include, for example, the Thai government encouraging farmers to cease rice cultivation in the dry 

season and alter to plant less water consuming crops (e.g. beans, chili, watermelon, and sweet 

corn) for drought adaptation, especially in the drought-prone non-irrigated area (Chaowiwat, 

2016). 

An analysis of the difference between rice cultivated area and production between 1981 and 2015 

was carried out to determine which provinces show the greatest difference, which may be 

indicative of improved agricultural practices and differences in the variety of rice grown. The 

result, shown in Figure 3.8, reveals that the east, northernmost part of the north-east, and 

southern regions had the greatest changes in cultivated rice area. Overall, most provinces (42) 

have seen a >10% reduction in cultivated rice area; 15 have seen increases and decreases of +/-

10%, and 20 have seen rice cultivated area increase by >10%. A number of provinces, such as 

Chiang Mai, Lop Buri, Prachin Buri, Chachoengsao, Surat Thai, and Phatthalung, showed the 

largest decreases in cultivated rice area due to a combination of urban expansions  (Jiang et al., 

2013; Shi & Jiang, 2016), farmers’ decision-making (Beretta et al., 2013; Johnson et al., 2019), and 

governmental policies (Ahuja, de Vos, Bones, & Hall, 2010; Lencucha et al., 2020). 
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Figure 3.8 Differences in rice cultivated area and rice production between 1981 and 2015. Red 

circles represent differences of rice cultivated area and blue bars represent 

differences on rice production. 

3.3.1.2 Weather trends 

The annual monthly variation in rainfall and temperature was assessed by averaging the time 

series on a monthly basis. Figure 3.9 and Figure 3.10 show the monthly average and accumulative 

precipitation in terms of monthly rainy days data over the full 35-year period (red line) with one 
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standard deviation (S.D.) error, which measures variance or dispersion of data around the mean 

value. 

 

Figure 3.9 Mean monthly amount of rainfall in Thailand (1981-2015). 

The figure 3.9 reveals that the lowest monthly rainfall (<20 mm) is found at the beginning of the 

year, with a steady increase to the maximum in September at 260 mm before decreasing through 

to December. The steady increase in precipitation in May coincides with the start of the wet 

season of rice production in Thailand, with the growing season typically ending in October. The 

error bars indicate greater variability in precipitation during the rainy season (June and August), 

which coincides with the main growing season, although significant variation is also evident in 

November and December which occur in the dry season. Change in rainfall pattern or rainfall 

distribution in terms of annual and seasonal rainfall impact rice production. Sujariya et al.(2020) 

proved to delay in rainfall patterns on the start growing period (SGP) and end growing period 

(EGP) and a slightly shortened length of growing period (LGP) in the wet season in transplanting 

system lowland rice area in the northeast Thailand by using rainfall data derived via weather 

station and using simulation model from 2000 to 2015. The results revealed the increasing 

potential yield because the planting avoided drought stress at the end of the growing season by 

shifting planting time closer to the optimum after changes in rainfall pattern. Similarly, this study 

examined rainfall variability changes in seasonal rainfall patterns and affected on duration and 

grain yield. Whilst the shifting of planting period closely to the optimum maximum yield for the 

KDML105 variety. The other factor is extreme precipitation or uneven precipitation affecting rice 

yield (Fishman, 2016; Huang et al., 2017). 
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Figure 3.10 Mean monthly rainy days in Thailand (1981-2015). 

The number of rainy days influences the availability of water for crop growth and development; 

thus, there are essential parameters to observe rainfall variability. The number of rainy days per 

month follows a similar pattern to mean precipitation, with few rainy days between January and 

March before steadily increasing until August with 18 rainy days. The seasonal distribution of 

rainfall, rainy days and temperature metrics are vital for rice phenology. Also, climate change 

shifts the potential of rice planting in single and double-cropping rice systems (Saud et al., 2022).  

 

 

 

a) Mean minimum temperature  
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b) Mean maximum temperature 

c) Difference mean maximum and minimum temperature 

d) Mean temperature  
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Figure 3.11 Temperature and mean monthly average temperature in Thailand (1981 to 2015). a) 

Mean minimum temperature, b) Mean maximum temperature, c) Difference in mean 

maximum and mean minimum temperature, d) Mean temperature, e) Extra-minimum 

f) Extra-maximum temperature 

e) Extra-minimum temperature 

g) Difference in extra-maximum and extra-minimum temperature 
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temperature, f) Extra-maximum temperature, and g) Difference in extra-maximum and 

extra-minimum temperature. 

The temperature datasets (Figure 3.11) show averages in the same manner as the precipitation 

data. Figure 3.11a, b and c show the mean of the average daily maximum and minimum 

temperature and their difference which shows that the temperature increases through to April 

before decreasing through the year in the case of the maximum temperature or plateauing to 

some extent in the case of the minimum temperature. The difference is greatest in the dry season 

(November to April of the following year) and least during the growing season (May to October). 

Overall, the variation through the year is 3.32 and 6.91°Celsius for the maximum and minimum 

temperatures, respectively, and by 26.96 and 4.03°Celsius during the growing season. Research 

proved the essential optimum temperature for rice growth and rice production with 25°-35°Celsius in 

temperate regions. Temperature below or higher than the optimal temperature is negatively affected 

by crop growth. However, the seasonal dynamics of temperature during the study period do not 

exceed the optimum rice yield. Likewise, other temperature parameters (Figure 3.11 c-g) show similar 

temporal dynamics.  

It is clear from the analysis of the seasonality of the precipitation and temperature that they are 

relevant to optimum growing conditions. However, there are few provinces that exceed the optimum 

temperature range during the study period. 

3.3.2 Correlation between rice production and weather parameters 

Table 3.2 presents a summary of the number of provinces where a significant relationship was 

found between weather parameters and rice production. The mean minimum temperature and 

mean maximum temperature shows the highest correlation among the temperature parameters. 

However, rainfall proved to be less significant as compared to temperature. The summary of 

Pearson’s correlation and the number of significant values in the overall and specific irrigation 

groups is shown in Table 3.2. 
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Table 3.2 Amount of significant provinces in focus group (>40% cultivated rice) with Pearson’s 

correlation and P-value between temperature metrics and weather parameter. 

Weather parameter Number of significant provinces (province)  
(Number of provinces in positive, negative correlation) 

Yield Detrended 
yield 

Production Detrended 
production 

irrigated 
rice 

non-
irrigated 

rice 

irrigated 
rice 

non-
irrigated 

rice 

irrigated 
rice 

non-
irrigated 

rice 

irrigated 
rice 

non-
irrigated 

rice 
Amount rainfall (average) 0 3 

(3,0) 
0 1 

(1,0) 
1  

(1,0) 
3 

(3,0) 
0 2 

(0,2) 
Amount rainfall 
(cumulative) 

0 3 
(3,0) 

0 1  
(1,0) 

1  
(1,0) 

3 
(3,0) 

0 2  
(0,2) 

Rainy day (average) 0 3 
(2,1) 

0 1  
(1,0) 

0 4 
(4,0) 

1 
(1,0) 

1  
(1,0) 

Rainy day (cumulative) 0 2 
(2,0) 

1 
(1,0) 

1 
(1,0) 

0 4 
(4,0) 

1 
(1,0) 

2 
(1,1) 

Extra-maximum 
temperature (average) 

2  
(2,0) 

10 
(10,0) 

1 
(0,1) 

2 
(0,2)  

2 
(2,0) 

9 
(9,0) 

2 
(1,1) 

3  
(1,2) 

Extra-minimum 
temperature (average) 

3 
(3,0) 

13 
(13,0) 

0 3  
(0,3) 

1 
(1,0) 

13 
(12,1) 

0 4 
(1,3) 

Mean temperature 
(average) 

2  
(1,1) 

3 
(1,2) 

1 
(0,1) 

1 
(1,0) 

0 4 
(0,4) 

1 
(0,1) 

3 
(3,0) 

Mean maximum 
temperature (average) 

3 
(3,0) 

11 
(11,0) 

1 
(0,1) 

6 
(0,6) 

2  
(2,0) 

10 
(9,1) 

2 
(1,1) 

3 
(1,2) 

Mean minimum 
temperature (average) 

3 
(3,0) 

15 
(15,0) 

1 
(0,1) 

3 
(0,3) 

0 16 
(15,1) 

1 
(0,1) 

3  
(2,1) 

Difference in extra-
maximum/minimum 
temperature (average) 

0 2 
(1,1) 

1 
(0,1) 

2 
(0,2) 

2 
(2,0) 

3 
(1,2) 

0 2  
(1,1) 

Difference in mean 
monthly 
maximum/minimum 
temperature (average) 

0 5 
(3,2) 

1 
(0,1) 

4  
(1,3) 

3 
(3,0) 

2 
(0,2) 

0 7  
(1,6) 

Table 3.2 summarises the correlation and individual significant provinces by considering both 

positive and negative correlations within the cultivated rice area over 40% in the different 

irrigation systems. The amount of significance is separated into irrigated rice and non-irrigated 

rice groups. With regards to accumulative amounts of rainfall, rice yield and rice production had 

the highest correlation, with a range of 0.33 - 0.60. Conversely, the correlation between the 

detrended rice yield and rice production data resulted in fewer provinces with significant 

relationships. The correlation between the average number of rainy days and the cumulative 

number of rainy days results in an equal number of significant provinces, but the significance is 

higher with the relationship between rice production and the average number of rainy days. In 

terms of temperature, the highest correlation between rice production and yield was found in the 

mean minimum temperature and mean maximum temperature. Overall, 18 and 16 provinces had 



Chapter 3 

73 

a significant relationship between average mean minimum temperature and rice yield and rice 

production, respectively. However, the number of provinces with a significance correlation with 

the average of mean maximum temperature data was slightly lower, with 14 and 12 provinces 

having significant relationships with rice production and yield, respectively. The correlation 

between the detrended rice data and mean minimum temperature (average) was less significant. 

The average temperatures in terms of minimum and maximum temperature increased the 

correlation among these parameters. Finally, the temperature difference (average), between the 

mean maximum and mean minimum temperature was significantly correlated in 5 and 5 

provinces with rice production and yield, respectively. The results indicate only 2 and 5 provinces 

recorded a significant correlation between the difference between extra-maximum and extra-

minimum temperature with rice production and rice yield in the non-irrigated rice area (Appendix 

B-C). The results suggest that the average minimum and maximum temperature are the weather 

parameters that have the most influence on rice production, with the highest number of 

provinces having statistically significant relationships. Detrending the data has not resulted in an 

increase in the statistical strength of the relationship with weather parameters suggesting that 

there may be specific phenological stages impacted by climate change and may be influenced on 

residuals. 

Table 3.2 shows the provinces and the precipitation and temperature metric that had the highest 

significant correlation. It is clear that the mean minimum and mean maximum temperatures have 

the highest number of significant relationships with rice production. It is also clear that the vast 

majority (75%) of provinces with significant correlations between weather variables and rice 

production are not irrigated, which suggests that irrigation effectively mitigates the potential 

impact of climate. A number of other studies have found the benefits of irrigation systems in 

reducing the hydro-environmental limits which are impact the crop from climate change, e.g. 

groundwater recharge (Kumar, 2016), mitigate the irrigation water requirement (Boonwichai et 

al., 2018; Wang et al., 2014), and reducing water deficit level (Nikolaou et al., 2020). Thus, the 

extension of irrigation to crop field areas is vital for maintaining the potential crop yield.  

In the following section, the spatial distribution of the weather parameters with the highest 

number of provinces with significant relationships (cumulative rainfall, the average number of 

rainy days, average mean minimum temperature, and average mean maximum temperature) are 

assessed. In all figures, the colours indicate the level of correlation, whilst the blue circles are 

those provinces with significant relationships (P = 0.05). Figure 3.12 shows the provincial-level 

variations in correlation between total rainfall and rice yield, and rice production during the wet 

season. Note that only those provinces with >40% rice cultivated area, and which have a weather 

station are included. 



Chapter 3 

74 

 

Figure 3.12 Correlation between rice yield, rice production, and cumulative of rainfall between 

May and October. 

The relation between the amount of rainfall for rice yield and rice production is 3 (all of the 

significant provinces located in non-irrigated rice) and four provinces (1 province in irrigated rice 

and three provinces located in non-irrigated rice), respectively. To study the factors that influence 

rice production, box plots of the correlation coefficient for each significant parameter are shown 

in boxplot, which describes the distribution and skewness of the data.   

 

Figure 3.13 Correlation coefficient of rainfall with rice agricultural area over 40% with different 

irrigation systems. 

a) Amount of rainfall and rice yield b) Amount of rainfall and rice production 
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Figure 3.13 indicates the positive correlation between rainfall and rice production was highest, 

ranging between 0.33-0.6; the correlation was lower in some provinces in irrigated and non-

irrigated areas (ranging from 0.3 to 0.4). The correlation between rainfall and rice yield was found 

in non-irrigated areas and marginally lower (0.34-0.57). Buri Ram is highest on both rice yield and 

rice production correlation; however, there is a slightly higher correlation on rice production (r = 

0.57 for rice yield correlation and r = 0.6 for rice production at sig. 0.000).  

With regards to rainy day variables, Table 3.2 demonstrates that average rainy day and rice 

yield/production were correlated with rice productivity and yield. Figure 3.14 shows the 

provincial-level variations in correlation between the average number of rainy days and the rice 

yield and rice production during the wet season.  

 

Figure 3.14 Correlations between rice yield and rice production and average rainy days between 

May and October. 

The relation between the average rainy day for rice yield and rice production is 3 (all of significant 

provinces located in non-irrigated rice) and four provinces (all significant provinces located in non-

irrigated rice), respectively. The range of correlation coefficient on rice yield is 0.34-0.38 whilst 

the range of correlation coefficient of rice production is 0.4-0.45. Further, the present study 

investigates the factors that influence rice production; a box plot of the correlation coefficient for 

each significant parameter with rice yield and rice production is shown in box plot, which 

describes the distribution and skewness of the data. 

a) Average rainy day and rice yield b) Average rainy day and rice production 
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Figure 3.15 Correlation coefficient of rainy day with rice agricultural area over 40% with different 

irrigation systems. 

Figure 3.15 indicates that rice production has a high correlation with a narrow correlation (~0.4-

0.45) on the rainy day variable. However, the correlation on rice yield is slightly lower (~0.34-0.38) 

than rice production, but there is a wide correlation compared with other weather variables. This 

evidence may be the result of various rice varieties with differing rice productivity. Finally, the 

correlation between rainy days and rice yield has a large gap and outlier values. 

With regards to the significant temperature variables, Table 3.2 demonstrates that the mean 

minimum temperature and mean maximum temperature were correlated with rice productivity 

and yield in the greatest number of provinces and, to a greater extent, than precipitation 

parameters. The correlations between the mean minimum and mean maximum temperature and 

rice yield, rice production, and detrended rice yield and rice production are shown at the 

provincial level in Figure 3.16. 
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Figure 3.16 Correlations between rice yield, rice production, and cumulative mean minimum 

temperature using data between May and October. 

Figure 3.16 (and listed in Table 3.2) shows the spatial distribution of the provinces with the 

significant statistical agreement between the mean minimum temperature and rice yield with 18 

provinces across irrigated and non-irrigated areas, of which 3 are in irrigated areas and 15 are in 

non-irrigated areas. 

Regarding rice yield, the correlation (r) in irrigated rice areas ranged between 0.45 and 0.72, while 

the non-irrigated rice area was between 0.40 and 0.66. The positive correlations suggest that 

increases in the mean minimum temperature led to an increase in rice yield and production. The 

three provinces with the highest correlation on rice yield were Nakhon Ratchasima, Uttaradit, and 

Sakhon Nakhon, with 0.66, 0.64, and 0.61, respectively. The majority of these provinces are 

photoperiod-sensitive rice varieties which are commonly planted in non-irrigated rice areas and 

sensitive to photoperiod. Regarding the correlation with rice production, the correlation was 

found in 16 provinces, and all located in non-irrigated rice areas, which ranged from -0.44-0.76. In 

addition, there is only Prachin Buri with a negative correlation (r =-0.44). Two main factors are 

stimulating rice productivity, i.e. geography and temperature, especially in the day length. 

Notably, the highest correlations are found in the north-eastern region, which is close to the Mun 

river (located in the Mun basin) and the Phu Phan mountain range (Natawa et al., 2005). The Mun 

basin consists of 31 tributary basins. Furthermore, these provinces may also be influenced to a 

greater extent by the south-western monsoon, which brings humid air mass from the India Ocean 

to Thailand and causes clouds and high rainfall to cover the country. The spatial distribution of the 

a) Mean minimum temperature and rice yield b) Mean minimum temperature and rice production 
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correlation coefficient for the temperature and rice yield and rice production area is largely 

similar. 

The correlation coefficients are shown as box plots in Figure 3.17 for two main groups in irrigated 

and non-irrigated rice areas. The range in correlation coefficients for mean minimum temperature 

and rice yield was broad (r = 0.45 - 0.72) for irrigated rice areas. The correlation coefficient for 

non-irrigated rice areas is slightly lower (r= 0.4-0.66) due to the limited number of provinces (4). 

In the correlation between rice production, all of the correlation is non-irrigated rice area and 

ranging between – 0.44 (outlier value) - 0.76. 

 

Figure 3.17 Correlation coefficient variation between the mean minimum temperature and rice 

production with >40% rice cultivated area (star symbols describe outlier value). 

The afterwards analysis, shown in Figure 3.17, is the variation in the correlation coefficient 

between the mean maximum temperature and rice yield and rice production. Again, only those 

provinces that had statistically significant results and those areas where cultivated rice area is 

more than 40% are displayed. 
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Figure 3.18 Correlations between rice yield, rice production, and mean maximum temperature 

during May and October. 

The correlation between mean maximum temperature and rice yield reveals that only three and 

eleven provinces had significant statistical relationships in irrigated and non-irrigated rice areas 

over 40% of rice cultivated area, respectively. The highest correlation was found in non-irrigated 

areas- Phetcha Buri, Maha Sarakham, and Ubon Ratchathani provinces with r = 0.66 (sig. 0.000), 

0.59 (sig. 0.000), and 0.54 (sig. 0.001), respectively. While the correlation in irrigated areas was 

highest in Bangkok, Suphan Buri, and Nakhon Pathom provinces, with r = 0.68 (sig. 0.000), 0.37 

(sig. 0.032), and 0.36 (sig. 0.030), respectively. Another correlation is mean maximum 

temperature and rice production reveals that only two and ten provinces had significant. 

Regarding the irrigated area, Nakhon Pathom and Bangkok provinces, with r = 0.43 (sig. 0.009) and 

0.38 (sig. 0.025), while in non-irrigated areas reveals a high correlation in Kalasin, Mukdahan, and 

Ubon Ratchathani with r = 0.72 (sig. 0.001), 0.62 (sig. 0.007), and 0.57 (sig. 0.000), respectively. 

a) Mean maximum temperature and yield b) Mean maximum temperature and rice production 
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Figure 3.19 Correlation coefficient of mean maximum temperature with rice agricultural area 

over 40% in different irrigation systems. 

A box plot analysis of the correlation coefficient (Figure 3.19) indicates that the mean maximum 

temperature and rice yield have a similar range (r = 0.35-0.68) of correlation coefficient values in 

irrigated and non-irrigated areas. As evident previously, the correlation coefficient between mean 

maximum temperature and rice production reveals a similar correlation range with rice yield; 

however, the correlation is a slightly narrow correlation in the irrigated area. Also, there is one 

province with a negative correlation with rice production in Prachin Buri in the same pattern as 

the mean minimum temperature (r = -0.51 sig. 0.002).  

The latter significant weather parameter is the difference between the mean maximum and mean 

minimum temperature and only focusing on those provinces that had statistically significant 

results and those areas where cultivated rice area is more than 40%. The correlation between the 

difference between mean maximum and mean minimum temperature and rice yield is shown in 

Figure 3.20. 
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Figure 3.20 Correlations between rice yield, rice production, and difference between mean 

maximum and mean minimum temperature during May and October. 

The correlation between the difference in mean maximum and mean minimum temperature and 

rice yield reveals that only five provinces had significant statistical relationships with non-irrigated 

rice areas over 40% of rice cultivated area. There are extremely highest correlations in both 

positive and negative correlations, Kalasin has the highest positive correlation with r = 0.6 (sig. 

0.011), and Nakhon Ratchasima has the highest negative correlation with r = -0.57 (sig. 0.000). 

The correlation between differences of mean maximum and mean minimum temperature and 

rice production was significant in three provinces located in irrigated areas and two provinces 

located in non-irrigated areas. The range of correlation for irrigated areas (Nakhon Pathom, 

Phichit, and Suphan Buri) is 0.38-0.61, and Phichit has the highest correlation (sig.0.002). 

Conversely, the correlation for non-irrigated areas (Chiang Rai and Nakhon Ratchasima) is a 

negative correlation with a range of -0.41- -0.56. As evident, two provinces are significant for both 

rice yield and rice production in Chiang Rai and Nakhon Ratchasima (non-irrigated rice cultivated 

area); however, there are slight improvements in their correlation for rice production. 

a) Difference mean maximum and minimum 

temperature and rice yield 

b)  Difference mean maximum and minimum 

temperature rice production 
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Figure 3.21 Correlation coefficient of difference between mean maximum and mean minimum 

temperature with rice agricultural area over 40% in different irrigation systems. 

A box plot analysis of the correlation coefficients (Figure 3.21) indicates that the difference 

between mean maximum and mean minimum temperature and rice yield have a significant only 

non-irrigated area with a correlation range (r = -0.57-0.60). Regarding the correlation based on 

the difference between the mean maximum and minimum temperature and rice yield have 

significance for non-irrigated areas whilst the rice production is relative in both irrigated rice and 

non-irrigated rice area. The correlation in irrigated areas for rice production is 0.38-0.61. Rice 

production correlation is highest in Phichit province with r = 0.61 (sig.0.002), whilst the other two 

provinces in irrigated areas range between 0.38-0.39. The relationship for non-irrigated areas 

reveals negative correlation ranges from -0.41- -0.56 (in Chiang Rai and Nakhon Ratchasima 

province). All correlation shown as Appendix D. 

As mentioned above, the rainfall in terms of cumulative rainfall and average rainy day have a  

positive correlation for both rice yield and production. The results are able to assume higher 

amounts of rainfall or rainy days, increasing rice productivity for all irrigation systems. Whilst the 

correlation between mean minimum temperature and mean minimum temperature proves a 

positive correlation for rice yield even though one province proved a negative correlation (Prachin 

Buri located in non-irrigated rice). The latter correlation is the difference between the mean 

minimum and mean maximum temperature that proved both positive and negative correlation 

for rice yield and production. Besides, the negative correlation found only two provinces in the 

non-irrigated areas (i.e. Chiang Rai and Nakhon Ratchasima). There are slightly more impacts on 

rice production and severe impacts on rice production than rice yield. Also, there are seriously 

impacted in the northeast region (Nakhon Ratchasima) than the north region (Chiang Rai). 
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3.3.3 Spatial autocorrelation 

The contiguity edge method is applied for the weather parameters with the most significant 

trends, which are the average (temperature and rainfall) and cumulative rainfall. When 

considering the P-value, the present study determines the Z-score and P-value for accepting the 

study hypothesis. Our result reveals that there is no spatial auto-correlation with neighbouring 

provinces. Based on geographic information system (GIS) technology, this study is an analysis of 

the significant weather parameters for achieving the weather pattern at each location for 35 

years. The result of spatial autocorrelation reveals the significant geography location and 

clustered pattern for the average temperature and cumulative rainfall in 1992. However, Moran’s 

I index is absolutely low this year. For example, the average temperature is clustered with 

Moran’s I index of 0.15 shown as Appendix E. 

Table 3.3 Result of Moran’s I index in significant weather parameter at significant year during 

study period. 

Weather 
parameter 

Year Clustering 
pattern 

Moran’s 
index 

Expected 
index 

Variance Z-Score P-Value 

Cumulative 
rainfall 

1992 Random 0.149 -0.013 0.005 2.241 0.025 

Average 
temperature 

1992 Clustered 0.149 -0.013 0.005 2.241 0.025 

 

 

Figure 3.22 Result of spatial autocorrelation using Global Moran’s I index demonstrated in a 

significant year. 

a) Cumulative rainfall b) Average temperature 
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Figure 3.22 suggests the results of the spatial autocorrelation at each location in 1992 for both 

cumulative rainfall and the average temperature at a certain significant level. Moran’s Index of 

cumulative rainfall is 0.149, the Z-score is 2.241, and the P-value is 0.025. The critical value (Z-

score) was less than 2.58 but greater than 1.96; thus, the result of the clustered pattern is a result 

of a random chance. The other factor proving slightly significant is the average temperature. 

Moran’s Index of average temperature is 0.149, the Z-score is 2.241, and the P-value is 0.025. The 

critical value (Z-score) was less than 2.58 but greater than 1.96; thus, the result of the clustered 

pattern is a result of a clustered chance. The pattern of spatial autocorrelation is displays in the 

small box for each weather parameter.  

3.3.4 Summary the susceptible provinces on climate change 

The analysis presented in the previous sections has highlighted that a number of provinces have 

significant correlations between rice production variables and climatic variables; this is more 

evident in those regions that do not use irrigation. In overall,  there are 30 provinces (6 provinces 

in irrigated areas and 24 provinces in non-irrigated or 85.71%) that show a significant relationship 

between rice production variables and climatic variables (Figure 3.23). The correlations were 

largely positive for rainfall and temperature; thus, the result suggests that high temperature and 

high rainfall have a positive impact on rice production and rice yield. 
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Figure 3.23 Monitored provinces’ rainfall, mean minimum temperature and mean maximum 

temperature, specific to rice production and rice yield (irrigated in red colour and non-

irrigated in orange colour). 

Most provinces where there is a relationship between rice production and weather parameters 

don’t use irrigation (Figure 3.23). The results revealed most correlation is a positive correlation 

among significant weather parameters with rice yield and production, except for some provinces 

is a negative correlation between mean minimum temperature, mean maximum temperature, 

and the difference between the mean maximum and mean minimum temperature. The 

Department of Disaster Prevention and Migration (DDPM) announced drought disaster areas in 
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25 provinces, and these provinces are relevant to the present study (16 provinces significant) 

(DDPM, 2020). These are able to interpret that higher global temperature corresponds with 

weather estimation on IPCC’s Fourth Assessment Report (IPCC, 2007); thus, rice productivity 

tends to increase. However, some provinces found a negative correlation- Prachin Buri is only one 

negative correlation between the mean minimum and mean maximum temperature. However, 

there are differences significant negative correlations in difference mean minimum and mean 

maximum temperature in two provinces for rice yield and rice production (i.e. Chiang Rai and 

Nakhon Ratchasima) with slightly higher correlation on rice production. One of the reasons for 

this is that the northeast region of Thailand experiences higher annual precipitation (15-20%) than 

the irrigated regions found in central Thailand. Thus, precipitation is influencing rice planting in 

this region. Due to the most susceptible provinces located in northeast Thailand, the resilience to 

climate change in non-irrigated areas could be reduced by irrigation infrastructure improvement 

(Elliott et al., 2014) and by adopting drought-resistant rice varieties (Kumar et al., 2014; Todaka et 

al., 2015). Our results suggest that agricultural policymakers should monitor these susceptible 

provinces by combining the information between weather and rice productivity correlation. 

Beyond, the impacts of climate changes on rice productivity in Thailand are highly uncertain from 

weather parameters; thus, the simulation of climate change impacts on agriculture is challenging 

to investigate, and the suitable adaptation strategies are vital resilient to climate changes by 

integrated varied approach (e.g. economic approach) and climate modelling.  

3.4 Discussion 

This chapter analysed the relationship between climate and rice production parameters over the 

past 35 years. Located in a tropical zone, Thailand’s paddies are impacted by increasing 

temperatures and precipitation. The cross-correlation between weather and rice production 

reveals that temperature is more significant than precipitation parameters, as observed in the 

number of provinces with significant correlation and values of correlation coefficients. When 

comparing the temperature parameters, the average minimum and maximum temperature have 

the greatest influence on rice production in a number of provinces. Also, the minimum 

temperature (referred to as night-time temperature) has more impact on rice production and rice 

yield than the maximum temperature (referred to as daytime temperature). Yenda et al. (2018) 

conducted the effect of weather parameters on rice yield during the Kharif season at the research 

farm at Orissa University of Agriculture and Technology, India, in 2016 under different planting 

conditions (e.g. puddled transplanting, unpuddled transplanting, and direct seeding). The puddled 

transplanted rice crop had the greatest grain yield, whilst the yield had a negative correlation with 

minimum temperature (-0.83) and rainfall (-0.59), a finding opposite to our study. Our findings 
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revealed the mean minimum and mean maximum temperatures definitely impact rice yield and 

production; however, they are necessary to determine which growth stage occurs. Sarker et al. 

(2012) supported our conclusions on the impacts of maximum and minimum temperatures and 

estimated the relationship between rice yields and climate variables by using time series data in 

Bangladesh. The result demonstrated the impacts of temperature (i.e. minimum and maximum 

temperature) and rainfall in 3 groups (i.e. Aus, Aman, and Boro rice, which Aus and Aman were 

planted in the wet season and Boro rice was planted in the dry season). The result proved a 

significantly positive correlation with the maximum temperature of Aus and Aman rice, whilst the 

Boro rice had adverse effects on rice yield. However, the minimum temperature had a negative 

effect on Aman rice; however, there was a significantly positive effect on Boro rice. Abbas & Mayo 

(2021) investigated the positive impacts between rice crops and minimum temperature at the 

replantation stage due to increasing the speed of leaf emergence and rainfall was positively 

significant for rice at the tillering and stem elongation stage by increasing tillering’s rate. The 

growth stage of rice is crucial for their correlation. Research proved higher daily minimum 

temperature increased rice yield (Chen et al., 2016), which agrees with our study. The weather 

trends under the present study estimate that temperature in Thailand will rise in the near future; 

thus, it is recommended to breed new rice cultivars with temperature tolerance. Our results 

found limitations on detrending, the impact of rice variety, and the role of the irrigation system. 

Thus, we are clarified as following aspects. 

3.4.1 Why does the detrended data have less weather agreement than raw data? 

In this study, the underlying assumption was that government policies and technological 

developments might influence the ability to determine the influence of climate on the rice 

production time series. The pattern of historical yield data is calculated through detrending 

before analysis; this aims to reduce the effects of changes in agriculture technology development, 

such as agricultural machinery and rice seeds development. 

The correlation between the raw and detrended rice yield and rice production data with weather 

data was analysed, with the results indicating weaker agreement between climatic variables and 

the detrended rice production data. The data in terms of rice yield and production are quite 

consistent over time (Figure 3.7); thus, creating a significant variation in their correlation. Key 

information assures the weaker signification on detrending is series on data quite fluctuating. 

Even though, this study is investigating cross-correlation without determining the differences on 

residuals of their relationships. Referring to significant rice production/yield variables, it is 

obviously seen that rice yield and production without detrending are increasing in significant 

provinces during the time period. The excessive temperature over the threshold level is the main 
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cause of crop growth, especially in the reproductive stage. Detrending rice yield was examined to 

eliminate the influences of agricultural technology (Rajavel et al., 2018). The limitation on 

detrending occurs in our study; thus, there are suggestions to adopt the appropriate detrended 

such as using fitting linear regression and applying residuals from the model (Wen, Ponnusamy, & 

Kang, 2019) or using a log-linear trend model (Vedenov & Sanchez, 2011) for accounting the 

effects between crop yield and weather. The detrend production index of crops may be 

preferable for analysis (Biswas et al., 2017). 

3.4.2 Impact of rice variety 

The aim of the research in this chapter is to investigate the correlation between weather and rice 

productivity in Thailand. However, the analysis ignores the impact that rice variety can have on 

yield and productivity. As mentioned in section 2.4.5, rice farmers plant rice in two main 

categories, photoperiod-sensitive and photoperiod-insensitive rice varieties, which vary with 

region and topography. For example, photoperiod-insensitive rice varieties are usually adopted in 

the Chao Phraya River delta due to the flowering response (not depending on day length and 

typically planted in the wet and dry seasons) (Vergara & Chang, 1985), and these typically provide 

higher yields (Kasetsart University, 2000). These areas are gradually replaced with high-yield rice 

varieties (HYRs) instead of local rice varieties  (Molle et al., 2021). Meanwhile, photoperiod-

sensitive rice varieties are normally used in the northeast region as these require more solar 

radiation for crop photosynthesis, which is sensitive in flower initiation, and this region of 

Thailand has lower annual precipitation and potentially less cloud cover. Different rice varieties 

have different growing season lengths from 99 days to 105 days (V et al., 2021), which can alter 

the annual production if multiple crops are planted. The yield can also vary by up to 50% amongst 

rice varieties (Bakare et al., 2017; Chowhan et al., 2017; Li et al., 2019), which can also influence 

the annual statistics for a particular province.  

Our study investigated the relationship between weather and rice productivity data, which is not 

classified with rice variety. Thus, there may be distortion from analysis at the state level. The 

further study will suggest correlation investigation among different types of rice variety or select a 

specific dominant rice variety. One strategy to develop a rice variety referred to as a hybrid rice 

variety, which combines traditional varieties with those that are tolerant to diseases, pests, 

abiotic stress, heat, and droughts such as IR8, BR11, BBRI dhan28, and BBRI dhan29 varieties (Fen 

et al., 2015; Pandey et al., 2010; Yamano et al., 2016). Rice production depends on the cultivated 

area and cropping intensity, with the latter influenced by the rice variety. Consequently, rice 

production is higher in the Chao Phraya River delta, which has a different rice variety and a full 

irrigation system. This is in contrast to the northeast region, which has lower yields due to most 
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farmers’ plant photoperiod-sensitive rice varieties (e.g. KDML105 and RD6) and together this type 

of variation distorts the findings of the impact of climate on rice productivity. 

3.4.3 Role of irrigation in rice cultivation 

Variability in rainfall distribution is the main restriction on rice planting, especially in tropical areas 

which depend on the monsoon rains. However, there is evidence of differences in water usage 

among irrigation farming systems (Taniyama, 2002). Analysis of the variation of monthly total 

rainfall indicates that precipitation has reduced in May relative to that found at the start growing 

season of the time series, which coincides with rice planting in the wet season. A research 

simulated model with rainfall data revealed a delay in the planting date due to the reduction of 

rainfall in the early season (Sujariya et al., 2020). A strategy for adapting to climate change 

adaptation is to shift the sowing date to an optimised time in order to increase rice yield (Ding et 

al., 2020). Yamauchi (2014) found that during times of insufficient precipitation, longer dry spells 

and a reduction of cumulative rainfall resulted in the rice transplanting date in the early wet 

season being delayed in non-irrigated rice areas; this led to drought risks and a decrease in rice 

production. 

This analysis found a positive relationship between the average rainfall and rice yield, agreeing 

with previous studies that found cumulative rainfall has a positive effect on rice yield 

(Bhattacharya, 2013; Sarker et al., 2012; Saseendran et al., 2000). A higher number of provinces in 

non-irrigated areas have statistically significant correlations with rainfall which largely occurred in 

the northeast, which typically receives higher annual rainfall than more central regions. 

Therefore, a number of these provinces are more susceptible to changes in precipitation totals. In 

terms of the average number of rainy days, only non-irrigated provinces had statistically 

significant relationships with rice production, which might be evidence of insufficient precipitation 

before the growing season.  

Temperature directly influenced crop photosynthesis and growth rate; Figure 3.11 illustrates the 

differences in average monthly temperature above the 35-year. This is most evident in the 

minimum and maximum average values but is also present, to a lesser extent, in mean 

temperature. Rice cultivation is optimal when temperatures range between 25° and 35°Celsius, 

and a number of studies have highlighted the negative impact that temperature can have on rice 

productivity (Ghadirnezhad & Fallah, 2014). Nagai and Makino (2009) assessed the impact of 

increasing daytime and night-time temperatures on rice and found biomass production and 

relative growth rate to be optimal at temperatures under 30/24°Celsius (day/night temperature), 

while the net assimilation rate of rice decreased at low temperatures (19/16°Celsius). Above 
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30°Celsius, crop photosynthesis is stimulated. This is supported by the present study, which found 

a positive correlation between temperature and rice production in almost all provinces. The 

minimum and mean temperatures during the rice growing season (May to October) are higher 

than the detrimental minimum values and within the range of optimum temperature. The 

temperature outside of the optimum temperature range has a serious impact during the 

reproductive stage by producing panicle sterility and lower grain production, and finally reduction 

in yield (Reyes et al., 2003; Nishad et al., 2018). Even though, fewer nearly or above optimum 

temperature ranges may not influence rice physiologically. Analysis of the temperature metrics 

(Section 3.3.1.2) indicates the mean temperature during the growing season falls within these 

bounds. A number of studies have found that temperature extremes or heat stress can increase 

water loss and death of seeding in the seeding stage, wither and yellow leaves, reduce tiller’s rate, 

and reduce yield under heat conditions (40°Celsius at day/35°Celsius at night-time) (Xu et al., 

2021). In addition, Rehmani et al. (2021) proved that extreme heat events coincided with the 

heat-sensitive reproductive growth period by using long-term meteorological data and 

considering stress days, i.e. higher daily maximum, high daily minimum temperature, and both 

critical temperature limits.    

The correlation between rice production and the mean minimum and maximum temperature 

revealed 21 and 16 provinces, respectively had statistically significant relationships, and the 

majority of these were in non-irrigated areas. This, coupled with the analysis of precipitation, 

highlights the increased sensitivity of non-irrigated regions to climate change and that extending 

irrigation infrastructure and irrigated service areas may provide a means to mitigate climate change. 

Suwanmontri et al. (2020) investigated the factors based on changes in rice productivity from 1974-

2018 using secondary data and compared two main regions (i.e. non-irrigated lowland-based 

northeast and irrigated lowland-based central Thailand). Their findings revealed irrigation water, 

especially in the dry season, was crucial for rice productivity. For example, rice yield increased more 

rapidly in the wet season (1.82-2.85 tonnes/ha) compared to the dry season (3.93-4.25 tonnes/ha), 

and rice production in the wet season was higher than in the dry season. The proportion of rice 

production was 26 million tonnes in 2011, of which 13 million tonnes was in the northeast and 5 

million tonnes in the central region, and the rice cultivated area decreased during 2011-2016 in both 

the wet and dry seasons. 

The remaining susceptible provinces (14.29%) reveal fewer impacts on rice productivity and weather 

correlation. In irrigated areas, the cumulative rainfall is found only in Kamphaeng Phet on rice 

production with low correlation coefficients. However, the temperature proves widespread on the 

mean minimum temperature (only specific to rice yield) and mean maximum temperature (both rice 

yield and rice production), which is observable from significant provinces. The dissimilar correlation 
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may be the reason for the critical temperature varied with rice variety and duration influences on 

physiological of rice plant. The result of the present study is in partial agreement with previous 

research.  Bemal et al. (2009) investigated the Kharif season, which is sown in July-August and 

harvested in October-November, in two locations- Karnal and Hisar in India by adopting multiple 

regressions during 1992-2006. This agreement with positive correlation on maximum, minimum, and 

mean temperature whilst rainfall was a negative correlation in Karnal whilst there was a reversely 

impact in Hisar (positive correlation for rainfall and maximum/minimum/mean temperature was 

negative correlation). 

3.4.4 Representative of weather data 

The availability of weather station data is a limitation of this study. Most provinces only have one 

weather station, and it is generally located in a non-agricultural area which may not be 

representative of the weather throughout the province and may impact the analysis. A denser 

network of weather stations would alleviate this but would incur high operating costs at regional 

and country scales. An additional option is to use precipitation estimates from the Tropical 

Rainfall Measuring Mission (TRMM), which is objective to measure tropical and sub-tropical 

precipitation and is related with varied precipitation-related sensors. The format of TRMM level 3 

product (3B43), which merges gauge and satellite analysis algorithm, contains 0.25° x 0.25° 

resolution for each month with a spatial coverage from 50° North to 50° South. The TRMM 3B43 is 

commonly analyses and integrated with other variables for meteorological monitoring (e.g. 

drought) and correlation with crop yield. The advantage of TRMM is coverage of large areas and 

substitution in the region with scarce weather stations; however, there is a limitation on the pixel 

size and poor accuracy for identifying precipitation in mountainous areas (Bharti & Singh, 2015). 

The other reason for supporting our work is the optimum temperature for rice growth and the 

physiology activities of rice. The optimum temperature influences for crop photosynthesis is 

varied among regions and are relevant to normal rice development, Previous research has found 

the optimum temperature for rice growth is between 25° and 35°Celsius (Nishad et al., 2018) and 

that excessively high or low temperatures can induce plant stress which reduces plant growth and 

consequently yield (Krishnan et al., 2011; Shah et al., 2011). The level of crop stress is also 

influenced by the duration, intensity, and timing of stress, which can affect particular growth 

stages to a greater extent and which impact both grain quality and yield. The temperature stress 

may decrease the photosynthetic rate and the number of panicles in the panicle stage (Xu et al., 

2021) in the reproductive stage, heat stress can inhibit flower initiation, pollen and spikelet 

development, flowering and anthesis, and grain yield (Hussain et al., 2019). The limitation of our 

study is weather data in seasonal; thus, more detail, especially each growth stage (i.e. tillering, 
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heading, flowering, milking, dough, and maturity), may improve the performance of correlation 

coefficients between weather and grain yield (Sattar et al., 2017). 

Assessment of the spatial autocorrelation of the correlation between rice production and weather 

metrics revealed a random spatial distribution with respect to neighbouring provinces. The result 

reveals the significant geography location and clustered pattern for the average temperature and 

cumulative rainfall in 1992. The testing of Moran’s I index the best solution if there is more 

information on the distance threshold or distance band between nearby objects. The further 

study proposed to assess other conceptualizations of spatial relationships such as Hot Spot 

Analysis (Getis-Ord Gi; (Getis & Ord, 2010)), Cluster and Outlier Analysis (Anselin Local Moran’s I), 

and Local Indicators of Spatial Association (LISA) (Anselin, 1995). For example, LISA principally 

computes the similarity with its neighbours and test significance (i.e. high-high, low-low, high-low, 

and low-high). Thailand is located at latitude 5° to 23° North of the equator. The influences of 

topography and location may be impacted by the differences in weather conditions between the 

north region and the south region. Further research requires an ecophysiological model to reduce 

the uncertainty of climate change impacts assessment. 

3.5 Conclusion 

The main objective of this chapter was to investigate the variation of rice production in Thailand 

over the past 35 years and to assess the relationship between weather metrics, including rainfall 
(i.e. the amount of rainfall and number of rainy days) and temperature, with provincial level rice 

yield and production. The provinces with the most significant relationships were mostly (88%) 

found in areas which did not use irrigation, in part as these areas also typically experience higher 

annual rainfall. The result reveals minimum temperature, maximum temperature, and differences 

between maximum and minimum temperature have the highest correlation. The cumulative 

rainfall and rainy days are less correlated. Analysis at the provincial level of the relationship 

between rainfall and temperature and rice yield and production indicates that rainfall has a 

potential on rice productivity irrespective of whether the area is non-irrigated. The important 

temperature parameters impact rice yield and rice production are mean minimum temperature 

and mean maximum temperature due to their optimum temperature for crop growth. Finally, the 

study reveals no spatial correlation among weather parameters except in 1992.  

The spatial variation of the area under rice cultivation is consistent with the implementation of 

government policies whereby the cultivated area was reduced in the central, east, and south 

regions through the implementation of agricultural zoning policies in 2009-2010 and 2012-2013 

(Ministry of Agriculture and Cooperatives, 2014). The policies were designed to encourage 
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farmers to plant the optimal crops for their agricultural areas by considering the local 

environment (e.g. soil, land use, precipitation, forest, slope, and factory location) and using 

mechanisms of the provincial government (e.g. promote farmers who plant in low productivity to 

plant the other suitable crops instead or Thai government set the policy into area approaches and 

commodity approaches). The main objective of agricultural zoning is agricultural reform and 

sustainable agriculture. As a result of these policies, ~55% of provinces saw a >10% increase in 

rice cultivated area, 25% a decrease by >10%, and 20% of provinces saw changes +/- 10%. The 

magnitude of these changes illustrates the impact that the government can have on agricultural 

production, whilst the analysis of the influence of weather highlights the benefits of irrigation in 

rice cultivation and that 22% of provinces in Thailand are more susceptible to changes in climate. 
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Chapter 4 The dynamics of rice biophysical variables in 

irrigated and non-irrigated systems during the 

growing season 

Southeast Asia accounts for 31% of the world’s harvested rice area, with 48 million ha under rice 
cultivation (Redfern, Azzu, & Binamira, 2012). Concerning agricultural practices, 45% of this rice 

area is irrigated (18 million ha), 45% is non-irrigated (18 million ha), 5% is planted in deep water (3 

million ha), and 5% is planted in non-irrigated upland areas (3 million ha). Thailand is the fourth-

ranked country in terms of the use of irrigation in rice cropping (Mutert & Fairhurst, 2002) and is 

sixth-ranked in terms of rice exportation, with 33 million tonnes exported in 2017 (Fischer & 

Velthuizen, 2016). In 2012, the irrigated rice area covered 29.5 million rai or 4.7 million ha, which 

equates to 9% of the country’s total land surface area (RID, 2013). Rice cultivation is mostly 

located in areas fully supported by irrigation systems (e.g. irrigation projects and canals). These 

areas typically have high planting densities where farmers can plant 2 or 3 rice crops per year 

(Pushpavesa, Somrith, & Petpisit, 1986). Thailand’s main rice cultivated area is the Chao Phraya 

River delta, which accounts for 20-25% of rice production (OAE, 2017b). Information collected by 

the Rice Department, Ministry of Agriculture indicates that across Thailand there are 138 varieties 

of rice grown in various ecosystems and photoperiod sensitivities and which have specific 

characteristics such as pest/disease tolerance, being adaptive to local environments, having high 

yields, and cooking quality on consumer demands (Rice Department, 2016a). 

Estimates of rice yield are based on Crop Cutting Experiments (CCE) and farmer interviews which 

are conducted close to harvesting. In Thailand, CCE is a reliable rice yield survey and estimation 

method used by the Office of Agricultural Economics (OAE). The main purposes of CCE are to 

measure rice yield to analyse the current annual statistical data. The CCE method is based on the 

farmer household, which is dependent on separating villages into irrigated and non-irrigated 

systems and their expected harvesting time. The CCE method identifies a sample village with 

three households selected randomly, from which two field sample plots are identified. The CCE 

process consists of 3 sections: 1) crop cutting survey (cutting all crop production within the 

sampling frame, i.e. rice stems and grains), 2) dyke survey, and 3) gleaning survey. These consist 

of measuring wet and dry grain yield over small (e.g. 1 m x 1 m) sampling areas at specific 

locations, which are then spatially aggregated to estimate yield at (ultimately) provincial scale. 
However, a limitation of using CCE to estimate yield is that the yield estimates are only available 

close to harvesting. In contrast, yield estimates earlier in the growing season would be 
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preferential for crop management and food security purposes. In addition to rice yield, other 

important biophysical variables include plant density, leaf area index (LAI), spikelet per m2, and 

biomass accumulation. The plant density, which influences the seeding rate, is optimised to 

obtain the maximum yield and affects the kernel dimensions (Alipour Abookheili & Mobasser, 

2021; Baloch et al., 2011). The LAI, which is defined as half the green leaf area per unit area 

(Zheng & Moskal, 2009), is a biophysical parameter that plays an essential role in the crop’s 

photosynthesis and is commonly analysed concerning vegetation foliar cover, biomass, and crop 

productivity (Wang et al., 2018). Spikelet per unit area is related to number of filled spikelets 

(Takai et al., 2006). Finally, biomass is related to grain yield via harvest index (HI) (Zhang et al., 

2008) and depends on the dry matter partitioning of crop leaves and panicles (Amanullah & 

Inamullah, 2016; Kondhia, Tabien & Ibrahim, 2015). Biophysical variables are often used to 

estimate yield either through parameterising crop growth or radiative transfer models or by 

developing an empirical relationship between the in-situ biophysical variable and remote sensing 

measurement (i.e. vegetation indices derived from airborne and satellite spectral (Campos-

Taberner et al., 2016; Haboudane et al., 2004; Peng et al., 2021). Satellite data are routinely used 

to derive estimates of vegetation biophysical parameters such as LAI and biomass, and these in 

turn have been used to estimate rice yield (Clauss et al., 2018; Liu et al., 2015; Peng et al., 2014; 

Peng et al., 2021; Setiyono et al., 2018).   

The analysis conducted in Chapter 3 found that mean minimum temperature, mean maximum 

temperature and amount of rainfall influence rice productivity. The spatial distribution of rice 

production is influenced by rainfall patterns, although areas with low rainfall can mitigate this 

uncertainty using an irrigation system. Photoperiod-sensitive rice varieties are closely related in 

their structure and dynamics to biophysical variables, with differences in the duration of panicle 

emergence among photoperiod-sensitive and photoperiod-insensitive varieties (Collinson, Ellis, 

Summerfield, & Roberts, 1992). The majority of rice varieties grown in the study area are 

photoperiod-sensitive rice. This chapter focuses on the second research question, which seeks to 

understand the influences of irrigation systems on rice biophysical characteristics such as LAI, 

biomass and yield and to investigate the relationship between rice biophysical variables at 

particular plant growth stages. This is believed to be the first investigation of its kind into the 

dynamics of rice biophysical characteristics with irrigation usage and rice variety. To meet these 

aims, field experiments were carried out at 21 irrigated and 7 non-irrigated sites in the Chao 

Phraya River delta, where measurements of a number of rice biophysical variables were made 

through the growing season. 
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4.1 Background of study area 

The field sites were located in the Chao Phraya River delta (Figure 4.1), which covers 52,323 

square km2 in central Thailand. This delta comprises 11 provinces and has a tropical monsoon 

climate, with an average temperature of 33.8°Celsius and annual rainfall of 16,000 mm per year. 

The cultivated rice area is 164 million ha, producing 756.7 million tonnes of rice annually (OAE, 

2017). 

 

Figure 4.1 The Chao Phraya River delta, comprising 11 provinces in Central Thailand. The red 

circles on map on the left indicate the locations of the field experiments conducted in 

2017. 

Figure 4.1 shows the field experiment locations in three representative provinces located in the 

important rice-cultivated areas in the central region: Phichit (upper delta), Ang Thong (middle 

delta), and Pathum Thani (lower delta). The field experiments were collected in 28 fields, of which 

16 were located in Phichit (Pho Tha Le and Ta Pan Hin amphoe), 6 in Ang Thong (Wisetchaichan 

amphoe), and 6 in Pathum Thani (Lam Luk Ka amphoe). Phichit contains irrigated and non-

irrigated rice cultivation and field surveys were conducted in 9 irrigated and 7 non-irrigated fields. 

This enabled the impact of irrigation on rice biophysical variables to be assessed through the 

growing season under similar precipitation and temperature characteristics. However, a key 

Sample unit 

Size sample plot 
 1 x 1 m 
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variable that influences rice biophysical development throughout the growing season is rice 

variety, which has been shown to increase yield by 26-40% and differs from rice ecosystems 

(Anisuzzaman, Kader, Ali, Haque, & Halder, 2016; Chhogyel & Bajgai, 2015). 

Using the dataset described in Chapter 3, the annual rice productivity between 1981-2015 is 

shown in Figure 4.2 for each province studied in this chapter. 

 

Figure 4.2 Time-series of rice yield and production during 1981-2015 for Phichit, Ang Thong, and 

Pathum Thani. a) Average rice yield and b) Average rice production. 

Figure 4.2 illustrates the interannual variation in rice productivity and yield between 1981 and 

2015 for Pathum Thani, Ang Thong, and Phichit, which have average rice yields of 3.9, 3.3, and 2.9 

a) Average rice yield 

b) Average rice production 
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tonnes/ha, respectively. Rice yield has steadily increased over time, whereas total rice production 

(Figure 4.2b) has remained reasonably constant in Pathum Thani and Ang Thong. Rice cultivation in 

Pathum Thani, which has the highest yield, is predominantly (>25%) carried out in irrigated fields 

maximising agricultural effectiveness. The average rice production in Phichit is the highest, where 

70.3% of agriculture is rice cultivation. However, the yield is the lowest which may result from rice 

cultivation being under both irrigated (23.3%) and non-irrigated (76.7%) land management. In Ang 

Thong province, rice cultivation is largely irrigated; although the yield was low between 1981-

2000, it improved markedly after this to become comparable to that found in Pathum Thani. 

Table 4.1 Characteristics of rice varieties planted in the study area (Rice Department, 2017). 

Rice 
variety 

Duration (days) Dominant 
characteristics 

Rice seed 
(mm) 

Yield 
(tonnes/ha) 

Planting 
area 

RD31 111 (flooding) 
118 (transplanting) 

- Straight 
clumping and 
resistant for 
planthopper 
- Resistant to 
bacterial leaf 
blight disease 

10.4x2.6x2 
7.4x2.1x1.8 

4.6 
(flooding) 

4.7 
(transplanting) 

Irrigated 
area in 
middle 
region 

RD41 105 - Straight 
clumping and 
high grain when 
milling 
- Resistant to 
brown 
planthopper and 
blast disease 

10.4x2.5x2 
7.7x2.2x1.8 

4.5 Irrigated 
area in 
lower north 
region 

RD47 104-107 (flooding) 
112 (transplanting) 

- Strength stem, 
flag leaves 
broadleaf, long-
grain, and 
resistant for 
planthopper and 
leaf blight disease 
- High grain 
quality (100% 
milled rice) 

10.4x2.5x2 
7.9x2.1x1.8 

5 Irrigated 
area in 
lower north 
region 

RD49 102-107 - Straight 
clumping and 
high density of 
rice grain 
- High grain 
quality (mill to 
100% rice seeds) 

 4.6 Irrigated 
area 

RD57 
 
 
 
 

107-110 (flooding) 
117-120 
(transplanting) 

- Straight 
clumping and 
leaves and strong 
stem and 

10.8x2.5x2.1 
7.4x2.2x1.9 

7x2x1.8 

4.5 Irrigated 
area 
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Rice 
variety 

Duration (days) Dominant 
characteristics 

Rice seed 
(mm) 

Yield 
(tonnes/ha) 

Planting 
area 

RD57 
(Cont.) 

medium rice 
grain density 
- Easily falling 
grain 

RD61 87 - Straight 
clumping and 
easily falling 
grain 
- Resistant to 
brown and 
white-backed 
planthopper 

 6.3 Irrigated 
area in 
lower north 
and middle 
region 

It is essential to highlight the role of rice varieties in enhancing yield when assessing temporal 

trends in rice production. The intensive cropping and continuous planting in a few rice varieties 

lead to severe biotic stress and pest outbreaks (Berga & Tamb, 2012; Kumar et al., 2022). 

Between 1970 and the present, over 50 varieties of rice have been developed to be a pest- and 

diseases-tolerant (Leung et al., 2003; Wang et al., 2005). The traditional rice variety has 

developed the modern high-yield varieties (HYVs) for yield improvement in both the wet and dry 

seasons (Chaturvedi, 2005; Cheng et al., 2007; Qingquan, 2002). Table 4.1 lists the main rice 

varieties grown in the study area, their dominant characteristics, and their typical yield. All 

varieties are designed for irrigated areas, whereas some varieties, such as KDML105 (or jasmine 

rice) and RD6, are designed for non-irrigated cultivation (Rice Department, 2017). Rice varieties 

were developed to be resistant to insect pests such as the planthopper and diseases, which during 

severe outbreaks can be responsible for losses of up to 4 tonnes/ha (Heong et al., 2015) and are 

designed to increase yield potential by rice genetic improvement. It is clear from Table 4.1 that 

yield, and the length of the growing season can differ by a factor of 1.4 as a function of rice 

variety, which will directly impact the final provincial-level yield estimates. The table also 

highlights the influence of the rice planting method (i.e. flooding or transplanting), which 

influences the growing season length and which is influenced by precipitation patterns. 

4.2 Methodology 

4.2.1 Primary data 

The primary data used in this chapter were collected during field experiments carried out during 

the wet season (May to October) in 2017, covering the main growth stages: seeding (in different 

cultural practices- both direct sowing and transplanting), tillering, panicle, flowering, and 

harvesting (Figure 4.3). The field surveys involved interviewing farmers to gain information on 
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their planting date, rice variety, fertiliser usage, post-harvesting yield, and irrigation location. The 

latter was then compared to irrigation boundaries derived from the Royal Irrigation Department 

(RID), which was used to identify sample site locations in irrigated or non-irrigated areas initially. 

In addition to interviewing farmers, several rice biophysical variables were measured throughout 

the growing season in large and homogenous fields. The latter requirements were to ensure 

sufficient satellite pixels fell within the fields with an average paddy size of 0.61, 0.86, and 2.9 ha 

in Phichit, Ang Thong, and Pathum Thani, respectively. 

 

Figure 4.3 Field survey dates in Phichit, Ang Thong and Pathum Thani. 

4.2.2 Research methodology 

This chapter aims to investigate the variation in rice biophysical variables through the growing 

season from the seeding to harvesting stage. 

4.2.2.1 Definition of rice phenology and sampling units 

The field surveys were carried out throughout the growing season to measure rice biophysical 

variables at different growth stages. This study adopted the standardised scale of rice growth, 

‘Biologische Bundesanstalt, Bundessortenamt and CHemische Industrie (BBCH)’, from the 

International Rice Research Institute (IRRI), which is measured phenological development 

information and relevance with satellite monitoring (Yuzugullu, Erten, & Hajnsek, 2015). Rice 

cultivation in Thailand can be single, double, or triple cropped, which differs among regions. The 

rice phenological cycle varies in length from 83 to 117 days, although the exact duration depends 

on rice variety (Table 4.1) and environment (Miranda et al., 2009; Li et al., 2018). Therefore, one 

of the criteria used in selecting the field sites was that the planting date among the paddy fields 
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enabled biophysical measurements to be made in all five growth stages. These growth stages are 

seeding (1-20 days), tillering (21-40 days), panicle (41-70 days), flowering (71-90 days), and 

harvesting (90-120 days), as shown in Table 4.2. 

To ensure that the field sites were representative of rice cultivation in the region, it was necessary 

to exclude sample sites where hybrid rice varieties were grown that have short growing seasons to 

avoiding floods and for higher yields, and where rice was uprooted (called ‘lodging’) due to the 

occurrence of severe weather before harvesting. Six sample sites were found to be either lodging 

(PC6 and PC8), flooding (AT6), or to contain a hybrid rice variety (PC4, PC16, and PT6); all of which 

distorted the length of the growing season and were therefore excluded from our analysis. 

Table 4.2 Rice phenological stages 

Growth phase Study stage Example of paddy Name 
Vegetative Seeding 

 
 
  

Germination 
Leaf development 

Tillering 

 

Tillering 
Stem elongation 
Booting 

Reproductive Panicle 

 

Heading 

Flowering 

 

Flowering 

Maturity   Development of grain 
  Ripening 
Harvesting 

 

Senescence 

Transplanting   Transplanting, recovery (rice) 

4.2.2.2 Measurement of rice biophysical variables 

At each field site, several measurements were made, including water depth, planting density, 

plant height, panicle length, above and below canopy Photosynthetically Active Radiation (PAR), 

canopy leaf area index (LAI), leaf chlorophyll content, wet and dry biomass, and post-harvest 

yield. The measurements at each field varied depending on the phenological stage, as indicated in 

Figure 4.4, with the measurements made listed in each corner. 
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a) Seeding          b) Tillering                c) Panicle         d) Flowering     e) Harvesting 

(15 days)         (35 days)              (65 days)     (85 days)                 (90-120 days) 

        
Seeding Tillering Panicle Flowering Harvesting 

- General data on 
planting 

- Stem density 

- Water depth 

- Stem density 

- Water depth 

- Height 

- PAR/LAI 

- Chlorophyll content 

- Stem density 

- Water depth 

- Height 

- Panicle length 
(if) 

- PAR/LAI 

- Chlorophyll content 

- Biomass (if) 

- Stem density 

- Water depth 

- Height 

- Panicle length 

- PAR/LAI 

- Chlorophyll content 

- Biomass 

- Stem density 

- Water depth 

- Height 

- Panicle length 

- PAR/LAI 

- Chlorophyll content 

- Biomass 

- Yield 

- Moisture content 

Figure 4.4 Field and plant measurements made at each growth stages. 

In the seeding stage, measurements of stem density, water depth, and where possible, leaf 

chlorophyll content were made. In the remaining growth stages, measurements of stem density, 

water depth, height, above and below PAR, LAI, chlorophyll content and biomass were obtained 

as the canopy was more developed (Figure 4.4). 

Rice height was measured to quantify the growth rate; it was measured from 3 randomly selected 

plants and defined as the height from the soil or water surface to the tip of the highest leaf. 

Water depth was measured from the soil to the water surface at two locations per sample plot 
for averaging. Due to variations in the paddy field surface topography, the water depth varies 

spatially and to capture this, several measurements are required. The water depth during the 

early growth stage depends on the planting method and influences the remotely sensed radiative 

measurements, mainly when the canopy is less dense. The PAR, which covers the visible spectrum 

(400-700 nm) where plants absorb solar energy for photosynthesis, was measured by taking 

ceptometer measurements using an AccuPAR instrument ~5 cm above the canopy and ~5 cm 

above the soil or water surface. The average PAR, measured under diffuse sky conditions where 

possible to avoid underestimation (Fang et al., 2014), was calculated for each field using 4 or 5 

measurements made at each sampling location, of which were 4 in each paddy field (a totally 16-

20 measurements per field). The PAR measurements were then converted to leaf area index (LAI) 

using the approach described by Samanta et al. (2019). The fraction of photosynthetically active 

radiation transmitted through the crop canopy is related to the leaf distribution and the leaf area 

within the rice canopy. The PAR measurements were used to calculate the LAI using the approach 
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proposed by Norman-Jarvis (Norman, 1974). The extinction coefficient (K) describes the 

proportion of radiation absorbed by the canopy at a specific solar zenith angle (θ) and leaf angle 

distribution (x).  

   𝐾𝐾 =  (𝑥𝑥2+ 𝑡𝑡𝑡𝑡𝑡𝑡2 𝑞𝑞)1/2

𝑥𝑥+1.744 (𝑥𝑥+1.182)−0.733   Equation 4.1 

The leaf angle distribution is a key canopy structural parameter that influences the radiative 

(reflectance and transmittance) properties of a canopy, and is often assumed to be spherical 

(Vicari, Pisek, & Disney, 2019). Under this case, K simplifies to: 

   𝐾𝐾 =  1
2 cos𝑞𝑞

      Equation 4.2 

The leaf area index (L), which describes the one-sided green leaf area per unit ground surface area 

(m2 m-2), is then calculated via: 

   𝐿𝐿 =  
��1− 1

2𝑘𝑘�¦𝑏𝑏−1� ln 𝜏𝜏 

𝐴𝐴(1−0.47¦𝑏𝑏)
    Equation 4.3 

where ƒ𝑏𝑏  (beam fraction) is the ratio of the above and below canopy PAR, 𝜏𝜏 is the probability 

that a ray will penetrate the canopy, and A is leaf absorptivity, which is set to 0.9 following the 

approach of conversion factor in healthy green foliage (Barclay & Goodman, 2000). 

 

Figure 4.5 Above (a) and below (b) canopy PAR measurement in the flowering stage. 

a) Above PAR measurement b) Below PAR measurement 
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Measurements of leaf chlorophyll content were made using a MultispeQ chlorophyll meter for 3 -

4 plants per sample plot (12-16 measurements in total). The MultispeQ indirectly estimates 

chlorophyll concentration using a standardised calibration and connecting with the PhotosynQ 

network (Kuhlgert et al., 2016). Finally, the wet and dry plant biomass, comprising of the total 

plant biomass, leaf-stem, and grain biomass, was measured through destructive sampling 

conducted over a 1 m x 1 m area where the biomass was harvested and measured immediately to 

prevent moisture loss. After removal, the wet biomass weight was separately measured for the 

rice stems and grains (Figure 4.6). For the dry biomass measurements, the moisture was removed 

through oven drying prior to conducting correlation analysis with other rice biophysical variables 

or remotely sensed data (Cheng et al.,2017). This process was repeated for each paddy field 

individually. 

 

Figure 4.6 Destructive biomass measurement of a 1 m x 1 m sample plot. 

The rice yield estimates were determined using the CCE method, which is used to estimate rice 

yield per unit area at district and regional levels by government agencies (FAO, n.d.). The rice stems 

and grains were dried separately at 80° Celsius for 48 hours and then weighed to determine the 

dry weight of the leaf, stem, and grain materials. The measurement locations in each field were 

recorded using a handheld GPS (WGS 84, Zone 47North) to locate them in the satellite data. The 

measured rice biophysical data was averaged at each of the four measurement locations in each 

field. Those where the standard deviation (S.D.) was > +/- 1 S.D. were assumed to be in error and 

removed, and the average recalculated. 

Pearson’s correlation coefficient was used to assess the relationship between the rice biophysical 

variables as a function of both the individual growth stage and overall growth stages (P = 0.05). 

The analysis was further stratified according to irrigated and non-irrigated methods. Finally, an 

analysis of the correlation between the rice biophysical variables and rice yield is carried out since 
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this research aims to develop a method which facilitates yield estimation using remotely-sensed 

data (discussed in Chapter 5). 

 

Figure 4.7 Flowchart illustrating the analysis. 

4.3 Results 

4.3.1 Rice planting characteristics 

In the study area, the fields sampled contained eight main photoperiod-sensitive rice varieties 

(Figure 4.8) and one photoperiod sensitive variety (Khao Dawk Mali105 or called HomMali105). 

One characteristic of the HomMali105 variety is its long growing period of 115 - 120 days. 
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Figure 4.8 Rice varieties in study area: Phichit (blue), Ang Thong (orange), and Pathum Thani 

(grey). 

As evident from Figure 4.8, many rice varieties are grown in irrigated and non-irrigated fields. 

Phichit is the only province that contains both irrigated and non-irrigated areas, where most (6) 

field sites were irrigated and contain the RD41 (6) rice variety (see Table 4.1 for more detail). 

However, the non-irrigated areas contained a more significant number of rice varieties (6). Ang 

Thong province contained four rice varieties in five sample fields, whilst in Pathum Thani there 

were four rice varieties across five sample fields. In all three provinces, the planting date varied 

between the 4th and 24th of May (see Table 4.3). 

Table 4.3 Planting date of sampling fields in Phichit (PC), Ang Thong (AT), and Pathum Thani (PT). 

Sample unit Planting date Irrigation system Rice variety Field size (Ha) 

PC1 8 May 2017 Irrigated RD41 0.61 

PC2 16 May 2017 Irrigated Phitsanulok2 0.22 

PC3 5 May 2017 Irrigated RD41 0.93 

PC5 10 May 2017 Irrigated RD41 0.63 

PC7 12 May 2017 Irrigated RD61 0.84 

PC9 12 May 2017 Non-Irrigated Phitsanulok2 0.25 

PC10 4 May 2017 Non-Irrigated Phitsanulok2 0.61 

PC11 10 May 2017 Non-Irrigated RD49 0.35 

PC12 18 May 2017 Non-Irrigated RD49 0.44 

PC13 5 May 2017 Irrigated RD41 0.25 

PC14 18 May 2017 Non-Irrigated RD13 1.52 
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Sample unit Planting date Irrigation system Rice variety Field size (Ha) 

PC15 21 May 2017 Non-Irrigated RD31 0.67 

AT1 24 May 2017 Irrigated RD41 0.95 

AT2 22 May 2017 Irrigated Phitsanulok2 1.15 

AT3 24 May 2017 Irrigated RD41 1.10 

AT4 24 May 2017 Irrigated RD49 0.65 

AT5 20 May 2017 Irrigated RD47 0.46 

PT1 8 May 2017 Irrigated HomMali105 2.19 

PT2 8 May 2017 Irrigated RD47 0.98 

PT3 6 May 2017 Irrigated RD49 1.78 

PT4 20 May 2017 Irrigated RD49 8.09 

PT5 4 May 2017 Irrigated RD57 1.46 

Average field size in irrigated area (ha) 1.39 

Average field size in non-irrigated area (ha) 0.64 

Table 4.3 illustrates the average planting date in Phichit, Ang Thong, and Pathum Thani was 11th, 

22nd and 9th May, respectively. In Phichit, the average of planting date varied by four days on 

average between irrigated and non-irrigated areas. The average field sizes in Phichit, Ang Thong, and 

Pathum Thani were 0.61, 0.86, and 2.9 ha, respectively, while irrigated areas (1.39 ha) were on 

average larger than non-irrigated areas (0.64 ha). The sample field sites contained two rice 

cropping patterns, direct seeding and transplanting. Direct seeding involves planting rice seeds 

directly into the paddy, either by ploughing or harrowing depending on the level of land 

preparation. Most farmers prepare pre-germinated seeds by soaking the rice seeds for one day, 

incubating them for two days, and then sowing them into the flooded or mud field (‘wet direct 

seeding’), while some sow into dry soil (‘dry direct seeding’). Transplanting involves soaking rice 

seeds for 24 hours until incubating for 48 hours until root emergence, then sowing the rice 

sprouts into dry or wet paddy fields. Irrespective of the planting method, rice sowing will either 

be conducted manually or by machine, which influences the stem density. In the study area, most 

farmers adopted direct seeding in well-puddled seedbeds or shallow standing water. The variation 

in agricultural practices employed in the study area is illustrated in Figure 4.9. 
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Figure 4.9 Rice cropping pattern in study area derived from farmer interviews. 

Figure 4.9 indicates that the majority (82%) of the sampled fields utilised direct wet seeding, and 

therefore most fields are flooded (85%). Mechanisation, applied to enhance agricultural 

productivity in pre- or post-harvest, accounts for 50%, 66%, and 83% of rice planting in Phichit, 

Ang Thong, and Pathum Thani, respectively. 

Most of the measurements collected in the field sites are rice biophysical variables (e.g. stem 

density, height, panicle length, PAR /LAI, chlorophyll content, wet and dry biomass, moisture content 

and yield), although measurements of water depth were also made, as water is released into the 

paddy fields for rice germination and then drained at the start of the panicle stage. Water depth 

was measured as it provides the background signal in remotely sensed measurements in the early 

growth stages and influences the amount of vegetative material visible above the water surface. 

The presence of water influences optical remote sensing measurements by reducing reflectance 

by up to 28% depending on view zenith angle due to changes in the surface anisotropy (Sun et al., 

2017).   

c) Labour and machine 

a) Rice cropping pattern b) Paddy field characteristics when seeding 
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Temporal variations of water depth and rice height are analysed and presented in Figure 4.10 and 

Table 4.4. The average rice height in the tillering, panicle, flowering, and harvesting stages was 

49.4, 80.9, 97.2 and 98.9 cm, respectively, and demonstrate the rapid development of height in 

the panicle stage. The average rice height in Pathum Thani in the harvesting stage was higher than 

in other provinces due to the use of the HomMali105 variety, which is taller than others. When 

assessed as a function of the irrigation method, the difference in rice height between irrigated 

and non-irrigated rice increases by 0.64, 1.22, 3.48, and 6.54 cm in the tillering, panicle, flowering, 

and harvesting stages, respectively. The average water depth in the seeding, tillering, panicle, 

flowering, and harvesting stages are 2.83, 4.69, 4.45, 3.66, and 1.5 cm, respectively. Surprisingly, 

the water depth difference between irrigated area and non-irrigated area reveals only minor 

variation of between 0.5 – 2.5 cm through the growing season. However, there is no water depth 

in non-irrigated areas during the flowering and harvesting stage. The slight difference in water 

depth is partly due to the field sites being in regions where precipitation is high (see Chapter 3, 

Figure 3.1). 

a) Overall and differences in irrigation systems 
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b) Phichit 
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c) Ang Thong 

 
d) Pathum Thani 

 

Figure 4.10 Average rice height (cm), water depth (cm), and height difference between rice 

height and water depth (cm). a) Overall provinces and different irrigation system,  

b) Phichit, c) Ang Thong, and d) Pathum Thani. 
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Table 4.4 Summary of rice height, water depth, and difference in rice height and water depth at different rice phenological stages. 

 

 

 

Irrigation 
system 

Seeding Tillering Panicle Flowering Harvesting 
Water 
depth 
(cm) 

Rice 
height 
(cm) 

Water 
depth 
(cm) 

Absolute 
height 
(cm) 

Rice 
height 
(cm) 

Water 
depth 
(cm) 

Absolute 
height 
(cm) 

Rice 
height 
(cm) 

Water 
depth 
(cm) 

Absolute 
height 
(cm) 

Rice 
height 
(cm) 

Water 
depth 
(cm) 

Absolute 
height 
(cm) 

Overall              
Mean 2.83 49.48 4.69 44.79 80.92 4.45 76.47 97.2 3.66 93.54 98.91 1.5 97.41 
S.D. 0.85 2.47 1.07 2.36 2.41 0.84 2.87 1.77 0.78 1.83 1.57 0.58 1.52 
Irrigated               
Mean 2.44 49.66 4.89 44.77 81.52 3.94 77.58 96.25 4.34 91.91 97.16 1.65 95.51 
S.D. 0.9 2.25 1.39 2.28 2.37 0.94 2.82 2.2 0.94 2.17 1.86 0.79 1.77 
Non-irrigated              
Mean 3.87 49.02 4.15 44.87 79.3 5.82 73.48 99.73 1.82 97.91 103.6 1.13 102.47 
S.D. 2.11 7.27 1.41 6.63 6.64 1.78 7.82 2.79 1.13 2.89 2.07 0.44 1.9 
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4.3.2 Rice biophysical variable measurements 

4.3.2.1 Stem density 

Stem density influences the competition between rice plants and, along with the rice height and 

variety, can influence rice yield through competition for sunlight  (Liu et al., 2017;  Phan et al., 2017). 
Therefore, the appropriate method of determining plant population is to manually count total number 

of rice stems. The number of rice stems per unit area (1 m x 1 m) was measured at each growth stage 

using a quadrat divided into nine equal areas (Figure 4.9), with the inside diameter of 33.3 cm x 33.3 

cm per small grid, as shown in Figure 4.11. 

 

Figure 4.11 Rice stems density in all provinces (a), Phichit (b), Ang Thong (c), and Pathum Thani (d). 

Stem densities are most remarkable in the seeding and panicle stage and vary between 250 and 

500 stems m-2, which reduces considerably to the harvesting stage (120 -150 stems m-2). Stem 

density is higher in irrigated than the non-irrigated areas in most phenological stages, but the 

difference is reduced in the seeding stage to ~ 50 stems m-2. The results indicate that irrigated 

areas have higher rice stem density, although it is yet to be seen how this translates into other 

biophysical parameters. The dramatic decrease in stem density between the tillering and 

harvesting stages is due to the development of flag leaves or uppermost leaves in the grain-filling 

b) Phichit 

c) Ang Thong d) Pathum Thani 

a) Overall 
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stage, which increases the competition for light between plants and ultimately reduces the 

number of plants (Whaley et al., 2000). 

4.3.2.2 Dynamics of photosynthetically active radiation (PAR) and leaf area index (LAI) 

The leaf area index (LAI) is an important variable in ecosystem function which is related to plant 

photosynthesis, respiration, and transpiration of crops (Gower, Kucharik, & Norman, 1999) and 

characterises the amount of green leaf material within the canopy per unit ground area (1 m x 1 

m). It is now routinely estimated using remotely sensed data and is an essential climate variable 

(ECV). Furthermore, the LAI is a crucial parameter in agronomic research that is used for crop 

growth monitoring (Ali et al., 2020; Daniela Stroppiana et al., 2006) and dynamic simulation 

between water and nitrogen diagnosis in different irrigation system (Adeluyi et al., 2021; Liu et al., 

2018). Estimates of LAI were derived using AccuPAR indirect optical measurements (SunScan 

ceptometer), which measure the canopy gap fraction or transmittance. Using the ceptometer, five 

reading were made under the canopy and one above the canopy, which measures the incident 

radiation (Casa, Upreti, & Pelosi, 2019). The LAI is derived from the PAR measurements using 

Equations 4.1-4.3 and measured from the tillering to harvesting stages (Table 4.5). 

Table 4.5 LAI converted from PAR measurement. 

Irrigation system Statistic LAI (m2 m-2) 
Tillering Panicle Flowering Harvest 

Overall Average 2.36 3.65 4.3 3.89 
S.D. 0.16 0.23 0.23 0.19 

Irrigated Average 2.34 3.55 4.22 3.86 
S.D. 0.18 0.24 0.28 0.21 

Non-irrigated Average 2.39 3.93 4.53 3.98 
S.D. 0.37 0.58 0.41 0.43 

Across all sites the LAI peaked in the flowering stage with an average LAI of 4.3 m2 m-2 in all sites and 

4.22 and 4.53 m2 m-2 in irrigated and non-irrigated areas, respectively. The significant increase in 

LAI in the flowering stage is due to the production of flag leaves occurring in the transition from 

crop growth to grain production through their increased photosynthetic capacity (Acevedo-Siaca, 

Coe, Quick, & Long, 2021). The LAI in non-irrigated areas is only marginally higher than that found 

in irrigated areas, which also typically has a more significant standard deviation. It should be noted 

that integrated within the results shown in Table 4.5 is the influence of rice variety and their 

differing structural characteristics. This is illustrated in Figure 4.12, which shows the temporal 

dynamics of LAI as a function of the rice variety.  
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Figure 4.12 PAR-derived LAI for all field sites highlighting the influence of rice variety on the 

magnitude and seasonal evolution of LAI. 

It is evident from Figure 4.12 that rice variety influences both LAI magnitude and its temporal 

dynamics, which has clear implications for estimating LAI using satellite observations. Overall field 

sites, the average LAI in non-irrigated areas was higher (3.7 m2 m-2) than in irrigated areas (3.55 

m2 m-2). In the irrigated area, the RD47 rice variety LAI peaks in the panicle stage whilst the RD41 

peaks in the flowering stage, and this difference is due to the shedding of rice leaves. This 

illustrates the variability in the structural characteristics of different rice varieties even though 

they were planted at the same time and under the same conditions. Nicknejad et al. (2009) noted 

that the variation in LAI from different rice varieties occurred due to differences in  rice ripening. 

Only two rice varieties were planted in irrigated and non-irrigated areas, both found in two 
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sampling fields (Figure 4.8). The LAI of the Phitsanulok2 variety was greater in non-irrigated areas 

from the panicle (DOY 200) to harvesting (DOY 229) stages. The LAI of RD49 is higher in non-

irrigated areas during the tillering (DOY 179) and panicle (DOY 200) stages but lower in the 

flowering (DOY 223) and harvesting (DOY 231) stages compared to LAI in irrigated areas.  

The main rice variety in the study area is RD41 is found only in irrigated areas and has a peak LAI  

(4 m2 m-2) in the flowering stage (DOY 219). When analysed at the provincial level, the variation in 

the temporal dynamics of LAI was related to differences in agricultural practices, weather 

conditions, and rice variety. It is clear that LAI is strongly linked to rice variety and possibly the 

irrigation system used, with peaks in LAI occurring at different growth stages according to variety. 

Increasing rice height and LAI, especially the heading stage, improved rice yield on short-duration 

rice variety in tropical Asia by increasing the crop growth rate (CGR), net assimiliation rate (NAR), 

and mean LAI in the reproductive stage (Zhou et al., 2021). In all varieties, the maximum LAI was 

found in the flowering stage when rice plants develop grains before decreasing through to the 

harvesting stage. Similar seasonal dynamics in LAI and equally large variations in LAI magnitude 

were also found by Fang et al. (2014). They found that the AccuPAR-derived LAI was 

underestimated due to the influences of stem and yellow leaf area index, particularly at the end 

of the growing season. The lower LAI in the harvesting stage is due in part to leaf senescence 

which is detected as plant area index (PAI) by some methods (e.g. hemispherical photos), and 

some leaf fall as even the PAI reduces in this stage (Fang et al., 2014). It is also relevant to 

consider the influence of stem density (Figure 4.11), which was found to peak in the tilltering 

stage before reducing through the growing season in response to increased competition for light. 

In contrast, the LAI increases through the growing season and broadly peaks in the flowering 

stage when the total dry matter is also high (Moradpour et al., 2011). Most crops integrate the LAI 

into crop simulation models for yield estimation (Curnel et al., 2011; He et al., 2017; Zhao & Pei, 

2013).   

4.3.2.3 Chlorophyll content 

Chlorophyll is a photosynthetic pigment that controls leaf photosynthetic capacity and plays an 

important role in the photosynthesis process and vegetation growth. Leaf chlorophyll 

concentration varies among rice leaves during the growing season, and studies have found a strong 

correlation between chlorophyll concentration and rice yield (Ramesh et al., 2002). Therefore, 

chlorophyll concentration was measured using an in-situ optical technique with MultispeQ during 

different growth stages. The results for all study sites and irrigated and non-irrigated sites are 

shown in Table 4.6 and Figure 4.13. 
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Table 4.6 Chlorophyll content as a function of growth stage for all field sites, irrigated and non-

irrigated sites. 

Irrigation system Statistic Chlorophyll content (µmol m-2) 
Tillering Panicle Flowering Harvest 

Overall Average 28.46 34.27 41.06 27.93 

S.D. 2.63 1.05 0.75 1.26 

Irrigated Average 25.28 35.05 41.27 27.32 

S.D. 3.19 1 0.85 1.58 

Non-irrigated Average 36.94 32.21 40.5 29.55 

S.D. 2.39 2.77 1.68 1.97 

Table 4.6 illustrates the variation in chlorophyll content with growth stage and according to the 

irrigation system. Leaf chlorophyll content peaked during the flowering stage before decreasing in 

the harvesting stage, which matches the findings of Ata-Ul-Karim et al. (2016) and has similar 

dynamics to the LAI (Table 4.5). The variation in the average chlorophyll concentration as a 

function of irrigation is inconclusive, with rice cultivated in irrigated areas having higher 

chlorophyll concentrations in the panicle and flowering stages. However, there is a more excellent 

range of values in the non-irrigated sites. 

a) Chlorophyll content over all field sites 
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b) Chlorophyll content in Phichit 
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c) Chlorophyll content in Ang Thong 

 
 

d) Chlorophyll content in Pathum Thani 

 
Figure 4.13 Chlorophyll content stratified according to rice variety and irrigation system. a) 

Chlorophyll content according to irrigation system (all sites), b) Phichit, c) Ang Thong 

and d) Pathum Thani. 

The range of chlorophyll concentration in the irrigated and non-irrigated areas is influenced by 

the rice variety (Figure 4.13a), particularly in the tillering stage when the chlorophyll content 

varied by a factor of ~4. The chlorophyll concentrations found in irrigated and non-irrigated rice 

are broadly similar. However, the range of values is more excellent in irrigated areas, which have 

a more defined profile, and which show a significant decrease in the mature stages. Two rice 

varieties, Phitsanulok2 and RD49, are grown in irrigated and non-irrigated areas. The former has 

quite different chlorophyll values in the tillering stage, with a difference of 31.86 µmol m-2, whilst the 

panicle, flowering, and harvesting stages are similar, at 1.26, 0.88, and 4.15 µmol m-2, 

respectively. In both irrigated and non-irrigated areas, the chlorophyll concentration of RD49 
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displayed large fluctuations but tended to have higher concentrations when irrigated, with an 

average difference of 3.95 µmol m-2. On a provincial level, the upturned bowl shape of chlorophyll 

concentration found in the irrigated areas is more apparent relative to the flatter profiles in non-

irrigated areas. Ata-Ul-Karim et al. (2016) also found considerable seasonal variation between two 

rice varieties but also found that nitrogen fertilisation had an enormous impact on chlorophyll 

concentration, although a more modest impact on the temporal trend. The photosynthetic light 

use efficiency (LUE) refers to the efficiency of a plant’s use of the absorbed radiation energy to 

produce biomass (Quero et al., 2019) and is influenced by the leaf chlorophyll concentration 

(Slattery et al., 2017; Zheng et al., 2021).  

4.3.2.4 Wet and dry biomass 

Theoretically, the above-ground biomass (AGB) is an advantage for rice yield estimation as it 

reflects rice growth status. Here, the AGB explore their potential for yield estimation derived from 

the ground- based and satellite platforms. After cutting rice roots, rice samples were oven dried 

until constant weight. Three main growth stages where wet and dry biomass was measured are 

the panicle, flowering, and harvesting stages (Figure 4.14). 

a) Mean of wet and dry biomass in overall study area 
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b) Mean of wet and dry biomass in different irrigation systems 

 
 

 
Figure 4.14 Wet and dry biomass. a) Mean of total wet and dry biomass in overall study area, b) 

Mean of total wet and dry biomass in different irrigation systems. 

Figure 4.14 illustrates the variation in wet and dry rice biomass in the study area. Analysis of the 

entire dataset in the panicle stage indicates wet and dry biomass (in brackets) values of the total 

material, only the stems, and only the grain was 41.53 (14.44), 34.08 (10.82), and 7.44 (3.62) g m-2, 

respectively. Biomass increases through the flowering stage, peaking in the harvesting stage with 

wet and dry biomass (in brackets) values of 133.48 (48.02), 99.33 (26.29), and 33.77 (21.74) g m-2 for 

the whole rice plant, stems, and grains, respectively. This differs from the LAI, which was lower in 

the harvesting stage due to the influence of senescent (non-green) leaves that are not 

photosynthetically active. Irrigation systems influence on plant biomass, with the biomass in 

irrigated areas being 21.5 g m-2 greater than that found in non-irrigated areas in the flowering 

stage and 11.6 g m-2 in the harvesting stage. In the case of dry biomass, the differences between 
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irrigated and non-irrigated areas were 4.88 and 3.05 g m-2 in the flowering and harvesting stages, 

respectively. A more excellent range in biomass was found in each growth stage in irrigated 

systems, particularly in the harvesting stage, which varied between 50-250 g m-2 and 100-180 g m-2 

in irrigated and non-irrigated areas, respectively. The influence of rice variety on wet and dry 

biomass in the overall study area and different irrigation systems is shown in Figure 4.15. 

a) Wet and dry biomass in overall study area  

 
b) Wet and dry biomass in different irrigation systems  
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Figure 4.15 a) Wet and dry biomass in overall study area, b) Wet and dry biomass in the different 

irrigation systems by specific rice variety. 

Figure 4.15 illustrates the variation in wet and dry biomass for different rice varieties. Rice 

biomass in irrigated areas was typically higher than that in non-irrigated areas in the flowering 

stage, with average wet total biomass and dry biomass in brackets 121 (34) and 100 (29) g m-2, 

respectively. In comparison, rice biomass in irrigated areas was lower than biomass in the non-

irrigated areas in the harvesting stage with average wet total biomass and dry biomass in brackets 

130 (49) and 142 (46) g m-2, respectively. Even the grain biomass is higher in the irrigated areas 

(34 g m-2) than in non-irrigated areas (32 g m-2) (He et al., 2022). Sufficient water is impacted on 

grain development. The grain panicle seems to initiate in the panicle stage for irrigated areas 

while the grain occurs in the flowering stage for non-irrigated areas. The biomass is highest in the 

harvesting stage, whilst LAI or stems density reduce in the same growth stage (Choudhury et al., 

2007; Li et al., 2020). The reason for lower LAI after flowering is saturation and  increased  non-

photosynthetic active plant tissue (Jonckheere et al., 2004; Leblanc & Chen, 2001). Typically, wet 

biomass varied between 41.5 and 130.3 g m-2 in irrigated areas and 99.8 and 141.9 g m-2 in non-

irrigated areas. The wet biomass for RD49 and Phitsanulok2 rice varieties was broadly similar, 

with an average difference of 25 and 1.3 g m-2 in irrigated and 10.7 and 43.2 g m-2 in non-irrigated 

areas, respectively. Figure 4.15 illustrates the variation in rice biomass by growth stage but also 

shows that different rice varieties have different temporal dynamics. For example, the biomass 

for RD31 (Figure 4.15a) increased through the growing season, whilst RD49 decreased in the 

harvesting stage. As noted with the LAI, the influence of rice variety on biomass has implications 
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for using EO data to estimate rice biophysical variables. The minimum and maximum wet biomass 

is 14.27% and 215.45% of the average total wet biomass (119.13 gm-2), whilst the minimum and 

maximum dry biomass are 23% and 215.36% of the average total dry biomass (38.65 g m-2). 

Knowledge of the rice variety being grown would help reduce this uncertainty, and this variation 

should be taken into account when collecting field data for use in developing and validating EO-

derived biophysical parameter estimates.  

4.3.2.5 Rice yield 

The results reveal that irrigated and non-irrigated areas have similar productivity where the average 

rice yield was 4.87 tonnes/ha and 4.78 tonnes/ha, respectively. When accounting for all 

agricultural land under irrigated and non-irrigated rice production, the total production would be 

787,794 tonnes in irrigated area and 542,516 tonnes in non-irrigated area with a difference of 

~245,000 tonnes. These results show that there is a yield gap among different irrigation systems. 

 

Figure 4.16 Rice yield separate by the irrigation system and province 

4.3.3 Correlation on rice biophysical variables 

The following section investigates the correlation among rice biophysical variables at each growth 

stage and overall growth stage, to determine which might be the best predictor of rice yield and 

the extent to which this depends on irrigation system. Doing so allowed different stages of growth 

would allow assessment of the potential to estimate yield using a particular biophysical 

parameter earlier in the growing season and therefore aiding early yield prediction. The rice 

biophysical variables assessed include stem density, height, water depth, awns length, LAI, wet 
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and dry biomass (total, stem, and grain), and yield. The selected results of the significance 

statistical analysis are presented in Table 4.7 and that the rest of the results can be found in 

Appendix E. 

Table 4.7 Correlation between yield and rice biophysical variables as a function of growth 

stage. 

Area Rice variable Correlation Stage 
Seeding Tillering Panicle Flowering Harvesting Overall 

Overall 
area 

Height r 
sig.  

NA 0.37* 
(0.09) 

0.07 
(0.77) 

-0.19 
(0.4) 

-0.1 
(0.66) 

0.03 
(0.78) 

Wet grain 
biomass 

r 
sig. 

NA NA 0.95 
(0.21) 

0.45** 
(0.04) 

0.30 
(0.17) 

0.27* 
(0.07 

Dry grain 
biomass 

r 
sig. 

NA NA 0.94 
(0.22) 

0.43** 
(0.05) 

0.28 
0.21 

0.21 
0.16 

Irrigated 
Area 

Stem density r 
sig. 

0.45* 
(0.08) 

0.23 
(0.39) 

-0.39 
(0.16) 

-0.46* 
(0.08) 

0.2 
(0.46) 

0.08 
(0.47) 

Wet grain 
biomass 

r 
sig. 

NA NA 0.95 
(0.21) 

0.47* 
(0.08) 

0.37 
(0.15) 

0.31* 
(0.08) 

Non-
irrigated 
area 

Height r 
sig.  

NA 0.74* 
(0.09) 

0.35 
(0.5) 

-0.37 
(0.47) 

0.81** 
(0.05) 

0.19 
(0.38) 

Chlorophyll 
content 

r 
sig.  

NA -0.38 
(0.46) 

-0.8 
(0.6) 

-0.58 
(0.22) 

-0.09 
(0.86) 

-0.36* 
(0.08) 

Chlorophyll 
content 

r 
sig.  

NA -0.38 
(0.46) 

-0.8 
(0.6) 

-0.58 
(0.22) 

-0.09 
(0.86) 

-0.36* 
(0.08) 

Wet total 
biomass 

r 
sig.  

NA NA NA -0.44 
(0.38) 

-0.97** 
(0.00) 

-0.58** 
(0.05) 

Wet stem 
biomass 

r 
sig. 

NA NA NA -0.57 
(0.24) 

-0.95** 
(0.00) 

-0.69** 
(0.01) 

Dry total 
biomass 

r 
sig. 

NA NA NA -0.23 
(0.66) 

-0.97** 
(0.00) 

-0.32 
(0.31) 

Dry stem 
biomass 

r 
sig. 

NA NA NA -0.63 
(0.18) 

-0.93** 
(0.00) 

-0.69** 
(0.01) 

 
Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed) 
NA No measurement  

The correlations presented in Table 4.7 illustrate that none of the rice biophysical variables 

significantly correlated in the seeding, tillering or panicle stages. When assessing the correlation 

using data from all areas, only wet grain biomass in the flowering stage had a significant but weak 

correlation (r = 0.45). The situation was similar in irrigated areas, where no parameters had a 

significant relationship with the yield at any growth stage. In non-irrigated areas, significant 

correlations were found between rice yield and total wet biomass, wet stem biomass, total dry 

biomass, and dry stem biomass: -0.97, -0.95, -0.97, and -0.93, though all in the late stages of the 

growing season. The results indicate that none of the rice biophysical variables offered a 

consistent way to estimate rice yield, particularly earlier in the growing season, which would be 

advantageous for crop management and food security. However, as evident from previous 

analysis, the influence of rice variety could be significant, and therefore it is vital to conduct this 

analysis as a function of the two rice varieties with the most samples and irrigation method.  
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Table 4.8 Correlation between yield and rice biophysical variables as a function of rice variety 

in irrigated areas. 

Rice variable Correlation HomMali
105 

Phitsanulok2 RD41 RD47 RD49 RD57 RD61 

Chlorophyll 
content 

r 
sig.  

.c 0.21 
(0.63) 

-0.11 
(0.61) 

-0.17 
(0.69) 

-0.52* 
(0.08) 

.c .c 

Wet total 
biomass 

r 
sig.  

.c 0.29 
(0.71) 

0.64** 
(0.02) 

-0.54 
(0.46) 

0.19 
(0.72) 

.c .c 

Wet stem 
biomass 

r 
sig. 

.c 0.26 
(0.74) 

0.65** 
(0.02) 

-0.52 
(0.48) 

0.17 
0.75) 

.c .c 

Wet grain 
biomass 

r 
sig. 

.c 0.4 
(0.6) 

0.54* 
(0.06) 

-0.29 
(0.72) 

0.16 
(0.76) 

.c .c 

Dry total 
biomass 

r 
sig. 

.c 0.36 
(0.64) 

0.63** 
(0.02) 

-0.39 
(0.61) 

0.25 
(0.63) 

.c .c 

Dry stem 
biomass 

r 
sig. 

.c 0.37 
(0.64) 

0.7** 
(0.01) 

-0.52 
(0.48) 

0.3 
(0.56) 

.c .c 

Dry grain 
biomass 

r 
sig. 

.c 0.19 
(0.81) 

0.5* 
(0.08) 

-0.22 
(0.79) 

-0.06 
(0.92) 

.c .c 

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed) 

NA No measurement  

Table 4.8 demonstrates the relationship between rice yield and other rice biophysical variables in 

irrigated areas (i.e. RD41 (6 sample units), RD47 (2 sample units), RD49 (3 sample units), 

Phitsanulok2 (2 sample units), and RD57/RD61/HomMali105 (1 sample unit each)). Again, the 

results reveal the strongest correlations with RD41 variety for total wet biomass (r = 0.64), wet 

stem biomass (r = 0.65), total dry biomass (r = 0.63), and dry stem biomass (r = 0.7), which has the 

most samples. The findings for non-irrigated areas are presented in Table 4.9 but have poor 

relationships between yield and rice biophysical variables. 

Table 4.9 Correlation coefficient between yields with rice biophysical variables in non-irrigated 

areas for different rice varieties. 

Rice variable Correlation Phitsanulok2 RD13 RD31 RD49 
Wet total biomass r 

sig.  
0.2 

(0.8) 
.c .c -0.97** 

(0.03) 

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed) 

NA No measurement 

The correlation coefficients are weak and variable for all biophysical parameters as a function of 

both rice variety and irrigation approach, although the number of samples in both instances is 

small. Further analysis of the relationship between yield and biophysical variables for the specific 

rice variety RD41, which has the most (6) samples, for different growth stages was carried out 

(Table 4.10). 
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Table 4.10 Correlation of RD41 overall and in each growth stage. 

Rice variable Correlation Seeding Tillering Panicle Flowering Harvesting Overall 
Stem density r 

sig. 
0.05 

(0.93) 
0.4 

(0.43) 
0.11 

(0.84) 
-0.86* 
(0.03) 

0.15 
(0.77) 

-0.79** 
(0.00) 

Height r 
sig.  

NA 0.47 
(0.35) 

0.04 
(0.93) 

0.36 
(0.48) 

0.21 
(0.69) 

0.67** 
(0.00) 

Chlorophyll 
content 

r 
sig.  

NA -0.72 
(0.11) 

-0.06 
(0.91) 

0.49 
(0.32) 

-0.04 
(0.93) 

0.64** 
(0.00) 

Wet total 
biomass 

r 
sig.  

NA NA 1.00** 0.62 
(0.26) 

0.87** 
0.02 

0.67* 
(0.01) 

Wet stem 
biomass 

r 
sig. 

NA NA 1.00** 0.62 
(0.27) 

0.85** 
(0.03) 

0.69** 
(0.01) 

Wet grain 
biomass 

r 
sig. 

NA NA 1.00** 0.63 
(0.26) 

0.83** 
(0.04) 

0.57** 
(0.04) 

Dry total 
biomass 

r 
sig. 

NA NA 1.00** 0.67 
(0.22) 

0.94** 
(0.00) 

0.62** 
(0.02) 

Dry stem 
biomass 

r 
sig. 

NA NA 1.00** 0.68 
(0.21) 

0.89** 
(0.02) 

0.67** 
(0.01) 

Dry grain 
biomass 

r 
sig. 

NA NA 1.00** 0.65 
(0.24) 

0.87* 
(0.03) 

0.52* 
(0.07) 

 
Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed)  
NA  No measurement 

The result in Table 4.10 indicates that yield is best related to wet and dry biomass in the 

harvesting stage, where the correlation (r) ranges between 0.83 and 0.94. The relationship 

between rice yield and total dry biomass was strong, although there were only six data points. 

 

Figure 4.17 Correlation between yield and wet and dry biomass for the RD41 rice variety. 

c) Dry grain biomass 

b) Dry stem biomass a) Dry total biomass 

d) Wet total biomass 
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4.4 Discussion 

This chapter investigated the variation in rice biophysical variables throughout the growing season 

as a function of irrigation method and rice variety. One of the aims of this study was to assess the 

relationship between various biophysical and structural characteristics and rice yield. The purpose 

of doing so is the potential to estimate rice yield using more easily obtained biophysical 

parameters and be able to do so earlier in the growing season. An extensive dataset of rice 

biophysical parameters was collected through the growing season and under different land 

management practices. To the best of our understanding, this is the first to do so, considering the 

irrigation methods and rice variety. The results indicate that the temporal dynamics of rice 

biophysical parameters and rice structural characteristics are influenced by environmental 

conditions, irrigation system, and rice variety. The findings indicate that rice height and biomass 

peak in the harvesting stage, whist the planting density is highest in the seeding and tillering stage 

and tends to decrease through the growing season as the rice matures (Figure 4.11). The more 

leaf area indicates the high absorb capability to capture solar radiation for crop photosynthesis 

(Ermanto et al., 2021). Rianto et al. (2019) proved influences on rice varieties and planting 

cropping patterns with the percentage of canopy cover. Increasing LAI depends on the increased 

tiller number and lengths of rice leaves, which is the tiller’s rate different with rice variety. 

Research investigated the differences of LAI in various rice varieties on Tarom, Neda, Shafagh, and 

Fajr varieties were 3.97, 5.09, 4.24, and 4.9 m2 m-2 (Nicknejad et al., 2009). The LAI (Table 4.5 and 

Figure 4.12) displays considerable variability in its dynamics through the growing season due to 

the influence of rice variety. It is often highest in the flowering stage in all regions and irrespective 

of irrigation system, although some rice varieties (e.g. RD47, RD61) peak in the panicle stage due 

to their dominant rice characteristics. 

Other studies have found LAI to vary with rice variety (Bronge & AB, 2004; Chen et al., 2007; 

Leonenko et al., 2013; Zheng & Moskal, 2009). Rice height and leaf area distribution impacted the 

competition for light and nitrogen; then, they are effect on the growth of rice biomass in the final 

(Burgos et al., 2006; Graf et al., 1990). In addition, the competition for light on rice proved 

changes in morphological traits for light capturing and absorbing water and nutrients (Schaedler, 

Taborda, Goulart, Chiapinotto, & Pinho, 2020). A research analysed the LAI development in 

different irrigation and irrigation management; the result revealed the LAI under shallow water 

depth (SWD) in paddies were different compared with the continuous flooding (CF), with the 

varied correlation between LAI and treatment ranged 0.46-0.88 (Maftukhah et al., 2019) and 

coherent with tillering’s rate (Zhong et al., 2002).The limitation of LAI is the foliage in the paddy. 

The relationship between LAI and foliage area index (FAI) had been investigated and the LAI-FAI 

estimation was significantly correlated with rice grain yield (Aschonitis et al., 2014). Finally, the 
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correlation between rice yield and biophysical parameters is typically poor although marginally 

better for wet and dry biomass in the flowering stage, which is close to panicle emergence. 

Earth observation data has been widely applied to map areas of rice production (Kuenzer & 

Knauer, 2013; Oyoshi, Tomiyama, Okumura, & Sobue, 2013; Stroppiana et al., 2019; Zhang et al., 

2015; Zhang et al., 2018; Zhao et al., 2016) and to estimate rice biophysical parameters using 

optical and radar observations. One of the objectives of this research was to investigate the 

correlation between rice yield and other biophysical parameters, particularly chlorophyll content 

and LAI. The LAI is a vital plant canopy structural parameter which plays an important role in the 

land-atmosphere energy exchange. As a result, LAI has been routinely estimated using remotely 

sensed data using parametric and physically-based retrieval methods (Verrelst et al., 2015). The 

LAI of rice canopies has been successfully estimated using a wide range of methods, including 

vegetation indices (Ali et al., 2020; Son et al., 2013; Wang, Huang, Tang, & Wang, 2007; Yeom et 

al., 2021) and radiative transfer models (Aboelghar et al., 2010; Adeluyi et al., 2021; Campos-

Taberner et al., 2016, 2018; Darvishzadeh et al., 2012). Gong et al. (2021) investigated the poor 

correlation (not exceeding 0.4 correlations) between eight VIs, LAI, and height because they 

varied on rice varieties (48 rice varieties) in pre- and post-heading. Therefore, determining 

whether LAI correlates with yield would be advantageous and support using EO-derived LAI to 

estimate yield. Our findings indicate that LAI is weakly correlated with yield in all growth stages. 

Rice yield is an essential parameter in quantifying rice productivity when combined with the area 

under rice cultivation. Several approaches utilise EO data to estimate yield using canopy 

reflectance (Chang et al., 2005; Nuarsa et al., 2011; Rahman et al., 2012), time-series analysis 

(Fermandez et al., 2021; Son, Chen, & Chen, 2022), regression models (Paul, Saha, & Hembram, 

2020), and rice growth simulation models (Kandiannan et al., 2002). In addition, radar data have 

been used to estimate rice biomass (Li et al., 2016; Ndikumana et al., 2018), from which yield can 

be estimated. Our analysis indicates that yield is poorly correlated with all the biophysical 

parameters, including LAI and chlorophyll content. This is in contrast to several studies that have 

found a good correlation between LAI and yield (Noureldin et al., 2013). However, LAI is a 

commonly used as an input to a crop growth model from which yield is estimated (Curnel et al., 

2011; Dente, Satalino, Mattia, & Rinaldi, 2008; He et al., 2017; Maki et al., 2017) rather than a 

direct approach to estimate yield.  

The results in this chapter have highlighted the influence of rice variety and irrigation systems on 

rice biophysical parameters and their temporal dynamics. Furthermore, the results indicate that 

rice variety can result in large differences in biophysical parameters at a given growth stage. For 

example, the average LAI peaked in the flowering stage. However, the LAI varied from 2.5 m2 m-2 
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to 6.9 m2 m-2 depending on the rice variety, and some rice varieties peaked in the panicle or 

harvesting stages.  

To remove the influence of rice variety on the biophysical parameter analysis, we focus on the 

rice variety with the most significant number of samples, which was RD41 with 6 samples. The 

RD41 rice variety is characterised by straight clumping, strong and green leaves, straight flag 

leaves, and tolerance to the planthopper pest and irrigation planting in the central areas. The 

results of the correlation analysis are improved when using only RD41, particularly the wet and 

dry biomass (i.e. overall, stem, and grain) in the harvesting stage, which might benefit on yield 

estimation. Irrigation systems provide sufficient water for crop growth and ensure rice production 

efficiency, and our results support this where rice yield is ~55-60% higher (Nonvide, 2017). 

Irrigation development, therefore, allows improved high agricultural yield and contributes to 

government development plans/policies. 

4.5 Conclusion 

The research described in this chapter aimed to investigate the influence of irrigation and rice 

variety on rice biophysical variables, which were measured through the growing season during an 

extensive field campaign. Although it is difficult to disentangle due to the small sample size, our 

findings indicate that rice variety significantly influences the magnitude and dynamics of rice 

biophysical parameters. As a result, attempts should be made to account for rice variety when 

using remotely sensed data to estimate biophysical parameters such as LAI. One of the study’s 

aims was to investigate the correlation between the biophysical parameters and yield at different 

growth stages to determine whether they could use to estimate yield earlier in the season. 

Additionally, if LAI or chlorophyll were correlated with yield, EO-derived LAI or chlorophyll 

estimates may be used to calculate yield. However, in all cases, the correlations were typically low 

and insignificant. When focussing on the most common rice variety in our study area (RD41), the 

most promising correlation with yield were found with total dry biomass and dry stem biomass in 

the harvesting stage, albeit still relatively weak relationships. Therefore, this rice variety will be 

the focus of the next chapter, which investigates rice yield estimation using EO data.  

 





Chapter 5 

133 

Chapter 5 The potential of optical and radar satellite 

observations to estimate rice biophysical 

variables and rice yield estimation 

5.1 Introduction 

The previous chapter investigated the temporal pattern and correlation between essential rice 

biophysical variables in the Chao Phraya River delta, Thailand. The results show how the pattern 

of rice biophysical variables, particularly LAI, biomass, and yield, differ with irrigation systems and 

that rice variety is also essential. The result of the analysis revealed a strong positive correlation 

between rice height, and wet and dry grain biomass with yield but also suggested that; rice 

variety also plays a vital role in the relationship between biophysical variables. At individual 

growth stages, significant correlations between rice biophysical variables were found in the 

tillering and flowering stages. However, the relationship’s strengths varied, with a stronger 

correlation found between some biophysical variables than others depending on the growth 

stage. Thus, the results suggest that rice yield estimation is optimal using biophysical variables in 

the panicle, flowering, and harvesting stages. However, an additional complication is that the 

correlation between rice biophysical variables and growth stages varied across irrigation systems 

and rice variety. Among nine rice varieties in the study area, the RD41 shows the highest 

correlation with biomass. Therefore, it is essential to investigate the potential of using rice 

biophysical variables at particular growth stages to estimate yield. The acquisition of rice growth 

stage data is vital to select the appropriate growth stage to utilise different satellite sensors in rice 

yield estimation effectively. Earlier achieving agricultural information, especially rice yield and 

production, are advantageous for agricultural policy planning and ensuring global food security. 

Remote sensing has the potential to provide information on crops, including their seasonal 

dynamics and the aerial extent, and has been widely applied for rice monitoring and yield 

estimation. Many studies have investigated the association between satellite data and crop 

growth which, in some cases, use satellite-derived rice biophysical variables to estimate potential 

yield (Aboelghar et al., 2010; Campos-Taberner et al., 2017; Gnyp et al., 2014; Hosseini et al., 

2015; Jia et al., 2014; V. Kumar et al., 2013).  Vegetation indices, which are designed to maximise 

sensitivity to the vegetation characteristics whilst minimising external perturbations (e.g. soil 

background and atmospheric effects) The vegetation indices have been widely applied to monitor 

vegetation and to identify crop characteristics such as crop status, stress, water status, phenology 

and crop yield (Bolton & Friedl, 2013; Lopresti et al., 2015; Sjöström et al., 2011; Son et al., 2014). 
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The most commonly used vegetation index is the Normalized Difference Vegetation Index (NDVI, 

Rouse Jr, Haas, Schell, & Deering, 1974), which exploits the contrasting response of red and near-

infrared wavelengths to healthy vegetation. The NDVI has been routinely used for crop mapping 

and monitoring  regional and global scales (Guan, Huang, Liu, Meng, & Liu, 2016; Nguyen, De Bie, 

Ali, Smaling, & Chu, 2012; Pan et al., 2015). By exploiting frequent observations, a time-series of 

NDVI measurements have been used to monitor crop productivity, biomass, and crop phenology 

(Bro-Jørgensen, Brown, & Pettorelli, 2008). The Enhanced Vegetation Index (EVI) builds on the 

NDVI but designed to improve sensitivity over high biomass regions and be more resistant to 

atmospheric effects. The EVI has been widely adopted for crop mapping and monitoring (Gusso et 

al., 2012; Peng et al., 2011; Shihua et al., 2014; Zhang et al., 2015).  

In addition to monitoring and mapping crop dynamics and aerial extent, vegetation indices have 

also been used to estimate crop biophysical variables, including Leaf Area Index (LAI) and Fraction 

of Absorbed Photosynthetically Active Radiation (fAPAR; Fuster et al. (2020); Zhou et al. (2017)). 

Vegetation indices have also been successfully applied to empirically estimate crop yield 

empirically using regression models derived from single- or multi-date data (Bolton & Friedl, 2013; 

Harrell et al., 2011; Liu et al., 2015; Noureldin et al., 2013; Panda et al., 2010). For example, 

Padilla et al. (2012) developed a model to estimate LAI through the growing season based on the 

relationship between LAI and the NDVI, which was subsequently used to parameterize the GRAMI 

rice model (Maas, 1992). A constraint to using optical data for crop monitoring occurs in regions 

of more persistent cloud cover, which can be overcome by exploiting the all-weather capability of 

radar imagery. The backscatter of Synthetic Aperture Radar (SAR) signals is related to the surface 

characteristics, the canopy structure and canopy water content (Kobayashi & Ide, 2022; Phan et 

al., 2021; Soria-Ruiz et al., 2007; Verma et al., 2019). Radar backscatter is sensitive to crop 

structural characteristics such as height, shape, leaves size, and stem density (Choudhury & 

Chakraborty, 2006; Kim, Hong, & Lee, 2008; Koppe et al., 2012; Sudarmanian & Pazhanivelan, 

2019; Wu et al., 2020; Zhang et al., 2017). Additionally, the behaviour of backscatter from rice 

canopies varies with growth stage due to the change in vegetation structure (e.g. plant density, 

height, leaf and panicle initiation) and moisture content, soil moisture, and surface roughness 

(Martinez-Agirre, Álvarez-Mozos, & Lievens, 2017; Bindlish & Barros, 2001; Zhao & Cui, 2013). 

Consequently, SAR has the potential to provide information on vegetation dynamics and canopy 

structure. Several studies have investigated the utility of integrating optical and SAR data to 

monitor crop phenology and estimate biophysical parameters at different growth stages (Biswal 

et al., 2019; Guissard et al., 2006; Lopez-Sanchez et al., 2017; Park et al., 2018; Soria-Ruiz et al., 

2007). For example, Clevers and Van (1996) developed a reflectance model and backscatter 

model to estimate LAI, which was then used as an input to a crop growth model. The benefit of 
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using optical and radar data is that measurements are available throughout the growing season, 

which can be used to parameterize crop simulation models.  

This chapter addresses two research questions. The first objective is to investigate the 

relationship between rice biophysical variables, spectral vegetation indices, and radar backscatter 

at different growth stages and irrigation methods. The second research area will develop a linear 

regression model that relates the satellite measurements with rice yield to estimate yield over a 

large spatial extent and potentially earlier in the growing cycle. The results will be validated with 

official statistical data at the amphoe and provincial levels. 

5.2 Methodology 

5.2.1 Data 

5.2.1.1 Primary data 

The primary data used in this analysis are satellite data and field survey data. Due to the small size 

of rice fields in Thailand (~0.61 hectares), coarse spatial resolution satellite data, such as MODIS, 

are not appropriate despite their daily overpass frequency. Therefore, this study focused on 

medium resolution satellite data from the European Space Agency (ESA) Sentinel programme. 

This includes optical data from the Sentinel-2 Multi-Spectral Instrument (MSI) and SAR imagery 

from space-borne Sentinel-1.  

The MSI onboard Sentinel-2 A and B, which were launched on 23rd June (2015) and 7th March 

(2017), respectively, provide global data every ~5 days (or less) at the equator under cloud-free 

conditions. The MSI contains 13 spectral wavebands between 0.44 um to 2.19 um, a swath width of 

290 km and spatial resolution of 10 m (four visible and near-infrared bands), 20 m (six red edge and 

shortwave infrared bands), and 60 m (three atmospheric correction bands- aerosols, water 

vapour, and cirrus). The Sentinel-1 comprises two polar-orbiting satellites (e.g. ascending and 

descending) operating day and night and collecting measurements using a dual polarisation C-

band imager. Sentinel-1 has a temporal resolution of 6 days for two combined constellations or 12 

days with one at the equator, and a spatial resolution of acquisition modes: strip map (SM; 5 m x 

5 m), interferometric wide swath (IW; 5 m x 20 m), extra-wide swath (EW; 20 m x 40 m), and wave 

(WV; 5 m x 5 m). Sentinel-1 produces dual polarisation polarimetry data in vertical and horizontal 

transmission and receives responses in vertical and horizontal waves. Polarisation illustrates the 

orientation of the plane of oscillation of the propagation signal. Four possible polarisations are 

delivered on different transmissions and receive signals: HH (horizontal transmit and receive), VV 

(vertical transmit and receive), HV (horizontal transmit, vertical receive), and VH (vertical 
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transmit, horizontal receive) (Lusch, 1999). In this analysis, only VV and VH polarised data were 

used as these have been provided in the Southeast Asia region and prove the best correlation 

with rice biophysical. The incidence angle range is 29.1° – 46° and right look direction (side-

looking). The incidence angle is defined as the angle by the radar beam and perpendicular to the 

surface. In principle, the return of microwave signals is strong at a low incidence angle. All 

Sentinel data were directly downloaded from ESA, and only imagery acquired within a week of a 

field campaign in a specific growth stage was selected for processing. Details of image pre-

processing are provided in Section 5.2.4. 

The other primary data used in this chapter are the field experiment data which was the focus of 

analysis in Chapter 4 (page 100-105 details the data collection methodology). In addition, 

measurements of several rice biophysical variables were collected at crucial growth stages 

throughout the wet growing season (May to October) in 2017. GPS measurements at the sampling 

locations allow these measurements to be col-located with the satellite measurements. 

5.2.1.2 Secondary data 

The secondary data used in this chapter are derived from two primary sources at the Office of 

Agricultural Economics (OAE): official statistical data of the area under agricultural production and 

its yield. Besides, the spatial data of rice cultivated areas have been derived through the 

interpretation of Landsat 8 data at the amphoe and provincial levels. The statistical data consists 

of rice production and yield estimates at the amphoe and provincial levels during the 2017 wet 

growing season. These data enable validation of our rice yield estimates. In addition, the spatial 

data allows masking Sentinel imagery into the rice and non-rice cultivated areas. The latter is 

helpful for rice production calculation in the three provinces (i.e. Phichit, Ang Thong, and Pathum 

Thani) representing the upper, middle, and lower Chao Phraya River delta. The other secondary 

data is the spatial dataset of the irrigation boundary, which allows the identification of irrigated 

and non-irrigated rice paddies.      

5.2.2 Satellite data and statistic data preparation 

5.2.2.1 Satellite data download and preparation 

The satellite image acquisition dates are those closest to the time of the field sampling campaign. 

The acquisition dates of Sentinel imagery are shown in Table 5.1 and are largely +/- 7 days from 

the field surveying date to avoid the distortion due to rice growth. This was not always possible 

with Sentinel-2 MSI imagery, particularly during the monsoon (mid-May to mid-October). In this 

case, the nearest available image was used as long as the temporal gap to the next growth stage 
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was 20-35 days, the lengths of which depends on the growth stage (Figure 4.4). In the case of 

Sentinel-1, imagery cycle in the ascending and descending orbits was downloaded in VV and VH 

polarisations. The field survey dates and associated downloaded satellite data are shown as Table 

5.1. 

Table 5.1 Field survey and acquisition dates of satellite data. 

Growth 
stage 

Field survey date Satellite download date 

Sentinel-2 Sentinel-1 

Ascending Descending 

Seeding 20 May – 7 Jun 2017 7 May, 27 May, 30 
May, and 6 Jun 2017 

22 May 2017 26 May 2017 

Tillering 26 Jun – 10 Jul 2017 26 Jun, 6 Jul 2017 27 Jun 2017 1 Jul 2017 

Panicle 19 – 30 Jul 2017 24 Jul, 31 Jul 2017 21 Jul 2017 25 Jul 2017 

Flowering 1 – 16 Aug 2017 13 Aug, 20 Aug 2017 2 Aug 2017 6 Aug 2017 

Harvesting 9 Aug – 3 Sept 2017 25 Aug, 9 Sept and 
14 Sept 2017 

26 Aug 2017 30 Aug 2017 

The larger number of Sentinel-2 images in the seeding stage is due to the wide range of planting 

dates in the study area, which varied from the beginning of May until the beginning of June 2017. 

The satellite data did not acquire the full scene for analysis and was excluded from the analysis. In 

each growth stage, approximately 13 Sentinel-2 and 5 Sentinel-1 scenes were downloaded, and 

which covered the entire study area (Figure 5.1). 

 

Figure 5.1 Location of the Sentinel-2 (left) and Sentinel-1 (right) image tiles over the study area. 

a) Sentinel-2 b) Sentinel-1 
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5.2.2.2 Statistical data preparation 

The yield estimated using satellite data will be validated using the yield information provided by 

OAE, which is the agency responsible for collecting and publishing agricultural statistics in 

Thailand. The OAE official statistics are calculated using field survey data at the commune level, 

which is then aggregated to the district, province, regional, and country levels. The official rice 

yield and production are stratified in two administrative levels for validating the remotely sensed 

yield estimates: amphoe and province level. In 2017, rice production and yield (shown in the 

brackets) in the Phichit, Ang Thong, and Pathum Thani was 876,596 tonnes (3.77 tonnes/ha), 

230,547 tonnes (4.16 tonnes/ha), and 223,167 tonnes (4.49 tonnes/ha), respectively. Rice yield 

and production in 2017 are shown in Table 5.2. 

Table 5.2 Rice yield and rice production statistics in 2017 in three representative provinces 

(OAE, 2017a). 

Province/Amphoe Rice harvested area 
(ha) 

Rice yield  
(tonnes/ha) 

Rice production 
(tonnes) 

Phichit 232,536 3.77 876,596 

Muang Phichit 23,669 3.98 94,084 

Taphan Hin 25,984 4.09 106,373 

Bang Mun Nak 22,600 3.88 87,716 

Pho Thale 26,821 4.09 109,632 

Pho Prathap Chang 19,274 3.84 74,083 

Sam Ngam 21,524 3.74 80,445 

Wang Sai Phun 17,983 3.42 61,478 

Thap Khlo 24,612 3.48 85,525 

Sak Lek 6,919 3.08 21,277 

Bueng Na Rang 13,718 3.97 54,444 

Dong Charoen 14,745 3.39 49,947 

Wachirabarami 14,688 3.51 51,592 

Ang Thong 55,421 4.16 230,547 

Muang Ang Thong 3,916 4.12 16,131 

Chaiyo 2,885 3.84 11,089 

Pa Mok 593 3.80 2,252 

Pho Thong 13,508 4.13 55,719 

Wiset Chai Chan 15,342 4.12 63,190 

Samko 7,798 4.24 33,093 

Sawaeng Ha 11,379 4.31 49,073 

Pathum Thani 49,657 4.49 223,167 

Muang Pathum Thani 3,099 4.31 13,363 
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Province/Amphoe Rice harvested area 
(ha) 

Rice yield  
(tonnes/ha) 

Rice production 
(tonnes) 

Pathum Thani (Cont.)    

Khlong Luang 8,066 4.58 36,903 

Thanyaburi 1,484 4.51 6,687 

Lat Lum Kaeo 11,548 4.63 53,408 

Lam Luk Ka 11,846 4.50 53,307 

Sam Khok 2,892 4.47 12,924 

Nong Suea 10,722 4.34 46,575 

5.2.3 Field survey data collection 

The field survey collected important rice biophysical variables from the seeding to harvesting 

stages. The latitude and longitude coordinates of each sample unit were recorded using a 

handheld GPS receiver, and within each there were four measurement plots. Coordinates were 

then generated with ArcGIS in point and polygon (rice parcel) format. The biophysical variables 

assessed in relation to the satellite data for each sampling unit were the average value of the 

centre pixels to account for any variability and to ensure the pixels were homogeneous (i.e. not 

mixed). 

5.2.4 Digital image pre-processing 

Image pre-processing was conducted according to the following sections, which are carried out 

for each Sentinel-1 and Sentinel-2 image prior to data extraction (Figure 5.2). 

Sentinel-2 MSI optical data 

The MSI product used for this analysis is the Sentinel-2 Top-Of-Atmosphere (TOA) Level-1C (L1C), 

geometrically corrected TOA radiance. To correct the data to surface reflectance, the Sen2Cor 

algorithm is used for atmospheric, terrain, and cirrus correction (Main-Knorn et al., 2017). The 

Sen2Cor toolkit provides Bottom-Of-Atmospheric (BOA) surface reflectance (Level-2A, L2A) in 

addition to various quality assurance data such as aerosol optical thickness, water vapour, scene 

classification, and quality indicators for cloud and snow probabilities. The surface reflectance 

derived from Sen2Cor has been validated over different land covers with good results (r > 0.9), 

and low root mean square errors (< 0.04) (Sola et al., 2018; Uwe et al., 2013). Cloud cover is a 

major limiting factor, with the cloud cover percentage varying from 5-77% per scene.  

The Sentinel Application Platform (SNAP) is used to cloud mask the surface reflectance; resample 

the data to 20 m spatial resolution, and to calculate the NDVI and EVI vegetation indices. The 
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latter has been regularly used to analyse rice temporal dynamics (Domiri, 2017; Li et al., 2019; 

Shammi & Meng, 2021) and assess their relationship to biophysical variables (Aboelghar et al., 

2011; Ali et al., 2020; Maki & Homma, 2014; Son et al., 2013).  

The NDVI is defined by Rouse, Haas, Schell, & Deering (1974) and  is calculated using the red (𝜌𝜌𝑅𝑅) 

and NIR (𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁) wavebands via Equation 5.1.  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁−𝜌𝜌𝑅𝑅
𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁+𝜌𝜌𝑅𝑅

    Equation 5.1 

According to Huete et al. (2002), the EVI is calculated as shown in Equation 5.2. 

𝐸𝐸𝐸𝐸𝐸𝐸 =  𝐺𝐺 𝑥𝑥 𝜌𝜌𝑛𝑛𝑛𝑛𝑛𝑛−𝜌𝜌𝑟𝑟
𝜌𝜌𝑛𝑛𝑛𝑛𝑛𝑛+𝐶𝐶1∗𝜌𝜌𝑟𝑟+𝐶𝐶2∗𝜌𝜌𝑏𝑏+𝐿𝐿

  Equation 5.2 

Where ρb is the spectral reflectance in the blue band (B02), ρr is the spectral reflectance in the red 

band (B04), and ρnir is the spectral reflectance in the near-infrared band (B08). L is a constant that 

minimises the ground effect (L = 1), G is the gain factor (G = 2.5) and C1, C2 are adjustment factors 

to minimise the effect of aerosols in the atmosphere (C1 = 6.5 and C2 = 7.5). 

In principle, the vegetation index values range between -1 to +1, where higher positive values 

signify healthy and denser green vegetation.  

Sentinel-1 SAR data 

Sentinel-1 C-band data were taken in various orbital directions with the ascending and descending 

orbits in 2017. The mode of SAR data identifies the S1-S6 beams for strip map products and 

provides different acquisition modes. The SAR Imagery in Interferometric Wide Swath (IW) mode 

has a spatial resolution of 5 m x 20 m in a single-look complex (SLC) was used in this analysis. SLC 

products are images in the slant range by azimuth imaging plane in the image plane of satellite 

data acquisition. Each pixel is represented by complex I (phase) and Q (quadrature) magnitude 

values and contains both amplitude and phase information. The amplitude measures the strength 

of the reflected signal at the sensor, while the phase is a measurement point along the wave of 

the reflected signal when received at the sensor. The phase of the SAR image is determined by the 

distance from the satellite antenna to the ground target. The amplitude measurement provides 

essential information on the roughness, geometry, wetness, and dielectric (or permittivity) 

constant of the ground surface. In pre-processing, the SAR data is geo-referenced using orbit 

auxiliary and attitude data, providing Zero-Doppler slant range geometry. Further, SAR products 

provide additional orbit state vector (OSV) information to improve location accuracy (Schubert, 

2019). 
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The acquired Sentinel-1 SAR data were pre-processed using SNAP (Sentinels Application Platform) 

and Sentinel Toolboxes, which included applying precise orbit direction, thermal noise removal, 

and radiometric correction before sub-swath images were merged. In addition, pre-processing 

included deburst and speckle filtering to reduce the salt & pepper effect common in SAR imagery 

(Lee, 1980), multi-looking terrain correction, and the backscatter conversion to sigma nought (σ0). 

A window of 7 x 7 pixels was used in the filtering was 7 x 7 as this has been found to provide the 

best noise reduction  performance (Dasari & Anjaneyulu, 2017). The IW mode SAR data consists of 

three sub-swaths in IW1, IW2 and IW3, which have different incidence angles, ranges, and 

azimuth look bandwidths. The IW is a primary operational mode for Sentinel-1. Due to, there are 

compositions with three bursts on one image; thus, there are essential top-deburst data for the 

continuous images.  

The data were radiometrically corrected to backscatter intensity using sensor calibration 

parameters in IW metadata. To ease processing, the data were resampled to a square grid raster 

(14.2 m x 14.2 m) and the set range looks, and azimuth looks to 4 and 1, respectively. A terrain 

correction was performed using the Range-Doppler method (Bayanudin & Jatmiko, 2016) and 

resampled Shuttle Radar Topography Mission (SRTM) 1 arc second (30 m) Digital Elevation Model 

(DEM) to integrate the SAR images. The final step is to convert the backscatter power to the 

backscatter coefficient using logarithm transformation. In principle, the radar backscatter consists 

of sigma-nought (σ0), gamma-nought (γ0), and beta-nought (β0). Here, we use sigma-nought - σ0
VV 

and σ0
VH are referred to as VV and VH. A polarisation ratio of VV/VH (cross-ratio) was then 

calculated using VV and VH backscatter coefficients. The data pre-processing is shown in Figure 

5.2. To account for any geometric uncertainty, the backscatter at each sample plot was averaged, 

which is discussed in more detail in Section 5.2.6. 
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Figure 5.2 Flowchart of the data pre-processing applied satellite image data prior to relating 

satellite measurements with rice biophysical variables. 

5.2.5 Vegetation indices and sigma nought backscatter value extraction (field level) and 

descriptive statistics 

A region of interest (ROI) was drawn around each sampling unit and used to extract the image 

pixels. These extraction points were made at the sample centre on a pixel basis (~2-4 pixels inside 

the ROI) to avoid mixed pixels, especially at the paddy field corners. Finally, the vegetation indices 

(Sentinel-2) and backscatter coefficients (σ0; Sentinel-1) at each sample plot (field level) were 
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averaged to provide a sampling site vegetation index and backscatter value for accounting 

geometric uncertainty.  

5.2.6 Satellite data sample site averaging 

Generally, the sampling unit consisted of more than one satellite pixel. In this section, we describe 

the process for calculating the average satellite-derived indicator using the pixels covering each 

paddy field. Figure 5.2 demonstrates the process using the backscatter coefficient in the 

ascending VV and VH, and NDVI) from one sampling unit in the panicle stage, which contains 3-4 

pixels well within the field boundary to avoid the mixed pixels. The redline is the field boundary 

whilst the blue ROI is the central pixels which are averaged. The relationship between rice 

biophysical variables (Chapter 4) and the average vegetation index and backscatter coefficient 

(σ0) at each phenological stage was investigated. This temporal analysis aimed to assess the 

influence of rice variety and irrigation on phenology and rice biophysical variables.  

 

Figure 5.3 Example of backscatter coefficients and NDVI subsets showing the locations of the 

sample points within a sample unit in the panicle stage. 

a) Sentinel-2 in NDVI b) Sentinel-1 in ascending VH polarisation 

 
Sample unit VI Sigma nought (dB) 

NDVI EVI Ascending VV Ascending VH 

2 0.63 0.7 -8.07 -14.92 

0.62 0.72 -8.96 -14.20 
0.63 0.70 -8.34 -15.26 

0.62 0.67 -8.45 -14.85 

Average 0.62 0.69 -8.46 -14.81 
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5.2.7 Phenological trends of vegetation indices and backscatter coefficient 

Prior to analysing the correlation between the satellite measurements and rice biophysical 

parameters, an analysis of the temporal dynamics of these metrics was carried out. In general, 

transplanting occurs from mid-May to the beginning of June, with a tillering stage in the end of 

June to the beginning of July, the maximum tiller number occurs around the end of July, the 

heading period in mid-August, and harvesting begins in September and early October. The 

satellite data were averaged in the sample unit for each growth stage and used to characterise 

the average rice phenology.  

In Phichit, the minimum rice age is 4 days, and the maximum is 104 days, with mean of 62 days. In 

Ang Thong, the minimum rice age is 9 days and the maximum 104 days, with mean of 61 days. 

Finally, the minimum rice age in Pathum Thani is 11 days and the maximum of 117 days, with 

mean of 69 days. Figure 5.4 demonstrates the representative NDVI and backscatter coefficients in 

a sample unit located in Phichit. The average satellite values in each growth stage are examined 

and separated by rice variety. In the case of the VIs, the most outstanding values are found in the 

tillering and panicle stages, with the flowering and harvesting stages being much lower. The 

trends in the backscatter data are broadly similar in the VV polarised imagery, although increases 

in the harvesting stage are evident. The cross-polarised data show similar magnitudes between 

the tillering and flowering stages before decreasing in the harvesting stage.  
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Figure 5.4 Comparisons of the phenological variations of vegetation indices (blue represents NDVI 

and red represents EVI) and radar backscattering for a selected field in Phichit. 
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5.2.8 Correlation analysis 

The relationship between the satellite and rice biophysical variables was assessed using Pearson’s 

correlation coefficient, which measures their relationship’s statistical relationship and direction. 

The present study used a P-value at 0.05 to define the significance of the relationship. The 

correlation analysis was applied to rice yield and the satellite measurements- individually 

separated growth stages, overall growth stages, and irrigated and non-irrigated areas. 

5.2.9 Estimation of rice yield using regression analysis 

The vegetation indices and backscatter coefficients are set as independent variables in the 

regression model, whilst rice yield is the dependent variable. The yield data was used to build the 

yield estimation model derived from field. The previous chapter indicated that RD41 might be 

suitable for rice yield estimation as it has the largest number of samples. Therefore, the main 

approach explored to develop a rice yield estimation model using SAR and optical imageries is 

linear regression between yield, vegetation indices, and backscatter coefficients. In terms of rice 

yield estimation, a linear regression model was generated at the provincial level: 

𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏     Equation 5.3 

Where Y is the predicted rice yield (ton/ha) in a given province, a and b are the coefficients, and X 

is a representative pixel. The simple regression relationships are used to calculate the correlation 

coefficients (r) of the model between rice yield and VIs or backscatter variables. 

Rice-cultivated areas in the three representative provinces were masked in the satellite data using 

the OAE derived dataset discussed in section 5.2.1.2 and are displayed in Figure 5.5. 
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Figure 5.5 Rice cultivated areas in three representative provinces (Phichit, Ang Thong, and 

Pathum Thani) interpreted with Landsat 8 OLI/TIRS in 2017. 

The most appropriate linear regression model was applied to the satellite imagery to derive 

estimates of rice yield per unit area for each administrative boundary. First, yield estimates were 

derived at the scale of the administrative boundary by aggregating yield estimates in rice 

cultivated areas and on a per-pixel basis. These were then aggregated to estimate rice production 

on the provincial scale (i.e. Phichit, Ang Thong, and Pathum Thani). 

c) Pathum Thani 
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5.2.10 Model validation 

Data from 2017 were used to assess the accuracy of the model prediction. Rice production was 

calculated by multiplying cultivated rice area by yield per unit area. Statistical indicators (i.e. root 

mean square error (RMSE) and mean absolute percentage error (MAPE)) were used to quantify 

the uncertainty of the predicted values, with the former indicating the variability of the prediction 

accuracy and the latter the mean or average of absolute error (MAE). The RMSE calculates the 

average error to measure the differences between estimated and actual yield:  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ �𝑌𝑌𝑖𝑖−𝑌𝑌𝑖𝑖
′�
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛

    Equation 5.4 

Where n is the number of provinces used for validation, ŷ is the estimated yield, and yi is the 

observed rice yield. 

The MAPE is an accuracy measure of the quality of forecasting model and was calculated via: 

  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑛𝑛

 ∑ �𝑌𝑌 � 𝑖𝑖 − 𝑌𝑌𝑖𝑖�𝑛𝑛
𝑖𝑖=1 𝑥𝑥 100   Equation 5.5 

A flowchart illustrating the methodology for rice yield estimation is presented in Figures 5.6. 
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Figure 5.6 Research flowchart analysis. 

5.3 Results 

Two key objectives were the focus of this research: 1) to assess the potential of EO data for 

estimating rice biophysical variables and the influence of irrigation method on yield estimation, and 2) 

to determine the potential of estimating rice yield using rice biophysical variables and EO data. The 

results of this chapter concern the latter and are divided into four outputs: temporal pattern of 
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and rice biophysical variables; the potential to estimate rice yield; and finally, validation of the 

predicted yield estimates. 

5.3.1 Pattern of vegetation indices and backscatter coefficients 

The research conducted in the previous chapter revealed the dynamics of rice biophysical 

variables on wet direct seeding. This study analyses the dynamics of vegetation index values and 

backscatter coefficients during the growing season.  

5.3.1.1 Phenological profile of vegetation indices 

An analysis of the temporal dynamics of the vegetation indices is presented in this section, 

characterised by the onset of greenness (SOS) in the seeding stage. Flooding is the main cause of 

low VI value during the seeding and transplanting stages. The VI values then increase throughout 

the growing season and peak in the panicle stage before declining in the flowering and harvesting 

stages, during what is termed the end of greenness (EOS). A summary of the average NDVI and 

EVI values for all areas (all 22 sampling units), irrigated (16 sampling units), and non-irrigated (6 

sample units), is shown in Appendix J. Meanwhile, Figure 5.7 illustrates the temporal variation of 

the NDVI over a field sample plot during the different stages of plant growth.  

The temporal trends in NDVI and EVI for all sites are shown in Figure 5.7. Note that the average is 

calculated for all sites, which include different rice varieties and irrigation systems. 

a) Average NDVI and EVI phenological profiles for all field sites 
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b) Average NDVI and EVI phenological profiles in Phichit 

NDVI 

 

EVI 

 

c) Average NDVI and EVI phenological profiles in Ang Thong 
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d) Average NDVI and EVI phenological profiles in Pathum Thani

 

Figure 5.7 Seasonal NDVI and EVI phenological profiles in the study area. a) Average for all field 

sites, b) Average in Phichit, c) Average in Ang Thong, and d) Average in Pathum Thani. 

In general, rice fields are flooded at the onset of rains. In the seeding stage (DOY 134), rice is 

short, and some paddy fields are flooded, which serves to lower VI values (~ 0.03 averages for 

NDVI and ~0.12 for EVI) due to the influences of the underlying water background. As the rice 

structure develops (e.g. the height and tiller’s rate influenced by stem density, DOY 180), the 

vegetation index values increase (average ~0.47 for NDVI and ~0.57 for EVI) due to increased rice 

canopy cover and reduced background contribution (soil or water surface). In the panicle stage 

(DOY 205-210), rice develops flag leaves and initiates panicle, resulting in a higher leaf area of 

healthy green vegetation and consequently the vegetation index peaks in this stage (~0.61 

averages for NDVI and 0.6 for EVI). In the flowering stage (DOY 221), rice develops into a milky 

and leaves begin to wither, causing a sudden decrease in NDVI (0.27) and EVI (0.36) values. Rice 

flowers and wither leaves in the flowering stage may impact the canopy reflectance and also 

impact both vegetation indices. Finally, the vegetation indices are lowest in the harvesting stage 

(DOY 240) when the rice grain ripens, which reduces the visibility of green leaves, and leaves 

continue to wither (NDVI ~0.20 and EVI ~0.19). Photographs in Table 4.2 (Chapter 4) highlight the 

changes in canopy characteristics and photosynthetic elements throughout the growing season 

that directly influence VI values. However, cloud cover is problematic and leads to fewer 

observations in the flowering to harvesting stages, coupled with the potential influence of 

undetected cloud, which may impact the averaging of the VI data. 

It is obviously evident from Figure 5.7 that the temporal dynamics of the NDVI and EVI follow a 

similar trend but still differ, with the dynamics of the NDVI being more pronounced in some cases. 

For example, the vegetation indices of the Phitsanulok 2 variety in Phichit, which used a different 

irrigation system and a number of different rice varieties, indicates the NDVI peaked in the 

tillering stage in the irrigated areas whilst the NDVI peaked in the panicle stage in the non-

irrigated areas. These illustrate the influence of irrigation where sufficient water availability 
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stimulates rice growth earlier. This difference in the peak vegetation indices pattern occurs in the 

EVI and is found to be slightly higher when compared with NDVI. The EVI is more responsive to 

canopy structure than the NDVI, therefore more responsive to changes in LAI (Figure 4.12). The 

EVI displayed better performance from the tillering to panicle stage, as indicated by more 

constant NDVI between the shifting on these two growth stages. The LAI was primarily high in the 

flowering stage, whilst vegetation indices tended to be low (NDVI and EVI), which may result from 

the impact of rice heads obscuring some of the rice leaves or from the increased cloud cover in 

the flowering stage, which reduced data availability. 

In addition to the influences of rice variety, irrigation systems also influence rice development, 

therefore vegetation index values. Our results reveal that vegetation indices were slightly higher 

in non-irrigated areas due to differences in LAI (e.g. Table 4.5, Figure 4.12) which tended to be 

higher, and the use of different rice varieties, which influence the growing season length. It is 

evident, therefore, that irrigation method and rice variety play an essential role in the 

phenological cycle of rice, which may need to be accounted for when using satellite observations 

to monitor and quantify rice growth status. 

5.3.1.2 Temporal pattern of backscatter coefficients (σ0) 

The temporal dynamics of the backscatter coefficients (σ0) were investigated in the same manner 

as vegetation indices. Several factors influence backscatter behaviour, such as the dielectric 

constant of vegetation and the surface, leaf size and orientation, surface roughness, and canopy 

geometry (Agustan et al., 2015; Bamler & Hartl, 1998; Bindlish & Barros, 2001; Koppe et al., 2012; 

Mc Nairn & Brisco, 2004; Pazhanivelan et al., 2015; Sudarmanian & Pazhanivelan, 2019). This 

analysis investigated the backscatter coefficients in different orbit directions and polarisations and 

the ratio between different polarisation (VV/VH). The results indicate less variation in backscatter 

coefficients throughout the growing season compared with the vegetation indices, which had 

more pronounced phenological profiles. It is also evident that there are some minor differences in 

backscatter between ascending and descending orbits, particularly in the seeding stage, where 

the influence of the plant’s vertical structure (rice height) is more apparent (Phan, 2018; Yuzugullu 

et al., 2017; Zhang et al., 2014). In addition, there are small differences between irrigated areas 

and non-irrigated areas. The variation of these figures is shown in Figure 5.8. 
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a) Temporal average backscatter coefficient in overall area 

  
 

 
 

 
b) Average backscatter coefficient in Phichit 
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c) Average backscatter coefficient in Ang Thong 
 

 
 

 

 

 

 



Chapter 5 

159 

d) Average backscatter coefficient in Pathum Thani 

 

 

 
Figure 5.8 Temporal trend in the backscatter coefficients (sigma nought) for different orbital 

directions and polarisations for: a) Overall area, b) Phichit, c) Ang Thong, and d) 

Pathum Thani. 

Figure 5.8 illustrates the behaviour of the backscatter coefficient (σ0) in different orbital directions 

and polarisations over the study area in 2017. The structure of the rice canopy and paddy field 

background directly influence the backscatter coefficient. The surface scattering characteristic 

depends on the rice structure, such as the structural, morphological, and dielectric condition of 

the canopy. Thus, the variability of rice structure impacts rice biophysical variables (Inoue et al., 

2014). The scattering mechanism of the vegetation canopy is dominated by the rice canopy’s 

dielectric properties and geometric distribution (Arii, Yamada, Kojima, & Ohki, 2019), which 

influences backscatter magnitude. The dynamics evident in Figure 5.8 agree with those of Phan et 

al. (2018), who used X-band SAR in the VV polarisation. Rice plants are transplanted in mid-May, 



Chapter 5 

160 

and paddy fields are flooded (~2.83 cm) several days before transplanting. The dates of panicle 

initiation, flowering, and maturing stages are mid-July, mid-August, and begin-September. The 

backscatter coefficient in the sowing/seeding stage pattern reveals low backscatter coefficients 

due to the smooth ground surface, with a dielectric constant of water and a sparse rice canopy. 

When vertical rice structure develops and the tiller’s rate, the backscatter coefficients increase in 

the ascending VV, VH, and descending VH. The volume scattering of the rice canopy is characterized 

by double-bounce scattering between the vertical rice plants and the ground surface. The 

phenological profile of ascending and descending VH polarised backscatter increased through the 

growing season, whilst the VV polarised backscatter largely remained flat, which occurs due to the 

strong attenuation of VV polarised light by vertical stems. Furthermore, the scattering mechanism 

among grain, stem, and leaf appeared in the late vegetative stage. In terms of dielectric 

properties, rice grains develop milky, dough (soft and hard dough), and the moisture content 

influences the backscatter coefficient in the flowering (reproductive stage) and harvesting (grain 

maturity) stages. The increased canopy density and biomass in the harvesting stage increase VH 

and VV backscatter. Similar dynamics were found by Bazzi et al. (2019) and Phung et al. (2020), 

who attributed the variations in volume scattering to changes in biomass and incidence angle.  

There was a varying response in the backscatter coefficient as a function of the irrigation system, 

which had broadly similar magnitudes, but backscatter in VV polarisation decreased in the 

flowering stage. The VH polarisation proves saturation before the maturity stage, although the 

reason is uncertain as the vegetation structural parameters (Figures 4.4) and water depth are 

similar in the panicle and flowering stages. The lowest backscatter is observed within the seeding 

stage because of specular reflection from the flooded paddies. Meanwhile, the VV/VH signals 

typically decreased from the late vegetative until the harvesting stage; although some rice variety 

(HomMali105) suddenly decreased and ceased decreasing after senescence. The dominant 

pattern for vegetation indices and backscatter is that they vary with the growth stage following 

this development of the rice canopy. However, the results indicate that agricultural practices and 

rice variety play an important role which cannot be controlled in the present study. 

5.3.2 Correlation between vegetation indices, backscatter coefficients, and rice biophysical 

variables 

5.3.2.1 Correlation of vegetation indices and rice yield biophysical variables 

The rice biophysical variables collected in different growth stages were analysed in Chapter 4 to 

assess the relationship among rice biophysical. In this section, we build on this by analysing the 

correlation between rice biophysical variables and vegetation indices. The results, shown in Table 
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5.3 for all areas combined and for each growth stage, is a regression analysis that could be carried 

out due to the limitation on cloud cover. 

Table 5.3 Correlation between vegetation indices and rice biophysical variables in overall area, 

irrigated areas, and non-irrigated areas across growth stages. 

Irrigated 
system 

Stage Rice biophysical 
variables 

Statistical Vegetation indices 
NDVI EVI 

Overall Panicle 
 

Rice age Pearson  
(sig. 2-tailed) 

0.13 
0.57 

-0.45* 
0.04 

Flowering Water depth Pearson  
(sig. 2-tailed) 

-0.62** 
0.01 

-0.59** 
0.01 

Height Pearson  
(sig. 2-tailed) 

-0.52* 
0.03 

0.05 
0.83 

Harvesting Stem density Pearson  
(sig. 2-tailed) 

-0.57** 
0.01 

0.05 
0.83 

Water depth Pearson  
(sig. 2-tailed) 

0.42 
0.05 

0.47* 
0.03 

Wet total 
biomass 

Pearson  
(sig. 2-tailed) 

0.30 
0.17 

0.45* 
0.04 

Wet stem 
biomass 

Pearson  
(sig. 2-tailed) 

0.34 
0.12 

0.45* 
0.03 

Dry total biomass Pearson  
(sig. 2-tailed) 

0.28 
0.21 

0.43* 
0.05 

Dry stem biomass Pearson  
(sig. 2-tailed) 

0.35 
0.11 

0.46* 
0.03 

Overall 
growth 
stage 

Rice age  Pearson  
(sig. 2-tailed) 

0.27** 
0.01 

0.11 
0.24 

Height Pearson  
(sig. 2-tailed) 

-0.40** 
0.00 

-0.48** 
0.00 

Absolute height 
 

Pearson  
 (sig. 2-tailed) 

-0.39** 
0.00 

-0.49** 
0.00 

LAI Pearson  
(sig. 2-tailed) 

-0.21 
0.07 

-0.25* 
0.02 

 

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed)  

NA No PAR measurement (in seeding stage) 

The results shown in Table 5.3 are mixed, which very few variables are a significant correlation 

with the vegetation index measurements. Overall, three parameters had significant negative 

relationships with the NDVI: the water depth, rice height, and stem density. In particular, water 

depth and rice height showed significant negative correlations with the NDVI, while the EVI 

showed a significant negative correlation between water depth and the EVI in the flowering stage. 

This is because the monsoons hit the flowering stage and lead to flooding in almost paddy fields 

because farmers are not releasing water. In the harvesting stage, a negative correlation is found 
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between stem density and the NDVI; whilst a positive correlation is found in water depth and EVI. 

Additionally, the wet and dry total and stem biomass are related to EVI in the harvesting stage 

(~0.45). Finally, the chlorophyll content and LAI tend to be lower in the harvesting stage than in 

the flowering stage (Figure 4.12-4.13 and Table 4.5-4.6, Chapter 4). The weak correction found 

between the vegetation indices and chlorophyll content, LAI, and yield are surprising since many 

studies have found the inverse (e.g.  Zhang et al. (2019)) and proved other vegetation index 

(Normalized Difference Red Edge: NDRE) better performance with agronomic parameters). Gao et 

al. (2013) proved that the vegetation indices, such as RVI, NDVI, and EVI, were not effective with 

maize in the heading stage due to the near-infrared reflectance saturation and dense coverage. 

5.3.2.2 Correlation of vegetation indices and rice yield biophysical variables 

Having assessed the temporal dynamics of the satellite metrics in relation to the rice phenological 

cycle, the following section presents an analysis of the correlation between satellite data and yield 

variables. The correlation was performed as a function of the irrigation method, at individual 

growth stages and across all growth stages. The results are summarised in Table 5.4. 

Table 5.4 Correlation between vegetation indices and rice yield in overall area, irrigated areas, 

and non-irrigated areas across growth stages. 

Irrigated system Stage Statistical Vegetation indices 

NDVI EVI 

Overall  Seeding Pearson  
(sig. 2-tailed) 

-0.20 
0.39 

0.57** 
0.01 

Non- irrigated 
 

Tillering Pearson  
(sig. 2-tailed) 

0.72 
0.11 

0.84* 
0.04 

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed)  

NA No PAR measurement (in seeding stage) 

The best agreement is found in the early rice growth stages, particularly for the EVI and rice yield 

in the seeding stage in non-irrigated areas. In contrast, more potent (but not significant) 

correlations are found in between the vegetation indices and yield in the flowering and harvesting 

stage. It is evident from phenological vegetation index profiles (Figure 5.7) that the vegetation 

index values at the end of the season, when the rice canopy structure is dense, are lower than 

those in the seeding stage when the canopy is less developed. It is believed that this is due to the 

increase in non-photosynthetic material in the canopy, which VIs is not sensitive.  
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Figure 5.9 Scatter plots between observed rice yield and significant Sentinel-2. a) EVI in the 

seeding stage and b) NDVI in the panicle stage. 

To determine the possible impact of rice variety on the correlation analysis, we carry out a similar 

analysis but focus on rice varieties with a sufficient number of samples for analysis (Table 5.5). 

 

 

 

 

a) EVI in the seeding stage 

b) NDVI in the panicle stage 
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Table 5.5 Correlation between vegetation indices and rice yield in overall area, irrigated areas, 

and non-irrigated areas across growth stage specific growth stage. 

Irrigated system Stage Statistical Vegetation indice 

NDVI EVI 

Phitsanulok2 
 

Tillering Pearson  
(sig. 2-tailed) 

-0.09 
0.91 

0.95* 
0.05 

RD41 
 

Seeding Pearson  
(sig. 2-tailed) 

0.33 
0.53 

0.86* 
0.03 

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed) 

NA No measurement 

5.3.2.3 Correlation of SAR (Sentinel-1) backscatter coefficient and yield 

A similar analysis to the previous section was carried out using the backscatter coefficient at 

different polarisations and orbital directions, with the results shown in Table 5.6. 

Table 5.6 Correlation between backscatter coefficient and rice biophysical variables in overall 

areas, irrigated areas only, and non-irrigated areas. 

Irrigated 
system 

Stage Statistical Backscatter coefficient  

AscVV AscVH AscVV/VH DescVV DescVH DescVV/VH 

Overall  
 

Seeding Pearson  
(sig. 2-tailed) 

0.09 
0.68 

0.04 
0.87 

-0.05 
0.81 

0.49* 
0.02 

0.42* 
0.05 

-0.44* 
0.04 

Harvesting Pearson  
(sig. 2-tailed) 

-0.44* 
0.04 

0.14 
0.52 

0.54** 
0.01 

-0.24 
0.27 

0.21 
0.36 

0.39 
0.07 

Irrigated  
 

Seeding Pearson  
(sig. 2-tailed) 

-0.01 
0.96 

0.07 
0.79 

0.09 
0.73 

0.62** 
0.01 

0.65** 
0.01 

-0.49 
0.05 

Harvesting Pearson  
(sig. 2-tailed) 

-0.43 
0.10 

0.20 
0.46 

0.57* 
0.02 

-0.33 
0.21 

0.28 
0.29 

0.50* 
0.05 

Non- 
irrigated 

Tillering Pearson  
(sig. 2-tailed) 

-0.88* 
0.04 

-0.62 
0.19 

0.90* 
0.02 

-0.70 
0.12 

-0.80 
0.06 

0.63 
0.18 

Panicle Pearson  
(sig. 2-tailed) 

-0.47 
0.35 

-0.42 
0.40 

0.44 
0.38 

0.84* 
0.04 

0.60 
0.21 

-0.35 
0.50 

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed)  

NA meant no PAR measurement (in seeding stage) 

Regarding the relationship using all data, the relationship between backscatter and rice yield 

variables is significant only in the ascending direction for VV and VV/VH polarised data in the 

harvesting stage with negative (r = -0.44) and positive (r = 0.54) correlations, respectively. 

Conversely, significant positive and negative correlations are found in the seeding stage for all 
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descending polarised data (i.e. VV, VH, and ratio VV/VH). Overall, the ascending VV/VH ratio and 

ascending VV polarisation performed best, with higher correlations with rice yield.  

In irrigated areas, significant correlations are found in the seeding stage on descending VV and 

descending VH with 0.62-0.65 correlation coefficient; however, the ratio VV/VH in both ascending 

and descending is 0.57 (ascending VV/VH) and 0.5 (descending VV/VH). In contrast, correlations 

found in non-irrigated areas had stronger relationships, but the strength of the relationship 

differed with polarisation. Finally, the tillering and panicle stage is significant, with rice yield in the 

non-irrigated areas for ascending VV and ascending VV/VH with -0.88 and 0.90 in the tillering 

stage. Meanwhile, the correlation coefficient in the panicle stage appears in the descending VV in 

the panicle stage (r = 0.84). These differences could be due to the sensitivity to volume scattering 

from rice canopy. In the vegetative phase, the backscatter coefficient in VH increased due to an 

increase in rice density and height, increasing double-bounce scattering between rice canopy and 

underlying surface. However, the VV backscatter gradually increased due to the impact of 

extinction on the vertical element of rice structure and orientation (e.g. stems and leaves). In the 

reproductive phase, the VH increased due to the denser plant canopy and the emergence of rice 

heads. The water content in rice heads has less impact on the vertical extinction and orientation 

of rice components; however, the VV polarised backscatter is reduced due to decreasing rice in 

the cylinder pattern (He et al., 2018). 

 

 

 

a) Descending VV in the seeding stage 
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Figure 5.10 Scatter plots between observed rice yield and significant Sentinel-1. a) Descending 

VV in the seeding stage and b) Ascending VV/VH in the harvesting stage. 

Table 5.7 shows the relationship for the most dominant rice varieties (i.e. Phitsanulok2, RD41, and 

RD49). 

Table 5.7 Correlation between backscatter coefficients and rice biophysical variables in all 

areas, irrigated areas only, and non-irrigated areas sepreated rice varieties. 

Irrigated 
system 

Stage Statistical Backscatter coefficient  

AscVV AscVH AscVV/VH DescVV DescVH DescVV/VH 

Phitsanulok2 Seeding Pearson  
(sig. 2-tailed) 

0.79 
0.21 

0.98* 
0.02 

-0.47 
0.53 

0.84 
0.17 

0.86 
0.14 

-0.76 
0.24 

RD41 
 

Flowering Pearson  
(sig. 2-tailed) 

0.14 
0.80 

0.81* 
0.05 

0.12 
0.82 

0.49 
0.33 

0.55 
0.25 

-0.37 
0.47 

RD49 Seeding Pearson  
(sig. 2-tailed) 

0.46 
0.44 

0.83 
0.09 

-0.12 
0.85 

0.08 
0.90 

0.92* 
0.03 

0.22 
0.72 

Harvesting Pearson  
(sig. 2-tailed) 

-0.94* 
0.02 

-0.45 
0.45 

0.61 
0.28 

-0.77 
0.13 

0.51 
0.38 

0.74 
0.15 

 

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed)  

NA meant no PAR measurement (in seeding stage) 

b) Ascending VV/VH in the harvesting stage 
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Only three significant relationships were found between backscatter and yield, which were 

different regarding backscatter polarization and the growth stage. The results indicate that no 

growth stage or backscatter polarization performs with any consistency with moderate and weak 

negative and positive (non-significant) correlations in the majority of cases. The best results were 

found using the ascending orbit data and VV/VH backscatter ratio in the harvesting stage and this 

will be used to develop a linear regression model. 

5.3.3 Develop simple linear regression model 

Regression analysis analyses the relationship between one variable (set as a dependent variable) 

and a series of variables (set as independent variables). The following section describes the 

development of a simple linear regression model by setting the vegetation indices, and 

backscatter coefficients as independent variables and rice yield at a provincial level as the 

dependent variable. The best results found using the NDVI were in the panicle stage and for the EVI in 

the seeding stages, and these data were used to develop the regression model, detailed in Appendix J. 

Referring to the EVI, the B value indicates that a difference of one unit increases approximately 3.469 

tonnes of rice production, and the constant value is 4.525, which is significant in the seeding stage. 

Conversely, the NDVI identifies a difference of one unit result in their pixel 5.497 tonnes and constant 

1.508 in the panicle stage. The Sentinel-1 SAR in the ascending and ratio of VV/VH polarisation and 

specific in the harvesting stage. The B value indicates that a difference of one unit increases 

approximately 2.447 tonnes of rice production based on the ascending ration VV/VH. The constant 

value is 3.351, which is significant in the harvesting stage. The rice yield model for the vegetation 

indices and backscatter is shown in Table 5.8. 

Table 5.8 Model expression based on a simple regression model based on different remotely 

sensed data. 

Factor Growth 
stage 

Model expression on rice yield 
predicted model 

R R2 Std. error of 
estimation 

(SEE) 
(ton/ha) 

Sentinel-2 
optical  
- EVI 
- NDVI 

 
 
Seeding 
Panicle 

 
 
Y = (EVI*3.469) +4.525 
Y = (NDVI*5.497) +1.508 

 
 

0.57 
0.37 

 
 

0.32 
0.14 

 
 

0.62 
0.70 

Sentinel-1 
SAR 
ascending 
VV/VH 

 

 
Harvesting 

 
 
Y = (ascending VV/VH*2.447) +3.351 

 
 

0.54 

 
 

0.29 

 
 

0.68 
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Table 5.8 reveals the results from the linear regression models. The standard error of estimation 

(SEE) for the EVI and NDVI is 0.62 and 0.70 tonnes/ha, respectively, whilst the regression model 

found using the backscatter data (ascending VV/VH polarised data) has a SEE of 0.68 tonnes/ha. 

The SEE is similar for both the radar and optical data, suggesting neither outperforms the other, 

although an advantage of radar data is its all-weather capability. The simple linear regression 

models developed using SAR data performed better than optical data, and these use to estimate 

yield for other rice varieties and booting stage/maturity/ripening stage is advantages of yield 

estimation. 

 

Figure 5.11 Photos of sample fields in the panicle (booting and heading) and harvesting 

(maturity) stage (example sample unit 1 in Phichit). 

a) Panicle stage (booting and heading stage) 

b) Harvesting (maturity) stage 
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The figure 5.11 demonstrates that rice culms and grain development varied in the different 

growth stages. In the panicle stage, rice develops its flag leaf and initiates grains. The rice culms 

are vertical, and the green leaves suggest high chlorophyll content. This relationship is related to 

spectral reflectance (NDVI ~0.61 and EVI ~0.6), which is not saturated NDVI in this growth stage. 

The other critical growth stage for yield estimation is the harvesting stage. The vegetation indices 

have low values (NDVI ~0.2 and EVI ~0.1) due to lower chlorophyll contents and increased 

senescent material. Conversely, rice grains are hard dough and nearly to harvest if the moisture 

contents reach the standard. 

5.3.4 Validation of yield estimates derived using the simple regression model 

The regression models described in Table 5.8 are applied to satellite data to estimate yield across 

three provinces and which is validated using official yield data from 2017. The results are shown in 

Table 5.9.  
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Chapter 5 Table 5.9 Accuracy assessments on a simple regression model based on ascending VV/VH and government’s yield statistic in 2017. 

Province/Amphoe 
 

Government 
statistic 

yield 
(tonnes/ha) 

EVI in seeding NDVI in panicle AscendingVV/VH in harvesting 

Forecasting yield 
(tonnes/ha) 

MAPE  
(%) 

Forecasting yield 
(tonnes/ha) 

MAPE  
(%) 

Forecasting yield 
(tonnes/ha) 

MAPE  
(%) 

Phichit 3.77 5.33 68.82 3.32 9.0 4.72 52.34 
- Bang Mun Nak 3.88 5.37 94.00 2.89 4.28 4.64 67.74 
- Bung Na Rang 3.97 5.48 46.56 3.90 4.25 4.88 30.50 

- Dong Chareon 3.39 5.26 64.60 3.16 1.08 4.65 45.48 
- Muang Phichit 3.98 5.24 80.63 3.14 8.38 4.75 63.73 
- Pho PrathapChang 3.84 5.28 74.11 3.71 22.43 4.86 60.25 
- Pho Thale 4.09 5.32 17.10 3.97 12.54 4.84 6.59 
- Sak Lek 3.08 5.18 131.29 2.56 14.50 4.55 103.27 

- Sam Ngam 3.74 5.33 56.08 3.46 1.28 4.78 39.94 
- Taphan Hin 4.09 5.62 77.30 3.29 3.96 4.73 49.31 
- Thap Khlo 3.48 5.13 75.18 3.38 15.81 4.60 57.79 
- Wachira Baramee 3.51 5.30 30.38 3.48 14.44 4.70 53.91 

- Wang Sai Phun 3.42 5.51 78.16 2.94 4.99 4.63 49.55 

Ang Thong 4.16 5.59 93.53 4.45 62.14 4.87 71.88 
- Chai Yo 3.84 5.56 77.31 4.41 40.74 4.87 55.39 

- Muang Ang Thong 4.12 5.53 56.65 4.35 23.21 4.76 34.82 
- Pa Mok 3.80 5.70 440.98 4.34 311.64 4.79 354.82 
- Pho Thong 4.13 5.62 26.47 4.47 0.58 4.94 11.04 
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Province/Amphoe 
 

Government 
statistic 

yield 
(tonnes/ha) 

EVI in seeding NDVI in panicle AscendingVV/VH in harvesting 

Forecasting yield 
(tonnes/ha) 

MAPE  
(%) 

Forecasting yield 
(tonnes/ha) 

MAPE  
(%) 

Forecasting yield 
(tonnes/ha) 

MAPE  
(%) 

Ang Thong (Cont.)        
- Samko 4.24 5.52 17.62 4.70 29.83 5.00 25.35 
- Sawangha 4.31 5.85 2.56 4.61 23.18 4.88 18.77 
- Wiset Chaichan 4.12  5.36  33.11 4.26 5.81 4.83 2.98 

Pathum Thani 4.49 5.94 21.96 3.96 26.99 4.86 18.29 
- Khlong Luang 4.58 5.88 5.06 4.05 27.73 4.85 13.41 
- Lam Luk Ka 4.50 5.90 28.77 3.80 17.04 4.87 6.26 

- Lad Lum Kaeo 4.63 6.17 22.78 3.83 23.80 4.84 3.81 
- Muang Pathum Thani 4.31 5.67 1.77 3.97 28.73 4.85 12.88 
- Nong Suea 4.34 5.94 21.33 4.07 46.09 4.90 35.10 
- Sam Khok 4.47 6.12 67.74 3.99 9.47 4.87 33.51 
- Thanyaburi 4.51 5.93 6.25 4.04 36.10 4.86 23.07 
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Table 5.9 illustrates the MAPE in the amphoe; then, the average MAPE at the provincial level. The 

MAPE calculates from the absolute error of the differences between official yield and forecast 

yield (significant satellite in specific growth stage). The square error of absolute error is further 

analysed for the RMSE and MAPE, which is calculated from mean absolute error (MAE) and 

converted to percentage values. It is clear from the table that the vegetation index estimated 

yield is overestimated in nearly all cases with the MAPE ranging between 5.13 and 6.17 for the EVI 

and It is clear from the table that the vegetation index estimated yield is overestimated in nearly 

all cases, with the MAPE ranging between 1.77 to 440.98% for the EVI and 0.58 to 311.64 for the 

NDVI. The NDVI has a lower average MAPE (32.71%) compared to the EVI (61.44%) over all 

amphoes. 

In the case of the EVI, the average satellite-derived yield in Phichit, Ang Thong, and Pathum Thani 

is 5.33, 5.59, and 5.94 tonnes/ha, which compares to the average government yield estimates of 

3.77, 4.16, and 4.49 tonnes/ha, respectively. Consequently, the average MAPE of the EVI-derived 

yield estimates in Phichit, Ang Thong, and Pathum Thani is 68.8%, 93.5%, and 21.9%, respectively. 

The NDVI performs slightly better with average estimated yield in Phichit, Ang Thong, and Pathum 

Thani of 3.32, 4.45, and 3.96 tonnes/ha, respectively, compared to the average government yield 

estimates of 3.77, 4.16, and 4.49 tonnes/ha, respectively. As a result, the RMSE and MAPE (in 

brackets) in the following provinces are 82.82 tonnes (9%), 6,805 tonnes (62.1%), and 10,899 

tonnes (26.9%), respectively. Finally, the yield estimated using the VV/VH backscatter data 

provides estimates ranging between 4.57 and 5 tonnes/ha. The average MAPE of the yield 

estimates in Phichit, Ang Thong, and Pathum Thani is 52.34%, 71.88%, and 18.29%, respectively. 

Table 5.9 is a result of applying the developed rice yield estimation model based on simple linear 

regression to the output of masking rice areas using the raster calculator function. Then, the 

results are clipped into the amphoe level and summation the rice yield at the same administrative 

level. The rice yield forecasting based on the Sentinel-1 in the ascending in the ratio of VV/VH 

polarisation in the Phichit, Ang Thong, and Pathum Thani is 4.72, 4.87, and 4.86 tonnes/ha, 

respectively. Then, rice yield applies to the rice production in these provinces. The results are also 

revealed the overestimation of rice yield for all provinces. The rice production from the yield 

estimation model and official rice production (in brackets) in the Phichit, Ang Thong, and Pathum 

Thani is 1,301,420 tonnes (876,596 tonnes), 236,964 tonnes (230,547 tonnes), and 204,240 

tonnes (223,167 tonnes), respectively. The RMSE perform better in the rice irrigated areas with 

less variance on the backscatter (Figure 5.8). The MAPE is calculated to compare actual rice yield 

and forecasts rice yield for percentage error estimation. The result of the MAPE in the Phichit, Ang 

Thong, and Pathum Thani is 52.34%, 71.88%, and 18.29%, respectively. The output of rice 
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cultivated areas may be some mix-pixels classification of OAE spatial data. Obviously, some 

provinces have higher MAPE values such as Sak Lek, Bang Mun Nak, and Muang Phichit (in Phichit) 

and Chaiyo, Pa Mok (in Ang Thong). Conversely, the MAPE is slightly lower MAPE (<35%) and 

suitable to estimate yield. The latter is essential for the delivery of timely and accurate 

agricultural information derived from remotely sensed images for mid-season yield forecasts of 

the national rice production, which is beneficial for agriculture resource management, food 

security, and agricultural policy formulation. The MAPE is illustrated into the amphoe level in each 

province to recognize easy the error of the yield estimation model based on the NDVI in the 

panicle stage and the ascending ratio of VV and VH polarisation in the harvesting stage as shown 

in Figure 5.12-5.13.   
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a) Phichit 
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b) Ang Thong 
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Figure 5.12 Rice yield estimation and MAPE in three representative provinces by applying simple 

linear regression model to optical imageries with NDVI in the panicle stage. 

c) PathumThani 
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a) Phichit 
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b) Ang Thong 
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Figure 5.13 Rice yield estimation and MAPE in three representative provinces by applying simple 

linear regression model to SAR imageries in the harvesting stage. 

 

c) Pathum Thani 
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5.4 Discussion 

5.4.1 Seasonal changes in satellite data according to rice growth 

Analysis of the temporal dynamics of vegetation indices and backscatter through the growing 

season indicates that the vegetation indices have a defined seasonal cycle, particularly the NDVI, 

which recorded the highest values in the panicle stage. Rice characteristics begin with flooding 

(inundation) and transplanting; thus, the vegetation indices are pretty low at these stages. Then, 

NDVI increases following rice growth and leaf greenness. This agrees with numerous studies that 

found the highest NDVI values before the ripening phase by analysing the MODIS-based 

vegetation and water indices, reconstructed NDVI temporal profile, and setting thresholds such as 

Otsu’s method and LSWI + 0.05 > NDVI (or EVI) for flooding and transplanting pixel (LI et al., 2020; 

Peng et al., 2011). Xiao et al. (2002) proved that the LAI of rice peaked two months after 

transplanting. The temporal dynamics of the EVI were similar to the NDVI, which may reflect the 

greater sensitivity of the EVI to the canopy structure rather than the vegetation vigour (Mondal et 

al., 2014). As the rice canopy grows and matures, LAI increases, whilst the development of flowers 

and seeds changes the composition of photosynthetic and non-photosynthetic material (Chang et 

al., 2016). Other studies have investigated the rice phenological cycle by extracting remote 

sensing data. Zhou, Liu, and Liu (2019) assimilated rice phenological from the MODIS in EVI 

product to identify three phenological dates (transplant date, heading date, and maturity date) 

into the World Food Study (WOFOST) model. The correlation (r) ranged from 0.8-0.82 and proved 

efficiency for rice phenological simulation. Other research created rice phenology using object 

classification (pixel-based classification) from Sentinel-1/2 and estimated the proper time window 

in time-series VIs and PhenoRice algorithm. These combinations of methods help in define the 

start of the season (SoS), flowering (or peak of the season: PoS), and cropping intensity during the 

growing season (Xiao, Xu, & He, 2021). In summary, the vegetation index has successfully tracked 

the rice phenological cycle or dynamics for the wet season, even though some data in the 

flowering stage may be missing. The rice variety indicated the variation of vegetation and varied 

with the growth stage. 

Meanwhile, the temporal backscatter of rice displays the cross-ratio (VV/VH) as excellent 

performance. The backscatter for each of the growth stages is agreed with previous research. 

Backscatter in both VV and VH polarisation in the transplanting period shows the lowest 

backscatter related to the specular reflection of the water surface in the paddy field. After the 

transplanting, rice roots develop their nodes and density. Some research suggested excluding C-

band SAR data in the seeding stage because there are effects from ridge appearing on the water 

surface (Kobayashi & Ide, 2022). In the tillering stage, the backscatter of VV increased more 
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rapidly than VH polarisation because of the increased rice height and caused the vertical structure 

development. In addition, there are influences from double-bounce scattering between rice 

plants and the water surfaces. In the panicle stage, rice develops its stems and panicle initiation 

and causes microwave attenuation by vertical plant structures. In the flowering or ripening stage, 

SAR signals are quite sensitive to moisture contents for vegetation and soils, called dielectric 

constant. Finally, the harvesting stage is a slight change in rice structure, and the backscatter is 

dropped due to senescence. The result explores the different backscatter patterns between two 

orbits and polarisations, agreed with Wali et al. (2020) and consistent with crop phenological 

changes. However, the present study’s limitations are the wide range of planting dates (4 – 24 

May 2017 with ~20 days) which causes a slightly distortion of vegetation indices (NDVI and EVI). 

The SAR phenological cycle is less pronounced than the vegetation indices, with the VV polarised 

backscatter consistent throughout the season, whilst the VH polarised backscatter typically 

increased. Other studies have found similar trends (He, Li, Wang, Dai, & Lin, 2018). As the same 

result with the present study showed that the backscatter coefficient in VH polarisation was 

relatively low (-20 dB) in the transplanting phase, whilst the flooding water in VV polarisation was 

higher (-13 dB). Furthermore, it was difficult to classify the phenological phase of HH or VV 

polarisation. Polarisation is one crucial factor impacting the strengths of the backscatter (CEOS, 

2018) and its interaction with vegetation structure. In principle, the total backscatter of a rice 

canopy is primarily from volume scattering due to the ears, leaves, and stems, multiple scattering 

between the canopy and underlying ground surface, and surface scattering by the ground surface 

(soil or flooded water). In the sowing and transplanting stages, the ground surface is a smooth 

surface, with a dielectric constant of water; at this point, the signal is no return, and the 

backscatter coefficient is called “specular reflection” and causes the SAR images to dark. The rice 

canopy contains three layers (i.e. ears, leaves and stems). In particular, rice ears and stems are 

short cylinders and have narrow leaf’s structure. Further, the leaf angle distribution varies by 

growth stage and is expressed by specific probability distribution functions (Verma et al., 2019). 

The SAR phenological cycle is less pronounced than the vegetation indices, with the VV polarised 

backscatter consistent throughout the season, whilst the VH polarised backscatter typically 

increased. Other studies have found similar trends (He, Li, Wang, Dai, & Lin, 2018). The same 

result with the present study showed that the backscatter coefficient in VH polarisation was 

relatively low (-20 dB) in the transplanting phase, whilst the flooding water in VV polarisation was 

higher (-13 dB).  
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5.4.2 Relation between rice yield variables and satellite 

The relationship between the rice yield variables and satellite-derived measurements was 

investigated for different growth stages of the growing season. Our study reveals that the VIs 

peaked in the panicle stage and that the NDVI is typically slightly higher than EVI. The irrigation 

system appears to influence the temporal dynamics of the vegetation indices. For example, VI 

values in non-irrigated areas were higher than in irrigated areas in the panicle stage. This likely to 

be due to differences in the planting dates influence the growth stage and the availability of a 

consistent water supply. The lower correlation between VIs and rice yield variables found in non-

irrigated areas is believed to be due to the influence of non-photosynthetic materials. Xu et al. 

(2020) found that NDVI tends to saturate at high effective LAI values due to non-photosynthetic 

vegetation (NPV). The study contributed green vegetation (GV) and NPV by Plant Area Index (PAI) 

measurement and found a weak correlation between NDVI and PAI with higher rice residue in the 

paddy field. Due to the non-photosynthetic vegetation, several researchers have applied the 

other seasonal NDVI pattern. Ajith et al. (2017) developed rice yield prediction using time-series 

of MODIS-NDVI (MOD13Q1) data from the beginning to the end of the growing season and found 

a high correlation with rice yield based using the NDVI summation (∑NDVI; R2 = 0.75). Specific rice 

variety (RD41) had the highest correlation between rice yield and EVI in the seeding stage, whilst 

Phitsanulok2 is the highest correlation among the two parameters in the tillering stage.  

Furthermore, it was difficult to classify the phenological phase of HH or VV polarisation. 

Polarisation is one crucial factor impacting the strengths of the backscatter (CEOS, 2018) and its 

interaction with vegetation structure. In principle, the total backscatter of a rice canopy is 

primarily from volume scattering due to the ears, leaves, and stems, multiple scattering between 

the canopy and underlying ground surface, and surface scattering by the ground surface (soil or 

flooded water). In the sowing and transplanting stages, the ground surface is a smooth surface, 

with a dielectric constant of water; at this point, the signal is no return, and the backscatter 

coefficient is called “specular reflection” and causes the SAR images to dark. The rice canopy 

contains three layers (i.e., ears, leaves, and stems). In particular, rice ears and stems are short 

cylinders and have narrow leaf’s structure. Further, the leaf angle distribution varies by growth 

stage and is expressed by specific probability distribution functions (Verma et al., 2019). The 

moisture content of rice panicles decreases in the ripening stage and leads to a slight reduction of 

the backscatter coefficient (Nelson et al., 2014). SAR data is more influenced by the vegetation 

canopy structure and surface moisture content. This is reflected in our results, which show the 

strongest correlations with rice yield in the ascending orbit direction with the ratio of VV/VH. This 

agrees with previous research that has found a high correlation between the C-band backscatter 

coefficient and rice biophysical variables. However, there are limitations as the backscatter can 
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saturate when the LAI is >3 m2 m-2 and the total biomass (320 gDW m-2) (Inoue et al., 2014). 

Further, the correlation between the backscatter coefficient and rice biophysical variables in the 

overall area agrees with previous research that found LAI, FPAR, biomass, and rice height were 

related to the ratio of VV/VH polarisation (Li et al., 2016). The result of our study indicates that 

rice yield had a high correlation with the backscatter coefficient in the ascending ratio of VV/VH 

polarisation in the harvesting stage. Finally, the RD41 variety improved the correlation of rice 

yield with ascending VH polarisation in the flowering stage. The results agree with Lam-Dao et al. 

(2011) previous study on using the ratio HH/VV of multi-date TerrSAR-X for multiple linear 

regression model in the Mekong Delta even though there was utilise the several multi-date band 

combinations of TerraSAR-X data of X-band. The result proved the relationship between in-situ 

yield and polarisation ratio data was a high positive correlation with a correlation coefficient of 

0.892 in case 1 and 0.884 in case 7 (Lam-Dao et al., 2011). The results agreed with (Kobayashi & 

Ide, 2022) that suggested the potential of C-band SAR data of properly in the harvesting stage for 

yield estimation because of less affected by the surface to resonate of panicle conditions; in 

addition, the stable signal in ratio VV/VH after heading period. 

The results of the comparison between satellite metrics and rice biophysical variables also 

highlight the role of the irrigation method, even when the rice variety is the same. As shown in 

Figure 5.7, peak vegetation index values occurred in the tillering stage in irrigated areas but in the 

panicle stage in non-irrigated areas. The irrigation method influences vegetation health and land 

surface temperature (LST) (Ambika & Mishra, 2019). Kamthonkiat et al. (2005) also found the 

NDVI to be higher in irrigated rice areas (ranged 0.64-0.77) than in non-irrigated areas (ranged 

0.58-0.63), which suggests irrigation may play an important role in improving crop development 

and food security. 

5.4.3 Potential of satellite data to develop rice yield estimation model based on simple 

linear regression 

Numerous methods exist for estimating yield, such as seasonal crop growth, crop growth model, 

rice biophysical relevant to LAI and grain, and remotely sensed data (Fernandez-Beltran et al., 

2021; Huang et al., 2013; Kim et al., 2017; Noureldin et al., 2013). In this study, linear regression 

and multiple regression models were developed using satellite and field measurements to predict 

yield. The results indicate that the least error found using a linear regression model was VV/VH 

polarised ascending backscatter in the harvesting stage, which had a SEE of 0.68 tonnes/ha. 

Noureldin et al. (2013) developed simple and multiple regression models using individual spectral 

bands and several vegetation indices (i.e., GVI, DVI, IPVI, RVI, NDVI, SAVI) using SPOT data. The 

most accurate yield estimates were found using the red, NIR and VIs (R2 > 0.8), and the highest 
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accuracy between NDVI and LAI parameters. The lower error was found using a regression model 

developed using in-situ LAI measurements in the panicle stage. However, a limitation of this is the 

requirement to use surface measurements despite the benefit of being able to estimate yield 

earlier in the growing season than can be currently achieved.  

Chapter 4 investigated the variation of biophysical variables through the growing season for 

different rice varieties grown in irrigated and non-irrigated areas. The results highlighted the vital 

role that rice variety has on rice plant structural development. These differences have important 

implications for estimating biophysical parameters and yield using satellite imagery. Modern rice 

varieties aim to maximise biomass production. Huang, Yin, Jiang, Zou, and Deng (2015) 

investigated two rice varieties (GLY2 and YXYZ) and found significant differences in high grain 

yield, spikelet per m2, spikelet filtering percentage, LAI, and leaf N content. Crop photosynthesis 

depended on traits for potential yield improvement. This study also found that rice varieties lead 

to varied correlations between biophysical parameters and satellite data, even when planted in 

the same period. In addition to rice variety, the irrigation system also impacts both Sentinel-2 and 

Sentinel-1, as shown in Figure 5.7 and Figure 5.8, which is a high gap noticeable in the satellite 

values. However, to get a clear picture of the influence of rice variety and irrigation methods, a 

more significant number of samples of rice variety are needed.  

The other study interest is investigating the total backscatter coefficient from of rice canopy (σ0 

total) and MIMICS model (Michigan’s Microwave Canopy Scattering Model) (i.e. crown region, 

trunk region, and underlying ground region) (Steele-Dunne et al., 2017). In principle, the 

backscatter coefficient from crop canopy is expressed as the volume scattering with crop canopy 

and ground surface; thus, the backscatter coefficient should be determined as the total 

backscattering coefficient of crop canopy as defined in σTotal (Verma et al., 2019). In addition, rice 

development in each growth stage responds differently with SAR signal. For example, the σTotal 

signals in the harvesting stage impacted with surface, stem, leaves, and panicle grains. Because 

there are several layers and should investigate on the relationship with other microwave indices 

such as the Radar Vegetation Index (RVI) (Kim et al., 2012; Mandal et al., 2020) with essential rice 

biophysical variables. Future work may investigate the multiple linear regression model based on 

the polarisation ratio of multi-date and image combination of SAR images (Lam-Dao et al., 2011). 

Further work should be investigated the other vegetation indices such as the modified chlorophyll 

absorption ratio index/second modified triangular vegetation index (MCARI/MTV12) and 

transformed chlorophyll absorption in reflectance index/optimized soil-adjusted vegetation index 

(TCARI/OSAVI) for better performance. The other factors influences with crop and the present 

study did not collect is leaf water contents and panicle water contents, which influences with SAR 

signals (Kobayashi & Ide, 2022). Also, future works are focusing on using other shallow incidence 
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angle (>45°) because there has a stronger scattering with crop canopy and panicle. Besides, the 

combining of multi-frequency of radar backscattering or full polarisations is challenge for derive 

rice biophysical and yield estimation (Kim, Hong, & Lee, 2008). 

5.5 Conclusion 

This chapter builds on Chapter 4 by investigating the relationship between rice biophysical 

variables at different growth stages and satellite-derived vegetation indices and backscatter 

coefficients. Analysis of the temporal dynamics of vegetation indices and backscatter through the 

growing season indicates that satellite-derived measurements are suitable for characterising rice 

phenology. However, the vegetation index measurements had a more defined seasonal cycle but 

also appeared to be influenced by the development of flowers during the flowering stage, as the 

VI values were typically low here.  

Regression models developed using satellite measurements in the harvesting stage provided the 

best approach to estimate rice yield. However, this is towards the end of the growing season and 

not a significant temporal advancement than in-situ measurement approaches. The best-

performing regression model was developed using the NDVI in the panicle stage, which had a SEE 

of 0.70 tonnes/ha. The SAR based on ascending ratio VV/VH measurements in the harvesting 

stage is also better due to penetrating cloud cover, with a SEE of 0.68 tonnes/ha. The present 

study proves that the significance of SAR data in the ascending ratio VV/VH is better than the 

NDVI in the Pathum Thani (MAPE for the NDVI in panicle 27% and 18.29% MAPE for the ascending 

VV/VH). On the contrary, the MAPE based on NDVI in the panicle stage in Phichit and Ang Thong 

fits with 9% and 62.14%. The MAPE based on the ascending VV/VH in the harvesting stage in 

Phichit and Ang Thong is fits with 52.34% and 71.88%. A limitation of using regression models is 

the reliance on field measurements in their development, but it does provide a means to estimate 

the yield on a broader scale.  

A key challenge highlighted in this chapter is the role of rice variety and irrigation system, which 

influences the structural characteristics of canopy and temporal dynamics of growth. This has 

implications for using satellite data to estimate rice yield where significant variation in the 

correspondence between satellite metrics and rice biophysical variables was evident. Therefore, 

future studies should investigate the influence of rice variety on satellite radiometric signals, as 

this may improve the development of methods for estimating yield using EO data. 
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Chapter 6 Discussion and conclusions 

6.1 Summary of findings 

The following sections summarise the main findings of this research, which centre on three main 

areas: 1) the influences of precipitation and temperature on rice production in Thailand; 2) the 

dynamics of rice biophysical variables and the role of irrigation in controlling them; and 3) the 

potential of optical and radar data to estimate rice yield. 

6.1.1 Analysis of the impact of rainfall and temperature on rice production 

This study investigated the influence of weather (temperature and precipitation) on annual rice 

yield and production at the provincial level in Thailand over the past 35 years (1981-2015). It was 

achieved by assessing the impacts of precipitation (amount of rainfall and average rainy days) and 

temperature (minimum temperature, maximum temperature, mean temperature, mean 

minimum temperature, mean maximum temperature, and difference in temperature) on rice 

yield and production. To remove the influences of changes in agricultural policy and 

developments in agricultural technology and seed developments, rice yield and production data 

were detrended by differentiating between original rice production/yield in the observation year 

and rice production/yield observation in the previous year in the time-series datasets. In 2015, 

the main rice cultivated area is located in the northeast with low productivity (~1.9 tonnes/ha) 

due to poor soil fertility. On the contrary, the rice cultivated areas in the central regions represent 

high productivity (~4.5-5 tonnes/ha) due to adequate irrigation and fertile soil.  

The changes in rice cultivated areas over the period revealed that 55% of the provinces saw an 

increase of >10% in cultivated areas, 25% a decrease in cultivated areas by >10%, and 20% of 

provinces saw changes less than +/-10%. Analysis of the temporal dynamics of precipitation on a 

monthly basis revealed declining trend of average rainfall in May (~60 mm). This is important on 

rice production in Thailand, as it can influence the rice planting date in the wet growing season in 

terms of shifting the planting date, especially in the non-irrigated areas corresponding with the 

onset of monsoon. The rainfall variation in terms of standard deviation (S.D.) is highest from 

June-August. Besides, the number of rainy days gradually increases ~3-5 days per month and 

peaks during August-September.  

The temperature in terms of mean minimum temperature in January around 18-19°Celsius; then, 

the temperature is slightly increased until April (~25°Celsius) and certainly steady until August-

September. On the contrary, the mean maximum temperature is the distinctive pattern from the 
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mean minimum temperature. For example, the mean maximum temperature in January is 

32°Celsius and sharpens increasing in April; then, the temperature reduces until the end of the 

year. Obviously, there is an enormous fluctuation between mean maximum and mean minimum 

temperature (defined as differences in temperature) at the beginning of the year (January-April). 

After October, the difference in temperature reveals higher trends of mean minimum 

temperature. The present study is agreeable with the IPCC weather trends forecasts (Solomon, 

2007) and weather data derived from TMD, Thailand, that reveals the increasing temperature 

trends over the study period. 

The correlation between rice and weather variables revealed that mean minimum temperature, 

mean maximum temperature, and cumulative rainfall adversely affected rice yield and 

production. The impact of climate on rice production also varies by level of irrigation. In general, 

the temperature-derived variables such as mean minimum and mean maximum temperature had 

a more considerable impact than rainfall variables. Some key findings from this study can be 

summarised as:   

1) In the non-irrigated area, the mean minimum temperature has a significant positive 

relationship with rice yield for 15 provinces, whist in the irrigated area only 3 provinces recorded 

a significant relationship between rice yield and mean minimum temperature. Whereas there are 

16 provinces is significant with rice production in the non-irrigated area (positive correlation 15 

provinces and negative correlation 1 province). 

2) In the non-irrigated area, the mean maximum temperature has a significant positive relation 

with rice yield for 11 provinces, whilst in the irrigated area only 3 provinces Contrary, the positive 

significant on rice production 2 provinces in irrigated areas and 10 provinces in non-irrigated 

areas (positive correlation 9 provinces and negative correlation 1 province).  

3) In the non-irrigated area, the cumulative rainfall is positive. There are significant 3 provinces for 

rice yield. However, the positive significant with rice production found 1 province in irrigated rice 

and 3 in non-irrigated rice. The result demonstrates the influences of irrigation on rice production. 

Furthermore, the present work determines the spatial autocorrelation with Global Moran’s I 

index to study the systematic spatial variation pattern (i.e., cluster, random, disperse) with 

neighbouring provinces by assigning the feature location and weather data from their weather 

attribute. The test is set to share an edge with the target polygon in the conditions and considers 

the Z-score and P-value to accept the null hypothesis. The output identifies less spatial 

autocorrelation between share edge provinces. The result reveals that cumulative rainfall and 

average temperature are significant with the random and clustered pattern (Moran’s I index 

~0.15). Moreover, the result indicates some influences on the other variables. 
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An increase in water efficiency through irrigation supports long-term crop productivity 

(Winterbottom et al., 2013) by ensuring adequate water supply as per the requirement of the 

crop.  The development of engineering irrigation structures (e.g. dams, conveyers and canals) is 

important in the redistribution water resources to agricultural areas (Ozdogan et al., 2010). Thus, 

improving water management provides better access to adequate water supplies and the ability 

to grow rice even in the dry season. The result reveals the influences of irrigation systems on rice 

productivity in the study area. To assess the impacts of predicted climate change on rice development, 

Horie (2019) grew rice under different environmental conditions and found that excessive 

temperature (>28°Celsius) reduced the panicle dry weight, which is important for biomass 

production and relative rice yield because of heat-induced spikelet sterility of rice. Predictions of 

future climate change based on the latest Global Climate Model (GCM) climate projection in 

Coupled Model Intercomparison Project Phase5 (PrCMIP5) suggest that the temperature in Thailand 

will increase during the 21st century. The national average temperature at baseline (1980-1999) is 

25.2°Celsius; the future average temperature (2080-2099) will be 28.6°Celsius. The increasing 

temperature influences the Agricultural Ecology Zone (AEZ); the largest temperature increase has 

been found in the northern region of Thailand (> 4°Celsius). The precipitation trend has increased from 

1,819 mm/year to 2,046 mm/year, while Asian monsoons influenced the difference in rainfall in the 

wet and dry seasons. The  monsoons delays are explicitly impacted the beginning planting date even 

though the pattern of precipitation is uncertain (Kiguchi et al., 2020). 

Overall, 30 provinces showed the impact of climatic variables on rice production – 6 provinces in 

irrigated areas and 24 in non-irrigated areas. Precipitation data used in the analysis in Chapter 3 

were annual and therefore only applicable to the wet season rice; it prevents assessment of the 

influences of temperature or precipitation on rice planted in the different seasons. This may partly 

explain the limited correlation between precipitation and yield, particularly in non-irrigated regions. In 

addition, the data collection on rice yield and production data was averaged at the provincial level by 

neglecting the differences in irrigation systems. A province is only classified as irrigated if more than 

50% area of the province is irrigated. Improved data collection separated by irrigation cultivated areas 

would improve the correlation analysis. 

Secondly, the current study did not account for extreme events such as drought and flooding 

which usually depend on the lengths and intensity of extreme events. The extreme events 

seriously impact crop production especially when they occur close to harvesting period. The 

present study supports previous research that indicated the Aus and Aman rice (planted in the 

wet season) with a positive correlation; oppositely, the Boro rice (planted in the dry season) found 

a negative correlation. These correlations were related to the development of the speed of leaf 

emergence and rainfall affected tillering and stem elongation (Abbas & Mayo, 2021). The period 
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under the present study corresponds with the correlation results in Aus and Aman rice, which is 

planted in the wet season and a positive correlation. Similarly, Chowdhury and Khan (2015) 

monitored rice yield in Bangladesh between 1972 and 2014 and found maximum temperature to 

have a negative effect on yield in all three rice planting seasons: Aus (March-July), Aman (June to 

November), and Boro (November to May). This research also found that rainfall had a positive effect 

on yield when planted in the Aus and Aman seasons and an adverse effect when planted in the Boro 

season. To mitigate the adverse effects of excessive temperature on rice production especially during 

grain filling that reduced on non-structural carbohydrates in the sink (Chaturvedi et al., 2017) and 

spikelet fertility (Chidambaranathan et al., 2021).It is important to develop and cultivate temperature 

or heat-tolerant genetic rice varieties to ensure sustainability (Hakata et al., 2017; Khan et al., 2019; 

Kilasi et al., 2018). Further study should be investigated on the other methods of detrended such as 

fitting linear regression, applying residual for model, and log-linear trend model for better 

performance on detrended analysis. Also, the optimum temperature for rice development is ranged 

25-35°Celsius (Nishad et al., 2018) and the effects on rice production in terms of net assimilation 

rate on rice and biomass, especially when the optimum temperature occurs in the reproductive 

stage should be investigated. Finally, the cumulative rainfall is a positive and proves agreeable 

because most provinces located in the northeast region are non-irrigated areas that require 

sufficient rains for their planting. 

The location of the weather station may be limited because most of them are not located in the 

agricultural areas and there was the limitation of excellent representative of weather data. 

Besides, the spatial autocorrelation will be improved if we know the exact distance threshold of 

the distance band for our analysis, which is interpreted as less correlation on the spatial 

dimension. The unpredictability climate change seems to greatly impact especially in developing 

countries. The result identifies the average minimum and maximum temperature vital influences 

on rice yield/production. Thus, suitable agricultural adaptation strategies and developing new 

heat stress-tolerant rice varieties should be adopted for climate change resilience. 

6.1.2 Dynamics of rice biophysical variables in irrigated and non-irrigated systems during 

the growing season 

Due to the various rice ecosystem and photosensitive rice varieties, several rice biophysical 

variables such as density, Leaf Area Index (LAI), spikelet per m2, and biomass accumulation varied 

with yield. Rice biophysical variables from in-situ measurement enable it to relate with remote 

sensing data products. Several studies estimated essential crop biophysical variables (LAI and 

biomass) and ultimately related them with yield. The present study aims to study the dynamics of 

rice biophysical in the overall and identify differences due to irrigation systems and rice variety. A 
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field campaign was conducted in 2017, during which time several rice biophysical variables were 

measured throughout the growing season to investigate their variations by rice variety. Besides, 

the present study aims to develop and validate models to predict rice yield using satellite data in 

the Chapter5. The present study collects rice biophysical variables with in-situ measurement of 28 

sample units with different irrigation systems (21 sample units located in irrigated areas and 7 

sample units located in non-irrigated areas in Phichit, Ang Thong, and Pathum Thani). Rice 

biophysical measurement is defined as five main growth stages: seeding (1-20 days), tillering (21-

40 days), panicle (41-70 days), flowering (71-90 days), and harvesting (90-120 days). Besides, the 

rice biophysical variables differ with growth stage depending on their rice structure development, 

consisting of the water depth, stem density, height, Leaf Area Index (LAI), chlorophyll contents, 

wet and dry biomass, and yield. 

The result presents two approaches via the dynamics of rice biophysical variables and their 

correlation with rice yield. The assessment was undertaken at various growth stages, irrigation 

systems, and rice varieties during the growing season. The irrigation influences rice development 

such as rice height found differences in height in the tillering, panicle, flowering, and harvesting 

with 0.64, 1.22, 3.48, and 6.54 cm, respectively. Besides, the differences that occur in the water 

depth in different irrigation in the seeding, tillering, panicle, flowering, and harvesting are 2.83, 

4.69, 4.45, 3.66, and 1.5 cm, respectively (average differences in water depth 0.5-2.5 cm). There 

are some remarkable facts that no water in the paddy fields in the non-irrigated was found after 

the flowering stage. The stem density is a key variable closely associated with the tiller’s rate of 

rice and flag leaf development. The stem density is highest during the seeding to panicle stage, 

approximately 250-500 stem/m2. Then, the stem density is reduced by ~120-150 stem/m2. The LAI 

variable, which indicates the ability of crops to absorb solar energy for biomass production, 

provides beneficial information on rice growth and yield evaluation. Our result shows that 

differences in LAI development depend on rice variety. Most rice varieties in the study peaked in 

LAI value in the flowering stage with 4.3 m2 m-2 (e.g. RD41, RD47, and HomMali105 in irrigated 

areas, RD13 in non-irrigated areas, and RD49 and Phitsanulok2 in both irrigated and non-irrigated 

areas). However, some rice varieties peaked earlier in the panicle stage (e.g. RD13 in non-irrigated 

areas and RD61 in irrigated areas) or later in the flowering stage (e.g. RD57 in irrigated areas). The 

shifting LAI development influences other rice biophysical and remotely-sensed data. In addition, 

the LAI in the non-irrigated areas is higher than in irrigated areas ~0.31 m2 m-2. The main reason 

for the high values of LAI in the flowering stage is the development of rice flag leaves and found 

the variation in the panicle stage in the non-irrigated areas. The LAI is usually a peak in the 

flowering stage, which develops the milky in rice grains. The chlorophyll content is one key 

variable reflected on the photosynthetic pigments and peaks in the flowering and sharp drops in 
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the harvesting. The amount of chlorophyll content in the irrigated areas is higher than in the non-

irrigated areas during the panicle until the flowering stage. However, the chlorophyll content 

proves high chlorophyll content in the tillering stage (RD57, RD49, and RD47). The comparison of 

chlorophyll content in rice varieties planted in both irrigation and non-irrigation systems 

(Phitsanulok2 and RD49) found the large differences in the tillering, panicle, flowering, and 

harvesting stage with 31.86, 1.26, 0.88, and 4.15 µmol m-2, respectively. The wet and dry biomass 

collects in the panicle until the harvesting stage. The biomass is highest in the harvesting stage, 

and the biomass in overall, stem, and grains in the harvesting stage (bracket shown the dry 

biomass) is 133.48 (48.02), 99.33 (26.29), and 33.77 (21.74) g m-2, respectively. In the harvesting 

stage, the total wet biomass is highest with 119.13 g m-2 (minimum and maximum wet biomass of 

average total wet biomass 14.27% and 215.45%). The stem density and LAI tend to decrease 

whilst the biomass is increasing. The biomass in the RD49 and Phitsanulok2 found the differences 

on wet biomass with 25 g m-2 and 1.3 g m-2 in the irrigated areas and 10.7 g m-2 and 43.2 g m-2 in the 

non-irrigated areas. Rice variety is influence on the biomass, for example, and there was slightly 

higher wet total biomass in the Phitsanulok2 (49.25 g m-2) than in RD41 (37.67 g m-2). Regarding 

rice characteristics, the dominant characteristics in RD41 are straight clumping, hard stem, green 

rice leaves, straight flag leaves, and short ears of rice from flag leaves, which is outstanding with 

remotely sensed data, especially the vegetation index. There are differences in grain dormancy 

between rice varieties: the result shows that grain dormancy for RD13 and RD41 is 3 weeks and 9-

10 weeks, respectively (Rice Department, 2016). Consequently, the yield for these varieties 

differed based on grain dormancy, with 4.06 and 5.06 tonnes/ha, respectively. 

The results have shown a correlation in rice yield in overall growth stages in the entire study area 

and the irrigated areas. In the entire study area, significant rice biophysical at each growth stage 

was different. These findings prove a significant positive relationship with rice height stage (r= 

0.37), wet grain and dry grain biomass (r = ~0.43-0.45) in the tillering stage and yield. There was 

preferably significant wet grain biomass in the overall growth stage (r = 0.27). In addition, the 

relationship between rice yield and other rice biophysical variables diversified among irrigation 

systems. In irrigated areas, the significance is found in the seeding, panicle, flowering, and overall 

growth stage. In seeding, the stem density is correlated with rice yield (r = 0.45). The LAI is 

correlated with rice yield in the panicle stage (r = 0.57). While in the flowering stage, stem density 

(r = -0.46) and wet grain biomass (r = 0.47) were significantly related to yield. In the overall areas, 

the wet grain biomass is significant with wet grain biomass (r = 0.31). Finally, there is a different 

significant growth stage with rice biophysical variables in non-irrigated areas. In the tillering stage, 

rice height is significant with rice yield (r = 0.74). The rice height is significant in the harvesting 

stage with yield (r = 0.81). The high negative correlation is all of the biomass (i.e., total, stem wet 
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and dry biomass) (r > -0.93). In the overall growth stage, the correlation is significant with 

chlorophyll content (r= -0.36), total wet biomass (r= -0.58), and wet and dry stem biomass (r = -

0.69). All evidence supports the important role of rice variety and irrigation in the study area. The 

majority of rice development found in non-irrigated areas higher develops than the irrigated areas 

such as rice height (absolute rice height), stem density, LAI, chlorophyll content, and grain 

emergence. There was observed a delay in rice emergence in the non-irrigated areas, which may 

be from soil nutrients and water availability during the growing season. Here, rice biophysical 

reveals an increasing rice development in irrigated areas, such as water depth and yield. Some 

fluctuations in rice growth among different irrigation systems and various developments initiate. 

Our study suggests the significant rice biophysical on dry total and stem biomass on RD41 in the 

harvesting stage. 

Retrieving biophysical variables from remote sensing data is vital for rice yield estimation before 

harvesting. Previous studies have proven the influence of rice variety on their biophysical 

variables, which increases the difficulties of using remote sensing estimating rice biophysical 

variables. Maftukhah et al. (2019) investigated the differences in LAI among different rice varieties 

(IR64 > Hitam and Mutiara variety approximately 1 m2 m-2). Thus, the study summaries the 

influences of rice varieties and irrigation water on physiological and biochemical behaviours in 

rice. Huang, Yin, Jiang, Zou, and Deng (2015) investigated two rice varieties (GLY2 and YXYZ 

variety), finding influences on different biophysical variables such as grain yield, spikelet per m2, 

spikelet filtering percentage, LAI, and leaf nitrogen content. These researchers agreed with the 

present study that differences in rice variety reveal the different rice characteristics even when 

planted in the same period. Another research determined the association between rice yield and 

other essential agronomic traits in different ecotypes – Indica and Japonica inbred/hybrid and 

found various significant traits. For example, the Japonica inbred and hybrid was significant only 

high panicle number per area (Li et al., 2019). Chu et al. (2018) investigated the different rice 

varieties in Indica-Japonica hybrid rice (IJHR) and Japonica inbred rice (JIR) in two irrigation 

situations, such as the continuous flooding (CF) and alternate wetting and severe drying (AWSD). 

The result proved rice yield decrease in AWSD pattern for both IJHR and JIR varieties. 

6.1.3 Potential of optical and radar satellite observation in rice yield estimation 

Remote sensing is an effective instrument for crop monitoring and yield estimation because of its 

various advantages on spatial coverage, temporal, and spectral characteristics. Satellite data have 

been widely applied to estimate rice yield via empirical models using spectral vegetation indices 

(Huang et al., 2013; Ji et al., 2021; Mosleh et al., 2016; Noureldin et al., 2013; Son et al., 2014; 

Harrell et al., 2011; Zhang et al., 2019) and crop growth model parameterised with satellite 
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observations (Li et al., 2015; Machwitz et al., 2014; Setiyono et al., 2018; Singh et al., 2014; Son et 

al., 2016). In Chapter 5, both optical (Sentinel-2) and radar (Sentinel-1) data were used to monitor 

rice throughout the growing season and analyse the correlation between rice yield and Earth 

Observation (EO) data to develop yield estimation model. Several spectral vegetation indices were 

developed to increase vegetation sensitivity and reduce the other factors (soil backgrounds and 

atmospheric effects). Using the Sentinel-2 data, the NDVI and EVI were used to monitor the rice 

phenological cycle throughout the growing season, which found high VI values occurring in the 

panicle stage for both vegetation indices. Analysis of the LAI throughout the growing season 

(Chapter 4, Table 4.6) revealed that the highest LAI typically occurred in the flowering stage 

before decreasing in the harvesting stage. The temporal pattern of the vegetation index is shown 

lower in the seeding stage due to the bare soils or flooded field; then, the vegetation index is 

sharpened increases in the tillering stage due to the dense and green vegetation. The profile of 

the vegetation index is still increasing until the panicle stage, and there are slightly increasing in 

EVI in the panicle stage. Afterwards, the vegetation index suddenly decreased in the flowering 

and harvesting index due to their senescence. One of the reasons for lower VI values in the 

flowering stage, despite the higher LAI, is influenced by non-photosynthetic materials, such as 

flowers have impacted the radiometric signal (see Figure 4.4). This decrease in vegetation index 

values during the flowering stage has been observed in several other studies (Boschetti, 

Stroppiana, Brivio, & Bocchi, 2009; Mosleh et al., 2016; Son et al., 2014), which impacted the 

accuracy of LAI estimation using vegetation index measurements during the flowering stage.  

The Synthetic Aperture Radar (SAR) data is quite relevant in terms of canopy characteristics and 

water contents on the crop. The capability of signal penetration on SAR signals depends on 

microwave signals. In present study focuses the backscatter coefficients in terms of sigma nought 

(σ0). Analysis of the temporal dynamics of VV and VH radar backscatter in the ascending and 

descending orbits revealed that backscatter peaks in the tillering stage with the VV polarised data 

decreasing. At the same time, VH observations tended to remain flat (Figure 5.8). These trends 

are believed to be due to volume scattering in the rice canopy (consisting of rice ears, leaves, and 

stems), multiple scattering or called “double bounce” scattering between canopy layer and 

underlying ground surface, and surface scattering (soil or flooded water) (Verma et al., 2019) 

which have been observed in other studies. Volume scattering from crop canopies is comparatively 

low, with the backscatter coefficient largely influenced by the surface underneath the canopy 

(Choudhury & Chakraborty, 2006; Liu et al., 2019; Phan, 2018). These scattering effects reflect the 

different signals that occur during growing season, since they are influenced by the rice canopy 

structure composed of stem, stalk, and grain (Inoue et al., 2014; Yuzugullu et al., 2016). 

Furthermore, the moisture contents, which is the important factors in terms of dielectric 
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contents, of the rice panicle decreased in the ripening stage and led to a slight reduction of 

backscatter coefficient (Nelson et al., 2014). The temporal of backscatter indicates the low 

backscatter in the seeding stage, which is lower on the VH rather than VV polarisation. The result 

proves a lower backscatter in the descending than ascending in all growth stages. The low 

backscatter coefficient in the seeding stage is because of the specular reflection or “mirror”, 

which is no response signal and is seen darken on SAR images. Then, the backscatter increases in 

the tillering stage because rice develops its tiller’s rate. In the panicle stage, the backscatter 

coefficient decreases. In the flowering stage, the backscatter is reduced and relatively lowers for 

VV because of the dielectric of rice. The result proves the sensitivity with grain and moisture 

contents in the descending mode. Finally, the VV and VH polarisation in the harvesting stage 

slightly decreases. Conversely, the backscatter for VV on both ascending and descending orbit 

directions indicates an increasing backscatter; however, the backscatter in the descending is 

lower than the ascending on both VV and VH polarisation because of the influences on 

attenuation. The profile for both satellite data is advantageous for rice monitoring. 

An important finding in Chapter 4 was the influence of rice variety, which can see significant 

differences in canopy biophysical variables. For example, the maximum average LAI in RD41 and 

RD49 was 4.03 m2 m-2 and 4.23 m2 m-2 (4.41 m2 m-2 in irrigated area and 3.96 m2 m-2 in the non-

irrigated area), whilst the yield differed by 0.41 tonnes/ha (differences 0.51 tonnes/ha in irrigated 

area and 0.25 tonnes/ha in non-irrigated area). These differences in biophysical traits have 

implications for estimating biophysical parameters and yield using remotely sensed data. Current 

methods for estimating yield in Thailand are through crop cutting experiments (CCE) conducted at 

the end of the growing season, which is limited by the large number of manual efforts required to 

do so and that the yield estimates are derived late in the growing season. One of the aims of this 

research was to develop an approach to estimate rice yield using remotely-sensed data as early as 

possible in the growing season. To do so, a range of simple regression models were developed to 

estimate rice yield using field and satellite measurements. 

Of the two best-performing models based on simple linear regression model in the significant 

satellite measurement and growth stage are shown as follows. 

1) Optical data regarding vegetation index- EVI in the seeding and NDVI in the panicle stage 

measurements. The validation of EVI and NDVI with rice yield had an RMSE of 0.57 with SEE 0.62 

tonnes/ha and RMSE of 0.37 with SEE 0.7 tonnes/ha, respectively.  

2) SAR data in the ascending VV/VH measurements in the harvesting stage with rice yield had an 

RMSE of 0.54 with SEE 0.68 tonnes/ha.  
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The empirical models that utilise satellite and field measurements have been widely applied to 

estimate yield and have typically done so with lower error. For example, Noureldin et al. (2013) 

developed a rice yield estimation model in a linear regression models and multiple linear 

regression models by using SPOT4 data in August 2008 and August 2009. The model input the 

individual band (e.g. green, red, near-infrared, and middle-infrared spectral band), vegetation 

indices (e.g. Green Vegetation Index (GVI), Ratio Vegetation Index (RVI), Infrared Percentage 

Vegetation Index (IPVI), Difference Vegetation Index (DVI), Normalised Difference Vegetation 

Index (NDVI), and Soil Adjusted Vegetation Index (SAVI)), and leaf area index (LAI), which was 

measured 90 days after sowing, or the maximum vegetative growth stage. The highest accuracy 

was achieved by the multiple linear regression model integrating NDVI and LAI with R2 = 0.96 and 

standard error of estimation (SEE) of 0.49 in 2008 and 0.529 in 2009, respectively. The rice yield 

estimation model based on SAR is advantageous for predicting rice yield during the growing 

season based on Sentinel-1 due to eliminating the effects of cloud cover problems on optical data. 

However, the seeding stage has a poor relationship with yield in Sentinel-1 data because there are 

ridges in the flood paddies in this growth stage. To improve the performance of rice yield 

estimation based on satellite data, the determination of rice biophysical variable selects on the 

yield estimation model. Besides, the mixed the irrigation system may be distorted the yield 

estimation model, as noticeable in the higher MAPE in the Phichit. Wang et al. (2019) analysed 

the Ground Range Detected (GRD) of multi-dates Sentinel-1 in IW model with VV and VH 

polarisations – end of tillering stage of vegetative phase and end of the grain filling stage of 

reproductive phase. This study developed the single VV and VH polarisation, the cross ratio VV/VH 

in tillering and grain filling stage, simple ratio, and SAR normalized Difference Index relate with 

rice yield. The outputs of backscatter in the VV and VH in the tillering stage is positive whist 

negative correlation in the grain filling and the excellent backscatter is SSDVH (different between 

σVV in the grain filling σVV in the tillering stage) with r2 = 0.65 and RMSE 0.74 tonnes/ha. Hoang-Phi 

et al. (2021) estimated rice yield using Sentinel-1 for Winter-Spring rice yield in An Giang province 

in 2018 by developing the multivariate regression model of VH backscatter. The output of linear 

regression equation r2 = 0.6 and standard deviation estimate 0.33 tonnes/ha compared with in-

situ yield. The estimated and survey yield results were 6.5 and 6.66 tonnes/ha with the standard 

deviation 0.80 tonnes/ha. Meanwhile, the present study proves that the ascending VV/VH 

polarisation in the harvesting stage and the NDVI in the panicle stage are preferable for rice yield 

estimation. The estimates of rice yield compared with official statistical yield (in bracket) reveal 

that rice yield based on NDVI in the panicle stage in Phichit, Ang Thong, and Pathum Thani are 

3.32 (3.77), 4.45 (4.16), and 3.96 (4.49) tonnes/ha, respectively. Further, the estimated rice yield 

compared with official statistical yield (in bracket) reveals rice yield based on ascending VV/VH 
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polarisation in the harvesting stage in Phichit, Ang Thong, and Pathum Thani are 4.72 (3.77), 4.87 

(4.16), and 4.86 (4.49) tonnes/ha, respectively. 

A limitation of the models that performed best in this research is that they need to improve upon 

current methods (e.g. crop cutting) in a meaningful way, since the models either utilise field 

measurements or provide estimates of yield late in the growing season. Also, the variances of 

planting dates are impacted by the vegetation index/backscatter values of satellite data in the 

extraction paddy fields. The growth stage is critical for developing rice yield estimation by 

considering the initiation of rice grains (panicle stage) or maturity of rice grains (harvesting stage), 

which are related to satellite sensors. Even though, the vegetation index values tend to saturation 

at high LAI (> 3 m2 m-2) that may be the limitation and the influences of non-photosynthetic 

materials on rice fields. The SAR signal proves their sensitivity on rice canopy better than the 

performance on spectral measurement. In summary, the EO data has the potential to tracking the 

rice phenological profiles and rice yield estimation especially utilising the SAR data for rice yield 

estimation in the Chao Phraya River delta. In addition, the current study found that the rice yield 

estimation should be after the heading in the reproductive phase to the ripening or nearly 

senescence in the maturity phase for estimating rice yield at the provincial scale. The result of 

validation that compared the estimated rice yield and official statistical yield had high reliability 

with MAPE ranging 9-62% for NDVI and 18-72%, even though there was some variation of MAPE 

in the amphoe level. 

6.2 Limitations 

The following section outlines the limitations of the data and analyses conducted as part of this 

research on a chapter-by-chapter basis. 

Chapter 3 

Chapter 3 analysed the annual dynamics of rice yield and production alongside precipitation and 

temperature data to assess whether climate influenced rice crops in Thailand. The present study 

created a series of weather data by aggregating monthly, seasonal, and annual data. 

The rice production and yield data used in this analysis were available at the provincial level. They 

had been aggregated into a single rice yield annual estimate that failed to account for the 

influences of rice variety. Analysis in Chapter 5 revealed that the yield could vary from 3.31-6.13 

tonnes/ha across irrigation systems depending on the rice variety, which could result in large 

annual variations depending on the extent of cultivation of particular varieties. Research has 

found that fertility and rice varieties are crucial factors to yield and yield attributes (e.g. number 
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of effective m-2, number of seeds per panicle, 1,000-grain weight, spikelet sterility, grain/straw 

yield, and harvest index) (Kumar et al., 2017). When analysing a long time-series of data, 

information on the time of development of a particular variety and the extent to which it is 

cultivated annually across Thailand is needed to account for changes in rice variety when 

assessing the influence of climate. The result of spatial autocorrelation using the Global Moran’s 

Index proves there was less significance with Moran’s Index of 0.15 and only significance in 1992 

with cumulative rainfall (random pattern) and average temperature (clustered pattern) 

parameters. However, the spatial autocorrelation is lacking information on the threshold or 

significant distance to fix into our analysis for precise results. 

Chapter 4 

Despite careful planning, several limitations with the collection of measurements during the field 

campaign are central to the analysis in subsequent chapters. 

Analysis of the field measurements revealed the immense impact that rice variety can have. It 

would have been preferable to collect field measurements for a smaller number of rice varieties 

in a more significant number of fields to improve the sample size. This would enable a more 

conclusive assessment of the impact of rice variety on structural characteristics and biophysical 

properties. In contrast, in the present study, the number of rice varieties was measured in only 

one field. However, due to the constraints of the fields which could be measured, it was not 

feasible to do so. 

Chapter 5 

A further difficulty with the field campaign concerned collocating satellite overpasses with the 

date of field data collection, particularly during the panicle to the harvesting stages. Most studies 

(Mosleh & Hassan, 2014; Wang et al., 2019; Zhao et al., 2021) divided the paddy rice growing 

season into 3-4 stages: sowing to transplanting (1 month), transplanting to heading stage (1.5-3 

months), heading to reproduction stage with flowering (1 month), and flowering to maturity (1 

month), while the three-growth stage defines in the initial/transplanting stage (1-32 days after 

sowing), peak stage (81-112 days after transplanting), and harvesting stage (129-161 days). 

However, the duration of each stage is influenced by rice variety and environmental conditions 

(De Datta, 1981), which adds some uncertainty in relating satellite measurements to the correct 

growth stage, particularly towards the start or end of a growth phase. 

Finally, a difficulty in using satellite data to monitor rice paddies is the paddies’ small size relative 

and limitation to the spatial resolution of the imagery. Despite the Sentinel data having a spatial 

resolution of 5 m x 20 m (single look complex) and 20 m for Sentinel-1 and -2 data, respectively, 
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relating image pixels to the corresponding locating in the paddy field is uncertain. As shown in 

Figures 5.5 and 5.8- in particular, the former- image pixels often fall on field boundaries within 

the field boundary. Depending on the surface characteristics of the surrounding fields, such as 

their growth period if cultivated, the relationship between the radiometric data and surface 

measurements will be compromised. Similar issues with mixed pixels have been noted in other 

studies using Sentinel (Misra, Cawkwell, & Wingler, 2020; Ramadhani et al., 2020; Son et al., 2021) 

and Landsat (Liao et al., 2018; Park et al., 2018; Zhang et al., 2018) imageries. The mixed pixel 30 

m spatial resolution images and segment areas of Landsat 8 pixel and small rice field increase the 

probability of high mixed pixels. Also, clouds and cloud shadow seriously impact the 

contamination of pixels and misclassification. To account for some of the variation in the field and 

satellite measurements, the four rice biophysical measurements in each field were averaged; 

those with >1 S.D. from the mean were removed and the average recalculated. The satellite data 

extracts in the centre of the sample to avoid the mix-pixel values. Also, there may be some 

influences in the flooding in the flowering stage that coincides with monsoon, and the flooding in 

the paddy field influences the soil moisture (dielectric content) and impacts the backscatter or 

intensity in the final. 

6.3 Future works 

Based on the findings in Chapters 3 - 5 the following recommendations are suggested for future 

research. 

o Analysis of the relationship between rice yield and precipitation, and temperature should 

use indices such as the Standardized Precipitation Index (SPI) and Diurnal Temperature Range 

(DTR), which have been shown to monitor drought conditions in different time-scale and drought 

types. These indices could be used alongside the Rice Productivity Index (RPI), which has been 

used to assess the correlation between rice productivity and climate variation (Patel, Chopra, & 

Dadhwal, 2007; Rahman et al., 2017). The RPI is the photochemical reflectance index and covers 

physiological and biochemical characteristics. However, a challenge in this analysis remains the 

underlying influences of rice variety on yield statistics, as different varieties have differing yield 

potentials. For example, Li et al. (2019) investigated the influences of agronomic traits and yield in 

the four different ecotypes (e.g. the inbred and hybrid for Indica and Japonica). They found 

differing rice characteristics such as filled grain number per panicle, 1,000-grain-weight, plant 

height, panicle length, grain per panicle, etc. The Japonica rice proved the dominant 

characteristics of high panicle number per unit area and extended growth period to improve high 

grain yield. Similar studies that have been analysed the influences of climate on rice production 

have seen the impact of weather in terms of time-series on temperature (April-October) and 
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rainfall (total rainfall all year responded with water usage within seasons and inter-seasonally) 

and rice yield at the district level by using Cobb-Douglas (CD) and Linear Quadratic (LQ). The 

results revealed that climate change impact rice yield and yield variability by 10-20%, and average 

rice yield was affected positively by temperature and negatively by rainfall, leading to fluctuation 

in rice production (Kim, 2009). Oort et al. (2016) revealed the impact of climate change on rice 

yield in the irrigated and non-irrigated systems for wet and dry seasons by simulating rice yield 

with varieties under high-temperature conditions in 4RCP. The high temperature negatively 

impacted rice yield, especially the photosynthesis rate (-24% in RCP 8.5 by 2070, compared with 

the baseline in 2000). Thus, this study suggested adaptation strategies (e.g. shifting 

sowing/planting dates suitable for monsoon onsets) and the serious impacts varied with East or 

West Africa. To account for the potential variation in rice yield, information on rice variety and its 

cultivated extent on an annual basis are needed. 

o Chapter 4 revealed the considerable variation in the structural attributes of different rice 

varieties, which presents a challenge to the application of remotely sensed data to estimate 

biophysical variables over large spatial extents. Only a few studies using remote sensing data have 

explicitly accounted for rice variety. Ten rice varieties characterised the key phenological stages of 

rice, such as emergence, heading, and maturing using the signal of MODIS NDVI 16-day from 

2001-2005 (Boschetti, Stroppiana, Brivio, & Bocchi, 2009). Further research is needed to 

understand the influences of rice variety on deriving estimates of yield or other biophysical 

parameters using remotely-sensed data. To do so, measurements of rice biophysical parameters 

throughout the growing season for a limited number of rice varieties but over a more significant 

number of paddy fields are needed.  

o Chapter 5 revealed that the models developed to estimate rice yield was successful but 

may result in partly from the influences of rice varieties and irrigation that exhibit different 

structural characteristics. The best-performing models either required field measurements or 

provided yield estimates late in the growing season, neither of which offers significant benefits 

over the current methods implemented by the government (i.e. CCE). Accounting for the 

influences of rice variety mentioned previously may enable improved regression models to be 

developed. An alternative approach would be to employ crop growth simulation models, such as 

the SIMRIW (Simulation Model for Rice-Weather relations) (Horie et al., 1995), ORYZA (Yuan et al., 

2017) or WOFOST model (Huang et al., 2015), parameterised using satellite-derived biophysical 

variables to estimate yield. LAI estimates could be derived from the Sentinel-2 Land bio-physical 

Processor (SL2P), which uses the PROSAIL canopy reflectance model (Baret, Jacquemoud, Guyot, 

& Leprieur, 1992) and which is suitable for describing the horizontally homogeneous structure of 

rice canopies. This approach has been applied to reliably estimate LAI with typically low errors of 1.55 

– 6.98 m2 m-2 (MAPE 6.76% of the field measured LAI). Crop growth models may facilitate earlier 
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yield estimation, although the analysis should assess their suitability when applied to different 

rice varieties. The pattern of NDVI in rice peaked in the heading stage (Ali et al., 2021). On the 

contrary, our result indicated an earlier peaked NDVI in the panicle stage (DOY 205-210).  

The study explored the correlation between rice biophysical variables and remotely-sensed data, 

proving the benefits of developing rice yield estimation models based on remotely-sensed data. 

There are different significant growth stages and remotely-sensed data in yield estimation. If the 

study develops yield estimation in the panicle stage, our study suggests the NDVI, while the 

ascending and VV/VH polarisation suggests yield estimation in the harvesting stage. The booting 

and post-heading stage is effective for yield estimation; however, differences in rice variety 

improve the accuracy of yield estimation throughout the growing season. This information can be 

incorporated into agricultural decision-making based on remotely-sensed data and is absolutely 

advantageous on improving agronomic services. Thailand should apply EO data for crop mapping 

and yield estimation. The proper satellite platform is necessary to determine their utilisation, 

while there is concern over cloud cover, especially in the rainy season; thus, our study 

recommends the Sentinel-1 in SAR for yield estimation. 

Research using such models to estimate yield, Maki et al. (2017) directly integrated the 

parameters and remotely-sensed data to driven crop model “Simulated Model for Rice-Weather 

Relation (SIMRIW) - RS” such as transplanting date, leaf area index (simulated LAI or field 

measured LAI), amount of nitrogen, and meteorological data. These were essential data to 

readjust parameters. Other excellent research used non-remote sensing data (e.g. meteorological, 

soil, and agronomic management) and remote sensing data (e.g. MODIS and Sentinel-1 for start of 

season (SoS) and peak of season (PoS) rice estimation) for the ORYZA crop growth model 

(Setiyono et al., 2018). Zhou, Liu, and Liu (2019) proposed the assimilation technique with EVI 

time-series to extract essential phenology development (e.g. transplant date, heading date, and 

maturity date) and meteorological data (daily maximum/minimum temperature, solar radiation, 

wind speed, actual vapour pressure, and precipitation) into the WOFOST model. However, the 

entire above integrating remotely-sensed data and crop growth model seem to neglect rice 

variety determination. The further analysis should be investigated the other dual-polarisation in 

the HH or HV polarisation to determine the H transmission signal and whether it impacts on rice 

structure. Furthermore, the incidence angle, which describes the angle between the sensor and 

the ground, should be investigated by the other incidence angle of different SAR sensors. 

Research is being extended for the entire Chao Phraya River delta to apply the optical and radar 

remotely sensed data for rice monitoring and yield. 
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In the future, the Thai government, via the Ministry of Agriculture and Cooperatives, aims to 

utilise the advantage of remotely-sensed data in crop monitoring. One of the most important 

programmes- which involves cooperation between fourteen developing countries, the United 

Nations Conference on Trade and Development (UNCTAD), and the Aerospace Information 

Research Institute (AIR) Chinese Academy of Sciences (CAS)- is the CropWatch Innovative 

Cooperation Programme (CropWatch-ICP). This programme applies EO data on crop monitoring at 

a national and global scale to improve food security and operate towards the Sustainable 

Development Goals (SDGs) of zero hunger.  

6.4 Conclusions 

Rice is the world’s major staple food crop and paddy fields account for over 12% of the global 

cropland area (FAOSTAT, 2010): close to 90% of the world’s rice is produced in Asia (FAO, 2000). 

In Thailand, rice accounts for 46% of the cultivated area (OAE, 2020a) and is a major agricultural 

commodity, increasing production from 6.74 to 24.93 million tonnes between 1960 and 2020. As 

a result, the export of rice and  its products now accounts for 10.69% of the export value of major 

agricultural product in Thailand (OAE, 2020b). 

Analysis of the temporal dynamics of rice production and temperature and precipitation indicates 

that temperature and total rainfall influence rice production in the wet season. The irrigated areas 

proved resilient to changes in climatic variables. In comparison, the non-irrigated areas mostly in 

the northeast region are affected by changes in climate. Future predictions of climate change in 

Thailand suggest that rainfall will decrease, and temperature will increase. These changes 

highlighted the critical role that agricultural developments such as environmentally tolerant rice 

varieties can play in ensuring sustainable rice production when the world population is expected 

to increase to 9.8 billion by 2050 (United Nations, 2017). 

Current methods for estimating rice yield in Thailand are based on conducting crop cutting 

experiments across a sample of areas under rice cultivation, which is laborious and time-

consuming. On the other hand, satellite observations have been widely applied to map areas 

under agricultural land use, monitor their growing cycles and estimate rice yield and other 

biophysical parameters in many parts of the world. In the present study, Sentinel-1 and -2 

observations were used to track the phenological cycle of rice using backscatter and vegetation 

index measurements, respectively. In the case of the vegetation indices, the values peaked in the 

panicle stage, where, while the LAI was not the highest, the development of flowers served to 

reduce vegetation index values. The backscatter coefficient also peaked in the panicle stage. 

However, it remained less variable in the flowering and harvesting stages when the canopy LAI 
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displayed less variation (+/- 0.5 m2 m-2) than the tillering and panicle stages and where the 

backscatter was responsive to the senescence leaves in the harvesting stage, unlike the NDVI. 

Using field measurements collected throughout the growing season, empirical models were 

developed to estimate rice yield using satellite data. The best performing models estimated yield 

with RMSE of 0.54 with SEE 0.68 tonnes/ha and were limited by the requirement of either field 

measurements of ascending ratio VV/VH polarisation in the harvesting stage or that the rice yield 

estimates were best predicted late in the growing cycle. Also, the optical measurement in NDVI 

indicated excellent performance with NDVI in the panicle stage with the RMSE of 0.37 with SEE 0.7 

tonnes/ha. When considering the SEE explained how large the prediction error is, the result proves 

that the SAR signal is better sensitive to rice canopy than spectral measurement. One of the issues 

in developing empirical models using satellite and field measurements is the influence of rice 

varieties with different biophysical attributes and temporal dynamics, adding variability to 

developing models at different growth stages. Further research is needed to investigate the spatial 

and temporal dynamics of different rice varieties in Thailand, to understand their influence on rice 

production and to assess the ability of satellite data to detect different rice varieties. 
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Appendix A Average seasonal temperature in different 

seasons in Thailand 
Temperature Region Seasonal Temperature (°Celsius) 

Winter Summer Rainy 

Average Temperature 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

North  23.4 28.1 27.3 

Northeast 24.2 28.6 27.6 

Central 26.2 29.7 28.2 

East 26.7 29.1 28.3 

South    

• East Coast 
• West Coast 

 
 
 
 
 
 
 
 
 
 

  

26.3 
27.0 

 
 
 

28.2 
28.4 

 
 
 
 
 

27.8 
27.5 

 
 
 
 
 
 

Average Maximum Temperature 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

North  31.1 36.1 32.4 

Northeast 30.6 35.2 32.6 

Central 32.3 36.2 33.4 

East 32.0 34.1 32.3 

South 
• East Coast 
• West Coast 

 
 
 
 
 
 
 
 

 
30.4 
32.0 

 
 
 
 

 
33.0 
34.1 

 
32.7 
31.6 

 
 
 
 

Average Minimum Temperature North  17.5 21.8 23.8 

Northeast 18.7 23.2 24.4 

Central 21.2 24.6 24.8 

East 22.3 25.2 25.2 

South 
• East Coast 
• West Coast 

 
22.8 
23.2 

 
24.1 
24.0 

 

 
24.4 
24.3 
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Appendix B Summary of Pearson’s correlation and P-

value between temperature metrics and weather 

parameters at provincial level 

Weather parameter Number of significant provinces across the four groups  
(Specific significant group 1/3) 

yield Detrended 
yield 

Production Detrended 
production 

Amount rainfall 
(Average) 

2 provinces 
(0/2 provinces) 

1 province 
(0/1 provinces) 

4 provinces 
(1/3 provinces) 

2 provinces 
(0/2 provinces) 

Amount rainfall 
(Cumulative) 

3 provinces 
(0/3 provinces) 

1 province 
(0/1 province) 

4 provinces 
(1/3 provinces) 

2 provinces 
(0/2 province) 

Rainy day (Average) 3 provinces 
(0/3 provinces) 

1 province 
(0/1 province) 

4 provinces 
(0/4 provinces) 

2 provinces 
(1/1 provinces) 

Rainy day (Cumulative) 2 provinces 
(0/2 provinces) 

2 provinces 
(1/1 province) 

4 provinces 
(0/4 provinces) 

3 provinces 
(1/2 provinces) 

Extra-maximum 
temperature (Average) 

12 provinces 
(2/10 provinces) 

3 provinces 
(1/2 provinces) 

11provinces 
(2/9 provinces) 

5 provinces 
(2/3 provinces) 

Extra-minimum 
temperature (Average) 

16 provinces 
(3/13 provinces) 

3 provinces 
(0/3 provinces) 

14 provinces 
(1/13 provinces) 

4 provinces 
(0/4 provinces) 

Mean temperature 
(Average) 

5 provinces 
(2/3 provinces) 

2 provinces 
(1/1 province) 

4 provinces 
(0/4 provinces) 

5 provinces 
(1/4 province) 

Mean maximum 
temperature (Average) 

14 provinces 
(3/11 provinces) 

7 provinces 
(1/6 provinces) 

12 provinces 
(2/10 provinces) 

5 provinces 
(2/3 province) 

Mean minimum 
Temperature (Average) 

19 provinces 
(3/16 provinces) 

4 provinces 
(1/3 province) 

16 provinces 
(0/16 provinces) 

4 provinces 
(1/3 provinces) 

Difference in extra-
maximum/minimum 
temperature (Average) 

2 provinces 
(0/2 provinces) 

3 provinces 
(1/2 province) 

5 provinces 
(2/3 provinces) 

2 provinces 
(0/2 province) 

Difference in mean 
maximum/minimum 
temperature (Average) 

5 provinces 
(0/5 provinces) 

5 provinces 
(1/4 province) 

5 provinces 
(3/2 provinces) 

7 provinces 
(0/7 provinces) 
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Appendix C  Correlation coefficient of significant 

weather and rice yield and rice production 

C.1 Correlation coefficient of significant weather and rice yield 

Weather 
parameter 

Rice yield 

Province Irrigation system Correlation coefficient (r) 

Amount rainfall 
(Cumulative) 

Buri Ram 

Maha Sarakham 

Phayao 

Non-irrigated 

Non-irrigated 

Non-irrigated 

0.568** (Sig.0.000) 

0.336* (Sig. 0.048) 

0.393* (Sig. 0.020) 

Rainy day (Average) Chaiyaphum 

Phetcha Buri 

Phrae 

Non-irrigated 

Non-irrigated 

Non-irrigated 

-0.358* (Sig.0.035) 

0.344* (Sig.0.043) 

0.382* (Sig.0.024) 

Mean minimum 
temperature 
(Average) 

 

 

 

 

 

 

 

 

Bangkok 

Chai Nat 

Kamphaeng Phet 

Chiang Rai 

Mukdahan 

Nakhon Phanom 

Nakhon Ratchasima 

Nakhon Sawan 

Nong Khai 

Phectcha Buri 

Phrae 

Prachin Buri 

Roi Et 

Sakhon Nakhon 

Si Sa Ket 

Surin  

Ubon Ratchathani 

Uttaradit 

Irrigated 

Irrigated 

Irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated  

Non-irrigated 

Non-irrigated 

Non-irrigated 

0.715** (Sig.0.000) 

0.451** (Sig.0.006) 

0.506** (Sig.0.002) 

0.420* (Sig.0.012) 

0.427* (Sig.0.011) 

0.526** (Sig.0.001) 

0.658** (Sig.0.000) 

0.488**(Sig.0.003) 

0.549**(Sig.0.001) 

0.440**(Sig.0.008) 

0.401*(Sig.0.017) 

0.529**(Sig.0.001) 

0.404*(Sig.0.016) 

0.612**(Sig.0.000) 

0.583**(Sig.0.000)  

0.411* (Sig.0.014) 

0.470** (Sig.0.004) 

0.643**(Sig.0.000) 
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Weather 
parameter 

Rice yield 

Province Irrigation system Correlation coefficient (r) 

Mean maximum 
temperature 
(Average) 

 

 

 

 
 

 

 

 

Bangkok 

Nakhon Pathom 

Suphan Buri 

Maha Sarakham 

Mukdahan 

Nong Khai 

Phetcha Buri 

Prachin Buri 

Roi Et 

Sakhon Nakhon 

Sukhothai 

Surin 

Ubon Ratchathani 

Udon Thani 

Irrigated 

Irrigated 

Irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated  

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

0.676**(Sig.0.000) 

0.363*(Sig.0.032) 

0.367*(Sig.0.030) 

0.585**(Sig.0.000) 

0.443**(Sig.0.009) 

0.547**(Sig.0.001) 

0.655**(Sig.0.000) 

0.548**(Sig.0.001) 

0.428*(Sig.0.010) 

0.455**(Sig.0.006) 

0.347*(Sig.0.041) 

0.418*(Sig.0.012) 

0.540**(Sig.0.001) 

0.450**(Sig.0.007) 

Difference mean 
maximum and 
minimum 
temperature 
(Average) 

Chiang Rai 

Kalasin 

Maha Sarakham 

Nakhon Ratchasima 

Udon Thani 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

-0.353*(Sig.0.037) 

0.598*(Sig.0.011) 

0.479**(Sig.0.004) 

-0.566**(Sig.0.000) 

0.430**(Sig.0.010) 
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C.2 Correlation coefficient of significant weather and rice production 

Weather 
parameter 

Rice production 

Province Irrigation system Correlation coefficient (r) 

Amount rainfall 
(Cumulative) 

Khamphaeng Phet 

Buri Ram 

Chaiyaphum 

Lampang 

Irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

0.395**(Sig.0.019) 

0.602** (Sig. 0.000) 

0.334* (Sig 0.050) 

0.399* (Sig 0.018) 

Rainy day (Average) 

 

 

 

 

Chaiyaphum 

Khon Kaen 

Nong Khai 

Phetcha Buri 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

0.451** (Sig.0.007) 

0.395* (Sig.0.019) 

0.401* (Sig.0.017) 

0.402*(Sig.0.017) 

Mean minimum 
temperature 
(Average) 

 

 

 

 

 
 

 

 

Chiang Rai 

Kalasin 

Lampang 

Mukdahan 

Nakhon Phanom 

Nakhon Ratchasima 

Nakhon Sawan 

Phayao 

Phrae 

Prachin Buri 

Roi Et 

Sakhon Nakhon 

Si Sa Ket 

Surin  

Ubon Ratchathani 
Uttaradit 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated  

Non-irrigated 

0.490**(Sig.0.003) 

0.758**(Sig.0.000) 

0.370*(Sig.0.029) 

0.653**(Sig.0.000) 

0.610**(Sig.0.000) 

0.653**(Sig.0.000) 

0.437**(Sig.0.009) 

0.385*(Sig.0.022) 

0.351*(Sig.0.039) 

-0.441**(Sig.0.008) 

0.546**(Sig.0.001) 

0.519**(Sig.0.001) 

0.659**(Sig.0.000) 

0.518**(Sig.0.001) 

0.449**(Sig.0.007) 
0.659**(Sig.0.000) 

Mean maximum 
temperature 
(Average) 

 

 

 

 
 

 

Nakhon Pathom 

Suphan Buri 

Kalasin 

Maha Sarakham 

Mukdahan 

Phetcha Buri 

Prachin Buri 

Roi Et 

Irrigated 

Irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated  

Non-irrigated 

Non-irrigated 

Non-irrigated 

0.433**(Sig.0.009) 

0.377*(Sig.0.025) 

0.715**(Sig.0.001) 

0.447**(Sig.0.007) 

0.624**(Sig.0.000) 

0.506**(Sig.0.002) 

-0.510**(Sig.0.002) 

0.512**(Sig.0.002) 
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Weather 
parameter 

Rice production 

Province Irrigation system Correlation coefficient (r) 

Mean maximum 
temperature 
(Average) (Cont.) 

Sakhon Nakhon 

Si Sa Ket 

Sukhothai 

Ubon Ratchathani 

Non-irrigated 

Non-irrigated 

Non-irrigated 

Non-irrigated 

0.494**(Sig.0.003) 

0.426*(Sig.0.013) 

0.351*(Sig.0.039) 

0.571**(Sig.0.000) 

Difference mean 
maximum and 
minimum 
temperature 
(Average) 

Nakhon Pathom 

Phichit 

Suphan Buri 

Chiang Rai 

Nakhon Ratchasima 

Irrigated 

Irrigated 

Irrigated 

Non-irrigated 

Non-irrigated 

0.395*(Sig.0.019) 

0.606**(Sig.0.002) 

0.382*(Sig.0.024) 

-0.408*(Sig.0.015) 

-0.562**(Sig.0.000) 
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Appendix D Correlation between rice yield/production 

and weather in significant provinces 

D.1 Cumulative rainfall 

 

 

 

 

a) Amount of rainfall and rice yield b) Amount of rainfall and detrended rice yield 

c) Amount of rainfall and rice production d) Amount of rainfall and detrended rice production 
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D.2 Average rainy day 

 

 

 

 

 

 

 

a) Average rainy day and rice yield b) Average rainy day and detrended rice yield 

c) Average rainy day and rice production d) Average rainy day and detrended rice production 
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D.3 Mean minimum temperature 

 

 

 

 

 

d) Mean minimum temperature and detrended rice 
production 

a) Mean minimum temperature and rice yield b) Mean minimum temperature and rice yield 

c) Mean minimum temperature and rice production 
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D.4 Mean maximum temperature 

 

 

 

 

 

a) Mean maximum temperature and yield b) Mean maximum temperature and detrended yield 

c) Mean maximum temperature and rice production d) Mean maximum temperature and detrended rice 

production 
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D.5 Differences between mean maximum and mean minimum 

temperature 

 

 

 

a) Difference mean maximum and minimum 

temperature and rice yield 

b)  Difference mean maximum and minimum temperature 

and detrended rice yield 

c)  Difference mean maximum and minimum temperature 

rice production 

d)  Difference mean maximum and minimum temperature 

and detrended rice production 

-0
.61

 - -
0.8

0

-0
.41

 - -
0.6

0

-0
.21

 - -
0.4

0

-0
.01

 - -
0.2

0

0.0
0-

0.2
0

0.2
1-

0.4
0

0.4
1-

0.6
0

0.6
1 -

 0.
80

a e
cir

 ni
am

 to
N

at
ad

 oN

     





Appendix E 

219 

Appendix E  Spatial auto-correlation with Moran’s I index 

E.1 Moran’s I index of average rainfall 

Year Clustering pattern Moran’s Index Expected 
index 

Variance Z-score P-value 

1981 Random 0.05 -0.01 0.01 0.95 0.34 
1982 Random 0.08 -0.01 0.01 1.25 0.21 
1983 Random -0.01 -0.01 0.01 0.02 0.98 
1984 Random 0.04 -0.01 0.01 0.76 0.45 
1985 Random 0.04 -0.01 -0.01 0.75 0.45 
1986 Random 0.05 -0.01 0.00 0.91 0.36 
1987 Random 0.05 -0.01 0.01 0.90 0.37 
1988 Random 0.01 -0.01 0.00 0.40 0.69 
1989 Random 0.06 -0.01 0.00 1.02 0.31 
1990 Random 0.04 -0.01 0.01 0.76 0.45 
1991 Random 0.07 -0.01 0.00 1.25 0.21 
1992 Random 0.06 -0.01 0.01 1.09 0.28 
1993 Random 0.02 -0.01 0.01 0.43 0.67 
1994 Random 0.02 -0.01 0.00 0.52 0.60 
1995 Random 0.00 -0.01 0.00 0.25 0.81 
1996 Random 0.03 -0.01 0.01 0.67 0.51 
1997 Random 0.10 -0.01 0.00 1.58 0.11 
1998 Random 0.01 -0.01 0.01 0.26 0.80 
1999 Random -0.05 -0.01 0.00 -0.48 0.63 
2000 Random 0.02 -0.01 0.01 0.53 0.60 
2001 Random 0.03 -0.01 0.00 0.69 0.49 
2002 Random 0.04 -0.01 0.01 0.68 0.50 
2003 Random -0.01 -0.01 0.01 0.04 0.97 
2004 Random 0.07 -0.01 0.01 1.14 0.25 
2005 Random -0.02 -0.01 0.01 -0.08 0.94 
2006 Random 0.00 -0.01 0.00 0.22 0.83 
2007 Random 0.03 -0.01 0.01 0.62 0.54 
2008 Random -0.04 -0.01 0.01 -0.36 0.72 
2009 Random -0.07 -0.01 0.00 -0.75 0.45 
2010 Random -0.09 -0.01 0.01 -1.11 0.27 
2011 Random 0.02 -0.01 0.01 0.48 0.63 
2012 Random 0.03 -0.01 0.00 0.62 0.53 
2013 Random 0.07 -0.01 0.01 1.11 0.27 
2014 Random 0.10 -0.01 0.00 1.59 0.11 
2015 Random 0.12 -0.01 0.00 1.87 0.06 
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E.2 Moran’s I index of cumulative rainfall 

Year Clustering pattern Moran’s Index Expected 
index 

Variance Z-score P-value 

1981 Random 0.08 -0.01 0.01 1.33 0.18 
1982 Clustered 0.11 -0.01 0.01 1.74 0.08 
1983 Random 0.09 -0.01 0.01 1.48 0.14 
1984 Random 0.09 -0.01 0.01 1.45 0.15 
1985 Random 0.09 -0.01 0.01 1.46 0.14 
1986 Random 0.09 -0.01 0.01 1.44 0.15 
1987 Random 0.07 -0.01 0.01 1.14 0.26 
1988 Random 0.09 -0.01 0.01 1.47 0.14 
1989 Random 0.04 -0.01 0.01 0.70 0.49 
1990 Random 0.09 -0.01 0.01 1.39 0.16 
1991 Random 0.10 -0.01 0.01 1.53 0.13 
1992 Clustered 0.15 -0.01 0.01 2.24 0.03 
1993 Random 0.00 -0.01 0.01 0.13 0.90 
1994 Random 0.02 -0.01 0.01 0.47 0.64 
1995 Random 0.02 -0.01 0.01 0.47 0.64 
1996 Random 0.02 -0.01 0.01 0.50 0.62 
1997 Random 0.02 -0.01 0.01 0.47 0.64 
1998 Random -0.04 -0.01 0.01 -0.40 0.69 
1999 Random -0.01 -0.01 0.01 0.05 0.96 
2000 Random -0.01 -0.01 0.01 0.02 0.99 
2001 Random -0.01 -0.01 0.01 0.00 1.00 
2002 Random -0.01 -0.01 0.01 0.03 0.98 
2003 Random -0.01 -0.01 0.01 0.08 0.94 
2004 Random -0.01 -0.01 0.01 0.00 1.00 
2005 Random -0.01 -0.01 0.01 0.04 0.97 
2006 Random -0.02 -0.01 0.01 -0.03 0.97 
2007 Random -0.01 -0.01 0.01 0.00 1.00 
2008 Random -0.01 -0.01 0.01 0.03 0.98 
2009 Random -0.01 -0.01 0.01 0.06 0.95 
2010 Random -0.01 -0.01 0.01 0.10 0.92 
2011 Random -0.01 -0.01 0.01 0.00 1.00 
2012 Random -0.02 -0.01 0.01 -0.04 0.97 
2013 Random -0.02 -0.01 0.01 -0.04 0.97 
2014 Random -0.02 -0.01 0.01 -0.07 0.94 
2015 Random -0.02 -0.01 0.01 -0.05 0.96 
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E.3 Moran’s I index of average temperature 

Year Clustering pattern Moran’s Index Expected 
index 

Variance Z-score P-value 

1981 Random 0.08 -0.01 0.01 1.33 0.18 
1982 Clustered 0.11 -0.01 0.01 1.74 0.08 
1983 Random 0.09 -0.01 0.01 1.48 0.14 
1984 Random 0.09 -0.01 0.01 1.45 0.15 
1985 Random 0.09 -0.01 0.01 1.46 0.14 
1986 Random 0.09 -0.01 0.01 1.44 0.15 
1987 Random 0.07 -0.01 0.01 1.14 0.26 
1988 Random 0.09 -0.01 0.01 1.47 0.14 
1989 Random 0.04 -0.01 0.01 0.70 0.49 
1990 Random 0.09 -0.01 0.01 1.39 0.16 
1991 Random 0.10 -0.01 0.01 1.53 0.13 
1992 Clustered 0.15 -0.01 0.01 2.24 0.03 
1993 Random 0.00 -0.01 0.01 0.13 0.90 
1994 Random 0.02 -0.01 0.01 0.47 0.64 
1995 Random 0.02 -0.01 0.01 0.47 0.64 
1996 Random 0.02 -0.01 0.01 0.50 0.62 
1997 Random 0.02 -0.01 0.01 0.47 0.64 
1998 Random -0.04 -0.01 0.01 -0.40 0.69 
1999 Random -0.01 -0.01 0.01 0.05 0.96 
2000 Random -0.01 -0.01 0.01 0.02 0.99 
2001 Random -0.01 -0.01 0.01 0.00 1.00 
2002 Random -0.01 -0.01 0.01 0.03 0.98 
2003 Random -0.01 -0.01 0.01 0.08 0.94 
2004 Random -0.01 -0.01 0.01 0.00 1.00 
2005 Random -0.01 -0.01 0.01 0.04 0.97 
2006 Random -0.02 -0.01 0.01 -0.03 0.97 
2007 Random -0.01 -0.01 0.01 0.00 1.00 
2008 Random -0.01 -0.01 0.01 0.03 0.98 
2009 Random -0.01 -0.01 0.01 0.06 0.95 
2010 Random -0.01 -0.01 0.01 0.10 0.92 
2011 Random -0.02 -0.01 0.01 0.00 1.00 
2012 Random -0.02 -0.01 0.01 -0.04 0.97 
2013 Random -0.02 -0.01 0.01 -0.04 0.97 
2014 Random -0.02 -0.01 0.01 -0.07 0.94 
2015 Random -0.02 -0.01 0.01 -0.05 0.96 
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Appendix F   Correlation between yield and rice biophysical  

F.1 Correlation between yield and rice biophysical variables as a function 

of growth stage 

Area Rice variable Correlation Stage 
Seeding Tillering Panicle Flowering Harvesting Overall 

Overall 
area 

Stem density r 
sig. 

0.28 
(0.2) 

0.03 
(0.88) 

-0.32 
(0.15) 

-0.29 
(0.19) 

0.1 
(0.65) 

0.03 
(0.8) 

Height r 
sig.  

NA 0.37* 
(0.09) 

0.07 
(0.77) 

-0.19 
(0.4) 

-0.1 
(0.66) 

0.03 
(0.78) 

LAI r 
sig. 

NA 0.13 
(0.59) 

0.28 
(0.21) 

-0.00 
(0.99) 

-0.09 
(0.69) 

0.02 
0.83 

Chlorophyll 
content 

r 
sig.  

NA -0.23 
(0.31) 

-0.2 
(0.34) 

0.07 
(0.77) 

0.03 
(0.88) 

-0.09 
(0.4) 

Wet total 
Biomass 

r 
sig.  

NA NA 0.95 
(0.2) 

0.16 
(0.49) 

0.01 
(0.99) 

0.06 
(0.7) 

Wet Stem 
biomass 

r 
sig. 

NA NA 0.95 
(0.2) 

0.07 
(0.77) 

-0.09 
(0.69) 

-0.02 
(0.9) 

Wet grain 
biomass 

r 
sig. 

NA NA 0.95 
(0.21) 

0.45** 
(0.04) 

0.30 
(0.17) 

0.27* 
(0.07 

Dry total 
biomass 

r 
sig. 

NA NA 0.88 
(0.32) 

0.22 
(0.34) 

0.15 
(0.5) 

0.13 
(0.4) 

Dry stem 
biomass 

r 
sig. 

NA NA 0.83 
(0.38) 

0.03 
(0.92) 

0.04 
(0.87) 

0.02 
(0.92) 

Dry grain 
biomass 

r 
sig. 

NA NA 0.94 
(0.22) 

0.43** 
(0.05) 

0.28 
0.21 

0.21 
0.16 

Irrigated 
area 

Stem density r 
sig. 

0.45* 
(0.08) 

0.23 
(0.39) 

-0.39 
(0.16) 

-0.46* 
(0.08) 

0.2 
(0.46) 

0.08 
(0.47) 

Height r 
sig.  

NA 0.14 
(0.59) 

-0.1 
(0.7) 

-0.14 
(0.62) 

-0.3 
(0.26) 

-0.04 
(0.78) 

LAI r 
sig. 

NA 0.17 
(0.59) 

0.57* 
(0.02) 

0.09 
(0.75) 

0.18 
(0.51) 

0.16 
(0.21) 

Chlorophyll 
content 

r 
sig.  

NA -0.22 
(0.42) 

0.11 
(0.68) 

0.33 
(0.21) 

0.08 
(0.77) 

-0.02 
(0.89) 

Wet total 
biomass 

r 
sig.  

NA NA 0.95 
(0.2) 

0.32 
(0.25) 

0.24 
(0.37) 

0.23 
(0.19) 

Wet stem 
biomass 

r 
sig. 

NA NA 0.95 
(0.2) 

0.25 
(0.37) 

0.17 
(0.54) 

0.18 
(0.32) 

Wet grain 
biomass 

r 
sig. 

NA NA 0.95 
(0.21) 

0.47* 
(0.08) 

0.37 
(0.15) 

0.31* 
(0.08) 

Dry total 
biomass 

r 
sig. 

NA NA 0.88 
(0.32) 

0.34 
(0.21) 

0.28 
(0.29) 

0.22 
(0.2) 

Dry stem 
biomass 

r 
sig. 

NA NA 0.83 
(0.38) 

0.25 
(0.37) 

0.22 
(0.41) 

0.20 
(0.27) 

Dry grain 
biomass 

r 
sig. 

NA NA 0.94 
(0.22) 

0.37 
(0.17) 

0.32 
(0.23) 

0.21 
(0.24) 

Non-
irrigated 
area 

Stem density r 
sig. 

-0.24 
(0.65) 

-0.51 
(0.3) 

-0.13 
0.81 

0.12 
(0.82) 

-0.39 
(0.45) 

-0.14 
(0.46) 

Height r 
sig.  

NA 0.74* 
(0.09) 

0.35 
(0.5) 

-0.37 
(0.47) 

0.81** 
(0.05) 

0.19 
(0.38) 

LAI r 
sig. 

NA 0.08 
(0.91) 

-0.25 
(0.64) 

-0.27 
(0.61) 

-0.71 
(0.12) 

-0.29 
(0.18) 



Appendix F 

223 

Area Rice variable Correlation Stage 
Seeding Tillering Panicle Flowering Harvesting Overall 

Chlorophyll 
content 

r 
sig.  

NA -0.38 
(0.46) 

-0.8 
(0.6) 

-0.58 
(0.22) 

-0.09 
(0.86) 

-0.36* 
(0.08) 

Chlorophyll 
content 

r 
sig.  

NA -0.38 
(0.46) 

-0.8 
(0.6) 

-0.58 
(0.22) 

-0.09 
(0.86) 

-0.36* 
(0.08) 

Wet total 
biomass 

r 
sig.  

NA NA NA -0.44 
(0.38) 

-0.97** 
(0.00) 

-0.58** 
(0.05) 

Wet stem 
biomass 

r 
sig. 

NA NA NA -0.57 
(0.24) 

-0.95** 
(0.00) 

-0.69** 
(0.01) 

Wet grain 
biomass 

r 
sig. 

NA NA NA 0.38 
(0.46) 

-0.13 
(0.81) 

0.13 
(0.69) 

Dry total 
biomass 

r 
sig. 

NA NA NA -0.23 
(0.66) 

-0.97** 
(0.00) 

-0.32 
(0.31) 

Dry stem 
biomass 

r 
sig. 

NA NA NA -0.63 
(0.18) 

-0.93** 
(0.00) 

-0.69** 
(0.01) 

Dry grain 
biomass 

r 
sig. 

NA NA NA 0.57 
(0.24) 

0.05 
(0.92) 

0.23 
(0.48) 

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed) 
NA No measurement 
 

F.2 Correlation between yield and rice biophysical variables as a function 

of rice variety in irrigated areas. 

Rice variable Correlation HomMali
105 

Phitsanulok2 RD41 RD47 RD49 RD57 RD61 

Stem density r 
sig. 

.c 0.22 
(0.54) 

0.02 
(0.93) 

-0.06 
(0.87) 

0.37 
(0.17) 

.c .c 

Height r 
sig.  

.c 0.05 
(0.91) 

0.12 
(0.57) 

-0.31 
(0.46) 

-0.26 
(0.41) 

.c .c 

LAI r 
sig.  

.c 0.45 
(0.32) 

0.22 
(0.32) 

0.02 
(0.96) 

-0.44 
(0.18) 

.c .c 

Chlorophyll 
content 

r 
sig.  

.c 0.21 
(0.63) 

-0.11 
(0.61) 

-0.17 
(0.69) 

-0.52* 
(0.08) 

.c .c 

Wet total 
biomass 

r 
sig.  

.c 0.29 
(0.71) 

0.64** 
(0.02) 

-0.54 
(0.46) 

0.19 
(0.72) 

.c .c 

Wet stem 
biomass 
 

r 
sig. 

.c 0.26 
(0.74) 

0.65** 
(0.02) 

-0.52 
(0.48) 

0.17 
0.75) 

.c .c 

Wet grain 
biomass 

r 
sig. 

.c 0.4 
(0.6) 

0.54* 
(0.06) 

-0.29 
(0.72) 

0.16 
(0.76) 

.c .c 

Dry total 
biomass 

r 
sig. 

.c 0.36 
(0.64) 

0.63** 
(0.02) 

-0.39 
(0.61) 

0.25 
(0.63) 

.c .c 

Dry stem 
biomass 

r 
sig. 

.c 0.37 
(0.64) 

0.7** 
(0.01) 

-0.52 
(0.48) 

0.3 
(0.56) 

.c .c 

Dry grain 
biomass 

r 
sig. 

.c 0.19 
(0.81) 

0.5* 
(0.08) 

-0.22 
(0.79) 

-0.06 
(0.92) 

.c .c 

 
Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed) 
NA No measurement 
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F.3 Correlation coefficient between yields with rice biophysical variables 

in non-irrigated areas for different rice varieties. 

Rice variable Correlation Phitsanulok2 RD13 RD31 RD49 
Stem density r 

sig. 
0.56* 
(0.09) 

.c .c 0.04 
(0.91) 

Height r 
sig.  

0.43 
(0.29) 

.c .c 0.21 
(0.61) 

LAI r 
sig. 

0.16 
(0.70) 

.c .c 0.28 
(0.50) 

Chlorophyll content r 
sig.  

0.37 
(0.37) 

.c .c -0.51 
(0.2) 

Wet total biomass r 
sig.  

0.2 
(0.8) 

.c .c -0.97** 
(0.03) 

Wet stem biomass r 
sig. 

0.01 
0.99 

.c .c -0.88 
(0.13) 

Wet grain biomass r 
sig. 

0.46 
(0.54) 

.c .c 0.03 
(0.97) 

Dry total biomass r 
sig. 

0.26 
(0.74) 

.c .c -0.82 
(0.19) 

Dry stem biomass r 
sig. 

-0.11 
(0.89) 

.c .c -0.79 
(0.21) 

Dry grain biomass r 
sig. 

0.46 
(0.54) 

.c .c 0.16 
(0.84) 

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed) 
NA No measurement 

F.4 Correlation of RD41 overall and in each growth stage. 

Rice variable Correlation Seeding Tillering Panicle Flowering Harvesting Overall 
Stem Density r 

sig. 
0.05 

(0.93) 
0.4 

(0.43) 
0.11 

(0.84) 
-0.86* 
(0.03) 

0.15 
(0.77) 

-0.79** 
(0.00) 

Height r 
sig.  

NA 0.47 
(0.35) 

0.04 
(0.93) 

0.36 
(0.48) 

0.21 
(0.69) 

0.67** 
(0.00) 

LAI r 
sig. 

NA 0.27 
(0.66) 

0.74 
(0.09) 

0.50 
(0.31) 

0.66 
(0.15) 

0.22 
(0.32) 

Chlorophyll 
content 

r 
sig.  

NA -0.72 
(0.11) 

-0.06 
(0.91) 

0.49 
(0.32) 

-0.04 
(0.93) 

0.64** 
(0.00) 

Wet total 
biomass 

r 
sig.  

NA NA 1.00** 0.62 
(0.26) 

0.87** 
0.02 

0.67* 
(0.01) 

Wet stem 
biomass 

r 
sig. 

NA NA 1.00** 0.62 
(0.27) 

0.85** 
(0.03) 

0.69** 
(0.01) 

Wet grain 
biomass 

r 
sig. 

NA NA 1.00** 0.63 
(0.26) 

0.83** 
(0.04) 

0.57** 
(0.04) 

Dry total 
biomass 

r 
sig. 

NA NA 1.00** 0.67 
(0.22) 

0.94** 
(0.00) 

0.62** 
(0.02) 

Dry stem 
biomass 

r 
sig. 

NA NA 1.00** 0.68 
(0.21) 

0.89** 
(0.02) 

0.67** 
(0.01) 

Dry grain 
biomass 

r 
sig. 

NA NA 1.00** 0.65 
(0.24) 

0.87* 
(0.03) 

0.52* 
(0.07) 

 
Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed) 
NA No measurement 
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Appendix G Histogram of backscatter coefficient 

G.1 Phichit province 

Stage Orbit direction and polarisation 

Ascending and VV Ascending and VH Descending and VV Descending and VH 

Seeding 

    

 Mean -12.45, Max 

3.38, Min -26.38, 

Mean -19.11, Max -13.38, 

Min -24.45 

Mean -10.83, , Max -4.35,  

Min -19.45 

Mean -19.15, Max -12.99, 

Min -25.03,  

Tillering 

    

 Mean -9.06, Max -3.97, 

Min -16.01 

Mean -16.44, Max -12.68, 

Min -22.63 

Mean -9.47, Max -0.69,  

Min -15.82 

Mean -16.45, Max -13.3,  

Min -20.11 

Panicle 

    

 Mean -10.68, Max -5.6, 

Min -17.01 

Mean -16.27, Max -11.27, 

Min -20.65 

Mean -9.96, Max -4.84,  

Min -15.96 

Mean -15.16, Max -11.23, 

Min -18.8 

Flowering 

    

 Mean -11.61, Max -

6.45, Min -15.07 

Mean -16.57, Max -13.19, 

Min -19.36 

Mean -10.51, Max -5.92,  

Min -16.41 

Mean -15.35, Max -11.36, 

Min -19.65 

Harvesting 

    

 Mean -10.55, Max -5.9, 

Min -19.27 

Mean -16.91, Max -11.1, 

Min -23.07 

Mean -10.77, Max -6.22,  

Min -16.71 

Mean -17.44, Max -11.96, 

Min -23.64 
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G.2 Ang Thong province 

Stage Orbit direction and polarisation 

Ascending and VV Ascending and VH Descending and VV Descending and VH 

Seeding 

    

 Mean -11.19, Max -

6.78, Min -17.23 
Mean -18.7, Max -13.06, 

Min -24.56 

Mean -9.8, Max -4.51,  

Min -12.81 

Mean -18.43, Max -14,  

Min -21.8 

Tillering 

    

 Mean -8.31, Max -5.74, 

Min -12.13 

Mean -17.56, Max -13.53, 

Min -21.18 

Mean -8.12, Max -4.48,  

Min -12.48 

Mean -16.85, Max -12.99, 

Min -20.85 

Panicle 

    

 Mean -7.8, Max -2.87,  

Min -11.11 

Mean -16.83, Max -12.7, 

Min -19.8 

Mean -8.36, Max -2.07,  

Min -14.92 

Mean -17.04, Max -14.29, 

Min -19.83 

Flowering 

    

 Mean -9.56, Max -3.45, 

Min -13.37 

Mean -16.11, Max -12.89, 

Min -18.55 

Mean -10.2, Max -3.22,  

Min -14.56 

Mean -16.61, Max -13.28, 

Min -19.54 

Harvesting 

 
    

 Mean -10.67, Max -

5.94, Min -13.74 

Mean -15.1, Max -11.42, 

Min -17.43 

Mean -10.57, Max -2.27,  

Min -15.05 

Mean -15.22, Max -12.59, 

Min -18.6 
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G.3 Pathum Thani province 

Stage Orbit direction and polarisation 

Ascending and VV Ascending and VH Descending and VV Descending and VH 

Seeding 

    

 Mean -11.72, Max -

6.71, Min -20.05 

Mean -19.93, Max -11.27, 

Min -24.45 

Mean -10.13, Max -5.09,  

Min -24.45 

Mean -19.3, Max -11.08,  

Min -23 

Tillering 

    

 Mean -8.48, Max -4.03, 

Min -14.59 

Mean -16.28, Max -12.46, 

Min -22.26 

Mean -9.32, Max -5.22,  

Min -14.83 

Mean -15.3, Max -12.17,  

Min -18.27 

Panicle 

    

 Mean -11.26, Max -

5.69, Min -15.87 

Mean -15.8, Max -10.22, 

Min -19.54 

Mean -9.32, Max -5.22,  

Min -14.83 

Mean -16.35, Max -14.25, 

Min -20.2 

Flowering 

    

 Mean -10.69, Max -

4.48, Min -14.86 

Mean -15.4, Max -10.79, 

Min -19.65 

Mean -9.67, Max -4.69,  

Min -14.11 

Mean -14.82, Max -9.54,  

Min -18.67 

Harvesting 

    

 Mean -10.18, Max -

4.64, Min -14.91 

Mean -15.72, Max -11.2, 

Min -22.19 

Mean -9.85, Max -3.85,  

Min -13.82 

Mean -16.32, Max -12.36, 

Min -22.03 
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Appendix H Sentinel-2 and Sentinel-1 specifications 

H.1 Sentinel-2 wavelength 

Satellite 

product 

Revisit time 

(days) 

Swath width 

(km) 

Bands 

Sentinel-2 10 days with one 

satellite and 5 

days with two 

satellites 

290 Band 1 – Coastal/Aerosol (60 m) 

Band 2 – Blue (10 m) 

Band 3 – Green (10 m) 

Band 4 – Red (10 m) 

Band 5 – Vegetation red edge (20 m) 

Band 6 – Vegetation red edge (20 m) 

Band 7 – Vegetation red edge (20 m) 

Band 8 – Near infrared (10 m) 

Band 8A – Narrow near infrared (20 m) 

Band 9 – Water vapour (60 m) 

Band 10 - Short wavelength infrared - Cirrus 

(60 m) 

Band 11 – Short wavelength infrared (20 m) 

Band 12 - Short wavelength infrared (20 m) 
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H.2 Sentinel-1 characteristic of each sub-swath 

Beam ID IW1 IW2 IW3 

Spatial resolution (range x azimuth) m 2.7 x 22.5 3.1 x 22.7 3.5 x 22.6 

Pixel spacing (range x azimuth) m  2.3 x 14.1 2.3 x 14.1 2.3 x 14.1 

Incidence angle at min orbit altitude (°) 32.9 38.3 43.1  

Range look bandwidth MHz 56.5 48.3 42.8 

Azimuth look bandwidth Hz 315 301 301 

Range hamming weighting coefficient 0.75 0.75 0.75 

Azimuth hamming weighting coefficient 0.70 0.75 0.75 

H.3 Sentinel-1 main properties on IW mode 

Product ID IW_SLC 

Pixel value Complex 

Coordinate system Slant range 

Bits per pixel 16I and 16Q 

Polarisation options Single (HH or VV) or dual (HH+HV or VV+VH) 

Ground range coverage (km) 251.8 

Equivalent number of looks (ENL) 1 

Radiometric correction 3 

Absolute location accuracy m (NRT) 7  

Number of looks (range x azimuth) 1x1 
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Appendix I Photo of sample field during the study period 

Sample unit 1 

Seeding    Tillering    Panicle 

         
Flowering    Harvesting 

         
 
 
 

Sample unit 2 

Seeding    Tillering    Panicle 

          
Flowering    Harvesting 
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Sample unit 3 

Seeding     Tillering        Panicle 

           
Flowering     Harvesting 

         
 
 
 

Sample unit 5 

Seeding    Tillering    Panicle 

          
Flowering    Harvesting 
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Sample unit 7 

Seeding     Tillering    Panicle 

        
 
 
 
Flowering    Harvesting 

      
 

 

Sample unit 9 

Seeding     Tillering    Panicle 

      
Flowering    Harvesting 
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Sample unit 10 

Seeding     Tillering    Panicle 

         
Flowering    Harvesting 

       
 
 
 
 
 
Sample unit 11 
Seeding     Tillering    Panicle 

      
Flowering    Harvesting 
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Sample unit 12 
Seeding     Tillering    Panicle 

         
Flowering    Harvesting 

    
 
 
 
 
 
Sample unit 13 

Seeding     Tillering    Panicle 

       
Flowering    Harvesting 
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Sample unit 14 

Seeding     Tillering    Panicle 

       
Flowering    Harvesting 

       
 
 
 
 
 
Sample unit 15 

Seeding     Tillering    Panicle 

      
Flowering    Harvesting 
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Sample unit 17 

Seeding            Tillering     Panicle 

      
Flowering            Harvesting 

                                          
 
 
 
 
 
Sample unit 18 

Seeding            Tillering        Panicle 

         
Flowering    Harvesting 
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Sample unit 19 

Seeding     Tillering    Panicle 

       
Flowering    Harvesting 

        
 
 
 
 
 
Sample unit 20 

Seeding     Tillering    Panicle 

       
Flowering    Harvesting 
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Sample unit 21 

Seeding     Tillering      Panicle 

        
Flowering    Harvesting 

         
 

 

 
Sample unit 23 

Seeding              Tillering              Panicle 

       
Flowering    Harvesting 
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Sample unit 24 

Seeding              Tillering              Panicle 

       
Flowering    Harvesting 

    
 
 
 
 
Sample unit 25 

Seeding              Tillering              Panicle 

      
Flowering    Harvesting 
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Sample unit 26 

Seeding              Tillering              Panicle 

      
Flowering    Harvesting 

    
 

 

 
Sample unit 27 

Seeding              Tillering               Panicle 

         
Flowering    Harvesting 
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Appendix J Average of satellite values during growing 

season 

J.1 Average of VI values during growing season 

VI Average and standard deviation (S.D.) of VI values 
Seeding S.D. Tillering S.D. Panicle S.D. Flowering S.D. Harvesting S.D. 

Overall area 
NDVI 0.03 0.09 0.47 0.18 0.61 0.05 0.27 0.16 0.20 0.11 
EVI 0.12 0.12 0.57 0.16 0.60 0.10 0.36 0.21 0.19 0.10 
Phichit 
Irrigated areas 
NDVI -0.01 0.01 0.47 0.23 0.63 0.04 0.42 0.15 0.20 0.16 
EVI 0.07 0.09 0.51 0.24 0.59 0.12 0.50 0.14 0.13 0.05 
Non-irrigated areas 
NDVI -0.02 0.13 0.63 0.09 0.62 0.06 0.24 0.15 0.19 0.06 
EVI 0.07 0.18 0.61 0.12 0.63 0.11 0.55 0.21 0.15 0.08 
Ang Thong 
NDVI 0.03 0.03 0.34 0.11 0.63 0.05 0.17 0.05 0.12 0.07 
EVI 0.14 0.06 0.61 0.08 0.60 0.10 0.16 0.04 0.22 0.13 
Pathum Thani 
NDVI 0.13 0.02 0.41 0.13 0.57 0.04 0.23 0.17 0.30 0.07 
EVI 0.22 0.05 0.54 0.18 0.55 0.07 0.20 0.07 0.28 0.10 

J.2 Average of backscatter values during growing season 

Backscatter Average and standard deviation (S.D.) of backscatter values 

Seeding S.D. Tillering S.D. Panicle S.D. Flowering S.D. Harvesting S.D. 

Overall area 

AscVV -13.14 4.02 -8.76 2.15 -9.80 3.07 -10.82 2.54 -9.91 3.14 

AscVH -19.85 2.20 -17.17 1.66 -16.53 1.86 -16.08 1.38 -16.36 2.62 

AscVV/VH 0.66 0.19 0.52 0.14 0.59 0.16 0.67 0.13 0.61 0.17 

DescVV -11.09 3.13 -9.69 2.19 -9.65 2.74 -9.90 2.82 -10.26 2.30 

DescVH -19.70 2.01 -16.65 1.37 -16.20 1.51 -15.45 1.64 -16.95 2.34 

DescVV/VH 0.56 0.12 0.58 0.13 0.60 0.17 0.64 0.16 0.61 0.14 

Phichit 

Irrigated area 

AscVV -11.67 5.34 -7.66 2.00 -10.51 2.01 -11.56 3.34 -10.80 1.55 
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Backscatter Average and standard deviation (S.D.) of backscatter values 

Seeding S.D. Tillering S.D. Panicle S.D. Flowering S.D. Harvesting S.D. 

Phichit- Irrigated area (Cont.) 

AscVH -18.85 2.60 -16.87 1.47 -16.72 1.62 -16.44 1.28 -16.27 3.19 

AscVV/VH 0.61 0.27 0.46 0.13 0.63 0.08 0.70 0.17 0.67 0.06 

DescVV -10.59 3.78 -9.68 1.79 -10.29 2.22 -11.89 2.58 -11.52 2.59 

DescVH -19.11 2.73 -16.98 1.48 -15.93 0.52 -16.22 1.06 -18.35 2.52 

DescVV/VH 0.55 0.12 0.57 0.11 0.64 0.13 0.73 0.13 0.63 0.12 

Non-irrigated area 

AscVV -15.53 3.01 -10.22 1.63 -10.74 2.92 -12.08 0.46 -9.38 4.26 

AscVH -19.43 1.43 -16.50 0.71 -16.21 1.46 -17.19 0.63 -17.78 2.29 

AscVV/VH 0.80 0.13 0.62 0.08 0.66 0.14 0.70 0.03 0.52 0.19 

DescVV -11.88 3.49 -10.91 2.53 -9.88 1.31 -9.99 1.59 -9.83 0.93 

DescVH -19.98 1.90 -16.57 1.06 -14.63 1.61 -14.57 1.50 -16.73 2.52 

DescVV/VH 0.59 0.14 0.65 0.11 0.68 0.09 0.69 0.09 0.59 0.07 

Ang Thong 

AscVV -11.52 2.90 -8.17 0.52 -6.51 2.16 -9.69 1.46 -11.24 1.57 

AscVH 1-.92 1.67 -18.30 1.79 -17.45 0.68 -15.76 0.49 -15.26 0.94 

AscVV/VH 0.57 0.10 0.45 0.02 0.38 0.13 0.62 0.10 0.74 0.12 

DescVV -9.60 1.46 -8.20 1.03 -6.59 2.74 -9.55 3.02 -10.94 3.04 

DescVH -18.50 0.96 -17.72 1.06 -17.46 0.64 -16.86 1.33 -15.43 0.54 

DescVV/VH 0.52 0.07 0.46 0.03 0.38 0.16 0.56 0.16 0.71 0.21 

Pathum Thani 

AscVV -13.65 3.78 -8.91 3.19 -11.12 3.36 -9.57 3.28 -8.13 3.98 

AscVH -21.49 2.52 -17.20 2.36 -15.77 3.13 -14.66 1.59 -15.86 3.29 

AscVV/VH 0.63 0.14 0.53 0.21 0.70 0.11 0.64 0.18 0.51 0.21 

DescVV -12.23 3.21 -9.72 2.66 -11.65 2.47 -7.74 3.05 -8.60 1.57 

DescVH -21.26 1.07 -15.28 0.78 -17.15 0.10 -14.16 1.22 -17.03 2.59 

DescVV/VH 0.57 0.14 0.63 0.16 0.68 0.13 0.55 0.22 0.51 0.07 

 



Appendix K 

245 

Appendix K Rice yield and rice production in 2017 in 3 

representative provinces 
Province/Amphoe Rice harvested area 

(hectare) 
Rice yield (ton/ha) Rice production 

(tonnes) 

Phichit 232,536 3.77 876,596 

Muang Phichit 23,669 3.98 94,084 

Taphan Hin 25,984 4.09 106,373 

Bang Mun Nak 22,600 3.88 87,716 

Pho Thale 26,821 4.09 109,632 

Pho Prathap Chang 19,274 3.84 74,083 

Sam Ngam 21,524 3.74 80,445 

Wang Sai Phun 17,983 3.42 61,478 

Thap Khlo 24,612 3.48 85,525 

Sak Lek 6,919 3.08 21,277 

Bueng Na Rang 13,718 3.97 54,444 

Dong Charoen 14,745 3.39 49,947 

Wachirabarami 14,688 3.51 51,592 

Ang Thong 55,421 4.16 230,547 

Muang Ang Thong 3,916 4.12 16,131 

Chaiyo 2,885 3.84 11,089 

Pa Mok 593 3.80 2,252 

Pho Thong 13,508 4.13 55,719 

Wiset Chai Chan 15,342 4.12 63,190 

Samko 7,798 4.24 33,093 

Sawaeng Ha 11,379 4.31 49,073 

Pathum Thani 49,657 4.49 223,167 

Muang Pathum Thani 3,099 4.31 13,363 

Khlong Luang 8,066 4.58 36,903 

Thanyaburi 1,484 4.51 6,687 

Lat Lum Kaeo 11,548 4.63 53,408 

Lam Luk Ka 11,846 4.50 53,307 

Sam Khok 2,892 4.47 12,924 

Nong Suea 10,722 4.34 46,575 
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Appendix L Correlation between satellite and rice 

biophysical variables 

L.1 Correlation between vegetation indices and rice biophysical variables 

in overall areas, irrigated areas, and non-irrigated areas across 

growth stages. 

Irrigated 
system 

Stage Rice biophysical 
variables 

Statistical Vegetation indices 
NDVI EVI 

Overall  Seeding Rice age Pearson  
(sig. 2-tailed) 

-0.11 
0.61 

0.23 
0.30 

Stem density Pearson  
(sig. 2-tailed) 

-0.22 
0.33 

-0.33 
0.14 

Water depth Pearson  
(sig. 2-tailed) 

-0.04 
0.85 

0.16 
0.48 

Height Pearson  
(sig. 2-tailed) 

.c 
 

.c 
 

Absolut height Pearson  
(sig. 2-tailed) 

.c 
 

.c 
 

LAI Pearson  
(sig. 2-tailed) 

.c 
 

.c 
 

Chlorophyll Pearson  
(sig. 2-tailed) 

.c 
 

.c 
 

Wet total 
biomass 

Pearson  
(sig. 2-tailed) 

.c .c 

Wet stem 
biomass 

Pearson  
(sig. 2-tailed) 

.c 
 

.c 
 

Wet grain 
biomass 

Pearson  
(sig. 2-tailed) 

.c 
 

.c 
 

Dry total biomass Pearson  
(sig. 2-tailed) 

.c 
 

.c 
 

Dry stem biomass Pearson  
(sig. 2-tailed) 

.c 
 

.c 
 

Dry grain biomass Pearson  
(sig. 2-tailed) 

.c 
 

.c 
 

Tillering Rice age Pearson  
(sig. 2-tailed) 

-0.11 
0.63 

-0.06 
0.78 

Stem density Pearson  
(sig. 2-tailed) 

0.03 
0.88 

0.11 
0.62 

Water depth 
 
 

Pearson  
(sig. 2-tailed) 

-0.12 
0.59 

0.13 
0.58 
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Irrigated 
system 

Stage Rice biophysical 
variables 

Statistical Vegetation indices 
NDVI EVI 

Overall (Cont.) 
 

Tillering Height Pearson  
(sig. 2-tailed) 

0.15 
0.50 

0.35 
0.11 

Absolut height Pearson  
(sig. 2-tailed) 

0.21 
0.34 

0.31 
0.16 

LAI Pearson  
(sig. 2-tailed) 

0.05 
0.85 

0.02 
0.93 

Chlorophyll Pearson  
(sig. 2-tailed) 

0.13 
0.55 

-0.06 
0.79 

Wet total 
biomass 

Pearson  
(sig. 2-tailed) 

.c 
 

.c 
 

Wet stem 
biomass 

Pearson  
(sig. 2-tailed) 

.c 
 

.c 
 

Wet grain 
biomass 

Pearson  
(sig. 2-tailed) 

.c 
 

.c 
 

Dry total biomass Pearson  
(sig. 2-tailed) 

.c 
 

.c 
 

Dry stem biomass Pearson  
(sig. 2-tailed) 

.c 
 

.c 
 

Dry grain biomass Pearson  
(sig. 2-tailed) 

.c 
 

.c 
 

Panicle Rice age Pearson  
(sig. 2-tailed) 

0.13 
0.57 

-0.45* 
0.04 

Stem density Pearson  
(sig. 2-tailed) 

-0.33 
0.14 

-0.06 
0.80 

Water depth Pearson  
(sig. 2-tailed) 

-0.30 
0.18 

-0.07 
0.77 

Height Pearson  
(sig. 2-tailed) 

0.23 
0.30 

-0.39 
0.08 

Absolut height Pearson  
(sig. 2-tailed) 

0.28 
0.21 

-0.31 
0.17 

LAI Pearson 
(sig. 2-tailed) 

-0.19 
0.41 

0.03 
0.88 

Chlorophyll Pearson  
(sig. 2-tailed) 

-0.11 
0.63 

-0.04 
0.86 

Wet total 
biomass 

Pearson  
(sig. 2-tailed) 

-0.58 
0.61 

0.92 
0.26 

Wet stem 
biomass 

Pearson  
(sig. 2-tailed) 

-0.57 
0.61 

0.92 
0.26 

Wet grain 
biomass 

Pearson  
(sig. 2-tailed) 

-0.59 
0.6 

0.93 
0.25 

Dry total biomass Pearson  
(sig. 2-tailed) 

-0.72 
0.49 

0.98 
0.14 

Dry stem biomass 
 
 

Pearson  
(sig. 2-tailed) 

-0.78 
0.43 

0.99 
0.08 
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Irrigated 
system 

Stage Rice biophysical 
variables 

Statistical Vegetation indices 
NDVI EVI 

Overall (Cont.) 
 

Panicle Dry grain biomass Pearson  
(sig. 2-tailed) 
 

-0.60 
0.59 

0.93 
0.24 

Flowering Rice age Pearson  
(sig. 2-tailed) 

0.10 
0.69 

0.20 
0.38 

Stem density Pearson  
(sig. 2-tailed) 

0.04 
0.88 

0.23 
0.31 

Water depth Pearson  
(sig. 2-tailed) 

-0.62** 
0.01 

-0.59** 
0.01 

Height Pearson  
(sig. 2-tailed) 

-0.52* 
0.03 

0.05 
0.83 

Absolut height Pearson  
(sig. 2-tailed) 

-0.26 
0.30 

0.30 
0.19 

LAI Pearson 
(sig. 2-tailed) 

-0.07 
0.80 

0.03 
0.91 

Chlorophyll Pearson  
(sig. 2-tailed) 

-0.09 
0.73 

-0.07 
0.76 

Wet total 
biomass 

Pearson  
(sig. 2-tailed) 

0.02 
0.95 

-0.25 
0.30 

Wet stem 
biomass 

Pearson  
(sig. 2-tailed) 

-0.08 
0.77 

-0.30 
0.20 

Wet grain 
biomass 

Pearson  
(sig. 2-tailed) 

0.35 
0.17 

0.07 
0.78 

Dry total biomass Pearson  
(sig. 2-tailed) 

0.22 
0.40 

-0.12 
0.62 

Dry stem biomass Pearson  
(sig. 2-tailed) 

0.05 
0.86 

-0.23 
0.32 

Dry grain biomass Pearson  
(sig. 2-tailed) 

0.39 
0.13 

0.13 
0.59 

Harvesting Rice age Pearson  
(sig. 2-tailed) 

0.34 
0.12 

0.27 
0.23 

Stem density Pearson  
(sig. 2-tailed) 

-0.57** 
0.01 

0.05 
0.83 

Water depth Pearson  
(sig. 2-tailed) 

0.42 
0.05 

0.47* 
0.03 

Height Pearson  
(sig. 2-tailed) 

0.21 
0.35 

0.25 
0.25 

Absolute height Pearson  
(sig. 2-tailed) 

0.06 
0.8 

0.08 
0.72 

LAI Pearson 
(sig. 2-tailed) 

0.25 
0.26 

0.07 
0.75 

Chlorophyll Pearson  
(sig. 2-tailed) 

0.05 
0.82 

-0.36 
0.10 

Wet total 
biomass 

Pearson  
(sig. 2-tailed) 

0.30 
0.17 

0.45* 
0.04 
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Irrigated 
system 

Stage Rice biophysical 
variables 

Statistical Vegetation indices 
NDVI EVI 

Overall (Cont.) Harvesting Wet stem 
biomass 

Pearson  
(sig. 2-tailed) 

0.34 
0.12 

0.45* 
0.03 

Wet grain 
biomass 

Pearson  
(sig. 2-tailed) 

0.10 
0.68 

0.28 
0.20 

Dry total biomass Pearson  
(sig. 2-tailed) 

0.28 
0.21 

0.43* 
0.05 

Dry stem biomass Pearson  
(sig. 2-tailed) 

0.35 
0.11 

0.46* 
0.03 

Dry grain biomass Pearson  
(sig. 2-tailed) 

0.13 
0.58 

0.31 
0.15 

Overall 
growth 
stage 

Rice age  Pearson  
(sig. 2-tailed) 

0.27** 
0.01 

0.11 
0.24 

Stem density Pearson  
(sig. 2-tailed) 

0.03 
0.78 

0.16 
0.09 

Water depth Pearson  
(sig. 2-tailed) 

0.10 
0.30 

0.17 
0.07 

Height Pearson  
(sig. 2-tailed) 

-0.40** 
0.00 

-0.48** 
0.00 

Absolute height 
 

Pearson  
 (sig. 2-tailed) 

-0.39** 
0.00 

-0.49** 
0.00 

LAI Pearson  
(sig. 2-tailed) 

-0.21 
0.07 

-0.25* 
0.02 

Chlorophyll Pearson  
(sig. 2-tailed) 

0.08 
0.50 

-0.02 
0.87 

Wet total 
biomass 

Pearson  
(sig. 2-tailed) 

-0.19 
0.22 

-0.20 
0.19 

Wet stem 
biomass 

Pearson  
(sig. 2-tailed) 

-0.15 
0.35 

-0.16 
0.29 

Wet grain 
biomass 

Pearson  
(sig. 2-tailed) 

-0.23 
0.14 

-0.24 
0.11 

Dry total biomass Pearson  
(sig. 2-tailed) 

-0.20 
0.20 

-0.24 
0.12 

Dry stem biomass Pearson  
(sig. 2-tailed) 

-0.11 
0.51 

-0.16 
0.31 

Dry grain biomass Pearson  
(sig. 2-tailed) 

-0.25 
0.11 

-0.27 
0.08 
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L.2 Correlation between vegetation indices and rice yield in overall 

areas, irrigated areas, and non-irrigated areas across growth stages. 

Irrigated system Stage Statistical Vegetation indices 
NDVI EVI 

Overall  Seeding Pearson  
(sig. 2-tailed) 

-0.20 
0.39 

0.57** 
0.01 

Tillering Pearson  
(sig. 2-tailed) 

-0.06 
0.78 

0.06 
0.78 

Panicle Pearson  
(sig. 2-tailed) 

0.37 
0.11 

-0.03 
0.89 

Flowering Pearson  
(sig. 2-tailed) 

-0.35 
0.12 

-0.19 
0.40 

Harvesting Pearson  
(sig. 2-tailed) 

-0.12 
0.60 

0.00 
0.99 

Overall growth 
stage 

Pearson  
(sig. 2-tailed) 

-0.08 
0.41 

0.02 
0.88 

Irrigated  
 

Seeding Pearson  
(sig. 2-tailed) 

-0.01 
0.98 

0.40 
0.14 

Tillering Pearson  
(sig. 2-tailed) 

-0.19 
0.48 

-0.10 
0.70 

Panicle Pearson  
(sig. 2-tailed) 

0.21 
0.48 

0.02 
0.94 

Flowering Pearson  
(sig. 2-tailed) 

-0.23 
0.38 

-0.21 
0.43 

Harvesting Pearson  
(sig. 2-tailed) 

-0.12 
0.67 

0.07 
0.81 

Overall growth 
stage 

Pearson  
 (sig. 2-tailed) 

-0.09 
0.46 

-0.03 
0.81 

Non- irrigated 
 

Seeding Pearson 
(sig. 2-tailed) 

-0.56 
0.25 

0.79 
0.06 

Tillering Pearson  
(sig. 2-tailed) 

0.72 
0.11 

0.84* 
0.04 

Panicle Pearson  
(sig. 2-tailed) 

0.67 
0.15 

-0.09 
0.87 

Flowering Pearson  
(sig. 2-tailed) 

-0.85 
0.07 

-0.44 
0.46 

Harvesting Pearson  
(sig. 2-tailed) 

-0.18 
0.73 

-0.31 
0.55 

Overall growth 
stage 

Pearson  
(sig. 2-tailed) 

-0.61 
0.75 

0.12 
0.53 
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L.3 Correlation between vegetation indices and rice yield in overall area, 

irrigated areas and non-irrigated areas across growth stages specific 

growth stage. 

Irrigated system Stage Statistical Vegetation indices 
NDVI EVI 

Phitsanulok2 
 

Seeding Pearson  
(sig. 2-tailed) 

0.73 
0.27 

0.45 
0.56 

Tillering Pearson  
(sig. 2-tailed) 

-0.09 
0.91 

0.95* 
0.05 

Panicle Pearson  
(sig. 2-tailed) 

0.03 
0.97 

-0.36 
0.64 

Flowering Pearson 
(sig. 2-tailed) 

-1** 
 

0.18 
0.82 

Harvesting Pearson  
(sig. 2-tailed) 

0.11 
0.89 

-0.47 
0.53 

Overall growth  Pearson  
(sig. 2-tailed) 

.c 
 

.c 
 

RD41 
 

Seeding Pearson  
(sig. 2-tailed) 

0.33 
0.53 

0.86* 
0.03 

Tillering Pearson  
(sig. 2-tailed) 

-0.26 
0.62 

0.18 
0.74 

Panicle Pearson  
(sig. 2-tailed) 

-0.33 
0.53 

0.18 
0.74 

Flowering Pearson  
(sig. 2-tailed) 

-0.01 
0.99 

-0.52 
0.29 

Harvesting Pearson  
(sig. 2-tailed) 

-0.01 
0.99 

0.49 
0.32 

Overall growth  Pearson  
(sig. 2-tailed) 

-0.04 
0.83 

0.07 
0.71 

RD49 Seeding Pearson  
(sig. 2-tailed) 

-0.75 
0.14 

-0.46 
0.43 

Tillering Pearson  
(sig. 2-tailed) 

-0.06 
0.92 

0.38 
0.53 

Panicle Pearson  
(sig. 2-tailed) 

0.88 
0.05 

-0.21 
0.74 

Flowering Pearson  
(sig. 2-tailed) 

0.51 
0.39 

0.20 
0.74 

Harvesting Pearson  
(sig. 2-tailed) 

-0.44 
0.46 

0.04 
0.95 

Overall growth Pearson  
(sig. 2-tailed) 

-0.06 
0.77 

0.02 
0.94 

 

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed) 

NA No measurement 
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Appendix M Descriptive statistical table based on 

Sentinel-2 and Sentinel-1 

M.1 Descriptive statistical table based on Sentinel-2 

M.1.1 Descriptive statistical table based on Sentinel-2: EVI (seeding stage) 

Descriptive Statisticsa 
 Mean Std. Deviation N 
Yield 4.9169 .73107 21 
EVI .1130 .11939 21 
a. Stage = Seeding 

 
Correlationsa 

 Yield EVI 
Pearson Correlation Yield 1.000 .567 

EVI .567 1.000 
Sig. (1-tailed) Yield . .004 

EVI .004 . 
N Yield 21 21 

EVI 21 21 
a. Stage = Seeding 

 
Variables Entered/Removeda,b 
Model Variables Entered Variables Removed Method 
1 EVIc . Enter 
a. Stage = Seeding 
b. Dependent Variable: Yield 
c. All requested variables entered. 

 
Model Summarya 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

Change Statistics 
R Square 
Change F Change df1 df2 

Sig. F 
Change 

1 .567b .321 .285 .61808 .321 8.981 1 19 .007 
a. Stage = Seeding 
b. Predictors: (Constant), EVI 
 

ANOVAa,b 
Model Sum of Squares df Mean Square F Sig. 

1 Regression 3.431 1 3.431 8.981 .007c 

Residual 7.258 19 .382   
Total 10.689 20    

a. Stage = Seeding 
b. Dependent Variable: Yield 
c. Predictors: (Constant), EVI 
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Coefficientsa,b 

Model 

Unstandardized 
Coefficients 

Standardize
d 

Coefficients 

t Sig. 

95.0% Confidence 
Interval for B Correlations 

B 
Std. 

Error Beta 
Lower 
Bound 

Upper 
Bound Zero-order Partial Part 

1 (Constant) 4.525 .188  24.083 .000 4.132 4.918    
EVI 3.469 1.158 .567 2.997 .007 1.046 5.892 .567 .567 .567 

a. Stage = Seeding 
b. Dependent Variable: Yield 

M.1.2 Descriptive statistical table based on Sentinel-2: NDVI (panicle stage) 

Descriptive Statisticsa 
 Mean Std. Deviation N 
Yield 4.8844 .73429 20 
NDVI .6141 .04976 20 
a. Stage = Panicle 

 
Correlationsa 
 Yield NDVI 
Pearson Correlation Yield 1.000 .373 

NDVI .373 1.000 
Sig. (1-tailed) Yield . .053 

NDVI .053 . 
N Yield 20 20 

NDVI 20 20 
a. Stage= Panicle 

 
Variables Entered/Removeda,b 

Model 
Variables 
Entered 

Variables 
Removed Method 

1 NDVIc . Enter 
a. Stage= Panicle 
b. Dependent Variable: Yield 
c. All requested variables entered. 

 
Model Summarya 

Model R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate 

Change Statistics 
R Square 
Change F Change df1 df2 

Sig. F 
Change 

1 .373b .139 .091 .70011 .139 2.900 1 18 .106 
a. Stage = Panicle 
b. Predictors: (Constant), NDVI 
 

ANOVAa,b 
Model Sum of Squares df Mean Square F Sig. 
1 Regression 1.422 1 1.422 2.900 .106c 

Residual 8.823 18 .490   
Total 10.244 19    

a. Stage= Panicle 
b. Dependent Variable: Yield 
c. Predictors: (Constant), NDVI 
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Coefficientsa,b 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

95.0% Confidence 
Interval for B Correlations 

B Std. Error Beta Lower Bound 
Upper 
Bound 

Zero-
order Partial Part 

1 (Constant) 1.508 1.989  .758 .458 -2.670 5.686    
NDVI_ 5.497 3.228 .373 1.703 .106 -1.285 12.279 .373 .373 .373 

a. Stage= Panicle 
b. Dependent Variable: Yield 

M.2 Descriptive statistical table based on Sentinel-1 

Descriptive Statisticsa 
 Mean Std. Deviation N 
Yield 4.8436 .79087 22 
AscVV/VH .6100 .17449 22 
a. Stage = Harvesting  

 
Correlationsa 
 Yield AscVV/VH 
Pearson Correlation Yield 1.000 .540 

AscVV/VH .540 1.000 
Sig. (1-tailed) Yield . .005 

AscVV/VH .005 . 
N Yield 22 22 

AscVV/VH 22 22 
a. Stage = Harvesting 
 
Variables Entered/Removeda,b 

Model 
Variables 
Entered 

Variables 
Removed Method 

1 AscVV/VH . Stepwise (Criteria: Probability-
of-F-to-enter <= .050, 
Probability-of-F-to-remove >= 
.100). 

a. Stage= Harvesting 
b. Dependent Variable: Yield 

 
Model Summarya 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

Change Statistics 
R Square 
Change 

F 
Change df1 df2 

Sig. F 
Change 

1 .540b .291 .256 .68218 .291 8.225 1 20 .010 
a. Stage= Harvesting 
b. Predictors: (Constant), AscVV/VH 
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ANOVAa,b 
Model Sum of Squares df Mean Square F Sig. 
1 Regression 3.828 1 3.828 8.225 .010c 

Residual 9.307 20 .465   
Total 13.135 21    

a. Stage= Harvesting 
b. Dependent Variable: Yield 
c. Predictors: (Constant), AscVV/VH 
 

Coefficientsa,b 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

95.0% Confidence 
Interval for B 

B Std. Error Beta 
Lower 
Bound 

Upper 
Bound 

1 (Constant) 3.351 .540  6.201 .000 2.224 4.478 
AscVV/VH 2.447 .853 .540 2.868 .010 .667 4.226 

a. Stage= Harvesting 
b. Dependent Variable: Yield 

 
 

Coefficient Correlationsa,b 
Model AscVV/VH 
1 Correlations AscVV/VH 1.000 

Covariances AscVV/VH .728 
a. Stage= Harvesting 
b. Dependent Variable: Yield 
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Glossary of Terms 

Polarisation ........................................................................ Process of confining the vibrations of the 

magnetic, or electric field, vector of light 

or other radiation to one plane 

Sigma Nought .................................................................... Scattering coefficient or the 

conventional measure of the strength of 

radar signals reflects by a distributed 

scatter, usually expressed in decibel (dB). 

It is normalised dimensionless number, 

compares the strength observed to 

expect from an area of one square 

meter. In general, the value of sigma 

nought varies with incidence angle, 

wavelength, and polarisation 

Vertical Transmit-Horizontal Receive Polarisation (VH) .... A mode of radar where the microwave 

of the electric field is oriented in the 

vertical plane for transmission signal and 

where the horizontally polarised electric 

field of backscatter energy is received by 

radar antenna 

Vertical Transmit-Vertical Receive Polarisation (VV)......... A mode of radar polarisation where the 

microwave of the electric field is 

oriented in the vertical plane for both 

signal transmission and reception by 

radar antenna 
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