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Occupying over 12% of the global cropland area, rice is the predominant crop in many
regions of the world. Southeast Asia alone accounts for 31% of the world’s rice harvesting area,
making this region vital for the food security of the growing global population. Current literature
in the field indicates that there are several factors impacting rice productivity, however there are
gaps pertaining to country-specific studies, namely the impact of climate change and challenges
regarding effective monitoring. Therefore, this study focuses on four research questions, they are:
(1) the climate parameters influencing rice productivity in Thailand; (2) the correlation between
rice biophysical variables and growth rate as a determinant to overall rice yield; (3) the potential
of satellite sensors for rice yield; and (4) the development of a regression model for rice yield
estimations.

For the first question, climate data (measured by two rainfall parameters and six crucial
temperature parameters) and rice yield data, which were collected at the provincial level
between the years 1981-2015, are used to determine the impacts of the climate on rice
productivity in Thailand. The result indicates a significance increasing/decreasing trend in the
mean minimum temperature, mean maximum temperature, and cumulative rainfall. The study
further investigates the importance of geographical variation by adopting spatial autocorrelation
(Moran’s I index). The result reveals that in 1992 there was a significant shift in cumulative rainfall
and the average temperature.

Furthermore, field experiments were conducted on rice crops in Thailand during the wet
season of 2017 to explore the correlation between rice biophysical variables and growth rate. The
temporality of rice biophysical variables is demonstrated by separating rice variety and irrigation
system. The leaf area index (LAI) peaks in the flowering stage and LAl development can be slightly
different depending on the rice variety and irrigation system. The correlation between yield and
other rice biophysical elements on a specific variety (RD41) is highly correlated to rice age, stem
density, height, chlorophyll contents, and wet and dry biomass. The correlation between yield,
and wet and dry biomass during the harvesting stage was the strongest.

To develop arice yield prediction model, data collected from the time series of two
different satellite sensors: Sentinel-2 (optical) and Sentinel-1 (Synthetic Aperture Radar, or SAR)
were utilised. The vegetation indices (NDVI and EVI) and backscatter coefficient (sigma nought;
c?) usefully tracked rice phenology. The study furthers develop a linear regression model for rice
yield estimations based on different sensors and yields from in-situ measurements via Crop
Cutting Experiments (CCEs). The accuracy of the results is compared to official rice yields.

The correlation between vegetation indices, backscatter coefficient, and rice yield variables
is investigated in different growth stages and irrigation systems. Based on the simple regression
model for the optical sensors, the developed yield estimation model is correlated with NDVI in the
panicle stage (r = 0.37 and SEE = 0.70 tonnes/ha). While SAR (c?) is significant in the ascending
VV/VH ratio during the harvesting stage (r = 0.54 and SEE = 0.68 tonnes/ha). The findings suggest
remotely sensed data can be a good predictor for rice yield during the booting and mature stages.
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Chapter 1

Chapter 1 Introduction

Globally, climate change and extreme weather events, which are linked to increasing
concentrations of greenhouse gases (GHGs), are becoming more widespread, occurring more
frequently and having significant environmental and societal impact (Enriquez-de-Salamanca et
al., 2017; Halsnas & Trarup, 2009; Malhi et al., 2020; Reser & Swim, 2011). Extreme weather
events include intense heatwaves, heavy rainfalls, long-spell droughts, and wildfires, which
directly and indirectly impacts the environment, economy, biodiversity, agricultural production,
and human health. The consequences of climate change are a major problem in most countries
and threaten food production. In order to develop strategies to mitigate the impacts of climate
change, evaluating its impact on regional and country levels is necessary. For example, some
countries employ national surveys to understand public perceptions and attitudes, as well as the
impact of climate change, and based on the results governments can implement efficiency
strategies for climate change adaptation (Laukkonen et al., 2009; Lawler, 2009; Masud et al.,
2017; Morecroft et al., 2019). Climate change-induced weather events have a significant impact
on the agricultural sector and food security - including an increase in pests, weeds, disease, and
water stress- which serves to reduce crop yield and increase food insecurity. Therefore, improved
understanding of the influence of climate on crop production is necessary if improvements in food

security are to be made through climate mitigation adaptations.

Cereal grains (e.g. barley, wheat, rice, sorghum, and maize) are the world’s dominant agricultural
crops and have seen an increase in demand due to growing population. Rice is the world’s major
staple food crop, with paddies accounting for over 12% of global cropland; nearly 90% of the
world’s rice is produced and consumed in Asia (FAOSTAT, 2010). There, rice is grown in two
seasons (i.e. the wet and dry season) with the wet season coinciding with the monsoon rainfall
(between May and October). The dry season lasts from November to April and rice planting
depends on irrigation schemes. Rice cultivation is dependent on the availability of sufficient
water, so most farmers plant their crop in the wet season, while those with access to irrigation
may cultivate throughout the year. Increasing demand from the growing population has resulted
in rice production continuously increasing in Asia, achieved through the expansion of areas under
cultivation, increasing cropping intensity, use of high-yielding rice varieties (HYVs), and the
adoption of mechanised practices after the Green Revolution during the 1930s and 1960s. The
Green Revolution played an important role in developing countries through the growth of high
yield varieties (Evenson & Gollin, 2003), use of fertiliser (Murgai, Ali, & Byerlee, 2001; Tilman,
1998), water supply improvements (e.g. irrigation systems), and implementation of improved

cultivation methods (e.g. system of rice intensification; SRI) (Satyanarayana, Thiyagarajan, &
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Uphoff, 2007). These developments have increased the potential of rice yield and reduced

agricultural production costs.

In Thailand, the main agricultural commodities are rice, cassava, sugarcane, maize, para rubber,
and oil palm, which serve both consumption within the country and export to foreign markets.
Rice production in Thailand has increased from 6.74 to 24.93 million tonnes between 1960 and
2020, and the export of rice and related products now accounts for 10.69% of the export value of
major agricultural product (OAE, 2020b). Rice cultivation is largely located in the Chao Phraya
River Delta, which covers area of 15,986 km? containing ten rice varieties with an average annual
yield 3.79 ton/ha. The Chao Phraya River delta largely consists of lowland irrigated rice areas
covering ~6 million rai (0.96 million hectares), of which 70% of the cultivated area is irrigated. The
prevalence of irrigation systems in this region enables farmers to increase rice production through
double-rice and triple-rice cropping. However, this is not the case in all areas of Thailand, where
rice production methods vary according to the local climate (e.g. precipitation), topography,
availability of irrigation systems, farming practices, and government policies. Water availability
influences rice development, particularly the structure of plants and yield (Belder et al., 2004;
Monaco et al., 2016; Pourgholam-Amiji et al., 2021); therefore, regions with limited water

availability plant rice varieties resilient to lower rainfall conditions.

Agriculture- including crops, livestock, and fisheries- is the largest economic sector in Thailand,
providing gross revenue of approximately 1,343.5 million Baht ($41.98 million) per year.
Agricultural monitoring and yield prediction and estimation are vital to ensure food security and
agricultural trade, and to provide early warnings of issues concerning production. A key concern is
the growing demand from a rapidly increasing global population, which is estimated to increase to
9.8 billion by 2050 (United Nations, 2017). To meet this demand, increased agricultural
production in the order of 60-110% is needed (Ray, Mueller, West, & Foley, 2013). The
government, agricultural policy planners, and agricultural associations require accurate and timely
agricultural statistics for decision making. In Thailand, agricultural information is collected
concerning the cultivated area, harvested area, yield, production, and timing of harvested
production, which is used to balance the production capability and demand-supply of crops in
domestic and foreign markets. At present, the cultivated area in Thailand is estimated using a list
frame survey (or list of farm holdings) as the main sampling frame via stratified two-stage
sampling and using remotely-sensed images to measure the cultivated and harvested area
(Gallego et al., 2014; Pradhan, 2001; Tsiligirides, 1998). Yield estimations have traditionally been
derived using crop cutting experiments (CCE) at designated ground sample plots during
harvesting. The CCE method involves harvesting the crop in each sampling plot and measuring the

yield, which is then extrapolated to a larger spatial extent to estimate the final yield of a region.
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However, the CCE approach is expensive, time-consuming, covers a limited spatial extent, and
only provides yield estimates at the end of the growing season, which can result in outdated
information with respect to predictions and to developing any interventions. On the other hand,
remotely-sensed data have the ability to provide information on the crop aerial extent at a
particular stage of the growing season over large regions, and therefore have potential to lead to
improved crop monitoring and yield estimation. Numerous methods exist for monitoring rice
production using either optical or microwave data and for deriving estimates of vegetation
biophysical variables such as leaf area index (LAl). Yield estimation can be derived using remotely-
sensed data, either via the development of the empirical models that relate remotely-sensed
measurement or biophysical variable estimates (e.g. LAl) to yield (Erten et al., 2016; Li et al., 2016;
Yuzugullu et al., 2017) or through crop growth models, which are parameterised using remotely
sensed biophysical variable estimates (Curnel et al., 2011; Launay & Guerif, 2005; Setiyono et al.,
2019). In the optical domain, time-series of vegetation indices, which are sensitive to vegetation
health and vigour, are often used to monitor crop production and estimate crop yield
(Feizolahpour et al., 2019; Panda et al., 2010; Wiegand et al., 1991). A limitation of optical
measurements is their inability to see through clouds, which is a major challenge to providing
coverage in many parts of Asia, particularly during the monsoon season. Longer wavelength
microwave backscatter observations are able to penetrate cloud cover and have been successfully
used to monitor rice cultivation and to estimate rice yield (Aschbacher et al., 1995; Setiyono et al.,
2019; Wiseman, McNairn, Homayoun, & Shang, 2014). Improved and timely estimates of the area
under rice cultivation and rice yield using remotely-sensed data will provide a more cost-effective

method for gathering agricultural statistics and would lead to improved food security.

1.1 Research problems

1.1.1  Why is research needed on the impact of climate change on rice production?

This section highlights the important role of climate change in rice production. Climate change is
an adverse effect caused by long-term changes in temperature due to increasing concentrations
of greenhouse gases (GHGs) in the atmosphere by natural and anthropogenic activities. One
consequence of climate change has been an increase in global mean sea level (GMSL) of around 8-
9 inches since 1880 due to meltwater from glaciers and ice sheets (Vermeer & Rahmstorf, 2009;

Wigley & Raper, 1987).

Climate change has the potential of positively or negatively influencing crop production at local,
national, and regional levels. For example, Kukal and Irmak (2018) found climate-induced

temperature trends in the United States (U.S.) Great Plains to be beneficial to some crops but
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detrimental to others, whilst precipitation increases were found to be beneficial to all crops.
However, short-term weather extremes (e.g. drought and flooding) due to climate change
typically have negative impacts on agricultural production, and these events are forecast to occur
with increasing frequency (Liu et al., 2018; Zhao et al., 2020). Precipitation and temperature both
influence rice production with the former influencing the planting date, crop development, and
yield (Dharmarathna et al., 2014; Huang et al., 2017; Laux, Jackel, Tingem, & Kunstmann, 2010;
Mahmood et al., 2012) whilst temperature influences grain quality (size and completeness of
grain) (Cooper et al., 2006; Lanning et al., 2011). In recent years, the impact of climate change on
rice production in Southeast Asia has been investigated through different climate change
scenarios. For example, Felkner, Tazhibayeva, & Townsend (2009) found that both high and low
future global anthropogenic pollution emission scenarios led to increased daily temperature, with
the high emission scenario resulting in 40% higher temperatures. The impact on precipitation was
to increase throughout the year in the low emission scenario, but to reduce in the second half of
the year in the high emission scenarios, which coincides with the month of critical rainfall (June)
for the rice growing season. This could be interpreted as low emission scenarios being positive for
rice production, whilst high emission scenarios, with increased temperature and decreased
rainfall, being negative. Previous studies (Amien et al., 1999; Roy et al., 2012; Zhang & Tao, 2013)
analysed the impacts of climate change on rice yield by applying various climate scenarios to crop
growth models (e.g. dry matter, planting date, rainfall, temperature, production, and amount of
CO,). Kang, Khan, & Ma (2009) investigated the relationship between crop production (e.g. rice,
wheat, and maize) and climatic variables in regional and global food production such as impacts
on crop water productivity and soil water balance. The results found were either increased or

decreased crop yields, depending on latitude and irrigation applications.

Natural disasters, such as drought and flooding, also severely impact crop production, and these
are forecast to increase with the changing climate. For example, drought stress has a crucial
influence on water deficit and strains (e.g. leaf heating) and biomass (Loo, Billa, & Singh, 2015).
However, to date, there have been few detailed assessments of climatic trends and their impact
on agriculture across Thailand. One study investigated the impact of low and high emission
scenarios on rice yield estimation using the Decision Support System for Agro-technology Transfer
(DSSAT) model. This showed reductions in rice yield by 3.53% and 13.79% for the high and low
emission scenarios, respectively (Felkner, Tazhibayeva, & Townsend, 2009). Further to this,
Polthanee and Promkhambut (2014) investigated the impact of climate change on rice and
evaluated farmers’ adaptation strategies in northeast Thailand. They found an increase in mean
minimum and maximum temperature, which is extreme in the winter season, whilst the rainfall

increased in intensity and changed their beginning of rainy season from previous. The limited
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number of studies on climate impact on rice production in Thailand with regard to precipitation
and temperature highlights the research gaps; identifying the impacts would enable development
of methods to mitigate the effects. It is important that the agricultural sector is resilient and able
to adapt to changes in climate, where the main pattern of adaptation has been through shifting of
planting period, crop rotation, introducing tolerant varieties, water management, and improved

farming practices.

1.1.2 Understanding the influence of irrigation on rice cultivation

Variations in rice biophysical variables may occur for several reasons, including changes in
precipitation. Investigating the influence of irrigation on rice production provides a means to
indirectly assess the role of climate (precipitation) on rice production. The implementation of
irrigation systems guarantees sufficient water resources throughout the growing season. It is
important to have sufficient water at the start of the planting season during the vegetative phase.
In beginning of the growing season, flooded paddy fields are essential for the decay of organic
matter and increasing the mineral absorptivity of the crop. In more arid regions or those without
irrigation, the paddy field is bare soil, in which case rice is seeded in a nursery and transplanted to
the paddy when water is available. This influences the variety of rice planted, and potentially the
yield, where the majority of long duration rice is planted in irrigated areas whilst medium and
short duration rice varieties are planted in both irrigated and non-irrigated areas. This highlights
the role that water availability and irrigation system provision play in rice cultivation and in rice
variety, biophysical variables, and yield (Belder et al., 2004; Dangi et al., 2017; Kropff & Cassman,
1994; Ohe et al., 2010). This research aims to investigate the different patterns of rice biophysical
variables in irrigated areas and non-irrigated areas, as this can influence yield and therefore needs
to be considered. This study will investigate the variation of a number of rice biophysical variables
(e.g. plant height, leaf area index [LAI], biomass, and yield) with irrigation systems. Later chapters
will explore the estimation of rice yield using remotely-sensed estimates of some of these

biophysical variables.

1.1.3  Remote sensing for yield estimation

Yield information, which describes the production per unit area, is essential for agricultural
planning and is normally used to calculate rice production by multiplying rice yield by cultivated
area. In general, the yield data are derived from Crop Cutting Experiments (CCE), which involve
cutting and measuring the rice grain in representative sample plots. However, these yield
estimates are derived close to the harvesting period, which hinders forward planning for

exporting rice and ensuring sufficient availability for the population. Therefore, developing
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methods to estimate yield earlier in the season would be advantageous in supporting the

decision-making process with respect to agricultural markets.

One technique, which has been widely adopted for crop monitoring and yield estimation, is via
remotely-sensed measurements (Awad, 2019; Doraiswamy et al., 2003; Holzman et al., 2018).
Conceptually, remote sensing involves using spectral measurements in wavebands that are
sensitive to vegetation biophysical characteristics, such as visible and near-infrared (NIR)
wavelengths, to monitor crop growth and estimate vegetation biophysical variables. Over the last
ten years, remote sensing has been increasingly applied to monitor agricultural rice production
due to the availability of moderate and high spatial resolution imagery. Owing to their moderate
spatial resolution (< 30 m), Landsat Thematic Mapper (TM) and SPOT High Resolution Visible
(HRV) satellite sensors have been applied to map the surface area under rice production due to
the typically small size of paddy fields (Frolking et al., 2002; Nguyen et al., 2012; Shiu & Chuang,
2019; Torbick et al., 2011). Despite its low (250 m) spatial resolution, the Moderate Resolution
Imaging Spectroradiometer (MODIS) is widely applied to map rice production and offers the
advantage of daily temporal resolution, which improves the probability of cloud-free acquisitions
(Boschetti, Stroppiana, Brivio, & Bocchi, 2009; Nuarsa, Si, & Nuarsa, 2011; Son et al., 2013). High-
temporal resolution also enables monitoring of crop phenology (Boschetti et al., 2017; Hmimina
et al., 2013; Pan et al., 2012; Sakamoto et al., 2005; Zhang et al., 2003) and cropping intensity (e.g.
single-crop, double-crop, or triple-crop) (Boschetti et al., 2017; Nguyen et al., 2012; Pan et al.,
2012). Integrating the Earth Observation (EQ)-derived information, such as vegetation indices,
with in-situ measurements (empirical approach) or crop growth models enables estimation of the
importance of rice biophysical variables (e.g. rice height, LAI, and biomass). A key aspect of this
approach is to understand the relationship between rice biophysical variables and remote sensing
data at different growth phases to facilitate predictions of yield prior to harvest. Wang et al.
(2019) selected three main rice growth stages- the vegetative, reproductive pre-heading, and
reproductive post-harvesting stages- to estimate LAl using machine learning methods. The results

revealed the random forest was preferable in LAl estimation during the vegetative stage.

Rice yield can be estimated by using econometric models and crop growth models. Econometric
models simulate crop yield by inputting previous agricultural areas, fuel costs, price, and weather
data (Allen & Fildes, 2001). Crop growth models are more widely applied and can be either
empirically based and driven by climatic variables, or physically based, where plant physiological
development is simulated throughout the growing season based on a range of soail,
meteorological, and vegetation inputs (Singh et al., 2014). A number of these models exist, such
as estimate Environmental Policy Integrated Climate Model (EPIC) (Williams, Jones, Kiniry, &

Spanel, 1989), Crop-Environment Resource Synthesis (CERES) (Jones et al., 2003), and ORYZA 2000
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(Li et al., 2017). These models require parameterisation using meteorological information, soil
characteristics, land management practices, and plant biophysical variables. Earth Observation
(EO) sensors play a key role in the provision of crop biophysical variables used to parameterise
crop simulation models and can do so throughout the growing season. A number of studies have
demonstrated such benefits. For example, LAl and biomass of wheat were assimilated from
remote sensing data (e.g. ASAR (Advanced SAR) and MERIS (Medium Resolution Imaging
Spectrometer) data) and CERES-Wheat model; the simulated LAl and biomass data were then
validated with ground and remote sensing data to seek the optimal set of input parameters
(Dente, Satalino, Mattia, & Rinaldi, 2008). To improve parameterising crop growth models using
remote sensing data, data assimilation methods, such as Ensemble Kalman Filter (EnKF), have
been used to improve LAl monitoring and crop yield estimation. Using the CERES-wheat model,
He et al. (2017) employed an EnKF to assimilated LAl estimates to predict yield, and found strong
correlations with in-situ measurements. Data assimilation has been applied to LAl and canopy
nitrogen accumulation from hyperspectral data using the DSSAT-CERES model with an excellent

prediction accuracy (Li et al., 2015).

As a result of the benefits brought by EO sensors, satellite observations have been employed to
monitor rice production at regional and global scales. For example, the Group on Earth
Observation (GEO) Global Agricultural Monitoring Initiative (GEOGLAM) project utilises daily
satellite and meteorological data to monitor global rice production and current crop conditions
for four main crops (maize, soybeans, rice, and wheat) to generate Agricultural Market
Information System (AMIS) of member organisations (CEOS, 2013). The main obstacle of remote
sensing for rice monitoring using optical data is cloud cover, particularly during the wet season,
which can be mitigated by the use of microwave observations through Synthetic Aperture Radar
(SAR) sensors. SAR data have been successfully applied to map areas under rice cultivation and
has been carried out in Kanchanaburi province with a classification accuracy of 89% (Aschbacher
et al.,, 1995). A pilot project in Lao People’s Democratic Republic, the Philippines, Thailand, and
Viet Nam explored the potential of PALSAR-2 satellite images to estimate paddy rice cultivation
area and production via developed INAHOR-AD (an advanced version of INternational Asian

Harvest mOnitoring system for Rice) software based on remote sensed data (Rotairo et al., 2019).

Estimates of vegetation biophysical variables have been widely derived using optical
measurements and spectral vegetation indices. However, cloud cover limits observations during
key stages of the phenological cycle, and it is therefore important to assess the potential of both
optical and microwave methods for estimating vegetation biophysical variables. In this research,
the utility of vegetation indices (VIs; Normalised Difference Vegetation Index, NDVI; and Enhanced

Vegetation Index, EVI) and backscatter (sigma nought) to estimate rice biophysical variables (e.g.
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rice height, density, leaf area index, chlorophyll content, and biomass) will be investigated. The
field experiments were conducted in the main cultivation area, an irrigated lowland rice area in

the middle region.

1.2 Research questions

The research questions listed below are based on analysis of the scientific literature.

Research question 1: What is the role of changes in rainfall and temperature on rice yield and rice

production, and how does this vary with the irrigation system in Thailand?

Research question 2: How does the irrigation system influence rice plant growth and
development of biophysical variables during the growing season, and which rice biophysical

variable is the best predictor of rice yield?

Research question 3: What is the potential of optical and SAR data for estimating rice biophysical

variables in Thailand, and how does this vary between rice growth phases?

Research question 4: What is the potential of remote sensing estimates of biophysical variables to

estimate rice yield?

This thesis sets out to contribute to our understanding of the importance of rice monitoring, rice
farming systems, and the potential of remote sensing for rice yield prediction. A description of the
thesis structure that highlights the content of each chapter is provided below; limitations and

suggestions for future research build upon these new analyses.

1.3 Thesis scope and structure

The literature review (Chapter 2) found that precipitation and temperature are crucial factors in
crop yield and production. This thesis aims to investigate the role of climatic parameters
(temperature and rainfall) on annual rice yield and rice production in Thailand over 35 years
(1981-2015) at the provincial level (Chapter 3). To provide a better understanding of the influence
of climate on rice production, the analysis is stratified according to the percentage of cultivated

rice area under irrigation.

Current methods for predicting rice yield are based on crop cutting experiments, which are time
consuming and carried out close to crop harvesting. A field campaign was carried out during the
growing season wherein a number of rice biophysical variables were measured during difference

rice growth stages (Chapter 4). This allowed assessment of how rice development varied
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throughout the growing season, under irrigated/non-irrigated conditions, and with rice variety. An
analysis (Chapter 5) of the relationship between remote sensing observations and the in-situ
measurements was carried out to investigate the potential of remote sensing to estimate rice
biophysical variables at different stages of the growing season. The rice yield estimation approach
developed in Chapter 5, based on the development of linear regression models using satellite
observations and in-situ crop biophysical variables, aims to provide a timely and spatially dense

approach for estimating yield than that currently provided by crop cutting experiments.
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Chapter 2 Literature review

The purpose of this chapter is to critically review existing research on the relationship between
climatic variables and rice production, with a specific focus on Thailand. Central to this is assessing
state-of-the-art research on the potential to estimate rice biophysical variables using earth
observation (EO) data and methods for estimating rice yield, specifically focusing on the Chao
Phraya River delta. The structure of this chapter is as follows: Section 2.1 defines the rice
ecosystem and the specifically categorised rice land ecosystem across the agro-ecological zones
(AEZs) of the world. Section 2.2 sets out rice crop phenology and associated rice crop productivity
stages, while Section 2.3 discusses the rice farming system in Thailand with respect to the timing
of rice farming practices (e.g. planting/transplanting and weeding) and how these rice systems are
linked. Section 2.4 investigates the factors that influence rice production and focuses on the role
of meteorology and the impact of climate change on agriculture. Section 2.5 describes current
methods for estimating rice productivity through surveying and, finally, Section 2.6 assesses the

remote sensing techniques used for rice crop monitoring and yield estimation.

2.1 Rice ecosystem

There are 111 countries growing rice across the world, including most Asian countries, most
countries of West and North Africa, some countries in Central and East Africa, most South and
Central American countries, Australia, and some states in the U.S. Rice production occurs in wet,
tropical and temperate climates due to appropriate temperatures and adequate rainfall. Rice is
usually grown between 25° North and 25° South and from sea level to 2,500 m. The largest, and
highest proportion of rice growing areas are located in South and Southeast Asia, where rice is

cultivated in lowland areas and where monsoons ensure sufficient water.

Moormann and Breemen (1978) classify rice areas based on rice physiography and hydrology,
with the latter separated into irrigated and non-irrigated areas. By determining physiographic and
hydrology, the non-irrigated rice area is classified as pluvial (well drained and typically located in

upland areas), phreatic (naturally slope or flat), and fluvial (lower or flat areas and most flooding).
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Figure 2.1  Four main types of rice-based cropping system during growing season (Halwart &

Gupta, 2004).

Figure 2.1 illustrates the characteristics of rice-based cropping systems based on water availability
and topography: upland, rainfed lowland, irrigated, and flood-prone. Irrigated rice areas mean
rice is grown with adequate water supply and is flooded throughout the growing season. Under
these conditions, rice is transplanted or direct seeded in the puddle soil. The rainfed rice areas or
non-irrigated areas mean rice growth is reliant on rainfall, with non-continuous flooding and
duration of the rice fields. Paddies are normally bundled to store water in the field not exceeding
50 cm depth for a maximum of 10 consecutive days. In upland areas, rice is grown on level to
steeply-sloped fields and typically depends on rainfall. Finally, in flood-prone areas, rice is grown
on level to slightly-sloping or depressed fields and is located near rivers where water depth
exceeds 100 cm between >10 days to several months. Barker and Herdt (1979) classified rice
cultivated areas in South and Southeast Asia into four main groups: irrigated, shallow rainfed,
deep-water, and upland rice growing areas. In these regions, rice cropping is divided into two
main seasons, wet and dry. The wet season is when the main proportion of rice is cultivated
globally, as rainfall is the main restriction for rice cultivation in non-irrigated environments. The
main limitation in the dry season is rainfall, and therefore there are fewer rice cultivated areas in
the dry season. The proportion of rice cultivation in shallow rainfed, double cropping irrigated,

and medium deep rainfed and deep-water is 34%, 19%, and 15%, respectively. With respect to
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rice production in each of the groups, shallow rainfed, double crop irrigated, and single crop
irrigated account for 33%, 31%, and 19%, respectively. These figures reveal that rice yield in

irrigated areas is typically higher than non-irrigated areas.

In principle, rice is grown under different conditions, from waterlogged and poorly drained soils to
well drained soils. The soil’s physical properties are an important factor in rice-based cropping
systems. In a rice growing environment, rice cultivated area is categorised into lowland (wetland
preparation on rice fields) and upland (dryland preparation on rice fields) based on water supply
and water management practices. Rice lands have been classified according to water regimes into
upland (with standing water), lowland (with 5-50 cm of standing water), and deep water (with
more than 51 cm to 5 m of standing water). Within this, rice cultivation is divided, based on the
rice variety planted, into three main groups: lowland rice (with plants of semi-dwarf variety of
medium to tall structure (100 cm to 2 m height)), upland rice with plants of medium to tall structure
(130-150 cm height), deep water rice (with plants of medium to tall structure in different standing
water (120-150 cm without standing water and 2-3 m height with rising water level)), and floating

rice, with tall structures above 150 cm without standing water and 5-6 m with rising flood water.

In lowland rice areas, the paddy field is prepared either in wet or dry conditions; however, water
is held and stored by bunds. In the pre-germination process, rice seeds are soaked in water for 24
hours and then incubated for 48 hours before being placed in the seedbed. This process assures a
quick start in the seedbed. Most countries adopt the wet bed pattern for growing seedlings, in
which pre-germinated rice seeds and are sown in puddled soil where the seedlings are ready for
transplanting ~20-25 days after being sown. The current establishment techniques differ between
non-irrigated and irrigated lowland rice. In non-irrigated lowland rice, the current establishes
technique classified into transplanted in puddle soil, direct-seeded on puddled soil, and direct-
seeded on dry soil. While irrigated lowland rice, the farmer directly seedling rice sprouts onto
puddle soil, drill seeding into dry soil, broadcast seedling onto dry or moist soils, and water-

seeded rice.

Each rice ecosystem utilises different methods of land preparation, which is relevant to the
planting method and water availability and is influenced by precipitation availability and irrigation
systems. Land and water management systems and tillage practices vary with the rice system,
with the latter varying according to water availability, soil texture, topography, resources
available to farmers, and farmers’ preference for cropping pattern (Badshah et al., 2014;
Chakraborty et al., 2017; Dou et al., 2016; Ye et al., 2013). The timeliness and quality of land
preparation are important factors controlling rice growth and yield which result in differences in

yield of up to 56.85% (Nwite et al., 2016).
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2.2  Rice phenology

Rice is an annual grass with round, jointed culms, flat leaves, and panicles. The organism consists
of the root, clump, and leaves. Tillers or panicles grow from the main clump and the primary tiller
grows from the lowermost nodes, rising to secondary and tertiary tillers. Rice leaves, which grow
at each node, consist of a blade, leaf sheath, flag leaf, auricles, and ligule. The panicle is enlarged
beyond the flag leaf sheath. The spikelet is a unit of the panicle and continues to develop rice
grains in a ripened ovary. Rice is a caryopsis in which a single rice seed is fused with a wall to form
rice grain. A caryopsis is covered by two main leaves, the palea and lemma. There are three layers

which cover the caryopsis coat: the pericarp, seed coat, and nucellus.
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Figure 2.2 Cross-section of rice grain (Rosentrater & Evers, 2017).

The length of the phenological cycle of rice varies depending on environmental conditions, the
rice variety, and management practice. Understanding rice phenology is essential for evaluating
crop productivity and management practice. Changes in phenological period and length of
growing season can lead to crop intensification and irrigated area. Normally, the duration from
seeding to harvesting is 3-6 months, and is characterised by three physiologically distinct stages:
vegetative, reproductive, and ripening. Rice variety controls the length of growing season and
these are usually are defined as short-duration and long-duration rice varieties (Chen et al., 2020).
Research found the shorter length of growing on short-duration rice to be 11-12 days and similar

grain yield to long-duration rice. Other factors (e.g. spikelet filling rates, high harvest index,
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biomass accumulation, crop growth rate, and radiation use efficiency (RUE)) are higher in short-
duration rice than long-duration rice. Further studies found the delay of flowering on long-

duration rice corresponds with photoperiods (Vergara & Chang, 1985).
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Figure 2.3 Rice development stages. The top left image illustrates the development of root
internodes elongation and panicle and the large image illustrates the development of
rice growth stage in vegetative, reproductive, and grain filling & maturation stages

(Hardke, 2013).

Figure 2.3 represents the rice development stages, with different structures over the growing
season. In the vegetative stage, rice is normally in the germination process and develops leaves
and tillers. The vegetative stage ends with the development of the panicle initiation and
differentiation. This is followed by the reproductive stage; rice in this stage is developing heading
and active pollination. In the ripening stage, the rice grains develop, such as milk, dough, and

mature grains. These stages are discussed in more detail below.
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221 Vegetative phase

The vegetative phase occurs from germination to panicle initiation. Rice seeds are germinated and
the radicle through the coleorhiza; young leaves then emerge under suitable warm and moist
conditions. Tropical rice varieties have periods of dormancy, and some rice varieties protect rice
lodging (when plant stems weaken and are unable support grain weight) during the ripening
stage. When the rice grain is germinated, two or more seminal roots emerge from the rice seed.
In the seeding phase, the rice emerges from soil and seeding develops seminal roots. After ten
days, two or more rice leaves will have developed, and leaves continue to develop every 3-4 days
in the early stages; with adequate water and temperature, five leaves will typically develop by the

end of vegetative stage.

The tillering stage follows the seeding stage and begins with the appearance of the first tiller from
the axillary bud and the development of secondary and tertiary tillers. The development of
tertiary tillers is classified into two sub-stages: the maximum tillering stage and stem elongation
stage. After the maximum tillering stage, some tillers gradually die, the number of tillers
decreases, and vertical growth ceases. The stem elongation stage starts before panicle initiation;
however, the stem elongation and panicle initiation stages occur simultaneously in short rice
varieties. In this stage, the rice root system consists of two major categories: crown roots and
nodal roots. The crown root develops from nodes below the soil surface and nodal roots which

develop above soil surface (De Datta, 1981).

2.2.2 Reproductive phase

De Datta (1981) clarified that the reproductive stage begins after the maximum tillering stage and
depends on the rice variety and environmental conditions. Panicle initiation is noticeable when the
rice is a differentiated of primordium. Then, the panicle occurs in the main clump, followed by other

clumps with no exact pattern.

In the panicle initiation stage, the rice stem ceases vertical growth to develop rice grains following
the growth phase and panicle initiation occurs simultaneously. The significant structures that
develop during the panicle stage are the base, axis, primary and secondary branches, pedicel,
rudimentary glumes, and spikelet. Rice plants have a fully developed flower per spikelet
approximately 52 days after sowing in the panicle stage. During the panicle stage, the spikelet
develops inside a flag leaf sheath and continues to develop the panicle slowly. There are three sub-
phases within the reproductive stage: booting, heading, and flowering. The booting stage begins
when the flag leaf sheath is a well-developed and other below leaf is senescence. The heading

stage occurs with the emergence of the panicle on the flag leaf sheath, and the flowering stage
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occurs when the rice begins anthesis and panicles occur at the top, middle, and lower portion of
the rice structure. However, the period of the flowering stage is dependent on the rice variety and

environment.

223 Ripening phase

The ripening phase is the growth phase that occurs between the flowering and maturity stages
and usually lasts ~30 days (De Datta, 1981). Several factors influence the duration of ripening,
such as the number of rainy days, temperature, fertiliser use, and rice variety (Okamura et al.,
2018; Rathnayaka, Igbal, & Rifnas, 2018; Sabaruddin et al., 2002; Vergara et al., 1966) with the
latter varying the ripening period by between 35-50 days (Moldenhauer & Slaton, 2001). High
temperature during the grain filling and ripening stages produces imperfect or empty grain,
especially in the upper and lower part of grain. There are three sub-phases which are relevant to
grain colour: the milk grain stage, dough grain stage, and mature grain stage. In the milk grain
stage, the caryopses are watery and develop a milky substance on grains; during the dough grain
stage the grains turn into soft and hard dough. During the mature stage, between 90-100% of the
filled spikelet, rice turn into yellow and harder grains, and the senescence of the upper leaves is
apparent; however, the clumps and upper rice leaves remain healthy with green colour while the

grain is fully ripened.

The growth phase of rice is distinguished by the number of leaves and varies between short and
long duration rice. The length of the vegetative and reproductive period varies depending on rice
varieties; however, the ripening stage is equal among rice varieties, about 30 days. In principle,
the order of rice leaves is positioned as the first, second, and third leaf, and so on in the order
they emerge. The physiological growth stage is determined when rice have fully developed their

leaves on the main culm.

2.3 Rice farming system in Thailand

In Southeast Asia, most rice cultivation occurs in lowland rice systems found in both humid and
moist sub-humid agro-ecological zones, where farmers are typically small holders. Rice cultivation
accounts for 71 million ha, and approximately 45% of irrigated areas are found in Indonesia,
Vietnam, the Philippines, and Thailand. In Thailand, the lowland rice area, irrigated and non-
irrigated area, is 2,075 ha and 6,792 ha, respectively (Redfern, Azzu, & Binamira, 2012). This
section discusses the rice farming systems in Thailand in terms of the timing of

planting/transplanting, weeding, cropping patterns, and rice farm business.
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231 Timing of planting and transplanting

The rice growing season is defined as being either wet or dry, with more rice grown during the
wet season. Planting dates in wet season are usually based on the start of monsoon season,
especially in transplanted non-irrigated rice areas. In tropical and sub-tropical climatic zones, the
day length for photoperiod-insensitive rice varieties is suitable all year, allowing farmers to plant
rice in all periods in irrigated areas. By definition, rice cropping in Thailand is divided into rainy
season, which occurs between May and October in most areas, except the southern part of
Thailand, where rice grows between June and February. Dry season occurs between November to

April in most areas, except the southern part of Thailand (OAE, 2014b).

The growing period of rice in the wet season begins when monsoons hit, at which time farmers
prepare their paddies for planting by ploughing the soil and releasing the standing water. The
traditional rice cropping pattern in Thailand involves farmers soaking and incubating the rice seed
in water and then seeding the rice directly into the fields, defined as wet or dry seeding. In wet
seeding, the most common method, rice seeds are sown into flooded fields, whilst dry seeding

involves sowing rice seeds into dry bare soil and waiting for rainfall to germinate the rice.

2.3.2 Rice cropping patterns

As mentioned above, the methods of rice planting in Thailand depend on several factors. The rice
cropping pattern influences the timing of the sowing and harvesting periods, and the land
preparation varies according to the rice cropping pattern. The latter is classified into three main

types — transplanting-flooded rice, dry direct seeding, and wet direct seeding.

2.3.2.1 Transplanting-flooded rice

Transplanting flooded rice is the method used when young rice sprouts from the nursery are
transplanted into paddy fields in a row pattern. Transplanting is either carried out manually (using
a random or straight-row method) or by machine, with the former being labour-intensive whilst the
latter increases the farmers’ costs. At present, the “system of rice intensification” (SRI, Upboff,
2008) has been adopted, which allows a farmer to plant rice seeds in a small pot and sow the rice
stems directly into the field, potentially increasing yield (Latif, Islam, Ali, & Saleque, 2005; Sinha &
Talati, 2007), reducing labour inputs (Sinha & Talati, 2007), and saving water usage. Rice yield is
dependent on farm management practices as when best management practices are
implemented. The best management practice experiment was conducted on irrigated and non-
irrigated lowland rice in Bangladesh between System of Rice Intensification (SRI) and Best

Management Practices (BMPs) by evaluating varied practices (e.g. seeding age, plant spacing,
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application of organic manure, seeding density, duration of planting, planting shape, and time of
planting). The result proved no useful impact on yield with SRI, because there were individual

crop management techniques (Latif et al., 2009).

2.3.2.2 Dry direct seeding

Direct seeding is a method wherein dry seeds are sown directly into paddies, suitable in non-
irrigated drought-prone areas (Pandey, 2002). Typically, this cropping pattern requires rainfall
after seeding for germination. After seeding, the farmer ploughs the topsoil in their field and rice
seed is rather deep and uses moisture in the soil to penetrate the root system. Another technique
involves the farmer direct seeding after rainfall has flooded the paddy. Research comparing
parameters such as LA, yield, and water productivity between dry direct seeded rice (DDSR) and
traditional transplanted rice (TPR) found DDSR had a higher yield (13.18%) and reduced total
water input (8-12%) in comparison with TPR (Ishfaq et al., 2020). Conversely, other research
proved the rice yield of direct-seeded rice (DSR) was 12% lower than conventional transplanted
rice (TPR) and yield loss of DSR and TPR depended on management practices, soil type, and
climate conditions (Xu et al., 2019). In addition, there were differences in the panicle number

among dry direct-seeded and transplanted-flooded rice across rice varieties (Liu et al., 2014).

23.23 Wet direct seeding

Wet direct seeding involves seeding rice for germination in soil with 2-3 cm of standing water in
the fields. Farmers in irrigated areas utilise this technique to increase their chances of achieving
improved rice production; it also has the advantage of screening sub-optimal rice seeds and
eliminating weeds before planting. The paddy needs to be flooded at least two weeks prior to

planting to ensure the decay of organic soil matter.

233 Post-harvest rice processing in Thailand

After harvesting, farmers transport rice grains to rice mills. Rice mills in Thailand are divided into
three classes based on production capability: small (1-12 tonnes/24 hours), medium (30-60
tonnes/24 hours), and large (more than 60 tonnes/24 hours). Normally, medium and large rice
mills are located in essential rice growing areas in the central region, while most rice farmers in
the north and northeast regions bring their produce to small rice mills, with most of the grains
consumed within the household. In local areas, there are commission merchants who buy rice
grains directly from farmers for quality approval. Rice grain markets include farmers, merchants,
and the owners of rice mills, and farmer and rice mill owner join the negotiation for an acceptable

price. Finally, rice production transport to the rice markets for domestic and export markets. The
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Office of Agricultural Economics (OAE) analyses rice prices and publishes the information on a

daily, weekly, and monthly basis for crops.
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Figure 2.4 Rice price at farm gate- directed purchase from farmer (at 15% humidity) between

1997-2017.

Figure 2.4 illustrates the fluctuation of the farm gate price of rice grains at 15% humidity between
1997-2017. The minimum, maximum, and average farm gate price were 7,040 THB/ton (November),
7,421 THB/ton (August), and 7,201 THB/ton, respectively. This figure reveals two price peaks after
the adoption of the rice mortgage policy (March 2011) and a period of flooding (October 2011).
The rice mortgage policy guaranteed a rice price of 15,000 THB/ton, which is nearly double the
price in earlier years. Also, government policy influenced the rice price between 2008-2009 and
price range from 8,460 THB/ton (October 2009) to 13,259 THB/ton (April 2008). In addition,
Thailand was severely affected by flooding in Chao Phraya River delta in 2011 (Komori et al., 2012)
which severely impacted rice production (Son et al., 2013) and caused high prices the following
year. Prices ranged between 9,641 THB/ton in January and 10,584 THB/ton in September, which is

dependent on the export situation and rice stocks.
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Figure 2.5 Flowchart illustrating the rice supply chain in Thailand (Titapiwatanakun, 2012).

Figure 2.5 shows the intermediaries involved in the rice farming and supply system in Thailand
(Titapiwatanakun, 2012). At the local level, intermediaries are local buyers, local commission
agents, cooperatives, farmer groups, local assembling markets, and millers. After harvesting,
farmers sell their product directly to small rice mills or silos in the local area, although due to
transportation issues some sell to local merchants who then negotiate the price with mill owners.
Most local assemblers are shopkeepers who provide credit to farmers or production inputs (ADB,
2012). In the main rice cultivation areas, government agencies and business sectors establish rice
mills and warehouses for use by local farmers, local assemblers, and merchants. Central paddy
markets also provide labour, moisture gauges, drying lawns, warehouses, and loan systems. After
processing the rice packaging, the rice is distributed to wholesalers or middlemen who sell the

rice to modern trade markets or traditional markets. On a national scale, the rice remaining after
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consumption is exported to foreign markets, typically 44.61% of the total rice produced (OAE,
2018a). In 2018, annual rice production was 34.5 million tonnes (22.8 million tonnes; milled basis)

(FAO, 2018).

24 Factors affecting rice production

Rice production is influenced by both natural and agricultural practices. Farmers maximise crop
growth and grain yield using fertiliser and pesticide for increasing incomes on their agricultural
product. However, weather, soil characteristics, biotic conditions, and agricultural practices all
impact rice production. This section discusses the role of weather, geography, water availability,

disease and pests, rice variety, and government policy on annual rice production.

241 Weather and climate

Rainfall is essential for rice cultivation, and in areas with suboptimal rainfall, irrigation is
necessary to ensure sufficient water is available throughout the growing season. Dams and
irrigation canals are constructed by government to meet this requirement, and in Thailand 25.68%
of the rice cultivated area relies on irrigation (OAE, 2018c). In tropical regions such as Thailand,
rice areas are divided into two climatic types based on rainfall distribution: tropical rainy and
tropical wet-dry. The former has sufficient rainfall throughout the growing season and is not
considered drought-prone, while the latter receives adequate rainfall but the variability in rainfall
distribution is the main restriction of rice planting. Most rice grown in the tropics depends on the
monsoon rains and planting dates coincide with the onset of the rainy season. Variability in the
amount and distribution of rainfall is a major factor influencing yield. Excessive rainfall is the main
cause of flooding, which reduces yield and severely damages the crop when the rice develops milk

or dough grains (see Section 2.2.3).

Several studies have investigated the impact of rainfall on crop yield and agricultural production.
A study simulating hydrological conditions in the Lower Mekong Basin found evaporation-
transpiration increased in the baseline between 1985-2000 and the climate change scenario in
2010-2050 and 90% cumulative probability value raising the irrigation demand. Larger variation in
annual rainfall causes water shortages at the crucial time of rice planting, thus delaying the
transplanting date in non-irrigated rice areas, and longer dry spells during the wet season raise
drought risks in the same. These factors impact reducing rice yield and production in terms of
delaying rice transplanting and increasing drought risks, which depend on photoperiod lengths
(Yamauchi, 2014). This study highlighted how sensitive the planting dates are to the onset of

rainfall; they can be shifted earlier or delayed to avoid crop damage. Mainuddin et al. (2012)
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simulated the AquaCrop models by shifting planting dates plus or minus two weeks in Cambodia
and Vietnam; their results indicated that shifting the planting dates increased crop yield per unit of
actual evapotranspiration (WPer; kg m3), but also greatly increased WPer and had an impact on
spikelet sterility. Water scarcity can lead to delaying of anthesis, resulting in a reduction of the
number of spikelets per panicle by up to 60% and decreasing grain yield to 20% (Boonjung &
Fukai, 1996). These studies highlight the value of irrigation systems in areas with less stable
rainfall patterns, which typically result in higher rice productivity (Laux, Jackel, Tingem, &
Kunstmann, 2010; Rockstrom et al., 2010; Sharma et al., 2010). Bouman and Tuong (2001)
analysed a method for water-saving irrigation in India and the Philippines by suggesting a

reduction of pond water depth and alternating cropping patterns into wetting/drying.

Solar radiation is the radiant spectral energy directly emitted from the sun, which varies
according to geographic location, time, and local topographic and weather conditions. Solar
radiation in the visible wavelength (380-720 nm) is essential for crop photosynthesis; thus, the
intensity of solar radiation is closely related to crop growth. There are slightly differences in solar
radiation between tropical and temperate regions and the beginning of planting determines the
suitable crop ripening period (Wang et al., 2016). Chen, Baethgen, and Robertson (2013)
examined the impact of inter-annual variability and temperature/solar radiation/precipitation
trends of wheat and maize yield in the double cropping systems from 1961-2003 developed 129
climate scenarios, and simulated crop yield with Agricultural Production Systems Simulator
(APSIM). The result proved the reduction of simulated yield on both wheat and maize and led to
the reduction of potential yield for both crops. Islam and Morison (1992) examined the impact of
total incident solar radiation (irradiance) and temperature on irrigated rice grain yield in
Bangladesh by developing the linear relationship between grain yield and irradiance in the
reproductive and ripening stages. The photo thermal quotient, which was calculated from the
ratio between mean daily irradiance and mean temperature above base temperature, was related
to rice yield. The result illustrated the varied relationship due to rice variety influenced the
number of spikelets, grain weight, and percentage of sterile spikelets. Other important research
investigated the influences of low solar radiation (10 days before and 25 days after the flowering
stage); then, a reduction in amount and weight of spikelets occurred and led to a reduction in the
final yield. Because this stage requires high solar radiation for photo assimilation, the result
suggested rice variety improvement and shifting of planting date for the properly amount of solar

radiation in the reproductive and grain filling stages (Santos et al., 2017).

Temperature is a crucial factor for crop growth, affecting the degradation of pollen viability,
spikelet and filling grain quality, and decreasing grain yield (Yang et al., 2017). Analysis of the

impact of daytime and night-time temperatures on crop growth have found reductions in grain
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yield by 10% for each 1°Celsius increase in minimum temperature in the dry season, but little
impact was found when the maximum temperature increased (Laza, Peng, Akita, & Saka, 2004).
Night-time post-anthesis warming influenced rice productivity and grain quality. Using two rice
cultivars in east China, an increase in temperature by 3°Celsius led to greater night-time
respiration rates and decreased photosynthesis rates, resulting in a decrease in aboveground
biomass accumulation of 22% on average and reduced rates of seed setting and grain filling (Dong
et al., 2014). High maximum daytime temperatures affect rice yield via spikelet sterility and grain
quality (Rang et al., 2011), while night-time temperatures decrease grain yield by 10% for each

1°Celsius increase in minimum temperature due to physiological effects (Peng et al., 2004).

Droughts often occur with high temperatures and reduced precipitation, and drought
observations between 1980-2008 identified several regions worldwide as being a high agricultural
drought hazard for various crops (Geng et al., 2016). International agencies have programmes to
monitor and forecast trends in global temperature. The National Oceanic and Atmospheric
Administration (NOAA) analysed global temperatures in several regions, revealing Asia observed
its warmest year in 2015. The Asia-Pacific region has increasingly endured heat waves, tropical
cyclones, prolonged dry spells, intense rainfall, tornadoes, snow avalanches, thunderstorms, and
severe dust storms (IFAD, 2016). Figure 2.6 illustrates the change in temperature witnessed since
1880, wherein the positive values indicate an increase in temperature while negative values
indicate a lower temperature. Climate models have forecast temperature increases in the Asia-
Pacific area of approximately 0.5-2°Celsius by 2030 and 1-7°Celsius by 2070 (Preston, Suppiah,
Macadam, & Bathols, 2006). Studies investigating the potential impact of future temperature
increases on rice production have found temperature increase and reduced soil moisture impacts
driven by El Nifio—Southern Oscillation (ENSO). By 10% variance in anomalous rice production

linked soil moisture variability. The rice production proved strong negative correlated with El Nifio
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3.4 index and production in non-irrigated upland rice production was high responded than

irrigated rice production (Stuecker et al., 2018).

Global Mean Estimates based on Land and Ocean Data
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Figure 2.6 Global mean estimates based on land and ocean data between 1880-2020. Black line
is the global annual mean, the red line is the five-year running average, and the grey
boundary is the total (LSAT and SST) annual uncertainty at a 95% confidence interval
(NASA, 2019).

It is widely recognised that climate change has had negative consequences on water resources,

with seasonal decreases in global rainfall and runoff particularly apparent in south and southeast

Asia (Gistemp Team., 2020). Arnell, Lindberg, and Grimmond (1999) simulated numerous climate

change scenarios using Hadley Centre climate simulations and found an increase in annual runoff

in high latitudes, equatorial Africa and Asia, and southeast Asia, with a decrease in annual runoff

in mid-latitudes and sub-tropical regions. A number of studies (Loo et al., 2015; Singh & Qin, 2020)

have also found seasonal decreases in rainfall and runoff in south and southeast Asia have directly

affected water resources and freshwater availability. The impact of water viability on crops is
noticeable on different scales. Here, it has been revealed that there have been negative impacts
of climate change, especially yield reduction (e.g. wheat, rice, and maize) in the tropical and
temperature regions for every 2°Celsius increase. Whilst some areas are benefits from climate

change in the medium confidence (IPCC, 2014).

Climate change- induced changes in agricultural production can impact the price of commodities.
For example, the price of agricultural product is forecast to increase by approximately 32-37% with
rice yield losses of between 10-15% by 2050 (IFPRI, 2017). Regarding, reduction in crop yield,
farmers will inevitably have to adapt their practices for traditional rice varieties or begin breeding
new rice varieties tolerant to higher temperatures, use of irrigation systems, shifting planting

dates, utilising fertiliser, and applying management practices (Chun et al., 2016; Redfern, Azzu, &
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Binamira, 2012). The Asian Development Bank (ADB) predicted that without instigating climate
change policies in Indonesia and Thailand, these countries’ Gross Domestic Product (GDP) would
reduce by around 6.7% by 2010 (Weiss, 2009). Therefore, it is essential to mitigate and adapt

agricultural practices for changes in climate.

Lobell, Schlenker, and Costa-Roberts (2011) studied trends in climate and global crop production
on a national scale between 1980 — 2008 for four crops. The study demonstrated that the impact of
climate varied spatially for wheat and maize, whereby reduction on production 3.8% and 5.5% of
global net losses. With respect to rice, high latitude areas benefitted from global warming,
whereas there were no significant impacts found on rice productivity in Asia. Ye et al. (2019)
investigated the phenological date of median length of nursery, vegetative, and reproductive
stages with changing date to -1.9%, 2.7 and 0 day/decade. Ye et al. (2015) evaluated the effects of
climate change on rice areas, cropping systems, and crop water requirements by exploring the
ratio of Potential Growing Season Length (PGSL) and ideal growing season length (IGSL). This
study indicated that both the growing season length and paddy water consumption would increase
with rising temperatures. Other studies have found that differences in the maximum and minimum
temperature can reduce rice growth in different cropping system. The night-time warming was
shortening in the pre-flowering and prolonged in the post-flowering. The increase of temperature
was increment grain yield 16.2%, 12.7%, and 12% in the late rice in the rice-rice cropping system,
wheat in the rice-wheat cropping system, and rice in single rice cropping system; then, there were
decreasing on grain yield 4.5% and 6.5% in the early rice in the rice-rice cropping system and rice
in rice-wheat cropping system (Chen et al., 2017). Fang et al. (2015) proved the increase in global
temperature increases aboveground biomass, grain yield, plant height, and panicle number while

decreasing harvest index (Hl).

24.2 Geographic and soil characteristics

Local geographic conditions, such as altitude and soil characteristics, can play an important role in
crop production. Most rice is grown in tropical wetland areas, which results in higher yields than
other zones. Altitude also affects rice grain yield with the yield 1.7 times higher in the mid-altitude
than in high and low altitude, which few upland rice cultivated areas due to difficulties concerning
planting and management. The flowering duration fluctuates at different altitudes, with averages
in low altitude, mid-altitude, and high altitude areas of 12 days, 16 days, and 24 days, respectively
(Shrestha et al., 2012). Soil characteristics influence the capacity of rice and maize to absorb water
and nutrients and therefore impact crop development (Egamberdiyeva, 2007; Yang, Yang, Yang, &
Ouyang, 2004). Soil characteristics such as texture, density, organic matter, salinity, and acidity

also influence crop development, with enriched soils typically having 24% increased yields than

26



Chapter 2

those are sub-optimal (Oladele, Adeyemo, & Awodun, 2019). ‘Soil horizon’ refers to a layer of soil
parallel to the surface, and there are several horizons, such as O (organic), A (surface or topsoil), E
(eluviation), B (subsoil), C (sub-stratum), and R (bedrock). The A horizon is a suitable environment
for crop root growth due to water and nutrient absorption. The mineral or organic matter
transmits to other soil horizons throughout water and wind erosions. Rice has a shallow root

structure (below 20 cm), so its roots spread across the A and B horizons.

243 Diseases and pests

Disease- mainly caused by bacteria, viruses, or fungi- and pests- such as golden snails, birds, and
nematodes- serve to reduce yield. Pesticides and insecticides are used but are often only applied
once damage is visible, which may be too late. It is estimated that pests and disease reduce rice
yield by 37% annually (IRRI, 2017). To mitigate this, some farmers adopt hybrid rice more resistant
to pests, which reduces the cost for insecticides and rice variety can be more productive (Huang

et al., 2005).

The overuse of fertiliser, especially nitrogen, can lead to an increase in pests and disease and a
decrease in grain yield, while also reducing the biodiversity of the rice ecosystem (Peng et al.,
2009). The misuse of pesticide has inequitable ecological consequences; therefore, agricultural
practices and post-harvest management need to be implemented to address physical spoilage

and grain contamination.

24.4 Weeding

Weeds in paddy fields can reduce rice productivity, increase costs, and reduce grain quality by
competing with rice plants for nutrients, soil, and solar radiation. Typically, direct seeding has a
higher proportion of weeds than transplanting rice, as the latter involves greater input in land
preparation. There are different methods to control weeds, such as ploughing the topsoil and
abandoning land for seed germination, after which farmers plough the soil to bury the weeds and
harrow remaining weeds from the fields. This improves soil characteristics and levels the fields.
Weeds also affect soil moisture, and so farmers must release water into their fields approximately

seven days prior to planting to prevent weed development.

245 Rice variety

The variety of rice has an impact on its yield, characteristics, and resistance to damage from
stressful conditions. Some countries have developed new rice varieties to be more tolerant of

extreme conditions such as drought, cold, heat, salt, and flooding (Ahuja, de Vos, Bones, & Hall,
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2010). There are two main species of rice: Oryza Sativa (O.Sativa, Asian rice) and Oryza
Glaberimma (O. Glaberimma, African rice). O. Sativa is the most common, containing and more
than 100 rice varieties (Wei & Huang, 2019). Rice varieties are classified into two main categories:
sensitive and non-sensitive. The difference between these categories comes down to genotypic
variation and influences on length of panicle emergence and panicle initiation (Collinson, Ellis,
Summerfield, & Roberts, 1992). Sensitive rice varieties have nearby flowering dates despite
differences in planting dates, and as their photoperiod is shorter, almost all are planted in the wet
season. Sensitive rice varieties flower when the daytime is shorter than 12 hours, with less
sensitive varieties having a photoperiod of 11 hours 40 minutes and more sensitive varieties
having a photoperiod of 11 hours 10-20 minutes. These sensitive rice varieties are planted once a
year and are the most common rice variety. Non-sensitive varieties can be planted in all conditions
where there is adequate water for planting. The main difference between photoperiod-sensitive
and photoperiod-insensitive rice is panicle emergence (Collinson, Ellis, Summerfield, & Roberts,

1992) depending on day length and temperature (Vergara & Chang, 1985)

2.4.6 Government policies, economic conditions and market factors

Government policy and economic conditions influence agricultural areas and, consequently, yield.
Government policy is influenced by agricultural production demand, both internal and external;
for example, low rice production can raise consumption demand, requiring the government to
implement policies to motivate farmers to increase their planting area or frequency of planting
(i.e. double or triple cropping). Such government policies include price incentives, tax reductions,

provision of seeds, technology, and expert knowledge to support farmers.

Thailand is continuously establishing agricultural policies to balance production and guarantee
good performance by farmers. The “farmer aid committee” has existed since 1965 to support
farmers (e.g. increasing rice yield, supporting rice prices, and agricultural credits); in 1966, the
Bank for Agriculture and Agricultural Cooperatives (BAAC) was established to provide farm
credits. Between 1974-83, the Thai government intervened in rice markets through the Marketing
Organization of Farmers (MOF) and indirectly through buffer stocks of the Public Warehouse
Organization (PWO). In 1985, a minimum farm price was introduced and provided rice millers with
low-interest rate loans to motivate buying paddies at minimal cost. In 1984, the Warehousing and
Pledging policy was implemented to provide high prices with low-interest rates for farmers. In
1986, premiums, export quotas, and export stocks were cancelled (Wiboonpongse &

Chaovanapoonphol, 2001).
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Recently, Thailand has adopted agricultural policies (Figure 2.7) which mainly impact rice
production, such as rice mortgage (regulation in 2008), agricultural zoning (regulation in 2009 -
2012), crop insurance (2016), and reduction of rice cultivated areas in the dry season (2017). Rice
mortgage policies have resulted in rice prices higher than the average (15,000 THB/ton),
motivating farmers to plant rice instead other crops and thus increasing the rice cultivated area.
In 2013, rice harvested area, production, and yield increased by 57.50 million rai (9.2 million ha),
23.43 million milled tonnes, 436 kilogram/rai (69.76 kilogram/ha) increased 1.6%, 3.53%, and
1.83%, respectively. Other significant policies include a new project that links farmers in
important rice areas to local markets, with the aim reducing cost (20%) and increasing rice

production (20%) (2018).

At present, government policies aim to reduce rice cultivated areas by promoting rezoning of
agricultural areas to encourage farmers to plant other suitable crops, aiming to reduce rice
cultivated area reduce by 6 million rai (0.96 million hectares) between 2017-36 by using several
Geographic Information System (GIS) layers (e.g. natural resources, soil characteristic, existing
crop areas, production, demand and supply). To reduce unsuitable rice area, government
motivated farmers changing to plant the other crops; then, government provides infrastructure,

subsidy, low rate of interest charged, and facilitates knowledge on agricultural and markets.
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Figure 2.7 Development of agricultural policies in Thailand between 1981-2015.

Figure 2.7 enumerates several agricultural policies from 1965-2017; the rice-pledging and

agricultural zonings have had a significant effect on rice cultivated area and production in
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Thailand. Rice-pledging is guaranteeing the high selling price; thus, there are increasing in rice

cultivated area. While the agricultural zoning controls farmer to plant rice in suitable area.

2.5 Agricultural data collection in Thailand

The Office of Agricultural Economics (OAE) is the government department responsible for
providing agricultural information, collecting information on rice, upland crops, and tree
perennials using stratified two-stage random sampling at a village level for selected crops. A first
step is a random village. The second step is a random household who plant specific crop by using
simple random sampling without replacement. Several techniques for obtaining agricultural
information, such as lists of cropping villages or areas, are used for defining the sampling frame.
The survey data collected include the cultivated agricultural area, harvested area, total
production, fertiliser application, amount of crop seeds usage, and plant and harvest date (OAE,
2014). Two approaches are used to collect agricultural information: using lists of villages, and crop

cutting experiments.

251 Using lists of villages

A survey based on lists of villages, referred to as a ‘list frame survey’, is developed using stratified
sampling of villages who plant particular crops obtained from production reports at sub-district
and district level. The list samples independently select crop commodities by listing of units (e.g.
farm, household, and population census). The time-surveyed for each crop is different throughout
the year. The advantage of the list frame survey is that it lists the interested farm/household and
is properly representative of the population (stratum). In addition, the list frame survey reduces
survey costs; thus, it is the most common method of obtaining agricultural information. However,
this method may lead to errors in the sample frame selection. The questionnaire should be testing
for reduction on ambiguous/unclear inquiry. Figure 2.8 illustrates the agricultural sampling
procedure applied to calculate the agricultural statistics. Farmers register their land area under
cultivation, and the central office sends a list of samples to the regional office listing all farmers
who plant particular crops. Further, the household sampling is adopting by random without
replacement. The surveyed data is summarised into cultivated agricultural areas, production, and
yield at the district level. To account for variations in population density, the survey areas are
grouped into small, middle, and large agricultural areas and villages are selected that are
representative of each group (‘first stratified random sampling’); from this the random household

stratification is applied.
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Figure 2.8 Two-stratified random sampling (OAE, 2014a).

2.5.2 Crop cutting experiment

Yield surveys are conducted using crop cutting experiment (CCE) (FAO, 1982; Fermont & Benson,
2011), a survey method to estimate approximate crop yield in specific areas using sampling plots
in fields. The CCE is widely used and conducting on field crops. The advantage of CCE is to derive
the average yield in the district or state level before the end of growing season; a limitation is
partial or complete crop damage sample unit by winds, animal, etc. There are several steps in the
CCE technique to determine yield: selection (village and field), identification of sample plot
location, measurement, harvesting from the sample plot, threshing crops, cleaning, and weighting
(Ahmad, Sahoo, Singh, & Biswas, 2021). The sample plot size is defined as 1 m x 1 m for rice and
soybean yield, while the sample size of cassava, sugarcane, and maize is bigger with sample plot size
as 3 m x 3 m. At each sample plot, the crop is harvested, and yield is measured by removing and
weighting all grains. The yield per unit area estimates is then extrapolated to estimate yields at
sub-district, district, and provincial levels based on the area of land under rice cultivation. This is
derived from interviews with farmers and spatial mapping using satellite observations (Section
2.6.2). Several researchers have applied the CCE technique to gain crop yield information and
estimate crop yield using satellite data (Bhutada, Kohirepatli, & Chavan, 2016; Ranjan & Parida,
2021).
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2.6 Remote sensing within rice crop mapping and rice yield estimation

2.6.1 Introduction to remote sensing

Remote sensing is a technique for gaining information on the Earth’s environment using
measurements of spectral reflected and emitted radiance and, in the context of terrestrial remote
sensing, has been widely applied in areas such as forestry, natural resources, agriculture, and
urban planning. The Sun is the main source of electromagnetic radiation but all materials above
absolute zero emit radiation which can be measured. The electromagnetic spectrum, part of
which is shown in Figure 2.9, ranges from very short, high intensity Gamma wavelengths through
to longer, low intensity radio wavelengths. Remote sensing instruments are either passive or
active, with the former measuring reflected or emitted radiation. Most passive remote sensing
instruments collect measurements in the visible, near-infrared (NIR), and longwave parts of the
spectrum, which include parts of the spectrum most sensitive to characterising vegetation
properties (Richards, 2013). The optical wavelengths occur between 0.4-2.5 um with the
reflectance profiles of a number of different land surface types shown in Figure 2.9. Remote
sensing exploits the differing optical properties of surface objects to differentiate them and

characterise their crop status.
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Figure 2.9 Spectral response of soil, vegetation, and water in the visible and infrared

wavelength range (Remote Sensing Applications Consultants Ltd (RSAC) (2021)).

Figure 2.9 depicts the reflectance profiles of three of Earth’s surface materials in visible and
infrared spectrum. Water has low reflectance (< 10%) in visible wavelengths, which varies according
to the concentrations of sediment, organic matter and water depth; while energy in the NIR is
absorbed, soil reflectance typically increases with wavelength, and water absorption features at 1.4

um, 1.9 um, and 2.7 um. Finally, vegetation reflectance in the visible spectrum is controlled by its
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composition of pigments such as chlorophyll, which absorb energy in the red and blue
wavelengths for use in photosynthesis (Liu & lersel, 2021). When vegetation senescence, the
pigment concentration reduces, and this results in greater red reflectance, turning the leaves
shades of orange and red. In the NIR (0.7 - 1.2 um), leaf structure and morphology influence the
transmission and reflectance properties of vegetation, whilst in shortwave infrared, vegetation
moisture content defines the magnitude of reflectance. The variation of reflectance at different
wavelengths enables the inference of the materials being measured and their properties, which in
the case of vegetation may relate to its health and vigour. The boundary between the red and NIR
wavelengths is referred to as the ‘red-edge’ and the position of the inflection points has been
found to be sensitive to chlorophyll concentration in the leaves (Curran, Dungan, Macler, &
Plummer, 1991; Li et al., 2015) and this has led to the development of sensors that contain

wavebands in this region, such as the Multispectral Instrument (MSI) on Sentinel-2.

2.6.2 Spectral vegetation indices

While individual spectral wavebands provide useful information for monitoring the environment,
combining two or more spectral wavebands can improve the available information. These are
referred to as spectral indices, which utilise waveband combinations to facilitate the
characterisation of surface types such as water bodies or geological features. Vegetation indices
(V1) are spectral transformations of remotely-sensed images using arithmetic operations among
pixel brightness, such as subtraction or division of brightness, for two or more spectral bands
(Schowengerdt, 2007; Xue & Su, 2017). The ratio of different spectral bands relates to the
influence of ‘noise’, such as view and illumination angles, whilst enhancing the detectability of the
feature of interest. A number of vegetation indices have been developed over time, including the
simple ratio (SR; Chen (1996)), normalised difference vegetation index (NDVI; Rouse, Haas, Schell,
& Deering (1974)), soil adjusted vegetation index (SAVI; Huete (1988)) and enhanced vegetation
index (EVI; Huete, Liu, Batchily, & Leeuwen (1997)). Two of the most commonly applied
vegetation indices are the NDVI and EVI. The NDVI, proposed by Rouse and Tucker (Rouse et al.,
1974; Tucker, 1979), utilises red and NIR wavebands and has been applied to estimate vegetation
cover (Ding, Zhao, Zheng, & Jiang, 2014; Jafari, Lewis, & Ostendorf, 2007; Zhu et al., 2008) and
land use changes (Chen et al., 2006; Shalaby & Tateishi, 2007), to assess the impact of droughts
(Peters et al., 2002; Singh et al., 2003; Yagci et al., 2011), and to estimate biomass (Bao et al.,
2019; van der Meer et al., 2000). The EVI was developed to exploit MODIS spectral bands, to
minimise the influence of vegetation canopy background variations, and to maintain sensitivity

over dense vegetation canopies (Huete et al., 2002).
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Currently, there is a wide range of vegetation indices that utilise combinations of different
spectral bands to enhance specific characteristics of vegetation. As noted previously, Vls is often
used to estimate vegetation biophysical variables using empirical models. Nguy-Robertson et al.
(2014) assessed the potential of estimating LAl using ten vegetation indices, including the simple
ratio, green NDVI (GNDVI), red edge NDVI, red edge chlorophyll index (CLred edge), and MERIS
Terrestrial Chlorophyll Index (MTCI). The results revealed a strong relationship between
vegetation indices and green LAl over four crop canopies (potato, wheat, soybean, and maize)
with R? > 0.8. However, the drawback of some VIs tends to saturated at high LAls by using the
Scattering of Arbitrarily Inclined Leaves (SAIL) model. Baret and Guyot ( 1991) investigated the
sensitivity of different spectral indices to vegetation canopy characteristics and found, for
example, the soil-adjusted vegetation index (SAVI) and transformed soil-adjusted vegetation index
(TSAVI) were less effected by soil background reflectance and thereby offered benefits in low

vegetation cover environments compared to other indices.

One of the main applications of vegetation indices is monitoring crop phenology (Figure 2.10),
which is associated with time detection of biological events of plant growth by exploiting the
frequency (e.g. daily, weekly) of satellite overpasses (Weng, 2011). These measurements provide
information on the start, peak, end, and length of the growing season, which can be used to, for
example, identify changes in planting patterns (Gim et al., 2020). Vegetation index measurements
during the growing season have been used to classify crops by exploiting their different seasonal
cycles (Gumma, Nelson, & Yamano, 2019) and to identify areas under different cropping

intensities (Kotsuki & Tanaka, 2015; Li et al., 2014; Pan et al., 2021; Yan et al., 2019).
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The dynamics of rice growth have three main periods: 1) flooding and transplanting period, 2)
growing including the vegetative, reproductive, and ripening stages, and 3) fallow after
harvesting. Despite its low spatial resolution (250-500 m), the daily temporal resolution of MODIS
has seen it widely applied to monitoring the phenological cycle using vegetation indices in order
to detect areas under rice cultivation by detecting the different growth stages (Son et al., 2013;
Son et al., 2012; Tingting & Chuang, 2010; Xiao et al., 2006). These researchers created a time-
series of MODIS data vital to processing the noise filtering. Then, there were adopt Empirical
Mode Decomposition (EMD) and developed the vegetation indices (e.g. NDVI, EVI, LSWI, and
NDSI) to monitor rice crop and classify land use/land cover. The Artificial Neural Networks (ANNSs)
technique, which is nonlinear mapping structure based on the human brain (Lek, 2008), was
applied for land use/land cover classification. There were temporal characteristics of rice cropping
pattern through year. The phenology-based classification approach based on MODIS data was
compared with ground reference data and national census data, which allowed researchers to

assess the accuracy via overall accuracy, Kappa coefficient, or relative error.

Medium spatial resolution optical imagery (Landsat 7, Landsat 8, SPOT, and HJ 1A/B) is also used
to study crop phenology, which has the advantage of more reliably mapping individual fields but is
constrained by fewer temporal observations (Dao & Liou, 2015). Using an NDVI time-series,
reconstructed using a Fast Fourier Transformation (FFT), Zhao et al. (2016) developed a
classification to map the key transitions of rice cultivation areas: 1) double-season early stage rice
cultivation where paddy fields were inundated with water; 2) a single-season middle rice-
transplanting stage; and 3) double-season late rice wherein the field still contains standing water
but some fields show existence other aquatic plant. The study then compared relative error in
different cities located in the Dongting Lake basin in Hunan and Yanjiang and found the relative
error in three growth phases in Hunan were -10.99%, 1.46%, and -5.87%, respectively, whilst in
Yanjiang these errors were 12.1%, 16.7%, and 0.8%, respectively. The transplanting and heading is
preferable for time-series analysis. Similar research has been carried out by Zhang et al. (2015),
who developed an algorithm that utilised pixel and phenological information to classify rice areas
into three phases: 1) flooding and rice transplanting; 2) rapid plant growth and canopy closure
after transplanting; and 3) fallow after harvesting. An area of 39,239 km? in northeast China was
mapped as being under rice cultivation with an overall accuracy of 97%, producer accuracy 92%,

and user accuracy 96%, with omission and commission of errors of 8% and 4%, respectively.

In addition to mapping the location of areas under rice cultivation, remote sensing phenological
data also enable mapping of the intensity of farming in terms of single, double, or triple cropping.
A study investigated the relationship between phenology-based classification and remotely-

sensed data by developing time-series of EVI from MODIS data during 2001-2012. The Empirical
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Mode Decomposition (EMD) was then related with EVI in the paddy fields to determine the
temporal characteristics of the rice. The rice cultivated areas in single-cropped rainfed rice,
double-cropped irrigated rice, and double-cropped rainfed rice decreased -5%, -19.2%, and -
0.74%, respectively (Son et al., 2013). Minh et al. (2019) studied the rice cropping system in the
An Giang province of the Vietnamese Mekong Delta (VMD) from March 2017 to March 2018
based on dual-polarisation Sentinel-1 and considered backscatter coefficients. The VH backscatter
coefficients were associated with all growth phases, especially the reproductive phase, because
there was less influence from soil moisture and water in paddies. The Support Vector Machine

(SVM) classified the rice cultivated area with 80.7% overall accuracy and 0.78 Kappa coefficient.

2.6.3 Estimation of vegetation biophysical variables

Plants intercept direct and diffuse sunlight, with the upper leaves receiving higher amounts of
radiation compared to lower leaves, which influences the morphology of leaves of different crop
species, particularly leaf area and colour (Burgess et al., 2017; Chang et al., 2019). Canopy
biophysical variables relevant to vegetation characteristics include vegetation fraction (F,), leaf
area index (LAl), fraction of absorbed photosynthetically active radiation (fAPAR), chlorophyll
content, and water content. The spectral profile of healthy green vegetation is influenced by the
level of pigment concentration (visible), cell structure (NIR) and moisture content (SWIR), and
changes to plant health can be identified by changes in the reflectance characteristics in these
spectral regions. Such measurements also enable estimates of vegetation biophysical variables to
be made, which in turn can be used in forecasting yield. The vegetation fraction (Fy) defines
ground surface covered with vegetation and considers the distribution and properties in a
horizontal perspective of crop canopy, and is therefore useful for evapotranspiration (Et), rainfall
interception, and energy transfer assessment (Olioso et al., 2019). The leaf area index (LAI) or green
leaf area index (GLAI) are defined as the one-sided green leaf area per unit of ground surface
(Chen & Black, 1992). In principle, the LAl is an excellent indicator of crop development and is
widely used as an input parameter in crop growth models (Saseendran et al., 1998; Setiyono et
al., 2018; Raoufi et al., 2018; Tang et al., 2009). LAl is one of the crop biophysical variables
routinely retrieved using remote sensing observations, with operational products produced by
using coarse MODIS (Knyazikhin et al., 1999; Yan et al., 2016) and Sentinel-3/PROBA data (Fuster
et al., 2020). Higher spatial resolution LAl retrievals can also be derived using Sentinel-1 and
Sentinel-2 data. Campos-Taberner et al. (2017) derived LAl estimates over rice canopies in Italy,
Spain, and Greece using Sentinel-2A and Sentinel-1A; SAR data from Sentinel-1A were used to map
rice cultivated areas due to the strong separability of backscatter in water inundated paddy fields,

while reflectance observations from Landsat and Sentinel-2 were used to invert the PROSAIL

36



Chapter 2

(Baret, Jacquemoud, Guyot, & Leprieur, 1992) model, which is a combination of the PROSPECT
and SAIL models for shifting red-edge region analysis. When compared to in-situ ground LAl
measurements, the LAl retrievals had an overall RMSE 0.69 m? m?, with the time-series of LAI

reaching a maximum of 5.3 m? m2using Sentinel-2 data and 4.3 m? m2using Landsat data.

The boundary between red and NIR wavelengths, referred to as the ‘red-edge’ (0.7-0.74 um),
changes position as the chlorophyll content of the leaves changes due to the influence of
chlorophyll absorption in red wavelengths. The chlorophyll content at leaf and canopy level is an
indicator of the health of plant communities, which can change in response to stress imposed by
climate extremes or disease. The launch of the Medium Resolution Imaging Spectrometer
(MERIS), and more recently the MSI on Sentinel-2, provided instruments with wavebands located
in the red-edge, which have been exploited to derive chlorophyll estimates using Vs such as the
MERIS Terrestrial Chlorophyll Index (MTCI; Dash & Curran (2004)). Croft, Chen, and Zhang (2014)
investigated chlorophyll content on needle leaf and broadleaf in Ontario, Canada in 2004 by
adopting 47 vegetation indices by using MERIS. High correlation was found between chlorophyll
content and the Double Difference (DD)-index (R? = 0.78 and RMSE = 3.56 pug cm™), although
poorer relationships were found in needle leaf canopies (Dreg R* = 0.71 and RMSE = 2.32 pug cm™).
Numerous studies have utilised spectral vegetation indices to identify stressed crops by detecting
the shift of the red-edge toward shorter wavelengths, referred to as the “blue shift”. This study
then simulated the PROSPECT model with canopy reflectance and MNDVI8 (Modified NDVI)
revealed a strong relationship between dynamics of chlorophyll and leaf structure. The vegetation
indices were stable when LAl > 4 m* m™ The spectral regions, especially red and near-infrared,
estimated chlorophyll content; high chlorophyll content reflected red saturation. The estimation
chlorophyll contents conducted during growing season of 2001, 2002, and 2003 at University of
Nebraska-Lincoln research facility in maize and soybean and the result proved chlorophyll content
((Rmr/Rred €dge)-1) with RMSE less than 61 mg m?) (Gitelson et al., 2005). Xu et al. (2011)
investigated five vegetation indices (e.g. Normalised Difference Vegetation Index (NDVI), Modified
Simple Ratio Index (MSR), Modified Chlorophyll Absorption Ratio Index (MCARI), Transformed
Chlorophyll Absorption Ratio Index (TCARI), and Optimized Soil-Adjusted Vegetation Index
(OSAVI)) on rice in Qianjin and Youyi farm, Heilongjiang Nongken, China in 2009. All five were
closely related with chlorophyll content: the study then estimated with Weight Optimization

Combination (WOC) method and there was improved performance in OSAVI and MSR.

The fraction of Photosynthetically Active Radiation Absorbed (fAPAR) is related to primary
productivity as a function of the light-use efficiency (LUE) coefficient, which defines the amount of
carbon fixed per unit radiation intercepted (Landsberg et al., 1997). Approximately 50% of

incident photosynthetically active radiation (PAR) is absorbed for photosynthesis. Ehammer,
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Fritsch, Conrad, Lamers, and Dech (2010) estimated the fraction of photosynthetic active
radiation (fPAR) and LAI for cotton and rice canopies in Amu Darya Delta, Uzbekistan using
RapidEye imagery, findings that increased plant height coincided with increased fPAR and LAl,
whilst on the field scale, strong correlations (R? = 0.95 and R? = 0.92) were found using a linear
regression between VIs and fPAR and LA, respectively. Similar results were found by Gitelson,
Vina, Ciganda, Rundquist, and Arkebauer (2005) when assessing the relationship between NDVI
and fAPAR on maize and soybean by using MODIS and MERIS.

Biomass is an essential variable to estimate crop production in terms of wet and dry biomass.
Several studies have investigated the relationship between biomass, LAl, and production using
linear and non-linear regression to describe the relationship between two or more variables.
Marshall and Thenkabail (2015) estimated above-water biomass (AWB) using multiple regressions
between non-remotely sensed variables (e.g. aboveground biomass, visible canopy, background
RGB light intensity, height, and above-below canopy irradiance) and remotely-sensed variables
and in-situ measurements. The hyperspectral narrowband (HNBs), between 350-2,500 nm, were
combined (height and HNBs in the NIR region, height, Fapar, and HNBs in NIR region, height and
HNBs in visible and NIR region, and Fraction of Vegetation Cover (FVC) in the visible). The results
indicated that the correlation coefficient (R?) of rice, maize, cotton, and alfalfa yield were 0.84,
0.59, 0.91, and 0.86, respectively. Compared with using HNBs alone, there was improved the
aboveground wet biomass variance of rice, maize, cotton, and alfalfa: 12%, 29%, 14%, and 6%,

respectively.

2.6.4 Crop yield estimation using optical data

There are a range of approaches that can be utilised to relate the crop canopy with remotely-
sensed data. A commonly applied approach to estimate crop yield is through the development of
regression models between remotely-sensed metrics and in-situ measurements. Often these have
involved relating vegetation index values to vegetation biophysical variables. Bolton and Fried|
(2013) developed maize and soybean yield models based on linear regressions between three Vls
(NDVI, two-band Enhanced Vegetation Index (EVI2), and NDWI) and yield, using a time-series of
MODIS data. The results revealed the EVI2 predicted yield for maize in non-semi-arid countries
with R? = 0.67 (cross-validated calculating 2004-2006 versus 2007-2009, R? = 0.59) whilst the
NDWI had better agreement in semi-arid countries (R? = 0.69, cross-validated calculating, R? =
0.62). The relationship between the NDVI and EVI2 and soybean yield was also good and the same
as cross-validated (R?= 0.69 and 0.7). The phenological measurements using vegetation indices
have also proved their utility in estimating crop yield. Zheng et al. (2016) derived the red-edge

chlorophyll index (Clred edge) and NDVI in the National Engineering and Technology Centre for
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Information Agriculture in 2013 from two different handheld spectrometer measurements
throughout the growing season to characterise the phenology of a rice canopy. These data
detected the main phenological in the tillering, middle heading, and maturity, at which point the
temporal of indices and phonological date was adopted. The performance of Clred edge With RMSE
2.3-4.6 days proved excellent in indica rice than japonica rice cultivar for middle booting date and

dough grain date estimation; thus, the result assumed rice cultivars influenced their relation.

Dash and Curran (2007) estimated crop yield in South Dakota, U.S. in 2003 by using a time-series
of two spectral vegetation indices: the MERIS Global Vegetation Index (MGVI) and MTCI. Key
metrics extracted from the VI time-series are the maximum VI value and the area under curve: the
relationship correlation between yield and area under the curve to peak VI value were 0.61 and
0.69 for the MGVI and MTCI, respectively. The correlation between yield and area under the
whole VI time-series was stronger, at 0.83 and 0.85 for the MGVI and MTCI, respectively.
Mechanistic models simulate the time-series of crop state variables (e.g. LAl, dimension and
biomass of various organs, and crop development), energy, carbon, water, and nutrient fluxes on
crop, soil, and atmosphere. One of the key parameters used in these models is LAI, which is
influenced for the absorption of solar radiation, evapotranspiration, and carbon assimilation. In
terms of remote sensing, the spectral bands are useful for analysis crop canopy structure and
photosynthesis activity, thermal infrared on water status, and microwave on water contents, soil
moisture, and canopy structure (Moulin, Bondeau, & Delecolle, 1998). Crop growth models (e.g.
ORYZA2000, DSSAT, EPIC, and WOFOST model) (Jin et al., 2018; Kasampalis et al., 2018; Launay &
Guerif, 2005) and volume scattering model (Wang et al., 2009; Zhang, Yang, Liu, & Wang, 2016)
are widely used to simulate daily crop growth in terms of crop photosynthesis, respiration,
transpiration, and morphogenesis growth. Crop growth models, parameterised using remotely-
sensed LAl estimates, have been applied to estimate yield for winter wheat using the WOFOST
model (Huang et al., 2015) and maize using the Agricultural Production Systems SIMulator
(APSIM; Machwitz et al. (2014)) with good results. Similar methods have also been applied to
estimate rice yield in Terai districts of Nepal between 2016-2018 using the multi-temporal of
Sentinel-2 data and 3D Convolutionmal Neural Network (CNN) under several conditions (e.g. using
satellite data, combining with climate or soil data, or combining satellite with climate and soil data)
in four experiments and the CNN-3D is better results than CNN-2D (Fernandez-Beltran et al., 2021).
The remote sensed data are develop vegetation index. Nuarsa, Nishio, and Hongo (2011) study the
NDVI development based on Landsat Enhanced Thematic Mapper Plus (ETM+) image with field
observation data by using the exponential equation on model development based on NDVI. The
result compared with reference data in the linear relationship and proved strong agreement

between NDVI and reference data. Jing-feng et al. (2002) applied the crop simulation model to
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describe the relationship between physiological processes and environmental growing conditions.
The Rice-SRS based on ORYZA model was developed and combined with 3 sources of NDVI - NOAA
AVHRR (LAC) NDVI, NOAA AVHRR (GAC) NDVI, and radiometric measurement NDVI (measured in
the tillering, booting, heading, and milk stages). The result proved a reduction in estimating error by
1.03%, 0.79%, and -0.79% for early, single, and late rice season. The NOAA AVHRR (GAC) NDVI was

an excellent input, with an average error of -7.43%.

2.6.5 Application of active remote sensing for vegetation monitoring and crop yield

estimation

Active remote sensing involves transmitting a pulse of energy from an instrument and measuring
the return signal, often focused on NIR or radio wavelength, termed LiDAR and radar respectively.
Radar sensors measure the strength of the signal scattered back from the surface, which is
influenced by the surface structure (e.g. canopy geometry and topography) and surface moisture
content (Martinez-Agirre, Alvarez-Mozos, & Lievens, 2017; Martinez-Agirre & Alvarez-Mozos,
2017) and the angle by which the surface is viewed, also influence the backscatter signal. The
advantages of microwave sensors include their longer wavelengths, which can penetrate cloud
cover and light rain, thereby enabling imagery to be acquired in all weather conditions and at
night. This attribute has led to radar sensors being widely applied in tropical environments.
Volume scattering from crop canopies is comparatively low, with the backscatter coefficient largely
influenced by the surface underneath the canopy (Choudhury & Chakraborty, 2006; Liu et al.,
2019; Phan, 2018). Moisture content influences electrical properties of the surface, and this called
“complex permittivity”. The scattering mechanism combines four reflections: specular, diffuse,
corner reflector, and volume scatter. The specular reflection occurs on smooth and flat surfaces,
while diffuse reflection occurs over rough surfaces which scatter the signal in all directions. These
scattering effects reflect the different signals that occur during growing season, since they are
influenced by the rice canopy structure composed of stem, stalk, and grain (Inoue et al., 2014;
Yuzugullu et al., 2016). The polarisation of a radar sensor is configured to transmit either
horizontal (H) or vertical (V) signals and receive these data either horizontal or vertical
polarisation. In principle, the polarimetric radar measures scattering of transmitting and receiving
polarisation combinations, which include is HH, VV, HV, and VH combinations. These
combinations of different polarisations influence the scattering coefficient and the ratio between

scattered and transmitted fields in each polarisation.

The scattering of microwave wavelengths from crop canopies is influenced by three components:
1) direct backscatter from an object; 2) multiple volume scattering from canopy; and 3) double-

bounce effects, when the edge of a reflection on rice to water surface and off-rice to water
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surface (Pichierri, Hajnsek, Zwieback, & Rabus, 2018; Zhao & Cui, 2013). The maximum
backscatter depends on the dielectric constant of materials, distribution size and orientation of
scattering elements in the canopy, and surface roughness (Marghany, 2020). Rice is a semi-
aquatic plant whose temporal dynamics of backscatter will differ from other crops, and this has
often been exploited by using radar data to map areas under rice production (Boschetti et al.,
2014). In the seeding stage, paddy fields are highly reflected with water surface and quasi-
vertical/quasi-horizontal structures in tillers and leaves, and the backscatter demonstrates an
incoherent sum of interactions. As the rice develops in height and density, the backscatter
coefficients increase due to greater volume scattering within the canopy and increased multiple
scattering between stems (include tillers) until a reduction in moisture content during the

ripening phase.

Several studies have been successful in using SAR data to map areas under rice cultivation. Hoang,
Bernier, Duchesne, and Tran (2013) classified rice fields in Vietnam between 2009-2010 by using
RADARSAT-2 C-band data with a Support Vector Machine (SVM) approach that exploited the
narrow dynamic range of radar backscatter found over residential and forested areas, which
contrasted with the large dynamic range found over paddy fields. Corresponding classification
accuracy of 71% and 80% was achieved for HH and quad-polarised imagery, respectively. Clauss et
al. (2018), using Sentinel-1 Interferometric Wide (IW) mode and Ground Range Detected (GRD) in
VV and VH polarisation, mapped areas of rice cultivation using super-pixel segmentation and
phenology-based decision tree and a random forest model. High correlation was found between
area measurements at the district level (R?= 0.93) for winter-spring rice and for autumn-winter
rice (R?= 0.87). Numerous studies that utilise SAR imagery with different polarisations illustrate
the importance of canopy structure on the success of the rice classification. Bouvet, Le Toan, and
Dao (2014) investigated the influence of polarisation for mapping rice cultivation and estimating
biophysical variables in Vietnam. The HH and VV polarisation increased at the beginning of the
season and decreased in the tillering stage, whereas the VV backscatter decreased due to the
vertical structure of the rice stem and increased when the panicle emerged approximately 60 days
after sowing. Changes in the backscatter due to changes in the structure of the rice canopy
enabled mapping the sowing date based on the ratio of HH/VV backscatter. The ratio of polarised
signals was also exploited by Zheng et al. (2016b) who classified the winter-spring and summer-
autumn cropping season in Vietnam using the ratio of VH/VV polarisation. This study developed a
normalised difference between the sowing dates (SD) and heading dates (HD) index (NDSH)
(NDSH = HD-SD/HD+SD) for use in classification and achieved an overall accuracy and Kappa

coefficient of 86.2% and 0.72, respectively.
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There are three types of radar signal: gamma nought, beta nought, and sigma nought. Sigma
nought (c°) refers to the scattering coefficient and illustrates the amount of average
backscattered power compared to power of incident field. Several factors influence the
magnitude of c®including the physical and electrical properties of target, wavelength,
polarisation, and incidence angles (Lusch, 1999). The strong influence of canopy structure on
radar signals has led to radar being used to estimate several structural biophysical vegetation
variables. Many studies have focused on forest canopies, although several have applied radar
data from crop canopies to estimate crop biophysical variables, such as height, water content, LAI,
and biomass (Inoue et al., 2014; Inoue & Sakaiya, 2013; Kim et al., 2012; Li et al., 2016; Zhang et
al., 2009; Zhang et al., 2014). One of the key biophysical variables is LAI, as this is a factor in many
crops growth models, and retrieving estimates of LAl is often carried out using empirical methods

or canopy scattering models, which simulate the radiative transfer.

Hosseini, McNairn, Merzouki, and Pacheco (2015) adopted multi-polarisation of different
frequency SAR sensors such as C-band (RADARSAT-2) and L-band (Uninhabited Aerial Vehicle
Synthetic Aperture Radar; UAVSAR) to estimate LAl of soybeans and corn in the Red River
Watershed of Winnipeg, Canada using radar canopy reflectance models. The correlation between
LAl and RADARSAT-2 over corn canopies was moderate at 0.40 (HH), 0.46 (VV), and 0.82 (HV),
respectively. Similar results were found when estimating LAl using RADARSAT-2 for soybean - 0.45
(HH), 0.47 (VV), and 0.80 (HV), respectively. Previous research has revealed that C-band
backscatter is significantly associated between LAl and leaf biomass and c%in all rice growth
stages (Inoue, Sakiya, & Wang, 2014a), whilst other studies have found better correlation
between LAl and c° for VV/HH polarisation when LAI < 3.5 m*> m (Chen, Lin, Huang, & Fang,
2009). Hirooka, Homma, Maki, and Sekiguchi (2015) examined backscatter coefficients of X-band
from COSMO-SkyMed and found a reasonable correlation (r = 0.58) between backscatter with LAl
(r=0.58).

Some rice biophysical variables (e.g. row spacing) remain stable throughout the growing season,
while others, such as water content, height, and leaf length, change considerably. To understand
their effect on radar backscatter, Shao et al. (2001) measured a number of rice variables (e.g. leaf
length and canopy height) throughout growing season. Rice height increased from 20 to 100 cm,
peaking during the heading stage, before decreasing by 5 cm prior to harvesting. The length of
leaves varied, with upper leaves increasing consistently with lower leaves gradually increasing and
reaching the maximum of ear differentiation stage. Vegetation moisture content was highest in
the seeding (80%) and ear differentiation (85%) stages before decreasing during the mature stage
(55%). These changes impacted the backscatter, which was 9 dB higher for late mature rice than

medium mature rice. RADARSAT backscatter coefficients were then used to estimate yield by using
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an empirical backscatter model. The total rice productions in late mature rice, medium-late
mature rice, early mature rice were 208,548 tonnes, 174,636 tonnes, and 17,978 tonnes,
respectively. This classification in average accuracy and overall accuracy were 90.1% and 91.49%,
respectively. Developing regression models between in-situ measurements and remote sensing
metrics is a widely applied approach to estimate yield. Nguyen, Phung, Huth, and Phung (2012)
analysed the correlation between backscatter coefficients (6°) of multi-date images with in-situ
yield by using multiple linear regression. Rice yield estimation requires a minimum of three rice
growth stages and at least two first stages, or two final stages, and band combinations between
images. The coefficient determination and standard error estimation were 0.795, 0.781 and 0.18,
0.16 ton/ha, respectively. The rice yield estimates were 0.5-10 ton/ha which compared favourably
with in-situ measurements. Li et al. (2016) studied the temporal RADARSAT-2, which is C-band
frequency, covering critical growth stages in southwest China, and observed the rice biophysical
variables (e.g. LA, Fraction of Photosynthetically Active Radiation (FPAR), height, biomass, and
canopy water contents (WC)). The backscatter coefficients in HH, VV, VH and ratio between VV
and VH were then developed and related with rice biophysical variables. The VV and VH ratio was
significant when determining the Pearson correlation in each growth stage. The regression model
with exponential curve was applied to rice biophysical variables and found no significant
correlation with water content in their ratio 6%v/c%u. Guo et al. (2018) investigated the capability
of the compact-polarimetric (CP) SAR in the inversion of rice biophysical variables by adopting the
various models (e.g. Water Cloud Model (WCM), Modified Water Cloud Model (MWCM), and
Genetic Algorithm (GA)). The result found MWCM were highly correlated with rice height (R? =
0.92 and RMSE = 5.81 cm), volumetric water content of rice canopy (R? = 0.95 and RMSE = 0.31 kg
m3), m-ydecomposition with ear biomass (R? = 0.89 and RMSE = 0.17 kg m?), and LAl with RH

(right circular transmit and horizontal linear receive) (R? = 0.79 and RMSE = 0.33).

In addition to estimating yield using empirical models, a number of studies have integrated
backscatter data with crop models. Pazhanivelan et al. (2015) combined the multi-temporal of
SAR data with ORYZA2000 in India; SAR data were used to estimate the seasonal rice area, start of
season (SoS) and rice growth rate, whilst the ORYZA2000 model was parameterised with daily
weather data, soil properties, rice variety, water availability, and management practices. Model-
derived yield estimations compared well with those from CCE, with accuracy of 99%, 88%, and
86.7%, in Cuddalore, Sivaganga, and Thanjavur, respectively. A similar approach was taken by
Setiyono et al. (2017), who developed a rice yield interface for southeast Asia using Sentinel-1A
data and the ORYZA Crop Growth Simulation Model (CGSM). The LAI estimates used to
parameterise CGSM were derived using a water cloud vegetation model and the resulting yield

estimation was accurate to 81-93% when compared with the official yield. Using the same
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approach, Quicho et al. (2015) utilised of Sentinel-1 LAl and start of season (SoS) estimates to
parameterise the ORYZA crop growth model. The maximum LAl was 10-12 m? m%, which occurred
at the flowering stage for hybrid rice varieties, but which was lower (6-7 m? m) for typical rice
varieties. The accuracy in yield estimates in the Red River Delta was 89%, with RMSE of 630 kg/ha
whilst in Cambodia, the accuracy was 84% with RMSE of 560 kg/ha. Overall, yield estimation was
81-94% and RMSE was 340-1,110 kg/ha.

2.6.6 Integrating SAR and optical imagery for rice mapping and yield estimation

The previous sections have discussed the applications of either optical or radar backscatter data in
monitoring rice production. Many studies have integrated both optical and SAR imagery to
monitor rice production to reap the benefits provided by observations in different spectral
regions. Sentinel-1 and Landsat 8 data have been applied to maps in Poyang Lake Plain, China
using VH polarisation and NDVI measurements at three stages of the growing season (Tian, Wu,
Wang, & Niu, 2018). The adjusted multi-season rice planting area, adjusted middle rice planting
area, and adjusted late rice planting area were 1,630.84 (+ 58.21) km?, 556.21 (+24.7) km?,
3,138.37 (+77.62) km?, respectively. The overall accuracy was 98.10% and Kappa coefficient was
0.94. The unbiased error for early, middle, and early rice were 0.18, 0.07, and 0.35, respectively,
while standard error of the estimated area was 0.003, 0.001, and 0.004, respectively. The
advantage of using both SAR and optical data is increased satellite imagery for analysis, as there
was uncertainty of optical remotely-sensed data from clouds or cloud shadow, and led to the

insufficient cloud-free images, whilst the SAR data were less affected by cloud coverage.

A similar study was carried out by Yang et al. (2017), who integrated NDVI from the HJ-1A/B and
backscatter coefficients from RADARSAT-2 to classify eight phenological stages of rice growth.
The benefit of using data from both instruments is that the NDVI and backscatter measurements
behave differently at different stages of growth, which improves the ability to distinguish them.
For example, in the heading to flowering stage (canopy height 50-69 cm), the NDVI was very high
due to the green rice canopy and canopy density; the SAR signature oy was also high but the ow
was low due to the significant attenuation from the dense canopy. Therefore, the increased
information content provided by the measurements allowed greater differentiation of growth
stages. This is supported by the work of Gebhardt et al. (2012), who analysed the relationship
between TerraSAR-X quad-polarised (Quadpol) backscatter and RapidEye derived multispectral
vegetation indices (without ground truth data and setting these vegetation indices as reference)
and found weak agreement between the optical metrics and different polarisation combinations.
However, the modified chlorophyll absorption ration index (MCARI)/second modified triangular

vegetation index (MTVI2) and transformed chlorophyll absorption in reflectance index
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(TCARI)/optimized soil-adjusted vegetation index (OSAVI) proved correlation with VV, HV and VH
backscatter model (R? > 0.6) and HH/VV ratio model (R? = 0.5). This result concluded the canopy

architecture parameters potentially from SAR images.

2.7 Conclusion

Rice is particularly important in Southeast Asia, with the largest producing countries being China,
India, Indonesia, Bangladesh, Vietnam and Thailand (ASEAN Information Center, 2021). Thailand is
an agriculture-based country, and its main source of income is from agricultural exports; rice is
the major crop, and rice ecosystems are dominated by non-irrigated and irrigated lowland areas,
with a small proportion of rice in upland and deep-water areas. The rice season depends on the
monsoon rains; thus, the planting date coincides with the onset of the rainy season. The rice
growing season is classified into two seasons: wet (May-October) and dry (November-April).
Precise and timely rice production data is vital to the food security and economy of the country.
Rice agricultural areas and production data are derived from several methods, including remote
sensing, which provides an essential technology to monitor rice cultivated area and yield

estimation due to its scientific accuracy, speed, and large coverage capabilities.

This chapter presented an overview of the literature on how remote sensing contributes to the
rice yield estimation. Numerous studies have implemented for individual satellite sensors, while
others have integrated several together. However, the potential of optical and SAR sensors has
not been fully investigated in the relationship between rice biophysical characteristics and yield
estimation in Thailand. Further, a basic study on the regression model for yield forecasting is still
lacking. All sections from the literature review address the factors’ impact on rice productivity, in
particular weather factors; thus, it is important to investigate the relationship between weather
and rice variables. Further, the importance of remote sensing on rice yield estimation is vital for
investigation, as it can contribute to precise rice yield and the assessment of dynamics of rice
growth; however, the analyses of growth stages, satellite sensors, spectral vegetation index

(optical), and differences in orbital direction and polarisation (SAR) require further investigation.
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Chapter 3 Analysis of the impact of rainfall and

temperature on rice production in Thailand

As discussed in the literature review, climate change affects agriculture and food production
systems. To ensure global food security, it is essential to monitor the impact of climatic variables
(e.g. temperature, precipitation, relative humidity, and solar radiation) on crop production. In
addition, the global population is projected to reach 9.8 billion in 2050 (Roberts, 2011) and the
total agricultural food production needs to be significantly increased to ensure adequate food

supplies to meet the demands from the rapidly growing population.

Over the past 40 years, the global average temperature has increased by 0.2°Celsius per decade,
with the most enormous changes occurring in the Western Equatorial Pacific (WEP) than in the
Eastern Equatorial Pacific (EEP) (Hansen et al., 2006). Increasing temperatures have been found to
have a detrimental effect on crop development and production, with a decrease in productivity
between 11 and 14% for every 1°Celsius increase (Yuliawan & Handoko, 2016). Meanwhile,
precipitation influences the availability of adequate water supply for agricultural activities in many
parts of the world. Changes in global precipitation patterns in terms of precipitation intensity and
frequency have also impacted agricultural production worldwide. In particular, water availability
is a crucial requirement for planting rice. For example, in some areas relying on monsoon rainfall,
a delay in the monsoon onset (Naylor et al., 2007) can cause severe water shortage required
during the plantation. Especially some regions in Thailand have altered their planting dates to
accommodate changes in precipitation seasonality which shifted up to 54 days (Ding et al., 2020).
Over the past 40 years, the frequency of extreme precipitation events has increased (Myhre et al.,
2019), and these can have a negative impact on crop production through flooding (Banerjee,
2010; Khan et al., 2012) and soil erosion (Bauer & Quinton, 2019; Mullan et al., 2019). An example
is the flooding disaster in Thailand in 2011, which was caused by a strong summer Southeast Asia
monsoon, which resulted in 143% higher than average rainfall during the rainy season. These
flooding events affected 9,700,000 hectares of cropland in the lower Chao Phraya River delta and
caused approximately 30 million dollars of damage to rice crops (Gale & Saunders, 2013; Jular,
2017). Severe flooding is significant abiotic stress and can also encourage farmers to harvest
production earlier where possible to avoid complete damage, it adversely impacts crop structure
which can reduce yield by as much as 2.66-2.71% (Lang, Yang, Wang, & Zhu, 2012). This can
significantly impact whole grain (head rice) milling yield and eventually, a reduction in the

market’s price (Salassi et al., 2013).
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Extreme weather events frequently occur and seriously impact rice production (Dong et al., 2018;
Wou et al., 2020). As a result of the risks, there is increasing awareness for planning adaptation
measures to cope with these climatic events. Numerous studies have attempted to quantify the
appropriate adaptation strategies under different climate change scenarios, i.e. shifting earlier or
lately sowing/planting date, supplementary irrigation system, nutrients management, other
inputs (fertiliser, tillage methods, grain drying, and field operations), and adopting new breeding
rice cultivars. However, the success of these adaptation measures depends on farmers
experiences and knowledge of the impact at the local scale and their view on climate change

(Niles et al., 2015).

Limited research has been conducted to investigate the impact of climate change on crop
production in Thailand. This chapter seeks to fill that gap by investigating how climatic variables
such as rainfall and temperature impact rice production in Thailand. It further analyses the role of
irrigation as an adaptation strategy in controlling the relationship between rice production and
climatic variables. This chapter aims to investigate the variation in rice productivity over the past
four decades concerning climate factors (i.e. precipitation and temperature) and cultivation

methods (i.e. irrigated vs non-irrigated).

This chapter first provides a description of the climate and rice production in Thailand, followed
by a description of the climatic and rice production data, the pre-processing steps carried out, and
the methodology applied in assessing the relationship between weather (temperature and
precipitation) and rice production data. This study was conducted at a provincial level, of which

there are 77 in Thailand, using annual data from 1981-2015.

3.1 Background of the study area region

Thailand is located in the tropical region in Southeast Asia between latitude 5°37’ North and
20°27’ North and longitude 97°22’ East and 105°37’ East, covering an area of 500,000 square
kilometres (Table 3.1). Thailand has 77 provinces, which are the primary local government units, that
vary in size from <500 km? (Samut Songkhram) to >20,000 km? (Nakhon Ratchasima) and which are

then further divided into amphoe (sub-district).

According to the Thai Department of Provincial Administration (DOPA), Thailand is broadly divided
into four geographic regions (north, northeast, central, and south region), with different topographic
characteristics. The north region is mountainous, comprising natural forests, hill ridges, and alluvial
valleys and has 18 provinces. The northeast region consisting of 19 provinces is mainly arid, and
the Phu Phan ridge separates the region into two basins: the northern Sakhon Nakhon basin and

the southern Khorat basin. The central region is a low-level fertile valley located around the Chao
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Phraya River delta, containing 26 provinces. Finally, the south region comprises 14 provinces of
mountainous areas with thick forests. The south region is a peninsula along two seas: the west
side is the Andaman Sea, and the east side is the Thai Gulf; thus, the south region separates into

the south east coast and west east coast.

3.1.1 Climatic conditions in Thailand

Thailand has a tropical climate influenced by two monsoons, whose direction across Thailand is
shown in Figure 3.1, along with the passage of tropical cyclones, all of which influence
temperature and precipitation (Appendix A) across Thailand. The southwest monsoon (mid-May
to mid-October) and the northeast monsoon (mid-October to mid-February) have different origins
and wind directions. The southwest monsoon, which occurs between mid-May and mid-October,
usually originates over the Indian Ocean and brings cloudy conditions and rainfall to the mainland.
The northeast monsoon, which occurs from mid-October to mid-February, begins after the fading
influences of the southwest monsoon and brings cooler temperatures and generally causes low
rainfall. Therefore, the seasons are categorised into the summer, rainy, and winter seasons, and
the monsoon influences each. The summer season runs from mid-February to mid-May and is
influenced by the north-eastern and south-western monsoon. Typically, the weather is dry, with
cold air masses from China affecting northern Thailand. The rainy season, in which rainfall varies
between 680 and 1,400 mm, occurs between mid-May to mid-October and results from the
influence of the south-western monsoon. These phenomena cause widespread rains across
Thailand. Finally, winter spans from mid-October to mid-February. The north-eastern monsoon
passes Thailand around mid-October for 1-2 weeks and leads to cold air within the country or
storm rains in some areas especially in the lower central and eastern regions. The monsoon

direction and passage of tropical cyclones influence Thailand, as demonstrated in Figure 3.1.
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Figure 3.1
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Map showing the area Thailand (left) and the direction of the passage of the
monsoons (right) (TMD, 2015).

Most regions experience the highest temperatures in the summer season, although the highest

average minimum temperature occurs in the rainy season. Large differences in the amount of

rainfall are evident between the winter or summer season and the rainy season, which vary by up

to ~ a factor of 10. However, it is evident that most regions have similar amounts of seasonal

precipitation.

3.1.2

Rice cultivation system in Thailand

In Thailand, most rice cultivation occurs in lowland areas in the tropical zone with varying soil

characteristics, environment, and topography. For example, soils in the Central plain are

Tropaquepts and comprise ~ 50% acid sulphate soil, whereas, in the northeast Plateau, Paleaqults

and Plinthagults soils dominate the landscape (Piyapakorn, n.d.). Therefore, land preparation is an

important process to accommodate different soil types and typically varies for rice growing, such

as soil management, tillage practices, and land levelling. As a result, soil management practices

are one critical management practice and vary management in rice-cultivated areas to achieve

high crop productivity. For example, dry-seeded rice should be prepared wet ploughed at 30-50

days after emergence and land levelled in the non-irrigated area in the Eastern India (Siopongco,

Ingram, Pablico, & Moody, 1994). Another essential soil management practice is puddling by

destroying the topsoil structure in wetland rice (Sanchez, 2019). Another potential agricultural
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practice is direct-seeded rice (DSR) which involves sowing pre-germinated seed into the puddled
soil surface, water seeding and dry seeding because of their low inputs (Farooq et al., 2011;

Kakumanu et al., 2019).

In Thailand, rice cropping can be irrigated or non-irrigated depending on whether there is
sufficient rainfall for cultivation and whether the environment is suitable for the irrigation
infrastructure required for water storage and water delivery (e.g. main and lateral canals). The
majority (80%) of the cultivated rice area in Thailand is non-irrigated (Suwanmontri et al., 2020). It
relies on precipitation, which is generally supported by the construction of dykes or small ponds
to store water. Water availability is vital in the seeding stage of rice, where rice seeds are sowed
into a flooded paddy field or, if the area is experiencing low precipitation, growing in a nursery and
then transplanting the sprouts into paddies. Irrigated rice constitutes around 25% of the area and
is concentrated mainly around the Chao Phraya River delta (Figure 4.1); with sufficient
precipitation for planting rice, this region also has the potential for double or triple rice crops. One
of the benefits of using irrigation systems is that they reduce the sensitivity to planting date to the
arrival of monsoon onset and the respective length of growing season is also important in rice
production and yield (Uzzaman et al., 2015). The length of the growing season depends on
environmental constraints and is broadly categorised into three groups: short-duration (100-120
days), medium-duration (120-140 days), and long-duration (140-160 days). The most common
varieties grown in Thailand are short-duration and medium-duration, which facilitates double
cropping systems and broadly adapt in drought and flood-prone areas (Bera & Kelley, 1990),

which occur in 25% of the cultivated rice area.
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Figure 3.2 Rice productions across Thailand, showing areas that rely on precipitation (yellow) or

irrigation (green areas in blue are irrigated areas not under rice cultivation).

The figure 3.2 shows the cultivated rice area across Thailand and the different irrigation systems
(i.e. irrigated and non-irrigated areas) used. Irrigation stations, which focus on irrigation facilities
on a large scale (>100 million m® water storage volume) and medium scale (<100 million m? water
storage volume) and provide water resources, are distributed throughout Thailand. Nevertheless,
the majority (25%) of rice cultivated area does not use these irrigation methods. This is
particularly the case in north-eastern Thailand, where only 75% of the area under rice cultivation
does not use irrigation methods and is dependent on rainfall (OAE, 2018a). This region also has

lower levels of double or triple cropping systems (Suwanmontri, Kamoshita, & Fukai, 2021) and
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rice productivity is lower than that found elsewhere in Thailand (Figure 3.4). Also shown in Figure
3.2 is the spatial distribution of the 129 weather stations across Thailand, which provide the

precipitation and temperature data, used in the analysis in this chapter.

3.2 Methodology

3.2.1 Data

To understand the relationship between rice productivity with climate data at the provincial level,
the agricultural productivity, and climatic data for the period 1981-2015 have been acquired from

government agencies on the provincial level. These data are discussed in detail below.

3.2.1.1 Agricultural data

The agricultural data consisted of seasonal yield and production estimates at the provincial level
between 1981 and 2015 and was obtained from the Office of Agricultural Economics (OAE),
Ministry of Agriculture and Cooperatives, Thailand. The primary agricultural data collection
provides information on the seed’s rate usage, rice cultivated area, harvested area, production,
yield (i.e. the weight of grain per unit of land area using standard moisture content), percentage
of cultivated area (monthly), and the cultivated area stratified by irrigation system. The
agricultural data are based on statistical analysis wherein each agricultural area adopts a stratified
two-stage sampling approach to select sample fields for the yield survey (Crop Cutting
Experiments, CCE). The number of sample fields depends on the agricultural area at the amphoe
(sub-district) level. In this analysis, we utilise information on rice production and rice yield

between 1981 and 2015 at the provincial level, of which there are 77 in Thailand.

To achieve the pattern of rice productivity during the study period, the present study prepares the

historical data on agricultural data. It demonstrates the time-series pattern as in Figure 3.3.
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a) Annual time-series on rice production
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Figure 3.3  Annual time-series on rice productivity.

The annual time series is a summation of rice production and yield in Thailand from 1981 to 2015.
Figure 3.3 demonstrates the fluctuation of rice yield and production during 1981-2000; then, rice

productivity increasing trends until 2015. The changes in rice yield/production are associated with
improved rice variety, higher crop intensity, control of rice weeds, and changes in the rice farming

system from subsistence farming to commercial farming (Titapiwatanakun, 2012).

As an example, Figure 3.4 shows rice plantation area (a), yield (b), and production (c) across
Thailand in 2015, where the rice cultivated and harvested area comprised 8,913,576 ha and
8,414,975 ha, respectively, with 22,893,719 tonnes of rice produced, providing an average yield of
3.1 tonnes/ha. In the northeast region, provinces with the largest cultivated area include Ubon
Ratchathani (617,744 ha), Nakhon Ratchasima (617,744 ha), Roi Et (523,024 ha), and Surin
(786,611 ha). Farmers in this area typically plant photoperiod-sensitive rice varieties with less
input and low yield potential. The provinces with the highest rice yield per unit area are located in

the central region. The average yield was ~ 4.5-5 tonnes/ha, and most cultivated areas utilise
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irrigation for sufficient water. However, not all high-yield areas utilise irrigation, suggesting that
proper agricultural practices and the rice variety may also play an important role. However,
information on rice variety and agricultural practices are not collected by government agencies,

and therefore their influence cannot be accounted for in the production and yield statistics.
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Figure 3.4 Rice productivity for 2015. a) Rice planted area (ha), b) Rice yield (kg/rai), and c) Rice

production (tonnes).
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3.2.1.2 Weather data

Weather data at the provincial level covering the study period was obtained from the Thai
Meteorological Department (TMD), Ministry of Digital Economy and Society, Thailand. Weather
data were used to assess the role of climate on rice production and yield between 1981 and 2015.
The dataset is derived from 129 weather stations across the country, which provides
measurements of precipitation and temperature, amongst other variables. The weather data used
here are daily measurements of total precipitation (mm), the number of rainy days (day), and
daily maximum and minimum temperature. The present study then calculated additional
temperature variables on a monthly basis, e.g. monthly mean temperature (°Celsius), monthly
mean maximum temperature (°Celsius), monthly mean minimum temperature (°Celsius), and
differences between maximum and minimum temperature (°Celsius). There are no weather stations
in 11 provinces in the middle and north-eastern regions of Thailand; therefore, these provinces

were not used in the analysis.

3.2.1.3 Irrigation data

The irrigation dataset was derived from the Royal Irrigation Department (RID), Ministry of
Agriculture and Cooperatives, Thailand, and contains information on the irrigation stations and
the boundaries of serviced irrigated areas. Irrigated area is defined as the area that water can be
delivered for agricultural activities within the irrigation project which is classified in several levels
i.e. large scale (water storage dam, irrigation dam, pumping, water supply/drainage system, and
irrigation in paddy in the function water storage >100 million m? or supporting irrigation area
>12,800 ha), medium scale (water storage dam, irrigation dam, pumping, water supply/drainage
system, and irrigation in paddy in the capacity function water storage <100 million m3 or
supporting irrigation area <12,800 ha), and small scale irrigation (development on small water
body on resilient water consumption and agricultural activities (Royal Irrigation Department,
2007). The irrigation data allows calculation of the cultivated rice area reliant on irrigation for
water supply and directly influences irrigated rice and production. In this study, we focused on
cultivated agricultural areas located in large and medium irrigation systems. It provides a means
to assess the impact of the irrigation system on the relationship between precipitation and rice

yield.
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3.2.2 Data preparation

Prior to any analysis, the time-series data were pre-processed to improve data quality. The daily
weather data were first averaged into monthly and then organised three seasonal periods —
summer (mid-February to mid-May), rainy (mid-May to mid-October), and winter (mid-October to
mid-February). Here, we focused on the rainy season as this period has the most significant
impact on rice production (FAO, 2000) due to the majority of rice planting in Thailand coinciding

with this season.

As there is often more than one weather station present in each province, the average rainfall and

temperature at the provincial level are calculated using all weather station data in the province:

stationl+ station2+..+stationn

Mean = " Equation 3.1

Where Mean is the average precipitation or temperature at the provincial level, the station is the
weather station located within the province, and n is the number of weather stations in the
province. At the beginning of the year (January to May) for two specific years, i.e. 1983 and 1999,
several months of data were missing and therefore these years were excluded from further
analysis. Using the monthly averages for precipitation and temperature, each variable’s
cumulative and annual average value was calculated during the rainy season only. In the case of
precipitation, the number of rainy days was also determined for our study because there is a

strong relationship when integrating with total precipitation (Fishman, 2016).

Further, spatial autocorrelation statistics have also been investigated at the province level for

obtaining the spatial clustering association.

3.2.21 Detrending rice yield and rice production

Determining trends and detrending the data are essential for comprehensive statistical analysis.
There are two classes of trends: deterministic trends (which show consistent increases and
decreases) and stochastic trends (which show increases and decreases without consistency). Rice
yield and production are defined as deterministic trends since agricultural production is
inconsistent over the study period for many reasons, such as government policy instability
(Abdulwaheed et al., 2017; Longtau, 2003), agricultural technology improvements (e.g. seeds and
machinery development), and rice farm diversification. For example, the Thai government
reformed the structure of agricultural production on the area-based approach by introducing
effectiveness of large-scale rice production or big paddy field plot policy during 2017- 2021. This
policy assists farmers in gathering agricultural groups/enterprises and collaborates with their

management by guaranteeing agricultural markets and helps Thai farmers reduce agricultural
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costs to enhance the quality standard of agricultural products. Due to changes in rice yield and
production, detrending the yield and production data mitigates agricultural fluctuations not
caused by climatic variations. Detrending is an approach that involves eliminating trends from
time-series data, referred to as change or distortion of mean values. The detrending technique is
a reliable method using the multifractal scaling behaviour of time-series data and is frequently
applied in data analysis to remove systematic changes. A wide variety of techniques exists for
detrending data, including the application of filters such as the low-pass Kolmogorov-Zurbenko
filter (Botlaguduru & Kommalapati, 2020), regression analysis (Ye et al., 2015) and Detrended
Fluctuation Analysis (DFA) (Horvatic et al., 2011). Thus, the approach is necessary to formulate
rice yield and production (Chung et al., 2015; Ye et al., 2015). To reduce the influences of
agricultural development, the study creates more variables on rice yield and rice production
based on detrending approaches. Two standard methods of detrended analysis: detrended by
differencing and detrended by model fitting. Firstly, the detrended by differencing creates a new
dataset where each value is based on differences between the original and previous observations.
The disadvantage of differencing is that the process loses one observation in each time difference.
Secondly, detrended by model fitting calculates by fitting with linear regression model; then,
calculates the differences between the observed values and predicted values or applies more
advanced models (e.g. Empirical Mode Decomposition (EMD) and Detrended Window
Autocorrelation (DWA) (Lemoine & Delignieres, 2009)). Several researchers investigated climate

change impacts using crop yield data (Lobell & Field, 2007; Lu et al., 2017).

The detrended by differencing between yield and production in the current time step and the
previous time step applies under the present study. The objective of weather detrended is
removing non-weather effects such as technology improvement, agronomics practices, and rice
cultivars changes. The approach applied to detrend the data follows that of Mills (2011) and

detrends the data by differencing on an annual basis:

Arice yield and rice production = rice yield production, — rice yield production,_, Equation 3.2

Where x is the present year and x — 1 is the previous year for the variable of interest a particular
province. First, an evaluation of the detrended data will be carried out through an analysis of the
correlation between rice yield/production and rice detrended yield/production. Figure 3.5
provides an example of a time series of rice yield and detrended rice yield over two
representative provinces in the different irrigation systems. Then, the detrended rice productivity

(rice yield/production adjusted for trend) is regressed with weather variables.
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Figure 3.5 lllustration of the rice detrending in different irrigation systems.

3.2.2.2 Calculation the other important weather variables

The differences between the maximum (day-time) and minimum (night-time) temperature have
also been shown to impact on rice production through changes in evapotranspiration (ET,; the
sum of evaporation from the soil and transpiration from crop), and in some cases it was found to
be associated with 6% declined in yield (Saseendran et al., 2000). Two additional temperature
parameters, which are based on maximum and minimum temperature, are also calculated: 1)
differences between extra-maximum temperature (highest temperature during the month) and
extra-minimum temperature (lowest temperature during the month) and 2) differences in mean

monthly maximum and mean monthly minimum temperature in the provincial level.

3.2.23 Setting thresholds of rice cultivated area and grouping provinces by percentage of

rice cultivated area and irrigation system

To consider irrigation systems’ impact on rice yield, it was crucial to identify those provinces
located in different irrigated areas by overlaying irrigation and existing rice cultivated boundaries.
The underlying assumption is that using irrigation systems ensures sufficient water throughout the
growing season and is therefore beneficial for rice productivity. In contrast, rice cultivated in non-
irrigation areas is more susceptible to changes in precipitation which may impact crop production.
Based on this, a threshold of >40% rice cultivated area was used to identify provinces for further
analysis, which were subsequently grouped into provinces containing large and medium irrigation

projects.
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To account for different irrigation systems in this analysis, the provinces were categorised into
four groups considering only >40% rice cultivated area: rice cultivated area >40% and located in
the irrigated area (8 provinces) and rice cultivated area >40% and located in the non-irrigated
area (27 provinces). Here, we focus on the 35 provinces that met this requirement with >40%
planted rice area per province in both irrigated and non-irrigated areas, which are primarily

located in the Chao Phraya River delta.

3.2.24 Calculation changes on rice production

To perceive the temporal changes in weather data over the past 35 years, the data are grouped
into those provinces with a >10% reduction in rice cultivation, those with +/-10% differences in

rice cultivation and those that experience a >10% increase in rice cultivation during 1981-2015.

3.2.2.5 Defining variables of the impact of weather on rice production
Table 3.1  List of weather variables and the basis for analysis considering between May and
October
Variable Purpose
Rainfall To study if increasing rainfall leads to rice production
increase
Rainy day To study if an increasing number of rainy days increases rice

production

Extra-maximum temperature

Assess whether greater maximum increase temperatures
result in a decrease in rice production

Extra-minimum temperature

Assess if minimum temperature increase reduces rice
production

Difference in extra-maximum

and extra-minimum temperature

To study if greater extreme of temperature increase leads
to rice production decrease and influence photosynthesis’s
rate of crop (Sheehy & Mitchell, 2015)

Mean temperature

Analyse whether greater average temperatures reduce rice
productivity

Mean maximum temperature

Assess if the increases in the average maximum
temperature reduce rice productivity

Mean minimum temperature

To study if average minimum temperature increase leads to
rice production decrease in terms of total biomass
production

Difference in mean maximum
and mean minimum
temperature

Investigate whether differences in temperature leads to
rice production decreases

3.2.2.6

Correlation analysis

Having detrended the data, a correlation analysis was conducted between the weather and rice

parameters which have been carried out previously for various crops (Choudhury et al., 2015;

Gurung et al., 2017; Ye et al., 2019) With regards to rainfall, positive correlations are assumed to
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indicate that increases in rainfall have increased rice yield. However, it is known that high rainfall
prior to harvesting can have a negative effect on rice production, which is not accounted for
(Asada, Matsumoto, & Rahman, 2009). With respect to temperature, a positive correlation
indicates that higher temperatures result in an increase in rice yield. The analysis uses the
parametric bivariate Pearson Correlation to characterise the strength and direction of the

relationship and a P-value of 0.05 for the two-tailed significance.

3.2.2.7 Analysis spatial autocorrelation with Global Moran’s | index

Spatial autocorrelation refers to the systematic spatial variation of a variable and enables the
assessment of whether features with similar values are clustered, random, or dispersed (Du,
Wang, Zhuang, & Jiang, 2017; Mathur, 2015). The aim of this analysis is to assess the spatial
variation on a provincial level of the relationship among weather parameters on a provincial level
based on feature location and their weather attribute values. To do so, the adjacent provinces are
given a weight of 1, whilst all non-adjacent provinces are given a weight of 0. To measure the
relationship between selected weather variables and the surrounding value, Moran’s | statistic is
used, which identifies local measures for analysing the clustering multivariate on spatial data

(Scrucca, 2005).

For n observations on a variable x at locations i, j, the Global Moran’s | calculated as follows
(Anselin, 1995):

o XimXjm Wi ZiZ)

So Sz}

Equation 3.3

So = Xi Xjwij Equation 3.4

Where Z; is the deviation of an attribute for feature i from its mean, w;;is the spatial weight
between feature i and j, n is equal to the total number of features (total of administrative units),
and So is the aggregate of all spatial weights. The observed value of | compared to its distribution

under the null hypothesis of no spatial autocorrelation.

The spatial pattern analysis tool in ArcGIS Pro was used to calculate Moran’s | Index, expected
index, and scale of significance level (i.e. Z-score and P-value) and optionally generate reports. An
explanation of Moran’s Index value is near 1.0 indicates clustering, whilst a value near -1.0
indicates the variable is dispersed, and a value around 0 indicates a random distribution. The
present study sets the null hypothesis and states that there is no spatial clustering in the location.
The Moran’s | value is computed on an annual basis. The critical value (i.e. Z-score) and P-value
are determined for inferential spatial pattern analysis techniques. The null hypothesis is that

weather influences in neighbouring provinces. Some spatial analysis methods require the
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specification of a distance threshold to characterise the sphere of influence, which in this instance
is unknown. To mitigate this, the contiguity edge only or Rooks case is used to characterise the
conceptualization of spatial autocorrelation between polygons that share an edge with the target
polygon or overlap will influence on computation for neighbouring polygon features that share
the boundary of the administrative polygon. The spatial autocorrelation is important for the
present study because the result presents the level of relationship between one object with the
neighbouring objects by assuming the nearby objects have high correlation than the distance
objects. Besides, the positive and negative correlation able to prove the random or cluster on the
map. Thus, the study investigated the influences of weather parameters on the neighboring in
terms of adjacent polygon of administrative boundary. The main purpose of spatial autocorrelation is

determined the importance of geographical variation both sign and strength of their relationship.

3.2.2.8 Analysis and summary of the study

The following sections provide an analysis of the relationship between the climate parameters

and rice production across Thailand with reference to the research questions identified in Chapter 1.

Weather data Rice data Administrative
boundary
#‘—\ [ I |
‘ Rainfall | | Temperature | Rice yield | | Rice production |

- Amount rainfall - Extra-maximum temperature T

- Rainy days - Extra-minimum temperature | Calculate detrended |
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|

- Mean maximum temperature
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Figure 3.6 Flowchart showing the methodology of identifying provinces for analysis of the

relationship between rice production and weather parameters.
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3.3 Results

The number of provinces where the correlation analysis was carried out varies according to the
availability of data on rice yield and rice production (77 provinces), rainfall (65 provinces), and
temperature (63 provinces). Consequently, the analysis was carried out in the 63 provinces where
data was available for all parameters. To understand the climate trend at the regional level, the
study is specific to rainfall and temperature variations over the study period. Therefore, the
statistical analysis is split into two sections, detailing the trend analysis and the correlation

analysis (both in statistical correlation and spatial autocorrelation).

3.3.1 Trend analysis

This section analyses the temporal trends in rice productivity and weather during the study period

using the data described in Sections 3.2.1.1 and 3.2.1.2.

3.3.1.1 Rice trends

The cultivated rice area is predominantly found in the central and north-eastern regions of
Thailand. As shown in Figure 3.4, illustrates the low rice yield found in the north-eastern region,
where the average rice yield is ~ 1.9 tonnes/ha whilst higher rice yields (3.6 — 3.9 tonnes/ha) are
found in provinces located in close proximity to irrigation systems. Figure 3.7 shows the provinces
that utilise irrigation (green; 14 provinces) and non-irrigation agricultural methods (yellow), where
rice yield is typically higher in the former, as these areas may double or triple plant due to the
availability of sufficient water throughout the year (Suwanmontri, Kamoshita, & Fukai, 2021). The
remaining 63 provinces that do not utilise full irrigation typically have lower yields, resulting in a

yield gap of 1.5-2 tonnes/ha.
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Province criteria by irrigation system
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Figure 3.7 Average rice yield (ton/ha) at the provincial level between 1981 and 2015. Provinces
in green are those that use large and medium irrigation; those in yellow are non-

irrigated provinces (small irrigation).

An analysis of the difference between rice cultivated area and production between 1981 and 2015
was carried out to determine which provinces show the greatest differences, which may be

indicative of improved agricultural practices and differences in the variety of rice grown. The
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result, shown in Figure 3.7, reveals that the east, northernmost part of the north-east, and
southern regions had the greatest changes in cultivated rice area. Overall, most provinces (42)
have seen a >10% reduction in cultivated rice area; 15 have seen increases and decreases of +/-
10%, and 20 have seen rice cultivated area increase by >10%. A number of provinces, such as
Chiang Mai, Lop Buri, Prachin Buri, Chachoengsao, Surat Thani, and Phatthalung, showed the
largest decreases in cultivated rice area due to a combination of urban expansion (Jiang et al.,
2013; Shi & Jiang, 2016), farmers’ decision-making (Beretta et al., 2013; Johnson et al., 2019), and
governmental policies (Ahuja, de Vos, Bones, & Hall, 2010; Lencucha et al., 2020). The latter
include, for example, the Thai government encouraging farmers to cease rice cultivation in the dry
season and alter to plant less water consuming crops (e.g. beans, chili, watermelon, and sweet
corn) for drought adaptation, especially in the drought-prone non-irrigated area (Chaowiwat,

2016).

An analysis of the difference between rice cultivated area and production between 1981 and 2015
was carried out to determine which provinces show the greatest difference, which may be
indicative of improved agricultural practices and differences in the variety of rice grown. The
result, shown in Figure 3.8, reveals that the east, northernmost part of the north-east, and
southern regions had the greatest changes in cultivated rice area. Overall, most provinces (42)
have seen a >10% reduction in cultivated rice area; 15 have seen increases and decreases of +/-
10%, and 20 have seen rice cultivated area increase by >10%. A number of provinces, such as
Chiang Mai, Lop Buri, Prachin Buri, Chachoengsao, Surat Thai, and Phatthalung, showed the
largest decreases in cultivated rice area due to a combination of urban expansions (Jiang et al.,
2013; Shi & Jiang, 2016), farmers’ decision-making (Beretta et al., 2013; Johnson et al., 2019), and

governmental policies (Ahuja, de Vos, Bones, & Hall, 2010; Lencucha et al., 2020).
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Figure 3.8

3.3.1.2

Difference of rice area (Rai)

0 1749157 - 806264

@ -806,264..272123

@ 222123. 20028

@ -20024-08072

. 96,072 - 235,389

. 235,366 - 435,080
. 435,080 - 647,332
. 647 332 - 1224397

Difference of rice production
(Ten)

” 330,000

[ viiceProduston

Kilometers

differences on rice production.

Weather trends

Differences in rice cultivated area and rice production between 1981 and 2015. Red

circles represent differences of rice cultivated area and blue bars represent

The annual monthly variation in rainfall and temperature was assessed by averaging the time

series on a monthly basis. Figure 3.9 and Figure 3.10 show the monthly average and accumulative

precipitation in terms of monthly rainy days data over the full 35-year period (red line) with one
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standard deviation (S.D.) error, which measures variance or dispersion of data around the mean

value.

400
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Month

Error Bars: 95% Cl

Error Bars: +/- 15D

Figure 3.9 Mean monthly amount of rainfall in Thailand (1981-2015).

The figure 3.9 reveals that the lowest monthly rainfall (<20 mm) is found at the beginning of the
year, with a steady increase to the maximum in September at 260 mm before decreasing through
to December. The steady increase in precipitation in May coincides with the start of the wet
season of rice production in Thailand, with the growing season typically ending in October. The
error bars indicate greater variability in precipitation during the rainy season (June and August),
which coincides with the main growing season, although significant variation is also evident in
November and December which occur in the dry season. Change in rainfall pattern or rainfall
distribution in terms of annual and seasonal rainfall impact rice production. Sujariya et al.(2020)
proved to delay in rainfall patterns on the start growing period (SGP) and end growing period
(EGP) and a slightly shortened length of growing period (LGP) in the wet season in transplanting
system lowland rice area in the northeast Thailand by using rainfall data derived via weather
station and using simulation model from 2000 to 2015. The results revealed the increasing
potential yield because the planting avoided drought stress at the end of the growing season by
shifting planting time closer to the optimum after changes in rainfall pattern. Similarly, this study
examined rainfall variability changes in seasonal rainfall patterns and affected on duration and
grain yield. Whilst the shifting of planting period closely to the optimum maximum yield for the
KDML105 variety. The other factor is extreme precipitation or uneven precipitation affecting rice

yield (Fishman, 2016; Huang et al., 2017).
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Figure 3.10 Mean monthly rainy days in Thailand (1981-2015).

The number of rainy days influences the availability of water for crop growth and development;
thus, there are essential parameters to observe rainfall variability. The number of rainy days per
month follows a similar pattern to mean precipitation, with few rainy days between January and
March before steadily increasing until August with 18 rainy days. The seasonal distribution of
rainfall, rainy days and temperature metrics are vital for rice phenology. Also, climate change

shifts the potential of rice planting in single and double-cropping rice systems (Saud et al., 2022).
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b) Mean maximum temperature

Average of Mean MaximumTemperature (°C)

40

30

20

10

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Menth

Error Bars: 35% Cl

Error Bars: +- 15D

c) Difference mean maximum and minimum temperature

Average of Difference Mean Maximum and
MinimumTemperature [°C)

15

Jan Feb Mar  Apr  May  Jun Jul Aug Sep Oct  Nov  Dec
Month

Error Bars: 95% Cl

Error Bars: +/- 15D

d) Mean temperature

Average of Mean Temperature (°C)

30

Jan Feb ar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

Error Bars: 95% Cl

Error Bars: 95% Cl

69



Chapter 3

e) Extra-minimum temperature
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Figure 3.11 Temperature and mean monthly average temperature in Thailand (1981 to 2015). a)
Mean minimum temperature, b) Mean maximum temperature, c) Difference in mean

maximum and mean minimum temperature, d) Mean temperature, e) Extra-minimum
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temperature, f) Extra-maximum temperature, and g) Difference in extra-maximum and

extra-minimum temperature.

The temperature datasets (Figure 3.11) show averages in the same manner as the precipitation
data. Figure 3.11a, b and c show the mean of the average daily maximum and minimum
temperature and their difference which shows that the temperature increases through to April
before decreasing through the year in the case of the maximum temperature or plateauing to
some extent in the case of the minimum temperature. The difference is greatest in the dry season
(November to April of the following year) and least during the growing season (May to October).
Overall, the variation through the year is 3.32 and 6.91°Celsius for the maximum and minimum
temperatures, respectively, and by 26.96 and 4.03°Celsius during the growing season. Research
proved the essential optimum temperature for rice growth and rice production with 25°-35°Celsius in
temperate regions. Temperature below or higher than the optimal temperature is negatively affected
by crop growth. However, the seasonal dynamics of temperature during the study period do not
exceed the optimum rice yield. Likewise, other temperature parameters (Figure 3.11 c-g) show similar

temporal dynamics.

It is clear from the analysis of the seasonality of the precipitation and temperature that they are
relevant to optimum growing conditions. However, there are few provinces that exceed the optimum

temperature range during the study period.

3.3.2 Correlation between rice production and weather parameters

Table 3.2 presents a summary of the number of provinces where a significant relationship was
found between weather parameters and rice production. The mean minimum temperature and
mean maximum temperature shows the highest correlation among the temperature parameters.
However, rainfall proved to be less significant as compared to temperature. The summary of
Pearson’s correlation and the number of significant values in the overall and specific irrigation

groups is shown in Table 3.2.
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Table 3.2  Amount of significant provinces in focus group (>40% cultivated rice) with Pearson’s

correlation and P-value between temperature metrics and weather parameter.

Weather parameter Number of significant provinces (province)
(Number of provinces in positive, negative correlation)
Yield Detrended Production Detrended
yield production
imgated | non- | imigated | non- | irigated | non- | imigated | non-
rice | imigated | rice | imgated | rice | imigated | rice imgated
rice rice rice rice
Amount rainfall (average) 0 3 0 1 1 3 0 2
(3,0) (1,0) (1,0) (3,0) (0,2)
Amount rainfall 0 3 0 1 1 3 0 2
(cumulative) (3,0) (1,0) (1,0) (3,0 (0,2)
Rainy day (average) 0 3 0 1 0 4 1 1
(2,1) (1,0) (4,0) (1,0) (1,0)
Rainy day (cumulative) 0 2 1 1 0 4 1 2
(20) | (1,0 | (1,0) (40 | (1,00 | (1,3)
Extra-maximum 2 10 1 2 2 9 2 3
temperature (average) (2,0) | (10,0) | (0,1) (0,2) (2,0) (9,0) (1,2) (1,2)
Extra-minimum 3 13 0 3 1 13 0 4
temperature (average) (3,0) (13,0) (0,3) (1,0) (12,1) (1,3)
Mean temperature 2 3 1 1 0 4 1 3
(average) (2,2) (1,2) (0,1) (2,0) (0,4) (0,1) (3,0)
Mean maximum 3 11 1 6 2 10 2 3
temperature (average) (3,0) (12,0) | (0,2) (0,6) (2,0) (9,1) (2,2) (1,2)
Mean minimum 3 15 1 3 0 16 1 3
temperature (average) (3,00 | (15,0) | (0,1) (0,3) (15,1) | (0,2) (2,1)
Difference in extra- 0 2 1 2 2 3 0 2
maximum/minimum (1,1) (0,1) (0,2) (2,0) (1,2) (1,1)
temperature (average)
Difference in mean 0 5 1 4 3 2 0 7
monthly (3,2) (0,1) (1,3) (3,0) (0,2) (1,6)
maximum/minimum
temperature (average)

Table 3.2 summarises the correlation and individual significant provinces by considering both
positive and negative correlations within the cultivated rice area over 40% in the different
irrigation systems. The amount of significance is separated into irrigated rice and non-irrigated
rice groups. With regards to accumulative amounts of rainfall, rice yield and rice production had
the highest correlation, with a range of 0.33 - 0.60. Conversely, the correlation between the
detrended rice yield and rice production data resulted in fewer provinces with significant
relationships. The correlation between the average number of rainy days and the cumulative
number of rainy days results in an equal number of significant provinces, but the significance is
higher with the relationship between rice production and the average number of rainy days. In
terms of temperature, the highest correlation between rice production and yield was found in the

mean minimum temperature and mean maximum temperature. Overall, 18 and 16 provinces had
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a significant relationship between average mean minimum temperature and rice yield and rice
production, respectively. However, the number of provinces with a significance correlation with
the average of mean maximum temperature data was slightly lower, with 14 and 12 provinces
having significant relationships with rice production and yield, respectively. The correlation
between the detrended rice data and mean minimum temperature (average) was less significant.
The average temperatures in terms of minimum and maximum temperature increased the
correlation among these parameters. Finally, the temperature difference (average), between the
mean maximum and mean minimum temperature was significantly correlated in 5 and 5
provinces with rice production and yield, respectively. The results indicate only 2 and 5 provinces
recorded a significant correlation between the difference between extra-maximum and extra-
minimum temperature with rice production and rice yield in the non-irrigated rice area (Appendix
B-C). The results suggest that the average minimum and maximum temperature are the weather
parameters that have the most influence on rice production, with the highest number of
provinces having statistically significant relationships. Detrending the data has not resulted in an
increase in the statistical strength of the relationship with weather parameters suggesting that
there may be specific phenological stages impacted by climate change and may be influenced on

residuals.

Table 3.2 shows the provinces and the precipitation and temperature metric that had the highest
significant correlation. It is clear that the mean minimum and mean maximum temperatures have
the highest number of significant relationships with rice production. It is also clear that the vast
majority (75%) of provinces with significant correlations between weather variables and rice
production are not irrigated, which suggests that irrigation effectively mitigates the potential
impact of climate. A number of other studies have found the benefits of irrigation systems in
reducing the hydro-environmental limits which are impact the crop from climate change, e.g.
groundwater recharge (Kumar, 2016), mitigate the irrigation water requirement (Boonwichai et
al., 2018; Wang et al., 2014), and reducing water deficit level (Nikolaou et al., 2020). Thus, the

extension of irrigation to crop field areas is vital for maintaining the potential crop yield.

In the following section, the spatial distribution of the weather parameters with the highest
number of provinces with significant relationships (cumulative rainfall, the average number of
rainy days, average mean minimum temperature, and average mean maximum temperature) are
assessed. In all figures, the colours indicate the level of correlation, whilst the blue circles are
those provinces with significant relationships (P = 0.05). Figure 3.12 shows the provincial-level
variations in correlation between total rainfall and rice yield, and rice production during the wet
season. Note that only those provinces with >40% rice cultivated area, and which have a weather

station are included.
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a) Amount of rainfall and rice yield b) Amount of rainfall and rice production

Figure 3.12 Correlation between rice yield, rice production, and cumulative of rainfall between

May and October.

The relation between the amount of rainfall for rice yield and rice production is 3 (all of the
significant provinces located in non-irrigated rice) and four provinces (1 province in irrigated rice
and three provinces located in non-irrigated rice), respectively. To study the factors that influence
rice production, box plots of the correlation coefficient for each significant parameter are shown

in boxplot, which describes the distribution and skewness of the data.
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Figure 3.13 Correlation coefficient of rainfall with rice agricultural area over 40% with different

irrigation systems.
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Figure 3.13 indicates the positive correlation between rainfall and rice production was highest,
ranging between 0.33-0.6; the correlation was lower in some provinces in irrigated and non-
irrigated areas (ranging from 0.3 to 0.4). The correlation between rainfall and rice yield was found
in non-irrigated areas and marginally lower (0.34-0.57). Buri Ram is highest on both rice yield and
rice production correlation; however, there is a slightly higher correlation on rice production (r =

0.57 for rice yield correlation and r = 0.6 for rice production at sig. 0.000).

With regards to rainy day variables, Table 3.2 demonstrates that average rainy day and rice
yield/production were correlated with rice productivity and yield. Figure 3.14 shows the
provincial-level variations in correlation between the average number of rainy days and the rice

yield and rice production during the wet season.

a) Average rainy day and rice yield b) Average rainy day and rice production
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Figure 3.14 Correlations between rice yield and rice production and average rainy days between

May and October.

The relation between the average rainy day for rice yield and rice production is 3 (all of significant
provinces located in non-irrigated rice) and four provinces (all significant provinces located in non-
irrigated rice), respectively. The range of correlation coefficient on rice yield is 0.34-0.38 whilst
the range of correlation coefficient of rice production is 0.4-0.45. Further, the present study
investigates the factors that influence rice production; a box plot of the correlation coefficient for
each significant parameter with rice yield and rice production is shown in box plot, which

describes the distribution and skewness of the data.
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Figure 3.15 Correlation coefficient of rainy day with rice agricultural area over 40% with different

irrigation systems.

Figure 3.15 indicates that rice production has a high correlation with a narrow correlation (~0.4-
0.45) on the rainy day variable. However, the correlation on rice yield is slightly lower (~0.34-0.38)
than rice production, but there is a wide correlation compared with other weather variables. This
evidence may be the result of various rice varieties with differing rice productivity. Finally, the

correlation between rainy days and rice yield has a large gap and outlier values.

With regards to the significant temperature variables, Table 3.2 demonstrates that the mean
minimum temperature and mean maximum temperature were correlated with rice productivity
and yield in the greatest number of provinces and, to a greater extent, than precipitation
parameters. The correlations between the mean minimum and mean maximum temperature and
rice yield, rice production, and detrended rice yield and rice production are shown at the

provincial level in Figure 3.16.

76



Chapter 3

a) Mean minimum temperature and rice yield b) Mean minimum temperature and rice production

Figure 3.16 Correlations between rice yield, rice production, and cumulative mean minimum

temperature using data between May and October.

Figure 3.16 (and listed in Table 3.2) shows the spatial distribution of the provinces with the
significant statistical agreement between the mean minimum temperature and rice yield with 18
provinces across irrigated and non-irrigated areas, of which 3 are in irrigated areas and 15 are in

non-irrigated areas.

Regarding rice yield, the correlation (r) in irrigated rice areas ranged between 0.45 and 0.72, while
the non-irrigated rice area was between 0.40 and 0.66. The positive correlations suggest that
increases in the mean minimum temperature led to an increase in rice yield and production. The
three provinces with the highest correlation on rice yield were Nakhon Ratchasima, Uttaradit, and
Sakhon Nakhon, with 0.66, 0.64, and 0.61, respectively. The majority of these provinces are
photoperiod-sensitive rice varieties which are commonly planted in non-irrigated rice areas and
sensitive to photoperiod. Regarding the correlation with rice production, the correlation was
found in 16 provinces, and all located in non-irrigated rice areas, which ranged from -0.44-0.76. In
addition, there is only Prachin Buri with a negative correlation (r =-0.44). Two main factors are
stimulating rice productivity, i.e. geography and temperature, especially in the day length.
Notably, the highest correlations are found in the north-eastern region, which is close to the Mun
river (located in the Mun basin) and the Phu Phan mountain range (Natawa et al., 2005). The Mun
basin consists of 31 tributary basins. Furthermore, these provinces may also be influenced to a
greater extent by the south-western monsoon, which brings humid air mass from the India Ocean

to Thailand and causes clouds and high rainfall to cover the country. The spatial distribution of the
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correlation coefficient for the temperature and rice yield and rice production area is largely

similar.

The correlation coefficients are shown as box plots in Figure 3.17 for two main groups in irrigated
and non-irrigated rice areas. The range in correlation coefficients for mean minimum temperature
and rice yield was broad (r = 0.45 - 0.72) for irrigated rice areas. The correlation coefficient for
non-irrigated rice areas is slightly lower (r= 0.4-0.66) due to the limited number of provinces (4).
In the correlation between rice production, all of the correlation is non-irrigated rice area and

ranging between — 0.44 (outlier value) - 0.76.
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Figure 3.17 Correlation coefficient variation between the mean minimum temperature and rice

production with >40% rice cultivated area (star symbols describe outlier value).

The afterwards analysis, shown in Figure 3.17, is the variation in the correlation coefficient
between the mean maximum temperature and rice yield and rice production. Again, only those
provinces that had statistically significant results and those areas where cultivated rice area is

more than 40% are displayed.
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a) Mean maximum temperature and yield b) Mean maximum temperature and rice production

Figure 3.18 Correlations between rice yield, rice production, and mean maximum temperature

during May and October.

The correlation between mean maximum temperature and rice yield reveals that only three and
eleven provinces had significant statistical relationships in irrigated and non-irrigated rice areas
over 40% of rice cultivated area, respectively. The highest correlation was found in non-irrigated
areas- Phetcha Buri, Maha Sarakham, and Ubon Ratchathani provinces with r = 0.66 (sig. 0.000),
0.59 (sig. 0.000), and 0.54 (sig. 0.001), respectively. While the correlation in irrigated areas was
highest in Bangkok, Suphan Buri, and Nakhon Pathom provinces, with r = 0.68 (sig. 0.000), 0.37
(sig. 0.032), and 0.36 (sig. 0.030), respectively. Another correlation is mean maximum
temperature and rice production reveals that only two and ten provinces had significant.
Regarding the irrigated area, Nakhon Pathom and Bangkok provinces, with r = 0.43 (sig. 0.009) and
0.38 (sig. 0.025), while in non-irrigated areas reveals a high correlation in Kalasin, Mukdahan, and

Ubon Ratchathani with r =0.72 (sig. 0.001), 0.62 (sig. 0.007), and 0.57 (sig. 0.000), respectively.
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Figure 3.19 Correlation coefficient of mean maximum temperature with rice agricultural area

over 40% in different irrigation systems.

A box plot analysis of the correlation coefficient (Figure 3.19) indicates that the mean maximum
temperature and rice yield have a similar range (r = 0.35-0.68) of correlation coefficient values in
irrigated and non-irrigated areas. As evident previously, the correlation coefficient between mean
maximum temperature and rice production reveals a similar correlation range with rice yield;
however, the correlation is a slightly narrow correlation in the irrigated area. Also, there is one
province with a negative correlation with rice production in Prachin Buri in the same pattern as

the mean minimum temperature (r = -0.51 sig. 0.002).

The latter significant weather parameter is the difference between the mean maximum and mean
minimum temperature and only focusing on those provinces that had statistically significant
results and those areas where cultivated rice area is more than 40%. The correlation between the
difference between mean maximum and mean minimum temperature and rice yield is shown in

Figure 3.20.
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a) Difference mean maximum and minimum b) Difference mean maximum and minimum
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Figure 3.20 Correlations between rice yield, rice production, and difference between mean

maximum and mean minimum temperature during May and October.

The correlation between the difference in mean maximum and mean minimum temperature and
rice yield reveals that only five provinces had significant statistical relationships with non-irrigated
rice areas over 40% of rice cultivated area. There are extremely highest correlations in both
positive and negative correlations, Kalasin has the highest positive correlation with r = 0.6 (sig.
0.011), and Nakhon Ratchasima has the highest negative correlation with r = -0.57 (sig. 0.000).
The correlation between differences of mean maximum and mean minimum temperature and
rice production was significant in three provinces located in irrigated areas and two provinces
located in non-irrigated areas. The range of correlation for irrigated areas (Nakhon Pathom,
Phichit, and Suphan Buri) is 0.38-0.61, and Phichit has the highest correlation (sig.0.002).
Conversely, the correlation for non-irrigated areas (Chiang Rai and Nakhon Ratchasima) is a
negative correlation with a range of -0.41- -0.56. As evident, two provinces are significant for both
rice yield and rice production in Chiang Rai and Nakhon Ratchasima (non-irrigated rice cultivated

area); however, there are slight improvements in their correlation for rice production.
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Figure 3.21 Correlation coefficient of difference between mean maximum and mean minimum

temperature with rice agricultural area over 40% in different irrigation systems.

A box plot analysis of the correlation coefficients (Figure 3.21) indicates that the difference
between mean maximum and mean minimum temperature and rice yield have a significant only
non-irrigated area with a correlation range (r = -0.57-0.60). Regarding the correlation based on
the difference between the mean maximum and minimum temperature and rice yield have
significance for non-irrigated areas whilst the rice production is relative in both irrigated rice and
non-irrigated rice area. The correlation in irrigated areas for rice production is 0.38-0.61. Rice
production correlation is highest in Phichit province with r = 0.61 (sig.0.002), whilst the other two
provinces in irrigated areas range between 0.38-0.39. The relationship for non-irrigated areas
reveals negative correlation ranges from -0.41- -0.56 (in Chiang Rai and Nakhon Ratchasima

province). All correlation shown as Appendix D.

As mentioned above, the rainfall in terms of cumulative rainfall and average rainy day have a
positive correlation for both rice yield and production. The results are able to assume higher
amounts of rainfall or rainy days, increasing rice productivity for all irrigation systems. Whilst the
correlation between mean minimum temperature and mean minimum temperature proves a
positive correlation for rice yield even though one province proved a negative correlation (Prachin
Buri located in non-irrigated rice). The latter correlation is the difference between the mean
minimum and mean maximum temperature that proved both positive and negative correlation
for rice yield and production. Besides, the negative correlation found only two provinces in the
non-irrigated areas (i.e. Chiang Rai and Nakhon Ratchasima). There are slightly more impacts on
rice production and severe impacts on rice production than rice yield. Also, there are seriously

impacted in the northeast region (Nakhon Ratchasima) than the north region (Chiang Rai).
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3.3.3  Spatial autocorrelation

The contiguity edge method is applied for the weather parameters with the most significant
trends, which are the average (temperature and rainfall) and cumulative rainfall. When
considering the P-value, the present study determines the Z-score and P-value for accepting the
study hypothesis. Our result reveals that there is no spatial auto-correlation with neighbouring
provinces. Based on geographic information system (GIS) technology, this study is an analysis of
the significant weather parameters for achieving the weather pattern at each location for 35
years. The result of spatial autocorrelation reveals the significant geography location and
clustered pattern for the average temperature and cumulative rainfall in 1992. However, Moran’s
| index is absolutely low this year. For example, the average temperature is clustered with

Moran’s | index of 0.15 shown as Appendix E.

Table 3.3  Result of Moran’s | index in significant weather parameter at significant year during
study period.
Weather Year | Clustering | Moran’s | Expected | Variance | Z-Score | P-Value
parameter pattern index index
Cumulative 1992 | Random 0.149 -0.013 0.005 2.241 0.025
rainfall
Average 1992 | Clustered 0.149 -0.013 0.005 2.241 0.025
temperature
a) Cumulative rainfall b) Average temperature
Moran's Index: 0.059535 Significance Level Critical Value Moran's Index: 0.148962 s‘rg"iﬁm"m_ l?'e' C'_mm‘ Value
z-score: 1.018472 ) (prvalue) (z-score) z-score: 2.241153 £ EP v:l “:1) = (:_:c;r:]
p-value: 0.308454 g'gé ; ;':':}1 o p-value: 0.025016 005 W -238--196
a:w — -1:96--1:55 ﬂ-i'? g i:g:ll:;
i BB res-1ee o0s mm 156-238
So1 mm s2ss oo mm 25

|

(Random)
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Figure 3.22 Result of spatial autocorrelation using Global Moran’s | index demonstrated in a

significant year.
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Figure 3.22 suggests the results of the spatial autocorrelation at each location in 1992 for both
cumulative rainfall and the average temperature at a certain significant level. Moran’s Index of
cumulative rainfall is 0.149, the Z-score is 2.241, and the P-value is 0.025. The critical value (Z-
score) was less than 2.58 but greater than 1.96; thus, the result of the clustered pattern is a result
of a random chance. The other factor proving slightly significant is the average temperature.
Moran’s Index of average temperature is 0.149, the Z-score is 2.241, and the P-value is 0.025. The
critical value (Z-score) was less than 2.58 but greater than 1.96; thus, the result of the clustered
pattern is a result of a clustered chance. The pattern of spatial autocorrelation is displays in the

small box for each weather parameter.

3.34 Summary the susceptible provinces on climate change

The analysis presented in the previous sections has highlighted that a number of provinces have
significant correlations between rice production variables and climatic variables; this is more
evident in those regions that do not use irrigation. In overall, there are 30 provinces (6 provinces
in irrigated areas and 24 provinces in non-irrigated or 85.71%) that show a significant relationship
between rice production variables and climatic variables (Figure 3.23). The correlations were
largely positive for rainfall and temperature; thus, the result suggests that high temperature and

high rainfall have a positive impact on rice production and rice yield.
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Most provinces where there is a relationship between rice production and weather parameters

don’t use irrigation (Figure 3.23). The results revealed most correlation is a positive correlation

among significant weather parameters with rice yield and production, except for some provinces

is a negative correlation between mean minimum temperature, mean maximum temperature,

and the difference between the mean maximum and mean minimum temperature. The

Department of Disaster Prevention and Migration (DDPM) announced drought disaster areas in
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25 provinces, and these provinces are relevant to the present study (16 provinces significant)
(DDPM, 2020). These are able to interpret that higher global temperature corresponds with
weather estimation on IPCC’s Fourth Assessment Report (IPCC, 2007); thus, rice productivity
tends to increase. However, some provinces found a negative correlation- Prachin Buri is only one
negative correlation between the mean minimum and mean maximum temperature. However,
there are differences significant negative correlations in difference mean minimum and mean
maximum temperature in two provinces for rice yield and rice production (i.e. Chiang Rai and
Nakhon Ratchasima) with slightly higher correlation on rice production. One of the reasons for
this is that the northeast region of Thailand experiences higher annual precipitation (15-20%) than
the irrigated regions found in central Thailand. Thus, precipitation is influencing rice planting in
this region. Due to the most susceptible provinces located in northeast Thailand, the resilience to
climate change in non-irrigated areas could be reduced by irrigation infrastructure improvement
(Elliott et al., 2014) and by adopting drought-resistant rice varieties (Kumar et al., 2014; Todaka et
al., 2015). Our results suggest that agricultural policymakers should monitor these susceptible
provinces by combining the information between weather and rice productivity correlation.
Beyond, the impacts of climate changes on rice productivity in Thailand are highly uncertain from
weather parameters; thus, the simulation of climate change impacts on agriculture is challenging
to investigate, and the suitable adaptation strategies are vital resilient to climate changes by

integrated varied approach (e.g. economic approach) and climate modelling.

3.4 Discussion

This chapter analysed the relationship between climate and rice production parameters over the
past 35 years. Located in a tropical zone, Thailand’s paddies are impacted by increasing
temperatures and precipitation. The cross-correlation between weather and rice production
reveals that temperature is more significant than precipitation parameters, as observed in the
number of provinces with significant correlation and values of correlation coefficients. When
comparing the temperature parameters, the average minimum and maximum temperature have
the greatest influence on rice production in a number of provinces. Also, the minimum
temperature (referred to as night-time temperature) has more impact on rice production and rice
yield than the maximum temperature (referred to as daytime temperature). Yenda et al. (2018)
conducted the effect of weather parameters on rice yield during the Kharif season at the research
farm at Orissa University of Agriculture and Technology, India, in 2016 under different planting
conditions (e.g. puddled transplanting, unpuddled transplanting, and direct seeding). The puddled
transplanted rice crop had the greatest grain yield, whilst the yield had a negative correlation with

minimum temperature (-0.83) and rainfall (-0.59), a finding opposite to our study. Our findings
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revealed the mean minimum and mean maximum temperatures definitely impact rice yield and
production; however, they are necessary to determine which growth stage occurs. Sarker et al.
(2012) supported our conclusions on the impacts of maximum and minimum temperatures and
estimated the relationship between rice yields and climate variables by using time series data in
Bangladesh. The result demonstrated the impacts of temperature (i.e. minimum and maximum
temperature) and rainfall in 3 groups (i.e. Aus, Aman, and Boro rice, which Aus and Aman were
planted in the wet season and Boro rice was planted in the dry season). The result proved a
significantly positive correlation with the maximum temperature of Aus and Aman rice, whilst the
Boro rice had adverse effects on rice yield. However, the minimum temperature had a negative
effect on Aman rice; however, there was a significantly positive effect on Boro rice. Abbas & Mayo
(2021) investigated the positive impacts between rice crops and minimum temperature at the
replantation stage due to increasing the speed of leaf emergence and rainfall was positively
significant for rice at the tillering and stem elongation stage by increasing tillering’s rate. The
growth stage of rice is crucial for their correlation. Research proved higher daily minimum
temperature increased rice yield (Chen et al., 2016), which agrees with our study. The weather
trends under the present study estimate that temperature in Thailand will rise in the near future;
thus, it is recommended to breed new rice cultivars with temperature tolerance. Our results
found limitations on detrending, the impact of rice variety, and the role of the irrigation system.

Thus, we are clarified as following aspects.

34.1 Why does the detrended data have less weather agreement than raw data?

In this study, the underlying assumption was that government policies and technological
developments might influence the ability to determine the influence of climate on the rice
production time series. The pattern of historical yield data is calculated through detrending
before analysis; this aims to reduce the effects of changes in agriculture technology development,

such as agricultural machinery and rice seeds development.

The correlation between the raw and detrended rice yield and rice production data with weather
data was analysed, with the results indicating weaker agreement between climatic variables and
the detrended rice production data. The data in terms of rice yield and production are quite
consistent over time (Figure 3.7); thus, creating a significant variation in their correlation. Key
information assures the weaker signification on detrending is series on data quite fluctuating.
Even though, this study is investigating cross-correlation without determining the differences on
residuals of their relationships. Referring to significant rice production/yield variables, it is
obviously seen that rice yield and production without detrending are increasing in significant

provinces during the time period. The excessive temperature over the threshold level is the main
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cause of crop growth, especially in the reproductive stage. Detrending rice yield was examined to
eliminate the influences of agricultural technology (Rajavel et al., 2018). The limitation on
detrending occurs in our study; thus, there are suggestions to adopt the appropriate detrended
such as using fitting linear regression and applying residuals from the model (Wen, Ponnusamy, &
Kang, 2019) or using a log-linear trend model (Vedenov & Sanchez, 2011) for accounting the
effects between crop yield and weather. The detrend production index of crops may be

preferable for analysis (Biswas et al., 2017).

3.4.2 Impact of rice variety

The aim of the research in this chapter is to investigate the correlation between weather and rice
productivity in Thailand. However, the analysis ignores the impact that rice variety can have on
yield and productivity. As mentioned in section 2.4.5, rice farmers plant rice in two main
categories, photoperiod-sensitive and photoperiod-insensitive rice varieties, which vary with
region and topography. For example, photoperiod-insensitive rice varieties are usually adopted in
the Chao Phraya River delta due to the flowering response (not depending on day length and
typically planted in the wet and dry seasons) (Vergara & Chang, 1985), and these typically provide
higher yields (Kasetsart University, 2000). These areas are gradually replaced with high-yield rice
varieties (HYRs) instead of local rice varieties (Molle et al., 2021). Meanwhile, photoperiod-
sensitive rice varieties are normally used in the northeast region as these require more solar
radiation for crop photosynthesis, which is sensitive in flower initiation, and this region of
Thailand has lower annual precipitation and potentially less cloud cover. Different rice varieties
have different growing season lengths from 99 days to 105 days (V et al., 2021), which can alter
the annual production if multiple crops are planted. The yield can also vary by up to 50% amongst
rice varieties (Bakare et al., 2017; Chowhan et al., 2017; Li et al., 2019), which can also influence

the annual statistics for a particular province.

Our study investigated the relationship between weather and rice productivity data, which is not
classified with rice variety. Thus, there may be distortion from analysis at the state level. The
further study will suggest correlation investigation among different types of rice variety or select a
specific dominant rice variety. One strategy to develop a rice variety referred to as a hybrid rice
variety, which combines traditional varieties with those that are tolerant to diseases, pests,
abiotic stress, heat, and droughts such as IR8, BR11, BBRI dhan28, and BBRI dhan29 varieties (Fen
et al., 2015; Pandey et al., 2010; Yamano et al., 2016). Rice production depends on the cultivated
area and cropping intensity, with the latter influenced by the rice variety. Consequently, rice
production is higher in the Chao Phraya River delta, which has a different rice variety and a full

irrigation system. This is in contrast to the northeast region, which has lower yields due to most
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farmers’ plant photoperiod-sensitive rice varieties (e.g. KDML105 and RD6) and together this type

of variation distorts the findings of the impact of climate on rice productivity.

343 Role of irrigation in rice cultivation

Variability in rainfall distribution is the main restriction on rice planting, especially in tropical areas
which depend on the monsoon rains. However, there is evidence of differences in water usage
among irrigation farming systems (Taniyama, 2002). Analysis of the variation of monthly total
rainfall indicates that precipitation has reduced in May relative to that found at the start growing
season of the time series, which coincides with rice planting in the wet season. A research
simulated model with rainfall data revealed a delay in the planting date due to the reduction of
rainfall in the early season (Sujariya et al., 2020). A strategy for adapting to climate change
adaptation is to shift the sowing date to an optimised time in order to increase rice yield (Ding et
al., 2020). Yamauchi (2014) found that during times of insufficient precipitation, longer dry spells
and a reduction of cumulative rainfall resulted in the rice transplanting date in the early wet
season being delayed in non-irrigated rice areas; this led to drought risks and a decrease in rice

production.

This analysis found a positive relationship between the average rainfall and rice yield, agreeing
with previous studies that found cumulative rainfall has a positive effect on rice yield
(Bhattacharya, 2013; Sarker et al., 2012; Saseendran et al., 2000). A higher number of provinces in
non-irrigated areas have statistically significant correlations with rainfall which largely occurred in
the northeast, which typically receives higher annual rainfall than more central regions.
Therefore, a number of these provinces are more susceptible to changes in precipitation totals. In
terms of the average number of rainy days, only non-irrigated provinces had statistically
significant relationships with rice production, which might be evidence of insufficient precipitation

before the growing season.

Temperature directly influenced crop photosynthesis and growth rate; Figure 3.11 illustrates the
differences in average monthly temperature above the 35-year. This is most evident in the
minimum and maximum average values but is also present, to a lesser extent, in mean
temperature. Rice cultivation is optimal when temperatures range between 25° and 35°Celsius,
and a number of studies have highlighted the negative impact that temperature can have on rice
productivity (Ghadirnezhad & Fallah, 2014). Nagai and Makino (2009) assessed the impact of
increasing daytime and night-time temperatures on rice and found biomass production and
relative growth rate to be optimal at temperatures under 30/24°Celsius (day/night temperature),

while the net assimilation rate of rice decreased at low temperatures (19/16°Celsius). Above
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30°Celsius, crop photosynthesis is stimulated. This is supported by the present study, which found
a positive correlation between temperature and rice production in almost all provinces. The
minimum and mean temperatures during the rice growing season (May to October) are higher
than the detrimental minimum values and within the range of optimum temperature. The
temperature outside of the optimum temperature range has a serious impact during the
reproductive stage by producing panicle sterility and lower grain production, and finally reduction
in yield (Reyes et al., 2003; Nishad et al., 2018). Even though, fewer nearly or above optimum
temperature ranges may not influence rice physiologically. Analysis of the temperature metrics
(Section 3.3.1.2) indicates the mean temperature during the growing season falls within these
bounds. A number of studies have found that temperature extremes or heat stress can increase
water loss and death of seeding in the seeding stage, wither and yellow leaves, reduce tiller’s rate,
and reduce yield under heat conditions (40°Celsius at day/35°Celsius at night-time) (Xu et al.,
2021). In addition, Rehmani et al. (2021) proved that extreme heat events coincided with the
heat-sensitive reproductive growth period by using long-term meteorological data and
considering stress days, i.e. higher daily maximum, high daily minimum temperature, and both

critical temperature limits.

The correlation between rice production and the mean minimum and maximum temperature
revealed 21 and 16 provinces, respectively had statistically significant relationships, and the
majority of these were in non-irrigated areas. This, coupled with the analysis of precipitation,
highlights the increased sensitivity of non-irrigated regions to climate change and that extending
irrigation infrastructure and irrigated service areas may provide a means to mitigate climate change.
Suwanmontri et al. (2020) investigated the factors based on changes in rice productivity from 1974-
2018 using secondary data and compared two main regions (i.e. non-irrigated lowland-based
northeast and irrigated lowland-based central Thailand). Their findings revealed irrigation water,
especially in the dry season, was crucial for rice productivity. For example, rice yield increased more
rapidly in the wet season (1.82-2.85 tonnes/ha) compared to the dry season (3.93-4.25 tonnes/ha),
and rice production in the wet season was higher than in the dry season. The proportion of rice
production was 26 million tonnes in 2011, of which 13 million tonnes was in the northeast and 5
million tonnes in the central region, and the rice cultivated area decreased during 2011-2016 in both

the wet and dry seasons.

The remaining susceptible provinces (14.29%) reveal fewer impacts on rice productivity and weather
correlation. Inirrigated areas, the cumulative rainfall is found only in Kamphaeng Phet on rice
production with low correlation coefficients. However, the temperature proves widespread on the
mean minimum temperature (only specific to rice yield) and mean maximum temperature (both rice

yield and rice production), which is observable from significant provinces. The dissimilar correlation
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may be the reason for the critical temperature varied with rice variety and duration influences on
physiological of rice plant. The result of the present study is in partial agreement with previous
research. Bemal et al. (2009) investigated the Kharif season, which is sown in July-August and
harvested in October-November, in two locations- Karnal and Hisar in India by adopting multiple
regressions during 1992-2006. This agreement with positive correlation on maximum, minimum, and
mean temperature whilst rainfall was a negative correlation in Karnal whilst there was a reversely
impact in Hisar (positive correlation for rainfall and maximum/minimum/mean temperature was

negative correlation).

344 Representative of weather data

The availability of weather station data is a limitation of this study. Most provinces only have one
weather station, and it is generally located in a non-agricultural area which may not be
representative of the weather throughout the province and may impact the analysis. A denser
network of weather stations would alleviate this but would incur high operating costs at regional
and country scales. An additional option is to use precipitation estimates from the Tropical
Rainfall Measuring Mission (TRMM), which is objective to measure tropical and sub-tropical
precipitation and is related with varied precipitation-related sensors. The format of TRMM level 3
product (3B43), which merges gauge and satellite analysis algorithm, contains 0.25° x 0.25°
resolution for each month with a spatial coverage from 50° North to 50° South. The TRMM 3B43 is
commonly analyses and integrated with other variables for meteorological monitoring (e.g.
drought) and correlation with crop yield. The advantage of TRMM is coverage of large areas and
substitution in the region with scarce weather stations; however, there is a limitation on the pixel

size and poor accuracy for identifying precipitation in mountainous areas (Bharti & Singh, 2015).

The other reason for supporting our work is the optimum temperature for rice growth and the
physiology activities of rice. The optimum temperature influences for crop photosynthesis is
varied among regions and are relevant to normal rice development, Previous research has found
the optimum temperature for rice growth is between 25° and 35°Celsius (Nishad et al., 2018) and
that excessively high or low temperatures can induce plant stress which reduces plant growth and
consequently yield (Krishnan et al., 2011; Shah et al., 2011). The level of crop stress is also
influenced by the duration, intensity, and timing of stress, which can affect particular growth
stages to a greater extent and which impact both grain quality and yield. The temperature stress
may decrease the photosynthetic rate and the number of panicles in the panicle stage (Xu et al.,
2021) in the reproductive stage, heat stress can inhibit flower initiation, pollen and spikelet
development, flowering and anthesis, and grain yield (Hussain et al., 2019). The limitation of our

study is weather data in seasonal; thus, more detail, especially each growth stage (i.e. tillering,
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heading, flowering, milking, dough, and maturity), may improve the performance of correlation

coefficients between weather and grain yield (Sattar et al., 2017).

Assessment of the spatial autocorrelation of the correlation between rice production and weather
metrics revealed a random spatial distribution with respect to neighbouring provinces. The result
reveals the significant geography location and clustered pattern for the average temperature and
cumulative rainfall in 1992. The testing of Moran’s | index the best solution if there is more
information on the distance threshold or distance band between nearby objects. The further
study proposed to assess other conceptualizations of spatial relationships such as Hot Spot
Analysis (Getis-Ord Gi; (Getis & Ord, 2010)), Cluster and Outlier Analysis (Anselin Local Moran’s 1),
and Local Indicators of Spatial Association (LISA) (Anselin, 1995). For example, LISA principally
computes the similarity with its neighbours and test significance (i.e. high-high, low-low, high-low,
and low-high). Thailand is located at latitude 5° to 23° North of the equator. The influences of
topography and location may be impacted by the differences in weather conditions between the
north region and the south region. Further research requires an ecophysiological model to reduce

the uncertainty of climate change impacts assessment.

3.5 Conclusion

The main objective of this chapter was to investigate the variation of rice production in Thailand
over the past 35 years and to assess the relationship between weather metrics, including rainfall
(i.e. the amount of rainfall and number of rainy days) and temperature, with provincial level rice
yield and production. The provinces with the most significant relationships were mostly (88%)
found in areas which did not use irrigation, in part as these areas also typically experience higher
annual rainfall. The result reveals minimum temperature, maximum temperature, and differences
between maximum and minimum temperature have the highest correlation. The cumulative
rainfall and rainy days are less correlated. Analysis at the provincial level of the relationship
between rainfall and temperature and rice yield and production indicates that rainfall has a
potential on rice productivity irrespective of whether the area is non-irrigated. The important
temperature parameters impact rice yield and rice production are mean minimum temperature
and mean maximum temperature due to their optimum temperature for crop growth. Finally, the

study reveals no spatial correlation among weather parameters except in 1992.

The spatial variation of the area under rice cultivation is consistent with the implementation of
government policies whereby the cultivated area was reduced in the central, east, and south
regions through the implementation of agricultural zoning policies in 2009-2010 and 2012-2013

(Ministry of Agriculture and Cooperatives, 2014). The policies were designed to encourage
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farmers to plant the optimal crops for their agricultural areas by considering the local
environment (e.g. soil, land use, precipitation, forest, slope, and factory location) and using
mechanisms of the provincial government (e.g. promote farmers who plant in low productivity to
plant the other suitable crops instead or Thai government set the policy into area approaches and
commodity approaches). The main objective of agricultural zoning is agricultural reform and
sustainable agriculture. As a result of these policies, ~55% of provinces saw a >10% increase in
rice cultivated area, 25% a decrease by >10%, and 20% of provinces saw changes +/- 10%. The
magnitude of these changes illustrates the impact that the government can have on agricultural
production, whilst the analysis of the influence of weather highlights the benefits of irrigation in

rice cultivation and that 22% of provinces in Thailand are more susceptible to changes in climate.
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Chapter 4 The dynamics of rice biophysical variables in
irrigated and non-irrigated systems during the

growing season

Southeast Asia accounts for 31% of the world’s harvested rice area, with 48 million ha under rice
cultivation (Redfern, Azzu, & Binamira, 2012). Concerning agricultural practices, 45% of this rice
area is irrigated (18 million ha), 45% is non-irrigated (18 million ha), 5% is planted in deep water (3
million ha), and 5% is planted in non-irrigated upland areas (3 million ha). Thailand is the fourth-
ranked country in terms of the use of irrigation in rice cropping (Mutert & Fairhurst, 2002) and is
sixth-ranked in terms of rice exportation, with 33 million tonnes exported in 2017 (Fischer &
Velthuizen, 2016). In 2012, the irrigated rice area covered 29.5 million rai or 4.7 million ha, which
equates to 9% of the country’s total land surface area (RID, 2013). Rice cultivation is mostly
located in areas fully supported by irrigation systems (e.g. irrigation projects and canals). These
areas typically have high planting densities where farmers can plant 2 or 3 rice crops per year
(Pushpavesa, Somrith, & Petpisit, 1986). Thailand’s main rice cultivated area is the Chao Phraya
River delta, which accounts for 20-25% of rice production (OAE, 2017b). Information collected by
the Rice Department, Ministry of Agriculture indicates that across Thailand there are 138 varieties
of rice grown in various ecosystems and photoperiod sensitivities and which have specific
characteristics such as pest/disease tolerance, being adaptive to local environments, having high

yields, and cooking quality on consumer demands (Rice Department, 2016a).

Estimates of rice yield are based on Crop Cutting Experiments (CCE) and farmer interviews which
are conducted close to harvesting. In Thailand, CCE is a reliable rice yield survey and estimation
method used by the Office of Agricultural Economics (OAE). The main purposes of CCE are to
measure rice yield to analyse the current annual statistical data. The CCE method is based on the
farmer household, which is dependent on separating villages into irrigated and non-irrigated
systems and their expected harvesting time. The CCE method identifies a sample village with
three households selected randomly, from which two field sample plots are identified. The CCE
process consists of 3 sections: 1) crop cutting survey (cutting all crop production within the
sampling frame, i.e. rice stems and grains), 2) dyke survey, and 3) gleaning survey. These consist
of measuring wet and dry grain yield over small (e.g. 1 m x 1 m) sampling areas at specific
locations, which are then spatially aggregated to estimate yield at (ultimately) provincial scale.
However, a limitation of using CCE to estimate yield is that the yield estimates are only available

close to harvesting. In contrast, yield estimates earlier in the growing season would be
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preferential for crop management and food security purposes. In addition to rice yield, other
important biophysical variables include plant density, leaf area index (LAI), spikelet per m?, and
biomass accumulation. The plant density, which influences the seeding rate, is optimised to
obtain the maximum yield and affects the kernel dimensions (Alipour Abookheili & Mobasser,
2021; Baloch et al., 2011). The LAI, which is defined as half the green leaf area per unit area
(Zheng & Moskal, 2009), is a biophysical parameter that plays an essential role in the crop’s
photosynthesis and is commonly analysed concerning vegetation foliar cover, biomass, and crop
productivity (Wang et al., 2018). Spikelet per unit area is related to number of filled spikelets
(Takai et al., 2006). Finally, biomass is related to grain yield via harvest index (HI) (Zhang et al.,
2008) and depends on the dry matter partitioning of crop leaves and panicles (Amanullah &
Inamullah, 2016; Kondhia, Tabien & Ibrahim, 2015). Biophysical variables are often used to
estimate yield either through parameterising crop growth or radiative transfer models or by
developing an empirical relationship between the in-situ biophysical variable and remote sensing
measurement (i.e. vegetation indices derived from airborne and satellite spectral (Campos-
Taberner et al., 2016; Haboudane et al., 2004; Peng et al., 2021). Satellite data are routinely used
to derive estimates of vegetation biophysical parameters such as LAl and biomass, and these in
turn have been used to estimate rice yield (Clauss et al., 2018; Liu et al., 2015; Peng et al., 2014;
Peng et al., 2021; Setiyono et al., 2018).

The analysis conducted in Chapter 3 found that mean minimum temperature, mean maximum
temperature and amount of rainfall influence rice productivity. The spatial distribution of rice
production is influenced by rainfall patterns, although areas with low rainfall can mitigate this
uncertainty using an irrigation system. Photoperiod-sensitive rice varieties are closely related in
their structure and dynamics to biophysical variables, with differences in the duration of panicle
emergence among photoperiod-sensitive and photoperiod-insensitive varieties (Collinson, Ellis,
Summerfield, & Roberts, 1992). The majority of rice varieties grown in the study area are
photoperiod-sensitive rice. This chapter focuses on the second research question, which seeks to
understand the influences of irrigation systems on rice biophysical characteristics such as LAl,
biomass and yield and to investigate the relationship between rice biophysical variables at
particular plant growth stages. This is believed to be the first investigation of its kind into the
dynamics of rice biophysical characteristics with irrigation usage and rice variety. To meet these
aims, field experiments were carried out at 21 irrigated and 7 non-irrigated sites in the Chao
Phraya River delta, where measurements of a number of rice biophysical variables were made

through the growing season.
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4.1 Background of study area

The field sites were located in the Chao Phraya River delta (Figure 4.1), which covers 52,323
square km?in central Thailand. This delta comprises 11 provinces and has a tropical monsoon
climate, with an average temperature of 33.8°Celsius and annual rainfall of 16,000 mm per year.
The cultivated rice area is 164 million ha, producing 756.7 million tonnes of rice annually (OAE,

2017).

Thailand RN
e

Sample unit

Size sample plot

I1x1lm . .

Figure 4.1 The Chao Phraya River delta, comprising 11 provinces in Central Thailand. The red
circles on map on the left indicate the locations of the field experiments conducted in

2017.

Figure 4.1 shows the field experiment locations in three representative provinces located in the
important rice-cultivated areas in the central region: Phichit (upper delta), Ang Thong (middle
delta), and Pathum Thani (lower delta). The field experiments were collected in 28 fields, of which
16 were located in Phichit (Pho Tha Le and Ta Pan Hin amphoe), 6 in Ang Thong (Wisetchaichan
amphoe), and 6 in Pathum Thani (Lam Luk Ka amphoe). Phichit contains irrigated and non-
irrigated rice cultivation and field surveys were conducted in 9 irrigated and 7 non-irrigated fields.
This enabled the impact of irrigation on rice biophysical variables to be assessed through the

growing season under similar precipitation and temperature characteristics. However, a key
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variable that influences rice biophysical development throughout the growing season is rice
variety, which has been shown to increase yield by 26-40% and differs from rice ecosystems

(Anisuzzaman, Kader, Ali, Haque, & Halder, 2016; Chhogyel & Bajgai, 2015).

Using the dataset described in Chapter 3, the annual rice productivity between 1981-2015 is

shown in Figure 4.2 for each province studied in this chapter.

a) Average rice yield
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Figure 4.2 Time-series of rice yield and production during 1981-2015 for Phichit, Ang Thong, and

Pathum Thani. a) Average rice yield and b) Average rice production.

Figure 4.2 illustrates the interannual variation in rice productivity and yield between 1981 and

2015 for Pathum Thani, Ang Thong, and Phichit, which have average rice yields of 3.9, 3.3, and 2.9
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tonnes/ha, respectively. Rice yield has steadily increased over time, whereas total rice production

(Figure 4.2b) has remained reasonably constant in Pathum Thani and Ang Thong. Rice cultivation in

Pathum Thani, which has the highest yield, is predominantly (>25%) carried out in irrigated fields

maximising agricultural effectiveness. The average rice production in Phichit is the highest, where

70.3% of agriculture is rice cultivation. However, the yield is the lowest which may result from rice

cultivation being under both irrigated (23.3%) and non-irrigated (76.7%) land management. In Ang

Thong province, rice cultivation is largely irrigated; although the yield was low between 1981-

2000, it improved markedly after this to become comparable to that found in Pathum Thani.

Table 4.1  Characteristics of rice varieties planted in the study area (Rice Department, 2017).
Rice Duration (days) Dominant Rice seed Yield Planting
variety characteristics (mm) (tonnes/ha) area
RD31 111 (flooding) - Straight 10.4x2.6x2 4.6 Irrigated
118 (transplanting) | clumping and 7.4x2.1x1.8 (flooding) | areain
resistant for 4.7 middle
planthopper (transplanting) | region
- Resistant to
bacterial leaf
blight disease
RD41 105 - Straight 10.4x2.5x2 4.5 Irrigated
clumping and 7.7x2.2x1.8 areain
high grain when lower north
milling region
- Resistant to
brown
planthopper and
blast disease
RD47 104-107 (flooding) | - Strength stem, 10.4x2.5x2 5 Irrigated
112 (transplanting) | flag leaves 7.9x2.1x1.8 areain
broadleaf, long- lower north
grain, and region
resistant for
planthopper and
leaf blight disease
- High grain
quality (100%
milled rice)
RD49 102-107 - Straight 4.6 Irrigated
clumping and area
high density of
rice grain
- High grain
quality (mill to
100% rice seeds)
RD57 107-110 (flooding) | - Straight 10.8x2.5x2.1 4.5 Irrigated
117-120 clumping and 7.4x2.2x1.9 area
(transplanting) leaves and strong 7x2x1.8

stem and
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Rice Duration (days) Dominant Rice seed Yield Planting
variety characteristics (mm) (tonnes/ha) area
RD57 medium rice
(Cont.) grain density
- Easily falling
grain

RD61 87 - Straight 6.3 Irrigated
clumping and areain
easily falling lower north
grain and middle
- Resistant to region
brown and
white-backed
planthopper

It is essential to highlight the role of rice varieties in enhancing yield when assessing temporal
trends in rice production. The intensive cropping and continuous planting in a few rice varieties
lead to severe biotic stress and pest outbreaks (Berga & Tamb, 2012; Kumar et al., 2022).
Between 1970 and the present, over 50 varieties of rice have been developed to be a pest- and
diseases-tolerant (Leung et al., 2003; Wang et al., 2005). The traditional rice variety has
developed the modern high-yield varieties (HYVs) for yield improvement in both the wet and dry
seasons (Chaturvedi, 2005; Cheng et al., 2007; Qingquan, 2002). Table 4.1 lists the main rice
varieties grown in the study area, their dominant characteristics, and their typical yield. All
varieties are designed for irrigated areas, whereas some varieties, such as KDML105 (or jasmine
rice) and RD6, are designed for non-irrigated cultivation (Rice Department, 2017). Rice varieties
were developed to be resistant to insect pests such as the planthopper and diseases, which during
severe outbreaks can be responsible for losses of up to 4 tonnes/ha (Heong et al., 2015) and are
designed to increase yield potential by rice genetic improvement. It is clear from Table 4.1 that
yield, and the length of the growing season can differ by a factor of 1.4 as a function of rice
variety, which will directly impact the final provincial-level yield estimates. The table also
highlights the influence of the rice planting method (i.e. flooding or transplanting), which

influences the growing season length and which is influenced by precipitation patterns.

4.2 Methodology

421 Primary data

The primary data used in this chapter were collected during field experiments carried out during
the wet season (May to October) in 2017, covering the main growth stages: seeding (in different
cultural practices- both direct sowing and transplanting), tillering, panicle, flowering, and

harvesting (Figure 4.3). The field surveys involved interviewing farmers to gain information on
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their planting date, rice variety, fertiliser usage, post-harvesting yield, and irrigation location. The
latter was then compared to irrigation boundaries derived from the Royal Irrigation Department
(RID), which was used to identify sample site locations in irrigated or non-irrigated areas initially.
In addition to interviewing farmers, several rice biophysical variables were measured throughout
the growing season in large and homogenous fields. The latter requirements were to ensure
sufficient satellite pixels fell within the fields with an average paddy size of 0.61, 0.86, and 2.9 ha

in Phichit, Ang Thong, and Pathum Thani, respectively.

Harvesting » 0 SO B
Flowering mme o
o]
oo
3 Panicle n e
[72]
Tillering % = [
Province
@® AngThong
B Pathum Thani
@ Phichit

Seedling DR o §
01June2017 01July 2017 01 August 2017 01 September 2017

Field survey date

Figure 4.3  Field survey dates in Phichit, Ang Thong and Pathum Thani.

4.2.2 Research methodology

This chapter aims to investigate the variation in rice biophysical variables through the growing

season from the seeding to harvesting stage.

4221 Definition of rice phenology and sampling units

The field surveys were carried out throughout the growing season to measure rice biophysical
variables at different growth stages. This study adopted the standardised scale of rice growth,
‘Biologische Bundesanstalt, Bundessortenamt and CHemische Industrie (BBCH)’, from the
International Rice Research Institute (IRRI), which is measured phenological development
information and relevance with satellite monitoring (Yuzugullu, Erten, & Hajnsek, 2015). Rice
cultivation in Thailand can be single, double, or triple cropped, which differs among regions. The
rice phenological cycle varies in length from 83 to 117 days, although the exact duration depends
on rice variety (Table 4.1) and environment (Miranda et al., 2009; Li et al., 2018). Therefore, one

of the criteria used in selecting the field sites was that the planting date among the paddy fields
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enabled biophysical measurements to be made in all five growth stages. These growth stages are

seeding (1-20 days), tillering (21-40 days), panicle (41-70 days), flowering (71-90 days), and

harvesting (90-120 days), as shown in Table 4.2.

To ensure that the field sites were representative of rice cultivation in the region, it was necessary

to exclude sample sites where hybrid rice varieties were grown that have short growing seasons to

avoiding floods and for higher yields, and where rice was uprooted (called ‘lodging’) due to the

occurrence of severe weather before harvesting. Six sample sites were found to be either lodging

(PC6 and PC8), flooding (AT6), or to contain a hybrid rice variety (PC4, PC16, and PT6); all of which

distorted the length of the growing season and were therefore excluded from our analysis.

Table 4.2  Rice phenological stages
Growth phase Study stage Example of paddy Name
Vegetative Seeding Germination
Leaf development
Tillering Tillering
Stem elongation
Booting
Reproductive Panicle Heading
Flowering Flowering
Maturity Development of grain
Ripening
Harvesting Senescence

Transplanting

Transplanting, recovery (rice)

4.2.2.2

Measurement of rice biophysical variables

At each field site, several measurements were made, including water depth, planting density,

plant height, panicle length, above and below canopy Photosynthetically Active Radiation (PAR),

canopy leaf area index (LAIl), leaf chlorophyll content, wet and dry biomass, and post-harvest

yield. The measurements at each field varied depending on the phenological stage, as indicated in

Figure 4.4, with the measurements made listed in each corner.
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e) Harvesting

(90-120 days)

Seeding Tillering Panicle Flowering Harvesting
- General data on | - Stem density - Stem density - Stem density - Stem density
planting - Water depth - Water depth - Water depth - Water depth
- Stem density - Height - Height - Height - Height
- Water depth - PAR/LAI - Panicle length - Panicle length - Panicle length
- Chlorophyll content (if) - PAR/LAI - PAR/LAI
- PAR/LAI - Chlorophyll content | - Chlorophyll content
- Chlorophyll content | Biomass - Biomass
- Biomass (if) - Yield
- Moisture content
Figure 4.4 Field and plant measurements made at each growth stages.

In the seeding stage, measurements of stem density, water depth, and where possible, leaf
chlorophyll content were made. In the remaining growth stages, measurements of stem density,
water depth, height, above and below PAR, LAI, chlorophyll content and biomass were obtained

as the canopy was more developed (Figure 4.4).

Rice height was measured to quantify the growth rate; it was measured from 3 randomly selected
plants and defined as the height from the soil or water surface to the tip of the highest leaf.
Water depth was measured from the soil to the water surface at two locations per sample plot
for averaging. Due to variations in the paddy field surface topography, the water depth varies
spatially and to capture this, several measurements are required. The water depth during the
early growth stage depends on the planting method and influences the remotely sensed radiative
measurements, mainly when the canopy is less dense. The PAR, which covers the visible spectrum
(400-700 nm) where plants absorb solar energy for photosynthesis, was measured by taking
ceptometer measurements using an AccuPAR instrument ~5 cm above the canopy and ~5 cm
above the soil or water surface. The average PAR, measured under diffuse sky conditions where
possible to avoid underestimation (Fang et al., 2014), was calculated for each field using 4 or 5
measurements made at each sampling location, of which were 4 in each paddy field (a totally 16-
20 measurements per field). The PAR measurements were then converted to leaf area index (LAI)
using the approach described by Samanta et al. (2019). The fraction of photosynthetically active
radiation transmitted through the crop canopy is related to the leaf distribution and the leaf area

within the rice canopy. The PAR measurements were used to calculate the LAl using the approach
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proposed by Norman-Jarvis (Norman, 1974). The extinction coefficient (K) describes the
proportion of radiation absorbed by the canopy at a specific solar zenith angle (0) and leaf angle

distribution (x).

(x%+ tan? q)1/2
T x+1.744 (x+1.182)0733

Equation 4.1

The leaf angle distribution is a key canopy structural parameter that influences the radiative
(reflectance and transmittance) properties of a canopy, and is often assumed to be spherical

(Vicari, Pisek, & Disney, 2019). Under this case, K simplifies to:

K = ! Equation 4.2
2cosq

The leaf area index (L), which describes the one-sided green leaf area per unit ground surface area
(m? m?), is then calculated via:

(G Ll

A(1-0.47'b) Equation 4.3

where /b (beam fraction) is the ratio of the above and below canopy PAR, 7 is the probability
that a ray will penetrate the canopy, and A is leaf absorptivity, which is set to 0.9 following the

approach of conversion factor in healthy green foliage (Barclay & Goodman, 2000).

a) Above PAR m

h.-.

Figure 4.5 Above (a) and below (b) canopy PAR measurement in the flowering stage.
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Measurements of leaf chlorophyll content were made using a MultispeQ chlorophyll meter for 3 -
4 plants per sample plot (12-16 measurements in total). The MultispeQ indirectly estimates
chlorophyll concentration using a standardised calibration and connecting with the PhotosynQ
network (Kuhlgert et al., 2016). Finally, the wet and dry plant biomass, comprising of the total
plant biomass, leaf-stem, and grain biomass, was measured through destructive sampling
conducted over a1 m x 1 m area where the biomass was harvested and measured immediately to
prevent moisture loss. After removal, the wet biomass weight was separately measured for the
rice stems and grains (Figure 4.6). For the dry biomass measurements, the moisture was removed
through oven drying prior to conducting correlation analysis with other rice biophysical variables
or remotely sensed data (Cheng et al.,2017). This process was repeated for each paddy field

individually.

Figure 4.6 Destructive biomass measurement of a 1 m x 1 m sample plot.

The rice yield estimates were determined using the CCE method, which is used to estimate rice
yield per unit area at district and regional levels by government agencies (FAO, n.d.). The rice stems
and grains were dried separately at 80° Celsius for 48 hours and then weighed to determine the
dry weight of the leaf, stem, and grain materials. The measurement locations in each field were
recorded using a handheld GPS (WGS 84, Zone 47North) to locate them in the satellite data. The
measured rice biophysical data was averaged at each of the four measurement locations in each
field. Those where the standard deviation (S.D.) was > +/- 1 S.D. were assumed to be in error and

removed, and the average recalculated.

Pearson’s correlation coefficient was used to assess the relationship between the rice biophysical
variables as a function of both the individual growth stage and overall growth stages (P = 0.05).
The analysis was further stratified according to irrigated and non-irrigated methods. Finally, an

analysis of the correlation between the rice biophysical variables and rice yield is carried out since
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this research aims to develop a method which facilitates yield estimation using remotely-sensed

data (discussed in Chapter 5).

Field experiment

- Water depth
- Rice height
- PAR/LAI

- Chlorophyll content

- Biomass
- Moisture content
- Yield

Farmer interview

and S.D.

- Planting date

- Rice variety

- Fertiliser input

- Yield

- Irrigation method

Calculate average and S.D. of rice biophysical

Recalculate average |[-----------=------------- , Yes

Analyses average and S.D. of rice biophysical

Divides with rice variety

Irrigation

Divides with irrigation system |---| houndary

Analyses Pearson correlation at P-value 0.05

Selects significant rice biophysical and stage

on rice yield estimation

Figure 4.7 Flowchart illustrating the analysis.

4.3 Results

43.1 Rice planting characteristics

In the study area, the fields sampled contained eight main photoperiod-sensitive rice varieties

(Figure 4.8) and one photoperiod sensitive variety (Khao Dawk Mali105 or called HomMali105).

One characteristic of the HomMali105 variety is its long growing period of 115 - 120 days.
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Province
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Figure 4.8 Rice varieties in study area: Phichit (blue), Ang Thong (orange), and Pathum Thani
(grey).

As evident from Figure 4.8, many rice varieties are grown in irrigated and non-irrigated fields.
Phichit is the only province that contains both irrigated and non-irrigated areas, where most (6)
field sites were irrigated and contain the RD41 (6) rice variety (see Table 4.1 for more detail).
However, the non-irrigated areas contained a more significant number of rice varieties (6). Ang
Thong province contained four rice varieties in five sample fields, whilst in Pathum Thani there
were four rice varieties across five sample fields. In all three provinces, the planting date varied

between the 4" and 24" of May (see Table 4.3).

Table 4.3  Planting date of sampling fields in Phichit (PC), Ang Thong (AT), and Pathum Thani (PT).
Sample unit Planting date Irrigation system Rice variety Field size (Ha)
PC1 8 May 2017 Irrigated RD41 0.61
PC2 16 May 2017 Irrigated Phitsanulok2 0.22
PC3 5 May 2017 Irrigated RD41 0.93
PC5 10 May 2017 Irrigated RD41 0.63
PC7 12 May 2017 Irrigated RD61 0.84
PC9 12 May 2017 Non-Irrigated Phitsanulok?2 0.25
PC10 4 May 2017 Non-Irrigated Phitsanulok2 0.61
PC11 10 May 2017 Non-Irrigated RD49 0.35
PC12 18 May 2017 Non-Irrigated RD49 0.44
PC13 5 May 2017 Irrigated RD41 0.25
PC14 18 May 2017 Non-Irrigated RD13 1.52
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Sample unit Planting date Irrigation system Rice variety Field size (Ha)
PC15 21 May 2017 Non-Irrigated RD31 0.67
AT1 24 May 2017 Irrigated RD41 0.95
AT2 22 May 2017 Irrigated Phitsanulok?2 1.15
AT3 24 May 2017 Irrigated RD41 1.10
AT4 24 May 2017 Irrigated RD49 0.65
AT5 20 May 2017 Irrigated RD47 0.46
PT1 8 May 2017 Irrigated HomMali105 2.19
PT2 8 May 2017 Irrigated RD47 0.98
PT3 6 May 2017 Irrigated RD49 1.78
PT4 20 May 2017 Irrigated RD49 8.09
PT5 4 May 2017 Irrigated RD57 1.46

Average field size in irrigated area (ha) 1.39
Average field size in non-irrigated area (ha) 0.64

Table 4.3 illustrates the average planting date in Phichit, Ang Thong, and Pathum Thani was 11,
22" and 9" May, respectively. In Phichit, the average of planting date varied by four days on
average between irrigated and non-irrigated areas. The average field sizes in Phichit, Ang Thong, and
Pathum Thani were 0.61, 0.86, and 2.9 ha, respectively, while irrigated areas (1.39 ha) were on
average larger than non-irrigated areas (0.64 ha). The sample field sites contained two rice
cropping patterns, direct seeding and transplanting. Direct seeding involves planting rice seeds
directly into the paddy, either by ploughing or harrowing depending on the level of land
preparation. Most farmers prepare pre-germinated seeds by soaking the rice seeds for one day,
incubating them for two days, and then sowing them into the flooded or mud field (‘wet direct
seeding’), while some sow into dry soil (‘dry direct seeding’). Transplanting involves soaking rice
seeds for 24 hours until incubating for 48 hours until root emergence, then sowing the rice
sprouts into dry or wet paddy fields. Irrespective of the planting method, rice sowing will either
be conducted manually or by machine, which influences the stem density. In the study area, most
farmers adopted direct seeding in well-puddled seedbeds or shallow standing water. The variation

in agricultural practices employed in the study area is illustrated in Figure 4.9.
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a) Rice cropping pattern :B“n',":‘!’:;“"; b) Paddy field characteristics when seeding
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Figure 4.9 Rice cropping pattern in study area derived from farmer interviews.

Figure 4.9 indicates that the majority (82%) of the sampled fields utilised direct wet seeding, and
therefore most fields are flooded (85%). Mechanisation, applied to enhance agricultural
productivity in pre- or post-harvest, accounts for 50%, 66%, and 83% of rice planting in Phichit,

Ang Thong, and Pathum Thani, respectively.

Most of the measurements collected in the field sites are rice biophysical variables (e.g. stem
density, height, panicle length, PAR /LAI, chlorophyll content, wet and dry biomass, moisture content
and yield), although measurements of water depth were also made, as water is released into the
paddy fields for rice germination and then drained at the start of the panicle stage. Water depth
was measured as it provides the background signal in remotely sensed measurements in the early
growth stages and influences the amount of vegetative material visible above the water surface.
The presence of water influences optical remote sensing measurements by reducing reflectance
by up to 28% depending on view zenith angle due to changes in the surface anisotropy (Sun et al.,

2017).
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Temporal variations of water depth and rice height are analysed and presented in Figure 4.10 and
Table 4.4. The average rice height in the tillering, panicle, flowering, and harvesting stages was
49.4, 80.9, 97.2 and 98.9 cm, respectively, and demonstrate the rapid development of height in
the panicle stage. The average rice height in Pathum Thani in the harvesting stage was higher than
in other provinces due to the use of the HomMali105 variety, which is taller than others. When
assessed as a function of the irrigation method, the difference in rice height between irrigated
and non-irrigated rice increases by 0.64, 1.22, 3.48, and 6.54 cm in the tillering, panicle, flowering,
and harvesting stages, respectively. The average water depth in the seeding, tillering, panicle,
flowering, and harvesting stages are 2.83, 4.69, 4.45, 3.66, and 1.5 cm, respectively. Surprisingly,
the water depth difference between irrigated area and non-irrigated area reveals only minor
variation of between 0.5 — 2.5 cm through the growing season. However, there is no water depth
in non-irrigated areas during the flowering and harvesting stage. The slight difference in water
depth is partly due to the field sites being in regions where precipitation is high (see Chapter 3,
Figure 3.1).
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Figure 4.10 Average rice height (cm), water depth (cm), and height difference between rice
height and water depth (cm). a) Overall provinces and different irrigation system,

b) Phichit, c) Ang Thong, and d) Pathum Thani.
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Table 4.4  Summary of rice height, water depth, and difference in rice height and water depth at different rice phenological stages.
Irrigation Seeding Tillering Panicle Flowering Harvesting
system Water Rice Water | Absolute Rice Water | Absolute Rice Water | Absolute Rice Water | Absolute

depth height depth height height depth height height depth height height depth height
(cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm)

Overall

Mean 2.83 49.48 4.69 44.79 80.92 4.45 76.47 97.2 3.66 93.54 98.91 15 97.41

S.D. 0.85 2.47 1.07 2.36 241 0.84 2.87 1.77 0.78 1.83 1.57 0.58 1.52

Irrigated

Mean 2.44 49.66 4.89 44.77 81.52 3.94 77.58 96.25 4.34 91.91 97.16 1.65 95.51

S.D. 0.9 2.25 1.39 2.28 2.37 0.94 2.82 2.2 0.94 2.17 1.86 0.79 1.77

Non-irrigated

Mean 3.87 49.02 4.15 44.87 79.3 5.82 73.48 99.73 1.82 97.91 103.6 1.13 102.47

S.D. 2.11 7.27 1.41 6.63 6.64 1.78 7.82 2.79 1.13 2.89 2.07 0.44 1.9

¥ 491deyd
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4.3.2 Rice biophysical variable measurements
43.2.1 Stem density

Stem density influences the competition between rice plants and, along with the rice height and
variety, can influence rice yield through competition for sunlight (Liu et al., 2017; Phan et al., 2017).
Therefore, the appropriate method of determining plant population is to manually count total number
of rice stems. The number of rice stems per unit area (1 m x 1 m) was measured at each growth stage
using a quadrat divided into nine equal areas (Figure 4.9), with the inside diameter of 33.3 cm x 33.3

cm per small grid, as shown in Figure 4.11.
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Figure 4.11 Rice stems density in all provinces (a), Phichit (b), Ang Thong (c), and Pathum Thani (d).

Stem densities are most remarkable in the seeding and panicle stage and vary between 250 and
500 stems m, which reduces considerably to the harvesting stage (120 -150 stems m™). Stem
density is higher in irrigated than the non-irrigated areas in most phenological stages, but the
difference is reduced in the seeding stage to ~ 50 stems m™. The results indicate that irrigated
areas have higher rice stem density, although it is yet to be seen how this translates into other
biophysical parameters. The dramatic decrease in stem density between the tillering and

harvesting stages is due to the development of flag leaves or uppermost leaves in the grain-filling
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stage, which increases the competition for light between plants and ultimately reduces the

number of plants (Whaley et al., 2000).

4.3.2.2 Dynamics of photosynthetically active radiation (PAR) and leaf area index (LAI)

The leaf area index (LAI) is an important variable in ecosystem function which is related to plant
photosynthesis, respiration, and transpiration of crops (Gower, Kucharik, & Norman, 1999) and
characterises the amount of green leaf material within the canopy per unit ground area (1 mx 1
m). It is now routinely estimated using remotely sensed data and is an essential climate variable
(ECV). Furthermore, the LAl is a crucial parameter in agronomic research that is used for crop
growth monitoring (Ali et al., 2020; Daniela Stroppiana et al., 2006) and dynamic simulation
between water and nitrogen diagnosis in different irrigation system (Adeluyi et al., 2021; Liu et al.,
2018). Estimates of LAl were derived using AccuPAR indirect optical measurements (SunScan
ceptometer), which measure the canopy gap fraction or transmittance. Using the ceptometer, five
reading were made under the canopy and one above the canopy, which measures the incident
radiation (Casa, Upreti, & Pelosi, 2019). The LAl is derived from the PAR measurements using

Equations 4.1-4.3 and measured from the tillering to harvesting stages (Table 4.5).

Table 4.5 LAl converted from PAR measurement.

Irrigation system Statistic LAI (m? m?)
Tillering Panicle Flowering | Harvest
Overall Average 2.36 3.65 4.3 3.89
S.D. 0.16 0.23 0.23 0.19
Irrigated Average 2.34 3.55 4.22 3.86
S.D. 0.18 0.24 0.28 0.21
Non-irrigated Average 2.39 3.93 4.53 3.98
S.D. 0.37 0.58 0.41 0.43

Across all sites the LAl peaked in the flowering stage with an average LAl of 4.3 m? m2 in all sites and
4.22 and 4.53 m? m2in irrigated and non-irrigated areas, respectively. The significant increase in
LAl in the flowering stage is due to the production of flag leaves occurring in the transition from
crop growth to grain production through their increased photosynthetic capacity (Acevedo-Siaca,
Coe, Quick, & Long, 2021). The LAl in non-irrigated areas is only marginally higher than that found
in irrigated areas, which also typically has a more significant standard deviation. It should be noted
that integrated within the results shown in Table 4.5 is the influence of rice variety and their
differing structural characteristics. This is illustrated in Figure 4.12, which shows the temporal

dynamics of LAl as a function of the rice variety.
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Figure 4.12 PAR-derived LAl for all field sites highlighting the influence of rice variety on the

magnitude and seasonal evolution of LAI.

It is evident from Figure 4.12 that rice variety influences both LAl magnitude and its temporal
dynamics, which has clear implications for estimating LAl using satellite observations. Overall field
sites, the average LAl in non-irrigated areas was higher (3.7 m? m) than in irrigated areas (3.55
m? m2). In the irrigated area, the RD47 rice variety LAl peaks in the panicle stage whilst the RD41
peaks in the flowering stage, and this difference is due to the shedding of rice leaves. This
illustrates the variability in the structural characteristics of different rice varieties even though
they were planted at the same time and under the same conditions. Nicknejad et al. (2009) noted
that the variation in LAl from different rice varieties occurred due to differences in rice ripening.

Only two rice varieties were planted in irrigated and non-irrigated areas, both found in two
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sampling fields (Figure 4.8). The LAl of the Phitsanulok2 variety was greater in non-irrigated areas
from the panicle (DOY 200) to harvesting (DOY 229) stages. The LAl of RD49 is higher in non-
irrigated areas during the tillering (DOY 179) and panicle (DOY 200) stages but lower in the
flowering (DOY 223) and harvesting (DOY 231) stages compared to LAl in irrigated areas.

The main rice variety in the study area is RD41 is found only in irrigated areas and has a peak LAl
(4 m?m2) in the flowering stage (DOY 219). When analysed at the provincial level, the variation in
the temporal dynamics of LAl was related to differences in agricultural practices, weather
conditions, and rice variety. It is clear that LAl is strongly linked to rice variety and possibly the
irrigation system used, with peaks in LAl occurring at different growth stages according to variety.
Increasing rice height and LA, especially the heading stage, improved rice yield on short-duration
rice variety in tropical Asia by increasing the crop growth rate (CGR), net assimiliation rate (NAR),
and mean LAl in the reproductive stage (Zhou et al., 2021). In all varieties, the maximum LAl was
found in the flowering stage when rice plants develop grains before decreasing through to the
harvesting stage. Similar seasonal dynamics in LAl and equally large variations in LAl magnitude
were also found by Fang et al. (2014). They found that the AccuPAR-derived LAl was
underestimated due to the influences of stem and yellow leaf area index, particularly at the end
of the growing season. The lower LAl in the harvesting stage is due in part to leaf senescence
which is detected as plant area index (PAIl) by some methods (e.g. hemispherical photos), and
some leaf fall as even the PAl reduces in this stage (Fang et al., 2014). It is also relevant to
consider the influence of stem density (Figure 4.11), which was found to peak in the tilltering
stage before reducing through the growing season in response to increased competition for light.
In contrast, the LAl increases through the growing season and broadly peaks in the flowering
stage when the total dry matter is also high (Moradpour et al., 2011). Most crops integrate the LAI
into crop simulation models for yield estimation (Curnel et al., 2011; He et al., 2017; Zhao & Pei,

2013).

4.3.2.3 Chlorophyll content

Chlorophyll is a photosynthetic pigment that controls leaf photosynthetic capacity and plays an
important role in the photosynthesis process and vegetation growth. Leaf chlorophyll
concentration varies among rice leaves during the growing season, and studies have found a strong
correlation between chlorophyll concentration and rice yield (Ramesh et al., 2002). Therefore,
chlorophyll concentration was measured using an in-situ optical technique with MultispeQ during
different growth stages. The results for all study sites and irrigated and non-irrigated sites are

shown in Table 4.6 and Figure 4.13.
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Table 4.6

Chlorophyll content as a function of growth stage for all field sites, irrigated and non-

irrigated sites.

Irrigation system Statistic Chlorophyll content (umol m?)

Tillering Panicle Flowering | Harvest

Overall Average 28.46 34.27 41.06 27.93
S.D. 2.63 1.05 0.75 1.26

Irrigated Average 25.28 35.05 41.27 27.32

S.D. 3.19 1 0.85 1.58

Non-irrigated Average 36.94 32.21 40.5 29.55

S.D. 2.39 2.77 1.68 1.97

Table 4.6 illustrates the variation in chlorophyll content with growth stage and according to the
irrigation system. Leaf chlorophyll content peaked during the flowering stage before decreasing in
the harvesting stage, which matches the findings of Ata-Ul-Karim et al. (2016) and has similar
dynamics to the LAI (Table 4.5). The variation in the average chlorophyll concentration as a
function of irrigation is inconclusive, with rice cultivated in irrigated areas having higher
chlorophyll concentrations in the panicle and flowering stages. However, there is a more excellent
range of values in the non-irrigated sites.

a) Chlorophyll content over all field sites
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c¢) Chlorophyll content in Ang Thong
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d) Chlorophyll content in Pathum Thani
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Figure 4.13 Chlorophyll content stratified according to rice variety and irrigation system. a)
Chlorophyll content according to irrigation system (all sites), b) Phichit, c) Ang Thong
and d) Pathum Thani.

The range of chlorophyll concentration in the irrigated and non-irrigated areas is influenced by
the rice variety (Figure 4.13a), particularly in the tillering stage when the chlorophyll content
varied by a factor of ~4. The chlorophyll concentrations found in irrigated and non-irrigated rice
are broadly similar. However, the range of values is more excellent in irrigated areas, which have
a more defined profile, and which show a significant decrease in the mature stages. Two rice
varieties, Phitsanulok2 and RD49, are grown in irrigated and non-irrigated areas. The former has
quite different chlorophyll values in the tillering stage, with a difference of 31.86 pmol m, whilst the
panicle, flowering, and harvesting stages are similar, at 1.26, 0.88, and 4.15 umol m?,

respectively. In both irrigated and non-irrigated areas, the chlorophyll concentration of RD49
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displayed large fluctuations but tended to have higher concentrations when irrigated, with an
average difference of 3.95 umol m. On a provincial level, the upturned bowl shape of chlorophyll
concentration found in the irrigated areas is more apparent relative to the flatter profiles in non-
irrigated areas. Ata-Ul-Karim et al. (2016) also found considerable seasonal variation between two
rice varieties but also found that nitrogen fertilisation had an enormous impact on chlorophyli
concentration, although a more modest impact on the temporal trend. The photosynthetic light
use efficiency (LUE) refers to the efficiency of a plant’s use of the absorbed radiation energy to
produce biomass (Quero et al., 2019) and is influenced by the leaf chlorophyll concentration

(Slattery et al., 2017; Zheng et al., 2021).

4.3.2.4 Wet and dry biomass

Theoretically, the above-ground biomass (AGB) is an advantage for rice yield estimation as it
reflects rice growth status. Here, the AGB explore their potential for yield estimation derived from
the ground- based and satellite platforms. After cutting rice roots, rice samples were oven dried
until constant weight. Three main growth stages where wet and dry biomass was measured are

the panicle, flowering, and harvesting stages (Figure 4.14).

a) Mean of wet and dry biomass in overall study area
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b) Mean of wet and dry biomass in different irrigation systems
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Figure 4.14 Wet and dry biomass. a) Mean of total wet and dry biomass in overall study area, b)

Mean of total wet and dry biomass in different irrigation systems.

Figure 4.14 illustrates the variation in wet and dry rice biomass in the study area. Analysis of the
entire dataset in the panicle stage indicates wet and dry biomass (in brackets) values of the total
material, only the stems, and only the grain was 41.53 (14.44), 34.08 (10.82), and 7.44 (3.62) g m?,
respectively. Biomass increases through the flowering stage, peaking in the harvesting stage with
wet and dry biomass (in brackets) values of 133.48 (48.02), 99.33 (26.29), and 33.77 (21.74) g m? for
the whole rice plant, stems, and grains, respectively. This differs from the LAI, which was lower in
the harvesting stage due to the influence of senescent (non-green) leaves that are not
photosynthetically active. Irrigation systems influence on plant biomass, with the biomass in
irrigated areas being 21.5 g m greater than that found in non-irrigated areas in the flowering

stage and 11.6 g m2 in the harvesting stage. In the case of dry biomass, the differences between
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irrigated and non-irrigated areas were 4.88 and 3.05 g m2in the flowering and harvesting stages,
respectively. A more excellent range in biomass was found in each growth stage in irrigated
systems, particularly in the harvesting stage, which varied between 50-250 g m2and 100-180 g m™
in irrigated and non-irrigated areas, respectively. The influence of rice variety on wet and dry

biomass in the overall study area and different irrigation systems is shown in Figure 4.15.
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Irrigation: Rainfed
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Figure 4.15 a) Wet and dry biomass in overall study area, b) Wet and dry biomass in the different

irrigation systems by specific rice variety.

Figure 4.15 illustrates the variation in wet and dry biomass for different rice varieties. Rice
biomass in irrigated areas was typically higher than that in non-irrigated areas in the flowering
stage, with average wet total biomass and dry biomass in brackets 121 (34) and 100 (29) g m?,
respectively. In comparison, rice biomass in irrigated areas was lower than biomass in the non-
irrigated areas in the harvesting stage with average wet total biomass and dry biomass in brackets
130 (49) and 142 (46) g m?, respectively. Even the grain biomass is higher in the irrigated areas
(34 g m) than in non-irrigated areas (32 g m?) (He et al., 2022). Sufficient water is impacted on
grain development. The grain panicle seems to initiate in the panicle stage for irrigated areas
while the grain occurs in the flowering stage for non-irrigated areas. The biomass is highest in the

harvesting stage, whilst LAl or stems density reduce in the same growth stage (Choudhury et al.,

2007; Li et al., 2020). The reason for lower LAl after flowering is saturation and increased non-

photosynthetic active plant tissue (Jonckheere et al., 2004; Leblanc & Chen, 2001). Typically, wet
biomass varied between 41.5 and 130.3 g m™2in irrigated areas and 99.8 and 141.9 g m2 in non-
irrigated areas. The wet biomass for RD49 and Phitsanulok?2 rice varieties was broadly similar,
with an average difference of 25 and 1.3 g m2in irrigated and 10.7 and 43.2 g m2 in non-irrigated
areas, respectively. Figure 4.15 illustrates the variation in rice biomass by growth stage but also
shows that different rice varieties have different temporal dynamics. For example, the biomass
for RD31 (Figure 4.15a) increased through the growing season, whilst RD49 decreased in the

harvesting stage. As noted with the LAI, the influence of rice variety on biomass has implications
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for using EO data to estimate rice biophysical variables. The minimum and maximum wet biomass
is 14.27% and 215.45% of the average total wet biomass (119.13 gm2), whilst the minimum and
maximum dry biomass are 23% and 215.36% of the average total dry biomass (38.65 g m™).
Knowledge of the rice variety being grown would help reduce this uncertainty, and this variation
should be taken into account when collecting field data for use in developing and validating EO-

derived biophysical parameter estimates.

4.3.2.5 Rice yield

The results reveal that irrigated and non-irrigated areas have similar productivity where the average
rice yield was 4.87 tonnes/ha and 4.78 tonnes/ha, respectively. When accounting for all
agricultural land under irrigated and non-irrigated rice production, the total production would be
787,794 tonnes in irrigated area and 542,516 tonnes in non-irrigated area with a difference of

~245,000 tonnes. These results show that there is a yield gap among different irrigation systems.

Irrigation

Eirrigated
W Non-irrigated

Riceyield (ton/ha)
N

Phichit ArgThong PathumThani

Province

Figure 4.16 Rice yield separate by the irrigation system and province

433 Correlation on rice biophysical variables

The following section investigates the correlation among rice biophysical variables at each growth
stage and overall growth stage, to determine which might be the best predictor of rice yield and
the extent to which this depends on irrigation system. Doing so allowed different stages of growth
would allow assessment of the potential to estimate yield using a particular biophysical
parameter earlier in the growing season and therefore aiding early yield prediction. The rice

biophysical variables assessed include stem density, height, water depth, awns length, LAI, wet
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and dry biomass (total, stem, and grain), and yield. The selected results of the significance
statistical analysis are presented in Table 4.7 and that the rest of the results can be found in

Appendix E.

Table 4.7  Correlation between yield and rice biophysical variables as a function of growth

stage.
Area Rice variable Correlation Stage
Seeding | Tillering | Panicle | Flowering | Harvesting | Overall
Overall Height r NA 0.37* 0.07 -0.19 -0.1 0.03
area sig. (0.09) (0.77) (0.4) (0.66) (0.78)
Wet grain r NA NA 0.95 0.45%* 0.30 0.27*
biomass sig. (0.21) (0.04) (0.17) (0.07
Dry grain r NA NA 0.94 0.43** 0.28 0.21
biomass sig. (0.22) (0.05) 0.21 0.16
Irrigated | Stem density r 0.45* 0.23 -0.39 -0.46* 0.2 0.08
Area sig. (0.08) | (0.39) | (0.16) (0.08) (0.46) (0.47)
Wet grain r NA NA 0.95 0.47* 0.37 0.31%
biomass sig. (0.21) (0.08) (0.15) (0.08)
Non- Height r NA 0.74* 0.35 -0.37 0.81** 0.19
irrigated sig. (0.09) (0.5) (0.47) (0.05) (0.38)
area Chlorophyli r NA -0.38 -0.8 -0.58 -0.09 -0.36*
content sig. (0.46) (0.6) (0.22) (0.86) (0.08)
Chlorophyli r NA -0.38 -0.8 -0.58 -0.09 -0.36*
content sig. (0.46) (0.6) (0.22) (0.86) (0.08)
Wet total r NA NA NA -0.44 -0.97** -0.58**
biomass sig. (0.38) (0.00) (0.05)
Wet stem r NA NA NA -0.57 -0.95%* -0.69**
biomass sig. (0.24) (0.00) (0.01)
Dry total r NA NA NA -0.23 -0.97** -0.32
biomass sig. (0.66) (0.00) (0.31)
Dry stem r NA NA NA -0.63 -0.93** -0.69%*
biomass sig. (0.18) (0.00) (0.01)

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed)
NA No measurement

The correlations presented in Table 4.7 illustrate that none of the rice biophysical variables
significantly correlated in the seeding, tillering or panicle stages. When assessing the correlation
using data from all areas, only wet grain biomass in the flowering stage had a significant but weak
correlation (r = 0.45). The situation was similar in irrigated areas, where no parameters had a
significant relationship with the yield at any growth stage. In non-irrigated areas, significant
correlations were found between rice yield and total wet biomass, wet stem biomass, total dry
biomass, and dry stem biomass: -0.97, -0.95, -0.97, and -0.93, though all in the late stages of the
growing season. The results indicate that none of the rice biophysical variables offered a
consistent way to estimate rice yield, particularly earlier in the growing season, which would be
advantageous for crop management and food security. However, as evident from previous
analysis, the influence of rice variety could be significant, and therefore it is vital to conduct this

analysis as a function of the two rice varieties with the most samples and irrigation method.
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in irrigated areas.

Chapter 4

Correlation between yield and rice biophysical variables as a function of rice variety

Rice variable Correlation | HomMali | Phitsanulok2 RD41 RD47 RD49 RD57 | RD61
105
Chlorophyll r £ 0.21 -0.11 -0.17 -0.52* ¢ ¢
content sig. (0.63) (0.61) (0.69) (0.08)
Wet total r 0.29 0.64** | -0.54 0.19 ¢ ¢
biomass sig. (0.71) (0.02) (0.46) (0.72)
Wet stem r 0.26 0.65** | -0.52 0.17 ¢ ¢
biomass sig. (0.74) (0.02) (0.48) 0.75)
Wet grain r 0.4 0.54* -0.29 0.16 ¢ ¢
biomass sig. (0.6) (0.06) (0.72) (0.76)
Dry total r 0.36 0.63** | -0.39 0.25 ¢ ¢
biomass sig. (0.64) (0.02) (0.61) (0.63)
Dry stem r 0.37 0.7** -0.52 0.3 ¢ ¢
biomass sig. (0.64) (0.01) (0.48) (0.56)
Dry grain r 0.19 0.5* -0.22 -0.06 ¢ ¢
biomass sig. (0.81) (0.08) (0.79) (0.92)

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed)

NA No measurement

Table 4.8 demonstrates the relationship between rice yield and other rice biophysical variables in

irrigated areas (i.e. RD41 (6 sample units), RD47 (2 sample units), RD49 (3 sample units),

Phitsanulok2 (2 sample units), and RD57/RD61/HomMali105 (1 sample unit each)). Again, the

results reveal the strongest correlations with RD41 variety for total wet biomass (r = 0.64), wet

stem biomass (r = 0.65), total dry biomass (r = 0.63), and dry stem biomass (r = 0.7), which has the

most samples. The findings for non-irrigated areas are presented in Table 4.9 but have poor

relationships between yield and rice biophysical variables.

Table 4.9

areas for different rice varieties.

Correlation coefficient between yields with rice biophysical variables in non-irrigated

Rice variable Correlation Phitsanulok2 RD13 RD31 RD49
Wet total biomass r 0.2 £ £ -0.97**
sig. (0.8) (0.03)

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed)

NA No measurement

The correlation coefficients are weak and variable for all biophysical parameters as a function of

both rice variety and irrigation approach, although the number of samples in both instances is

small. Further analysis of the relationship between yield and biophysical variables for the specific

rice variety RD41, which has the most (6) samples, for different growth stages was carried out

(Table 4.10).
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Table 4.10 Correlation of RD41 overall and in each growth stage.

Rice variable Correlation | Seeding | Tillering | Panicle | Flowering | Harvesting | Overall
Stem density r 0.05 0.4 0.11 -0.86* 0.15 -0.79**
sig. (0.93) (0.43) (0.84) (0.03) (0.77) (0.00)
Height r NA 0.47 0.04 0.36 0.21 0.67**
sig. (0.35) (0.93) (0.48) (0.69) (0.00)
Chlorophyll r NA -0.72 -0.06 0.49 -0.04 0.64**
content sig. (0.11) (0.91) (0.32) (0.93) (0.00)
Wet total r NA NA 1.00** 0.62 0.87** 0.67*
biomass sig. (0.26) 0.02 (0.01)
Wet stem r NA NA 1.00** 0.62 0.85** 0.69**
biomass sig. (0.27) (0.03) (0.01)
Wet grain r NA NA 1.00** 0.63 0.83** 0.57**
biomass sig. (0.26) (0.04) (0.04)
Dry total r NA NA 1.00** 0.67 0.94** 0.62**
biomass sig. (0.22) (0.00) (0.02)
Dry stem r NA NA 1.00** 0.68 0.89** 0.67**
biomass sig. (0.21) (0.02) (0.01)
Dry grain r NA NA 1.00** 0.65 0.87* 0.52*
biomass sig. (0.24) (0.03) (0.07)

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed)
NA No measurement

The result in Table 4.10 indicates that yield is best related to wet and dry biomass in the
harvesting stage, where the correlation (r) ranges between 0.83 and 0.94. The relationship

between rice yield and total dry biomass was strong, although there were only six data points.
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Figure 4.17 Correlation between yield and wet and dry biomass for the RD41 rice variety.
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4.4 Discussion

This chapter investigated the variation in rice biophysical variables throughout the growing season
as a function of irrigation method and rice variety. One of the aims of this study was to assess the
relationship between various biophysical and structural characteristics and rice yield. The purpose
of doing so is the potential to estimate rice yield using more easily obtained biophysical
parameters and be able to do so earlier in the growing season. An extensive dataset of rice
biophysical parameters was collected through the growing season and under different land
management practices. To the best of our understanding, this is the first to do so, considering the
irrigation methods and rice variety. The results indicate that the temporal dynamics of rice
biophysical parameters and rice structural characteristics are influenced by environmental
conditions, irrigation system, and rice variety. The findings indicate that rice height and biomass
peak in the harvesting stage, whist the planting density is highest in the seeding and tillering stage
and tends to decrease through the growing season as the rice matures (Figure 4.11). The more
leaf area indicates the high absorb capability to capture solar radiation for crop photosynthesis
(Ermanto et al., 2021). Rianto et al. (2019) proved influences on rice varieties and planting
cropping patterns with the percentage of canopy cover. Increasing LAl depends on the increased
tiller number and lengths of rice leaves, which is the tiller’s rate different with rice variety.
Research investigated the differences of LAl in various rice varieties on Tarom, Neda, Shafagh, and
Fajr varieties were 3.97, 5.09, 4.24, and 4.9 m?> m*% (Nicknejad et al., 2009). The LAI (Table 4.5 and
Figure 4.12) displays considerable variability in its dynamics through the growing season due to
the influence of rice variety. It is often highest in the flowering stage in all regions and irrespective
of irrigation system, although some rice varieties (e.g. RD47, RD61) peak in the panicle stage due

to their dominant rice characteristics.

Other studies have found LAl to vary with rice variety (Bronge & AB, 2004; Chen et al., 2007;
Leonenko et al., 2013; Zheng & Moskal, 2009). Rice height and leaf area distribution impacted the
competition for light and nitrogen; then, they are effect on the growth of rice biomass in the final
(Burgos et al., 2006; Graf et al., 1990). In addition, the competition for light on rice proved
changes in morphological traits for light capturing and absorbing water and nutrients (Schaedler,
Taborda, Goulart, Chiapinotto, & Pinho, 2020). A research analysed the LAl development in
different irrigation and irrigation management; the result revealed the LAl under shallow water
depth (SWD) in paddies were different compared with the continuous flooding (CF), with the
varied correlation between LAl and treatment ranged 0.46-0.88 (Maftukhah et al., 2019) and
coherent with tillering’s rate (Zhong et al., 2002).The limitation of LAl is the foliage in the paddy.
The relationship between LAl and foliage area index (FAI) had been investigated and the LAI-FAI

estimation was significantly correlated with rice grain yield (Aschonitis et al., 2014). Finally, the
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correlation between rice yield and biophysical parameters is typically poor although marginally

better for wet and dry biomass in the flowering stage, which is close to panicle emergence.

Earth observation data has been widely applied to map areas of rice production (Kuenzer &
Knauer, 2013; Oyoshi, Tomiyama, Okumura, & Sobue, 2013; Stroppiana et al., 2019; Zhang et al.,
2015; Zhang et al., 2018; Zhao et al., 2016) and to estimate rice biophysical parameters using
optical and radar observations. One of the objectives of this research was to investigate the
correlation between rice yield and other biophysical parameters, particularly chlorophyll content
and LAI The LAl is a vital plant canopy structural parameter which plays an important role in the
land-atmosphere energy exchange. As a result, LAl has been routinely estimated using remotely
sensed data using parametric and physically-based retrieval methods (Verrelst et al., 2015). The
LAl of rice canopies has been successfully estimated using a wide range of methods, including
vegetation indices (Ali et al., 2020; Son et al., 2013; Wang, Huang, Tang, & Wang, 2007; Yeom et
al., 2021) and radiative transfer models (Aboelghar et al., 2010; Adeluyi et al., 2021; Campos-
Taberner et al., 2016, 2018; Darvishzadeh et al., 2012). Gong et al. (2021) investigated the poor
correlation (not exceeding 0.4 correlations) between eight Vls, LAl, and height because they
varied on rice varieties (48 rice varieties) in pre- and post-heading. Therefore, determining
whether LAl correlates with yield would be advantageous and support using EO-derived LAl to

estimate yield. Our findings indicate that LAl is weakly correlated with yield in all growth stages.

Rice yield is an essential parameter in quantifying rice productivity when combined with the area
under rice cultivation. Several approaches utilise EO data to estimate yield using canopy
reflectance (Chang et al., 2005; Nuarsa et al., 2011; Rahman et al., 2012), time-series analysis
(Fermandez et al., 2021; Son, Chen, & Chen, 2022), regression models (Paul, Saha, & Hembram,
2020), and rice growth simulation models (Kandiannan et al., 2002). In addition, radar data have
been used to estimate rice biomass (Li et al., 2016; Ndikumana et al., 2018), from which yield can
be estimated. Our analysis indicates that yield is poorly correlated with all the biophysical
parameters, including LAl and chlorophyll content. This is in contrast to several studies that have
found a good correlation between LAl and yield (Noureldin et al., 2013). However, LAl is a
commonly used as an input to a crop growth model from which yield is estimated (Curnel et al.,
2011; Dente, Satalino, Mattia, & Rinaldi, 2008; He et al., 2017; Maki et al., 2017) rather than a

direct approach to estimate yield.

The results in this chapter have highlighted the influence of rice variety and irrigation systems on
rice biophysical parameters and their temporal dynamics. Furthermore, the results indicate that
rice variety can result in large differences in biophysical parameters at a given growth stage. For

example, the average LAI peaked in the flowering stage. However, the LAl varied from 2.5 m?>m
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to 6.9 m?*m2 depending on the rice variety, and some rice varieties peaked in the panicle or

harvesting stages.

To remove the influence of rice variety on the biophysical parameter analysis, we focus on the
rice variety with the most significant number of samples, which was RD41 with 6 samples. The
RDA41 rice variety is characterised by straight clumping, strong and green leaves, straight flag
leaves, and tolerance to the planthopper pest and irrigation planting in the central areas. The
results of the correlation analysis are improved when using only RD41, particularly the wet and
dry biomass (i.e. overall, stem, and grain) in the harvesting stage, which might benefit on yield
estimation. Irrigation systems provide sufficient water for crop growth and ensure rice production
efficiency, and our results support this where rice yield is ~55-60% higher (Nonvide, 2017).
Irrigation development, therefore, allows improved high agricultural yield and contributes to

government development plans/policies.

4.5 Conclusion

The research described in this chapter aimed to investigate the influence of irrigation and rice
variety on rice biophysical variables, which were measured through the growing season during an
extensive field campaign. Although it is difficult to disentangle due to the small sample size, our
findings indicate that rice variety significantly influences the magnitude and dynamics of rice
biophysical parameters. As a result, attempts should be made to account for rice variety when
using remotely sensed data to estimate biophysical parameters such as LAI. One of the study’s
aims was to investigate the correlation between the biophysical parameters and yield at different
growth stages to determine whether they could use to estimate yield earlier in the season.
Additionally, if LAl or chlorophyll were correlated with yield, EO-derived LAI or chlorophyll
estimates may be used to calculate yield. However, in all cases, the correlations were typically low
and insignificant. When focussing on the most common rice variety in our study area (RD41), the
most promising correlation with yield were found with total dry biomass and dry stem biomass in
the harvesting stage, albeit still relatively weak relationships. Therefore, this rice variety will be

the focus of the next chapter, which investigates rice yield estimation using EO data.
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Chapter 5
Chapter 5 The potential of optical and radar satellite
observations to estimate rice biophysical

variables and rice yield estimation

5.1 Introduction

The previous chapter investigated the temporal pattern and correlation between essential rice
biophysical variables in the Chao Phraya River delta, Thailand. The results show how the pattern
of rice biophysical variables, particularly LAI, biomass, and yield, differ with irrigation systems and
that rice variety is also essential. The result of the analysis revealed a strong positive correlation
between rice height, and wet and dry grain biomass with yield but also suggested that; rice
variety also plays a vital role in the relationship between biophysical variables. At individual
growth stages, significant correlations between rice biophysical variables were found in the
tillering and flowering stages. However, the relationship’s strengths varied, with a stronger
correlation found between some biophysical variables than others depending on the growth
stage. Thus, the results suggest that rice yield estimation is optimal using biophysical variables in
the panicle, flowering, and harvesting stages. However, an additional complication is that the
correlation between rice biophysical variables and growth stages varied across irrigation systems
and rice variety. Among nine rice varieties in the study area, the RD41 shows the highest
correlation with biomass. Therefore, it is essential to investigate the potential of using rice
biophysical variables at particular growth stages to estimate yield. The acquisition of rice growth
stage data is vital to select the appropriate growth stage to utilise different satellite sensors in rice
yield estimation effectively. Earlier achieving agricultural information, especially rice yield and

production, are advantageous for agricultural policy planning and ensuring global food security.

Remote sensing has the potential to provide information on crops, including their seasonal
dynamics and the aerial extent, and has been widely applied for rice monitoring and yield
estimation. Many studies have investigated the association between satellite data and crop
growth which, in some cases, use satellite-derived rice biophysical variables to estimate potential
yield (Aboelghar et al., 2010; Campos-Taberner et al., 2017; Gnyp et al., 2014; Hosseini et al.,
2015; Jia et al., 2014; V. Kumar et al., 2013). Vegetation indices, which are designed to maximise
sensitivity to the vegetation characteristics whilst minimising external perturbations (e.g. soil
background and atmospheric effects) The vegetation indices have been widely applied to monitor
vegetation and to identify crop characteristics such as crop status, stress, water status, phenology

and crop yield (Bolton & Friedl, 2013; Lopresti et al., 2015; Sjostrom et al., 2011; Son et al., 2014).
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The most commonly used vegetation index is the Normalized Difference Vegetation Index (NDVI,
Rouse Jr, Haas, Schell, & Deering, 1974), which exploits the contrasting response of red and near-
infrared wavelengths to healthy vegetation. The NDVI has been routinely used for crop mapping
and monitoring regional and global scales (Guan, Huang, Liu, Meng, & Liu, 2016; Nguyen, De Bie,
Ali, Smaling, & Chu, 2012; Pan et al., 2015). By exploiting frequent observations, a time-series of
NDVI measurements have been used to monitor crop productivity, biomass, and crop phenology
(Bro-Jgrgensen, Brown, & Pettorelli, 2008). The Enhanced Vegetation Index (EVI) builds on the
NDVI but designed to improve sensitivity over high biomass regions and be more resistant to
atmospheric effects. The EVI has been widely adopted for crop mapping and monitoring (Gusso et

al., 2012; Peng et al., 2011; Shihua et al., 2014; Zhang et al., 2015).

In addition to monitoring and mapping crop dynamics and aerial extent, vegetation indices have
also been used to estimate crop biophysical variables, including Leaf Area Index (LAI) and Fraction
of Absorbed Photosynthetically Active Radiation (fAPAR; Fuster et al. (2020); Zhou et al. (2017)).
Vegetation indices have also been successfully applied to empirically estimate crop yield
empirically using regression models derived from single- or multi-date data (Bolton & Friedl, 2013;
Harrell et al., 2011; Liu et al., 2015; Noureldin et al., 2013; Panda et al., 2010). For example,
Padilla et al. (2012) developed a model to estimate LAl through the growing season based on the
relationship between LAl and the NDVI, which was subsequently used to parameterize the GRAMI
rice model (Maas, 1992). A constraint to using optical data for crop monitoring occurs in regions
of more persistent cloud cover, which can be overcome by exploiting the all-weather capability of
radar imagery. The backscatter of Synthetic Aperture Radar (SAR) signals is related to the surface
characteristics, the canopy structure and canopy water content (Kobayashi & Ide, 2022; Phan et
al., 2021; Soria-Ruiz et al., 2007; Verma et al., 2019). Radar backscatter is sensitive to crop
structural characteristics such as height, shape, leaves size, and stem density (Choudhury &
Chakraborty, 2006; Kim, Hong, & Lee, 2008; Koppe et al., 2012; Sudarmanian & Pazhanivelan,
2019; Wu et al., 2020; Zhang et al., 2017). Additionally, the behaviour of backscatter from rice
canopies varies with growth stage due to the change in vegetation structure (e.g. plant density,
height, leaf and panicle initiation) and moisture content, soil moisture, and surface roughness
(Martinez-Agirre, Alvarez-Mozos, & Lievens, 2017; Bindlish & Barros, 2001; Zhao & Cui, 2013).
Consequently, SAR has the potential to provide information on vegetation dynamics and canopy
structure. Several studies have investigated the utility of integrating optical and SAR data to
monitor crop phenology and estimate biophysical parameters at different growth stages (Biswal
et al., 2019; Guissard et al., 2006; Lopez-Sanchez et al., 2017; Park et al., 2018; Soria-Ruiz et al.,
2007). For example, Clevers and Van (1996) developed a reflectance model and backscatter

model to estimate LAI, which was then used as an input to a crop growth model. The benefit of
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using optical and radar data is that measurements are available throughout the growing season,

which can be used to parameterize crop simulation models.

This chapter addresses two research questions. The first objective is to investigate the
relationship between rice biophysical variables, spectral vegetation indices, and radar backscatter
at different growth stages and irrigation methods. The second research area will develop a linear
regression model that relates the satellite measurements with rice yield to estimate yield over a
large spatial extent and potentially earlier in the growing cycle. The results will be validated with

official statistical data at the amphoe and provincial levels.

5.2 Methodology

5.2.1 Data
5.2.1.1 Primary data

The primary data used in this analysis are satellite data and field survey data. Due to the small size
of rice fields in Thailand (~0.61 hectares), coarse spatial resolution satellite data, such as MODIS,
are not appropriate despite their daily overpass frequency. Therefore, this study focused on
medium resolution satellite data from the European Space Agency (ESA) Sentinel programme.
This includes optical data from the Sentinel-2 Multi-Spectral Instrument (MSI) and SAR imagery

from space-borne Sentinel-1.

The MSI onboard Sentinel-2 A and B, which were launched on 23™ June (2015) and 7" March
(2017), respectively, provide global data every ~5 days (or less) at the equator under cloud-free
conditions. The MSI contains 13 spectral wavebands between 0.44 um to 2.19 um, a swath width of
290 km and spatial resolution of 10 m (four visible and near-infrared bands), 20 m (six red edge and
shortwave infrared bands), and 60 m (three atmospheric correction bands- aerosols, water
vapour, and cirrus). The Sentinel-1 comprises two polar-orbiting satellites (e.g. ascending and
descending) operating day and night and collecting measurements using a dual polarisation C-
band imager. Sentinel-1 has a temporal resolution of 6 days for two combined constellations or 12
days with one at the equator, and a spatial resolution of acquisition modes: strip map (SM; 5 m x
5 m), interferometric wide swath (IW; 5 m x 20 m), extra-wide swath (EW; 20 m x 40 m), and wave
(WV; 5 m x 5 m). Sentinel-1 produces dual polarisation polarimetry data in vertical and horizontal
transmission and receives responses in vertical and horizontal waves. Polarisation illustrates the
orientation of the plane of oscillation of the propagation signal. Four possible polarisations are
delivered on different transmissions and receive signals: HH (horizontal transmit and receive), VV

(vertical transmit and receive), HV (horizontal transmit, vertical receive), and VH (vertical
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transmit, horizontal receive) (Lusch, 1999). In this analysis, only VV and VH polarised data were
used as these have been provided in the Southeast Asia region and prove the best correlation
with rice biophysical. The incidence angle range is 29.1° — 46° and right look direction (side-
looking). The incidence angle is defined as the angle by the radar beam and perpendicular to the
surface. In principle, the return of microwave signals is strong at a low incidence angle. All
Sentinel data were directly downloaded from ESA, and only imagery acquired within a week of a
field campaign in a specific growth stage was selected for processing. Details of image pre-

processing are provided in Section 5.2.4.

The other primary data used in this chapter are the field experiment data which was the focus of
analysis in Chapter 4 (page 100-105 details the data collection methodology). In addition,
measurements of several rice biophysical variables were collected at crucial growth stages
throughout the wet growing season (May to October) in 2017. GPS measurements at the sampling

locations allow these measurements to be col-located with the satellite measurements.

5.2.1.2 Secondary data

The secondary data used in this chapter are derived from two primary sources at the Office of
Agricultural Economics (OAE): official statistical data of the area under agricultural production and
its yield. Besides, the spatial data of rice cultivated areas have been derived through the
interpretation of Landsat 8 data at the amphoe and provincial levels. The statistical data consists
of rice production and yield estimates at the amphoe and provincial levels during the 2017 wet
growing season. These data enable validation of our rice yield estimates. In addition, the spatial
data allows masking Sentinel imagery into the rice and non-rice cultivated areas. The latter is
helpful for rice production calculation in the three provinces (i.e. Phichit, Ang Thong, and Pathum
Thani) representing the upper, middle, and lower Chao Phraya River delta. The other secondary
data is the spatial dataset of the irrigation boundary, which allows the identification of irrigated

and non-irrigated rice paddies.

5.2.2 Satellite data and statistic data preparation

5.2.2.1 Satellite data download and preparation

The satellite image acquisition dates are those closest to the time of the field sampling campaign.
The acquisition dates of Sentinel imagery are shown in Table 5.1 and are largely +/- 7 days from
the field surveying date to avoid the distortion due to rice growth. This was not always possible
with Sentinel-2 MSI imagery, particularly during the monsoon (mid-May to mid-October). In this

case, the nearest available image was used as long as the temporal gap to the next growth stage
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was 20-35 days, the lengths of which depends on the growth stage (Figure 4.4). In the case of

Sentinel-1, imagery cycle in the ascending and descending orbits was downloaded in VV and VH

polarisations. The field survey dates and associated downloaded satellite data are shown as Table

5.1.
Table 5.1  Field survey and acquisition dates of satellite data.
Growth Field survey date Satellite download date
stage Sentinel-2 Sentinel-1
Ascending Descending
Seeding 20 May — 7 Jun 2017 7 May, 27 May, 30 22 May 2017 | 26 May 2017
May, and 6 Jun 2017
Tillering 26 Jun —10Jul 2017 26 Jun, 6 Jul 2017 27 Jun 2017 1Jul 2017
Panicle 19-30Jul 2017 24 Jul, 31 Jul 2017 21 Jul 2017 25 Jul 2017
Flowering 1-16 Aug 2017 13 Aug, 20 Aug 2017 2 Aug 2017 6 Aug 2017
Harvesting 9 Aug — 3 Sept 2017 25 Aug, 9 Sept and 26 Aug 2017 30 Aug 2017
14 Sept 2017

The larger number of Sentinel-2 images in the seeding stage is due to the wide range of planting

dates in the study area, which varied from the beginning of May until the beginning of June 2017.

The satellite data did not acquire the full scene for analysis and was excluded from the analysis. In

each growth stage, approximately 13 Sentinel-2 and 5 Sentinel-1 scenes were downloaded, and

which covered the entire study area (Figure 5.1).
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5.2.2.2 Statistical data preparation

The yield estimated using satellite data will be validated using the yield information provided by
OAE, which is the agency responsible for collecting and publishing agricultural statistics in
Thailand. The OAE official statistics are calculated using field survey data at the commune level,
which is then aggregated to the district, province, regional, and country levels. The official rice
yield and production are stratified in two administrative levels for validating the remotely sensed
yield estimates: amphoe and province level. In 2017, rice production and yield (shown in the
brackets) in the Phichit, Ang Thong, and Pathum Thani was 876,596 tonnes (3.77 tonnes/ha),
230,547 tonnes (4.16 tonnes/ha), and 223,167 tonnes (4.49 tonnes/ha), respectively. Rice yield

and production in 2017 are shown in Table 5.2.

Table 5.2  Rice yield and rice production statistics in 2017 in three representative provinces

(OAE, 2017a).

Province/Amphoe Rice harvested area Rice yield Rice production
(ha) (tonnes/ha) (tonnes)
Phichit 232,536 3.77 876,596
Muang Phichit 23,669 3.98 94,084
Taphan Hin 25,984 4.09 106,373
Bang Mun Nak 22,600 3.88 87,716
Pho Thale 26,821 4.09 109,632
Pho Prathap Chang 19,274 3.84 74,083
Sam Ngam 21,524 3.74 80,445
Wang Sai Phun 17,983 3.42 61,478
Thap Khlo 24,612 3.48 85,525
Sak Lek 6,919 3.08 21,277
Bueng Na Rang 13,718 3.97 54,444
Dong Charoen 14,745 3.39 49,947
Wachirabarami 14,688 3.51 51,592
Ang Thong 55,421 4.16 230,547
Muang Ang Thong 3,916 4.12 16,131
Chaiyo 2,885 3.84 11,089
Pa Mok 593 3.80 2,252
Pho Thong 13,508 4.13 55,719
Wiset Chai Chan 15,342 4.12 63,190
Samko 7,798 4.24 33,093
Sawaeng Ha 11,379 4.31 49,073
Pathum Thani 49,657 4.49 223,167
Muang Pathum Thani 3,099 431 13,363
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Province/Amphoe Rice harvested area Rice yield Rice production
(ha) (tonnes/ha) (tonnes)

Pathum Thani (Cont.)

Khlong Luang 8,066 4.58 36,903

Thanyaburi 1,484 451 6,687

Lat Lum Kaeo 11,548 4.63 53,408

Lam Luk Ka 11,846 4.50 53,307

Sam Khok 2,892 4.47 12,924

Nong Suea 10,722 4.34 46,575

5.2.3 Field survey data collection

The field survey collected important rice biophysical variables from the seeding to harvesting
stages. The latitude and longitude coordinates of each sample unit were recorded using a
handheld GPS receiver, and within each there were four measurement plots. Coordinates were
then generated with ArcGIS in point and polygon (rice parcel) format. The biophysical variables
assessed in relation to the satellite data for each sampling unit were the average value of the
centre pixels to account for any variability and to ensure the pixels were homogeneous (i.e. not

mixed).

5.24 Digital image pre-processing

Image pre-processing was conducted according to the following sections, which are carried out

for each Sentinel-1 and Sentinel-2 image prior to data extraction (Figure 5.2).

Sentinel-2 MSI optical data

The MSI product used for this analysis is the Sentinel-2 Top-Of-Atmosphere (TOA) Level-1C (L1C),
geometrically corrected TOA radiance. To correct the data to surface reflectance, the Sen2Cor
algorithm is used for atmospheric, terrain, and cirrus correction (Main-Knorn et al., 2017). The
Sen2Cor toolkit provides Bottom-Of-Atmospheric (BOA) surface reflectance (Level-2A, L2A) in
addition to various quality assurance data such as aerosol optical thickness, water vapour, scene
classification, and quality indicators for cloud and snow probabilities. The surface reflectance
derived from Sen2Cor has been validated over different land covers with good results (r > 0.9),
and low root mean square errors (< 0.04) (Sola et al., 2018; Uwe et al., 2013). Cloud cover is a

major limiting factor, with the cloud cover percentage varying from 5-77% per scene.

The Sentinel Application Platform (SNAP) is used to cloud mask the surface reflectance; resample

the data to 20 m spatial resolution, and to calculate the NDVI and EVI vegetation indices. The
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latter has been regularly used to analyse rice temporal dynamics (Domiri, 2017; Li et al., 2019;
Shammi & Meng, 2021) and assess their relationship to biophysical variables (Aboelghar et al.,
2011; Ali et al., 2020; Maki & Homma, 2014; Son et al., 2013).

The NDVI is defined by Rouse, Haas, Schell, & Deering (1974) and is calculated using the red (pg)

and NIR (py;r) wavebands via Equation 5.1.

NDVI = EMESR Equation 5.1
NIR R

According to Huete et al. (2002), the EVI is calculated as shown in Equation 5.2.

EVI = G x Pnir=Pr Equation 5.2
pnir+Cl*pr+C2*pb+L

Where py is the spectral reflectance in the blue band (B02), p: is the spectral reflectance in the red
band (B04), and pniris the spectral reflectance in the near-infrared band (B08). L is a constant that
minimises the ground effect (L = 1), G is the gain factor (G = 2.5) and C1, C2 are adjustment factors

to minimise the effect of aerosols in the atmosphere (C1 =6.5 and C2 =7.5).

In principle, the vegetation index values range between -1 to +1, where higher positive values

signify healthy and denser green vegetation.
Sentinel-1 SAR data

Sentinel-1 C-band data were taken in various orbital directions with the ascending and descending
orbits in 2017. The mode of SAR data identifies the S1-S6 beams for strip map products and
provides different acquisition modes. The SAR Imagery in Interferometric Wide Swath (IW) mode
has a spatial resolution of 5 m x 20 m in a single-look complex (SLC) was used in this analysis. SLC
products are images in the slant range by azimuth imaging plane in the image plane of satellite
data acquisition. Each pixel is represented by complex | (phase) and Q (quadrature) magnitude
values and contains both amplitude and phase information. The amplitude measures the strength
of the reflected signal at the sensor, while the phase is a measurement point along the wave of
the reflected signal when received at the sensor. The phase of the SAR image is determined by the
distance from the satellite antenna to the ground target. The amplitude measurement provides
essential information on the roughness, geometry, wetness, and dielectric (or permittivity)
constant of the ground surface. In pre-processing, the SAR data is geo-referenced using orbit
auxiliary and attitude data, providing Zero-Doppler slant range geometry. Further, SAR products
provide additional orbit state vector (OSV) information to improve location accuracy (Schubert,

2019).
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The acquired Sentinel-1 SAR data were pre-processed using SNAP (Sentinels Application Platform)
and Sentinel Toolboxes, which included applying precise orbit direction, thermal noise removal,
and radiometric correction before sub-swath images were merged. In addition, pre-processing
included deburst and speckle filtering to reduce the salt & pepper effect common in SAR imagery
(Lee, 1980), multi-looking terrain correction, and the backscatter conversion to sigma nought ().
A window of 7 x 7 pixels was used in the filtering was 7 x 7 as this has been found to provide the
best noise reduction performance (Dasari & Anjaneyulu, 2017). The IW mode SAR data consists of
three sub-swaths in IW1, IW2 and IW3, which have different incidence angles, ranges, and
azimuth look bandwidths. The IW is a primary operational mode for Sentinel-1. Due to, there are
compositions with three bursts on one image; thus, there are essential top-deburst data for the

continuous images.

The data were radiometrically corrected to backscatter intensity using sensor calibration
parameters in IW metadata. To ease processing, the data were resampled to a square grid raster
(14.2 m x 14.2 m) and the set range looks, and azimuth looks to 4 and 1, respectively. A terrain
correction was performed using the Range-Doppler method (Bayanudin & Jatmiko, 2016) and
resampled Shuttle Radar Topography Mission (SRTM) 1 arc second (30 m) Digital Elevation Model
(DEM) to integrate the SAR images. The final step is to convert the backscatter power to the
backscatter coefficient using logarithm transformation. In principle, the radar backscatter consists
of sigma-nought (c°), gamma-nought (y°), and beta-nought (B°). Here, we use sigma-nought - %y
and oy are referred to as VV and VH. A polarisation ratio of VV/VH (cross-ratio) was then
calculated using VV and VH backscatter coefficients. The data pre-processing is shown in Figure
5.2. To account for any geometric uncertainty, the backscatter at each sample plot was averaged,

which is discussed in more detail in Section 5.2.6.
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a) Optical sensor b) Microwave sensor
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|
I |
Extracts Vs value Extracts sigma nought (dB) value

Figure 5.2 Flowchart of the data pre-processing applied satellite image data prior to relating

satellite measurements with rice biophysical variables.

5.2.5 Vegetation indices and sigma nought backscatter value extraction (field level) and

descriptive statistics

A region of interest (ROI) was drawn around each sampling unit and used to extract the image
pixels. These extraction points were made at the sample centre on a pixel basis (~2-4 pixels inside
the ROI) to avoid mixed pixels, especially at the paddy field corners. Finally, the vegetation indices

(Sentinel-2) and backscatter coefficients (6% Sentinel-1) at each sample plot (field level) were
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averaged to provide a sampling site vegetation index and backscatter value for accounting

geometric uncertainty.

5.2.6 Satellite data sample site averaging

Generally, the sampling unit consisted of more than one satellite pixel. In this section, we describe
the process for calculating the average satellite-derived indicator using the pixels covering each
paddy field. Figure 5.2 demonstrates the process using the backscatter coefficient in the
ascending VV and VH, and NDVI) from one sampling unit in the panicle stage, which contains 3-4
pixels well within the field boundary to avoid the mixed pixels. The redline is the field boundary
whilst the blue ROl is the central pixels which are averaged. The relationship between rice
biophysical variables (Chapter 4) and the average vegetation index and backscatter coefficient
(%) at each phenological stage was investigated. This temporal analysis aimed to assess the

influence of rice variety and irrigation on phenology and rice biophysical variables.

a) Sentinel-2 in NDVI b) Sentinel-1 in ascending VH polarisation

Sample unit \"! Sigma nought (dB)
NDVI EVI | AscendingVV | Ascending VH
2 0.63 0.7 -8.07 -14.92
0.62 | 0.72 -8.96 -14.20
0.63 | 0.70 -8.34 -15.26
0.62 | 0.67 -8.45 -14.85
Average 0.62 | 0.69 -8.46 -14.81

Figure 5.3 Example of backscatter coefficients and NDVI subsets showing the locations of the

sample points within a sample unit in the panicle stage.
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5.2.7 Phenological trends of vegetation indices and backscatter coefficient

Prior to analysing the correlation between the satellite measurements and rice biophysical
parameters, an analysis of the temporal dynamics of these metrics was carried out. In general,
transplanting occurs from mid-May to the beginning of June, with a tillering stage in the end of
June to the beginning of July, the maximum tiller number occurs around the end of July, the
heading period in mid-August, and harvesting begins in September and early October. The
satellite data were averaged in the sample unit for each growth stage and used to characterise

the average rice phenology.

In Phichit, the minimum rice age is 4 days, and the maximum is 104 days, with mean of 62 days. In
Ang Thong, the minimum rice age is 9 days and the maximum 104 days, with mean of 61 days.
Finally, the minimum rice age in Pathum Thani is 11 days and the maximum of 117 days, with
mean of 69 days. Figure 5.4 demonstrates the representative NDVI and backscatter coefficients in
a sample unit located in Phichit. The average satellite values in each growth stage are examined
and separated by rice variety. In the case of the Vls, the most outstanding values are found in the
tillering and panicle stages, with the flowering and harvesting stages being much lower. The
trends in the backscatter data are broadly similar in the VV polarised imagery, although increases
in the harvesting stage are evident. The cross-polarised data show similar magnitudes between

the tillering and flowering stages before decreasing in the harvesting stage.
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Figure 5.4 Comparisons of the phenological variations of vegetation indices (blue represents NDVI

and red represents EVI) and radar backscattering for a selected field in Phichit.
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5.2.8 Correlation analysis

The relationship between the satellite and rice biophysical variables was assessed using Pearson’s
correlation coefficient, which measures their relationship’s statistical relationship and direction.
The present study used a P-value at 0.05 to define the significance of the relationship. The
correlation analysis was applied to rice yield and the satellite measurements- individually

separated growth stages, overall growth stages, and irrigated and non-irrigated areas.

5.2.9 Estimation of rice yield using regression analysis

The vegetation indices and backscatter coefficients are set as independent variables in the
regression model, whilst rice yield is the dependent variable. The yield data was used to build the
yield estimation model derived from field. The previous chapter indicated that RD41 might be
suitable for rice yield estimation as it has the largest number of samples. Therefore, the main
approach explored to develop a rice yield estimation model using SAR and optical imageries is
linear regression between yield, vegetation indices, and backscatter coefficients. In terms of rice

yield estimation, a linear regression model was generated at the provincial level:

Y =a+bX Equation 5.3

Where Y is the predicted rice yield (ton/ha) in a given province, a and b are the coefficients, and X
is a representative pixel. The simple regression relationships are used to calculate the correlation

coefficients (r) of the model between rice yield and VIs or backscatter variables.

Rice-cultivated areas in the three representative provinces were masked in the satellite data using

the OAE derived dataset discussed in section 5.2.1.2 and are displayed in Figure 5.5.
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b) Ang Thong
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¢) Pathum Thani

ety BRIV " -} (- nty-g [P - ] - 2 iy-g [*--g -} (- mty-g
L 1 L L L L L 1
o
by} &
= d
- w E
5

.
ra -
B L
5 x
. -3
# 4
E -
i 3
r &
5 | =
o
- Ll
% ]
F £
e = =
3 3
7 L3
: g
2 E
] -]
» r
- -
T K-
] -

D Frcee e & B0 A i A Tree === ——
] B
n | &
= o %
) i
T T T T Y T T Y
T BT " -} |- nte-a T LT T AT

Figure 5.5 Rice cultivated areas in three representative provinces (Phichit, Ang Thong, and

Pathum Thani) interpreted with Landsat 8 OLI/TIRS in 2017.

The most appropriate linear regression model was applied to the satellite imagery to derive
estimates of rice yield per unit area for each administrative boundary. First, yield estimates were
derived at the scale of the administrative boundary by aggregating yield estimates in rice
cultivated areas and on a per-pixel basis. These were then aggregated to estimate rice production

on the provincial scale (i.e. Phichit, Ang Thong, and Pathum Thani).
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5.2.10 Model validation

Data from 2017 were used to assess the accuracy of the model prediction. Rice production was
calculated by multiplying cultivated rice area by yield per unit area. Statistical indicators (i.e. root
mean square error (RMSE) and mean absolute percentage error (MAPE)) were used to quantify
the uncertainty of the predicted values, with the former indicating the variability of the prediction

accuracy and the latter the mean or average of absolute error (MAE). The RMSE calculates the

average error to measure the differences between estimated and actual yield:

n _vh?
RMSE = W Equation 5.4

Where n is the number of provinces used for validation, y is the estimated yield, and yi is the

observed rice yield.
The MAPE is an accuracy measure of the quality of forecasting model and was calculated via:

MAPE = % Y=Y x 100 Equation 5.5

A flowchart illustrating the methodology for rice yield estimation is presented in Figures 5.6.
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Figure 5.6  Research flowchart analysis.

5.3 Results

Two key objectives were the focus of this research: 1) to assess the potential of EO data for

estimating rice biophysical variables and the influence of irrigation method on yield estimation, and 2)

to determine the potential of estimating rice yield using rice biophysical variables and EO data. The

results of this chapter concern the latter and are divided into four outputs: temporal pattern of

vegetation indices and backscatter coefficients; the correlation between satellite measurements
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and rice biophysical variables; the potential to estimate rice yield; and finally, validation of the

predicted yield estimates.

5.3.1 Pattern of vegetation indices and backscatter coefficients

The research conducted in the previous chapter revealed the dynamics of rice biophysical
variables on wet direct seeding. This study analyses the dynamics of vegetation index values and

backscatter coefficients during the growing season.

5.3.1.1 Phenological profile of vegetation indices

An analysis of the temporal dynamics of the vegetation indices is presented in this section,
characterised by the onset of greenness (SOS) in the seeding stage. Flooding is the main cause of
low VI value during the seeding and transplanting stages. The VI values then increase throughout
the growing season and peak in the panicle stage before declining in the flowering and harvesting
stages, during what is termed the end of greenness (EOS). A summary of the average NDVI and
EVI values for all areas (all 22 sampling units), irrigated (16 sampling units), and non-irrigated (6
sample units), is shown in Appendix J. Meanwhile, Figure 5.7 illustrates the temporal variation of

the NDVI over a field sample plot during the different stages of plant growth.

The temporal trends in NDVI and EVI for all sites are shown in Figure 5.7. Note that the average is

calculated for all sites, which include different rice varieties and irrigation systems.

a) Average NDVI and EVI phenological profiles for all field sites

Averaga NDVI

Average EVI
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b) Average NDVI and EVI phenological profiles in Phichit
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d) Average NDVI and EVI phenological profiles in Pathum Thani
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Figure 5.7 Seasonal NDVI and EVI phenological profiles in the study area. a) Average for all field

sites, b) Average in Phichit, c) Average in Ang Thong, and d) Average in Pathum Thani.

In general, rice fields are flooded at the onset of rains. In the seeding stage (DOY 134), rice is
short, and some paddy fields are flooded, which serves to lower VI values (~ 0.03 averages for
NDVI and ~0.12 for EVI) due to the influences of the underlying water background. As the rice
structure develops (e.g. the height and tiller’s rate influenced by stem density, DOY 180), the
vegetation index values increase (average ~0.47 for NDVI and ~0.57 for EVI) due to increased rice
canopy cover and reduced background contribution (soil or water surface). In the panicle stage
(DOY 205-210), rice develops flag leaves and initiates panicle, resulting in a higher leaf area of
healthy green vegetation and consequently the vegetation index peaks in this stage (~0.61
averages for NDVI and 0.6 for EVI). In the flowering stage (DOY 221), rice develops into a milky
and leaves begin to wither, causing a sudden decrease in NDVI (0.27) and EVI (0.36) values. Rice
flowers and wither leaves in the flowering stage may impact the canopy reflectance and also
impact both vegetation indices. Finally, the vegetation indices are lowest in the harvesting stage
(DOY 240) when the rice grain ripens, which reduces the visibility of green leaves, and leaves
continue to wither (NDVI ~0.20 and EVI ~0.19). Photographs in Table 4.2 (Chapter 4) highlight the
changes in canopy characteristics and photosynthetic elements throughout the growing season
that directly influence VI values. However, cloud cover is problematic and leads to fewer
observations in the flowering to harvesting stages, coupled with the potential influence of

undetected cloud, which may impact the averaging of the VI data.

It is obviously evident from Figure 5.7 that the temporal dynamics of the NDVI and EVI follow a
similar trend but still differ, with the dynamics of the NDVI being more pronounced in some cases.
For example, the vegetation indices of the Phitsanulok 2 variety in Phichit, which used a different
irrigation system and a number of different rice varieties, indicates the NDVI peaked in the
tillering stage in the irrigated areas whilst the NDVI peaked in the panicle stage in the non-

irrigated areas. These illustrate the influence of irrigation where sufficient water availability
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stimulates rice growth earlier. This difference in the peak vegetation indices pattern occurs in the
EVI and is found to be slightly higher when compared with NDVI. The EVI is more responsive to
canopy structure than the NDVI, therefore more responsive to changes in LAl (Figure 4.12). The
EVI displayed better performance from the tillering to panicle stage, as indicated by more
constant NDVI between the shifting on these two growth stages. The LAl was primarily high in the
flowering stage, whilst vegetation indices tended to be low (NDVI and EVI), which may result from
the impact of rice heads obscuring some of the rice leaves or from the increased cloud cover in

the flowering stage, which reduced data availability.

In addition to the influences of rice variety, irrigation systems also influence rice development,
therefore vegetation index values. Our results reveal that vegetation indices were slightly higher
in non-irrigated areas due to differences in LAl (e.g. Table 4.5, Figure 4.12) which tended to be
higher, and the use of different rice varieties, which influence the growing season length. It is
evident, therefore, that irrigation method and rice variety play an essential role in the
phenological cycle of rice, which may need to be accounted for when using satellite observations

to monitor and quantify rice growth status.

5.3.1.2 Temporal pattern of backscatter coefficients (c°)

The temporal dynamics of the backscatter coefficients (c°) were investigated in the same manner
as vegetation indices. Several factors influence backscatter behaviour, such as the dielectric
constant of vegetation and the surface, leaf size and orientation, surface roughness, and canopy
geometry (Agustan et al., 2015; Bamler & Hartl, 1998; Bindlish & Barros, 2001; Koppe et al., 2012;
Mc Nairn & Brisco, 2004; Pazhanivelan et al., 2015; Sudarmanian & Pazhanivelan, 2019). This
analysis investigated the backscatter coefficients in different orbit directions and polarisations and
the ratio between different polarisation (VV/VH). The results indicate less variation in backscatter
coefficients throughout the growing season compared with the vegetation indices, which had
more pronounced phenological profiles. It is also evident that there are some minor differences in
backscatter between ascending and descending orbits, particularly in the seeding stage, where
the influence of the plant’s vertical structure (rice height) is more apparent (Phan, 2018; Yuzugullu
et al., 2017; Zhang et al., 2014). In addition, there are small differences between irrigated areas

and non-irrigated areas. The variation of these figures is shown in Figure 5.8.
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a) Temporal average backscatter coefficient in overall area
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d) Average backscatter coefficient in Pathum Thani
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Figure 5.8 Temporal trend in the backscatter coefficients (sigma nought) for different orbital
directions and polarisations for: a) Overall area, b) Phichit, c) Ang Thong, and d)

Pathum Thani.

Figure 5.8 illustrates the behaviour of the backscatter coefficient (c°) in different orbital directions
and polarisations over the study area in 2017. The structure of the rice canopy and paddy field
background directly influence the backscatter coefficient. The surface scattering characteristic
depends on the rice structure, such as the structural, morphological, and dielectric condition of
the canopy. Thus, the variability of rice structure impacts rice biophysical variables (Inoue et al.,
2014). The scattering mechanism of the vegetation canopy is dominated by the rice canopy’s
dielectric properties and geometric distribution (Arii, Yamada, Kojima, & Ohki, 2019), which
influences backscatter magnitude. The dynamics evident in Figure 5.8 agree with those of Phan et

al. (2018), who used X-band SAR in the VV polarisation. Rice plants are transplanted in mid-May,
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and paddy fields are flooded (~2.83 cm) several days before transplanting. The dates of panicle
initiation, flowering, and maturing stages are mid-July, mid-August, and begin-September. The
backscatter coefficient in the sowing/seeding stage pattern reveals low backscatter coefficients
due to the smooth ground surface, with a dielectric constant of water and a sparse rice canopy.
When vertical rice structure develops and the tiller’s rate, the backscatter coefficients increase in
the ascending VV, VH, and descending VH. The volume scattering of the rice canopy is characterized
by double-bounce scattering between the vertical rice plants and the ground surface. The
phenological profile of ascending and descending VH polarised backscatter increased through the
growing season, whilst the VV polarised backscatter largely remained flat, which occurs due to the
strong attenuation of VV polarised light by vertical stems. Furthermore, the scattering mechanism
among grain, stem, and leaf appeared in the late vegetative stage. In terms of dielectric
properties, rice grains develop milky, dough (soft and hard dough), and the moisture content
influences the backscatter coefficient in the flowering (reproductive stage) and harvesting (grain
maturity) stages. The increased canopy density and biomass in the harvesting stage increase VH
and VV backscatter. Similar dynamics were found by Bazzi et al. (2019) and Phung et al. (2020),

who attributed the variations in volume scattering to changes in biomass and incidence angle.

There was a varying response in the backscatter coefficient as a function of the irrigation system,
which had broadly similar magnitudes, but backscatter in VV polarisation decreased in the
flowering stage. The VH polarisation proves saturation before the maturity stage, although the
reason is uncertain as the vegetation structural parameters (Figures 4.4) and water depth are
similar in the panicle and flowering stages. The lowest backscatter is observed within the seeding
stage because of specular reflection from the flooded paddies. Meanwhile, the VV/VH signals
typically decreased from the late vegetative until the harvesting stage; although some rice variety
(HomMali105) suddenly decreased and ceased decreasing after senescence. The dominant
pattern for vegetation indices and backscatter is that they vary with the growth stage following
this development of the rice canopy. However, the results indicate that agricultural practices and

rice variety play an important role which cannot be controlled in the present study.

5.3.2  Correlation between vegetation indices, backscatter coefficients, and rice biophysical

variables

5.3.2.1 Correlation of vegetation indices and rice yield biophysical variables

The rice biophysical variables collected in different growth stages were analysed in Chapter 4 to
assess the relationship among rice biophysical. In this section, we build on this by analysing the

correlation between rice biophysical variables and vegetation indices. The results, shown in Table
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5.3 for all areas combined and for each growth stage, is a regression analysis that could be carried

out due to the limitation on cloud cover.

Table 5.3  Correlation between vegetation indices and rice biophysical variables in overall area,
irrigated areas, and non-irrigated areas across growth stages.
Irrigated Stage Rice biophysical Statistical Vegetation indices
system variables NDVI EVI
Overall Panicle Rice age Pearson 0.13 -0.45*
(sig. 2-tailed) 0.57 0.04
Flowering | Water depth Pearson -0.62** -0.59**
(sig. 2-tailed) 0.01 0.01
Height Pearson -0.52* 0.05
(sig. 2-tailed) 0.03 0.83
Harvesting | Stem density Pearson -0.57** 0.05
(sig. 2-tailed) 0.01 0.83
Water depth Pearson 0.42 0.47*
(sig. 2-tailed) 0.05 0.03
Wet total Pearson 0.30 0.45*
biomass (sig. 2-tailed) 0.17 0.04
Wet stem Pearson 0.34 0.45*
biomass (sig. 2-tailed) 0.12 0.03
Dry total biomass | Pearson 0.28 0.43*
(sig. 2-tailed) 0.21 0.05
Dry stem biomass | Pearson 0.35 0.46*
(sig. 2-tailed) 0.11 0.03
Overall Rice age Pearson 0.27** 0.11
growth (sig. 2-tailed) 0.01 0.24
stage Height Pearson -0.40** -0.48**
(sig. 2-tailed) 0.00 0.00
Absolute height | Pearson -0.39** -0.49**
(sig. 2-tailed) 0.00 0.00
LAI Pearson -0.21 -0.25*
(sig. 2-tailed) 0.07 0.02

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed)

NA No PAR measurement (in seeding stage)

The results shown in Table 5.3 are mixed, which very few variables are a significant correlation

with the vegetation index measurements. Overall, three parameters had significant negative

relationships with the NDVI: the water depth, rice height, and stem density. In particular, water

depth and rice height showed significant negative correlations with the NDVI, while the EVI

showed a significant negative correlation between water depth and the EVI in the flowering stage.

This is because the monsoons hit the flowering stage and lead to flooding in almost paddy fields

because farmers are not releasing water. In the harvesting stage, a negative correlation is found
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between stem density and the NDVI; whilst a positive correlation is found in water depth and EVI.
Additionally, the wet and dry total and stem biomass are related to EVI in the harvesting stage
(~0.45). Finally, the chlorophyll content and LAl tend to be lower in the harvesting stage than in
the flowering stage (Figure 4.12-4.13 and Table 4.5-4.6, Chapter 4). The weak correction found
between the vegetation indices and chlorophyll content, LAI, and yield are surprising since many
studies have found the inverse (e.g. Zhang et al. (2019)) and proved other vegetation index
(Normalized Difference Red Edge: NDRE) better performance with agronomic parameters). Gao et
al. (2013) proved that the vegetation indices, such as RVI, NDVI, and EVI, were not effective with

maize in the heading stage due to the near-infrared reflectance saturation and dense coverage.

5.3.2.2 Correlation of vegetation indices and rice yield biophysical variables

Having assessed the temporal dynamics of the satellite metrics in relation to the rice phenological
cycle, the following section presents an analysis of the correlation between satellite data and yield
variables. The correlation was performed as a function of the irrigation method, at individual

growth stages and across all growth stages. The results are summarised in Table 5.4.

Table 5.4  Correlation between vegetation indices and rice yield in overall area, irrigated areas,

and non-irrigated areas across growth stages.

Irrigated system Stage Statistical Vegetation indices
NDVI EVI
Overall Seeding Pearson -0.20 0.57**
(sig. 2-tailed) 0.39 0.01
Non- irrigated Tillering Pearson 0.72 0.84*
(sig. 2-tailed) 0.11 0.04

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed)

NA No PAR measurement (in seeding stage)

The best agreement is found in the early rice growth stages, particularly for the EVI and rice yield
in the seeding stage in non-irrigated areas. In contrast, more potent (but not significant)
correlations are found in between the vegetation indices and yield in the flowering and harvesting
stage. It is evident from phenological vegetation index profiles (Figure 5.7) that the vegetation
index values at the end of the season, when the rice canopy structure is dense, are lower than
those in the seeding stage when the canopy is less developed. It is believed that this is due to the

increase in non-photosynthetic material in the canopy, which VIs is not sensitive.
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a) EVI in the seeding stage
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Figure 5.9 Scatter plots between observed rice yield and significant Sentinel-2. a) EVI in the

seeding stage and b) NDVI in the panicle stage.

To determine the possible impact of rice variety on the correlation analysis, we carry out a similar

analysis but focus on rice varieties with a sufficient number of samples for analysis (Table 5.5).
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Table 5.5  Correlation between vegetation indices and rice yield in overall area, irrigated areas,

and non-irrigated areas across growth stage specific growth stage.

Irrigated system Stage Statistical Vegetation indice
NDVI EVI
Phitsanulok2 Tillering Pearson -0.09 0.95*
(sig. 2-tailed) 0.91 0.05
RD41 Seeding Pearson 0.33 0.86*
(sig. 2-tailed) 0.53 0.03

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed)

NA No measurement

5.3.2.3 Correlation of SAR (Sentinel-1) backscatter coefficient and yield
A similar analysis to the previous section was carried out using the backscatter coefficient at
different polarisations and orbital directions, with the results shown in Table 5.6.

Table 5.6  Correlation between backscatter coefficient and rice biophysical variables in overall

areas, irrigated areas only, and non-irrigated areas.

Irrigated Stage Statistical Backscatter coefficient

system AscVV | AscVH | AscVV/VH | DescVV | DescVH | DescWW/VH

Overall Seeding |Pearson 0.09 0.04 -0.05 0.49* | 0.42* -0.44*

(sig. 2-tailed) | 0.68 | 0.87 0.81 0.02 0.05 0.04

Harvesting | Pearson -0.44* | 0.14 0.54** -0.24 0.21 0.39

(sig. 2-tailed) | 0.04 0.52 0.01 0.27 0.36 0.07

Irrigated  |Seeding | Pearson -0.01 | 0.07 0.09 0.62** | 0.65** -0.49

(sig. 2-tailed) | 0.96 0.79 0.73 0.01 0.01 0.05

Harvesting | Pearson -0.43 | 0.20 0.57* -0.33 0.28 0.50*

(sig. 2-tailed) | 0.10 | 0.46 0.02 021 | 029 0.05

Non- Tillering | Pearson -0.88* | -0.62 0.90* -0.70 | -0.80 0.63

irrigated (sig. 2-tailed) | 0.04 | 0.19 0.02 0.12 0.06 0.18

Panicle Pearson -0.47 | -0.42 0.44 0.84* 0.60 -0.35

(sig. 2-tailed) | 0.35 0.40 0.38 0.04 0.21 0.50

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed)

NA meant no PAR measurement (in seeding stage)

Regarding the relationship using all data, the relationship between backscatter and rice yield
variables is significant only in the ascending direction for VV and VV/VH polarised data in the
harvesting stage with negative (r = -0.44) and positive (r = 0.54) correlations, respectively.

Conversely, significant positive and negative correlations are found in the seeding stage for all
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descending polarised data (i.e. VV, VH, and ratio VV/VH). Overall, the ascending VV/VH ratio and

ascending VV polarisation performed best, with higher correlations with rice yield.

In irrigated areas, significant correlations are found in the seeding stage on descending VV and
descending VH with 0.62-0.65 correlation coefficient; however, the ratio VV/VH in both ascending
and descending is 0.57 (ascending VV/VH) and 0.5 (descending VV/VH). In contrast, correlations
found in non-irrigated areas had stronger relationships, but the strength of the relationship
differed with polarisation. Finally, the tillering and panicle stage is significant, with rice yield in the
non-irrigated areas for ascending VV and ascending VV/VH with -0.88 and 0.90 in the tillering
stage. Meanwhile, the correlation coefficient in the panicle stage appears in the descending VV in
the panicle stage (r = 0.84). These differences could be due to the sensitivity to volume scattering
from rice canopy. In the vegetative phase, the backscatter coefficient in VH increased due to an
increase in rice density and height, increasing double-bounce scattering between rice canopy and
underlying surface. However, the VV backscatter gradually increased due to the impact of
extinction on the vertical element of rice structure and orientation (e.g. stems and leaves). In the
reproductive phase, the VH increased due to the denser plant canopy and the emergence of rice
heads. The water content in rice heads has less impact on the vertical extinction and orientation
of rice components; however, the VV polarised backscatter is reduced due to decreasing rice in

the cylinder pattern (He et al., 2018).

a) Descending VV in the seeding stage

Stage: Seeding

7
r=0.49
.

B
_ L ]
£ *e . .
= .
E 9 . »
= .
I s ®
2z )
=

]
e
]
4 o2
. . .
.
3
-20 -18 -1 -14 -12 -10 -8 -6

Average sigma nought in descending VV [dB)

165



Chapter 5

b) Ascending VV/VH in the harvesting stage
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Figure 5.10 Scatter plots between observed rice yield and significant Sentinel-1. a) Descending

VV in the seeding stage and b) Ascending VV/VH in the harvesting stage.
Table 5.7 shows the relationship for the most dominant rice varieties (i.e. Phitsanulok2, RD41, and
RD49).

Table 5.7  Correlation between backscatter coefficients and rice biophysical variables in all

areas, irrigated areas only, and non-irrigated areas sepreated rice varieties.

Irrigated Stage Statistical Backscatter coefficient

system AscVV | AscVH | AscVV/VH | DescVV | DescVH | DescWW/VH

Phitsanulok2 | Seeding Pearson 0.79 | 0.98* -0.47 0.84 0.86 -0.76

(sig. 2-tailed) | 0.21 | 0.02 0.53 0.17 0.14 0.24

RD41 Flowering |Pearson 0.14 | 0.81* 0.12 0.49 0.55 -0.37

(sig. 2-tailed) | 0.80 | 0.05 0.82 0.33 0.25 0.47

RD49 Seeding Pearson 0.46 0.83 -0.12 0.08 0.92* 0.22

(sig. 2-tailed) | 0.44 | 0.09 0.85 0.90 0.03 0.72

Harvesting | Pearson -0.94* | -0.45 0.61 -0.77 0.51 0.74

(sig. 2-tailed) | 0.02 | 0.45 0.28 0.13 0.38 0.15

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed)

NA meant no PAR measurement (in seeding stage)
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Only three significant relationships were found between backscatter and yield, which were
different regarding backscatter polarization and the growth stage. The results indicate that no
growth stage or backscatter polarization performs with any consistency with moderate and weak
negative and positive (non-significant) correlations in the majority of cases. The best results were
found using the ascending orbit data and VV/VH backscatter ratio in the harvesting stage and this

will be used to develop a linear regression model.

5.3.3 Develop simple linear regression model

Regression analysis analyses the relationship between one variable (set as a dependent variable)
and a series of variables (set as independent variables). The following section describes the
development of a simple linear regression model by setting the vegetation indices, and
backscatter coefficients as independent variables and rice yield at a provincial level as the
dependent variable. The best results found using the NDVI were in the panicle stage and for the EVI in

the seeding stages, and these data were used to develop the regression model, detailed in Appendix J.

Referring to the EVI, the B value indicates that a difference of one unit increases approximately 3.469
tonnes of rice production, and the constant value is 4.525, which is significant in the seeding stage.
Conversely, the NDVI identifies a difference of one unit result in their pixel 5.497 tonnes and constant
1.508 in the panicle stage. The Sentinel-1 SAR in the ascending and ratio of VV/VH polarisation and
specific in the harvesting stage. The B value indicates that a difference of one unit increases
approximately 2.447 tonnes of rice production based on the ascending ration VV/VH. The constant
value is 3.351, which is significant in the harvesting stage. The rice yield model for the vegetation

indices and backscatter is shown in Table 5.8.

Table 5.8  Model expression based on a simple regression model based on different remotely

sensed data.

Factor Growth Model expression on rice yield R R? Std. error of
stage predicted model estimation
(SEE)
(ton/ha)
Sentinel-2
optical
- EVI Seeding Y = (EVI*3.469) +4.525 0.57 | 0.32 0.62
- NDVI Panicle Y = (NDVI*5.497) +1.508 0.37 | 0.14 0.70
Sentinel-1
SAR
ascending | Harvesting | Y = (ascending VV/VH*2.447) +3.351 | 0.54 | 0.29 0.68
VV/VH
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Table 5.8 reveals the results from the linear regression models. The standard error of estimation
(SEE) for the EVI and NDVI is 0.62 and 0.70 tonnes/ha, respectively, whilst the regression model
found using the backscatter data (ascending VV/VH polarised data) has a SEE of 0.68 tonnes/ha.
The SEE is similar for both the radar and optical data, suggesting neither outperforms the other,
although an advantage of radar data is its all-weather capability. The simple linear regression
models developed using SAR data performed better than optical data, and these use to estimate
yield for other rice varieties and booting stage/maturity/ripening stage is advantages of yield

estimation.

a) Panicle stage (booting and heading stage)

sample Unit 1

b) Harvesting (maturity) stage

Figure 5.11 Photos of sample fields in the panicle (booting and heading) and harvesting

(maturity) stage (example sample unit 1 in Phichit).
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The figure 5.11 demonstrates that rice culms and grain development varied in the different
growth stages. In the panicle stage, rice develops its flag leaf and initiates grains. The rice culms
are vertical, and the green leaves suggest high chlorophyll content. This relationship is related to
spectral reflectance (NDVI ~0.61 and EVI ~0.6), which is not saturated NDVI in this growth stage.
The other critical growth stage for yield estimation is the harvesting stage. The vegetation indices
have low values (NDVI ~0.2 and EVI ~0.1) due to lower chlorophyll contents and increased
senescent material. Conversely, rice grains are hard dough and nearly to harvest if the moisture

contents reach the standard.

5.3.4 Validation of yield estimates derived using the simple regression model

The regression models described in Table 5.8 are applied to satellite data to estimate yield across
three provinces and which is validated using official yield data from 2017. The results are shown in

Table 5.9.
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Table 5.9  Accuracy assessments on a simple regression model based on ascending VV/VH and government’s yield statistic in 2017.
Province/Amphoe Government EVI in seeding NDVI in panicle AscendingVV/VH in harvesting
St;it;f:c Forecasting yield MAPE Forecasting yield MAPE Forecasting yield MAPE
(tonnes/ha) (tonnes/ha) (%) (tonnes/ha) (%) (tonnes/ha) (%)
Phichit 3.77 5.33 68.82 3.32 9.0 4.72 52.34
- Bang Mun Nak 3.88 5.37 94.00 2.89 4.28 4.64 67.74
- Bung Na Rang 3.97 5.48 46.56 3.90 4.25 4.88 30.50
- Dong Chareon 3.39 5.26 64.60 3.16 1.08 4.65 45.48
- Muang Phichit 3.98 5.24 80.63 3.14 8.38 4.75 63.73
- Pho PrathapChang 3.84 5.28 74.11 3.71 22.43 4.86 60.25
- Pho Thale 4.09 5.32 17.10 3.97 12.54 4.84 6.59
- Sak Lek 3.08 5.18 131.29 2.56 14.50 4.55 103.27
- Sam Ngam 3.74 5.33 56.08 3.46 1.28 4.78 39.94
- Taphan Hin 4.09 5.62 77.30 3.29 3.96 4.73 49.31
- Thap Khlo 3.48 5.13 75.18 3.38 15.81 4.60 57.79
- Wachira Baramee 351 5.30 30.38 3.48 14.44 4.70 53.91
- Wang Sai Phun 3.42 5.51 78.16 2.94 4.99 4.63 49.55
Ang Thong 4.16 5.59 93.53 4.45 62.14 4.87 71.88
- Chai Yo 3.84 5.56 77.31 4.41 40.74 4.87 55.39
- Muang Ang Thong 4.12 5.53 56.65 4.35 23.21 4.76 34.82
- Pa Mok 3.80 5.70 440.98 4.34 311.64 4.79 354.82
- Pho Thong 4.13 5.62 26.47 4.47 0.58 4.94 11.04




Province/Amphoe Government EVI in seeding NDVI in panicle AscendingVV/VH in harvesting
St;itelf;'c Forecasting yield MAPE Forecasting yield MAPE Forecasting yield MAPE
(tonnes/ha) (tonnes/ha) (%) (tonnes/ha) (%) (tonnes/ha) (%)

Ang Thong (Cont.)
- Samko 4.24 5.52 17.62 4.70 29.83 5.00 25.35
- Sawangha 431 5.85 2.56 4.61 23.18 4.88 18.77
- Wiset Chaichan 4.12 5.36 33.11 4.26 5.81 4.83 2.98
Pathum Thani 4.49 5.94 21.96 3.96 26.99 4.86 18.29
- Khlong Luang 4.58 5.88 5.06 4.05 27.73 4.85 13.41
- Lam Luk Ka 4.50 5.90 28.77 3.80 17.04 4.87 6.26
- Lad Lum Kaeo 4.63 6.17 22.78 3.83 23.80 4.84 3.81
- Muang Pathum Thani 431 5.67 1.77 3.97 28.73 4.85 12.88
- Nong Suea 4.34 5.94 21.33 4.07 46.09 4.90 35.10
- Sam Khok 4.47 6.12 67.74 3.99 9.47 4.87 33.51
- Thanyaburi 4.51 5.93 6.25 4.04 36.10 4.86 23.07

S

s
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Table 5.9 illustrates the MAPE in the amphoe; then, the average MAPE at the provincial level. The
MAPE calculates from the absolute error of the differences between official yield and forecast
yield (significant satellite in specific growth stage). The square error of absolute error is further
analysed for the RMSE and MAPE, which is calculated from mean absolute error (MAE) and
converted to percentage values. It is clear from the table that the vegetation index estimated
yield is overestimated in nearly all cases with the MAPE ranging between 5.13 and 6.17 for the EVI
and It is clear from the table that the vegetation index estimated yield is overestimated in nearly
all cases, with the MAPE ranging between 1.77 to 440.98% for the EVI and 0.58 to 311.64 for the
NDVI. The NDVI has a lower average MAPE (32.71%) compared to the EVI (61.44%) over all

amphoes.

In the case of the EVI, the average satellite-derived yield in Phichit, Ang Thong, and Pathum Thani
is 5.33, 5.59, and 5.94 tonnes/ha, which compares to the average government yield estimates of
3.77, 4.16, and 4.49 tonnes/ha, respectively. Consequently, the average MAPE of the EVI-derived
yield estimates in Phichit, Ang Thong, and Pathum Thani is 68.8%, 93.5%, and 21.9%, respectively.
The NDVI performs slightly better with average estimated yield in Phichit, Ang Thong, and Pathum
Thani of 3.32, 4.45, and 3.96 tonnes/ha, respectively, compared to the average government yield
estimates of 3.77, 4.16, and 4.49 tonnes/ha, respectively. As a result, the RMSE and MAPE (in
brackets) in the following provinces are 82.82 tonnes (9%), 6,805 tonnes (62.1%), and 10,899
tonnes (26.9%), respectively. Finally, the yield estimated using the VV/VH backscatter data
provides estimates ranging between 4.57 and 5 tonnes/ha. The average MAPE of the yield
estimates in Phichit, Ang Thong, and Pathum Thani is 52.34%, 71.88%, and 18.29%, respectively.

Table 5.9 is a result of applying the developed rice yield estimation model based on simple linear
regression to the output of masking rice areas using the raster calculator function. Then, the
results are clipped into the amphoe level and summation the rice yield at the same administrative
level. The rice yield forecasting based on the Sentinel-1 in the ascending in the ratio of VV/VH
polarisation in the Phichit, Ang Thong, and Pathum Thani is 4.72, 4.87, and 4.86 tonnes/ha,
respectively. Then, rice yield applies to the rice production in these provinces. The results are also
revealed the overestimation of rice yield for all provinces. The rice production from the yield
estimation model and official rice production (in brackets) in the Phichit, Ang Thong, and Pathum
Thaniis 1,301,420 tonnes (876,596 tonnes), 236,964 tonnes (230,547 tonnes), and 204,240
tonnes (223,167 tonnes), respectively. The RMSE perform better in the rice irrigated areas with
less variance on the backscatter (Figure 5.8). The MAPE is calculated to compare actual rice yield
and forecasts rice yield for percentage error estimation. The result of the MAPE in the Phichit, Ang

Thong, and Pathum Thani is 52.34%, 71.88%, and 18.29%, respectively. The output of rice
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cultivated areas may be some mix-pixels classification of OAE spatial data. Obviously, some
provinces have higher MAPE values such as Sak Lek, Bang Mun Nak, and Muang Phichit (in Phichit)
and Chaiyo, Pa Mok (in Ang Thong). Conversely, the MAPE is slightly lower MAPE (<35%) and
suitable to estimate yield. The latter is essential for the delivery of timely and accurate
agricultural information derived from remotely sensed images for mid-season yield forecasts of
the national rice production, which is beneficial for agriculture resource management, food
security, and agricultural policy formulation. The MAPE is illustrated into the amphoe level in each
province to recognize easy the error of the yield estimation model based on the NDVI in the
panicle stage and the ascending ratio of VV and VH polarisation in the harvesting stage as shown

in Figure 5.12-5.13.
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Figure 5.12 Rice yield estimation and MAPE in three representative provinces by applying simple

linear regression model to optical imageries with NDVI in the panicle stage.
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Figure 5.13 Rice yield estimation and MAPE in three representative provinces by applying simple

linear regression model to SAR imageries in the harvesting stage.
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5.4 Discussion

5.4.1 Seasonal changes in satellite data according to rice growth

Analysis of the temporal dynamics of vegetation indices and backscatter through the growing
season indicates that the vegetation indices have a defined seasonal cycle, particularly the NDVI,
which recorded the highest values in the panicle stage. Rice characteristics begin with flooding
(inundation) and transplanting; thus, the vegetation indices are pretty low at these stages. Then,
NDVI increases following rice growth and leaf greenness. This agrees with numerous studies that
found the highest NDVI values before the ripening phase by analysing the MODIS-based
vegetation and water indices, reconstructed NDVI temporal profile, and setting thresholds such as
Otsu’s method and LSWI + 0.05 > NDVI (or EVI) for flooding and transplanting pixel (LI et al., 2020;
Peng et al., 2011). Xiao et al. (2002) proved that the LAl of rice peaked two months after
transplanting. The temporal dynamics of the EVI were similar to the NDVI, which may reflect the
greater sensitivity of the EVI to the canopy structure rather than the vegetation vigour (Mondal et
al., 2014). As the rice canopy grows and matures, LAl increases, whilst the development of flowers
and seeds changes the composition of photosynthetic and non-photosynthetic material (Chang et
al., 2016). Other studies have investigated the rice phenological cycle by extracting remote
sensing data. Zhou, Liu, and Liu (2019) assimilated rice phenological from the MODIS in EVI
product to identify three phenological dates (transplant date, heading date, and maturity date)
into the World Food Study (WOFOST) model. The correlation (r) ranged from 0.8-0.82 and proved
efficiency for rice phenological simulation. Other research created rice phenology using object
classification (pixel-based classification) from Sentinel-1/2 and estimated the proper time window
in time-series VIs and PhenoRice algorithm. These combinations of methods help in define the
start of the season (SoS), flowering (or peak of the season: PoS), and cropping intensity during the
growing season (Xiao, Xu, & He, 2021). In summary, the vegetation index has successfully tracked
the rice phenological cycle or dynamics for the wet season, even though some data in the
flowering stage may be missing. The rice variety indicated the variation of vegetation and varied

with the growth stage.

Meanwhile, the temporal backscatter of rice displays the cross-ratio (VV/VH) as excellent
performance. The backscatter for each of the growth stages is agreed with previous research.
Backscatter in both VV and VH polarisation in the transplanting period shows the lowest
backscatter related to the specular reflection of the water surface in the paddy field. After the
transplanting, rice roots develop their nodes and density. Some research suggested excluding C-
band SAR data in the seeding stage because there are effects from ridge appearing on the water

surface (Kobayashi & Ide, 2022). In the tillering stage, the backscatter of VV increased more
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rapidly than VH polarisation because of the increased rice height and caused the vertical structure
development. In addition, there are influences from double-bounce scattering between rice
plants and the water surfaces. In the panicle stage, rice develops its stems and panicle initiation
and causes microwave attenuation by vertical plant structures. In the flowering or ripening stage,
SAR signals are quite sensitive to moisture contents for vegetation and soils, called dielectric
constant. Finally, the harvesting stage is a slight change in rice structure, and the backscatter is
dropped due to senescence. The result explores the different backscatter patterns between two
orbits and polarisations, agreed with Wali et al. (2020) and consistent with crop phenological
changes. However, the present study’s limitations are the wide range of planting dates (4 — 24

May 2017 with ~20 days) which causes a slightly distortion of vegetation indices (NDVI and EVI).

The SAR phenological cycle is less pronounced than the vegetation indices, with the VV polarised
backscatter consistent throughout the season, whilst the VH polarised backscatter typically
increased. Other studies have found similar trends (He, Li, Wang, Dai, & Lin, 2018). As the same
result with the present study showed that the backscatter coefficient in VH polarisation was
relatively low (-20 dB) in the transplanting phase, whilst the flooding water in VV polarisation was
higher (-13 dB). Furthermore, it was difficult to classify the phenological phase of HH or VV
polarisation. Polarisation is one crucial factor impacting the strengths of the backscatter (CEQOS,
2018) and its interaction with vegetation structure. In principle, the total backscatter of a rice
canopy is primarily from volume scattering due to the ears, leaves, and stems, multiple scattering
between the canopy and underlying ground surface, and surface scattering by the ground surface
(soil or flooded water). In the sowing and transplanting stages, the ground surface is a smooth
surface, with a dielectric constant of water; at this point, the signal is no return, and the
backscatter coefficient is called “specular reflection” and causes the SAR images to dark. The rice
canopy contains three layers (i.e. ears, leaves and stems). In particular, rice ears and stems are
short cylinders and have narrow leaf’s structure. Further, the leaf angle distribution varies by
growth stage and is expressed by specific probability distribution functions (Verma et al., 2019).
The SAR phenological cycle is less pronounced than the vegetation indices, with the VV polarised
backscatter consistent throughout the season, whilst the VH polarised backscatter typically
increased. Other studies have found similar trends (He, Li, Wang, Dai, & Lin, 2018). The same
result with the present study showed that the backscatter coefficient in VH polarisation was
relatively low (-20 dB) in the transplanting phase, whilst the flooding water in VV polarisation was

higher (-13 dB).
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5.4.2 Relation between rice yield variables and satellite

The relationship between the rice yield variables and satellite-derived measurements was
investigated for different growth stages of the growing season. Our study reveals that the Vls
peaked in the panicle stage and that the NDVI is typically slightly higher than EVI. The irrigation
system appears to influence the temporal dynamics of the vegetation indices. For example, VI
values in non-irrigated areas were higher than in irrigated areas in the panicle stage. This likely to
be due to differences in the planting dates influence the growth stage and the availability of a
consistent water supply. The lower correlation between VIs and rice yield variables found in non-
irrigated areas is believed to be due to the influence of non-photosynthetic materials. Xu et al.
(2020) found that NDVI tends to saturate at high effective LAl values due to non-photosynthetic
vegetation (NPV). The study contributed green vegetation (GV) and NPV by Plant Area Index (PAI)
measurement and found a weak correlation between NDVI and PAI with higher rice residue in the
paddy field. Due to the non-photosynthetic vegetation, several researchers have applied the
other seasonal NDVI pattern. Ajith et al. (2017) developed rice yield prediction using time-series
of MODIS-NDVI (MOD13Q1) data from the beginning to the end of the growing season and found
a high correlation with rice yield based using the NDVI summation (2NDVI; R? = 0.75). Specific rice
variety (RD41) had the highest correlation between rice yield and EVI in the seeding stage, whilst

Phitsanulok? is the highest correlation among the two parameters in the tillering stage.

Furthermore, it was difficult to classify the phenological phase of HH or VV polarisation.
Polarisation is one crucial factor impacting the strengths of the backscatter (CEQS, 2018) and its
interaction with vegetation structure. In principle, the total backscatter of a rice canopy is
primarily from volume scattering due to the ears, leaves, and stems, multiple scattering between
the canopy and underlying ground surface, and surface scattering by the ground surface (soil or
flooded water). In the sowing and transplanting stages, the ground surface is a smooth surface,
with a dielectric constant of water; at this point, the signal is no return, and the backscatter
coefficient is called “specular reflection” and causes the SAR images to dark. The rice canopy
contains three layers (i.e., ears, leaves, and stems). In particular, rice ears and stems are short
cylinders and have narrow leaf’s structure. Further, the leaf angle distribution varies by growth
stage and is expressed by specific probability distribution functions (Verma et al., 2019). The
moisture content of rice panicles decreases in the ripening stage and leads to a slight reduction of
the backscatter coefficient (Nelson et al., 2014). SAR data is more influenced by the vegetation
canopy structure and surface moisture content. This is reflected in our results, which show the
strongest correlations with rice yield in the ascending orbit direction with the ratio of VV/VH. This
agrees with previous research that has found a high correlation between the C-band backscatter

coefficient and rice biophysical variables. However, there are limitations as the backscatter can
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saturate when the LAl is >3 m?m™ and the total biomass (320 gDW m2) (Inoue et al., 2014).
Further, the correlation between the backscatter coefficient and rice biophysical variables in the
overall area agrees with previous research that found LAI, FPAR, biomass, and rice height were
related to the ratio of VV/VH polarisation (Li et al., 2016). The result of our study indicates that
rice yield had a high correlation with the backscatter coefficient in the ascending ratio of VV/VH
polarisation in the harvesting stage. Finally, the RD41 variety improved the correlation of rice
yield with ascending VH polarisation in the flowering stage. The results agree with Lam-Dao et al.
(2011) previous study on using the ratio HH/VV of multi-date TerrSAR-X for multiple linear
regression model in the Mekong Delta even though there was utilise the several multi-date band
combinations of TerraSAR-X data of X-band. The result proved the relationship between in-situ
yield and polarisation ratio data was a high positive correlation with a correlation coefficient of
0.892 in case 1 and 0.884 in case 7 (Lam-Dao et al., 2011). The results agreed with (Kobayashi &
Ide, 2022) that suggested the potential of C-band SAR data of properly in the harvesting stage for
yield estimation because of less affected by the surface to resonate of panicle conditions; in

addition, the stable signal in ratio VV/VH after heading period.

The results of the comparison between satellite metrics and rice biophysical variables also
highlight the role of the irrigation method, even when the rice variety is the same. As shown in
Figure 5.7, peak vegetation index values occurred in the tillering stage in irrigated areas but in the
panicle stage in non-irrigated areas. The irrigation method influences vegetation health and land
surface temperature (LST) (Ambika & Mishra, 2019). Kamthonkiat et al. (2005) also found the
NDVI to be higher in irrigated rice areas (ranged 0.64-0.77) than in non-irrigated areas (ranged
0.58-0.63), which suggests irrigation may play an important role in improving crop development

and food security.

5.4.3 Potential of satellite data to develop rice yield estimation model based on simple

linear regression

Numerous methods exist for estimating yield, such as seasonal crop growth, crop growth model,
rice biophysical relevant to LAl and grain, and remotely sensed data (Fernandez-Beltran et al.,
2021; Huang et al., 2013; Kim et al., 2017; Noureldin et al., 2013). In this study, linear regression
and multiple regression models were developed using satellite and field measurements to predict
yield. The results indicate that the least error found using a linear regression model was VV/VH
polarised ascending backscatter in the harvesting stage, which had a SEE of 0.68 tonnes/ha.
Noureldin et al. (2013) developed simple and multiple regression models using individual spectral
bands and several vegetation indices (i.e., GVI, DVI, IPVI, RVI, NDVI, SAVI) using SPOT data. The

most accurate yield estimates were found using the red, NIR and Vis (R? > 0.8), and the highest
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accuracy between NDVI and LAl parameters. The lower error was found using a regression model
developed using in-situ LAl measurements in the panicle stage. However, a limitation of this is the
requirement to use surface measurements despite the benefit of being able to estimate yield

earlier in the growing season than can be currently achieved.

Chapter 4 investigated the variation of biophysical variables through the growing season for
different rice varieties grown in irrigated and non-irrigated areas. The results highlighted the vital
role that rice variety has on rice plant structural development. These differences have important
implications for estimating biophysical parameters and yield using satellite imagery. Modern rice
varieties aim to maximise biomass production. Huang, Yin, Jiang, Zou, and Deng (2015)
investigated two rice varieties (GLY2 and YXYZ) and found significant differences in high grain
yield, spikelet per m?, spikelet filtering percentage, LAI, and leaf N content. Crop photosynthesis
depended on traits for potential yield improvement. This study also found that rice varieties lead
to varied correlations between biophysical parameters and satellite data, even when planted in
the same period. In addition to rice variety, the irrigation system also impacts both Sentinel-2 and
Sentinel-1, as shown in Figure 5.7 and Figure 5.8, which is a high gap noticeable in the satellite
values. However, to get a clear picture of the influence of rice variety and irrigation methods, a

more significant number of samples of rice variety are needed.

The other study interest is investigating the total backscatter coefficient from of rice canopy (c°
total) and MIMICS model (Michigan’s Microwave Canopy Scattering Model) (i.e. crown region,
trunk region, and underlying ground region) (Steele-Dunne et al., 2017). In principle, the
backscatter coefficient from crop canopy is expressed as the volume scattering with crop canopy
and ground surface; thus, the backscatter coefficient should be determined as the total
backscattering coefficient of crop canopy as defined in Grotal (Verma et al., 2019). In addition, rice
development in each growth stage responds differently with SAR signal. For example, the Grotal
signals in the harvesting stage impacted with surface, stem, leaves, and panicle grains. Because
there are several layers and should investigate on the relationship with other microwave indices
such as the Radar Vegetation Index (RVI) (Kim et al., 2012; Mandal et al., 2020) with essential rice
biophysical variables. Future work may investigate the multiple linear regression model based on
the polarisation ratio of multi-date and image combination of SAR images (Lam-Dao et al., 2011).
Further work should be investigated the other vegetation indices such as the modified chlorophyll
absorption ratio index/second modified triangular vegetation index (MCARI/MTV12) and
transformed chlorophyll absorption in reflectance index/optimized soil-adjusted vegetation index
(TCARI/OSAVI) for better performance. The other factors influences with crop and the present
study did not collect is leaf water contents and panicle water contents, which influences with SAR

signals (Kobayashi & Ide, 2022). Also, future works are focusing on using other shallow incidence
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angle (>45°) because there has a stronger scattering with crop canopy and panicle. Besides, the
combining of multi-frequency of radar backscattering or full polarisations is challenge for derive

rice biophysical and yield estimation (Kim, Hong, & Lee, 2008).

5.5 Conclusion

This chapter builds on Chapter 4 by investigating the relationship between rice biophysical
variables at different growth stages and satellite-derived vegetation indices and backscatter
coefficients. Analysis of the temporal dynamics of vegetation indices and backscatter through the
growing season indicates that satellite-derived measurements are suitable for characterising rice
phenology. However, the vegetation index measurements had a more defined seasonal cycle but
also appeared to be influenced by the development of flowers during the flowering stage, as the

VI values were typically low here.

Regression models developed using satellite measurements in the harvesting stage provided the
best approach to estimate rice yield. However, this is towards the end of the growing season and
not a significant temporal advancement than in-situ measurement approaches. The best-
performing regression model was developed using the NDVI in the panicle stage, which had a SEE
of 0.70 tonnes/ha. The SAR based on ascending ratio VV/VH measurements in the harvesting
stage is also better due to penetrating cloud cover, with a SEE of 0.68 tonnes/ha. The present
study proves that the significance of SAR data in the ascending ratio VV/VH is better than the
NDVI in the Pathum Thani (MAPE for the NDVI in panicle 27% and 18.29% MAPE for the ascending
VV/VH). On the contrary, the MAPE based on NDVI in the panicle stage in Phichit and Ang Thong
fits with 9% and 62.14%. The MAPE based on the ascending VV/VH in the harvesting stage in
Phichit and Ang Thong is fits with 52.34% and 71.88%. A limitation of using regression models is
the reliance on field measurements in their development, but it does provide a means to estimate

the yield on a broader scale.

A key challenge highlighted in this chapter is the role of rice variety and irrigation system, which
influences the structural characteristics of canopy and temporal dynamics of growth. This has
implications for using satellite data to estimate rice yield where significant variation in the
correspondence between satellite metrics and rice biophysical variables was evident. Therefore,
future studies should investigate the influence of rice variety on satellite radiometric signals, as

this may improve the development of methods for estimating yield using EO data.
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Chapter 6 Discussion and conclusions

6.1 Summary of findings

The following sections summarise the main findings of this research, which centre on three main
areas: 1) the influences of precipitation and temperature on rice production in Thailand; 2) the
dynamics of rice biophysical variables and the role of irrigation in controlling them; and 3) the

potential of optical and radar data to estimate rice yield.

6.1.1 Analysis of the impact of rainfall and temperature on rice production

This study investigated the influence of weather (temperature and precipitation) on annual rice
yield and production at the provincial level in Thailand over the past 35 years (1981-2015). It was
achieved by assessing the impacts of precipitation (amount of rainfall and average rainy days) and
temperature (minimum temperature, maximum temperature, mean temperature, mean
minimum temperature, mean maximum temperature, and difference in temperature) on rice
yield and production. To remove the influences of changes in agricultural policy and
developments in agricultural technology and seed developments, rice yield and production data
were detrended by differentiating between original rice production/yield in the observation year
and rice production/yield observation in the previous year in the time-series datasets. In 2015,
the main rice cultivated area is located in the northeast with low productivity (~1.9 tonnes/ha)
due to poor soil fertility. On the contrary, the rice cultivated areas in the central regions represent

high productivity (~4.5-5 tonnes/ha) due to adequate irrigation and fertile soil.

The changes in rice cultivated areas over the period revealed that 55% of the provinces saw an
increase of >10% in cultivated areas, 25% a decrease in cultivated areas by >10%, and 20% of
provinces saw changes less than +/-10%. Analysis of the temporal dynamics of precipitation on a
monthly basis revealed declining trend of average rainfall in May (~60 mm). This is important on
rice production in Thailand, as it can influence the rice planting date in the wet growing season in
terms of shifting the planting date, especially in the non-irrigated areas corresponding with the
onset of monsoon. The rainfall variation in terms of standard deviation (S.D.) is highest from
June-August. Besides, the number of rainy days gradually increases ~3-5 days per month and

peaks during August-September.

The temperature in terms of mean minimum temperature in January around 18-19°Celsius; then,
the temperature is slightly increased until April (~25°Celsius) and certainly steady until August-

September. On the contrary, the mean maximum temperature is the distinctive pattern from the
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mean minimum temperature. For example, the mean maximum temperature in January is
32°Celsius and sharpens increasing in April; then, the temperature reduces until the end of the
year. Obviously, there is an enormous fluctuation between mean maximum and mean minimum
temperature (defined as differences in temperature) at the beginning of the year (January-April).
After October, the difference in temperature reveals higher trends of mean minimum
temperature. The present study is agreeable with the IPCC weather trends forecasts (Solomon,
2007) and weather data derived from TMD, Thailand, that reveals the increasing temperature

trends over the study period.

The correlation between rice and weather variables revealed that mean minimum temperature,
mean maximum temperature, and cumulative rainfall adversely affected rice yield and
production. The impact of climate on rice production also varies by level of irrigation. In general,
the temperature-derived variables such as mean minimum and mean maximum temperature had
a more considerable impact than rainfall variables. Some key findings from this study can be

summarised as:

1) Inthe non-irrigated area, the mean minimum temperature has a significant positive
relationship with rice yield for 15 provinces, whist in the irrigated area only 3 provinces recorded
a significant relationship between rice yield and mean minimum temperature. Whereas there are
16 provinces is significant with rice production in the non-irrigated area (positive correlation 15
provinces and negative correlation 1 province).

2) Inthe non-irrigated area, the mean maximum temperature has a significant positive relation
with rice yield for 11 provinces, whilst in the irrigated area only 3 provinces Contrary, the positive
significant on rice production 2 provinces in irrigated areas and 10 provinces in non-irrigated

areas (positive correlation 9 provinces and negative correlation 1 province).

3) In the non-irrigated area, the cumulative rainfall is positive. There are significant 3 provinces for
rice yield. However, the positive significant with rice production found 1 province in irrigated rice

and 3 in non-irrigated rice. The result demonstrates the influences of irrigation on rice production.

Furthermore, the present work determines the spatial autocorrelation with Global Moran’s |
index to study the systematic spatial variation pattern (i.e., cluster, random, disperse) with
neighbouring provinces by assigning the feature location and weather data from their weather
attribute. The test is set to share an edge with the target polygon in the conditions and considers
the Z-score and P-value to accept the null hypothesis. The output identifies less spatial
autocorrelation between share edge provinces. The result reveals that cumulative rainfall and
average temperature are significant with the random and clustered pattern (Moran’s | index

~0.15). Moreover, the result indicates some influences on the other variables.
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An increase in water efficiency through irrigation supports long-term crop productivity
(Winterbottom et al., 2013) by ensuring adequate water supply as per the requirement of the
crop. The development of engineering irrigation structures (e.g. dams, conveyers and canals) is
important in the redistribution water resources to agricultural areas (Ozdogan et al., 2010). Thus,
improving water management provides better access to adequate water supplies and the ability
to grow rice even in the dry season. The result reveals the influences of irrigation systems on rice
productivity in the study area. To assess the impacts of predicted climate change on rice development,
Horie (2019) grew rice under different environmental conditions and found that excessive
temperature (>28°Celsius) reduced the panicle dry weight, which is important for biomass
production and relative rice yield because of heat-induced spikelet sterility of rice. Predictions of
future climate change based on the latest Global Climate Model (GCM) climate projection in
Coupled Model Intercomparison Project Phase5 (PrCMIP5) suggest that the temperature in Thailand
will increase during the 21 century. The national average temperature at baseline (1980-1999) is
25.2°Celsius; the future average temperature (2080-2099) will be 28.6°Celsius. The increasing
temperature influences the Agricultural Ecology Zone (AEZ); the largest temperature increase has
been found in the northern region of Thailand (> 4°Celsius). The precipitation trend has increased from
1,819 mm/year to 2,046 mm/year, while Asian monsoons influenced the difference in rainfall in the
wet and dry seasons. The monsoons delays are explicitly impacted the beginning planting date even

though the pattern of precipitation is uncertain (Kiguchi et al., 2020).

Overall, 30 provinces showed the impact of climatic variables on rice production — 6 provinces in
irrigated areas and 24 in non-irrigated areas. Precipitation data used in the analysis in Chapter 3
were annual and therefore only applicable to the wet season rice; it prevents assessment of the
influences of temperature or precipitation on rice planted in the different seasons. This may partly
explain the limited correlation between precipitation and yield, particularly in non-irrigated regions. In
addition, the data collection on rice yield and production data was averaged at the provincial level by
neglecting the differences in irrigation systems. A province is only classified as irrigated if more than
50% area of the province is irrigated. Improved data collection separated by irrigation cultivated areas

would improve the correlation analysis.

Secondly, the current study did not account for extreme events such as drought and flooding
which usually depend on the lengths and intensity of extreme events. The extreme events
seriously impact crop production especially when they occur close to harvesting period. The
present study supports previous research that indicated the Aus and Aman rice (planted in the
wet season) with a positive correlation; oppositely, the Boro rice (planted in the dry season) found
a negative correlation. These correlations were related to the development of the speed of leaf

emergence and rainfall affected tillering and stem elongation (Abbas & Mayo, 2021). The period
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under the present study corresponds with the correlation results in Aus and Aman rice, which is
planted in the wet season and a positive correlation. Similarly, Chowdhury and Khan (2015)
monitored rice yield in Bangladesh between 1972 and 2014 and found maximum temperature to
have a negative effect on yield in all three rice planting seasons: Aus (March-July), Aman (June to
November), and Boro (November to May). This research also found that rainfall had a positive effect
on yield when planted in the Aus and Aman seasons and an adverse effect when planted in the Boro
season. To mitigate the adverse effects of excessive temperature on rice production especially during
grain filling that reduced on non-structural carbohydrates in the sink (Chaturvedi et al., 2017) and
spikelet fertility (Chidambaranathan et al., 2021).It is important to develop and cultivate temperature
or heat-tolerant genetic rice varieties to ensure sustainability (Hakata et al., 2017; Khan et al., 2019;
Kilasi et al., 2018). Further study should be investigated on the other methods of detrended such as
fitting linear regression, applying residual for model, and log-linear trend model for better
performance on detrended analysis. Also, the optimum temperature for rice development is ranged
25-35°Celsius (Nishad et al., 2018) and the effects on rice production in terms of net assimilation
rate on rice and biomass, especially when the optimum temperature occurs in the reproductive
stage should be investigated. Finally, the cumulative rainfall is a positive and proves agreeable
because most provinces located in the northeast region are non-irrigated areas that require

sufficient rains for their planting.

The location of the weather station may be limited because most of them are not located in the
agricultural areas and there was the limitation of excellent representative of weather data.
Besides, the spatial autocorrelation will be improved if we know the exact distance threshold of
the distance band for our analysis, which is interpreted as less correlation on the spatial
dimension. The unpredictability climate change seems to greatly impact especially in developing
countries. The result identifies the average minimum and maximum temperature vital influences
on rice yield/production. Thus, suitable agricultural adaptation strategies and developing new

heat stress-tolerant rice varieties should be adopted for climate change resilience.

6.1.2 Dynamics of rice biophysical variables in irrigated and non-irrigated systems during

the growing season

Due to the various rice ecosystem and photosensitive rice varieties, several rice biophysical
variables such as density, Leaf Area Index (LAI), spikelet per m?, and biomass accumulation varied
with yield. Rice biophysical variables from in-situ measurement enable it to relate with remote
sensing data products. Several studies estimated essential crop biophysical variables (LAl and
biomass) and ultimately related them with yield. The present study aims to study the dynamics of

rice biophysical in the overall and identify differences due to irrigation systems and rice variety. A
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field campaign was conducted in 2017, during which time several rice biophysical variables were
measured throughout the growing season to investigate their variations by rice variety. Besides,
the present study aims to develop and validate models to predict rice yield using satellite data in
the Chapter5. The present study collects rice biophysical variables with in-situ measurement of 28
sample units with different irrigation systems (21 sample units located in irrigated areas and 7
sample units located in non-irrigated areas in Phichit, Ang Thong, and Pathum Thani). Rice
biophysical measurement is defined as five main growth stages: seeding (1-20 days), tillering (21-
40 days), panicle (41-70 days), flowering (71-90 days), and harvesting (90-120 days). Besides, the
rice biophysical variables differ with growth stage depending on their rice structure development,
consisting of the water depth, stem density, height, Leaf Area Index (LAl), chlorophyll contents,

wet and dry biomass, and yield.

The result presents two approaches via the dynamics of rice biophysical variables and their
correlation with rice yield. The assessment was undertaken at various growth stages, irrigation
systems, and rice varieties during the growing season. The irrigation influences rice development
such as rice height found differences in height in the tillering, panicle, flowering, and harvesting
with 0.64, 1.22, 3.48, and 6.54 cm, respectively. Besides, the differences that occur in the water
depth in different irrigation in the seeding, tillering, panicle, flowering, and harvesting are 2.83,
4.69, 4.45, 3.66, and 1.5 cm, respectively (average differences in water depth 0.5-2.5 cm). There
are some remarkable facts that no water in the paddy fields in the non-irrigated was found after
the flowering stage. The stem density is a key variable closely associated with the tiller’s rate of
rice and flag leaf development. The stem density is highest during the seeding to panicle stage,
approximately 250-500 stem/m?. Then, the stem density is reduced by ~120-150 stem/m?. The LAI
variable, which indicates the ability of crops to absorb solar energy for biomass production,
provides beneficial information on rice growth and yield evaluation. Our result shows that
differences in LAl development depend on rice variety. Most rice varieties in the study peaked in
LAl value in the flowering stage with 4.3 m?*m= (e.g. RD41, RD47, and HomMali105 in irrigated
areas, RD13 in non-irrigated areas, and RD49 and Phitsanulok2 in both irrigated and non-irrigated
areas). However, some rice varieties peaked earlier in the panicle stage (e.g. RD13 in non-irrigated
areas and RD61 in irrigated areas) or later in the flowering stage (e.g. RD57 in irrigated areas). The
shifting LAl development influences other rice biophysical and remotely-sensed data. In addition,
the LAl in the non-irrigated areas is higher than in irrigated areas ~0.31 m?m. The main reason
for the high values of LAl in the flowering stage is the development of rice flag leaves and found
the variation in the panicle stage in the non-irrigated areas. The LAl is usually a peak in the
flowering stage, which develops the milky in rice grains. The chlorophyll content is one key

variable reflected on the photosynthetic pigments and peaks in the flowering and sharp drops in
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the harvesting. The amount of chlorophyll content in the irrigated areas is higher than in the non-
irrigated areas during the panicle until the flowering stage. However, the chlorophyll content
proves high chlorophyll content in the tillering stage (RD57, RD49, and RD47). The comparison of
chlorophyll content in rice varieties planted in both irrigation and non-irrigation systems
(Phitsanulok2 and RD49) found the large differences in the tillering, panicle, flowering, and
harvesting stage with 31.86, 1.26, 0.88, and 4.15 pmol m™, respectively. The wet and dry biomass
collects in the panicle until the harvesting stage. The biomass is highest in the harvesting stage,
and the biomass in overall, stem, and grains in the harvesting stage (bracket shown the dry
biomass) is 133.48 (48.02), 99.33 (26.29), and 33.77 (21.74) g m™, respectively. In the harvesting
stage, the total wet biomass is highest with 119.13 g m*2 (minimum and maximum wet biomass of
average total wet biomass 14.27% and 215.45%). The stem density and LAl tend to decrease
whilst the biomass is increasing. The biomass in the RD49 and Phitsanulok2 found the differences
on wet biomass with 25 g m2and 1.3 g m?2in the irrigated areas and 10.7 g m2and 43.2 g m?in the
non-irrigated areas. Rice variety is influence on the biomass, for example, and there was slightly
higher wet total biomass in the Phitsanulok2 (49.25 g m™) than in RD41 (37.67 g m?). Regarding
rice characteristics, the dominant characteristics in RD41 are straight clumping, hard stem, green
rice leaves, straight flag leaves, and short ears of rice from flag leaves, which is outstanding with
remotely sensed data, especially the vegetation index. There are differences in grain dormancy
between rice varieties: the result shows that grain dormancy for RD13 and RD41 is 3 weeks and 9-
10 weeks, respectively (Rice Department, 2016). Consequently, the yield for these varieties

differed based on grain dormancy, with 4.06 and 5.06 tonnes/ha, respectively.

The results have shown a correlation in rice yield in overall growth stages in the entire study area
and the irrigated areas. In the entire study area, significant rice biophysical at each growth stage
was different. These findings prove a significant positive relationship with rice height stage (r=
0.37), wet grain and dry grain biomass (r = ~0.43-0.45) in the tillering stage and yield. There was
preferably significant wet grain biomass in the overall growth stage (r = 0.27). In addition, the
relationship between rice yield and other rice biophysical variables diversified among irrigation
systems. In irrigated areas, the significance is found in the seeding, panicle, flowering, and overall
growth stage. In seeding, the stem density is correlated with rice yield (r = 0.45). The LAl is
correlated with rice yield in the panicle stage (r = 0.57). While in the flowering stage, stem density
(r=-0.46) and wet grain biomass (r = 0.47) were significantly related to yield. In the overall areas,
the wet grain biomass is significant with wet grain biomass (r = 0.31). Finally, there is a different
significant growth stage with rice biophysical variables in non-irrigated areas. In the tillering stage,
rice height is significant with rice yield (r = 0.74). The rice height is significant in the harvesting

stage with yield (r = 0.81). The high negative correlation is all of the biomass (i.e., total, stem wet
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and dry biomass) (r > -0.93). In the overall growth stage, the correlation is significant with
chlorophyll content (r=-0.36), total wet biomass (r=-0.58), and wet and dry stem biomass (r = -
0.69). All evidence supports the important role of rice variety and irrigation in the study area. The
majority of rice development found in non-irrigated areas higher develops than the irrigated areas
such as rice height (absolute rice height), stem density, LA, chlorophyll content, and grain
emergence. There was observed a delay in rice emergence in the non-irrigated areas, which may
be from soil nutrients and water availability during the growing season. Here, rice biophysical
reveals an increasing rice development in irrigated areas, such as water depth and yield. Some
fluctuations in rice growth among different irrigation systems and various developments initiate.
Our study suggests the significant rice biophysical on dry total and stem biomass on RD41 in the

harvesting stage.

Retrieving biophysical variables from remote sensing data is vital for rice yield estimation before
harvesting. Previous studies have proven the influence of rice variety on their biophysical
variables, which increases the difficulties of using remote sensing estimating rice biophysical
variables. Maftukhah et al. (2019) investigated the differences in LAl among different rice varieties
(IR64 > Hitam and Mutiara variety approximately 1 m? m). Thus, the study summaries the
influences of rice varieties and irrigation water on physiological and biochemical behaviours in
rice. Huang, Yin, Jiang, Zou, and Deng (2015) investigated two rice varieties (GLY2 and YXYZ
variety), finding influences on different biophysical variables such as grain yield, spikelet per m?,
spikelet filtering percentage, LAI, and leaf nitrogen content. These researchers agreed with the
present study that differences in rice variety reveal the different rice characteristics even when
planted in the same period. Another research determined the association between rice yield and
other essential agronomic traits in different ecotypes — Indica and Japonica inbred/hybrid and
found various significant traits. For example, the Japonica inbred and hybrid was significant only
high panicle number per area (Li et al., 2019). Chu et al. (2018) investigated the different rice
varieties in Indica-Japonica hybrid rice (IJHR) and Japonica inbred rice (JIR) in two irrigation
situations, such as the continuous flooding (CF) and alternate wetting and severe drying (AWSD).

The result proved rice yield decrease in AWSD pattern for both IJHR and JIR varieties.

6.1.3 Potential of optical and radar satellite observation in rice yield estimation

Remote sensing is an effective instrument for crop monitoring and yield estimation because of its
various advantages on spatial coverage, temporal, and spectral characteristics. Satellite data have
been widely applied to estimate rice yield via empirical models using spectral vegetation indices
(Huang et al., 2013; Ji et al., 2021; Mosleh et al., 2016; Noureldin et al., 2013; Son et al., 2014;

Harrell et al., 2011; Zhang et al., 2019) and crop growth model parameterised with satellite
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observations (Li et al., 2015; Machwitz et al., 2014; Setiyono et al., 2018; Singh et al., 2014; Son et
al., 2016). In Chapter 5, both optical (Sentinel-2) and radar (Sentinel-1) data were used to monitor
rice throughout the growing season and analyse the correlation between rice yield and Earth
Observation (EO) data to develop yield estimation model. Several spectral vegetation indices were
developed to increase vegetation sensitivity and reduce the other factors (soil backgrounds and
atmospheric effects). Using the Sentinel-2 data, the NDVI and EVI were used to monitor the rice
phenological cycle throughout the growing season, which found high VI values occurring in the
panicle stage for both vegetation indices. Analysis of the LAl throughout the growing season
(Chapter 4, Table 4.6) revealed that the highest LAl typically occurred in the flowering stage
before decreasing in the harvesting stage. The temporal pattern of the vegetation index is shown
lower in the seeding stage due to the bare soils or flooded field; then, the vegetation index is
sharpened increases in the tillering stage due to the dense and green vegetation. The profile of
the vegetation index is still increasing until the panicle stage, and there are slightly increasing in
EVIin the panicle stage. Afterwards, the vegetation index suddenly decreased in the flowering
and harvesting index due to their senescence. One of the reasons for lower VI values in the
flowering stage, despite the higher LAI, is influenced by non-photosynthetic materials, such as
flowers have impacted the radiometric signal (see Figure 4.4). This decrease in vegetation index
values during the flowering stage has been observed in several other studies (Boschetti,
Stroppiana, Brivio, & Bocchi, 2009; Mosleh et al., 2016; Son et al., 2014), which impacted the

accuracy of LAl estimation using vegetation index measurements during the flowering stage.

The Synthetic Aperture Radar (SAR) data is quite relevant in terms of canopy characteristics and
water contents on the crop. The capability of signal penetration on SAR signals depends on
microwave signals. In present study focuses the backscatter coefficients in terms of sigma nought
(). Analysis of the temporal dynamics of VV and VH radar backscatter in the ascending and
descending orbits revealed that backscatter peaks in the tillering stage with the VV polarised data
decreasing. At the same time, VH observations tended to remain flat (Figure 5.8). These trends
are believed to be due to volume scattering in the rice canopy (consisting of rice ears, leaves, and
stems), multiple scattering or called “double bounce” scattering between canopy layer and
underlying ground surface, and surface scattering (soil or flooded water) (Verma et al., 2019)
which have been observed in other studies. Volume scattering from crop canopies is comparatively
low, with the backscatter coefficient largely influenced by the surface underneath the canopy
(Choudhury & Chakraborty, 2006; Liu et al., 2019; Phan, 2018). These scattering effects reflect the
different signals that occur during growing season, since they are influenced by the rice canopy
structure composed of stem, stalk, and grain (Inoue et al., 2014; Yuzugullu et al., 2016).

Furthermore, the moisture contents, which is the important factors in terms of dielectric
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contents, of the rice panicle decreased in the ripening stage and led to a slight reduction of
backscatter coefficient (Nelson et al., 2014). The temporal of backscatter indicates the low
backscatter in the seeding stage, which is lower on the VH rather than VV polarisation. The result
proves a lower backscatter in the descending than ascending in all growth stages. The low
backscatter coefficient in the seeding stage is because of the specular reflection or “mirror”,
which is no response signal and is seen darken on SAR images. Then, the backscatter increases in
the tillering stage because rice develops its tiller’s rate. In the panicle stage, the backscatter
coefficient decreases. In the flowering stage, the backscatter is reduced and relatively lowers for
VV because of the dielectric of rice. The result proves the sensitivity with grain and moisture
contents in the descending mode. Finally, the VV and VH polarisation in the harvesting stage
slightly decreases. Conversely, the backscatter for VV on both ascending and descending orbit
directions indicates an increasing backscatter; however, the backscatter in the descending is
lower than the ascending on both VV and VH polarisation because of the influences on

attenuation. The profile for both satellite data is advantageous for rice monitoring.

An important finding in Chapter 4 was the influence of rice variety, which can see significant
differences in canopy biophysical variables. For example, the maximum average LAl in RD41 and
RD49 was 4.03 m* m2?and 4.23 m? m2 (4.41 m? m?2in irrigated area and 3.96 m? m2in the non-
irrigated area), whilst the yield differed by 0.41 tonnes/ha (differences 0.51 tonnes/ha in irrigated
area and 0.25 tonnes/hain non-irrigated area). These differences in biophysical traits have
implications for estimating biophysical parameters and yield using remotely sensed data. Current
methods for estimating yield in Thailand are through crop cutting experiments (CCE) conducted at
the end of the growing season, which is limited by the large number of manual efforts required to
do so and that the yield estimates are derived late in the growing season. One of the aims of this
research was to develop an approach to estimate rice yield using remotely-sensed data as early as
possible in the growing season. To do so, a range of simple regression models were developed to

estimate rice yield using field and satellite measurements.

Of the two best-performing models based on simple linear regression model in the significant

satellite measurement and growth stage are shown as follows.

1) Optical data regarding vegetation index- EVI in the seeding and NDVI in the panicle stage
measurements. The validation of EVI and NDVI with rice yield had an RMSE of 0.57 with SEE 0.62
tonnes/ha and RMSE of 0.37 with SEE 0.7 tonnes/ha, respectively.

2) SAR data in the ascending VV/VH measurements in the harvesting stage with rice yield had an

RMSE of 0.54 with SEE 0.68 tonnes/ha.
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The empirical models that utilise satellite and field measurements have been widely applied to
estimate yield and have typically done so with lower error. For example, Noureldin et al. (2013)
developed a rice yield estimation model in a linear regression models and multiple linear
regression models by using SPOT4 data in August 2008 and August 2009. The model input the
individual band (e.g. green, red, near-infrared, and middle-infrared spectral band), vegetation
indices (e.g. Green Vegetation Index (GVI), Ratio Vegetation Index (RVI), Infrared Percentage
Vegetation Index (IPVI), Difference Vegetation Index (DVI), Normalised Difference Vegetation
Index (NDVI), and Soil Adjusted Vegetation Index (SAVI)), and leaf area index (LAI), which was
measured 90 days after sowing, or the maximum vegetative growth stage. The highest accuracy
was achieved by the multiple linear regression model integrating NDVI and LAI with R? = 0.96 and
standard error of estimation (SEE) of 0.49 in 2008 and 0.529 in 2009, respectively. The rice yield
estimation model based on SAR is advantageous for predicting rice yield during the growing
season based on Sentinel-1 due to eliminating the effects of cloud cover problems on optical data.
However, the seeding stage has a poor relationship with yield in Sentinel-1 data because there are
ridges in the flood paddies in this growth stage. To improve the performance of rice yield
estimation based on satellite data, the determination of rice biophysical variable selects on the
yield estimation model. Besides, the mixed the irrigation system may be distorted the yield
estimation model, as noticeable in the higher MAPE in the Phichit. Wang et al. (2019) analysed
the Ground Range Detected (GRD) of multi-dates Sentinel-1 in IW model with VV and VH
polarisations — end of tillering stage of vegetative phase and end of the grain filling stage of
reproductive phase. This study developed the single VV and VH polarisation, the cross ratio VV/VH
in tillering and grain filling stage, simple ratio, and SAR normalized Difference Index relate with
rice yield. The outputs of backscatter in the VV and VH in the tillering stage is positive whist
negative correlation in the grain filling and the excellent backscatter is SSDyy (different between
ow in the grain filling oy in the tillering stage) with r? = 0.65 and RMSE 0.74 tonnes/ha. Hoang-Phi
et al. (2021) estimated rice yield using Sentinel-1 for Winter-Spring rice yield in An Giang province
in 2018 by developing the multivariate regression model of VH backscatter. The output of linear
regression equation r? = 0.6 and standard deviation estimate 0.33 tonnes/ha compared with in-
situ yield. The estimated and survey yield results were 6.5 and 6.66 tonnes/ha with the standard
deviation 0.80 tonnes/ha. Meanwhile, the present study proves that the ascending VV/VH
polarisation in the harvesting stage and the NDVI in the panicle stage are preferable for rice yield
estimation. The estimates of rice yield compared with official statistical yield (in bracket) reveal
that rice yield based on NDVI in the panicle stage in Phichit, Ang Thong, and Pathum Thani are
3.32 (3.77), 4.45 (4.16), and 3.96 (4.49) tonnes/ha, respectively. Further, the estimated rice yield

compared with official statistical yield (in bracket) reveals rice yield based on ascending VV/VH
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polarisation in the harvesting stage in Phichit, Ang Thong, and Pathum Thani are 4.72 (3.77), 4.87
(4.16), and 4.86 (4.49) tonnes/ha, respectively.

A limitation of the models that performed best in this research is that they need to improve upon
current methods (e.g. crop cutting) in a meaningful way, since the models either utilise field
measurements or provide estimates of yield late in the growing season. Also, the variances of
planting dates are impacted by the vegetation index/backscatter values of satellite data in the
extraction paddy fields. The growth stage is critical for developing rice yield estimation by
considering the initiation of rice grains (panicle stage) or maturity of rice grains (harvesting stage),
which are related to satellite sensors. Even though, the vegetation index values tend to saturation
at high LAI (> 3 m? m2) that may be the limitation and the influences of non-photosynthetic
materials on rice fields. The SAR signal proves their sensitivity on rice canopy better than the
performance on spectral measurement. In summary, the EO data has the potential to tracking the
rice phenological profiles and rice yield estimation especially utilising the SAR data for rice yield
estimation in the Chao Phraya River delta. In addition, the current study found that the rice yield
estimation should be after the heading in the reproductive phase to the ripening or nearly
senescence in the maturity phase for estimating rice yield at the provincial scale. The result of
validation that compared the estimated rice yield and official statistical yield had high reliability
with MAPE ranging 9-62% for NDVI and 18-72%, even though there was some variation of MAPE

in the amphoe level.

6.2 Limitations

The following section outlines the limitations of the data and analyses conducted as part of this

research on a chapter-by-chapter basis.
Chapter 3

Chapter 3 analysed the annual dynamics of rice yield and production alongside precipitation and
temperature data to assess whether climate influenced rice crops in Thailand. The present study

created a series of weather data by aggregating monthly, seasonal, and annual data.

The rice production and yield data used in this analysis were available at the provincial level. They
had been aggregated into a single rice yield annual estimate that failed to account for the
influences of rice variety. Analysis in Chapter 5 revealed that the yield could vary from 3.31-6.13
tonnes/ha across irrigation systems depending on the rice variety, which could result in large
annual variations depending on the extent of cultivation of particular varieties. Research has

found that fertility and rice varieties are crucial factors to yield and yield attributes (e.g. number
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of effective m2, number of seeds per panicle, 1,000-grain weight, spikelet sterility, grain/straw
yield, and harvest index) (Kumar et al., 2017). When analysing a long time-series of data,
information on the time of development of a particular variety and the extent to which it is
cultivated annually across Thailand is needed to account for changes in rice variety when
assessing the influence of climate. The result of spatial autocorrelation using the Global Moran’s
Index proves there was less significance with Moran’s Index of 0.15 and only significance in 1992
with cumulative rainfall (random pattern) and average temperature (clustered pattern)
parameters. However, the spatial autocorrelation is lacking information on the threshold or

significant distance to fix into our analysis for precise results.
Chapter 4

Despite careful planning, several limitations with the collection of measurements during the field

campaign are central to the analysis in subsequent chapters.

Analysis of the field measurements revealed the immense impact that rice variety can have. It
would have been preferable to collect field measurements for a smaller number of rice varieties
in a more significant number of fields to improve the sample size. This would enable a more
conclusive assessment of the impact of rice variety on structural characteristics and biophysical
properties. In contrast, in the present study, the number of rice varieties was measured in only
one field. However, due to the constraints of the fields which could be measured, it was not

feasible to do so.
Chapter 5

A further difficulty with the field campaign concerned collocating satellite overpasses with the
date of field data collection, particularly during the panicle to the harvesting stages. Most studies
(Mosleh & Hassan, 2014; Wang et al., 2019; Zhao et al., 2021) divided the paddy rice growing
season into 3-4 stages: sowing to transplanting (1 month), transplanting to heading stage (1.5-3
months), heading to reproduction stage with flowering (1 month), and flowering to maturity (1
month), while the three-growth stage defines in the initial/transplanting stage (1-32 days after
sowing), peak stage (81-112 days after transplanting), and harvesting stage (129-161 days).
However, the duration of each stage is influenced by rice variety and environmental conditions
(De Datta, 1981), which adds some uncertainty in relating satellite measurements to the correct

growth stage, particularly towards the start or end of a growth phase.

Finally, a difficulty in using satellite data to monitor rice paddies is the paddies’ small size relative
and limitation to the spatial resolution of the imagery. Despite the Sentinel data having a spatial

resolution of 5 m x 20 m (single look complex) and 20 m for Sentinel-1 and -2 data, respectively,
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relating image pixels to the corresponding locating in the paddy field is uncertain. As shown in
Figures 5.5 and 5.8- in particular, the former- image pixels often fall on field boundaries within
the field boundary. Depending on the surface characteristics of the surrounding fields, such as
their growth period if cultivated, the relationship between the radiometric data and surface
measurements will be compromised. Similar issues with mixed pixels have been noted in other
studies using Sentinel (Misra, Cawkwell, & Wingler, 2020; Ramadhani et al., 2020; Son et al., 2021)
and Landsat (Liao et al., 2018; Park et al., 2018; Zhang et al., 2018) imageries. The mixed pixel 30
m spatial resolution images and segment areas of Landsat 8 pixel and small rice field increase the
probability of high mixed pixels. Also, clouds and cloud shadow seriously impact the
contamination of pixels and misclassification. To account for some of the variation in the field and
satellite measurements, the four rice biophysical measurements in each field were averaged;
those with >1 S.D. from the mean were removed and the average recalculated. The satellite data
extracts in the centre of the sample to avoid the mix-pixel values. Also, there may be some
influences in the flooding in the flowering stage that coincides with monsoon, and the flooding in
the paddy field influences the soil moisture (dielectric content) and impacts the backscatter or

intensity in the final.

6.3 Future works

Based on the findings in Chapters 3 - 5 the following recommendations are suggested for future

research.

0 Analysis of the relationship between rice yield and precipitation, and temperature should
use indices such as the Standardized Precipitation Index (SPI) and Diurnal Temperature Range
(DTR), which have been shown to monitor drought conditions in different time-scale and drought
types. These indices could be used alongside the Rice Productivity Index (RPI), which has been
used to assess the correlation between rice productivity and climate variation (Patel, Chopra, &
Dadhwal, 2007; Rahman et al., 2017). The RPI is the photochemical reflectance index and covers
physiological and biochemical characteristics. However, a challenge in this analysis remains the
underlying influences of rice variety on yield statistics, as different varieties have differing yield
potentials. For example, Li et al. (2019) investigated the influences of agronomic traits and yield in
the four different ecotypes (e.g. the inbred and hybrid for Indica and Japonica). They found
differing rice characteristics such as filled grain number per panicle, 1,000-grain-weight, plant
height, panicle length, grain per panicle, etc. The Japonica rice proved the dominant
characteristics of high panicle number per unit area and extended growth period to improve high
grain yield. Similar studies that have been analysed the influences of climate on rice production

have seen the impact of weather in terms of time-series on temperature (April-October) and
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rainfall (total rainfall all year responded with water usage within seasons and inter-seasonally)
and rice yield at the district level by using Cobb-Douglas (CD) and Linear Quadratic (LQ). The
results revealed that climate change impact rice yield and yield variability by 10-20%, and average
rice yield was affected positively by temperature and negatively by rainfall, leading to fluctuation
in rice production (Kim, 2009). Oort et al. (2016) revealed the impact of climate change on rice
yield in the irrigated and non-irrigated systems for wet and dry seasons by simulating rice yield
with varieties under high-temperature conditions in 4RCP. The high temperature negatively
impacted rice yield, especially the photosynthesis rate (-24% in RCP 8.5 by 2070, compared with
the baseline in 2000). Thus, this study suggested adaptation strategies (e.g. shifting
sowing/planting dates suitable for monsoon onsets) and the serious impacts varied with East or
West Africa. To account for the potential variation in rice yield, information on rice variety and its
cultivated extent on an annual basis are needed.

0 Chapter 4 revealed the considerable variation in the structural attributes of different rice
varieties, which presents a challenge to the application of remotely sensed data to estimate
biophysical variables over large spatial extents. Only a few studies using remote sensing data have
explicitly accounted for rice variety. Ten rice varieties characterised the key phenological stages of
rice, such as emergence, heading, and maturing using the signal of MODIS NDVI 16-day from
2001-2005 (Boschetti, Stroppiana, Brivio, & Bocchi, 2009). Further research is needed to
understand the influences of rice variety on deriving estimates of yield or other biophysical
parameters using remotely-sensed data. To do so, measurements of rice biophysical parameters
throughout the growing season for a limited number of rice varieties but over a more significant
number of paddy fields are needed.

0 Chapter 5 revealed that the models developed to estimate rice yield was successful but
may result in partly from the influences of rice varieties and irrigation that exhibit different
structural characteristics. The best-performing models either required field measurements or
provided yield estimates late in the growing season, neither of which offers significant benefits
over the current methods implemented by the government (i.e. CCE). Accounting for the
influences of rice variety mentioned previously may enable improved regression models to be
developed. An alternative approach would be to employ crop growth simulation models, such as
the SIMRIW (Simulation Model for Rice-Weather relations) (Horie et al., 1995), ORYZA (Yuan et al.,
2017) or WOFOST model (Huang et al., 2015), parameterised using satellite-derived biophysical
variables to estimate yield. LAl estimates could be derived from the Sentinel-2 Land bio-physical
Processor (SL2P), which uses the PROSAIL canopy reflectance model (Baret, Jacquemoud, Guyot,
& Leprieur, 1992) and which is suitable for describing the horizontally homogeneous structure of
rice canopies. This approach has been applied to reliably estimate LAl with typically low errors of 1.55

—6.98 m? m2(MAPE 6.76% of the field measured LAI). Crop growth models may facilitate earlier
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yield estimation, although the analysis should assess their suitability when applied to different
rice varieties. The pattern of NDVI in rice peaked in the heading stage (Ali et al., 2021). On the

contrary, our result indicated an earlier peaked NDVI in the panicle stage (DOY 205-210).

The study explored the correlation between rice biophysical variables and remotely-sensed data,
proving the benefits of developing rice yield estimation models based on remotely-sensed data.
There are different significant growth stages and remotely-sensed data in yield estimation. If the
study develops yield estimation in the panicle stage, our study suggests the NDVI, while the
ascending and VV/VH polarisation suggests yield estimation in the harvesting stage. The booting
and post-heading stage is effective for yield estimation; however, differences in rice variety
improve the accuracy of yield estimation throughout the growing season. This information can be
incorporated into agricultural decision-making based on remotely-sensed data and is absolutely
advantageous on improving agronomic services. Thailand should apply EO data for crop mapping
and yield estimation. The proper satellite platform is necessary to determine their utilisation,
while there is concern over cloud cover, especially in the rainy season; thus, our study

recommends the Sentinel-1 in SAR for yield estimation.

Research using such models to estimate yield, Maki et al. (2017) directly integrated the
parameters and remotely-sensed data to driven crop model “Simulated Model for Rice-Weather
Relation (SIMRIW) - RS” such as transplanting date, leaf area index (simulated LAl or field
measured LAl), amount of nitrogen, and meteorological data. These were essential data to
readjust parameters. Other excellent research used non-remote sensing data (e.g. meteorological,
soil, and agronomic management) and remote sensing data (e.g. MODIS and Sentinel-1 for start of
season (SoS) and peak of season (PoS) rice estimation) for the ORYZA crop growth model
(Setiyono et al., 2018). Zhou, Liu, and Liu (2019) proposed the assimilation technique with EVI
time-series to extract essential phenology development (e.g. transplant date, heading date, and
maturity date) and meteorological data (daily maximum/minimum temperature, solar radiation,
wind speed, actual vapour pressure, and precipitation) into the WOFOST model. However, the
entire above integrating remotely-sensed data and crop growth model seem to neglect rice
variety determination. The further analysis should be investigated the other dual-polarisation in
the HH or HV polarisation to determine the H transmission signal and whether it impacts on rice
structure. Furthermore, the incidence angle, which describes the angle between the sensor and
the ground, should be investigated by the other incidence angle of different SAR sensors.
Research is being extended for the entire Chao Phraya River delta to apply the optical and radar

remotely sensed data for rice monitoring and yield.
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In the future, the Thai government, via the Ministry of Agriculture and Cooperatives, aims to
utilise the advantage of remotely-sensed data in crop monitoring. One of the most important
programmes- which involves cooperation between fourteen developing countries, the United
Nations Conference on Trade and Development (UNCTAD), and the Aerospace Information
Research Institute (AIR) Chinese Academy of Sciences (CAS)- is the CropWatch Innovative
Cooperation Programme (CropWatch-ICP). This programme applies EO data on crop monitoring at
a national and global scale to improve food security and operate towards the Sustainable

Development Goals (SDGs) of zero hunger.

6.4 Conclusions

Rice is the world’s major staple food crop and paddy fields account for over 12% of the global
cropland area (FAOSTAT, 2010): close to 90% of the world’s rice is produced in Asia (FAO, 2000).
In Thailand, rice accounts for 46% of the cultivated area (OAE, 2020a) and is a major agricultural
commodity, increasing production from 6.74 to 24.93 million tonnes between 1960 and 2020. As
a result, the export of rice and its products now accounts for 10.69% of the export value of major

agricultural product in Thailand (OAE, 2020b).

Analysis of the temporal dynamics of rice production and temperature and precipitation indicates
that temperature and total rainfall influence rice production in the wet season. The irrigated areas
proved resilient to changes in climatic variables. In comparison, the non-irrigated areas mostly in
the northeast region are affected by changes in climate. Future predictions of climate change in
Thailand suggest that rainfall will decrease, and temperature will increase. These changes
highlighted the critical role that agricultural developments such as environmentally tolerant rice
varieties can play in ensuring sustainable rice production when the world population is expected

to increase to 9.8 billion by 2050 (United Nations, 2017).

Current methods for estimating rice yield in Thailand are based on conducting crop cutting
experiments across a sample of areas under rice cultivation, which is laborious and time-
consuming. On the other hand, satellite observations have been widely applied to map areas
under agricultural land use, monitor their growing cycles and estimate rice yield and other
biophysical parameters in many parts of the world. In the present study, Sentinel-1 and -2
observations were used to track the phenological cycle of rice using backscatter and vegetation
index measurements, respectively. In the case of the vegetation indices, the values peaked in the
panicle stage, where, while the LAl was not the highest, the development of flowers served to
reduce vegetation index values. The backscatter coefficient also peaked in the panicle stage.

However, it remained less variable in the flowering and harvesting stages when the canopy LAl
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displayed less variation (+/- 0.5 m?>m2) than the tillering and panicle stages and where the

backscatter was responsive to the senescence leaves in the harvesting stage, unlike the NDVI.

Using field measurements collected throughout the growing season, empirical models were
developed to estimate rice yield using satellite data. The best performing models estimated yield
with RMSE of 0.54 with SEE 0.68 tonnes/ha and were limited by the requirement of either field
measurements of ascending ratio VV/VH polarisation in the harvesting stage or that the rice yield
estimates were best predicted late in the growing cycle. Also, the optical measurement in NDVI
indicated excellent performance with NDVI in the panicle stage with the RMSE of 0.37 with SEE 0.7
tonnes/ha. When considering the SEE explained how large the prediction error is, the result proves
that the SAR signal is better sensitive to rice canopy than spectral measurement. One of the issues
in developing empirical models using satellite and field measurements is the influence of rice
varieties with different biophysical attributes and temporal dynamics, adding variability to
developing models at different growth stages. Further research is needed to investigate the spatial
and temporal dynamics of different rice varieties in Thailand, to understand their influence on rice

production and to assess the ability of satellite data to detect different rice varieties.
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Appendix A  Average seasonal temperature in different

seasons in Thailand

Temperature Region Seasonal Temperature (°Celsius)
Winter | Summer Rainy
Average Temperature North 234 28.1 27.3
Northeast 24.2 28.6 27.6
Central 26.2 29.7 28.2
East 26.7 29.1 28.3
South
e East Coast 26.3 28.2 27.8
e \West Coast 27.0 28.4 27.5
Average Maximum Temperature | North 31.1 36.1 324
Northeast 30.6 35.2 32.6
Central 323 36.2 334
East 32.0 34.1 323
South
e East Coast 304 33.0 32.7
e \West Coast 32.0 34.1 31.6
Average Minimum Temperature | North 17.5 21.8 23.8
Northeast 18.7 23.2 24.4
Central 21.2 24.6 24.8
East 223 25.2 25.2
South
e East Coast 22.8 24.1 24.4
e \West Coast 23.2 24.0 24.3
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Appendix B

Summary of Pearson’s correlation and P-

value between temperature metrics and weather

parameters at provincial level

Weather parameter

Number of significant provinces across the four groups
(Specific significant group 1/3)

maximum/minimum
temperature (Average)

(0/2 provinces)

(1/2 province)

(2/3 provinces)

yield Detrended Production Detrended

yield production

Amount rainfall 2 provinces 1 province 4 provinces 2 provinces
(Average) (0/2 provinces) | (0/1 provinces) | (1/3 provinces) | (0/2 provinces)

Amount rainfall 3 provinces 1 province 4 provinces 2 provinces
(Cumulative) (0/3 provinces) | (0/1 province) | (1/3 provinces) | (0/2 province)

Rainy day (Average) 3 provinces 1 province 4 provinces 2 provinces
(0/3 provinces) | (0/1 province) | (0/4 provinces) | (1/1 provinces)

Rainy day (Cumulative) 2 provinces 2 provinces 4 provinces 3 provinces
(0/2 provinces) | (1/1 province) | (0/4 provinces) | (1/2 provinces)

Extra-maximum 12 provinces 3 provinces 11provinces 5 provinces
temperature (Average) (2/10 provinces) | (1/2 provinces) | (2/9 provinces) | (2/3 provinces)

Extra-minimum 16 provinces 3 provinces 14 provinces 4 provinces
temperature (Average) (3/13 provinces) | (0/3 provinces) | (1/13 provinces) | (0/4 provinces)

Mean temperature 5 provinces 2 provinces 4 provinces 5 provinces
(Average) (2/3 provinces) | (1/1 province) | (0/4 provinces) | (1/4 province)

Mean maximum 14 provinces 7 provinces 12 provinces 5 provinces
temperature (Average) | (3/11 provinces) | (1/6 provinces) | (2/10 provinces) | (2/3 province)

Mean minimum 19 provinces 4 provinces 16 provinces 4 provinces
Temperature (Average) | (3/16 provinces) | (1/3 province) | (0/16 provinces) | (1/3 provinces)

Difference in extra- 2 provinces 3 provinces 5 provinces 2 provinces

(0/2 province)

Difference in mean
maximum/minimum
temperature (Average)

5 provinces
(0/5 provinces)

5 provinces
(1/4 province)

5 provinces
(3/2 provinces)

7 provinces
(0/7 provinces)
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Appendix C

Correlation coefficient of significant

weather and rice yield and rice production

C.1 Correlation coefficient of significant weather and rice yield

(Cumulative)

Maha Sarakham

Non-irrigated

Weather Rice yield
parameter
Province Irrigation system Correlation coefficient (r)
Amount rainfall Buri Ram Non-irrigated 0.568** (Sig.0.000)

0.336* (Sig. 0.048)

Nakhon Phanom
Nakhon Ratchasima
Nakhon Sawan
Nong Khai
Phectcha Buri
Phrae

Prachin Buri

Roi Et

Sakhon Nakhon

Si Sa Ket

Surin

Ubon Ratchathani
Uttaradit

Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated

Non-irrigated

Phayao Non-irrigated 0.393* (Sig. 0.020)
Rainy day (Average) |Chaiyaphum Non-irrigated -0.358* (Sig.0.035)

Phetcha Buri Non-irrigated 0.344* (Sig.0.043)

Phrae Non-irrigated 0.382* (Sig.0.024)
Mean minimum Bangkok Irrigated 0.715** (Sig.0.000)
temperature Chai Nat Irrigated 0.451** (Sig.0.006)
(Average)

Kamphaeng Phet Irrigated 0.506** (Sig.0.002)

Chiang Rai Non-irrigated 0.420* (Sig.0.012)

Mukdahan Non-irrigated 0.427* (Sig.0.011)

0.526** (Sig.0.001)
0.658** (Sig.0.000)
0.488**(Sig.0.003)
0.549**(Sig.0.001)
0.440**(Sig.0.008)
0.401*(Sig.0.017)

0.529%*(Sig.0.001)
0.404*(Sig.0.016)

0.612**(Sig.0.000)
0.583**(Sig.0.000)
0.411* (Sig.0.014)

0.470** (Sig.0.004)
0.643**(Sig.0.000)
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Phetcha Buri

Non-irrigated

Weather Rice yield
parameter
Province Irrigation system Correlation coefficient (r)
Mean maximum Bangkok Irrigated 0.676**(Sig.0.000)
temperature Nakhon Pathom Irrigated 0.363*(Sig.0.032)
(Average)
Suphan Buri Irrigated 0.367%*(Sig.0.030)
Maha Sarakham Non-irrigated 0.585**(Sig.0.000
Mukdahan Non-irrigated 0.443**(Sig.0.009
Nong Khai Non-irrigated

)
)
0.547**(Sig.0.001)
0.655**(Sig.0.000)

)

minimum
temperature
(Average)

Maha Sarakham
Nakhon Ratchasima

Udon Thani

Non-irrigated
Non-irrigated

Non-irrigated

Prachin Buri Non-irrigated 0.548**(Sig.0.001
Roi Et Non-irrigated 0.428%*(Sig.0.010)
Sakhon Nakhon Non-irrigated 0.455**(Sig.0.006)
Sukhothai Non-irrigated 0.347*(Sig.0.041)
Surin Non-irrigated 0.418*(Sig.0.012)
Ubon Ratchathani | Non-irrigated 0.540**(Sig.0.001)
Udon Thani Non-irrigated 0.450**(Sig.0.007)
Difference mean |Chiang Rai Non-irrigated -0.353*(Sig.0.037)
maximum and Kalasin Non-irrigated 0.598*(Sig.0.011)

0.479**(Sig.0.004)
-0.566**(Sig.0.000)
0.430**(Sig.0.010)
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C.2 Correlation coefficient of significant weather and rice production
Weather Rice production
parameter
Province Irrigation system Correlation coefficient (r)
Amount rainfall Khamphaeng Phet |Irrigated 0.395**(Sig.0.019)
(Cumulative) Buri Ram Non-irrigated 0.602** (Sig. 0.000)
Chaiyaphum Non-irrigated 0.334* (Sig 0.050)
Lampang Non-irrigated 0.399* (Sig 0.018)
Rainy day (Average) |Chaiyaphum Non-irrigated 0.451** (Sig.0.007)
Khon Kaen Non-irrigated 0.395* (Sig.0.019)
Nong Khai Non-irrigated 0.401* (Sig.0.017)

Phetcha Buri

Non-irrigated

0.402*(Sig.0.017)

Mean minimum
temperature
(Average)

Chiang Rai
Kalasin
Lampang
Mukdahan
Nakhon Phanom
Nakhon Ratchasima
Nakhon Sawan
Phayao

Phrae

Prachin Buri

Roi Et

Sakhon Nakhon
Si Sa Ket

Surin

Ubon Ratchathani
Uttaradit

Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated

Non-irrigated

0.490**(Sig.0.003)
0.758**(Sig.0.000)
0.370*(Sig.0.029)
0.653**(Sig.0.000)
0.610**(Sig.0.000)
0.653**(Sig.0.000)
0.437**(Sig.0.009)
0.385*(Sig.0.022)
0.351*(Sig.0.039)
-0.441**(Sig.0.008)
0.546**(Sig.0.001)
0.519%*(Sig.0.001)
0.659**(Sig.0.000)
0.518**(Sig.0.001)

0.449**(Sig.0.007)
0.659**(Sig.0.000)

Mean maximum
temperature
(Average)

Nakhon Pathom
Suphan Buri
Kalasin

Maha Sarakham
Mukdahan
Phetcha Buri
Prachin Buri

Roi Et

Irrigated

Irrigated

Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated
Non-irrigated

Non-irrigated

0.433**(Sig.0.009)
0.377*(Sig.0.025)
0.715**(Sig.0.001)
0.447**(Sig.0.007)
0.624**(Sig.0.000)
0.506**(Sig.0.002)
-0.510**(Sig.0.002)
0.512**(Sig.0.002)
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Weather
parameter

Rice production

Province

Irrigation system

Correlation coefficient (r)

Mean maximum
temperature
(Average) (Cont.)

Sakhon Nakhon
Si Sa Ket
Sukhothai

Ubon Ratchathani

Non-irrigated
Non-irrigated
Non-irrigated

Non-irrigated

0.494**(Sig.0.003)
0.426*(Sig.0.013)
0.351*(Sig.0.039)
0.571**(Sig.0.000)

Difference mean
maximum and
minimum
temperature
(Average)

Nakhon Pathom
Phichit

Suphan Buri
Chiang Rai

Nakhon Ratchasima

Irrigated
Irrigated
Irrigated
Non-irrigated

Non-irrigated

0.395*(Sig.0.019)
0.606**(Sig.0.002)
0.382*(Sig.0.024)
-0.408*(Sig.0.015)
-0.562**(Sig.0.000)
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Appendix D  Correlation between rice yield/production

and weather in significant provinces

D.1 Cumulative rainfall

a) Amount of rainfall and rice yield b) Amount of rainfall and detrended rice yield

¢) Amount of rainfall and rice production  d) Amount of rainfall and detrended rice production
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D.2 Average rainy day

a) Average rainy day and rice yield b) Average rainy day and detrended rice yield

c) Average rainy day and rice production  d) Average rainy day and detrended rice production
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b) Mean minimum temperature and rice yield

&
b

215

3 significant at p-value <= 0.005

N

temperature

Inimum

d) Mean minimum temperature and detrended rice

production

a) Mean minimum temperature and rice yield

D.3 Meanm

¢) Mean minimum temperature and rice production
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D.4 Mean maximum temperature

a) Mean maximum temperature and vield b) Mean maximum temperature and detrended yield

d) Mean maximum temperature and detrended rice

production
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D.5 Differences between mean maximum and mean minimum

temperature
a) Difference mean maximum and minimum b) Difference mean maximum and minimum temperature
temperature and rice yield and detrended rice vield

c) Difference mean maximum and minimum temperature d) Difference mean maximum and minimum temperature

rice production and detrended rice production
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Appendix E Spatial auto-correlation with Moran’s | index
E.1 Moran’s | index of average rainfall
Year | Clustering pattern | Moran’s Index Expected Variance | Z-score P-value
index
1981 |Random 0.05 -0.01 0.01 0.95 0.34
1982 |Random 0.08 -0.01 0.01 1.25 0.21
1983 |Random -0.01 -0.01 0.01 0.02 0.98
1984 |Random 0.04 -0.01 0.01 0.76 0.45
1985 |Random 0.04 -0.01 -0.01 0.75 0.45
1986 |Random 0.05 -0.01 0.00 0.91 0.36
1987 |Random 0.05 -0.01 0.01 0.90 0.37
1988 |Random 0.01 -0.01 0.00 0.40 0.69
1989 |Random 0.06 -0.01 0.00 1.02 0.31
1990 |Random 0.04 -0.01 0.01 0.76 0.45
1991 |Random 0.07 -0.01 0.00 1.25 0.21
1992 |Random 0.06 -0.01 0.01 1.09 0.28
1993 |Random 0.02 -0.01 0.01 0.43 0.67
1994 |Random 0.02 -0.01 0.00 0.52 0.60
1995 |Random 0.00 -0.01 0.00 0.25 0.81
1996 |Random 0.03 -0.01 0.01 0.67 0.51
1997 |Random 0.10 -0.01 0.00 1.58 0.11
1998 |Random 0.01 -0.01 0.01 0.26 0.80
1999 |Random -0.05 -0.01 0.00 -0.48 0.63
2000 |Random 0.02 -0.01 0.01 0.53 0.60
2001 |Random 0.03 -0.01 0.00 0.69 0.49
2002 |Random 0.04 -0.01 0.01 0.68 0.50
2003 |Random -0.01 -0.01 0.01 0.04 0.97
2004 |Random 0.07 -0.01 0.01 1.14 0.25
2005 |Random -0.02 -0.01 0.01 -0.08 0.94
2006 |Random 0.00 -0.01 0.00 0.22 0.83
2007 |Random 0.03 -0.01 0.01 0.62 0.54
2008 |Random -0.04 -0.01 0.01 -0.36 0.72
2009 |Random -0.07 -0.01 0.00 -0.75 0.45
2010 |Random -0.09 -0.01 0.01 -1.11 0.27
2011 |Random 0.02 -0.01 0.01 0.48 0.63
2012 |Random 0.03 -0.01 0.00 0.62 0.53
2013 |Random 0.07 -0.01 0.01 1.11 0.27
2014 |Random 0.10 -0.01 0.00 1.59 0.11
2015 |Random 0.12 -0.01 0.00 1.87 0.06
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E.2 Moran’s | index of cumulative rainfall
Year | Clustering pattern | Moran’s Index Expected Variance | Z-score P-value
index
1981 |[Random 0.08 -0.01 0.01 1.33 0.18
1982 |Clustered 0.11 -0.01 0.01 1.74 0.08
1983 |Random 0.09 -0.01 0.01 1.48 0.14
1984 |Random 0.09 -0.01 0.01 1.45 0.15
1985 |Random 0.09 -0.01 0.01 1.46 0.14
1986 |Random 0.09 -0.01 0.01 1.44 0.15
1987 |[Random 0.07 -0.01 0.01 1.14 0.26
1988 |[Random 0.09 -0.01 0.01 1.47 0.14
1989 |[Random 0.04 -0.01 0.01 0.70 0.49
1990 ([Random 0.09 -0.01 0.01 1.39 0.16
1991 |[Random 0.10 -0.01 0.01 1.53 0.13
1992 |Clustered 0.15 -0.01 0.01 2.24 0.03
1993 |Random 0.00 -0.01 0.01 0.13 0.90
1994 |Random 0.02 -0.01 0.01 0.47 0.64
1995 |Random 0.02 -0.01 0.01 0.47 0.64
1996 |[Random 0.02 -0.01 0.01 0.50 0.62
1997 |[Random 0.02 -0.01 0.01 0.47 0.64
1998 |[Random -0.04 -0.01 0.01 -0.40 0.69
1999 |[Random -0.01 -0.01 0.01 0.05 0.96
2000 |[Random -0.01 -0.01 0.01 0.02 0.99
2001 |Random -0.01 -0.01 0.01 0.00 1.00
2002 |Random -0.01 -0.01 0.01 0.03 0.98
2003 |[Random -0.01 -0.01 0.01 0.08 0.94
2004 |Random -0.01 -0.01 0.01 0.00 1.00
2005 |Random -0.01 -0.01 0.01 0.04 0.97
2006 |Random -0.02 -0.01 0.01 -0.03 0.97
2007 |Random -0.01 -0.01 0.01 0.00 1.00
2008 |Random -0.01 -0.01 0.01 0.03 0.98
2009 |[Random -0.01 -0.01 0.01 0.06 0.95
2010 |Random -0.01 -0.01 0.01 0.10 0.92
2011 |Random -0.01 -0.01 0.01 0.00 1.00
2012 |Random -0.02 -0.01 0.01 -0.04 0.97
2013 |Random -0.02 -0.01 0.01 -0.04 0.97
2014 |Random -0.02 -0.01 0.01 -0.07 0.94
2015 |Random -0.02 -0.01 0.01 -0.05 0.96
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E.3 Moran’s | index of average temperature
Year | Clustering pattern | Moran’s Index Expected Variance | Z-score P-value
index
1981 |[Random 0.08 -0.01 0.01 1.33 0.18
1982 |Clustered 0.11 -0.01 0.01 1.74 0.08
1983 |Random 0.09 -0.01 0.01 1.48 0.14
1984 |Random 0.09 -0.01 0.01 1.45 0.15
1985 |Random 0.09 -0.01 0.01 1.46 0.14
1986 |Random 0.09 -0.01 0.01 1.44 0.15
1987 |Random 0.07 -0.01 0.01 1.14 0.26
1988 |[Random 0.09 -0.01 0.01 1.47 0.14
1989 |[Random 0.04 -0.01 0.01 0.70 0.49
1990 ([Random 0.09 -0.01 0.01 1.39 0.16
1991 |[Random 0.10 -0.01 0.01 1.53 0.13
1992 |Clustered 0.15 -0.01 0.01 2.24 0.03
1993 |Random 0.00 -0.01 0.01 0.13 0.90
1994 |Random 0.02 -0.01 0.01 0.47 0.64
1995 |Random 0.02 -0.01 0.01 0.47 0.64
1996 |[Random 0.02 -0.01 0.01 0.50 0.62
1997 |[Random 0.02 -0.01 0.01 0.47 0.64
1998 |[Random -0.04 -0.01 0.01 -0.40 0.69
1999 |[Random -0.01 -0.01 0.01 0.05 0.96
2000 |[Random -0.01 -0.01 0.01 0.02 0.99
2001 |Random -0.01 -0.01 0.01 0.00 1.00
2002 |Random -0.01 -0.01 0.01 0.03 0.98
2003 |Random -0.01 -0.01 0.01 0.08 0.94
2004 |Random -0.01 -0.01 0.01 0.00 1.00
2005 |Random -0.01 -0.01 0.01 0.04 0.97
2006 |Random -0.02 -0.01 0.01 -0.03 0.97
2007 |Random -0.01 -0.01 0.01 0.00 1.00
2008 |Random -0.01 -0.01 0.01 0.03 0.98
2009 |Random -0.01 -0.01 0.01 0.06 0.95
2010 |Random -0.01 -0.01 0.01 0.10 0.92
2011 |Random -0.02 -0.01 0.01 0.00 1.00
2012 |Random -0.02 -0.01 0.01 -0.04 0.97
2013 |Random -0.02 -0.01 0.01 -0.04 0.97
2014 |Random -0.02 -0.01 0.01 -0.07 0.94
2015 |Random -0.02 -0.01 0.01 -0.05 0.96
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Appendix F Correlation between yield and rice biophysical

F.1 Correlation between yield and rice biophysical variables as a function

of growth stage

Area Rice variable |Correlation Stage
Seeding | Tillering | Panicle | Flowering |Harvesting | Overall

Overall |Stem density |r 0.28 0.03 -0.32 -0.29 0.1 0.03
area sig. (0.2) (0.88) (0.15) (0.19) (0.65) (0.8)
Height r NA 0.37* 0.07 -0.19 -0.1 0.03
sig. (0.09) (0.77) (0.4) (0.66) (0.78)

LAI r NA 0.13 0.28 -0.00 -0.09 0.02

sig. (0.59) (0.21) (0.99) (0.69) 0.83

Chlorophyll r NA -0.23 -0.2 0.07 0.03 -0.09

content sig. (0.32) (0.34) (0.77) (0.88) (0.4)

Wet total r NA NA 0.95 0.16 0.01 0.06

Biomass sig. (0.2) (0.49) (0.99) (0.7)

Wet Stem r NA NA 0.95 0.07 -0.09 -0.02

biomass sig. (0.2) (0.77) (0.69) (0.9)

Wet grain r NA NA 0.95 0.45%* 0.30 0.27*

biomass sig. (0.21) (0.04) (0.17) (0.07

Dry total r NA NA 0.88 0.22 0.15 0.13

biomass sig. (0.32) (0.34) (0.5) (0.4)

Dry stem r NA NA 0.83 0.03 0.04 0.02
biomass sig. (0.38) (0.92) (0.87) (0.92)

Dry grain r NA NA 0.94 0.43** 0.28 0.21

biomass sig. (0.22) (0.05) 0.21 0.16

Irrigated | Stem density |r 0.45* 0.23 -0.39 -0.46* 0.2 0.08
area sig. (0.08) (0.39) (0.16) (0.08) (0.46) (0.47)
Height r NA 0.14 -0.1 -0.14 -0.3 -0.04

sig. (0.59) (0.7) (0.62) (0.26) (0.78)

LAI r NA 0.17 0.57* 0.09 0.18 0.16

sig. (0.59) (0.02) (0.75) (0.51) (0.21)

Chlorophyll r NA -0.22 0.11 0.33 0.08 -0.02

content sig. (0.42) (0.68) (0.21) (0.77) (0.89)

Wet total r NA NA 0.95 0.32 0.24 0.23

biomass sig. (0.2) (0.25) (0.37) (0.19)

Wet stem r NA NA 0.95 0.25 0.17 0.18

biomass sig. (0.2) (0.37) (0.54) (0.32)

Wet grain r NA NA 0.95 0.47* 0.37 0.31*
biomass sig. (0.21) (0.08) (0.15) (0.08)

Dry total r NA NA 0.88 0.34 0.28 0.22

biomass sig. (0.32) (0.21) (0.29) (0.2)

Dry stem r NA NA 0.83 0.25 0.22 0.20

biomass sig. (0.38) (0.37) (0.42) (0.27)

Dry grain r NA NA 0.94 0.37 0.32 0.21

biomass sig. (0.22) (0.17) (0.23) (0.24)

Non- Stem density |r -0.24 -0.51 -0.13 0.12 -0.39 -0.14
irrigated sig. (0.65) (0.3) 0.81 (0.82) (0.45) (0.46)
area Height r NA 0.74* 0.35 -0.37 0.81** 0.19
sig. (0.09) (0.5) (0.47) (0.05) (0.38)

LAI r NA 0.08 -0.25 -0.27 -0.71 -0.29

sig. (0.91) (0.64) (0.61) (0.12) (0.18)

222



Appendix F

Area

Rice variable |Correlation Stage

Seeding | Tillering | Panicle | Flowering |Harvesting | Overall
Chlorophyll r NA -0.38 -0.8 -0.58 -0.09 -0.36*
content sig. (0.46) (0.6) (0.22) (0.86) (0.08)
Chlorophyll r NA -0.38 -0.8 -0.58 -0.09 -0.36*
content sig. (0.46) (0.6) (0.22) (0.86) (0.08)
Wet total r NA NA NA -0.44 -0.97** -0.58%*
biomass sig. (0.38) (0.00) (0.05)
Wet stem r NA NA NA -0.57 -0.95** -0.69%*
biomass sig. (0.24) (0.00) (0.01)
Wet grain r NA NA NA 0.38 -0.13 0.13
biomass sig. (0.46) (0.81) (0.69)
Dry total r NA NA NA -0.23 -0.97** -0.32
biomass sig. (0.66) (0.00) (0.31)
Dry stem r NA NA NA -0.63 -0.93** -0.69%*
biomass sig. (0.18) (0.00) (0.01)
Dry grain r NA NA NA 0.57 0.05 0.23
biomass sig. (0.24) (0.92) (0.48)

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed)

NA

F.2

No measurement

of rice variety in irrigated areas.

Correlation between yield and rice biophysical variables as a function

Rice variable Correlation | HomMali | Phitsanulok2 | RD41 RD47 RD49 RD57 | RD61
105

Stem density r . 0.22 0.02 -0.06 0.37 . .
sig. (0.54) (0.93) (0.87) (0.17)

Height r £ 0.05 0.12 -0.31 -0.26 £ £
sig. (0.91) (0.57) (0.46) (0.41)

LAI r £ 0.45 0.22 0.02 -0.44 £ £
sig. (0.32) (0.32) (0.96) (0.18)

Chlorophyll r £ 0.21 -0.11 -0.17 -0.52* £ £

content sig. (0.63) (0.61) (0.69) (0.08)

Wet total r £ 0.29 0.64** | -0.54 0.19 £ £

biomass sig. (0.71) (0.02) (0.46) (0.72)

Wet stem r £ 0.26 0.65** | -0.52 0.17 £ £

biomass sig. (0.74) (0.02) (0.48) 0.75)

Wet grain r £ 0.4 0.54* -0.29 0.16 £ £

biomass sig. (0.6) (0.06) (0.72) (0.76)

Dry total r £ 0.36 0.63** | -0.39 0.25 £ £

biomass sig. (0.64) (0.02) (0.61) (0.63)

Dry stem r £ 0.37 0.7** -0.52 0.3 £ £

biomass sig. (0.64) (0.01) (0.48) (0.56)

Dry grain r . 0.19 0.5* -0.22 -0.06 . .

biomass sig. (0.81) (0.08) (0.79) (0.92)

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed)

NA

No measurement
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F.3 Correlation coefficient between yields with rice biophysical variables

in non-irrigated areas for different rice varieties.

Rice variable Correlation Phitsanulok2 RD13 RD31 RD49
Stem density r 0.56* £ £ 0.04
sig. (0.09) (0.91)
Height r 0.43 £ £ 0.21
sig. (0.29) (0.61)
LAI r 0.16 £ £ 0.28
sig. (0.70) (0.50)
Chlorophyll content r 0.37 .c .c -0.51
sig. (0.37) (0.2)
Wet total biomass r 0.2 £ £ -0.97**
sig. (0.8) (0.03)
Wet stem biomass r 0.01 £ £ -0.88
sig. 0.99 (0.13)
Wet grain biomass r 0.46 £ £ 0.03
sig. (0.54) (0.97)
Dry total biomass r 0.26 £ £ -0.82
sig. (0.74) (0.19)
Dry stem biomass r -0.11 .c .c -0.79
sig. (0.89) (0.22)
Dry grain biomass r 0.46 .c .c 0.16
sig. (0.54) (0.84)
Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed)
NA No measurement

F.4 Correlation of RD41 overall and in each growth stage.

Rice variable Correlation | Seeding | Tillering | Panicle | Flowering | Harvesting | Overall
Stem Density r 0.05 0.4 0.11 -0.86* 0.15 -0.79**
sig. (0.93) (0.43) (0.84) (0.03) (0.77) (0.00)
Height r NA 0.47 0.04 0.36 0.21 0.67**
sig. (0.35) (0.93) (0.48) (0.69) (0.00)
LAI r NA 0.27 0.74 0.50 0.66 0.22
sig. (0.66) (0.09) (0.31) (0.15) (0.32)
Chlorophyll r NA -0.72 -0.06 0.49 -0.04 0.64**
content sig. (0.11) (0.91) (0.32) (0.93) (0.00)
Wet total r NA NA 1.00** 0.62 0.87** 0.67*
biomass sig. (0.26) 0.02 (0.01)
Wet stem r NA NA 1.00** 0.62 0.85** 0.69**
biomass sig. (0.27) (0.03) (0.01)
Wet grain r NA NA 1.00** 0.63 0.83** 0.57**
biomass sig. (0.26) (0.04) (0.04)
Dry total r NA NA 1.00** 0.67 0.94** 0.62**
biomass sig. (0.22) (0.00) (0.02)
Dry stem r NA NA 1.00** 0.68 0.89** 0.67**
biomass sig. (0.21) (0.02) (0.01)
Dry grain r NA NA 1.00** 0.65 0.87* 0.52*
biomass sig. (0.24) (0.03) (0.07)

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed)
NA No measurement

224



Appendix G

G.1 Phichit province

Appendix G

Histogram of backscatter coefficient

Stage Orbit direction and polarisation
Ascendingand VV | Ascending and VH | Descending and VV | Descending and VH
Seeding ; | y ; -
L _LIHW ; MHU i ,ml il WMM\H" i Ly ,H.M.WI\ '
Mean -12.45, Max Mean -19.11, Max -13.38, Mean -10.83, , Max -4.35, Mean -19.15, Max -12.99,
3.38, Min -26.38, Min -24.45 Min -19.45 Min -25.03,
Tillering ‘ I v ’
T UMMMMU E 4 u_Mmu - ! u;nuldwm‘mlmw A MI I
Mean -9.06, Max -3.97, | Mean -16.44, Max -12.68, Mean -9.47, Max -0.69, Mean -16.45, Max -13.3,
Min -16.01 Min -22.63 Min -20.11
Min -15.82
Panicle | ‘
| | ok
f} JJNHMM” i s\lunHM| by iy Jum;mm&i i Idl !
Mean -10.68, Max -5.6, | Mean -16.27, Max -11.27, Mean -9.96, Max -4.84, Mean -15.16, Max -11.23,
Min -17.01 Min -20.65 Min -15.96 Min -18.8
Flowering | . S , l X I
k i I ‘. 0 : I
,mm MH‘!IIHJ”! ] H‘M\ILIJ - |uun_lniihm‘m_“m!n 1 g |||Whll|:
Mean -11.61, Max - Mean -16.57, Max -13.19, Mean -10.51, Max -5.92, Mean -15.35, Max -11.36,
6.45, Min -15.07 Min -19.36 Min -16.41 Min -19.65
Harvesting | . , :
! ‘ § Mu i ‘
Ly ply JMMM “IMI“IMMW . Lo IiN il#l\ I I u“ulwﬁl}\ilﬁ:. .
Mean -10.55, Max-5.9, | Mean-16.91, Max-11.1, Mean -10.77, Max -6.22, Mean -17.44, Max -11.96,
Min -19.27 Min -23.07 Min -16.71 Min -23.64
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G.2 Ang Thong province

Stage Orbit direction and polarisation
Ascendingand VV | Ascending and VH | Descending and VV | Descending and VH
Seeding , ol ; 1 i ; ‘
| 1“ i ‘H” i iM_ I
‘.'"‘" “" ,'_ml, Il i B |\||u||y IWI\ Ll il HHH‘I i M||||||nu|\nw il
Mean -11.19, Max - Mean -18.7, Max -13.06, Mean -9.8, Max -4.51, Mean -18.43, Max -14,
6.78, Min -17.23 Min -24.56 Min -12.81 Min-21.8
Tillering : . : | 2
' f-"'im‘@,‘.‘..llm,. 0 LI |[‘||\|1H|J |||i ﬁn 1T mHM MIHHJM\ [T
Mean -8.31, Max -5.74, | Mean -17.56, Max -13.53, Mean -8.12, Max -4.48, Mean -16.85, Max -12.99,
Min -12.13 Min -21.18 Min -12.48 Min -20.85
Panicle k ; : |
VRN L S LY T
l!\N\‘N“II!_U,L_I,}J\,‘.‘ | ] i Mn_ Al mu\uH I Ummnhh " .
Mean -7.8, Max -2.87, Mean -16.83, Max -12.7, Mean -8.36, Max -2.07, Mean -17.04, Max -14.29,
Min-11.11 Min-19.8 Min -14.92 Min -19.83
Flowering éi _ . ‘ i T |
| " ki ol
Coommlbbdb | el | o 1
Mean -9.56, Max -3.45, Mean -16.11, Max -12.89, Mean -10.2, Max -3.22, Mean -16.61, Max -13.28,
Min -13.37 Min -18.55 Min -14.56 Min -19.54
Harvesting | | ‘ , \
Il l|||\|IH|IILI_H ; .\llemum ‘ o |ﬁ\|\i\|||huﬂjh nulul li s
Mean -10.67, Max - Mean -15.1, Max -11.42, Mean -10.57, Max -2.27, Mean -15.22, Max -12.59,
5.94, Min -13.74 Min -17.43 Min -15.05 Min-18.6
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G.3 Pathum Thani province

Appendix G

Mean -10.18, Max -
4.64, Min -14.91

Mean -15.72, Max -11.2,
Min -22.19

Stage Orbit direction and polarisation
Ascendingand VV | Ascending and VH | Descending and VV | Descending and VH
Seeding . ; . !
A .alwkmd‘m RN umﬁwhw il I : 1, M" 2l s
Mean -11.72, Max - Mean -19.93, Max -11.27, Mean -10.13, Max -5.09, Mean -19.3, Max -11.08,
6.71, Min -20.05 Min -24.45 Min -24.45 Min -23
Tillering ; WW | ) ¥ .
L |'”“"“‘HM_‘ 'IJWM‘ AT mIi.mIMMWHM[\. ] ‘\mn‘_lulﬂlﬂ“ “M” i r.umi‘ ‘ Mu i
Mean -8.48, Max -4.03, | Mean -16.28, Max -12.46, Mean -9.32, Max -5.22, Mean -15.3, Max -12.17,
Min -14.59 Min -22.26 Min -14.83 Min -18.27
Panicle ; ﬂ ﬁ i 4 { , |
I g I Y | | L g
Yo i i i WG 1 i ; bl
IIIHIIE M!Wnimm'” l J||h-| ll|Ml] i il U _W‘IMM.M” ! lr-tJMIh [
Mean -11.26, Max - Mean -15.8, Max -10.22, Mean -9.32, Max -5.22, Mean -16.35, Max -14.25,
5.69, Min -15.87 Min -19.54 Min -14.83 Min -20.2
Flowering | , . : . /
|l Ii Hoo ﬁmih i
"hmwwu_“"hﬂ_"u‘l'h' s _...,.-Musx..d.h.. i IIJIUE]MM i JHI‘ il i \!l“_lﬁlmmhhnhhn\\ l
Mean -10.69, Max - Mean -15.4, Max -10.79, Mean -9.67, Max -4.69, Mean -14.82, Max -9.54,
4.48, Min -14.86 Min -19.65 Min -14.11 Min -18.67
Harvesting .

[

il

Mean -9.85, Max -3.85,
Min -13.82

s i

Mean -16.32, Max -12.36,
Min -22.03
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H.1 Sentinel-2 wavelength

Appendix H

Sentinel-2 and Sentinel-1 specifications

satellite and 5
days with two

satellites

Satellite Revisit time Swath width Bands
product (days) (km)
Sentinel-2 10 days with one | 290 Band 1 — Coastal/Aerosol (60 m)

Band 2 — Blue (10 m)

Band 3 — Green (10 m)

Band 4 — Red (10 m)

Band 5 — Vegetation red edge (20 m)

Band 6 — Vegetation red edge (20 m)

Band 7 — Vegetation red edge (20 m)

Band 8 — Near infrared (10 m)

Band 8A — Narrow near infrared (20 m)

Band 9 — Water vapour (60 m)

Band 10 - Short wavelength infrared - Cirrus

(60 m)

Band 11 — Short wavelength infrared (20 m)

Band 12 - Short wavelength infrared (20 m)
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H.2 Sentinel-1 characteristic of each sub-swath

Beam ID w1l W2 w3
Spatial resolution (range x azimuth) m 2.7x225 3.1x22.7 3.5x22.6
Pixel spacing (range x azimuth) m 23x14.1 2.3x14.1 2.3x14.1
Incidence angle at min orbit altitude (°) 32.9 38.3 43.1
Range look bandwidth MHz 56.5 48.3 42.8
Azimuth look bandwidth Hz 315 301 301
Range hamming weighting coefficient 0.75 0.75 0.75
Azimuth hamming weighting coefficient 0.70 0.75 0.75

H.3 Sentinel-1 main properties on IW mode

Product ID IW_SLC
Pixel value Complex
Coordinate system Slant range
Bits per pixel 16l and 16Q
Polarisation options Single (HH or VV) or dual (HH+HV or VV+VH)
Ground range coverage (km) 251.8
Equivalent number of looks (ENL) 1
Radiometric correction 3
Absolute location accuracy m (NRT) 7
Number of looks (range x azimuth) 1x1
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Appendix | Photo of sample field during the study period

Sample unit 1

Seeding Tillering Panicle

- B

Flowering

Sample unit 2

Seeding Tillering Panicle

Sample Unit 2
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Sample unit 3

Seeding - ‘ Panicle

Sample unit 5

Seeding Tillering Panicle
It —

Flowering | | Harvesting

Sample Unit 5

Sample Unit 5
il "]
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Sample unit 7

Sgeding Tillering Panicle

|+

Flowering Harvesting

Sample Unit 7

Sample unit 9

Seeding Tillering Panicle
15 v oy

Sample Unit 9

arvesting

Sample Unit 9
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Sample unit 10

Seeding Tillering Panicle

Sample Unit 10

Sample Unit 10

Sample unit 11
Seeding Tillering Panicle

Flowering - Harvesting

o,
e
|
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Sample unit 12
Seeding Ti

llering

Sample Unit 12

Flowering Harvesting -

)

Sample Unit 12

Sample unit 13
Seeding Tillering Panicle

Flowering Harvesting

Sample Unit 13 ; Sample Unit 13
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Sample unit 14
Seeding Tillering Panicle

Sample Unit 14

Flowering Harvesting

Sample Unit{4

Sample unit 15
Seeding Tillering Panicle
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Sample Unit 15
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Sample unit 17
Seing

Tillering Panicle

PERAT S  2SEN NAS T

Iowering Harvesting

Ssample Unit 1

Sample unit 18
Seeding Tillering Panicle

Sample Unit 2

Sample Unit 2

Flowering Harvesting

Samole Unit 2

Sample Unit2

Appendix |

237



Appendix |

Sample unit 19
Seeding Tillering Panicle
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Sample Unit 5
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Sample Unit 3

Sample unit 20
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Sample unit 21
Seeding Tillering

Sample Unit 5

Flowering ‘ Harvesting

Sample Unit 5

Sample unit 23
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Flowering Harvesting

Sample Unit 1
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Sample unit 24

Seeding Panicle

Flowering

le Unit 2
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Sample Unit 3
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Sample unit 26
Seeding Tillering Panicle

Flowering Harvesting

P

Sample Unit 4

Sample unit 27
Seeding Tillering Panicle
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Flowering
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Appendix J

Appendix J Average of satellite values during growing

season

J.1  Average of VIl values during growing season

Vi Average and standard deviation (S.D.) of VI values

Seeding | S.D. | Tillering ‘ S.D. | Panicle ‘ S.D. | Flowering | S.D. ‘ Harvesting | S.D.
Overall area
NDVI| 0.03 0.09 047 |0.18 | 0.61 | 0.05 0.27 0.16 0.20 0.11
EVI 0.12 0.12 0.57 |0.16 | 0.60 | 0.10 0.36 0.21 0.19 0.10
Phichit
Irrigated areas
NDVI| -0.01 0.01 047 |0.23 | 0.63 | 0.04 0.42 0.15 0.20 0.16
EVI 0.07 0.09 0.51 |0.24| 0.59 |0.12 0.50 0.14 0.13 0.05
Non-irrigated areas
NDVI| -0.02 0.13 063 |[0.09| 0.62 | 0.06 0.24 0.15 0.19 0.06
EVI 0.07 0.18 061 |0.12| 0.63 |0.11 0.55 0.21 0.15 0.08
Ang Thong
NDVI| 0.03 0.03 0.34 |0.11| 0.63 | 0.05 0.17 0.05 0.12 0.07
EVI 0.14 0.06 061 |0.08| 0.60 |0.10 0.16 0.04 0.22 0.13
Pathum Thani
NDVI| 0.13 0.02 041 |0.13 | 0.57 | 0.04 0.23 0.17 0.30 0.07
EVI 0.22 0.05 0.54 |0.18 | 0.55 | 0.07 0.20 0.07 0.28 0.10

J.2  Average of backscatter values during growing season
Backscatter Average and standard deviation (S.D.) of backscatter values
Seeding | S.D. | Tillering | S.D. | Panicle | S.D. | Flowering | S.D. |Harvesting| S.D.

Overall area
AscVV -13.14 | 4.02 | -8.76 |2.15| -9.80 |3.07 | -10.82 |2.54| -9.91 3.14
AscVH -19.85 | 2.20 | -17.17 | 1.66 | -16.53 | 1.86 | -16.08 |1.38| -16.36 | 2.62
AscVV/VH 066 |019| 052 |0.14| 0.59 |O0.16 0.67 0.13| 0.61 0.17
DescVV -11.09 | 3.13 | -9.69 | 219 | -9.65 |2.74 -9.90 |(2.82| -10.26 | 2.30
DescVH -19.70 | 2.01 | -16.65 | 1.37 | -16.20 | 1.51 -15.45 |1.64| -16.95 2.34
DescVV/VH 056 |0.12| 058 |0.13| 0.60 |0.17 0.64 |0.16| 0.61 0.14
Phichit
Irrigated area
AscVV -11.67 | 5.34 -7.66 2.00 | -10.51 | 2.01 | -11.56 | 3.34 | -10.80 1.55
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Backscatter Average and standard deviation (S.D.) of backscatter values

Seeding | S.D. | Tillering | S.D. | Panicle | S.D. | Flowering | S.D. |Harvesting | S.D.
Phichit- Irrigated area (Cont.)
AscVH -18.85 | 2.60 | -16.87 | 1.47 | -16.72 | 1.62 | -16.44 | 1.28 | -16.27 | 3.19
AscVV/VH 0.61 |0.27| 046 |0.13| 0.63 |0.08 0.70 |0.17| 0.67 0.06
DescVV -10.59 | 3.78 | -9.68 |1.79 |-10.29 | 2.22 | -11.89 |2.58| -11.52 | 2.59
DescVH -19.11 | 2.73 | -16.98 | 1.48 | -15.93 | 0.52 | -16.22 |1.06| -18.35 | 2.52
DescVV/VH 0.55 |0.12| 057 |0.11| 0.64 |0.13 0.73 |0.13| 0.63 0.12
Non-irrigated area
AscVV -15.53 |3.01 | -10.22 | 1.63 | -10.74 | 2.92 | -12.08 | 0.46 | -9.38 | 4.26
AscVH -19.43 | 1.43 | -16.50 | 0.71 | -16.21 | 1.46 | -17.19 | 0.63 | -17.78 | 2.29
AscVV/VH 0.80 |0.13| 062 |0.08| 066 |0.14| 070 |0.03| 0.52 0.19
DescVV -11.88 | 3.49 | -1091 | 253 | 988 |131| -999 |159| -983 | 0.93
DescVH -19.98 | 1.90 | -16.57 | 1.06 | -14.63 | 1.61 | -14.57 | 1.50 | -16.73 | 2.52
DescVV/VH 0.59 |0.14| 065 |0.11| 068 |[0.09| 0.69 |0.09| 0.59 0.07
Ang Thong
AscVV -11.52 | 290 | -8.17 |052| -6.51 | 2.16 | -9.69 | 146 | -11.24 | 1.57
AscVH 1-92 |1.67| -1830 | 1.79 | -17.45 | 0.68 | -15.76 | 0.49 | -15.26 | 0.94
AscVV/VH 0.57 |0.10| 045 |002| 038 | 0.13 | 062 |0.10| 0.74 0.12
DescVV 960 |146| -820 |[1.03| -659 | 2.74 | -9.55 | 3.02 | -10.94 | 3.04
DescVH -18.50 | 0.96 | -17.72 | 1.06 | -17.46 | 0.64 | -16.86 | 1.33 | -15.43 | 0.54
DescVV/VH 052 |007| 046 |003| 038 | 0.16 | 056 |0.16 | 0.71 0.21
Pathum Thani
AscVV -13.65 | 3.78 | -891 |3.19|-11.12 | 3.36 | -9.57 | 3.28 | -8.13 | 3.98
AscVH -21.49 | 2.52 | -17.20 | 2.36 | -15.77 | 3.13 | -14.66 | 1.59 | -15.86 | 3.29
AscVV/VH 063 |014| 053 |021| 0.70 | 0.11 | 0.64 | 0.18 | 0.51 0.21
DescVV -12.23 | 3.21 | -9.72 |2.66|-11.65| 247 | -7.74 |3.05| -8.60 | 157
DescVH -21.26 | 1.07 | -15.28 | 0.78 | -17.15 | 0.10 | -14.16 | 1.22 | -17.03 | 2.59
DescVV/VH 0.57 |0.14| 063 |0.16| 068 | 0.13 | 0.55 |0.22 | 0.51 0.07
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Appendix K

Rice yield and rice production in 2017 in 3

representative provinces

Province/Amphoe

Rice harvested area

Rice yield (ton/ha)

Rice production

(hectare) (tonnes)
Phichit 232,536 3.77 876,596
Muang Phichit 23,669 3.98 94,084
Taphan Hin 25,984 4.09 106,373
Bang Mun Nak 22,600 3.88 87,716
Pho Thale 26,821 4.09 109,632
Pho Prathap Chang 19,274 3.84 74,083
Sam Ngam 21,524 3.74 80,445
Wang Sai Phun 17,983 3.42 61,478
Thap Khlo 24,612 3.48 85,525
Sak Lek 6,919 3.08 21,277
Bueng Na Rang 13,718 3.97 54,444
Dong Charoen 14,745 3.39 49,947
Wachirabarami 14,688 3.51 51,592
Ang Thong 55,421 4.16 230,547
Muang Ang Thong 3,916 4.12 16,131
Chaiyo 2,885 3.84 11,089
Pa Mok 593 3.80 2,252
Pho Thong 13,508 4.13 55,719
Wiset Chai Chan 15,342 4,12 63,190
Samko 7,798 4.24 33,093
Sawaeng Ha 11,379 4.31 49,073
Pathum Thani 49,657 4.49 223,167
Muang Pathum Thani 3,099 431 13,363
Khlong Luang 8,066 4.58 36,903
Thanyaburi 1,484 4,51 6,687
Lat Lum Kaeo 11,548 4.63 53,408
Lam Luk Ka 11,846 4.50 53,307
Sam Khok 2,892 4.47 12,924
Nong Suea 10,722 4.34 46,575
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Appendix LCorrelation between satellite and rice

biophysical variables

L.1 Correlation between vegetation indices and rice biophysical variables

in overall areas, irrigated areas, and non-irrigated areas across

growth stages.

Irrigated Stage Rice biophysical Statistical Vegetation indices
system variables NDVI EVI
Overall Seeding Rice age Pearson -0.11 0.23
(sig. 2-tailed) 0.61 0.30
Stem density Pearson -0.22 -0.33
(sig. 2-tailed) 0.33 0.14
Water depth Pearson -0.04 0.16
(sig. 2-tailed) 0.85 0.48
Height Pearson .C .C
(sig. 2-tailed)
Absolut height Pearson ¢ ¢
(sig. 2-tailed)
LAI Pearson ¢ ¢
(sig. 2-tailed)
Chlorophyll Pearson ¢ ¢
(sig. 2-tailed)
Wet total Pearson ¢ ¢
biomass (sig. 2-tailed)
Wet stem Pearson ¢ ¢
biomass (sig. 2-tailed)
Wet grain Pearson ¢ ¢
biomass (sig. 2-tailed)
Dry total biomass |Pearson ¢ ¢
(sig. 2-tailed)
Dry stem biomass | Pearson € €
(sig. 2-tailed)
Dry grain biomass | Pearson ¢ ¢
(sig. 2-tailed)
Tillering Rice age Pearson -0.11 -0.06
(sig. 2-tailed) 0.63 0.78
Stem density Pearson 0.03 0.11
(sig. 2-tailed) 0.88 0.62
Water depth Pearson -0.12 0.13
(sig. 2-tailed) 0.59 0.58
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Irrigated Stage Rice biophysical Statistical Vegetation indices
system variables NDVI EVI
Overall (Cont.) |Tillering Height Pearson 0.15 0.35
(sig. 2-tailed) 0.50 0.11
Absolut height Pearson 0.21 0.31
(sig. 2-tailed) 0.34 0.16
LAl Pearson 0.05 0.02
(sig. 2-tailed) 0.85 0.93
Chlorophyll Pearson 0.13 -0.06
(sig. 2-tailed) 0.55 0.79
Wet total Pearson .c .c
biomass (sig. 2-tailed)
Wet stem Pearson ¢ ¢
biomass (sig. 2-tailed)
Wet grain Pearson ¢ ¢
biomass (sig. 2-tailed)
Dry total biomass |Pearson € €
(sig. 2-tailed)
Dry stem biomass | Pearson € €
(sig. 2-tailed)
Dry grain biomass | Pearson € €
(sig. 2-tailed)
Panicle Rice age Pearson 0.13 -0.45*
(sig. 2-tailed) 0.57 0.04
Stem density Pearson -0.33 -0.06
(sig. 2-tailed) 0.14 0.80
Water depth Pearson -0.30 -0.07
(sig. 2-tailed) 0.18 0.77
Height Pearson 0.23 -0.39
(sig. 2-tailed) 0.30 0.08
Absolut height Pearson 0.28 -0.31
(sig. 2-tailed) 0.21 0.17
LAI Pearson -0.19 0.03
(sig. 2-tailed) 0.41 0.88
Chlorophyll Pearson -0.11 -0.04
(sig. 2-tailed) 0.63 0.86
Wet total Pearson -0.58 0.92
biomass (sig. 2-tailed) 0.61 0.26
Wet stem Pearson -0.57 0.92
biomass (sig. 2-tailed) 0.61 0.26
Wet grain Pearson -0.59 0.93
biomass (sig. 2-tailed) 0.6 0.25
Dry total biomass | Pearson -0.72 0.98
(sig. 2-tailed) 0.49 0.14
Dry stem biomass | Pearson -0.78 0.99
(sig. 2-tailed) 0.43 0.08
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Irrigated Stage Rice biophysical Statistical Vegetation indices
system variables NDVI EVI
Overall (Cont.) | Panicle Dry grain biomass | Pearson -0.60 0.93
(sig. 2-tailed) 0.59 0.24
Flowering Rice age Pearson 0.10 0.20
(sig. 2-tailed) 0.69 0.38
Stem density Pearson 0.04 0.23
(sig. 2-tailed) 0.88 0.31
Water depth Pearson -0.62** -0.59**
(sig. 2-tailed) 0.01 0.01
Height Pearson -0.52* 0.05
(sig. 2-tailed) 0.03 0.83
Absolut height Pearson -0.26 0.30
(sig. 2-tailed) 0.30 0.19
LAI Pearson -0.07 0.03
(sig. 2-tailed) 0.80 0.91
Chlorophyll Pearson -0.09 -0.07
(sig. 2-tailed) 0.73 0.76
Wet total Pearson 0.02 -0.25
biomass (sig. 2-tailed) 0.95 0.30
Wet stem Pearson -0.08 -0.30
biomass (sig. 2-tailed) 0.77 0.20
Wet grain Pearson 0.35 0.07
biomass (sig. 2-tailed) 0.17 0.78
Dry total biomass | Pearson 0.22 -0.12
(sig. 2-tailed) 0.40 0.62
Dry stem biomass | Pearson 0.05 -0.23
(sig. 2-tailed) 0.86 0.32
Dry grain biomass | Pearson 0.39 0.13
(sig. 2-tailed) 0.13 0.59
Harvesting | Rice age Pearson 0.34 0.27
(sig. 2-tailed) 0.12 0.23
Stem density Pearson -0.57** 0.05
(sig. 2-tailed) 0.01 0.83
Water depth Pearson 0.42 0.47*
(sig. 2-tailed) 0.05 0.03
Height Pearson 0.21 0.25
(sig. 2-tailed) 0.35 0.25
Absolute height | Pearson 0.06 0.08
(sig. 2-tailed) 0.8 0.72
LAI Pearson 0.25 0.07
(sig. 2-tailed) 0.26 0.75
Chlorophyll Pearson 0.05 -0.36
(sig. 2-tailed) 0.82 0.10
Wet total Pearson 0.30 0.45*
biomass (sig. 2-tailed) 0.17 0.04
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Irrigated Stage Rice biophysical Statistical Vegetation indices
system variables NDVI EVI
Overall (Cont.) |Harvesting |Wet stem Pearson 0.34 0.45*
biomass (sig. 2-tailed) 0.12 0.03
Wet grain Pearson 0.10 0.28
biomass (sig. 2-tailed) 0.68 0.20
Dry total biomass | Pearson 0.28 0.43*
(sig. 2-tailed) 0.21 0.05
Dry stem biomass | Pearson 0.35 0.46*
(sig. 2-tailed) 0.11 0.03
Dry grain biomass | Pearson 0.13 0.31
(sig. 2-tailed) 0.58 0.15
Overall Rice age Pearson 0.27** 0.11
growth (sig. 2-tailed) 0.01 0.24
stage Stem density Pearson 0.03 0.16
(sig. 2-tailed) 0.78 0.09
Water depth Pearson 0.10 0.17
(sig. 2-tailed) 0.30 0.07
Height Pearson -0.40** -0.48**
(sig. 2-tailed) 0.00 0.00
Absolute height | Pearson -0.39** -0.49**
(sig. 2-tailed) 0.00 0.00
LAI Pearson -0.21 -0.25*
(sig. 2-tailed) 0.07 0.02
Chlorophyll Pearson 0.08 -0.02
(sig. 2-tailed) 0.50 0.87
Wet total Pearson -0.19 -0.20
biomass (sig. 2-tailed) 0.22 0.19
Wet stem Pearson -0.15 -0.16
biomass (sig. 2-tailed) 0.35 0.29
Wet grain Pearson -0.23 -0.24
biomass (sig. 2-tailed) 0.14 0.11
Dry total biomass | Pearson -0.20 -0.24
(sig. 2-tailed) 0.20 0.12
Dry stem biomass | Pearson -0.11 -0.16
(sig. 2-tailed) 0.51 0.31
Dry grain biomass | Pearson -0.25 -0.27
(sig. 2-tailed) 0.11 0.08
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L.2 Correlation between vegetation indices and rice yield in overall

areas, irrigated areas, and non-irrigated areas across growth stages.

Irrigated system Stage Statistical Vegetation indices
NDVI EVI

Overall Seeding Pearson -0.20 0.57**
(sig. 2-tailed) 0.39 0.01

Tillering Pearson -0.06 0.06

(sig. 2-tailed) 0.78 0.78

Panicle Pearson 0.37 -0.03

(sig. 2-tailed) 0.11 0.89

Flowering Pearson -0.35 -0.19

(sig. 2-tailed) 0.12 0.40

Harvesting Pearson -0.12 0.00

(sig. 2-tailed) 0.60 0.99

Overall growth Pearson -0.08 0.02

stage (sig. 2-tailed) 0.41 0.88

Irrigated Seeding Pearson -0.01 0.40
(sig. 2-tailed) 0.98 0.14

Tillering Pearson -0.19 -0.10

(sig. 2-tailed) 0.48 0.70

Panicle Pearson 0.21 0.02

(sig. 2-tailed) 0.48 0.94

Flowering Pearson -0.23 -0.21

(sig. 2-tailed) 0.38 0.43

Harvesting Pearson -0.12 0.07

(sig. 2-tailed) 0.67 0.81

Overall growth Pearson -0.09 -0.03

stage (sig. 2-tailed) 0.46 0.81

Non- irrigated Seeding Pearson -0.56 0.79
(sig. 2-tailed) 0.25 0.06

Tillering Pearson 0.72 0.84*

(sig. 2-tailed) 0.11 0.04

Panicle Pearson 0.67 -0.09

(sig. 2-tailed) 0.15 0.87

Flowering Pearson -0.85 -0.44

(sig. 2-tailed) 0.07 0.46

Harvesting Pearson -0.18 -0.31

(sig. 2-tailed) 0.73 0.55

Overall growth Pearson -0.61 0.12

stage (sig. 2-tailed) 0.75 0.53
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L.3  Correlation between vegetation indices and rice yield in overall area,
irrigated areas and non-irrigated areas across growth stages specific

growth stage.

Irrigated system Stage Statistical Vegetation indices
NDVI EVI
Phitsanulok2 Seeding Pearson 0.73 0.45
(sig. 2-tailed) 0.27 0.56
Tillering Pearson -0.09 0.95%*
(sig. 2-tailed) 0.91 0.05
Panicle Pearson 0.03 -0.36
(sig. 2-tailed) 0.97 0.64
Flowering Pearson -1¥* 0.18
(sig. 2-tailed) 0.82
Harvesting Pearson 0.11 -0.47
(sig. 2-tailed) 0.89 0.53
Overall growth Pearson .c .c
(sig. 2-tailed)
RD41 Seeding Pearson 0.33 0.86*
(sig. 2-tailed) 0.53 0.03
Tillering Pearson -0.26 0.18
(sig. 2-tailed) 0.62 0.74
Panicle Pearson -0.33 0.18
(sig. 2-tailed) 0.53 0.74
Flowering Pearson -0.01 -0.52
(sig. 2-tailed) 0.99 0.29
Harvesting Pearson -0.01 0.49
(sig. 2-tailed) 0.99 0.32
Overall growth Pearson -0.04 0.07
(sig. 2-tailed) 0.83 0.71
RD49 Seeding Pearson -0.75 -0.46
(sig. 2-tailed) 0.14 0.43
Tillering Pearson -0.06 0.38
(sig. 2-tailed) 0.92 0.53
Panicle Pearson 0.88 -0.21
(sig. 2-tailed) 0.05 0.74
Flowering Pearson 0.51 0.20
(sig. 2-tailed) 0.39 0.74
Harvesting Pearson -0.44 0.04
(sig. 2-tailed) 0.46 0.95
Overall growth Pearson -0.06 0.02
(sig. 2-tailed) 0.77 0.94

Where *, ** value significant at the 0.05 and 0.01 probability level (2-tailed)

NA No measurement
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Appendix M  Descriptive statistical table based on

Sentinel-2 and Sentinel-1

M.1 Descriptive statistical table based on Sentinel-2

Appendix M

M.1.1 Descriptive statistical table based on Sentinel-2: EVI (seeding stage)

Descriptive Statistics®

Mean Std. Deviation N
Yield 4.9169 .73107 21
EVI .1130 .11939 21
Q. Stage = Seeding
Correlations®
Yield EVI
Pearson Correlation Yield 1.000 .567
EVI .567 1.000
Sig. (1-tailed) Yield . .004
EVI .004 .
N Yield 21 21
EVI 21 21
Q. Stage = Seeding
Variables Entered/Removed®"
Model \Variables Entered Variables Removed |Method
1 EVIc Enter

a. Stage = Seeding

b. Dependent Variable: Yield

c. All requested variables entered.

Model Summary?®

Change Statistics
Adjusted R| Std. Error of | R Square Sig. F
Model| R R Square Square |the Estimate| Change |F Change | dfl |df2| Change
1 .567° 321 .285 .61808 321 8.981 1 |19 .007
a. Stage = Seeding
b. Predictors: (Constant), EVI
ANOVA?*®
Model Sum of Squares df Mean Square F Sig.
1 Regression 3.431 1 3.431 8.981 | .007°¢
Residual 7.258 19 .382
Total 10.689 20
a. Stage = Seeding
b. Dependent Variable: Yield
c. Predictors: (Constant), EVI
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Coefficients®®
Standardize
Unstandardized d 95.0% Confidence
Coefficients |Coefficients Interval for B Correlations
Std. Lower Upper
Model B Error Beta t Sig. Bound Bound Zero-order | Partial | Part
1 | (Constant) | 4.525 | .188 24.083 | .000 4.132 4.918
EVI 3.469 | 1.158 .567 2.997 | .007 1.046 5.892 .567 567 | .567
a. Stage = Seeding
b. Dependent Variable: Yield
M.1.2 Descriptive statistical table based on Sentinel-2: NDVI (panicle stage)
Descriptive Statistics?
Mean | Std. Deviation N
Yield 4.8844 .73429 20
NDVI .6141 .04976 20
a. Stage = Panicle
Correlations?
Yield NDVI
Pearson Correlation |Yield 1.000 373
NDVI 373 1.000
Sig. (1-tailed) Yield . .053
NDVI .053 .
N Yield 20 20
NDVI 20 20
a. Stage= Panicle
Variables Entered/Removed®®
Variables Variables
Model Entered Removed Method
1 NDVI¢ Enter
a. Stage= Panicle
b. Dependent Variable: Yield
c. All requested variables entered.
Model Summary?
Change Statistics
Adjusted R|Std. Error of the|R Square Sig. F
Model R R Square | Square Estimate Change |F Change| dfl | df2 | Change
1 373 .139 .091 .70011 .139 2.900 1 18 .106
a. Stage = Panicle
b. Predictors: (Constant), NDVI
ANOVA?P
Model Sum of Squares df Mean Square F Sig.
1 Regression 1.422 1 1.422 2.900 .106¢
Residual 8.823 18 490
Total 10.244 19

a. Stage= Panicle

b. Dependent Variable: Yield

c. Predictors: (Constant), NDVI
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Coefficients®?

Unstandardized
Coefficients

Standardized
Coefficients

Interval for B

95.0% Confidence

Correlations

Upper Zero-
Model B |Std. Error Beta t Sig. |Lower Bound| Bound order | Partial | Part
1 |(Constant) 1.508 1.989 .758 | .458 -2.670 5.686
NDVI_ 5.497 | 3.228 .373 1.703 | .106 -1.285 12.279 373 373 | 373
a. Stage= Panicle
b. Dependent Variable: Yield
M.2 Descriptive statistical table based on Sentinel-1
Descriptive Statistics®
Mean Std. Deviation N
Yield 4.8436 .79087 22
AscVV/VH .6100 .17449 22
@. Stage = Harvesting
Correlations?
Yield AscVV/VH
Pearson Correlation  |Yield 1.000 .540
AscVV/VH .540 1.000
Sig. (1-tailed) Yield . .005
AscVV/VH .005 .
N Yield 22 22
AscVV/VH 22 22
Q. Stage = Harvesting
Variables Entered/Removed®®
Variables Variables
Model Entered Removed Method
1 AscVV/VH Stepwise (Criteria: Probability-
of-F-to-enter <= .050,
Probability-of-F-to-remove >=
.100).
a. Stage= Harvesting
b. Dependent Variable: Yield
Model Summary?®
Change Statistics
Adjusted R| Std. Error of | R Square F Sig. F
Model R R Square | Square the Estimate | Change |Change | dfl | df2 | Change
1 .540P 291 .256 .68218 291 8.225 1 |20 .010
a. Stage= Harvesting
b. Predictors: (Constant), AscVV/VH
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ANOVA?®
Model Sum of Squares df Mean Square F Sig.
1 Regression 3.828 1 3.828 8.225 .010¢
Residual 9.307 20 465
Total 13.135 21
a. Stage= Harvesting
b. Dependent Variable: Yield
c. Predictors: (Constant), AscVV/VH
Coefficients®®
Unstandardized | Standardized 95.0% Confidence
Coefficients Coefficients Interval for B
Lower Upper
Model B Std. Error Beta t Sig. Bound Bound
1 (Constant) 3.351 .540 6.201 .000 | 2.224 4.478
AscVV/VH 2.447 .853 .540 2.868 | .010 .667 4.226
a. Stage= Harvesting
b. Dependent Variable: Yield
Coefficient Correlations®®
Model AscVV/VH
1 Correlations AscVV/VH 1.000
Covariances AscVV/VH 728

Q. Stage= Harvesting

b. Dependent Variable: Yield
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Glossary of Terms

Glossary of Terms

POlarisation .......ccccuiiiiiiiiee e Process of confining the vibrations of the
magnetic, or electric field, vector of light

or other radiation to one plane

Sigma NoUght ... Scattering coefficient or the
conventional measure of the strength of
radar signals reflects by a distributed
scatter, usually expressed in decibel (dB).
It is normalised dimensionless number,
compares the strength observed to
expect from an area of one square
meter. In general, the value of sigma
nought varies with incidence angle,

wavelength, and polarisation

Vertical Transmit-Horizontal Receive Polarisation (VH).... A mode of radar where the microwave
of the electric field is oriented in the
vertical plane for transmission signal and
where the horizontally polarised electric
field of backscatter energy is received by

radar antenna

Vertical Transmit-Vertical Receive Polarisation (VV)......... A mode of radar polarisation where the
microwave of the electric field is
oriented in the vertical plane for both
signal transmission and reception by

radar antenna
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