The small stuff matters establishing the most suitable method to extract microplastics from bivalves Christina Thiele[§], Andrea Russell[¥], Malcolm Hudson[§] [§]Centre of Environmental Sciences, [¥]Chemistry, University of Southampton

1. Introduction

Microplastics (100 nm - 5 mm) are ingested by marine organisms⁽¹⁾, including bivalves for human consumption⁽²⁾. The Pacific oyster *Magallana gigas*, for example, mainly retains particles <25 μ m^(3,4). Evidence is scarce but potential biological risks may be related to particle size in humans⁽⁵⁾ and bivalves⁽⁶⁾ alike. Microplastics are extracted from water, sediment and biota with different techniques^(7,8). Even for the latter various methods exist hindering comparability of results. The aim of this study is to establish a standardised method for those organisms by comparing existing techniques using two type of bivalve.

C.J.Thiele@soton.ac.uk @DeepSeaCri

2. Materials & methods

Fig.1: Pacific oyster Magallana gigas

Fig.2: Manila clam Ruditapes philippinarum

Comparison of 4 digestion methods:

- 30 % Hydrogen peroxide $(H_2O_2)^{(2)}$
- Proteinase-K⁽⁹⁾
- Trypsin⁽¹⁰⁾
- 10 % Potassium hydroxide (KOH)⁽¹¹⁾

Evaluating

- Filtration capacity
- **Digestion efficacy**
- Recovery rates

3. Filtration to 25 µm?

Optimisation? Excessive foaming!

Optimisation? Too expensive!

Optimisation? Filtration at 63 µm only.

Neutralising digestate with citric acid allowed filtering over 1.2 µm.

 \rightarrow KOH was selected for further steps.

4. Digestion efficacy

Fig. 3: Tissue digestates (n = 3) filtered over 1.2 μ m. Left: *M. gigas*, right: *R. philippinarum*

M. gigas 98.0 ±0.5 % 79.1 ±37.3 mg

R. philippinarum 91.2 ±0.5 % 20.7 ±1.9 mg

6. Discussion & Conclusion

Potassium hydroxide has previously been used to dissolve a range of tissues to extract microplastics, but often only filtered to >200 μ m⁽¹¹⁻¹⁴⁾. We show that neutralised KOH allows recovery of particles to $1 \mu m$. Previous studies showed negligible effect of KOH on a range of microplastics^(14,15). In this present study, rayon was destroyed at 60°C, but not at 40° C.

Fig.4: RR of dosed microplastics from oyster tissue after 10 % KOH exposure at 60° C for 2 days (n = 4). PP: Polypropylene, PET: Polyethylene terephthalate, LDPE: Low-density polyethylene.

Table 1: RR of rayon after KOH exposure at 40° C for 2 days (n = 4)

> Recovered fibres KOH strength

It is recommended that 10 % KOH at 40° C for 2 days, neutralised with citric acid is used for extracting microplastics from biota to allow for comparability between studies and greatest scope to answer research questions.

References: (1) Wright et al., 2013. Environ. Pollut. 178:483; (2) Li et al., 2015. Environ. Pollut. 207:190; (3) Ropert & Goulletquer, 2000. Aquaculture 181:171; (4) Van Cauwenberghe & Janssen, 2014. Environ. Pollut. 193:65; (5) Wright & Kelly, 2017. Environ. Sci. Technol. 51:6634; (6) Browne et al., 2008. Environ. Sci. Technol. 42:5026; (7) Hidalgo-Ruz et al., 2012. Environ. Sci. Technol. 46:3060; (8) Lusher et al., 2017. Anal. Methods 9:1346: (9) Cole et al., 2014. Sci. Rep. 4:4528; (10) Courtene-Jones et al., 2017. Anal. Methods 9:1437; (11) Rochman et al., 2015. Sci. Rep. 5:14340; (12) Foekema et al., 2013. Environ. Sci. Technol. 47:8818; (13) Besseling et al., 2015. Mar. Pollut. Bull. 95:248; (14) Karami et al., 2017. Sci. Total Environ. 578:485; (15) Dehaut et al., Environ. Pollut. 215:223.

EPSRC

Engineering and Physical Sciences Research Council

BLUE MARINE FOUNDATION

LEVERHULME TRUST

International Conference on Emerging Contaminants, Oslo, Norway, 25-28th June 2018