On the Farrell-Jones conjecture for localising invariants
On the Farrell-Jones conjecture for localising invariants
We show the Farrell-Jones conjecture with coefficients in left-exact $\infty$-categories for finitely $\mathcal{F}$-amenable groups and, more generally, Dress-Farrell-Hsiang-Jones groups. Our result subsumes and unifies arguments for the K-theory of additive categories and spherical group rings and extends it for example to categories of perfect modules over $\mathbb{E}_{1}$-ring spectra.
math.KT
Bunke, Ulrich
b5755b35-f32f-4ec9-bb46-ded3cfd42faa
Kasprowski, Daniel
44af11b9-4d22-49f2-a6a3-04009f45b075
Winges, Christoph
347e42cd-fbb9-4dfc-80e3-84c79eb5696a
3 November 2021
Bunke, Ulrich
b5755b35-f32f-4ec9-bb46-ded3cfd42faa
Kasprowski, Daniel
44af11b9-4d22-49f2-a6a3-04009f45b075
Winges, Christoph
347e42cd-fbb9-4dfc-80e3-84c79eb5696a
[Unknown type: UNSPECIFIED]
Abstract
We show the Farrell-Jones conjecture with coefficients in left-exact $\infty$-categories for finitely $\mathcal{F}$-amenable groups and, more generally, Dress-Farrell-Hsiang-Jones groups. Our result subsumes and unifies arguments for the K-theory of additive categories and spherical group rings and extends it for example to categories of perfect modules over $\mathbb{E}_{1}$-ring spectra.
This record has no associated files available for download.
More information
Published date: 3 November 2021
Keywords:
math.KT
Identifiers
Local EPrints ID: 476390
URI: http://eprints.soton.ac.uk/id/eprint/476390
PURE UUID: 7b3ab629-b33d-4e02-b42f-5cf3fef47372
Catalogue record
Date deposited: 19 Apr 2023 17:08
Last modified: 17 Mar 2024 04:19
Export record
Altmetrics
Contributors
Author:
Ulrich Bunke
Author:
Daniel Kasprowski
Author:
Christoph Winges
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics