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ABSTRACT

Load reduction devices are extensible components which can
be installed along mooring lines to reduce peak loads and fatigue
damage in the mooring system. This has the potential to re-
duce risk of failure for Floating Offshore Wind Turbine (FOWT)
mooring systems, and can provide significant reductions to the
overall material, handling and installation costs of a FOWT
project. Various load reduction device concepts exist, includ-
ing ballasted pendulums, thermoplastic springs and hydraulic
dampers, all of which are designed to exhibit a non-linear load-
extension behaviour: lower stiffness in the operational strain
range to reduce loads, and higher stiffness at high strain. These
devices are becoming an increasingly common consideration for
FOWT mooring systems, and are pushing traditional analysis
and design methods to readily incorporate non-linearity. Well-
established static catenary equations, used to define mooring
tension-offset profiles, only account for linear elasticity such that
capturing non-linear response typically requires finite element
modelling. This paper presents an alternative through param-
eterising equations for three different non-linear load-extension
curves and incorporating them into the existing catenary equa-
tions. For a given non-linear load-extension curve and length
of load reduction device, the resulting analytical model can be
solved quasi-instantaneously using Newton-Raphson or Newton-
Krylov iterations to give vertical and horizontal mooring line
tensions and thus strain of the device. Results from the new
analytical model are compared with finite element predictions
showing agreement to within 1%. The analytical model can be
solved for any two unknowns, such that optimal load reduction
device length and stiffness can be determined instantaneously
given maximum environmental load and allowable offset. The
new analytical equations are implemented into a graphical app,
which allows the user to input any load reduction device param-
eters and visualise the resulting mooring system’s geometry and
tension-offset profile.

Documentation for asmeconf.cls: Version 1.31, July 4, 2023.

1. INTRODUCTION
1.1 Motivation for compliant FOWT mooring design

Up to 80% of worldwide offshore wind resources are in wa-
ter depths greater than 60 m [1], where traditional fixed-bottom
wind farms are not economically viable. In these deeper waters,
offshore wind turbines must be deployed on floating structures,
connected to the seabed via mooring lines and anchors. Mooring
systems are designed to ensure station-keeping of the floating
structure: they maintain the structure within an acceptable dis-
tance from its reference position. Station-keeping requirements
for Floating Offshore Wind Turbines (FOWTs) are often more
lenient than for oil & gas installations [2] and are primarily con-
strained by the motion of the electrical power cable [3].

Designing a mooring system involves finding a balance be-
tween stiffness and compliance to fit the station-keeping require-
ments [4]. A stiffer mooring system will maintain the floating
structure closer to its reference position, at the expense of high
loads on the mooring lines and anchors. A compliant mooring
system will allow more motion of the floating structure in re-
sponse to environmental loads, reducing forces in the mooring
line and anchor, in turn allowing for smaller, cheaper anchors and
a reduced chance of mooring line failure (Table 1). As FOWT
farms require large amounts of structures to be moored to the
seabed, reducing mooring and anchoring costs per unit through
compliant moorings can lead to significant overall savings.

TABLE 1: EFFECT OF COMPLIANCE ON FOWT SYSTEM

Mooring design: stiff compliant

Platform displacements − +
Mooring and anchor loads + −
Mooring and anchor cost + −

In response to the incentive to reduce the cost of FOWT moor-
ings, various means of adding compliance to mooring systems
have been developed, in particular in the form of load reduction
devices (LRDs). Current concepts include the Exeter Intelligent
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Mooring System (IMS), (Fig.1a) [5], the Dublin Offshore LRD
(DO), (Fig.1b) [6], and the Technology for Ideas Seaspring (TFI),
(Fig.1c) [7]. These devices are incorporated into a mooring line,
typically close to the fairlead, and can provide high levels of com-
pliance (extensibility) without compromising breaking strength
[8]. For the same breaking strength, typical synthetic ropes can-
not achieve such low elastic stiffness. The DO and TFI devices
are passive, whereas the IMS is ‘active’ as it can change stiffness
curve in operation. Thus, two curves are considered for the IMS
device, which correspond to the upper and lower bound stiffness
for the given configuration.

FIGURE 1: LRD TECHNOLOGIES AND ASSOCIATED STIFFNESS
CURVES: (A) IMS [5], (B) DO [6], (C) TFI [7] . POLYESTER ROPE
STIFFNESS SHOWN WITH GRAY DOTTED LINE FOR COMPARISON

These devices have highly non-linear stiffness curves, which
can be tailored to fit the specific loading conditions and mooring
arrangement (Fig. 1). These non-linear stiffness curves have a
compliant range over which the LRD is intended to operate to
effectively reduce mooring line tension. The curves then exhibit
higher stiffness at high strain when they reach their rated tension
𝑇𝑟𝑎𝑡𝑒𝑑 , i.e., once all the compliance has been exhausted. Graph-
ical representation of the rated tension is shown for DO and TFI
in Figure 1. The key to designing a mooring system with a LRD
is to ensure the device operates in its compliant range as much
as possible, meaning the LRD is generally designed such that the
maximum tension in the device stays below 𝑇𝑟𝑎𝑡𝑒𝑑 . The opti-
mal length of the LRD should then be determined to ensure the
extension provided does not exceed station-keeping constraints.
Current approaches to finding this optimal length and rated ten-
sion involve time-consuming iterations of Finite Element (FE)
analyses. The aim of this paper is to propose an analytical model

of catenary moorings with LRDs, which can be used for efficient
quasi-static design of an LRD mooring system.

1.2 Quasi-static mooring system design
If all dynamic mooring effects (damping, inertia) are ig-

nored, and the system is assumed to be static at a given instant 𝑡,
the geometry of the mooring line can be solved analytically as a
function of the fairlead coordinates and the physical parameters
of the mooring line. This constitutes the quasi-static mooring
analysis, which is typically the first step in mooring system de-
sign [9]. The quasi-static analysis is useful for determining the
tension-offset response of a mooring system, which informs de-
signers of the restoring force provided by the system in response
to displacement of the fairlead.

For neutrally buoyant taut moorings, the relationship between
fairlead coordinates and restoring forces is trivial: the mooring
line adopts a straight line between the fairlead and anchor, and the
tension-offset of the system corresponds directly to the material
stiffness of the mooring line [10]. This relationship is more
complex for catenary moorings, as the catenary configuration
(i.e., weight of suspended line) is controlled by tension, leading
to a non-linear tension-offset profile. This is captured by the
catenary mooring equations, which define the fairlead coordinates
𝑥𝑓 and 𝑧𝑓 as a function of the fairlead restoring forces 𝐻𝑓 and 𝑉𝑓

[11] and the mooring line length 𝐿, stiffness 𝐸𝐴 and unit weight
𝑤 (Fig. 4). For a line partially resting on a friction-less seabed:

𝑥𝑓 (𝐻𝑓 , 𝑉𝑓 ) = 𝐿 −
𝑉𝑓

𝑤
+
𝐻𝑓

𝑤
· ln

⎡⎢⎢⎢⎢⎣
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+
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(1a)

𝑧𝑓 (𝐻𝑓 , 𝑉𝑓 ) =
𝐻𝑓
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·
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(1b)

FIGURE 2: PROFILE VIEW OF SIMPLE CATENARY MOORING LINE

The system of equations 1a & 1b can then be solved for any
two unknowns. However, this is only valid for a homogeneous
mooring line (i.e. full chain), and the stiffness term 𝐸𝐴 must be
linear. As such, these equations cannot be used for analysis of a
mooring system with a non-linear LRD. Other publications have
presented equations for multi-segmented catenary mooring lines
with a non-linear stiffness segment, in particular for polymer rope
applications [10]. The non-linear stiffness is expressed in simple
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power law form, where the strain Y is given as a function of axial
load 𝑇 and constants 𝑝 and 𝑞 :

Y = 𝑝𝑇𝑞 (2)

The power law form offers a good fit for material stiffness of
typical synthetic polymer ropes, but this does not match the LRD
stiffness curves as shown in Figure 1.

Since no analytical solution is available, current approaches
to modelling moorings with LRDs include discretisation of the
mooring lines and/or piece-wise linear interpolation of the non-
linear stiffness curves. Commercial software such as Orcaflex
is typically used for dynamic modelling of LRDs [12], which
uses linear interpolation between consecutive points of the user-
defined non-linear stiffness curve. LRDs have also been modelled
with the open-source lumped-mass modelling software Moordyn,
which also uses linear interpolation of the stiffness curve [7].

This paper presents continuous functions which model the
non-linear stiffness curves of the LRD devices shown in Figure 1.
These functions are then combined with the existing equations for
catenary moorings, to create a static analytical model of catenary
moorings with LRDs. This requires no discretisation or stiffness
interpolation, and as such provides a quicker approach to obtain
the mooring geometry and restoring forces based on any input
mooring properties and LRD parameters (rated tension, curve
shape, LRD length). The analytical model can then be used
to find optimal LRD parameters for a given water-depth, mean
environmental load, and offset constraint.

2. METHOD
This paper employs an analytical approach to mooring sys-

tems modelling. Firstly, a 2-segment formulation for a catenary
mooring line with a linear-stiffness LRD at the fairlead is pre-
sented based on established equations. This formulation is then
adapted with various non-linear stiffness functions, to form a
set of equations for a chain catenary line with non-linear LRDs.
These are solved using numerical root-finding methods, in partic-
ular the Newton-Raphson method [13], implemented in Python.
Commercial FE software Flexcom is then used to validate the
results obtained from the analytical equations. The validated an-
alytical model is then applied to initial quasi-static design of an
LRD. A structural overview of the methodology of the paper is
shown in Fig 3.

FIGURE 3: METHODOLOGY FOR THE ANALYTICAL SOLUTION

3. DEVELOPMENT OF ANALYTICAL MODEL
3.1 Catenary equations for linear-stiffness LRDs

The static catenary equations 1a & 1b apply to a catenary
line formed of a unique, homogeneous segment, with material
properties defined by a single value of stiffness 𝐸𝐴 and appar-
ent weight in water per unit length 𝑤. This section presents an
adapted formulation for a mooring line with two distinct seg-
ments: one segment for the chain catenary line and one segment
for a linear stiffness LRD at the fairlead (Fig. 4). This linear LRD
formulation is then used as the starting point for the next section,
which presents the equation for non-linear stiffness LRDs.

FIGURE 4: PROFILE VIEW OF THE MULTISEGMENT LINE

The static multi-segment mooring analysis approach is well-
documented in literature [10]. For a catenary line composed of 𝑛
segments of line, the fairlead coordinates (𝑥𝑓 , 𝑧𝑓 ) are given as a
sum of the horizontal and vertical components of each segment:

𝑥𝑓 =

𝑛∑︂
𝑖=1

𝑥𝑖 (3a)

𝑧𝑓 =

𝑛∑︂
𝑖=1

𝑧𝑖 (3b)

Where the coordinates of the extremities of the 𝑖𝑡ℎ segment
𝑥𝑖 and 𝑧𝑖 are each defined by the catenary equations in their own
coordinate system, with the origin at the start of the segment
(starting from the anchor).

If the LRD is modelled as a simple non-linear spring seg-
ment, and assumed to be near-neutrally buoyant in water, which
is typically the case of the IMS and DO technologies [5][6], this
means the spring is subjected to constant tension throughout its
length, thus adopting a straight line rather than a catenary shape.
For a linear stiffness LRD, its extension Δ𝐿𝑒 is based on Hooke’s
law, where the tension-strain profile is a straight line passing
through the origin and a single point 𝐸𝐴. The coordinates of the
horizontal and vertical extremities of the LRD segment (𝑥𝑒, 𝑧𝑒)
are then given by:

𝑥𝑒 =
𝐻𝑓 𝑙𝑒√︂
𝐻

2

𝑓
+𝑉2

𝑓

+
𝐻𝑓 𝐿𝑒

𝐸𝐴𝑒

(4a)

𝑧𝑒 =
𝑉𝑓 𝑙𝑒√︂
𝐻

2

𝑓
+𝑉2

𝑓

+
𝑉𝑓 𝐿𝑒

𝐸𝐴𝑒

(4b)

3 Copyright © 2023 by ASME



Where the left-hand terms represent the horizontal (4a) or
vertical (4b) projections of the unstretched length 𝐿𝑒 of the LRD,
and the right-hand term represents the elongation of the LRD,
obeying Hooke’s law.

According to the multisegment theory from equations 3a &
3b, equations 4a & 4b can be added to the chain catenary equations
to give the coordinates of the fairlead (𝑥𝑓 , 𝑧𝑓 ) as a function of the
restoring forces (𝐻𝑓 , 𝑉𝑓 ):

𝑥𝑓 (𝐻𝑓 , 𝑉𝑓 ) = 𝐿 −
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+
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(5a)
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3.2 Catenary equations for non-linear stiffness LRDs
To replace the Hookean extension term in equations 4a & 4b,

the non-linear extension of the LRD must be defined as a function
of the force applied at its extremities. This means determining
the function Y which gives the LRD strain for any value of axial
mooring line tension 𝑇 , where 𝑇 is the resultant of the horizontal
and vertical mooring line forces 𝐻𝑓 and 𝑉𝑓 :

Y(𝑇) = Y(
√︂
𝐻2

𝑓
+𝑉2

𝑓
) = Δ𝐿𝑒

𝐿𝑒

(6)

Equations analogous to 5a and 5b can be obtained by substituting
the Hookean extension term (the final term in equations 5a & 5b)
with the non-linear strain function Y, giving:

𝑥𝑓 (𝐻𝑓 , 𝑉𝑓 ) = 𝐿 −
𝑉𝑓
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+
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(7a)
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(7b)

These equations are valid for an extensible section located
at the fairlead, attached to a homogeneous catenary mooring line
with a portion resting on the seabed (i.e. no vertical loading on
the anchor), where seabed friction is neglected. An analogous
expression can also be derived for non-buoyant taut and semi-taut
moorings where vertical anchor loading is non-zero, based on the
equations for a fully-suspended line [11].

Equations 4a & 4b assume that the extensible section is
neutrally buoyant in seawater. This is a valid assumption for the
IMS and DO devices, but the TFI device has a non-negligible
weight in water [7]. This means the upper extremity of the LRD
is subjected to additional tension due to self-weight of the device,
with a difference in vertical tension between the two extremities
equal to 𝐿𝑒𝑤𝑒 where 𝐿𝑒 is the length of the device and 𝑤𝑒 is its
wet weight per unit length. Due to this difference in tension, the
strain of the LRD is not constant along its length, and requires an
integral to compute analytically. As a simpler approximation, the
tension can be assumed to be constant throughout the LRD, taking
the value of the tension at its midpoint, which is subjected to half
of the self weight of the LRD: 1

2𝐿𝑒𝑤𝑒. With this assumption, the
strain in the device given by Equation 6 can be redefined as:

Y(𝑇) = Y

(︄√︃
𝐻2

𝑓
+ (𝑉𝑓 −

1
2
𝐿𝑒𝑤𝑒)2

)︄
(8)

The chain section of the line, which is below the LRD, is
not subjected to the additional vertical tension component. Thus,
we define the component of vertical tension at the top chain
as 𝑉𝑡𝑐 which does not include the self weight, and is given by
𝑉𝑡𝑐 = 𝑉𝑓 − 𝐿𝑒𝑤𝑒 . The full expression is then given by:

𝑥𝑓 (𝐻𝑓 , 𝑉𝑓 ) = 𝐿 − 𝑉𝑡𝑐

𝑤
+
𝐻𝑓

𝑤
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+

√︄
1 +
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𝐻𝑓

)︃2⎤⎥⎥⎥⎥⎦ +
𝐻𝑓 𝐿

𝐸𝐴

+
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𝐻
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(9a)

𝑧𝑓 (𝐻𝑓 , 𝑉𝑓 ) =
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·
⎡⎢⎢⎢⎢⎣
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+
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𝐻

2

𝑓
+ (𝑉𝑓 − 1
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(9b)

3.3 Continuous functions for LRD stiffness curves
Adapting the general-form equations 7a & 7b or 9a & 9b

to a specific LRD technology requires determining the function
Y(𝑇)which gives LRD strain as a function of axial tension 𝑇 .
In this section, functions have been derived for the three curve
types shown in Figure 1. These functions are mostly based on
the Ramberg-Osgood model, which is typically used to define
non-linear stress-strain relationships. The original model defines
stress as a function of strain and 3 parameters [14]. In this
case, the model is used only in its mathematical sense, and the
form is reversed to define strain Y as a function of axial tension
𝑇 such that it can be incorporated into the catenary equations.
This adaptation of the basic-form Ramberg-Osgood model can
be given as:

Y(𝑇) = 𝑎𝑇

(1 + ( 𝑎𝑇
𝑐
)𝑛) 1

𝑛

(10)

Where a, c and define the shape of the curve (Fig. 5).
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FIGURE 5: BASIC-FORM RAMBERG-OSGOOD CURVE

The basic form equation of the Ramberg-Osgood model
given in Equation 10, does not directly fit all of the LRD devices
identified in Figure 1, in particular the TFI and DO LRDs which
require additional terms and parameters. These variations of the
basic form equation are described in the following subsections.

Exeter IMS

The curve of the IMS is the closest fit to the Ramberg-Osgood
model, with the exception of the curve not passing through the
origin due to variable pre-load in the device [5]. An additional
parameter 𝑏 is introduced, which shifts the curve along the x-axis
from the origin, such that the overall equation is given by:

Y𝐼𝑀𝑆 (𝑇) =
𝑎𝑇 − 𝑏

(1 + ( 𝑎𝑇−𝑏
𝑐

)𝑛) 1
𝑛

(11)

Where 𝑏/𝑎 is the pre-tension, 𝑐 is the asymptotic strain, and 𝑛

is a parameter defining the rate at which the curve reaches its
asymptotic strain, as shown in Figure 5. The value of 𝑛 can be
found if the rated tension required at a specific value of strain is
known. The parameters of Equation 11 are fitted to two example
supplier curves [5], using a simple linear regression algorithm,
and the resulting curve fits are plotted in Figure 6. The values of
each fitted parameter are given in Table 2, for curves A and B.

FIGURE 6: IMS STIFFNESS CURVES FROM SUPPLIER PUBLICA-
TION [5], AGAINST FITTED CURVE FROM EQ. 11

TABLE 2: IMS FITTED PARAMETERS FOR EQ. 11

Parameter fitted value (A) fitted value (B)

a 0.958 0.837
b 0.113 0.183
c 0.426 0.396
n 0.834 0.728

Dublin Offshore LRD

To obtain an expression of the DO curve, the base curve from
Figure 5 is translated with an additional parameter 𝑏, as with the
IMS fit. However, the curve must pass through the origin, which
is not the case of the IMS curve in Eq. 11, which passes through
the point [0, Y(0)], where Y(0) given by:

Y𝐼𝑀𝑆 (0) =
−𝑏

(1 + ( 𝑏
𝑐
)𝑛) 1

𝑛

(12)

To ensure that the DO curve passes through the origin, the term
shown in Eq. 12 is subtracted from Eq. 11, giving an expression
of Δ𝐿𝐷𝑢𝑏𝑙𝑖𝑛 (𝑇) (Eq. 13). The shape factor 𝑛, which defines the
rate at at which the function reaches its asymptote, is fixed to
𝑛 = 2. The parameters 𝑎, 𝑏 and 𝑐 of Equation 13 are fitted to
the example curve from supplier documentation [6] using linear
regression, resulting in the curve fit shown in Figure 7. The
values of each fitted parameter for this curve are given in Table 3.

Δ𝐿𝐷𝑢𝑏𝑙𝑖𝑛 (𝑇) =
𝑎𝑇 − 𝑏

(1 + ( 𝑎𝑇−𝑏
𝑐

)2) 1
2
+ 𝑏

(1 + ( 𝑏
𝑐
)2) 1

2
(13)

FIGURE 7: DO STIFFNESS CURVE FROM SUPPLIER PUBLICATION
[6], AGAINST FITTED CURVE FROM EQ. 13

In Eq. 13, parameter 𝑎 is related to the rated tension
of the device and 𝑐 is related to the asymptotic extension of
the device. These parameters can also be linked to physical
dimensions of the device, based on supplier documentation [6].
As opposed to the IMS and TFI devices which are spring-like,
the DO LRD extends by rotating under loading (Fig. 1b). Thus,
extension Δ𝐿 (𝑇) is used rather than the strain term Y(𝑇). When
incorporated into the final system of static equations 7a & 7b, the
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TABLE 3: DO FITTED PARAMETERS FOR EQ. 13

Parameter fitted value

a 7.500
b 7.432
c 2.568

length of device 𝐿𝑒 can then be based on the starting distance
between the two hinge points. It should also be noted that Eq 13
is only valid for a fixed mooring line angle. The line angle affects
the magnitude of the moment generated by the mooring line on
the LRD hinges, in turn changing the shape of the stiffness curve.
A more complete expression is given in the published code [15],
which captures the effect of the line angle, and relates the curve
parameters to physical dimensions of the LRD.

TFI Seaspring

The TFI stiffness curve (Fig. 1b) is complex to model with
a continuous function due to the sudden stiffness increase at 𝑇 =

𝑇𝑟𝑎𝑡𝑒𝑑 . The required function deviates more significantly from
the base Ramberg-Osgood model, in three ways: 1. Parameter
𝑐 is subtracted to the denominator of the first term to create
the sudden gradient change; 2. An additional parameter 𝑘 is
introduced to factorise the whole expression, such that the rated
strain of the curve can be directly adjusted without changing the
other parameters; 3. An additional term is introduced, function
of a new parameter 𝑑, in an attempt to better match the final phase
stiffness. The resulting expression is given in Eq. 14, with the
associated curve fit is shown in Figure 8, and the fitted parameter
values given in Table 4.

Y𝑇𝐹𝐼 (𝑇) = 𝑘 ·
(︄

𝑎(𝑒𝑇 − 𝑓 ) − 𝑏

1 + [𝑎(𝑒𝑇 − 𝑓 ) − 𝑏 − 𝑐]2 + 𝑎 𝑓 + 𝑏

1 + [−𝑎 𝑓 − 𝑏 − 𝑐]2

+ 𝑑
√︁
𝑎(𝑒𝑇 − 𝑓 ) − 𝑑

√︁
−𝑎 𝑓

)︄
(14)

The fit is accurate up to, and including, the sudden increase
in stiffness at 𝑇 = 𝑇𝑟𝑎𝑡𝑒𝑑 . . Accurate modelling of the response
past this point is not crucial, as in practice the device should not
be operating above 𝑇𝑟𝑎𝑡𝑒𝑑 . Although the expression is complex,
only parameters 𝑘 and 𝑒 are required to parameterise the rated
tension and strain. Any value of rated tension 𝑇𝑟𝑎𝑡𝑒𝑑 can be
obtained by varying parameter 𝑒, and any value of rated strain
Y(𝑇𝑟𝑎𝑡𝑒𝑑) can be obtained by varying parameter 𝑘 .

For each LRD, the derived non-linear stiffness function is
substituted for the Y(𝑇) term in the general form equations (7a &
7b, 9a & 9b), with the resulting systems of equations forming the
analytical model. This model can be solved for the vertical and
horizontal restoring forces 𝐻𝑓 and 𝑉𝑓 at the fairlead, for any fair-
lead coordinates 𝑥𝑓 and 𝑧𝑓 , by employing numerical root-finding
methods. All LRD stiffness functions and resulting mooring
equations are fully differentiable over their domain. This means
the system can be solved with a Newton-Rhapson scheme with
analytical Jacobians, providing fast and robust computation.

FIGURE 8: TFI STIFFNESS CURVE FROM SUPPLIER PUBLICATION
[7], AGAINST FITTED CURVE FROM EQ. 14

TABLE 4: TFI FITTED PARAMETERS FOR EQ. 14

Parameter fitted value

a 1.238 ×10−2

b 2.119 ×102

c 7.516 ×10−1

d 1.149 ×101

e 2.405 ×102

f -1.672 ×105

k 1.379 ×10−1

4. VALIDATION OF ANALYTICAL MODEL
The analytical model was then validated against results ob-

tained from the commercial FE software Flexcom, which discre-
tises the mooring line and interpolates the stiffness from a set of
force-strain points. The validation was performed by comparing
quasi-static tension-offset profiles for each of the LRD concepts.
To obtain the quasi-static tension-offset profile, the horizontal
fairlead coordinate 𝑥𝑡 is gradually displaced along the horizontal
axis parallel to the mooring line, and the analytical model is used
to calculate the resultant fairlead tension𝑇 from the fairlead forces
𝐻𝑓 and 𝑉𝑓 at every step. This is depicted graphically in Figure 9.
This figure was obtained using a graphical app built on Python,
based on the analytical model, which enables visualisation of the
geometry of a mooring system with any LRD parameters [15].

The properties of the mooring system used are identical to
those of the OC4 Phase II mooring system [16], with the exception
of the water depth which is set to 150 m rather than 200 m, to make
the mooring system more sensitive to the LRD. These properties
are summarised in Table 5. For each LRD concept, the stiffness
curve parameters are taken from the curve fits shown in section
3.3 and the LRD lengths are set such that they all exhibit 5 m
of extension at 𝑇𝑟𝑎𝑡𝑒𝑑 = 2𝑀𝑁 . This rated tension was chosen
arbitrarily for this illustration, but the LRDs can be designed for
any value of 𝑇𝑟𝑎𝑡𝑒𝑑 . The IMS and DO devices were modelled
using Eq. 7a & 7b, which are valid for neutrally buoyant devices,
whereas the TFI device was modelled using Eq. 9a & 9b. The wet
weight of the TFI device was set to 8 kN/m, which corresponds to
the weight of a 1m-diameter device with rated tension of 2 MN.
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FIGURE 9: 2D PLOT OF MOORING LINE, WITH FAIRLEAD DIS-
PLACED ALONG HORIZONTAL AXIS UP TO AN OFFSET OF 20M

TABLE 5: MOORING SYSTEM PARAMETERS, BASED ON OC4 [16]

Mooring system parameter Value

Fairlead-seabed vertical dist. 136 m
Unstretched mooring line length inc. LRD 825.35 m
Initial anchor-fairlead distance 796.7 m
Chain mass per unit length 145 kg/m
Chain 𝐸𝐴 750 MN

The resulting tension-offset plots are shown in Figures 10, 11
and 12. These are displayed alongside the equivalent full-chain
mooring system tension-offset, i.e. a catenary mooring with the
same overall line length but no LRD. These show close alignment
between the analytical and FE results, with a mean error < 0.1%
and a maximum error across all curves of 0.4%. The maximum
error occurs at the gradient change point of the TFI curve, where
the fitted stiffness curve does not perfectly match the interpolated
curve (Fig. 8). Other general take-away points from the tension-
offset profiles are listed below:

• All three LRD moorings show significantly more compli-
ance than the full-chain catenary (i.e. lower gradient of
tension-offset), especially at lower offsets where the LRDs
operate in their low-stiffness regions. As a result of this
increased compliance, the LRD moorings display higher
horizontal offsets than the full-chain mooring for the same
fairlead tension.

• All three LRDs have exhautsed all their extensibility once
the fairlead tension is above the rated tension of the device.
In practice, this would mean no extension is left to reduce
dynamic loads. If these high loads/offsets are expected, an
LRD with higher rated tension should be used.

• The extension of the LRDs under the weight of the chain
at zero-offset leads to reduced pre-tension of the mooring
system. In practice, this could be compensated for by
reducing the overall length of line. Due to its self-weight,
the TFI device (Fig. 12) shows higher pre-tension than the
other LRDs for the same mooring line length.

FIGURE 10: TENSION-OFFSET PROFILE FROM ANALYTICAL SO-
LUTION AND FE SOFTWARE FOR IMS CURVES (CONFIGURA-
TIONS A & B)

FIGURE 11: TENSION-OFFSET PROFILE FROM ANALYTICAL SO-
LUTION AND FE SOFTWARE FOR DO CURVE

FIGURE 12: TENSION-OFFSET PROFILE FROM ANALYTICAL SO-
LUTION AND FE SOFTWARE FOR TFI CURVE
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5. APPLICATION OF ANALYTICAL MODEL TO LRD DESIGN
5.1 Quasi-static design scenario

Quasi-static design typically involves approximating a mean
horizontal environmental force from met-ocean data [9]. This
force is applied at the fairlead, and the analytical model can be
used to find the fairlead tension and platform offset such that
the system is in static equilibrium. For this example, the 50-year
horizontal force was set as 𝐹𝑒𝑛𝑣 = 2𝑀𝑁 . Knowing the horizontal
fairlead force 𝐻𝑓 = 𝐹𝑒𝑛𝑣, the vertical force𝑉𝑓 and resulting offset
𝑥𝑓 were obtained from eq. 9a & 9b. The 50-year quasi-static
fairlead tension 𝑇50𝑦𝑟 ,𝑄𝑆 was then calculated from the horizontal
and vertical forces. The LRD design parameters could then be
adjusted based on the quasi-static offset and fairlead tension.

In particular, two key LRD parameters should be determined
at the initial design stage: 1. The rated tension of the device,
determined based on the maximum expected load; 2. The maxi-
mum extension of the device (i.e., length of the device for spring-
like LRDs), determined based on the maximum allowable offset.
These parameters are typically found based on iterative dynamic
analyses [7], which can be computationally-intensive. This sec-
tion demonstrates how the analytical model can be used to find a
fast initial approximation of the optimal LRD parameters at the
quasi-static design stage. This example design scenario is applied
to the TFI Seaspring LRD in a catenary mooring system with the
physical properties listed in table 5.

5.2 Determining the LRD rated tension
The aim is to determine the suitable 𝑇𝑟𝑎𝑡𝑒𝑑 for the LRD

such that it is not only above the 50-year quasi-static fairlead
tension, but also above the 50-year dynamic tensions, to ensure
the device can safely operate in the compliant range throughout
its design life. Typical quasi-static mooring design approaches
require application of a safety factor to the 50-year quasi-static
tension to obtain the design tension, with values typically ranging
from 1.4 to 2 in relevant design codes [17]. As the LRD is
expected to significantly reduce dynamic loads, a low safety factor
of 1.4 is used for this example, such that:

𝑇𝑟𝑎𝑡𝑒𝑑 ≥ 1.4 ∗ 𝑇50𝑦𝑟 ,𝑄𝑆 (15)

To solve this, the analytical model was used to iterate through
values of the TFI curve parameter 𝑒 which is inversely related to
𝑇𝑟𝑎𝑡𝑒𝑑 (see Eq. 14), starting from a high value of 𝑒 such that
the starting rated tension 𝑇𝑟𝑎𝑡𝑒𝑑 is equal to the horizontal force
𝐹𝑒𝑛𝑣. All the other curve parameters were fixed to the values
shown in Table 4. The fairlead tension, mooring configuration
and resulting tension-offset profiles were then computed for each
value of 𝑒, for the given environmental load until the value of
𝑇𝑟𝑎𝑡𝑒𝑑 that fits the criterion (Eq. 15) was reached. In this case,
the 50-year quasi-static (QS) tension was found to be 𝑇50𝑦𝑟 ,𝑄𝑆 =

2.217𝑀𝑁 , which gives 𝑇𝑟𝑎𝑡𝑒𝑑 ≥ 3.10𝑀𝑁 when including the
safety factor (Eq. 15). This is depicted graphically in Figure
13. In this case, the value of 𝑇50𝑦𝑟 ,𝑄𝑆 is only slightly above the
horizontal environmental force 𝐹𝑒𝑛𝑣. This is due to the chain
being relatively light, meaning the additional vertical restoring
force component at the fairlead is small.

The curve with the lowest rated tension is operating above
its rated tension when subjected to the 50-year horizontal load.

FIGURE 13: TOP: LRD TENSION-STRAIN CURVES FOR 7 VALUES
OF Tr ated ; BOTTOM: RESULTING MOORING SYSTEM TENSION-
OFFSET PROFILE FOR EACH CURVE. THE CURVE SATISFYING
THE DESIGN CRITERION IS SHOWN IN BOLD.

This is visible on the tension-offset profile, with the dashed red
line located above the ‘kink’ in the curve. The curve which
satisfies the criterion is operating safely below its rated tension
when subjected to the same load, meaning the LRD would be
operating in its compliant range as intended. While an even
higher rated tension would also be suitable in theory (e.g. 3.5
MN), the resulting tension-offset of the mooring system is stiffer
overall, and less effective at reducing loads.

5.3 Determining the LRD length
In the case of a spring-like LRD (e.g. TFI), the length

of the device determines its maximum extension, which in turn
affects the load reduction potential [18] as well as the resulting
platform offset. In the study thus far, LRDs lengths were set
such that they exhibit 5 m of extension at the rated strain, i.e.
𝐿𝑒 = 10𝑚 for the TFI device. For the curve with a rated tension
of 𝑇𝑟𝑎𝑡𝑒𝑑 = 3.25𝑀𝑁 , the resulting 50-year quasi-static offset is
of 𝑇50𝑦𝑟 ,𝑋 = 13.35𝑚 (can be deduced graphically from Fig. 13).
If this is below the maximum quasi-static offset criterion, a longer
LRD could be used, for added compliance. As an example, the
maximum allowable quasi-static offset is set to 20m. The model
was then used to iterate values of 𝐿𝑒, and resulting tension-
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offset plots were generated. The optimal length of the LRD is
selected by finding the tension-offset profile which is just below
the maximum offset for the 50-year tension. This process is
depicted in Figure 14, and yields 𝐿𝑒 = 15𝑚.

FIGURE 14: TOP: LRD TENSION-EXTENSION CURVES FOR 7 VAL-
UES OF Le ; BOTTOM: RESULTING MOORING SYSTEM TENSION-
OFFSET PROFILE FOR EACH CURVE. THE CURVE SATISFYING
THE MAXIMUM OFFSET CRITERION IS SHOWN IN BOLD.

6. CONCLUSION
This paper presented an analytical quasi-static tension-offset

model of catenary moorings with LRDs with three different non-
linear stiffness curves. The model is applicable to any catenary
mooring scenario, and is of particular interest for initial FOWT
mooring design and analysis. Continuous parameterised equa-
tions, defined for the stiffness curves of three different LRDs,
were incorporated into the static equations for a multi-segmented
catenary mooring. Results from the analytical model, using the
continuous equations for the LRD stiffness, match closely with
results of a commercial FE model, which uses piece-wise inter-
polation of user-defined LRD stiffness cruves. The analytical
model has been packaged into an executable function as well as
an associated web application, which enables visualisation of the
mooring geometry and tension-offset profiles for any input LRD
and mooring design parameters [15].

The effectiveness of the analytical model has also been
demonstrated here through an example quasi-static design sce-
nario, and was used to find an initial LRD design for a given
50-year environmental load. By determining the optimal stiffness
curve, the LRD was ensured to operate below its rated tension,
and by finding the optimal LRD length, it satisfied the maximum
offset criterion while maintaining maximum compliance. This
design approach yields quasi-instantaneous results, and could
provide an efficient starting point for subsequent dynamic analy-
ses.
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