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Abstract
Engineered honeycomb lattice materials with high specific strength and stiffness along with the
advantage of programmable direction-dependent mechanical tailorability are being increasingly
adopted for various advanced multifunctional applications. To use these artificial
microstructures with unprecedented mechanical properties in the design of different
application-specific structures, it is essential to investigate the effective elastic moduli and their
dependence on the microstructural geometry and the physics of deformation at the elementary
level. While it is possible to have a wide range of effective mechanical properties based on their
designed microstructural geometry, most of the recent advancements in this field lead to passive
mechanical properties, meaning it is not possible to actively modulate the lattice-level properties
after they are manufactured. Thus the on-demand control of mechanical properties is lacking,
which is crucial for a range of multi-functional applications in advanced structural systems. To
address this issue, we propose a new class of lattice materials wherein the beam-level
multi-physical deformation behavior can be exploited as a function of external stimuli like
magnetic field by considering hard magnetic soft beams. More interestingly, effective property
modulation at the lattice level would be contactless without the necessity of having a complex
network of electrical circuits embedded within the microstructure. We have developed a
semi-analytical model for the nonlinear effective elastic properties of such programmable lattice
materials under large deformation, wherein the mechanical properties can be modulated in an
expanded design space of microstructural geometry and magnetic field. The numerical results
show that the effective properties can be actively modulated as a function of the magnetic field
covering a wide range (including programmable state transition with on-demand positive and
negative values), leading to the behavior of soft polymer to stiff metals in a single lattice
microstructure according to operational demands.
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1. Introduction

Metamaterials are a class of materials with properties that
are not found or are rare in naturally-occurring materials. By
engineering them at the micro-level, we can achieve desired
properties like high specific stiffness or strength at the macro
level. In such materials, the effective properties are char-
acterized by their structural configuration and not by their
intrinsic material properties alone.We canmodulate the global
mechanical properties of mechanical metamaterials by con-
trolling their microstructural geometric parameters, which
can be tuned to present unprecedented novel characteristics
like negative elastic moduli, auxetic characteristics, extreme
multi-physical properties, meta-fluid properties, high crush-
ing resistance, shock absorption characteristics, negative mass
density, etc [1–12]. Lattice-based materials are a class of
metamaterials that have a typical feature of unit cell periodicity
[13–17]. The geometric characteristics of the periodic unit cell
determine the overall mechanical properties of these lattice-
based metamaterials [15, 18]. Such materials can meet vari-
ous application-specific requirements owing to their multi-
physical properties that range over varying length scales (nano
to macro). These engineered materials have drawn the atten-
tion of the scientific community significantly in the recent
past, especially owing to the advancements in additive man-
ufacturing techniques. Metamaterials, when compared to con-
ventional composites, provide a larger design input parameter
space for property modulation, and while achieving more
extreme and multifunctional properties [19–23].

Lattice-based materials, being light and able to exhibit
high stiffness, are used in several lightweight systems like
sandwich structures [24–29]. Further, the lattice-type struc-
tural configurations are found in plenty across different length
scales (including nano and micro) of naturally occurring
matters [30–34]. Recent trends in engineered materials try to
propose intuitive microstructural configurations in a forward
framework, or designs identified through computer simula-
tions such as topology optimization. Anisotropy tailoring for
lattices made up of multiple materials is presented in [35],
where their differing properties are utilized to enhance the
design space beyond the geometry of microstructure only. The
voltage-dependent Young’s moduli of piezo-electric lattice-
based microstructures are shown recently to have values that
vary from positive to negative [36]. The randomness and dis-
order in geometric parameters considering the irregularities
in manufacturing are studied by considering voronoi honey-
combs and through quasi-random configurations [33, 37–41].

The effect of intrinsic stresses in honeycomb lattices is char-
acterized in a recent study [42]. Besides a wide range of
investigations concerning 2D lattices, multiple analyses of 3D
microstructures and cellular foams have recently been reported
[43–46]. On careful examination of the above presented brief
literature review, we find that for periodic lattice structures,
in general, a unit cell-based approach is considered to analyze
the effective mechanical properties [15].

While it is possible to have a wide range of effective mech-
anical properties based on their designed microstructural geo-
metry, most of the recent advancements in this field lead to
passive mechanical properties, meaning it is not possible to
actively modulate the lattice-level properties after they are
manufactured. Thus the on-demand control of mechanical
properties is lacking, which is crucial for a range of multi-
functional applications in advanced structural systems. To
address this issue, we propose a new class of lattice materials
wherein the beam-level multi-physical deformation behavior
can be exploited as a function of external stimuli like magnetic
field by considering hardmagnetic soft (HMS) beams [47, 48].
Since the effective properties of lattices (such as deformation
under different loading conditions, vibration, wave propaga-
tion, buckling, etc) are essentially derived from the beam-level
deformation mechanics, it is possible to control such effect-
ive lattice-level properties actively by the intensity and direc-
tion of magnetic field. More interestingly, effective property
modulation at the lattice level would be contactless without
the necessity of having a complex network of electrical cir-
cuits embedded within the microstructure [49, 50]. The focus
of this work is to investigate the effective nonlinear elastic
properties of HMS beam lattice materials, which is essential to
analyze these active lattices for static, dynamic and instability
characteristics.

HMS materials are a novel class of smart materials that
are obtained by embedding particles of hard magnetic mater-
ials into soft materials [47, 48]. These are named so because
they are soft mechanically, yet hard magnetically. Here the
residual magnetic flux is reoriented using an external magnetic
field. By hard magnetic, it is implied that high-coercivity fer-
romagnetic materials are embedded in soft materials [51–53].
This high coercivity helps them retain high magnetic flux
density. HMS beams can undergo complex large deforma-
tions under various magnetic actuations. These HMS struc-
tures can be printed using additive manufacturing techniques
by using the magnetic actuation field. Different motion shapes
of HMS structures can be realized by varying the magnetic
field, opening the design space in soft robotics, biomedical
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Figure 1. Contactless on-demand modulation of elastic properties in HMS lattice materials. (A) and (B) Typical examples of prospective
lattice-based structures where intelligent design of microstructural geometry can lead to unprecedented active mechanical properties at
macro-scale. (C) A 2D regular honeycomb lattice. (D) A honeycomb unit cell representing the whole 2D lattice structure. (E) HMS
beam-like element representing a cell wall of the unit cell. A HMS beam in both undeformed and deformed configurations under external
magnetic actuation is shown, which includes the coordinate system and geometrical relationship of the beam element. The entire lattice is
formed by a periodic repetition of the unit cells which are formed through a network of HMS beams. Here, we follow an incremental load
step method for analyzing the effective elastic constants of lattice materials. The effect of magnetic actuation is considered in the
deformation characteristics of the elementary beams at the local level, considering both bending and axial deformations. Subsequently, this
multi-physical effect is propagated to the lattice level through analyzing the mechanics of a unit cell in a bottom-up semi-analytical
framework.

devices and flexible electronics [53]. In this article, we concep-
tualize a lattice network of such HMS beams under the com-
bined influence of magnetic field and mechanical loads, where
broadband stiffness modulation can be realized at the global
level. It would permit active modulation of elastic properties
of the honeycomb lattice (leading to a seamless on-demand
conversion of hard and soft material under normal and shear
modes of deformation) by intelligently using the desired resid-
ual magnetic flux density, keeping the material properties,
geometry of microstructure and lattice density unaltered. For
doing so, it is imperative that we have an efficient model which
could determine the effective elastic constants of lattice mater-
ials in terms of the applied magnetic field and far-field mech-
anical forces along with geometry the of microstructure and
intrinsic material properties under normal and shear modes of
lattice-level deformations. Further, nonlinear large deforma-
tion analyses concerning effective elastic properties of lattice
metamaterials are scarce to find in the literature.

In this article, we aim to develop a semi-analytical model
for the nonlinear effective elastic properties of programmable
latticematerials under large deformation, wherein themechan-
ical properties can be modulated in an expanded design space
of microstructural geometry and magnetic field. We will first
develop a numerical model to obtain the nonlinear large deflec-
tion profile of HMS beams under a combined magnetic field
and mechanical load. The compound mechanics of element-
ary beam-level transverse and bending deflections would in
turn be exploited in a semi-analytical unit cell based frame-
work to evaluate the effective elastic moduli of honeycomb
lattice materials (refer to figure 1). Thus we integrate the
beam-level multi-physical deformation mechanics and the lat-
tice geometry to have an expanded design space of active and
passive parameters. In this work, our focus is essentially on

hexagonal lattice materials (refer to figure 1(C)) for demon-
strating the concept of contactless active modulation. While
such hexagonal lattices are directly relevant to obtaining res-
ults for auxetic and non-auxetic configurations along with
other lattices like rhombic and rectangular forms, the proposed
approach of contactless active modulation through HMS beam
networks is generic and it can be extended to a wide range of
two and three-dimensional lattices by considering appropri-
ate unit cells. Hereafter, this paper is structured as, section 2:
the numerical model for the analysis of HMS beams under
combined magnetic field and mechanical load, followed by
the development of a lattice-level semi-analytical framework
for the nonlinear elastic moduli of metamaterials, section 3:
numerical results concerning contactless active modulation of
the elastic moduli along with adequate validation at the beam
and lattice levels, section 4: conclusions and perspective of the
current research.

2. Nonlinear mechanics of HMS beam lattices

In this section, we would first present the beam-level mech-
anics of HMS beams, followed by a unit cell-based analysis
for evaluating lattice-level effective properties. To understand
the mechanics of HMS structures, it is necessary to theoretic-
ally model them. However, the modeling of HMS structures is
a challenge due to the geometric and material nonlinearities.
The geometric nonlinearity arises due to large deformation,
while the magneto-elastic coupling gives rise to material non-
linearity. Numerical simulation seems to be the solution for
predicting the mechanical behaviors of these types of struc-
tures rather than trying to find out closed-form analytical solu-
tions. But even the numerical methods to the likes of FEM
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prove to be time-consuming in the cases of large deformation
coupled multi-physical problems. This necessitates the devel-
opment of an effective theoretical model for HMS structures.
Various efforts have been made in the recent past to develop
a theoretical model for HMS materials. A nonlinear field the-
ory has been developed recently considering the coupling of
magnetic field and finite deformation of HMS materials. The
simulation was conducted using a FE software, the results of
which agreed well with the experimental results [47]. Another
study considered different volume fractions of the hard mag-
neticmaterials and studied themagnetization and shearmoduli
[54]. A magneto-visco-hyperelastic model was developed and
calculations for simple deformations were performed using the
FE method [55]. The dynamic features in HMS beams were
also investigated [56]. Theoretical modeling of HMS beams
considering extreme bending deformations was done and then
solved analytically in a recent study [57].

Though recent studies have tried to understand the mechan-
ics of the HMS structures, very little has been done to develop
a theoretical model for the same without the use of any com-
mercial software. Also as pointed out earlier these simulations
are time-consuming due to the increased iterations owing to
large deformation. The problem increases when dealing with
dynamical parameters. In this section, we present a simple,
effective and efficient theoretical model that accounts for the
complex shape transition of the HMS structures by accom-
modating the exact expression for the curvature of the center-
line. This will be used to model the unit cell of lattice materials
(refer to the bottom-up framework presented in figures 1(A)–
(E)), which will then be used for the evaluation of the five in-
plane elastic constants of HMS hexagonal lattices. First, we
would analyze the local-level deformation mechanics of the
beam-like members accounting for both axial as well as bend-
ing deformation (refer to figure 1(E)). Then, we would con-
sider a unit cell that is made up of such beam elements and
analyze them to obtain the formulations of the five in-plane
elastic constants in semi-analytical form. It is to be noted that
at this point the impact of geometry of lattice microstructure is
incorporated into themetamaterial design (refer to figures 1(C)
and (D)). The effective elastic constants thus derived consid-
ering a unit cell are representative of the effective elastic prop-
erties of the entire lattice (refer to figure 1(D)), which could
then be utilized in the design of various industrial structures
as demonstrated in figures 1(A) and (B).

2.1. Deriving the governing equations for the HMS beam

Based on the requirement of analyzing the lattices under
combined magneto-mechanical loading, we first develop the
deformation physics of HMS beams under the combined
application of magnetic field and mechanical loading. Note
that analytical developments of HMS beams have not been
undertaken under such combined loading in the literature. The
HMS beam is analyzed using the Euler-Bernoulli beam theory,
considering planar deformations. In the proposed theoretical
model, the centerline of the beam may either be extensible or
inextensible. The theoretical model is developed by deriving
the governing equations in terms of the rotation angle, for the

beamwith both external load andmagnetic field. The principle
of minimum potential energy is used to derive the governing
equations. Here the total strain energy U comprises magnetic
potential energy UM and elastic potential energy UE.

Let us consider a HMS beam of length l, having a cross-
sectional area A. The centerline strain is considered to be
small, hence any change in A will be neglected. Let E be the
intrinsic Young’s modulus of the beam and I be the second
moment of inertia. To account for the large deformation of the
beam, its geometric exact nonlinearity needs to be considered.
Thus, the stretch ratio λ and centerline rotation θ̄ are included
in the formulation (refer to figure 1(E)). The axial and trans-
verse displacements of the beam centerline are denoted by ū
and v̄, respectively.

2.1.1. Magnetic potential energy of the HMS beam. Let the
residual magnetic flux density of the beam in the reference
configuration be denoted as Br̄0 and as Br̄ in the current config-
uration. The magnetic field applied externally be denoted by
Bē and the angle that Bē makes with the horizontal line be ᾱ.
The residual magnetic flux density is considered to be constant
in magnitude and to be acting in the longitudinal direction or
along the beam length. The magnetic potential energy per unit
volume of the current configuration [47] is given as:

uM =− 1
µ0
Br̄.Bē, (1)

where µ0 represents the vacuum (or, air) permeability. The
magnetic interaction due to the high residual magnetization
and coercivity of the embedded hard-magnetic particles is cap-
tured by the above equation even for the very large deforma-
tions case. The residual magnetic flux density of the beam in
the current configuration, i.e. Br̄ is given as:

Br̄ = S|Br̄0|
[
cos θ̄ˆ̄i+ sin θ̄ˆ̄j

]
, (2)

Here S takes care of the non-uniform magnetization. Since we
have assumed Br̄0 to be constant and in longitudinal direction
of the beam, so S can be either +1 (along x̄—direction) or −1
(opposite to x̄—direction) and may be considered as a coeffi-
cient. To capture complex deformation shapes of the beam, S
can be designed as a function of the beam length, i.e. S(x̄). The
local beam axes are represented by x̄ and ȳ denoting axial and
lateral directions, respectively. The externally applied mag-
netic field Bē is given as:

Bē = |Bē|
[
cos ᾱ̄̂i+ sin ᾱ̄̂j

]
. (3)

Now we substitute equations (2) and (3) into equation (1)
to get:

uM =− S
µ0

|Br̄0||Bē|cos
(
θ̄− ᾱ

)
. (4)
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The magnetic potential energy of the beam can then be
expressed as:

UM =

ˆ
A

ˆ λl

0
umdsdA

=− A
µ0

ˆ l

0
Sλ|Br̄0||Bē|cos

(
θ̄− ᾱ

)
dx̄.

(5)

Using the relation between strain of the beam centreline ε and
stretch ratio λ, ε= λ− 1, the above equation can be expressed
as:

UM =− A
µ0

ˆ l

0
S(1+ ε) |Br̄0||Bē|cos

(
θ̄− ᾱ

)
d x̄. (6)

2.1.2. Elastic potential energy of the HMS beam. The total
elastic potential energy of the beam, UE consisting of mem-
brane strain energy due to stretch of the beam’s centerline,
Umem and the strain energy due to bending of the beam, Ubend

is given as:

UE = Umem+Ubend

= A
ˆ l

0
Φdx̄+

EI
2

ˆ l

0

(
dθ̄
dx̄

)2

dx̄,
(7)

where Φ denotes the strain energy density function defined in
per unit of the undeformed volume [58].

2.1.3. Priniciple of minimum potential energy. In this subsec-
tion we will derive the governing equations for the HMS beam
considering both externally applied magnetic field and mech-
anical load using the principle of minimum potential energy.
The variation of the magnetic potential energy, UM (refer to
equation (6)) is given as:

∂UM =−

(
A
µ0

ˆ l

0
S|Br̄0||Bē|cos

(
θ̄− ᾱ

)
dx̄

)
∂ε

+

(
A
µ0

ˆ l

0
S(1+ ε) |Br̄0||Bē|sin

(
θ̄− ᾱ

)
dx̄

)
∂θ̄. (8)

Similarly the variation of the elastic potential energy, UE

(refer to equation (7)) is given as:

∂UE = A
ˆ l

0
∂Φdx̄+EI

ˆ l

0

(
dθ̄
dx̄

)(
d
(
∂θ̄
)

dx̄

)
dx̄

=

(
A
ˆ l

0

dΦ
dε

dx̄

)
∂ε+

(
EI

(
dθ̄
dx̄

)∣∣∣∣l
0

−EI
ˆ l

0

(
d2θ̄
dx̄2

)
dx̄

)
∂θ̄.

(9)

The HMS beam is considered to be acted upon by the fol-
lowing external loads namely, a distributed force with p̄(x̄) act-
ing along x̄-direction and q̄(x̄) acting along ȳ-direction, a dis-

tributed moment m̄(x̄) and a concentrated force F⃗= Fx̄ˆ̄i+Fȳˆ̄j
acting on the tip of the beam, i.e. at x̄= l. Note that we have

taken a generalized loading condition for the purpose of beam-
level derivation here, among which some of the components
would be considered as zero during the lattice-level deriva-
tion. The displacement vector at tip of the beam is d⃗= ū̄̂i+ v̄̄̂j.
The variation of the work done by the external forces is given
as:

∂W=

ˆ l

0
p̄∂ūdx̄+

ˆ l

0
q̄∂v̄dx̄+

ˆ l

0
m̄∂θ̄dx̄+ F⃗.∂d⃗

=

ˆ l

0
p̄∂ūdx̄+

ˆ l

0
q̄∂v̄dx̄+

ˆ l

0
m̄∂θ̄dx̄+Fx̄∂ū+Fȳ∂v̄.

(10)

Note that equations (8)–(10) account for virtual displace-
ments of four types, i.e. ∂ū, ∂v̄, ∂θ̄ and ∂ε. In order to
derive the governing equations and the boundary condition of
the beam system, the redundant virtual displacements can be
replaced and thus a unified problem with only two virtual dis-
placements, namely, ∂θ̄ and ∂ε can be setup. According to the
Euler-Bernoulli framework, we can relate the four virtual dis-
placements using two equations (or two constraints) and this
reduces the problem to two virtual displacements (two vari-
ables) which simplifies the problem under consideration. The
geometric relationships between ū, v̄, θ̄ and ε, are given as:

dū
dx̄

= λcos θ̄− 1= (1+ ε)cos θ̄− 1 (11a)

dv̄
dx̄

= λsin θ̄ = (1+ ε)sin θ̄. (11b)

The value of displacements at x̄= 0 are fixed as zero, to
eliminate the effect of rigid body displacement of the system.
The centerline displacements are then given as:

ū=
ˆ x̄

0
(1+ ε)cos θ̄dx̄− x̄ (12a)

v̄=
ˆ x̄

0
(1+ ε)sin θ̄dx̄. (12b)

The variation of equations (12a) and (12b) gives:

∂ū=

(ˆ x̄

0
cos θ̄dx̄

)
∂ε−

(ˆ x̄

0
(1+ ε)sin θ̄dx̄

)
∂θ̄ (13a)

∂v̄=

(ˆ x̄

0
sin θ̄dx̄

)
∂ε+

(ˆ x̄

0
(1+ ε)cos θ̄dx̄

)
∂θ̄. (13b)

Substituting the equations (13a) and (13b) into equation (10)
gives:

∂W

=

(´ l
0 p̄
(´ x̄

0 cos θ̄dx̄
)
dx̄+

´ l
0 q̄
(´ x̄

0 sin θ̄dx̄
)
dx̄

+Fx̄
´ l
0 cos θ̄dx̄+Fȳ

´ l
0 sin θ̄dx̄

)
∂ε

−

(´ l
0 p̄
(´ x̄

0 (1+ ε)sin θ̄dx̄
)
dx̄−

´ l
0 q̄
(´ x̄

0 (1+ ε)cos θ̄dx̄
)
dx̄

−
´ l
0 m̄dx̄+Fx̄

´ l
0 (1+ ε)sin θ̄dx̄−Fȳ

´ l
0 (1+ ε)cos θ̄dx̄

)
∂θ̄.

(14)
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Note that the above equation is expressed in terms of only two
virtual displacements, ∂ε and ∂θ̄. Now using the following
integral property [59]:

ˆ l

0
g(x̄)

(ˆ x̄

0
f(x̄)∂θ̄dx̄

)
dx̄=

ˆ l

0

(ˆ l

x̄
g(x̄)dx̄

)
f(x̄)∂θ̄dx̄,

(15)
the equation (14) can be rewritten as:

∂W

=

(´ l
0

(´ l
x̄ p̄dx̄

)
cos θ̄dx̄+

´ l
0

(´ l
x̄ q̄dx̄

)
sin θ̄dx̄

+Fx̄
´ l
0 cos θ̄dx̄+Fȳ

´ l
0 sin θ̄dx̄

)
∂ε

−

(´ l
0

(´ l
x̄ p̄dx̄

)
(1+ ε)sin θ̄dx̄−

´ l
0

(´ l
x̄ q̄dx̄

)
(1+ ε)cos θ̄dx̄

−
´ l
0 m̄dx̄+Fx̄

´ l
0 (1+ ε)sin θ̄dx̄−Fȳ

´ l
0 (1+ ε)cos θ̄dx̄

)
∂θ̄.

(16)

The principle of minimum potential energy gives:

∂ (U−W) = 0 (17)

here U= UM+UE. Therefore the above equation becomes:

∂ (UM+UE−W) = 0

∂UM+ ∂UE− ∂W= 0
(18)

Inserting equations (8), (9) and (16) into equation (18) gives
two governing equations, one involving ∂ε and the other
involving ∂θ̄. ∂ε:

A

(
σN−

S
µ0

|Br̄0||Bē|cos
(
θ̄− ᾱ

))
−

(ˆ l

x̄
p̄dx̄

)
cos θ̄

−

(ˆ l

x̄
q̄dx̄

)
sin θ̄−Fx̄ cos θ̄−Fȳ sin θ̄ = 0. (19)

∂θ̄:

EI

(
d2θ̄
dx̄2

)
− AS

µ0
(1+ ε) |Br̄0||Bē|sin

(
θ̄− ᾱ

)
−

(ˆ l

x̄
p̄dx̄

)
(1+ ε)sin θ̄+

(ˆ l

x̄
q̄dx̄

)
(1+ ε)cos θ̄

+ m̄−Fx̄ (1+ ε)sin θ̄+Fȳ (1+ ε)cos θ̄ = 0,
(20)

with the following boundary conditions (adopted based on
lattice-level periodicity):

θ̄ = 0 at x̄= 0 and x̄= l, (21)

here σN =

(
dΦ
dε

)
denotes the nominal stress. To simplify the

governing equations and solve the beam model, we will intro-
duce the following non-dimensional quantities that will make

the results more general:

ξ̄ =
x̄
l
; ζ̄ =

ū
l
; η̄ =

v̄
l
; Π =

Al2

I
; B=

|Br̄0||Bē|Π
Eµ0

;

P=
p̄l3

EI
; Q=

q̄l3

EI
; M̄=

m̄l2

EI
; F̄x̄ =

Fx̄l2

EI
;

F̄ȳ =
Fȳl2

EI
; σ̄N =

σN
E

=

dΦ
dε
E

(22)

Equations (19) and (20), after non-dimensionalization
using parameters of equation (22), are thus expressed as:

Aσ̄N−BScos
(
θ̄− ᾱ

)
−

(ˆ 1

ξ̄

Pdξ̄

)
cos θ̄

−

(ˆ 1

ξ̄

Q̄dξ̄

)
sin θ̄− F̄x̄ cos θ̄− F̄ȳ sin θ̄ = 0,

(23)

and(
d2θ̄

dξ̄2

)
−BS(1+ ε)sin

(
θ̄− ᾱ

)
−

(ˆ 1

ξ̄

P̄dξ̄

)
(1+ ε)sin θ̄

+

(ˆ 1

ξ̄

Q̄dξ̄

)
(1+ ε)cos θ̄+ M̄− F̄x̄ (1+ ε)sin θ̄

+ F̄ȳ (1+ ε)cos θ̄ = 0.
(24)

2.1.4. Inextensible HMS beam model. For an inextens-
ible beam, the centerline strain is zero. Thus the governing
equation for an inextensible HMS beammodel can be obtained
by putting ε= 0 in equation (24) (while the equation (23) can
be ignored since the variation of centerline strain is not mean-
ingful for inextensible beams):(

d2θ̄

dξ̄2

)
−BSsin

(
θ̄− ᾱ

)
−

(ˆ 1

ξ̄

P̄dξ̄

)
sin θ̄

+

(ˆ 1

ξ̄

Q̄dξ̄

)
cos θ̄+ M̄− F̄x̄ sin θ̄+ F̄ȳ cos θ̄ = 0

(25)

2.1.5. Solving the coupled set of equations. The
equations (23) and (24) are coupled equations where the
first equation is a non-linear equation whereas the second
equation is a second-order differential equation. This non-
linearity in the equations arises from the inherent geometric
and material non-linearities due to the beam curvature and
the material properties respectively. Previously, the Galerkin
method has been used by effectively discretizing the infinite
dimensional beam [60, 61]. This simplifies the complex set of
coupled non-linear equations into two sets of a linear system
of equations by choosing a base function set that is complete.
This method proves to be more complicated to solve when the
current generic beam is considered involving both mechanical
and magnetic loading. Hence, we deploy an intuitive method
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that can give us both ε(x̄) and θ̄(x̄) from the non-linear set of
governing equations, as discussed in the following subsection.

2.1.6. Numerical model for solving the coupled differential
equations. The two governing equations can be solved using
the boundary conditions from equation (21) to get θ̄(x̄). To
obtain ε(x̄) from the coupled equations we generally need two
more boundary conditions resulting from the application of the
external loads; but in our approach, we use an intuitive numer-
ical method by which we can obtain the function ε(x̄) without
the necessity of the two boundary conditions resulting from
the external loads.

In the analyses of HMS beams, we generally have an idea
of the range of the values that ε can lie within. This is what we
mainly exploit in our approach. The ‘inextensibility assump-
tion’ as discussed by [60] evaluates the maximum force that
can be applied is 500 N, which stems from the fact that they
consider a maximum ε value 0.05. Beyond this the assumption
becomes invalid. Since all our analyses are based on the mag-
nitude of forces well within the range of 100 N, we consider a
broad range of ε= [0.00004,0.01].

We follow the following steps in solving the governing
equations. Firstly, we split the governing equations in (23)
and (24) into a primary and a secondary equations. The dif-
ferential equation in equation (24) serves as our ‘Primary
equation’. We solve this equation for orderly increasing val-
ues of ε to get a corresponding θ̄ vs ξ̄. The non-linear equation
in (23) serves as our ‘Secondary equation’. Since we have a
coupled set of equations the result from our Primary equation
must satisfy the non-linear Secondary equation. Subsequently,
we iterate over 100 values in the range [0,1] of ξ̄. This ismainly
done to get a corresponding mapping from ξ̄ to [θ̄ and ε]
for all the iterations and thus obtain a very good estimate of
the functions [θ̄(ξ̄) and ε(ξ̄)].

For each such value of ξ̄, we then iterate over a range of val-
ues of ε (preferably 100 values) and obtain the corresponding
data of θ̄ vs ξ̄ for all these iterations by solving the Primary
equation using ‘bvp4c’ function in MATLAB for solv-
ing boundary value problems (with a rotationally restrained
boundary condition at both ends; refer to equation (21). From
the θ̄ vs ξ̄ data we obtain the value of θ̄ for the current itera-
tion’s ξ̄ and then retain the value. Then, during each of these
iterations, we calculate the value of the left-hand side of the
Primary equation and then find the ε value which minimizes
the left-hand side of the Secondary equation. This gives us a
value for both θ̄ and ε for each iteration over ξ̄s in [0,1]. Thus
we now obtain the functional mapping using numerical data
from ξ̄ to both θ̄ and ε.

For analyzing hexagonal lattices maintaining unit cell level
periodic boundary conditions, we need to analyze beams with
one end fixed and the other end rotationally restrained con-
dition, while applying a transverse point load at the rotation-
ally restrained end and a magnetic field in any arbitrary ori-
entation. A computational framework of the beam with this
boundary and loading condition is sufficient for the subsequent
lattice-level analysis (in-plane) for evaluating the two Young’s

moduli, two Poisson’s ratios and shear modulus. In the further
analysis, since our focus is solely on the magnetic field and
concentrated load, we set P̄= Q̄= M̄= 0 and σ̄N = ε.

2.2. Effective in-plane elastic properties of active hexagonal
lattices

The effective mechanical properties of the proposed active
lattice-based material are defined as a function of the unit
cell geometry, intrinsic material properties of the beam-like
members (including the multi-physical properties of the hard
magnetic particles) and applied magnetic field. The lattice
here is conceived as a periodic beam network. Since the
deformation physics of the constituting beams is active in
nature and depends on the applied magnetic field, the global
deformation behavior of the lattice becomes a function of
the applied magnetic field. Subsequently, the effective elastic
properties of the lattice can be actively modulated as a func-
tion of the magnetic field and applied external mechanical
stress. Note that since we consider large nonlinear deform-
ation of the lattices, the effective elastic properties become
dependent on the lattice-level externally applied remote stress.
The active component in the proposed lattice metamater-
ial can be controlled through the intensity and direction of
magnetic fields, while the influence of magnetic fields can
be accentuated based on the distribution and orientation of
the hard magnetic particles within the beam-like members.
In this article, we consider an external magnetic field actu-
ation acting in direction-2 of the lattice (refer to figure 2),
where beams have uniformly distributed hard magnetic
particles.

In this section, the deflection values at the beam-level
obtained using the numerical model (as described in the pre-
ceding subsection) are used to further evaluate the homogen-
ized effective elastic properties (E1,E2, ν12, ν21 andG12) at the
lattice level, considering a unit cell-based approach. To take
care of the effect of large deformation analysis, we consider
incremental geometry updation at the unit cell level [62]. The
initial configuration S0 of hexagonal honeycomb is considered
to be no-load configuration having load step dependent cell
walls of length l0s and inclination angle θ0 (refer to figures 2(A)
and 3(A)). At ith load step, in the deformed configuration Si,
the load step dependent length and inclination angle of the cell
walls become lis and θ

i, respectively. Note that we consider the
width b and thickness t of all cell walls to be independent of
the load step (refer to figures 2(B) and (C)).

2.2.1. Longitudinal young’s modulus E1. To derive the non-
linear longitudinal Young’s modulus, we consider a uniform
incremental compressive stress field σi1(= σi−1

1 +∆σi1) being
applied to the unit cell along direction-1 (i.e. in the longitud-
inal direction). This stress produces a force Pi that acts at the
beam end points (refer to figure 2(D)). The equivalent force Pi
acting on the beam end can be expressed as:

Pi = σi1b(h+ li−1
s sinθi−1). (26)
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Figure 2. Mechanics of unit cells under the coupled effect of normal mechanical stress and magnetic field. (A) Undeformed honeycomb at
initial configuration S0, with ferromagnetic materials embedded inside. (B) Deformed configuration of the honeycomb under the stress field
σ1. (C) Deformed configuration of the honeycomb under the stress field σ2. (D) Free-body diagram of a HMS beam element under the stress
field σ1 acting along the longitudinal direction. The longitudinal Young’s modulus E1 and the Poisson’s ratio ν12 are derived using this
configuration. (E) Free-body diagram of a HMS beam element under the stress field σ2 acting along the lateral direction. The longitudinal
Young’s modulus E2 and the Poisson’s ratio ν21 are derived using this configuration. Note that the vertical cell walls remain unaffected by
the magnetic field actuation in all configurations and it is independent of the load step.

8



Smart Mater. Struct. 32 (2023) 055021 P Sinha and T Mukhopadhyay

We substitute this force and the externally applied mag-
netic flux density B (non-dimensional quantity representing
the magnetic actuation) in the governing equations (refer to
equations (23) and (24)), which are then solved using the
above described numerical model to get axial deformation δix
and transverse deformation δiy at the tip of the beam under
the influence of both B and Pi. The boundary condition of the
beams is considered as one end fixed and the other end rota-
tionally restrained. The moment Mi that bends the cell wall
(refer figure 2(D)) is given as:

Mi =
Pi sinθ0li−1

x +Pi cosθ0δi−1
y

2
, (27)

where lix and l
i
s are related by:

lis =
√
(lix)

2
+
(
δiy
)2

(28)

Total deflection in direction −1 is given as:

δi1 = δiy sinθ
0 + δix cosθ

0. (29)

Strain along the direction of σi1 is given as:

εi1 = δi1/l
0
s cosθ

0. (30)

Note that we calculate the strain with respect to the refer-
ence configuration S0. Now the longitudinal Young’s modulus
can be expressed as (corresponding to ith increment):

E1 =
σi1
εi1

=
l0s cosθ

0σi1
δiy sinθ0 + δix cosθ0

. (31)

2.2.2. Poisson’s ratio ν12. To obtain Poisson’s ratio ν12, we
calculate the strain in direction 2 resulting from the stress σi1
acting along the direction-1 as shown in figure 2(D). The total
deflection in direction-2 (δ2) is obtained as:

δi2 = δiy cosθ
0 − δix sinθ

0. (32)

Now, the total strain along direction-2 is given as:

− εi2 =
δi2

h+ l0s sinθ0
. (33)

From the equations (30) and (33), the Poisson’s ratio ν12 is
given as:

ν12 =−εi2
εi1

=
l0s cosθ

0
(
δiy cosθ

0 − δix sinθ
0
)

(h+ l0s sinθ0)
(
δiy sinθ0 + δix cosθ0

) . (34)

2.2.3. Transverse Young’s modulus E2. To obtain the non-
linear transverse Young’s modulus E2, we consider a uni-
form incremental compressive stress field σi2(= σi−1

2 +∆σi2)
in direction-2 being applied on the unit cell. This results in a
vertical force W i at the end points (refer to figure 2(E)). W i is
expressed as:

Wi = σi2bl
i−1
s cosθi−1. (35)

We substitute this force and the externally applied mag-
netic flux density B in the governing equations (refer to
equations (23) and (24)), which are then solved using the
above described numerical model to get axial deformation δxi
and transverse deformation δyi at the tip of the beam under the
influence of both Bē and W i. The boundary condition of the
beams is considered as one end fixed and the other end rota-
tionally restrained. The total lateral force (acting in direction-
2) at point O is 2Wi, accounting for the axial deformation of
the vertical member OC. The moment Mi obtained from the
free body diagram in figure 2(E) is given as:

Mi =
W i cosθ0li−1

x +W i sinθ0δi−1
y

2
. (36)

Total deflection, therefore, in direction-2 is given as:

δi2 = δiy cosθ
0 + δix sinθ

0 +
2hl0s cosθ

0σi2
tE

. (37)

The strain in direction-2 can be expressed as:

εi2 =
δi2

h+ l0s sinθ0
. (38)

Thus, transverse Young’s modulus acting along direction-2
(i.e. the transverse direction) corresponding to the ith incre-
ment is given as:

E2 =
σi2
εi2

=

(
h+ l0s sinθ

0
)
σi2

δiy cosθ0 + δix sinθ0 +
2hl0s cosθ

0σi2
tE

. (39)

2.2.4. Poisson’s ratio ν21. For quantifying the Poisson’s
ratio ν21, we need to obtain the strain in direction 1, resulting
from the stress applied along the direction-2. The deformation
along direction-1 (i.e. in the longitudinal direction) due to σi2
is given as (refer to figure 2(E)):

δi1 = δiy sinθ
0 − δix cosθ

0. (40)

Thus, strain due to the above calculated deflection in direction-
1 can then be given as:

− εi1 =
δi1

l0s cosθ0
. (41)

From the equations (38) and (41), the Poisson’s ratio ν21 can
be expressed as:

ν21 =−εi1
εi2

=

(
h+ l0s sinθ

0
)(

δiy sinθ
0 − δix cosθ

0
)

l0s cosθ0
(
δiy cosθ0 + δix sinθ0 +

2hl0s cosθ
0σi2

tE

) .

(42)
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Figure 3. Mechanics of unit cells under the coupled effect of shear stress and magnetic field. (A) Undeformed honeycomb at initial
configuration S0, with ferromagnetic materials embedded inside. (B) Deformed configuration of the honeycomb under the shear stress
field τ . (C) Free-body diagram of a vertical cell wall of the honeycomb under the stress (shear) field τ . (D) Free-body diagram of the slant
cell walls (1 and 2) of the honeycomb under the stress field τ . Both these configurations (C and D) are used for the derivation of shear
modulus G12.

2.2.5. Shear modulus G12. To derive of the shear modu-
lus G12, we consider the shear strain arising from the bend-
ing deformations as well as that due to axial deformations.
For the case of shear modulus, the vertical cell walls are also
considered to be load step dependent. In the initial config-
uration S0 of hexagonal honeycomb, the vertical cell wall is
considered to have length h0s while the slant cell walls have
length l0s and inclination angle is θ0 (refer to figure 3(A)).
At ith load step, in the deformed configuration Si (refer to
figure 3(B)), the load step dependent length of the vertical cell
wall becomes his and that of slant cell walls and their inclin-
ation angle become lis and θi, respectively. The deformation
occurs under the effect of anti-clockwise mode of incremental
shear stress τ i(= τ i−1 +∆τ i), as considered in the current
analysis (note that the shear moduli under a given magnetic
field would be same for clock-wise and anti-clockwise modes
for the current scenario). This shear stress field produces forces
Fi1 and Fi2 in the slant members, which are given as (refer to
figure 3(D)):

Fi1 = 2τ ibli−1
s cosθi−1 (43a)

Fi2 = τ ib
(
hi−1
s + li−1

s sinθi−1
)
. (43b)

The force produced in the vertical cell member is given as
(refer to figure 3(C)):

Fiv = Fi1 = 2τ ibli−1
s cosθi−1. (44)

The moment Mi
v generated in the vertical member at both the

ends (refer to figure 3(C)) is given as:

Mi
v =

Fi1h
i−1
v

2
. (45)

No axial force is produced in the vertical cell wall under the
applied shear stress. This moment Mv gets distributed in the
two slant members. Note that the two slant members deform
differently depending on the external magnetic force B. At
certain portion of a particular slant member, B acts along the
deformation caused due to mechanical stress and in other por-
tion it acts in opposite direction to the applied stress result-
ing in different deformation of the two slant members. Thus
the moment Mv does not get distributed equally on the two
slant cell walls. The moment generated on slant member 1 is
denoted by Mi

s1 while that on the slant member 2 is Mi
s2 (refer

to figure 3(D)). The sum of the two moments is equal to Mv,
i.e. Mv =Mi

s1 +Mi
s2 . Thus we see that the externally applied

10



Smart Mater. Struct. 32 (2023) 055021 P Sinha and T Mukhopadhyay

magnetic flux density B causes different deformation of the
slant members making it an asymmetric problem. The force
Fi1 gets distributed on both the slant members as Fi1a and Fi1b
such thatFi1 = Fi1a +Fi1b . Note that these forces act in conjunc-
tion with the externally applied magnetic flux density B. We
use the components of these forces (Fi1a , F

i
1b and F

i
2) acting on

the slant members along the axial and transverse directions.
Using these external loads the governing equations (refer to
equations (23) and (24)) are solved based on the numerical
model discussed previously. The numerical model gives the
tip deflections, namely, transverse deflection δiv of the vertical
member, axial deflections δix1 , δ

i
x2 and transverse deflections

δiy1 , δ
i
y2 of the slant members 1 and 2, respectively. The total

shear strain γit arising under the incremental shear stress τ i and
B comprises of the shear strain of vertical cell wall γiv and that
of the slant cell walls γis. The shear deflection of the vertical
cell wall arises due to the transverse deflection δiv of the ver-
tical cell wall and its rotation ϕi, which arises from the bending
deformations δiy1 and δiy2 of the slant cell walls. For our ana-
lysis, we find the individual values of Fi1a and F

i
1b numerically

so that Fi1 = Fi1a +Fi1b along with satisfying the other compat-
ibility condition pertaining to the rotation of the slant members
1 and 2 and vertical member. The rotation of the vertical cell
wall and that of the slant members will be same to maintain
the integrity of the structure, i.e. ϕi = ϕi1 = ϕi2. Here ϕi1 and
ϕi2 are the rotations of the slant members, which are given as:

ϕi1 = tan−1
(
δiy1/l

i
x

)
andϕi2 = tan−1

(
δiy2/l

i
x

)
, (46)

where lix and l
i
s are related by:

lis =

√
(lix)

2
+
(
δiy1(/2)

)2
. (47)

Thus the shear strain γiv of the vertical cell wall in the diretion
of applied incremental shear stress τ i is given as:

γiv =
ϕih0s + δiv

h0s + l0s sinθ0
. (48)

The shear strain γis of the slant cell wall in the direction of
applied incremental shear stress τ i is given as:

γis =
δix1 sinθ

0 + δix2 sinθ
0

l0s cosθ0
+

δix1 cosθ
0 + δix2 cosθ

0

h0s + l0s sinθ0
. (49)

The total shear strain γit is therefore given by:

γit = γiv+ γis =
ϕih0s + δiv+ δix1 cosθ

0 + δix2 cosθ
0

h0s + l0s sinθ0

+
δix1 sinθ

0 + δix2 sinθ
0

l0s cosθ0
. (50)

The shear modulus G12 can, therefore, be expressed as:

G12 =
τ i

γit
=

τ i

ϕih0s + δiv + δix1 cosθ
0 + δix2 cosθ

0

h0s + l0s sinθ0
+

δix1 sinθ
0 + δix2 sinθ

0

l0s cosθ0

.

(51)

Note that in this analysis, we have considered anticlockwise
shear stress. When the shear stress acts in the clockwise sense,
the slant members 1 and 2 behave opposite to the present anti-
clockwise shear case, but the total shear strain under a specific
value of shear stress remains the same. Thus the shear mod-
ulus is same in both cases. This is unlike the case for E1, E2,
ν12 and ν21 which change under tensile and compressive stress
fields.

The expressions of five in-plane effective elastic moduli are
presented in equations (31), (34), (39), (42) and (51). A
careful consideration of these equations would reveal that the
elastic moduli depend on different deflection components and
the applied far-field stress. The deflection components further
depend on the applied far-field stress (mechanical loading) and
magnetic field. Thus the effective elastic properties under a
certain value of applied stress are functions of the magnetic
field, leading to an on-demand active modulation capability.

2.3. Elastic moduli considering only the bending deformation

In the preceding subsection, we have presented the generic
framework for evaluating the nonlinear elastic properties con-
sidering both axial and transverse deflections of the beam-like
elements. The five in-plane elastic moduli, considering only
the bending deformation (ignoring the axial deformation part),
i.e., δix = 0, based on the previously derived equations (refer
equations (31), (34), (39), (42), (51)) lead to:

E1 =
l0s cosθ

0σi1
δiy sinθ0

(52a)

ν12 =
l0s cos

2 θ0

(h+ l0s sinθ0)sinθ0
(52b)

E2 =

(
h+ l0s sinθ

0
)
σi2

δiy cosθ0
(52c)

ν21 =

(
h+ l0s sinθ

0
)
sinθ0

l0s cos2 θ0
(52d)

G12 =
τ i

ϕih0s + δiv
h0s + l0s sinθ0

. (52e)

The above expressions are useful in the case of axially rigid
beams, where the axial deformation can be neglected because
of dominant bending deformation [15]. So the axial deform-
ation in these structures can be neglected, which in our case
will lead to low-density thin-walled honeycombs. It is inter-
esting to note that the Poisson’s ratios (ν12 and ν21) for such
lightweight honeycomb lattices are independent of the external
loads. When the beam-like cell walls are assumed to be axially
rigid (i.e. the axial deformations are neglected), we find that
the Poisson’s ratios are dependent only on the geometry of the
microstructure. These observations agree with those available
in literature [36, 63, 64], in which the impact of other multi-
physical behaviors is considered.
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Figure 4. Numerical validation for a nonlinear beam element with only mechanical load and no magnetic flux density. (A) Comparison of
the deformed configurations according to the inextensible and extensible beam models when α= π/4, with the reference literature [60].
(B) Comparison of the deformed configurations according to the inextensible and extensible beam models when α= π/2, with the
reference literature [60]. (C) Comparison of the rotation angle according to the inextensible and extensible beam models when α= π/2,
with the reference literature [60]. (D) Comparison of the strain for the extensible beam model when α= π/2, with the reference literature
[60]. Here C and α, as used in the reference literature, are normalized force at the tip of the cantilevered beam and the angle between the
force direction and the local beam axis, respectively. (E) Comparison of displacement field using the numerical model with the reference
literature considering both end rotationally restrained boundary condition (as necessary for the current unit cell level analysis) [62].

3. Results and discussion

In this section wewill present numerical results to characterize
the effect of magnetic field intensity comprehensively follow-
ing the numerical model proposed in the section above. Before
moving forward with the numerical investigation, the valid-
ity of the numerical model for a HMS beam under the effect
of both mechanical load and magnetic flux density (refer to
section 2.1.6), needs to be established. The validated numer-
ical model is then used for the quantification of the elastic
moduli of lattice-based structure. At the lattice level, we first
investigate the nonlinear effective elastic properties without
considering any magnetic field and compare the results with
available literature. It provides a validation of the proposed
nonlinear large deformation framework at the lattice level.
After establishing adequate validation both at the beam level
and lattice level, we demonstrate the on-demand modulation
of effective elastic properties of the lattice metamaterial as a
function of the magnetic field.

For beam level validation under magnetic field and mech-
anical load, we have compared the results obtained from the
numerical model with those available in the literature indi-
vidually for the two cases. Figure 4 shows that the results of
the current analysis considering only mechanical load (and no
external magnetic intensity) are close to those of reference lit-
erature, affirming the validity of the numerical model. Note
that we have considered different magnitudes of loading and
boundary conditions for this purpose, including the specific
boundary condition necessary (one end fixed and the other end
rotationally restrained, refer to figure 4(E)) for the lattice-level
analysis. Figure 5 shows that the results of the current analysis
considering only external magnetic intensity (and no mechan-
ical load) are also in good agreement with those of reference
literature, ascertaining the validity of the numerical model
further (considering both deformation and rotational angles).
Beam-level validations of the nonlinear deformation under
both mechanical and magnetic loading ensure that the beam
model is accurate enough for adopting it to the subsequent
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Figure 5. Numerical validation for a HMS beam element with only external magnetic flux density and no external mechanical load.
(A) Comparison of the n-Shaped deformation of the HMS beam when B= 30 using the numerical model, with the reference literature [61].
(B) Comparison of the n-Shaped deformation of the HMS beam when B= 60 using the numerical model, with the reference literature [61].
(C) Comparison of the n-Shaped deformation of the HMS beam when B= 100 using the numerical model, with the reference literature [61].
(D) Comparison of the Ω-Shaped deformation of the HMS beam when B= 60 using the numerical model, with the reference literature [61].
(E) Comparison of the Ω-Shaped deformation of the HMS beam when B= 100 using the numerical model, with the reference literature
[61]. (F) Comparison of the Ω-Shaped deformation of the HMS beam when B= 200 using the numerical model, with the reference
literature [61]. The inset figures show the variation of rotation angle using the numerical model for each shape of deformation, obtained
based on the current computational model.

lattice level analysis (note that the unit cell level mechanics
here is primarily dependent on the beam level deformation,
which we have extensively validated considering nonlinear-
ity, mechanical load, magnetic field and appropriate boundary
condition).

After having beam-level validations considering both
mechanical load and magnetic field, we focus on lattice-level
validation of the nonlinear elastic properties. Figure 6 presents
the comparison of results for a hexagonal lattice using the res-
ults obtained from the proposed numerical model with those
available in the literature. For all the nonlinear elastic proper-
ties, we find that the results match quite well for different val-
ues of far-field mechanical stress under the normal and shear
modes. The numerical results converge to the widely accep-
ted closed-form solutions [15] in case of small deformation.
Thus, figures 4–6 validate the proposed numerical framework
extensively at two levels, one at the beam level and the other
at the lattice level, considering nonlinear large deformation
under mechanical load and magnetic field. In the following
paragraphs, we first investigate the nonlinear elastic properties

of lattices without any magnetic field, followed by exploring
the effect of magnetic field for active on-demand modulation
of these effective elastic properties. The results are presented
both for compressive and tensile far-field stresses separately
(note that the shear modulus remains unaltered for clockwise
and anti-clockwise directions).

Figures 7 and 8 investigate the nonlinear variation of five
in-plane elastic moduli under large deformation due to only
mechanical stresses (no external magnetic field). The res-
ults are presented considering both auxetic and non-auxetic
microstructures considering different cell angles. The effect
of beam-level axial deformation is studied by comparing the
elastic moduli calculated based on only bending deformation
and the combined effect of bending and axial deformation.
Significant variation of the elastic moduli at higher values of
applied far-field stresses affirms that it is necessary to incor-
porate the effect of nonlinearity due to the large deformation of
beams and subsequent incremental change in the unit cell geo-
metry. The Poisson’s ratios are not affected by applied stress
when only bending deformation is considered, while these
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Figure 6. Numerical validation for nonlinear lattices with only mechanical load (compressive far-field lattice-level stress) and no external
magnetic flux density. (A) Comparison of the non-dimensionalized nonlinear longitudinal Young’s modulus Ē1 using the numerical model,
with reference literature. (B) Comparison of the non-dimensionalized nonlinear transverse Young’s modulus Ē2 using the numerical model,
with reference literature. (C) Comparison of the nonlinear Poisson’s ratio, ν12,using the numerical model with reference literature.
(D) Comparison of the nonlinear Poisson’s ratio, ν21, using the numerical model with reference literature. (E) Comparison of the
non-dimensionalized nonlinear transverse Shear Modulus Ḡ12 using the numerical model, with reference literature. The bar chart shown in
the figures presents the difference of values when compared to the reference literature at different stress values. G&A refers to the reference
literature [15], G&M refers to the reference literature [62] and P&G&M refers to the reference literature [65]. The cell angles considered in
this analysis are based on the availability of results from literature.

become stress-dependent when the coupled effect of bend-
ing and axial deformations are accounted. In the following
paragraphs, we would explore the influence of external mag-
netic fields in addition to the far-field mechanical stresses. The
combined effect of transverse bending and axial deformation
is considered (along with a comparative perspective of the
scenario when only beam-level bending deformations are con-
sidered) at the beam level for evaluating the effective elastic
properties of the lattices under the application of both far-field
mechanical stresses and magnetic fields. Note that, for act-
ive effective elastic property modulation, we have applied the
magnetic field only vertically as shown in figures 2 and 3. In
this section, we will present the results considering two cases
for better clarity in understanding the multi-physical beha-
vior, one mechanical load dominated and the other magnetic
field intensity B dominated. For the former case, we take com-
paratively lesser values of B (ranging from −0.1 to 0.1) and
higher for the latter (ranging from −10 to 10). In all the ana-

lyses, geometric parameters h,
h
l0s

and
t
l0s

are considered as 3.67

mm, 2 and 10−2 respectively. Note that these microstructural

parameters can also be varied (/designed) for expanding the
range of active property modulation in future studies.

Figure 9 presents the variation in elastic moduli E1, E2 and
G12 of hexagonal HMS lattices in mechanical load-dominated
case with externally applied stress, considering both the bend-
ing and axial deformations at beam level. The right vertical
axis of these plots presents the only bending deformation case,
while the left vertical axis presents the combined bending and
axial deformation. Note that the three elastic moduli are shown
considering non-dimensional forms asE1/E,E2/E andG12/E,
where E represents the intrinsic equivalent Young’s modulus
of the constituting beam members making up the unit cell.
From the figures, we find that initially the elastic moduli both
for only bending and for bending and axial deformation case
match with each other while they tend to differ with increasing
applied stress values. This is because as the stress increases,
the axial deformation component of the total deformation,
which is initially very small also increases significantly. As the
axial deformation increases, the elastic moduli decrease when
compared to only the bending case (refer to equations (31),
(39) and (51)). It may be noted that though the combined
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Figure 7. Variation of nonlinear Young’s moduli and in-plane shear modulus for hexagonal lattices acted upon by mechanical load only
(compressive far-field lattice-level stress). (A) Variation of non-dimensionalized longitudinal Young’s modulus, E1/E, with the compressive
stress field, σ1, for the auxetic case (θ =−30◦) on the left axis and for the non-auxetic case (θ = 30◦) on the right axis. (B) Variation of
non-dimensionalized longitudinal Young’s modulus, E1/E, with the compressive stress field, σ1, for the auxetic case (θ =−45◦) on the left
axis and for the non-auxetic case (θ = 45◦) on the right axis. (C) Variation of non-dimensionalized longitudinal Young’s modulus, E1/E,
with the compressive stress field, σ1, for the auxetic case (θ =−60◦) on the left axis and for the non-auxetic case (θ = 60◦) on the right
axis. (D) Variation of non-dimensionalized transverse Young’s modulus, E2/E, with the compressive stress field, σ2, for the auxetic case
(θ =−30◦) on the left axis and for the non-auxetic case (θ = 30◦) on the right axis. (E) Variation of non-dimensionalized transverse
Young’s modulus, E2/E, with the compressive stress field, σ2, for the auxetic case (θ =−45◦) on the left axis and for the non-auxetic case
(θ = 45◦) on the right axis. (F) Variation of non-dimensionalized transverse Young’s modulus, E2/E, with the compressive stress field, σ2,
for the auxetic case (θ =−60◦) on the left axis and for the non-auxetic case (θ = 60◦) on the right axis. (G) Variation of
non-dimensionalized shear modulus, G12/E, with the shear stress field, τ , for the auxetic case (θ =−30◦) on the left axis and for the
non-auxetic case (θ = 30◦) on the right axis. (H) Variation of non-dimensionalized Shear modulus, G12/E, with the shear stress field, τ , for
the auxetic case (θ =−45◦) on the left axis and for the non-auxetic case (θ = 45◦) on the right axis. (I) Variation of non-dimensionalized
Shear modulus, G12/E, with the shear stress field, τ , for the auxetic case (θ =−60◦) on the left axis and for the non-auxetic case (θ = 60◦)
on the right axis. Here we have presented the results considering both bending and axial deformation and only bending deformation (B&A
denotes the case considering both bending and axial deformations while B represents the case considering only bending deformation).

axial and bending deformation case is more complicated and
computationally expensive, it provides more accurate results
compared to the only bending deformation case. We notice
from the figures (primarily based on the combined effect of
axial and bending deformations) that, in general, for each non-
auxetic orientation θ of the microstructure, the longitudinal

elastic modulus decreases first and then begins to increase
with increasing stress σ1 values. Also as B decreases, E1/E
decreases, for each θ. For auxetic cases, the longitudinal elastic
modulus decreases with increasing stress σ1 values. As B
decreases, E1/E increases, for each θ. The transverse elastic
modulus decreases for the non-auxetic cases while it increases
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Figure 8. Variation of nonlinear Poisson’s ratios for hexagonal lattices acted upon by mechanical load only (compressive far-field
lattice-level stress). (A) Variation of longitudinal Poisson’s ratio, ν12, with the compressive stress field, σ1, for the auxetic case (θ =−30◦)
on the left axis and for the non-auxetic case (θ = 30◦) on the right axis. (B) Variation of longitudinal Poisson’s ratio, ν12, with the
compressive stress field, σ1, for the auxetic case (θ =−45◦) on the left axis and for the non-auxetic case (θ = 45◦) on the right axis.
(C) Variation of longitudinal Poisson’s ratio, ν12, with the compressive stress field, σ1, for the auxetic case (θ =−60◦) on the left axis and
for the non-auxetic case (θ = 60◦) on the right axis. (D) Variation of transverse Poisson’s ratio, ν21, with the compressive stress field, σ2, for
the auxetic case (θ =−30◦) on the left axis and for the non-auxetic case (θ = 30◦) on the right axis. (E) Variation of transverse Poisson’s
ratio, ν21, with the compressive stress field, σ2, for the auxetic case (θ =−45◦) on the left axis and for the non-auxetic case (θ = 45◦) on
the right axis. (F) Variation of transverse Poisson’s ratio, ν21, with the compressive stress field, σ2, for the auxetic case (θ =−60◦) on the
left axis and for the non-auxetic case (θ = 60◦) on the right axis. Here we have presented the results considering both bending and axial
deformation and only bending deformation (B&A denotes the case considering both bending and axial deformations while B represents the
case considering only bending deformation).

for the auxetic cases with increasing stress σ2 values. Here asB
decreases, E2/E increases, for each θ. The in-plane shear mod-
ulus increases with increasing stress τ values. Also, in general,
as B decreases, G12/E, increases, for each θ.

Figure 10 presents the variation in Poisson’s ratios ν12

and ν21 of hexagonal HMS lattices in the mechanical load-
dominated case with externally applied stress, considering
both the bending and axial deformations. Here we have not
presented the only bending deformation case because for
this case the Poisson’s ratios are independent of the external
stresses and magnetic field intensity. They depend only on the
geometric configurations as evident from the expressions in
equations (52b) and (52d). From the figures, we notice that
for each microstructural non-auxetic orientation θ, the Pois-
son’s ratio, ν12 decreases with increasing stress σ1 values. In
auxetic case, for each θ, the Poisson’s ratio, ν12 increases with
increasing stress σ1 values. Also as B decreases, ν12 decreases,
for each θ, both in auxetic and non-auxetic cases. The trans-
verse Poisson’s ratio, ν21 decreases with increasing stress σ2

values. With decrease in B, ν21 increases, for each θ, both in
auxetic and non-auxetic cases.

Figure 11 presents the variation in elastic moduli E1, E2

and G12 of hexagonal HMS lattices in the magnetic field
intensity-dominated case with externally applied stress, con-
sidering both the bending and axial deformations. The right
vertical axis of these plots presents the only bending deform-
ation case, while the left vertical axis presents the combined
bending and axial deformation. Note that the three elasticmod-
uli are shown considering non-dimensional forms as E1/E,
E2/E and G12/E, where E represents the intrinsic equivalent
Young’s modulus of the constituting beam members making
up the unit cell. From the figures, we find that the elastic mod-
uli both for only bending and for bending and axial deforma-
tion case follow a similar trend though their values differ with
increasing applied stress values. This is because of the fact
that as the stress increases, the axial deformation component of
the total deformation becomes dominant. As the axial deform-
ation increases, the elastic moduli decrease when compared
to only bending case (refer to equations (31), (39) and (51)).
The results show that a wide range of effective elastic mod-
uli (including positive and negative values) can be achieved
with their active programmable feature based on the coupled
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Figure 9. Variation of nonlinear elastic moduli for hexagonal lattices, considering both bending and axial deformations for mechanical load
dominated case (compressive far-field lattice-level stress). (A) Variation of non-dimensionalized longitudinal Young’s modulus, E1/E,
with the compressive stress field, σ1, at different values of external magnetic field intensity B for θ =−30◦. (B) Variation of non-
dimensionalized longitudinal Young’s modulus, E1/E, with the compressive stress field, σ1, at different values of external magnetic field
intensity B for θ = 30◦. (C) Variation of non-dimensionalized longitudinal Young’s modulus, E1/E, with the compressive stress field, σ1, at
different values of external magnetic field intensity B for θ =−45◦. (D) Variation of non-dimensionalized longitudinal Young’s modulus,
E1/E, with the compressive stress field, σ1, at different values of external magnetic field intensity B for θ = 45◦. (E) Variation of
non-dimensionalized transverse Young’s modulus, E2/E, with the compressive stress field, σ2, at different values of external magnetic field
intensity B for θ =−30◦. (F) Variation of non-dimensionalized transverse Young’s modulus, E2/E, with the compressive stress field, σ2, at
different values of external magnetic field intensity B for θ = 30◦. (G) Variation of non-dimensionalized transverse Young’s modulus,
E2/E, with the compressive stress field, σ2, at different values of external magnetic field intensity B for θ =−45◦. (H) Variation of non-
dimensionalized transverse Young’s modulus, E2/E, with the compressive stress field, σ2, at different values of external magnetic field
intensity B for θ = 45◦. (I) Variation of non-dimensionalized Shear modulus, G12/E, with the shear stress field, τ , at different values of
external magnetic field intensity B for θ =−30◦. (J) Variation of non-dimensionalized Shear modulus, G12/E, with the shear stress field, τ ,
at different values of external magnetic field intensity B for θ = 30◦. (K) Variation of non-dimensionalized shear modulus, G12/E, with the
shear stress field, τ , at different values of external magnetic field intensity B for θ =−45◦. (L) Variation of non-dimensionalized shear
modulus, G12/E, with the shear stress field, τ , at different values of external magnetic field intensity B for θ = 45◦. Here B&A on the left
axes of the plots denotes the case considering both bending and axial deformations and B on the right axes of the plots represents the case
considering only bending deformation.

effect of applied stress and magnetic field. It may be noted that
though the combined axial and bending deformation case is
more complicated and computationally expensive, it provides
more accurate results compared to the only bending deforma-
tion case. We notice from the figures (primarily based on the
combined effect of axial and bending deformations) that for
each microstructural orientation θ, the longitudinal and trans-
verse elastic modulus either increase or decrease with increas-
ing stress σ1 values, depending on the values of B. The nature
and values of the effective elastic moduli depend on the rel-
ative influence of mechanical stress and magnetic field on the
beam-level deformations. If they are opposite in nature, the
combined effect may lead to negative values of effective elastic

moduli. Further, other extreme values (very high and very low)
can also be realized actively by exploiting such coupled influ-
ences. The in-plane shear modulus shows an increasing trend
with increasing stress τ values as a general trend.

Figure 12 presents the variation in Poisson’s ratios ν12 and
ν21 of hexagonal HMS lattices in the magnetic field intensity-
dominated case with externally applied stress, considering
both the bending and axial deformations. Here we have not
presented the only bending deformation case because for
this case the Poisson’s ratios are independent of the external
stresses and magnetic field intensity. They depend only on the
geometric configurations as evident from the expressions in
equations (52b) and (52d). From the figures, we notice that

17



Smart Mater. Struct. 32 (2023) 055021 P Sinha and T Mukhopadhyay

Figure 10. Variation of nonlinear Poisson’s ratios for hexagonal lattices, considering both bending and axial deformations for mechanical
load dominated case (compressive far-field lattice-level stress). (A) Variation of Poisson’s ratio ν12 with the compressive stress field, σ1, at
different values of external magnetic field intensity B for θ =−30◦. (B) Variation of Poisson’s ratio ν12 with the compressive stress field,
σ1, at different values of external magnetic field intensity B for θ = 30◦. (C) Variation of Poisson’s ratio ν12 with the compressive stress
field, σ1, at different values of external magnetic field intensity B for θ =−45◦. (D) Variation of Poisson’s ratio ν12 with the compressive
stress field, σ1, at different values of external magnetic field intensity B for θ = 45◦. (E) Variation of Poisson’s ratio ν21 with the
compressive stress field, σ2, at different values of external magnetic field intensity B for θ =−30◦. (F) Variation of Poisson’s ratio ν21 with
the compressive stress field, σ2, at different values of external magnetic field intensity B for θ = 30◦. (G) Variation of Poisson’s ratio ν21

with the compressive stress field, σ2, at different values of external magnetic field intensity B for θ =−45◦. (H) Variation of Poisson’s ratio
ν21 with the compressive stress field, σ2, at different values of external magnetic field intensity B for θ = 45◦.

for each microstructural orientation θ, the Poisson’s ratio, ν12

shows a varying trend with increasing stress σ1 values based
on the value of B. It either increases or decreases with stress
based on the beam-level deflections which in turn are influ-
enced by the combined effect of both mechanical load and
B values. The transverse Poisson’s ratio, ν21 decreases with
increasing stress σ2 values. With decrease in B, ν21 increases,
for each θ, both in auxetic and non-auxetic cases.

Note that the above discussed results (all figures concern-
ing elastic moduli and Poisson’s ratio’s presented in the main
paper) correspond to the external far-field stresses that are
compressive in nature. The results with the hexagonal lattice
being subjected to tensile external far-field stresses are presen-
ted in the supplementary document. In this paragraph and the
subsequent ones, wewill discuss the same.We have referred to
the figures in supplementary document with a prefix S. Figure
S1 presents the comparison of results for a hexagonal lattice
using the results obtained from the proposed numerical model
with those available in the literature. Since the lattice is subjec-
ted to far-field tensile stress, the validation and subsequent res-
ults are presented for the four in-plane elastic moduli (E1, E2,
ν12 and ν21) . For all these nonlinear elastic properties, we find
that the results show good agreement with literature [62] for
different values of far-field mechanical stress. The numerical
results converge to the widely accepted closed-form solutions
[15] in case of small deformation.

Figures S2 and S3 investigate the nonlinear variation of the
four in-plane elastic moduli, as mentioned above, under large
deformation due to only mechanical tensile stresses with no
external magnetic field, considering different cell angles. The
effect of beam-level axial deformation is studied by comparing
the elastic moduli calculated based on only bending deforma-
tion and the combined effect of bending and axial deformation.
Here we observe significant variation of the elastic moduli at
higher values of applied far-field tensile stresses which reaf-
firms the necessity of incorporating the effect of nonlinearity
due to the large deformation of beams and subsequent incre-
mental change in the unit cell geometry. The Poisson’s ratios
are not affected by applied stress when only bending deforma-
tion is considered, while these become stress-dependent when
the coupled effect of bending and axial deformations are
accounted. Note that the lattice properties for the tensile case
are same as that of the compressive one.

Figure S4 presents the variation in elastic moduliE1,E2 and
G12 of hexagonal HMS lattices in mechanical load-dominated
case with externally applied tensile stress, considering both the
bending and axial deformations at beam level. The right ver-
tical axis of these plots presents the only bending deformation
case, while the left vertical axis presents the combined bend-
ing and axial deformation. Note that the two elastic moduli are
shown considering non-dimensional forms as E1/E and E2/E,
where E represents the intrinsic equivalent Young’s modulus
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Figure 11. Variation of nonlinear elastic moduli for hexagonal lattices, considering both bending and axial deformations for magnetic
intensity dominated case (compressive far-field lattice-level stress). (A) Variation of non-dimensionalized longitudinal Young’s modulus,
E1/E, with the compressive stress field, σ1, at different values of external magnetic field intensity B for θ =−30◦. (B) Variation of
non-dimensionalized longitudinal Young’s modulus, E1/E, with the compressive stress field, σ1, at different values of external magnetic
field intensity B for θ = 30◦. (C) Variation of non-dimensionalized longitudinal Young’s modulus, E1/E, with the compressive stress field,
σ1, at different values of external magnetic field intensity B for θ =−45◦. (D) Variation of non-dimensionalized longitudinal Young’s
modulus, E1/E, with the compressive stress field, σ1, at different values of external magnetic field intensity B for θ = 45◦. (E) Variation of
non-dimensionalized transverse Young’s modulus, E2/E, with the compressive stress field, σ2, at different values of external magnetic field
intensity B for θ =−30◦. (F) Variation of non-dimensionalized transverse Young’s modulus, E2/E, with the compressive stress field, σ2, at
different values of external magnetic field intensity B for θ = 30◦. (G) Variation of non-dimensionalized transverse Young’s modulus, E2/E,
with the compressive stress field, σ2, at different values of external magnetic field intensity B for θ =−45◦. (H) Variation of
non-dimensionalized transverse Young’s modulus, E2/E, with the compressive stress field, σ2, at different values of external magnetic field
intensity B for θ = 45◦. (I) Variation of non-dimensionalized shear modulus, G12/E, with the shear stress field, τ , at different values of
external magnetic field intensity B for θ =−30◦. (J) Variation of non-dimensionalized Shear modulus, G12/E, with the shear stress field, τ ,
at different values of external magnetic field intensity B for θ = 30◦. (K) Variation of non-dimensionalized Shear modulus, G12/E, with the
shear stress field, τ , at different values of external magnetic field intensity B for θ =−45◦. (L) Variation of non- dimensionalized Shear
modulus, G12/E, with the shear stress field, τ , at different values of external magnetic field intensity B for θ = 45◦. Here B&A on the left
axes of the plots denotes the case considering both bending and axial deformations and B on the right axes of the plots represents the case
considering only bending deformation.

of the constituting beam members making up the unit cell.
From the figures, we find that initially the elastic moduli both
for only bending and for bending and axial deformation case
match with each other while they tend to differ with increasing
applied stress values. This is because as the stress increases,
the axial deformation component of the total deformation,
which is initially very small also increases significantly. Since
the formulation of elastic moduli for the tensile case is similar
to that of the compressive case (refer to equations (31), (39)

and (51)), we observe that as the axial deformation increases,
the elastic moduli decrease when compared to only the bend-
ing case. We notice from the figures (primarily based on the
combined effect of axial and bending deformations) that for
each non-auxetic orientation θ and broadly for all auxetic con-
figuration of the microstructure, the longitudinal elastic mod-
ulus increases with increasing stress σ1 values. Also, for the
non-auxetic case, as B decreases, E1/E increases, for each θ.
For the auxetic case, as B decreases, E1/E decreases, for each
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Figure 12. Variation of nonlinear Poisson’s ratios for hexagonal lattices, considering both bending and axial deformations for magnetic
intensity dominated case (compressive far-field lattice-level stress). (A) Variation of Poisson’s ratio ν12 with the compressive stress field, σ1,
at different values of external magnetic field intensity B for θ =−30◦. (B) Variation of Poisson’s ratio ν12 with the compressive stress field,
σ1, at different values of external magnetic field intensity B for θ = 30◦. (C) Variation of Poisson’s ratio ν12 with the compressive stress
field, σ1, at different values of external magnetic field intensity B for θ =−45◦. (D) Variation of Poisson’s ratio ν12 with the compressive
stress field, σ1, at different values of external magnetic field intensity B for θ = 45◦. (E) Variation of Poisson’s ratio ν21 with the
compressive stress field, σ2, at different values of external magnetic field intensity B for θ =−30◦. (F) Variation of Poisson’s ratio ν21 with
the compressive stress field, σ2, at different values of external magnetic field intensity B for θ = 30◦. (G) Variation of Poisson’s ratio ν21

with the compressive stress field, σ2, at different values of external magnetic field intensity B for θ =−45◦. (H) Variation of Poisson’s ratio
ν21 with the compressive stress field, σ2, at different values of external magnetic field intensity B for θ = 45◦.

θ. The transverse elastic modulus increases for the non-auxetic
cases while it decreases for the auxteic cases with increas-
ing stress σ2 values. Here as B decreases, E2/E decreases,
for each θ.

Figure S5 presents the variation in Poisson’s ratios ν12

and ν21 of hexagonal HMS lattices in the mechanical load-
dominated case with externally applied tensile stress, consid-
ering both the bending and axial deformations. Here we have
not presented the only bending deformation case because for
this case the Poisson’s ratios are independent of the external
stresses andmagnetic field intensity and are dependent only on
the geometric configurations. From the figures, we notice that
for each microstructural non-auxetic orientation θ, the Pois-
son’s ratio, ν12 increases with increasing stress σ1 values. In
auxetic case, for each θ, the Poisson’s ratio, ν12 decreases with
increasing stress σ1 values. Also as B decreases, ν12 decreases,
for each θ, both in auxetic and non-auxetic cases. The trans-
verse Poisson’s ratio, ν21 increases with increasing stress σ2

values. With decrease in B, ν21 increases, for each θ, both in
auxetic and non-auxetic cases.

Figure S6 presents the variation in elastic moduli E1, E2

and G12 of hexagonal HMS lattices in the magnetic field
intensity-dominated case with externally applied tensile stress,
considering both the bending and axial deformations. The
right vertical axis of these plots presents the only bending

deformation case, while the left vertical axis presents the com-
bined bending and axial deformation. Note that the two elastic
moduli are shown considering non-dimensional forms asE1/E
and E2/E, where E represents the intrinsic equivalent Young’s
modulus of the constituting beammembers making up the unit
cell. From the figures, we find that the elastic moduli both for
only bending and for bending and axial deformation case fol-
low a similar trend though their values differ with increasing
applied stress values. This is because of the fact that as the
stress increases, the axial deformation component of the total
deformation becomes dominant. Also, as the axial deforma-
tion increases, the elastic moduli decrease when compared to
only bending case. The results show that awide range of effect-
ive elastic moduli (including positive and negative values) can
be achieved with their active programmable feature based on
the coupled effect of applied stress and magnetic field. It may
be noted that though the combined axial and bending deforma-
tion case is more complicated and computationally expensive,
it provides more accurate results compared to the only bend-
ing deformation case. We notice from the figures (primarily
based on the combined effect of axial and bending deforma-
tions) that for each microstructural orientation θ, the elastic
moduli either increase or decrease with increasing stress σ1

values, depending on the values of B. The nature and values of
the effective elastic moduli depend on the relative influence
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of mechanical stress and magnetic field on the beam-level
deformations. If they are opposite in nature, the combined
effect may lead to negative values of effective elastic moduli.
Further, other extreme values (very high and very low) can also
be realized actively by exploiting such coupled influences.

Figure S7 presents the variation in Poisson’s ratios ν12 and
ν21 of hexagonal HMS lattices in the magnetic field intensity-
dominated case with externally applied tensile stress, consid-
ering both the bending and axial deformations. Here we have
not presented the only bending deformation case because for
this case the Poisson’s ratios are independent of the external
stresses andmagnetic field intensity and are dependent only on
the geometric configurations. From the figures, we notice that
for each microstructural orientation θ, the Poisson’s ratio, ν12

shows a varying trend with increasing stress σ1 values based
on the value of B. It either increases or decreases with stress
based on the beam-level deflections which in turn are influ-
enced by the combined effect of both mechanical load and
B values. The transverse Poisson’s ratio, ν21 increases with
increasing stress σ2 values. With decrease in B, ν21 increases,
for each θ, both in auxetic and non-auxetic cases.

The numerical results presented in this section demonstrate
that the nonlinear Young’s moduli, shear modulus and Pois-
son’s ratios can be actively modulated as a function of extern-
ally applied far-field mechanical stress (tensile and compress-
ive) and magnetic field. It can be noticed that the trends of
nonlinear variations of elastic moduli differ significantly in
the mechanical stress dominated and magnetic intensity dom-
inated cases, as presented in figures 9–12. The extent of such
modulation can further be controlled bymicrostructural design
parameters such as cell angles, length and thickness of the cell
walls, and intrinsic material properties. We note that it is pos-
sible to achieve a wide range of variation in the elastic prop-
erties in an on-demand and contactless paradigm including
active transition between negative and positive values of the
elastic moduli and Poisson’s ratios. Effective elastic moduli
being one of the fundamental properties of a material, the cap-
ability of having active control through a contactless frame-
work would essentially lead to on-demand programming of
a range of static and dynamic structural behavior, including
direction-dependent deformation, vibration, wave propagation
and control, impact and penetration resistance, energy absorp-
tion, shape morphing, robotic motion and actuation.

In this paper, we have focused on the hexagonal lattices
with auxetic and non-auxetic configurations. It is primar-
ily because the hexagonal lattice-based forms are widely
encountered in naturally occurring and artificial structures
across the macro, micro and even nanoscales (like graphene
and hBN nanostructures, woods and bones microstructures
and sandwich structures’ core) [15, 33, 66]. Due to their
high specific strength and stiffness along with high energy
absorption capability and crushing resistance, and at the same
time being lightweight, these hexagonal lattices have a wide
range of structural and industrial applications [67, 68]. Though
the present study is confined only to hexagonal lattices, the
developed semi-analytical framework is directly applicable to
various other 2D lattice forms such as rhombic and rectangular
(by considering special cases of having the vertical cell wall

length and cell angles as zero, respectively). A range of other
active 2D and 3D periodic lattices can also be analyzed based
on the proposed framework by considering appropriate unit
cells. The current focus of this paper is effective elastic moduli
and their active control that would essentially affect the stiff-
ness. However, other mechanical properties of lattices such as
failure strength [69] can also be controlled actively following
a similar framework considering beam-level bending and axial
deformations as proposed here.

It may be noted that the focus of this work is theoret-
ical development of the computational framework and pro-
position of the concept of contactless active modulation of
effective elastic properties. However, future research will fol-
low the prospective manufacturing of the proposed lattices.
With the recent advancements in 3D and 4D printing (/addit-
ive manufacturing) [70–73], it is possible to fabricate complex
lattice structures along with the inclusion of magnetoactive
particles.

4. Conclusions and perspective

With the quest of achieving contactless on-demand modula-
tion of effective elastic properties, we propose a new class of
lattice materials in this article wherein the beam-level multi-
physical deformation behavior can be exploited as a function
of externalmagnetic field by consideringHMSbeams. A semi-
analytical bottom-up multi-level approach is developed for
evaluating the active nonlinear elastic properties of the lattices
under large deformation. In the first stage, we have developed
a computational framework for analyzing the multi-physical
nonlinear deformation behavior of HMS beams under the
combined application of mechanical load and magnetic field.
Subsequently, the beam-level deformation behavior is integ-
rated with unit cell-based mechanics of lattices for obtaining
the effective elastic properties of lattice materials in an effi-
cient semi-analytical framework.

Before demonstrating the activemodulation of elastic prop-
erties, the developed computational framework is validated
extensively both at the beam level and lattice level consid-
ering different boundary conditions, nonlinearity mechan-
ical loading and magnetic fields. The numerical results are
systematically presented first exploring the nonlinear effect-
ive elastic moduli under only far-field mechanical stresses,
followed by investigating the coupled influence of external
mechanical stresses and magnetic fields. For investigating the
coupled influence with more clarity, we have adopted two dif-
ferent possible scenarios of mechanical load dominated case
and magnetic field dominated case depending on the relat-
ive intensity of applied far-field stress and magnetic field. The
results demonstrate that the nonlinear Young’s moduli, shear
modulus and Poisson’s ratios can be actively modulated as a
function of externally applied far-field mechanical stress and
magnetic field within a broadband of respective values. The
extent of such modulation can further be controlled by micro-
structural design parameters such as cell angles, length and
thickness of the cell walls, and intrinsic material properties.
It is possible to achieve an active transition between negative
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and positive values of the elastic moduli and Poisson’s ratios.
More interestingly, the active programming of effective elastic
properties at the lattice level can be achieved in a contactless
arrangement without the necessity of having a complex net-
work of electrical circuits embedded within the microstructure
as in the case of piezoelectric lattices.

In general, tremendous progress in the field of lattice-based
metamaterials has led to the current capabilities where it is
possible to have a wide range of effective mechanical prop-
erties based on their designed microstructural geometry in
a passive framework, meaning it is not possible to actively
modulate the lattice-level properties after they are manufac-
tured. Thus the on-demand control of mechanical properties
is lacking, which is crucial for a range of multi-functional
applications in advanced structural and mechanical systems.
The current development concerning active lattices addresses
this issue with the additional advantage of contactless nonlin-
ear modulation. By externally applying different values of the
magnetic field intensity, we can get different elastic proper-
ties, and that too from a distance. Essentially, this will help
in optimizing the material utilization to an extreme extent by
controlling the stiffness of a structure based on operational
demands. For example, the stiffness of a structure can be act-
ively increased during an operational condition when higher
magnitudes of loads are experienced to keep the deformations
under control or the natural frequencies need to be increased to
avoid resonance under dynamic loading. The stiffness can also
be actively reduced to allow large deformation and shape con-
trol for (soft-)robotic motions or increased energy absorption
and avert sudden failure. The numerical results in this paper
show that the effective properties can be actively programmed
as a function of the magnetic field covering a wide range
(including programmable state transitionwith on-demand pos-
itive and negative values), leading to the behavior of soft poly-
mer to stiff metals in a single lattice microstructure according
to operational demands. Effective elastic moduli being one of
the fundamental properties of a material, the capability of hav-
ing active control would essentially lead to on-demand pro-
gramming of a range of static and dynamic structural beha-
vior, including direction-dependent deformation, vibration,
wave propagation and control, impact and penetration resist-
ance, energy absorption, shape morphing, robotic motion and
actuation.
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