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Abstract—The physical layer security (PLS) of a space-ground
communication system is examined. To improve the security
performance, a pair of reconfigurable intelligent surfaces (RISs)
is integrated into the system and benchmarked against a scheme,
where there is only a single RIS close to the ground station. As
for the double-RIS scenario, we formulate a secrecy rate maxi-
mization problem, and then propose an alternating optimization
(AO) algorithm for jointly optimizing three vectors, namely the
beamformer of the ground station and the reflecting vectors of
two different RISs. Similarly, as for the single-RIS case, we also
propose another AO algorithm for optimizing a pair of vectors,
namely the beamformer of the ground station and the reflecting
vector of the single RIS. Both the double-RIS and the single-
RIS AO algorithms are developed on the basis of the first-order
Taylor expansion and the Dinkelbach’s method, which allow us to
approximate non-convex optimization problems by convex ones.
Our results demonstrate that the proposed double-RIS scheme
outperforms the single-RIS benchmark scheme in terms of its
security.

Index terms—Physical layer security, reconfigurable intelli-
gent surface, alternating optimization, space-ground network.

I. INTRODUCTION

Recently, space-air-ground integrated networks (SAGINs)
have been conceived to include a diverse range of flying
objects, such as satellites, aeroplanes and unmanned aerial
vehicles (UAVs) [1]–[3], in order to expand the coverage area
and for constructing the Internet of flying objects. To clarify
the terminology, SAGINs are constituted by an aeronautical
ah-hoc networks (AANETs) relying on aeroplanes, on flying
ah-hoc network (FANETs) of UAVs, and satellite-terrestrial
networks.1 Furthermore, SAGINs are also envisioned to sup-
port the ubiquitous Internet of Things (IoT) [4]. To enhance
the system performance attained, it is envisioned that reconfig-
urable intelligent surfaces (RISs) will also be integrated into
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1A detailed distinction between AANETs and FANETs is provided in [3].

SAGINs in the sixth-generation (6G) communication systems
[5]. For instance, [6] shows that a satellite-terrestrial system
using RISs efficiently improves the resource utilization and
maximizes the total revenue within a limited coverage area.

However, owing to the broadcast nature of wireless propaga-
tion, the information transmission in SAGINs is vulnerable to
potential eavesdroppers [7]. Hence, the physical-layer (PHY)
security and authentication in wireless systems have become
compelling research topics. Since wireless systems constantly
evolve over time, new security challenges and requirements
continue to arise. Thus, the diversity of the recently-developed
SAGIN architectures will also lead to the diversity of PHY
security solutions, but there is a paucity of literature on this
wide open research topic. As an attractive PHY enhance-
ment technique, reconfigurable intelligent surfaces (RISs) have
shown substantial potential in improving wireless systems,
including but not limited to channel capacity enhancements
[8], energy-efficiency versus spectral-efficiency trade-off [9],
and so on. Hence, RIS-aided PHY security is also a topic
of salient interest [10]–[23]. As a benefit, RISs are capa-
ble of creating additional propagation paths between a pair
of transceivers by beneficially adjusting the reflected signal
phases through software for improving the achievable rate [8].
Moreover, if a wireless system is equipped with a pair of Tx-
Rx RISs, both the spectral efficiency and the coverage of the
system may be improved [24]. Indeed, having more RIS panels
may be expected to glean more energy at the receiver, but
positioning a pair of them strategically, one in the vicinity
of the transmitter and one near the receiver is recommended
[25]. This is because a single RIS provides good reception
at the base station, but not at the destination. However, in
the presence of eavesdroppers, it is not clear how RISs can
improve security. Although the authors of [10]–[23] addressed
some of the relevant security issues, there are numerous open
problems in practical scenarios.

A. State-of-the-art

As one of the first contributions on RIS-aided PHY security,
Yang et al. [10] propose an RIS-aided system and analyze its
secrecy outage probability. In [11], Tang et al. consider a non-
orthogonal multiple access (NOMA) network integrated with
an RIS and analyzed its PHY security. Similar to [11], Zhang
et al. [12] also study the PHY security of an RIS-aided NOMA
network under the assumption of having no line-of-sight paths.
Upon considering a similar setup, Luo et al. [13] evaluate the
impact of RISs on the security by analyzing the degree of
randomness, spectral efficiency and reliability. Indeed, one of
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TABLE I
CONTRASTING OUR CONTRIBUTIONS TO THE LITERATURE

[22] [23] [20] [21] [19] [27] [28] [24] [29] [30] This
Double-RIS aided systems X X X X
Reflection between two RISs X X X
PHY security X X X X X X X
Space-ground communication X X X X X
Space-air-ground integrated networks X X X X
Rician fading X X X X
Joint optimization X X X X X X X X
Temporal correlation in flying ad-hoc scenario X
Spatial correlation among RIS elements X

the main advantages of an RIS is the ability to beneficially
adjust phase shifts but no detailed RIS phase shift optimization
was considered in [10]–[13].

With the objective of maximizing the security level of RIS-
aided wireless systems, some authors have designed formal
optimization methods. To be more specific, Zhang et al.
[14] apply stochastic geometry for modelling the presence
of blockages and analyze the secrecy outage probability and
the average secrecy rate. In [15], Dong et al. consider the
RIS’s ability to adjust the signal’s amplitude for compensating
the severe pathloss of the cascaded RIS channels, and then
optimize the security level using an alternating optimization
algorithm (AO). On the other hand, Hong et al. [16] propose
a secrecy rate maximization technique relying on the opti-
mization of the transmit precoding (TPC) matrix, the artificial
noise covariance and the RIS phase shifts. To deal with this
challenging problem, Hong et al. [16] develop a sophisticated
algorithm based on block coordinate descent and majorization-
minimization techniques. Similar to [16], Tang et al. [17] use
a block coordinate descent technique; however, in contrast to
the above-mentioned contributions, Tang et al. [17] introduce
the so-called jamming signals for confusing the eavesdroppers.
The employment of AO algorithms for joint optimization is
also seen in [20] and [21], where Shu et al. [20] additionally
take directional modulation into account, while Shi et al. [21]
additionally consider the aspects of energy harvesting. On the
other hand, Su. et al. [26] use an RIS for reflecting jamming
signals to eavesdroppers in order to minimize the leakage of
confidential information.

However, all the contributions in [10]–[17] and [20]–[23]
consider terrestrial networks rather than SAGINs. In other
words, none of them study secure transmissions between
transceivers on the ground and in the air. On the other hand,
to address the issues specific to air-ground transmission, the
authors of [18] and [19] conceive secure UAV communications
with the aid of RISs. Indeed, [18] and [19] propose similar
network topologies. However, [18] only considers downlink
transmission, while [19] considers both the downlink and
uplink. Indeed, at the time of writing this manuscript, there
is a paucity of literature on the PHY security of space-ground
communications. Although UAV communications and space-
ground communications may be combined into some rudimen-
tary SAGINs, there are differences in path-loss modelling,
spatial modelling and Doppler shift. In [31], an RIS-aided
satellite system is studied and its power consumption is mini-
mized through beneficially controlling the RIS coefficients, but

the PHY security is not considered. Upon considering space-
ground communications, the authors of [27] and [28] employ a
single RIS either at the satellite or on the ground for supporting
transmission over a long distance; but again, the topic of PLS
is not the focus of [27] and [28]. On the other hand, Niu et
al. [29] focus their attention on the security of a cognitive
satellite-terrestrial network in the presence of eavesdroppers,
where a single RIS is deployed on the ground. In [29], the
AO algorithm is employed for dealing with the associated
joint optimization of beamforming, artificial noise and RIS
designs. The results in [29] show that the benefit of RISs is
more substantial than that of artificial noise. Similarly, Lin
et al. [30] study a single-RIS-aided satellite-terrestrial relay
network, where the RIS is assumed to allow the signals to
penetrate its surface. However, the associated security aspects
are not investigated in [30].

Furthermore, none of the authors of [10]–[21], [29], [30]
study the deployment of multiple RISs for securing transmis-
sions. Thus, the pivotal question arises: whether or not multiple
RISs are capable of guaranteeing more secure transmissions
in the face of eavesdroppers? To partially address this open
research question, Dong et al. [22] are the only authors
using a pair of RISs to support secure transmission in the
absence of line-of-sight (LoS) paths and show the potential
of double RISs in terms of the PHY security. However, Dong
et al. [22] only consider terrestrial communications, while in
complete contrast, we study the challenging scenario of space-
ground communications that normally includes LoS paths [22].
Moreover, the practical considerations associated both with the
high velocities of satellites and with the spatial arrangement
of RIS elements are also addressed in our work. In contrast
to [23], our study considers the placement of two RISs in
front of each other to arrange for reflection between them.
Furthermore, the arrangement of two RISs in [23] does not
create reflection between the two RISs due to the lack of
a propagation path from one RIS to the other. Additionally,
the practical assumptions of having both temporal and spatial
correlations are also absent from the analysis in [23].

Our contributions are boldly and explicitly contrasted to the
literature at a glance in Table I.

B. Our Main Contributions
To elaborate, our main contributions can be summarized as

follows:
• We study a novel space-ground communication system,

which belongs to the family of of SAGINs, relying on
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the integration of a pair of RISs. Moreover, we consider
a range of practical assumptions ignored by most of
the previous literature, such as the coexistence of both
LoS and non-line-of-sight (NLoS) paths, the Doppler
effect imposed on the temporal correlation, and the spatial
configuration of RIS elements.

• Then, we study the potential of double RISs in improving
the security performance, which is also ignored by most
of the previous works (i.e., [10]–[19]). Furthermore, we
also consider a benchmark scheme, where our space-
ground communication system only employs a single
RIS at the source. Our double-RIS scheme advocated is
compared to a single-RIS scheme.

• Specially, to maximize the secrecy rate of the proposed
system, we rely on the first-order Taylor expansion and
on Dinkelbach’s method to develop two variants of our
AO algorithms. To be more specific, the so-called double-
RIS AO algorithm is used as part of the double-RIS
scheme for jointly optimizing the beamforming vector at
the source and the two reflecting matrices at two different
RISs. By contrast, the so-called single-RIS AO algorithm
is used in the single-RIS scheme for jointly optimizing
the beamforming vector and the single reflecting vector.

The rest of this paper is organized as follows. Section II
presents the proposed double RIS-aided space-ground net-
work. In Section III, we formulate our secrecy maximization
problem and propose the double-RIS AO algorithm. In Section
IV, we first present the benchmark scheme, where only a single
RIS is deployed at the ground station, and then propose the
single-RIS AO algorithm. Our numerical results are presented
in Section V and finally, Section VI concludes the paper.

Notations: Rm×n denotes the real field that includes all
real-valued matrices of size m × n; Cm×n denotes the com-
plex field that includes all complex-valued matrices of size
m × n; The operation diag ([z1, . . . , zK ]) diagonalizes a row
vector [z1, . . . , zK ] into a diagonal matrix; Bold lowercase
letters and bold uppercase letters denote vectors and matrices,
respectively; In denotes the identity matrix of size n × n;
The superscripts (·)>, (·)∗, and (·)† represent the transpose,
conjugate, and Hermitian operators, respectively; R{·} de-
notes the real part of a complex-valued matrix; 〈x,y〉 = y†x
denotes the inner product of a pair of complex vectors x and
y; z ∼ CN (m,Σ) is a complex Gaussian random vector
having a mean of m and covariance matrix Σ;∇zf(z) denotes
the gradient of f(z) with respect to (w.r.t.) z; ∇zf(z)

∣∣
z=z0

represents the gradient of f(z) evaluated at z = z0.

II. SYSTEM MODEL

A. Signal Modeling

Let us now consider a satellite-air-ground network (SAGN)
consisting of a ground base station (A), a legitimate satellite
(B) and an undesired satellite (E). We assume that A is
transmitting confidential signals towards B in a scenario,
where there is no the LoS component due to the surrounding

A

E

R1

B

The link between A/R1 and B/R2
The link between A/R1/R2 and E
The A-R1 link and the R2-B link 

R2

Fig. 1. System model.

buildings, trees and walls.2 On the other hand, the eavesdrop-
per (E) remains silent and tries to decode the confidential
signals gleaned from A. To enhance the secure transmission
between A and B, we employ a pair of RISs. To be more
specific, the first RIS (R1) is placed close to A, while the
second RIS (R2) is attached to B. Figure 1 illustrates our
system model.

Let us denote the signal intended for B by s, with the av-
erage transmit power being E

{
|s|2
}

= P . Upon denoting the
beamforming vector by w ∈ CL×1 with ‖w‖2 = tr(ww†) ≤
1, the transmitted signal becomes x = ws. The signal received
at B can be expressed as

yB =
√

ΛBR2
ΩR2R1

ΩR1A/σ0 hBR2
R2HR2R1

R1HR1Aws

+
√

ΛBR1
ΩR1A/σ0 hBR1

R1HR1Aws

+
√

ΛBR2ΩR2A/σ0 hBR2R2HR2Aws

+
√

ΛBA/σ0 hBAws+ nB , (1)

where ΛXY represents the path loss between a certain point
X in the space/air and another point Y on the ground, ΩXY
represents the path loss between two points X and Y on
the ground, R1 = diag

([
ej2πθ1 , . . . , ej2πθN

])
is the diagonal

reflection matrix of R1, R2 = diag
([
ej2πφ1 , . . . , ej2πφN

])
is the diagonal reflection matrix of R2, hBR1 ∈ C1×N is
the B-R1 channel, hBR2 ∈ C1×N is the B-R2 channel,
HR2R1

= [h1R2
, . . . ,hNR2

] ∈ CN×N is the R2-R1 channel,
HR1A ∈ CN×L is the R1-A channel, HR2A ∈ CN×L is
the R2-A channel, hBA ∈ C1×L is the B-A channel, σ0
is the noise variance, and finally nB ∼ CN (0, 1) is the
normalized additive white Gaussian noise (AWGN) at B. Note
that the path loss models are described in Subsection II-B,
while the RIS-related channel models of high-speed scenarios
are described in Subsection II-C.

2It is also worth mentioning that if the distance between B and the ground
is not sufficiently large, or if the distance between B and A is too high, then
there may not exist a LoS path between B and A.
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Similarly, the signal received at E can be expressed as

yE =
√

ΛER2
ΩR2R1

ΩR1A/σ0 hER2
R2HR2R1

R1HR1Aws

+
√

ΛER1
ΩR1A/σ0 hER1

R1HR1Aws

+
√

ΛER2
ΩR2A/σ0 hER2

R2HR2Aws

+
√

ΛEA/σ0 hEAws+ nE , (2)

where hER1
∈ C1×N is the E-R1 channel, hER2

∈ C1×N

is the E-R2 channel, hEA ∈ C1×L is the E-A channel, and
nE ∼ CN (0, 1) is the normalized AWGN at E.

Proposition 1. Given a square matrix X and two column
vectors θ and z, we have Xdiag (θ) z = Xdiag (z)θ.

Proposition 2. Let us assume that diag (φ) is exactly the
same as diag

(
φ>
)
, i.e. diag (φ) = diag

(
φ>
)
. Given a square

matrix X and two column vectors φ and z>, we have the fact
that z diag (φ) X = z diag

(
φ>
)
X = φ>diag (z) X.

Proof. Both propositions can be readily proven after some
manipulations.

We first introduce θ1 = [θ1(1), . . . ,θ1(N)]
>

=[
ej2πθ1 , . . . , ej2πθN

]> ∈ CN×1 and φ2 =

[φ2(1), . . . ,φ2(N)]
>

=
[
ej2πφ1 , . . . , ej2πφN

]> ∈ CN×1
so that R1 = diag (θ1) and R2 = diag (φ2). Then, using
Proposition 1, we can write

hBR1
diag (θ1) HR1Aw = gBR1Aθ1, (3a)

hBR2diag (φ2) HR2Aw = φ>2 gBR2A, (3b)
hER1diag (θ1) HR1Aw = gER1Aθ1, (3c)

hER2
diag (φ2) HR2Aw = φ>2 gER2A, (3d)

where

gBR1A = hBR1
diag (HR1Aw) ∈ C1×N ,

gBR2A = diag (hBR2) HR2Aw ∈ CN×1,
gER1A = hER1

diag (HR1Aw) ∈ C1×N ,

gER2A = diag (hER2
) HR2Aw ∈ CN×1.

Similarly, using both Propositions 1 and 2, we can write

hBR2
diag (φ2) HR2R1

diag (θ1) HR1Aw = φ>2 Bθ1, (4a)

hER2
diag (φ2) HR2R1

diag (θ1) HR1Aw = φ>2 Eθ1, (4b)

where B = diag (hBR2
) HR2R1

diag (HR1Aw) ∈ CN×N and
E = diag (hER2

) HR2R1
diag (HR1Aw) ∈ CN×N .

Upon substituting (3) and (4) into (1) and (2), we arrive at

yB = ξ1φ
>
2 Bθ1s+ ξ2gBR1Aθ1s+ ξ3φ

>
2 gBR2As

+ ξ4hBAws+ nB , (5)

yE = χ1φ
>
2 Eθ1s+ χ2gER1Aθ1s+ χ3φ

>
2 gER2As

+ χ4hEAws+ nE , (6)

where ξ1 =
√

ΛBR2ΩR2R1ΩR1A/σ0, ξ2 =
√

ΛBR1ΩR1A/σ0,
ξ3 =

√
ΛBR2

ΩR2A/σ0, ξ4 =
√

ΛBA/σ0, χ1 =√
ΛER2

ΩR2R1
ΩR1A/σ0, χ2 =

√
ΛER1

ΩR1A/σ0, χ3 =√
ΛER2

ΩR2A/σ0, and χ4 =
√

ΛEA/σ0.

B. Path Loss Modeling

We will consider two different path loss models, namely
the satellite-ground channels (or air-ground channels) and the
other is for terrestrial channels. The path loss between a certain
point X in the space/air and another point on the ground may
be modeled as [32]

ΛXY = −147.55 + 20 log10(fc) + 20 log10(dXY ) + CL,
(7)

where fc (Hz) is the carrier frequency, and dXY (m) is the
distance between X and Y , while CL is the cluster loss that
depends on the elevation angle between the satellite and the
ground object, for instance, at an elevation of 60◦, CL = 26.2
dB. By contrast, as for the pair of points X and Y on the
ground, the path loss can be modelled as

ΩXY = −154.06 + 20 log10(fc) + 20 log10(dXY ). (8)

C. RIS-related Channel Modeling for High-speed Scenarios

1) Temporal Correlation: To clarify the notational usage
in the rest of this paper, let us first consider an arbitrary
channel hXY (t) ∈ CN×1 (or hXY (t) ∈ C1×N ) at time t
between the points X and Y in a high-speed scenario, where
N is the number of RIS elements. Since a line-of-sight (LoS)
component may be present between a pair of network entities,
we can use the Rician fading model to break hXY (t) into

hXY (t) =

√
K

K + 1
hLoSXY (t) +

√
1

K + 1
hNLoSXY (t), (9)

where {·}LoS and {·}NLoS represent the LoS and the non-
line-of-sight (NLoS) components, respectively. In (9), hLoSXY (t)
represents the actual LoS channel, while hNLoSXY (t) represents
the actual NLoS channel at time t. As for the multipath
delay, we denote ĥNLoSXY (t − τ) as the estimate of hNLoSXY (t)
at time (t − τ), with τ being the time delay. The time-
domain correlation between hNLoSXY (t) and ĥNLoSXY (t− τ) can
be expressed as [33]:

hNLoSXY (t) = ρXY ĥNLoSXY (t− τ) +
√

1− ρ2XY eXY (t), (10)

where eXY (t) ∼ CN (0, I) is the estimation error, and ρXY
reflects the Doppler effect due to the high mobility of users in
the system. Note that the channel estimate ĥNLoSXY differs from
the actual channel hNLoSXY , and the difference is modelled by
an independent complex-valued Gaussian error.3 It should be
noted that the model of imperfect channel state information
(CSI) in (10) is widely used in the literature as a benefit of
its tractability (e.g., see [33], [35]). Moreover, we apply this
model of imperfect CSI to every link between two arbitrary
points X and Y . Using Jake’s model [36], ρXY can be
expressed as:

ρXY = J0 (2πfcϑXY τ/clight) (11)

3As for the eavesdropping links, perfect CSI knopwledge may be acquired
when the eavesdropper is registered as a subscribed user [34]. Since every
satellite has to register before commencing its operation, the knowledge of a
malicious satellite’s CSI may indeed be attained.
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where J0(·) is the zero-order Bessel function of the first kind,
ϑXY is the relative velocity between X and Y , and clight is the
speed of light. We can assume ĥNLoSXY (t−τ) ∼ CN

(
0, R̂XY

)
and generate the estimated samples using the Gaussian distri-
bution. For readability, in the following we will drop time
labels t and (t− τ).

2) Spatial Correlation: The estimate R̂XY has to ac-
curately characterize the actual spatial correlation among
antenna/RIS elements, because the practical deployment of
holographic MIMOs (as well as that of large intelligent
surfaces) implies having the arrangement of an infinite number
of elements in a finite space [37], [38]. With this in mind, in
the sequel we will consider the spatial correlation among RIS
elements using the recent findings of [39].

Let us assume that each RIS is a planar surface consisting of
N = N2

0 elements, where N0 is the number of RIS elements
along a horizontal/vertical edge. If δ` is the horizontal/vertical
length of each RIS element, then the area of each RIS element
is equal to A = (δ`)2. According to [39], given an intensity
attenuation µ, the (n,m)-th element of the correlation matrix
R̂XY can be modelled as:4

[R̂]n,m = µA
sin
(
2π
λ ‖un − um‖

)
2π
λ ‖un − um‖

, (12)

where un and um represent the locations of the n-th and m-
th elements in the three-dimensional space, respectively. The
difference un − um can be calculated as

un − um =

 0
(indexn − indexm) δ`(
b (n−1)N0

c − b (m−1)N0
c
)
δ`

 , (13)

where the indexn (or indexm) represents the n-th element (or
that of the m-th element), and b·c truncates the argument.

III. SECURITY-AWARE CAPACITY MAXIMIZATION

A. Double-RIS Problem Formulation

From (5) and (6), we can deduce the instantaneous signal-
to-noise ratios (SNRs) for B and E as follows:

snrB = P ×
∣∣∣ξ1φ>2 Bθ1 + ξ2gBR1Aθ1

+ ξ3φ
>
2 gBR2A + ξ4hBAw

∣∣∣2, (14)

snrE = P ×
∣∣∣χ1φ

>
2 Eθ1 + χ2gER1Aθ1

+ χ3φ
>
2 gER2A + χ4hEAw

∣∣∣2. (15)

The expressions in (14)–(15) facilitate the analysis with respect
to θ1 and φ2, but they do not reveal the involvement of w in
a tangible manner. Fortunately, to derive the SNRs that reveal
the existence of w, we can directly deduce the SNRs from
(1)-(2) as follows:

snrB = P
∣∣∣u†(θ1,φ2)

w
∣∣∣2 , (16)

snrE = P
∣∣∣v†(θ1,φ2)

w
∣∣∣2 , (17)

4If the area A is small but the total RIS area NA theoretically goes to +∞,
then the rank of the correlation matrix approximately reaches πNA/λ2.

where u†(θ1,φ2)
and v†(θ1,φ2)

are 1-by-L row vectors, which
are parameterized by θ1 and φ2. We have

u†(θ1,φ2)
= ξ1hBR2

diag (φ2) HR2R1
diag (θ1) HR1A

+ ξ2hBR1diag (θ1) HR1A + ξ3hBR2diag (φ2) HR2A

+ ξ4hBA (18)

and

v†(θ1,φ2)
= χ1hER2

diag (φ2) HR2R1
diag (θ1) HR1A

+ χ2hER1
diag (θ1) HR1A + χ3hER2

diag (φ2) HR2A

+ χ4hEA. (19)

Remark 1. Note that (14) and (16) are exactly the same.
Furthermore, (15) and (17) are exactly the same. For a given
w, we will use (14) and (15) for analyzing the effect of θ1
and φ2 on the security performance. By contrast, for a given
pair of (θ1,φ2), we will use (16) and (17) for analyzing the
effect w.

The legitimate capacity and the eavesdropping capacity in
bits/s/Hz can be formulated as

CB = log2 (1 + snrB) , (20)
CE = log2 (1 + snrE) . (21)

Accordingly, it is well known that the achievable secrecy
rate can be expressed as Cs = max(0, CB − CE), where
max(0, z) = z for z ≥ 0 and max(0, z) = 0 for z < 0.
In general, if the difference CB −CE increases, it is likely to
increase Cs and thus leading to a better security performance.

The security maximization problem can be formulated as:

max
w,θ1,φ2

log2

(
1 + snrB
1 + snrE

)
(22a)

s.t. |θ1(n)|2 = 1, n ∈ {1, . . . , N}, (22b)

|φ2(n)|2 = 1, n ∈ {1, . . . , N}, (22c)

tr(ww†) = 1. (22d)

Due to the monotonicity of the log2(·) function, maximizing
log2(z) is equivalent to maximizing z. Hence, the above
problem can be equivalently rewritten as:

max
w,θ1,φ2

1 + snrB
1 + snrE

(23a)

s.t. (22b), (22c), (22d). (23b)

B. Double-RIS AO Algorithm

In order to solve the optimization problem formulated
above, we will employ the AO method, which solves mul-
tiple sub-algorithms iteratively. Instead of finding the optimal
values of all the variables at the same time, which is almost
impossible due to the complex relationship among them, the
AO method allows us to deal with each variable at a time in
an iterative manner. As for the k-th iteration, we denote the
values of w, θ1 and φ2 by w[k], θ[k]1 and φ[k]

2 , respectively. To
find the next value w[k+1] of w at the (k+ 1)-th iteration, we
first fix the pair of (θ1 = θ

[k]
1 ,φ2 = φ

[k]
2 ) and solve the sub-

algorithm presented in Sub-section III-B1. Next, we fix the
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pair of (w = w[k+1],φ2 = φ
[k]
2 ) and solve the sub-algorithm

presented in Sub-section III-B2 to find the next value θ[k+1]
1

of θ1. Then, we fix the pair of (w = w[k+1],θ1 = θ
[k+1]
1 )

and solve the sub-algorithm presented in Sub-section III-B3 to
find the next value φ[k+1]

2 of φ2. After multiple iterations, we
can obtain an improved three-tuple (w,θ1,φ2) and terminate
the AO algorithm based on the predetermined number of
iterations, i.e. Kiters, or the predetermined error tolerance εerr.
In the sequel, the sub-algorithms will be presented in detail.

1) Optimizing the beamforming vector: We can update the
value of w at the current (k+ 1)-st iteration, once the values
of θ1 and φ2 have been found at the previous iteration. To
be more specific, given θ1 = θ

[k]
1 and φ2 = φ

[k]
2 , we first

substitute (16)–(17) into (23) and then rewrite the problem
(23) as follows:

max
w

1 + P

∣∣∣∣u†(θ[k]
1 ,φ

[k]
2 )

w

∣∣∣∣2
1 + P

∣∣∣∣v†(θ[k]
1 ,φ

[k]
2 )

w

∣∣∣∣2
s.t. tr(ww†) = 1. (24)

Herein, u
(θ

[k]
1 ,φ

[k]
2 )

and v
(θ

[k]
1 ,φ

[k]
2 )

are the realizations of
the paramaterized vectors u(θ1,φ2) and v(θ1,φ2) at the k-th
iteration. It has been widely exploited that using the Rayleigh-
Ritz theorem [22], the closed-form optimal solution to (24) can
be expressed as

w[k+1] = eigvmax

{(
V[k] +

1

P
I

)−1(
U[k] +

1

P
I

)}
,

(25)

where eigvmax(Z) denotes the eigenvector corresponding to
the largest eigenvalue of a certain matrix Z. Note that U[k]

and V[k] are defined as

U[k] = u
(θ

[k]
1 ,φ

[k]
2 )

u†
(θ

[k]
1 ,φ

[k]
2 )

and
V[k] = v

(θ
[k]
1 ,φ

[k]
2 )

v†
(θ

[k]
1 ,φ

[k]
2 )
.

Once the AO algorithm is terminated after Kiters, we update
the final beamforming solution as w

[Kiters]
opt ← w[Kiters].

2) Optimizing the first RIS: We first rewrite snrB in (14)
and snrE in (15) as follows:

snrB = P
∣∣∣ηBθ1 + η̃B

∣∣∣2 = αB(θ1), (26)

snrE = P
∣∣∣ηEθ1 + η̃E

∣∣∣2 = αE(θ1), (27)

where

ηB =
(
ξ1(φ

[k]
2 )>B + ξ2gBR1A

)
∈ C1×N ,

η̃B =
(
ξ3(φ

[k]
2 )>gBR2A + ξ4hBAw[k+1]

)
∈ C1×1,

ηE =
(
χ1(φ

[k]
2 )>E + χ2gER1A

)
∈ C1×N ,

η̃E =
(
χ3(φ

[k]
2 )>gER2A + χ4hEAw[k+1]

)
∈ C1×1.

Substituting (26) and (27) into (23), we rewrite (23) as

max
θ1

1 + αB(θ1)

1 + αE(θ1)
s.t. (22b). (28)

This problem belongs to the family of fractional programming
(FP) problems, which can be addressed by using Dinkelbach’s
method [40], [41]. Hence, we employ Dinkelbach’s method for
solving (28) in an iterative manner. This means that during the
(k + 1)-st iteration of our AO algorithm, there are multiple
inner-iterations produced by Dinkelbach’s method.5 Since the
AO algorithm has Kiters iterations, (28) will be evaluated Kiters
times by Dinkelbach’s method. Let Q be the maximum number
of inner-iterations required by Dinkelbach’s method. Then, at
the (q + 1)-st inner-iteration of the (k + 1)-st outer-iteration,
we will solve the following inner-problem:

max
θ1

[1 + αB(θ1)]− t[q]1 [1 + αE(θ1)] s.t. (22b). (29)

Herein, t[q]1 is defined as

t
[q]
1 =

1 + αB(θ
[k+1,q]
1 )

1 + αE(θ
[k+1,q]
1 )

(30)

and θ[k+1,q]
1 is the solution at the q-th inner-iteration of the

(k + 1)-st outer-iteration. Note that the initial value of t[q]1

is t
[0]
1 =

1+αB(θ
[k,Q]
1 )

1+αE(θ
[k,Q]
1 )

, where θ[k,Q]
1 is the solution found

at the last inner-iteration of the previous k-th outer-iteration.
According to Dinkelbach’s method, solving (29) at the (k+1)-
st outer-iteration will yield the solution θ[k+1,q+1]

1 , which is
better than the previous solution θ[k+1,q]

1 because t[q+1]
1 > t

[q]
1 .

The convergence of Dinkelbach’s method is characterised in
Appendix C.

The problem (29) is the same as the following one:

max
θ1

f1(θ1|t[q]1 ) s.t. (22b). (31)

Herein, f1(θ1|t[q]1 ) is defined as

f1(θ1|t[q]1 ) =
1

P

(
αB(θ1)− t[q]1 αE(θ1)

)
=
∣∣ηBθ1 + η̃B

∣∣2 − t[q]1

∣∣ηEθ1 + η̃E
∣∣2

= θ†1

(
η†BηB − t

[q]
1 η
†
EηE

)
θ1

+ 2R
{(
η̃∗BηB − t

[q]
1 η̃
∗
EηE

)
θ1

}
+ |η̃B |2 − t[q]1 |η̃E |2. (32)

Proposition 3. Given A ∈ CM×N , b ∈ CM×1 and z0 ∈
CM×1, the following inequality always holds true

‖Az + b‖2 ≥ 2R
{(

z†0A
† + b†

)
Az
}

+ ‖b‖2 − ‖Az0‖2, (33)

where z ∈ CN×1 is an arbitrary vector. The equality “=”
occurs at z = z0.

Proof. See Appendix A.

Let λ[q]1 be the maximum eigenvalue of the rank-two Her-
mitian symmetric matrix η†BηB − t

[q]
1 η
†
EηE . Then, we have

θ†1

(
η†BηB − t

[q]
1 η
†
EηE

)
θ1

5For readability, we discuss the convergence in Appendix C.
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= θ†1

(
η†BηB − t

[q]
1 η
†
EηE + |λ[q]1 |IN

)
θ1 − |λ[q]1 |θ

†
1INθ1

≥ 2R
{

(θ
[k+1,q]
1 )†

(
η†BηB − t

[q]
1 η
†
EηE + |λ[q]1 |IN

)
θ1

}
− (θ

[k+1,q]
1 )†

(
η†BηB − t

[q]
1 η
†
EηE

)
θ
[k+1,q]
1 − 2|λ[q]1 |N,

(34)

where the inequality is obtained by using Proposition (33) and
the constraint (22b).

Based on (32) and (34), we arrive at:

f1(θ1|t[q]1 ) ≥ f [q]1 (θ1) = 2R
{
b
[q]
1 θ1

}
+ c

[q]
1 , (35)

where

b
[q]
1 = η̃∗BηB − t

[q]
1 η̃
∗
EηE

+ (θ
[k+1,q]
1 )†

(
η†BηB − t

[q]
1 η
†
EηE + |λ[q]1 |IN

)
, (36)

c
[q]
1 = |η̃B |2 − t[q]1 |η̃E |2 − 2|λ[q]1 |N

− (θ
[k+1,q]
1 )†

(
η†BηB − t

[q]
1 η
†
EηE

)
θ
[k+1,q]
1 . (37)

Thus, to update θ[k+1,q+1]
1 , we solve the minorant maxi-

mization problem of (31) as follows:

max
θ1

f
[q]
1 (θ1) s.t. (22b). (38)

The above problem is maximized when R
{
b
[q]
1 θ1

}
=

|b[q]1 θ1|, which leads to the closed-form solution:

θ
[k+1,q+1]
1 (n) = e−j∠b

[q]
1 , n ∈ {1, . . . , N}. (39)

After Q inner-iterations, we will update θ[k+1]
1,opt ← θ

[k+1,Q]
1

as the solution of (28). After the entire AO algorithm is
terminated, the final solution of the original problem (23) will
be θ[Kiters]

1,opt ← θ
[Kiters,Q]
1 (not including w and φ2).

3) Optimizing the second RIS: Once w and θ1 have been
found, we can update the value of φ2. In doing so, we first
rewrite snrB in (14) and snrE in (15) as

snrB = P
∣∣∣ω>Bφ2 + ω̃B

∣∣∣2 = βB(φ2), (40)

snrE = P
∣∣∣ω>Eφ2 + ω̃E

∣∣∣2 = βE(φ2), (41)

where we have

ωB = (ξ1Bθ
[k+1]
1 + ξ3gBR2A) ∈ CN×1,

ω̃B = (ξ2gBR1Aθ
[k+1]
1 + ξ4hBAw[k+1]) ∈ C1×1,

ωE = (χ1Eθ
[k+1]
1 + χ3gER2A) ∈ CN×1,

ω̃E = (χ2gER1Aθ
[k+1]
1 + χ4hEAw[k+1]) ∈ C1×1.

Substituting (40) and (41) into (23), we rewrite (23) as

max
φ2

1 + βB(φ2)

1 + βE(φ2)
s.t. (22c). (42)

Using Dinkelbach’s method, we can solve (42) in an iterative
manner. Recall that Dinkelbach’s method aims for solving a
sequence of multiple inner problems. Let Q be the number
of inner-iterations required by Dinkelbach’s method. At the

(q + 1)-st inner-iteration of the (k + 1)-st outer-iteration, we
will solve the following inner-problem:

max
φ2

[1 + βB(φ2)]− t[q]2 [1 + βE(φ2)] s.t. (22c), (43)

where t[q]2 is defined as

t
[q]
2 =

1 + βB(φ
[k+1,q]
2 )

1 + βE(φ
[k+1,q]
2 )

(44)

and φ[k+1,q]
2 is the solution at the q-th inner-iteration of the

same (k + 1)-th outer-iteration. Let us denote the solution of
(43) by φ[k+1,q+1]

2 . According to the principle of Dinkelbach’s
method, φ[k+1,q+1]

2 is a better point than φ[k+1,q]
2 because

t
[q+1]
2 > t

[q]
2 . For further details, please refer to Appendix C.

The problem (43) is the same as the following one:

max
φ2

f2(φ2|t[q]2 ) s.t. (22c), (45)

where

f2(φ2|t[q]2 ) =
1

P

(
βB(φ2)− t[q]2 βE(φ2)

)
=
∣∣ω>Bφ2 + ω̃B

∣∣2 − t[q]2

∣∣ω>Eφ2 + ω̃E
∣∣2

= φ†2

(
ω∗Bω

>
B − t

[q]
2 ω

∗
Eω
>
E

)
φ2

+ 2R
{(
ω̃∗Bω

>
B − t

[q]
2 ω̃
∗
Eω
>
E

)
φ2

}
+ |ω̃B |2 − t[q]2 |ω̃E |2. (46)

Let λ[q]2 be the maximum eigenvalue of the rank-two Her-
mitian symmetric matrix ω∗Bω

>
B − t

[q]
2 ω

∗
Eω
>
E . Then, we have

φ†2

(
ω∗Bω

>
B − t

[q]
2 ω

∗
Eω
>
E

)
φ2

= φ†2

(
ω∗Bω

>
B − t

[q]
2 ω

∗
Eω
>
E + |λ[q]2 |IN

)
φ2 − |λ[q]2 |φ

†
2INφ2

≥ 2R
{

(φ
[k+1,q]
2 )†

(
ω∗Bω

>
B − t

[q]
2 ω

∗
Eω
>
E + |λ[q]2 |IN

)
φ2

}
− (φ

[k+1,q]
2 )†

(
ω∗Bω

>
B − t

[q]
2 ω

∗
Eω
>
E

)
φ

[k+1,q]
2 − 2|λ[q]2 |N,

(47)

where the inequality is obtained by using Proposition (33) and
the constraint (22c).

Based on (46) and (47), we arrive at:

f2(φ2|t[q]2 ) ≥ f [q]2 (φ2) = 2R
{
b
[q]
2 φ2

}
+ c

[q]
2 , (48)

where

b
[q]
2 = ω̃∗Bω

>
B − t

[q]
2 ω̃
∗
Eω
>
E

+ (φ
[k+1,q]
2 )†

(
ω∗Bω

>
B − t

[q]
2 ω

∗
Eω
>
E + |λ[q]2 |IN

)
, (49)

c
[q]
2 = |ω̃B |2 − t[q]2 |ω̃E |2 − 2|λ[q]2 |N

− (φ
[k+1,q]
2 )†

(
ω∗Bω

>
B − t

[q]
2 ω

∗
Eω
>
E

)
φ

[k+1,q]
2 (50)

To update φ[k+1,q+1]
2 , we solve the minorant maximization

problem of (45) as follows:

max
φ2

f
[q]
2 (φ2) s.t. (22c), (51)
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Algorithm 1 : The double-RIS AO algorithm

1: Initialization with feasible w[0], θ[0]1 and φ[0]
2

2: for 0 ≤ k ≤ Kiters − 1 do
3: Calculate the beamforming vector w

[k+1]
opt using (25)

4: for 0 ≤ q ≤ Q− 1 do
5: Calculate the RIS vector θ[k+1,q+1]

1 using (39)
6: end for
7: Update θ[k+1]

1,opt ← θ
[k+1,Q]
1

8: for 0 ≤ q ≤ Q− 1 do
9: Calculate the RIS vector φ[k+1,q+1]

2 using (52)
10: end for
11: Update φ[k+1]

2,opt ← φ
[k+1,Q]
2

12: end for
13: return

(
w

[Kiters]
opt ,θ

[Kiters]
1,opt ,φ

[Kiters]
2,opt

)
as the trio of solutions

which admits the closed-form solution

φ
[k+1,q+1]
2 (n) = e−j∠b

[q]
2 , n ∈ {1, . . . , N}. (52)

After Q inner-iterations, we will update φ[k+1]
2,opt ← φ

[k+1,Q]
2

as the solution of (42). Once the entire AO algorithm is
terminated, the final solution of the original problem (23) will
be φ[Kiters]

2,opt ← φ
[Kiters,Q]
2 (not including w and θ1).

C. Complexity Analysis

Let us first define Cdouble
w as the complexity of evaluating

(25), Cdouble
θ1

as the complexity of solving the problem (38),
and Cdouble

φ2
as the complexity of solving the problem (51).

Within each AO iteration, the evaluation of (25) is performed
only once, while the inner-convex problems (38) and (51)
are solved Q times; thus, the complexity of finding w, θ1
and φ2 is O

(
Cdouble
w +Q(Cdouble

θ1
+ Cdouble

φ2
)
)

. Moreover, the
employment of the AO algorithm requires Kiters iterations, thus
the complexity of the double-RIS AO algorithm can be approx-
imated by O

(
KitersCdouble

w +KitersQ(Cdouble
θ1

+ Cdouble
φ2

)
)

. In Al-
gorithm 1, we summarize the proposed double-RIS AO algo-
rithm.

IV. BENCHMARK SCHEME: SOLELY USING A SINGLE RIS

In this section, we consider a benchmark scheme, where
there is only a single RIS (i.e. R1) at the ground station. An
AO algorithm is also proposed for maximizing the secrecy rate
subject to the predetermined constraints.

A. Single-RIS Problem Formulation

Since R2 is not used in the benchmark scheme, we can
express the received signal at B as

yB =
√

ΛBR1
ΩR1A/σ0 hBR1

R1HR1Aws

+
√

ΛBA/σ0 hBAws+ nB . (53)

Note that ỹB in (53) is deduced from the substitution of R2 =
0 into (1). Also, we can express the signal received by E as

yE =
√

ΛER1
ΩR1A/σ0 hER1

R1HR1Aws

+
√

ΛEA/σ0 hEAws+ nE (54)

by substituting R2 = 0 into (2).
Then, the SNRs for B and E in the benchmark scheme can

be formulated as follows:

snrB = P ×
∣∣∣ξ2gBR1Aθ1 + ξ4hBAw

∣∣∣2 , αB(θ1), (55)

snrE = P ×
∣∣∣χ2gER1Aθ1 + χ4hEAw

∣∣∣2 , αE(θ1), (56)

where gBR1A and gER1A are defined in (3a) and (3c),
respectively. Note that ξ2, ξ4, χ2 and χ4 are defined right after
(5) and (6). Finally, we can formulate the following security
optimization problem:

max
w,θ1

1 + snrB
1 + snrE

s.t. (22b), (22d). (57)

For comparison, the result obtained through the benchmark
problem (57) will be compared to the result obtained through
the proposed double-RIS problem (23).

The AO algorithm presented in this section will be termed
as the single-RIS AO algorithm. The main difference between
the two AO algorithms is that the double-RIS AO algorithm
deals with three variables w, θ1 and φ2, while the single-RIS
AO algorithm only deals with w and θ1.

B. The single-RIS AO Algorithm

1) Finding w: Let us first define

u†(θ1) = ξ2hBR1
diag (θ1) HR1A + ξ4hBA, (58)

v†(θ1) = χ2hER1
diag (θ1) HR1A + χ4hEA. (59)

Then, the single-RIS problem (57) can be rewritten as

max
w

1 + P

∣∣∣∣u†(θ[k]
1 )

w

∣∣∣∣2
1 + P

∣∣∣∣v†(θ[k]
1 )

w

∣∣∣∣2
s.t. tr(ww†) = 1. (60)

To solve (60), we employ the Rayleigh-Ritz theorem that leads
to the following optimal solution:

w[k+1] = eigvmax

{(
V

[k]
+

1

P
I

)−1(
U

[k]
+

1

P
I

)}
,

(61)

where U
[k]

= u
(θ

[k]
1 )

u†
(θ

[k]
1 )

and V
[k]

= v
(θ

[k]
1 )

v†
(θ

[k]
1 )
.

2) Finding θ1: Given w = w[k+1], we rewrite (57) as
follows:

max
θ1

1 + αB(θ1)

1 + αE(θ1)
s.t. (22b). (62)

Following the same method of solving (28) as in Sub-section
III-B2, we can solve (62) by using Dinkelbach’s method. To
be more specific, we will solve the following inner-problem at
the (q + 1)-st inner-iteration of the (k + 1)-st outer-iteration:

max
θ1

[1 + αB(θ1)]− t[q]1 [1 + αE(θ1)] s.t. (22b), (63)
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where t[q]1 is defined as t[q]1 =
1+αB(θ

[k+1,q]
1 )

1+αE(θ
[k+1,q]
1 )

, and θ[k+1,q]
1 is

the solution at the previous inner-iteration of the same outer-
iteration. After solving (63) Q times, we will update θ[k+1]

1,opt ←
θ
[k+1,Q]
1 as the solution to (62).

C. Complexity Analysis

In our numerical analysis, some eigenvalue decomposi-
tions have to be performed, relying for example on the QR,
BR and Lanczos algorithms [42]. Thus, the complexity of
computing the eigenvector in (61) depends on the choice
of the specific built-in Matlab/Python libraries and packages.
At a high level, let us define Csingle

w as the complexity of
evaluating (61), and Csingle

θ1
as the complexity of solving the

problem (63). Since (63) is solved Q times to find the
solution of (62), the complexity of finding θ1 is O

(
QCsingle

θ1

)
.

Finally, due to the employment of the AO algorithm, finding
w as well as θ1 is performed Kiters times, the complexity
of the single-RIS AO algorithm is approximately given by
O
(
KitersCsingle

w +KitersQCsingle
θ1

)
.

V. NUMERICAL RESULTS

In this section, we present numerical results and compare
the security performance of the double-RIS scheme to that of
the single-RIS scheme. Unless otherwise stated, the system
parameters used for all figures include: the carrier frequency
of fc = 3 GHz; Rician factor of K = 50 (approx. 17 dB);
time delay of τ = 10−3 ms; the number of outer-iterations
Kiters = 10; the number of inner-iterations Q = 10; the
velocity of each satellite ϑAB = ϑAE = 28000 km/h; the
distances dAB ≈ dR2A ≈ dR1B ≈ dR1R2 ≈ 200 km, dAE ≈
dR1E ≈ 250 km, dR1A ≈ dR2B ≈ 0.1 km, dR2E ≈ 245
km; the noise variance σ0 = BW×$Boltzmann ×$temp ×$fig,
where BW (Hz) is the bandwidth, $Boltzmann = 1.38× 10−23

(Joule/Kelvin) is the Boltzmann constant, $temp (Kelvin) is
the noise temperature, and $fig (dB) is the noise figure. Upon
setting BW = 20 MHz, $temp = 290 Kelvin and $fig = 10
dB, we have σ0 ≈ 8 × 10−23 W. It should be noted that the
carrier frequency fc can be chosen between 2 GHz and 20 GHz
(according to [32]), while the Rician factor should be higher
than zero because K = 0 indicates that the LoS component
does not exist, which is not the case for a space-ground
network. Indeed, when a satellite passes over, it becomes
visible and there exists a strong LoS component. Additionally,
the distances and velocities of the satellites comply with the
records in [43], [44]. On the other hand, since the most
important variables are the transmit power P , as wel as the
number of antennas L, and the number of RIS elements N , we
will mainly provide numerical results versus these variables.

A. Performance of Using Double RISs

Figure 2 shows the achievable rates CB and CE versus
the transmit power P . Observe that increasing the number
of antennas will expand the gap between CB and CE . To
be more specific, the blue dotted curve (i.e. CB at L = 1)
and the red curve (i.e. CE at L = 1) are quite close to each

Fig. 2. The achievable rate of legitimate channel, i.e. CB , and that of
eavesdropping channel, i.e. CE , versus the transmit power P , given that the
number of per-RIS elements is N = 16.

Fig. 3. The secrecy rate Cs versus the transmit power P , given that the
number of per-RIS elements is N = 16.

other. By contrast, at L = 3, the gap between CB (i.e. the
blue dashed curve with square markers) and CE (i.e. the red
dashed curve with square markers) is larger. This implies that
the secrecy rate, which relies on the gap between CB and
CE , will be improved by increasing L. Given that L is also
the dimension of the beamforming vector w, the result seen
in Fig. 2 addresses the importance of w in expanding the
difference between CB and CE , regardless whether we use a
single RIS or two RISs.

Figure 3 shows the secrecy rate Cs versus the transmit
power P . Letting the number of antennas L be a parameter that
varies, it is plausible that the secrecy rate increases with the
transmit power. For L = 1, the increase of Cs is insignificant.
By contrast, for L ≥ 2, the increase of Cs becomes more
apparent. However, it seems that the rate of the increase of
Cs reduces for higher values of L. This might suggest that
Cs would reach its upper bound at high L. Additionally, we
recall that increasing L will make the AO algorithm more
complex, because the search space expands. Hence, it seems
unnecessary to use too many antenna elements for security
improvement.
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Fig. 4. The secrecy rate Cs versus the transmit power P , given that the
number of per-RIS elements is N = 16.

Fig. 5. The secrecy rate Cs versus the number of per-RIS elements N , given
that the number of antennas is L = 3.

Figure 4 depicts the secrecy rate Cs as a function of the
number of antennas L, parameterized by the transmit power
P . Observe that the secrecy rate is improved upon increasing
the transmit power. Moreover, it is shown that secrecy rate
tends to be increased upon increasing the number of antennas,
confirming our observation for Figure 2, namely that the
secrecy rate is improved by increasing the number of antennas.
Note that the solutions found by the AO algorithm may fall
within some saddle point. If the saddle point trapping the
solutions at L = 4 is not significantly better than the one
trapping the solution at L = 3, it may be expected that the
secrecy rate is slightly eroded as shown in Fig. 4. But again,
the general trend is still of an increasing nature.

Figure 5 depicts the secrecy rate Cs versus the number of
elements N of each RIS. Note that Cs can also be considered
as a function of N0, where N0 is the number of elements along
the horizontal/vertical edge of an RIS grid. Although there is a
modest valley at N = 72, a general upwards trend is observed
for a range of N . Although Cs at N = 62 is higher than Cs at
N = 72, this may be because when N varies from 36 to 49,
the search space of the AO algorithm expands and therefore
has more saddle points, local maxima and minima. Finally,

Fig. 6. The achievable rate of legitimate satellite, i.e. CB , versus the transmit
power P in two different schemes, given that the number of per-RIS elements
is N = 16.

Fig. 5 confirms again that Cs increases with P , regardless of
the change of N .

B. Double-RIS versus Single-RIS Scheme

Figures 6–8 show CB , CE and Cs versus P , respectively,
concerning both the double-RIS scheme and the single-RIS
scheme for comparison. It is worth mentioning that the trends
of CB , of CE and of Cs are not strictly monotonic versus P ,
because all the curves in Fig. 6–8 are drawn based on multiple
markers, each corresponding to a value obtained through the
AO algorithm’s execution. More explicitly, CB , CE and Cs
are not only dependent of P , but also on the near-optimal
solution found by the AO algorithm. CB , CE and Cs do not
necessarily increase (or decrease) with P all the time. For
example, at P = P1, the AO algorithm’s execution might yield
a near-optimal solution that is worse than the one at P = P2,
regardless of P1 > P2. The details will be presented below.

In Figure 6, the double-RIS scheme is compared to the
single-RIS scheme in terms of CB versus P . To distinguish
the two schemes, we denote CB in the single-RIS case by C(1)

B

and CB in the double-RIS case by C(2)
B . In both schemes, we

observe that C(1)
B and C(2)

B increase with P and the difference
between C

(1)
B and C

(2)
B increases with L. Indeed, for L = 2

antennas, C(1)
B and C

(2)
B are almost the same for P ≥ 10−2

W. However, for L = 5 antennas, the gap becomes more
distinguishable and it is about 0.35 bits/s/Hz.

In Figure 7, the double-RIS scheme is compared to the
single-RIS scheme in terms of CE versus P . As mentioned
earlier, P is not the only factor determining the shape of the
CE curve. Thus, there is a modest valley at P = 10−3 W in
the both cases. This may be caused by a near-optimal solution,
corresponding to P = 10−3 W, which is worse than the one
corresponding to P = 10−4. Moreover, it seems that if P
becomes larger (e.g. P = 10−1 W or P = Pmax = 1 W), the
influence of P on CE will become more significant while the
influence of the AO algorithm will be slightly reduced. Thus,
we can say that in general, CE increases with P . Additionally,
when comparing the double-RIS scheme to the single-RIS
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Fig. 7. The achievable rate of undesired satellite, i.e. CE , versus the transmit
power P in two different schemes, given that the number of per-RIS elements
is N = 16.

Fig. 8. The secrecy rate Cs versus the transmit power P in two different
schemes, given that the number of per-RIS elements is N = 16.

scheme, we see that there is no significant difference between
C

(1)
E and C(2)

E , where C(1)
E is CE in the single-RIS case and

C
(2)
E is CE in the double-RIS case.
Figure 8 depicts the secrecy rate Cs versus the transmit

power P , parameterized by the number of antennas L. Addi-
tionally, the double-RIS scheme is compared to the single-RIS
scheme in terms of Cs. Observe that Cs increases both with
P and L, regardless whether we employ two RISs or a single
one. However, Cs in the double-RIS case (denoted by C

(2)
s )

is higher than Cs in the single-RIS case (denoted by C
(1)
s ).

This suggests that the security performance is further improved
with the addition of the second RIS. More interestingly, the
difference |C(2)

s −C(1)
s | between the two schemes will become

more significant, when L increases. For example, for L = 2

antennas, C(2)
s is close to C(1)

s , but for L = 10 antennas, the
value of |C(2)

s −C(1)
s | is higher. To elaborate a little further, we

recall that the double-RIS AO algorithm considers w,θ1,φ2,
while the single-RIS AO algorithm considers w,θ1. Hence, we
see that the presence of φ2 in the double-RIS case improves
the performance further. However, the second reflecting vector
φ2 is not the most important factor. Indeed, the beamforming

Fig. 9. The secrecy rate Cs versus the number of per-RIS elements N in
two different schemes, given that the number of antennas is L = 3.

Fig. 10. A comparison between the proposed inner-convex approximation
algorithms and the exhaustive search.

vector w, whose dimension relies on the number of antennas
rather than on the RIS size, is a more important factor in
determining the security improvement attained.

Figure 9 compares the double-RIS and the single-RIS
scheme in terms of Cs versus N . It confirms again the
argument that a general upwards trend is observed for a range
of N . Moreover, the double-RIS scheme still outperforms its
counterpart at any value of N . Indeed, while the single-RIS
AO algorithm harnesses only a single reflecting vector θ1
of size N × 1, the double-RIS AO algorithm harnesses two
reflecting vectors θ1 and φ2 of N × 1. Thus, the search space
in the double-RIS case is larger than in the single-RIS case.
Consequently, the rate of change of C(2)

s is higher than that
of C(1)

s .
Figure 10 compares the exhaustive search to the proposed

algorithms in both scenarios (i.e., the single-RIS and double-
RIS scenarios). It shows the efficiency of the proposed algo-
rithms in finding near-optimal solutions, which result in a near-
optimal security performance. Indeed, the gap between the
exhaustive search and both the proposed algorithms becomes
insignificant. Moreover, Figure 10 shows that using a pair of
Tx & Rx RISs is better than using a single one in terms of
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the security attained. Furthermore, increasing the number of
transmit antennas improves the security in both cases.

VI. CONCLUSIONS

In this paper, we have considered two types of RIS-aided
space-ground networks: i) the double-RIS scheme and ii) the
single-RIS scheme. In each scheme, an AO algorithm has
been proposed for optimizing the beamformer and the RIS
reflecting coefficients so that the secrecy rate is maximized.
The numerical results have shown that the security level
is improved upon increasing the number of antennas L, as
well as by increasing the number of per-RIS elements N .
The double-RIS scheme outperforms the single-RIS method
in terms of security, thus we recommend using two RISs.
However, increasing L does not guarantee that the difference
between the two schemes will become more significant. This
means that the impact of the beamformer at the ground station
seems to be higher than that of the RIS reflecting coefficients.
On the other hand, the performance difference between the two
cases will be augmented upon increasing N . Thus, multiple
RISs can be used for improving the security performance when
a space-ground network employs a small number of antennas,
but the use of multiple RISs may be costly and less effective
when the number of antennas is sufficiently large. As an open
question, it may be necessary to further explore the theoretical
limit of using multiple RISs (i.e., more than two RISs) in
future research.

APPENDIX

A. Proof of Proposition 3

It is obvious that

0 ≤ ||(Az + b)− (Az0 + b)||2
= ||Az + b||2 + ||(Az0 + b)||2||2
−2<{(z†0A† + b†)(Az + b)}

= ||Az + b||2 − 2<{
(
z†0A

† + b†
)

Az}
−||b||2 + ||Az0||2,

yielding the inequality (33) and completing the proof.
To illustrate the Proposition 3, please refer to Appendix B

for more details.

B. Illustration of Proposition 3

To illustrate Proposition 3, let us commence with a function
f(z) = |z + 3|2, −10 ≤ z ≤ 10. By Proposition 3, we
have f(z) ≥ 2(a + 3)z + 9 − a2 , g(z|a), where a is a
predetermined parameter. The equality occurs at z = a, thus
the parameter a is also the tangential point. According to
the disciplined convex programming (DCP) rules [45], it is
impossible to solve the problem maxz f(z), s.t. z ∈ Z ,
{z ∈ R1×1| − 10 ≤ z ≤ 10}, because the objective function
f(z) is a convex function. Instead, we find z that maximizes
the lower bound function g(z|a) in an iterative manner. In
other words, within a certain iteration, given the parameter
a, the inner-approximation problem of maxz∈Z g(z|a) will be
solved. After each iteration, the parameter a will be updated
so that the solution is improved. Figure 11 depicts the process

Fig. 11. An illustration of finding near optimal solutions using the first-order
Taylor expansion. The tangent line g(z|a) to the curve f(z) is iteratively
updated over iterations.

of updating g(z|a) and improving the approximate solution in
this example. To be more specific, in the 1-st iteration, starting
with a = z[0] (say z[0] , 0), we have g(z|a = z[0]) = 6z + 9.
The solution of the problem maxz∈Z g(z|z[0]) becomes z =
z[1] = 10, which will be used as the parameter in the next
iteration. In the 2-nd iteration, we replace a by z[1] to update
the lower bound function of g(z|a = z[1]) = 26z − 91. Now,
the solution becomes z = z[2] = 10. Since there is no further
improvement, i.e. |z[2] − z[1]| = 0, the inner-approximation
terminates after as few as two iterations.

Let us consider another example, where the objective func-
tion f(z) is the same as in the above example, except that
z ∈ Z ′ , {z ∈ C1×1| − 5 ≤ R {z} , I {z} ≤ 10} is
now a complex-valued random variable. Figure 12 depicts
the process of updating the tangential planes to the curve
f(z) and finding near-optimal solutions. Commencing with
a = z[0] = 1 − 1j, we have the tangential plane g(z|z[0]) =
2R{(4 + 1j)z} + 7 in the 1-st iteration. The solution z[1]

of the problem maxz∈Z′ g(z|z[0]) is used as the parameter in
the next iteration. After 3 iterations, the near-optimal solution
becomes similar to the optimal one.

C. Convergence of Dinkelbach’s method

Consider that Dinkelbach’s method aims for maximizing a
certain concave function OF(z|t) = f(z)−t[q]g(z), where z is
the variable to be optimized and t[q] = f(z[q])

g(z[q])
is a parameter

that relies on the result of the q-th iteration. Herein, z[q] is
the solution obtained at the q-th iteration. Once OF(z|t) is
maximized at the (q + 1)-st iteration, we will obtain z[q+1],
which is a better than z[q] for the following reason:

OF(z[q+1]|t[q]) ≥ OF(z[q]|t[q])
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Fig. 12. The tangent plane g(z|a) to the curve f(z) is iteratively updated after each iteration. Herein, we have a = z[0] in the 1-st iteration, a = z[1] in
the 2-nd iteration, and a = z[2] in the 3-rd iteration. The near optimal solution z = z[2], which is close to the optimal one z∗, can be found after the 3-rd
iteration.

⇔ f(z[q+1])− t[q]g(z[q+1]) ≥ f(z[q])− t[q]g(z[q]). (64)

The right-hand side of (64) is equal to 0 due to the definition
of t[q] = f(z[q])

g(z[q])
. This implies the following:

f(z[q+1])− t[q]g(z[q+1]) ≥ 0⇒ t[q] <
f(z[q+1])

g(z[q+1])
. (65)

Once again, substituting t[q] = f(z[q])
g(z[q])

into (65), we have

f(z[q])

g(z[q])
<
f(z[q+1])

g(z[q+1])
. (66)

Since the ratio f(z)
g(z) is what we want to maximize, the

inequality (66) implies that the ratio f(z)
g(z) increases after each

iteration and thus will converge to the maximal value.
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