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ABSTRACT 

Background: Biological heart age estimation can provide insights into cardiac aging. 

However, existing studies do not consider differential aging across cardiac regions. 

Purpose: To estimate biological age of the left ventricle (LV), right ventricle (RV), 

myocardium, left atrium, and right atrium using magnetic resonance imaging radiomics 

phenotypes and to investigate determinants of aging by cardiac region. 

Study type: Cross-sectional. 

Population: 18,117 healthy UK Biobank participants including 8,338 men (mean 

age=64.2±7.5) and 9,779 women (mean age=63.0±7.4). 

Field Strength/Sequence: 1.5 T/balanced steady-state free precession. 

Assessment: An automated algorithm was used to segment the five cardiac regions, from 

which radiomic features were extracted. Bayesian ridge regression was used to estimate 

biological age of each cardiac region with radiomics features as predictors and chronological 

age as the output. The "age gap” was the difference between biological and chronological 

age. Linear regression was used to calculate associations of age gap from each cardiac region 

with socio-economic, lifestyle, body composition, blood pressure and arterial stiffness, blood 

biomarkers, mental well-being, multi-organ health, and sex hormone exposures (n=49). 

Statistical Test: Multiple testing correction with false discovery method (threshold=5%).  

Results: The largest model error was with RV and the smallest with LV age (mean absolute 

error in men: 5.26 vs 4.96 years). There were 172 statistically significant age gap 

associations. Greater visceral adiposity was the strongest correlate of larger age gaps, e.g., 

myocardial age gap in women (Beta=0.85, p=1.69x10-26). Poor mental health associated with 

large age gaps, e.g., “disinterested” episodes and myocardial age gap in men (Beta=0.25, 



p=0.001), as did a history of dental problems (e.g., LV in men Beta=0.19, p=0.02). Higher 

bone mineral density was the strongest associate of smaller age gaps, e.g., myocardial age 

gap in men (Beta=-1.52, p=7.44x10-6). 

Data Conclusion: This work demonstrates image-based heart age estimation as a novel 

method for understanding cardiac aging. 

Key words: aging, cardiac imaging; cardiac health; radiomics. 

 

INTRODUCTION  

Epidemiologic trends indicate aging global populations and increasing burden from diseases 

of older age(1). Cardiovascular diseases (CVDs) are the most common cause of disability and 

premature death worldwide and occur more commonly in older individuals(2). Optimizing 

healthy cardiac aging is a global public health priority(3). 

Cardiac imaging may capture distinct age-related cardiac alterations. Magnetic 

resonance imaging (MRI) is the reference modality for cardiac chamber quantification and 

can provide evaluation of myocardial tissue character(4). 

MRI derived phenotypes (IDPs) permit non-invasive characterization of 

cardiovascular health and detection of preclinical organ-level remodeling (5). Alteration of 

MRI phenotypes reflects exposure to specific cardiovascular stressors, which may 

differentially impact individual cardiac chambers. For instance, chronic pulmonary disorders 

are known to preferentially impact right atrial and right ventricular phenotypes(6); whilst 

hypertension related remodeling primarily affects the left heart(7). Thus, the exposure profile 

of an individual can determine the pattern of aging across different heart structures. The 

recognition of such remodeling patterns is important, as they have different clinical and 



prognostic consequences. Furthermore, the pattern of remodeling associated with an exposure 

can provide insight into the mechanisms through which it alters cardiovascular health. 

In previous reports, researchers have used deep learning methods applied to 

cardiovascular imaging to develop estimates of heart age(8,9). These studies present novel 

approaches to evaluating heart age based on its image appearance. However, given the “black 

box” nature of these methods, the interpretability of the developed models is limited. 

Importantly, it is not possible to highlight the precise impact of an exposure on specific 

cardiac structures. This severely limits biological and clinical inferences from such models. 

MRI radiomics analysis permits extraction of many quantitative measures of cardiac 

shape and myocardial character using voxel-level data(5). The large number of features 

generated lends itself ideally to machine learning methods. A key advantage of MRI 

radiomics features over black box methods is the potential to produce interpretable models. 

We hypothesized that heart age of individual cardiac structures may be modeled using 

radiomics features extracted from related regions i.e., it may be possible to describe, in a 

quantitative and interpretable manner, differential aging patterns across cardiac chambers. 

This information could in turn be used to evaluate patterns of aging across different 

cardiovascular structures ascribed to specific exposures. 

The aim of this study was to use MRI radiomics features to estimate biological age of 

the left and right ventricles (LV, RV) and atria (LA, RA), and the LV myocardium. A further 

aim was to investigate the association of selected exposures on aging across these structures, 

separately in men and women. 

 

 



MATERIALS AND METHODS  

Data Source and Population Characteristics 

The UK Biobank comprises detailed characterization of approximately 500,000 individuals 

from across the UK. The participants were aged 40-69 at recruitment (2006 to 2010). 

Baseline assessment was conducted according to a published research protocol(10), gathering 

information on demographic, lifestyle and environment factors, cognitive tests, and blood 

sampling. The UK Biobank Imaging Study was launched in 2015 and is ongoing, aiming to 

perform multiorgan imaging for a 20% (n=100,000) subset of the original participants. In this 

study, we included 29,144 participants for whom MRI data were available. We excluded 

11,027 participants with history of CVD at time of imaging (Supplementary Table 1). The 

analysis sample included 8,338 men and 9,779 women. The average age was 64.2 (±7.5) 

years for men and 63.0 (±7.4) years for women. 

Image Acquisition  

Imaging was performed in dedicated UK Biobank centers using uniform staff training, 

equipment, and pre-defined acquisition protocols(11). MRI scans were performed using 1.5 

Tesla scanners (MAGNETOM Aera, Syngo Platform VD13A, Siemens Healthcare, Erlangen, 

Germany). Cardiac structure and function were assessed using standard long axis slices 

(vertical long axis, horizontal long axis and left ventricular outflow tract) and a short axis 

stack covering the ventricles from base to apex. All cine images were acquired with a 

balanced steady state free precession sequence. The imaging protocol parameters were set to 

as slice thickness (6.0), matrix size (208 x 187), voxel size (1.8 x 1.8 x 6.0), TR (ms) (2.7), 

TE(ms) (1.16) and acquired temporal resolution (ms) (32.64). Further details of pulse 

sequence parameters have been previously published(11). 

 



Image Segmentation Image segmentation 

We computed radiomics features from the voxels identified by the atrial contours from long 

axis and the RV, LV, and LV myocardium from short axis images, in end-systole and end-

diastole. Automated segmentation of the ventricular and myocardial regions was performed 

using a previously developed pipeline, trained on a large expert annotated manual 

segmentation dataset. End-diastolic was considered as the first phase of the acquisition. 

Experts determined the end-systolic phase visually by which the LV intra-cavity blood pool 

is in its smallest size at the mid-ventricular level (12). 

To define the atrial contours from the long axis images, an automatic segmentation 

model based on a traditional U-Net architecture was implemented. Ground truth manually 

annotated datasets (n= 764) were used for model fitting(12). Data augmentation techniques 

were used to introduce more variability in the overall structure and appearance of images and 

to improve the generalizability of the model. These included small rotations of the image, 

random bias field perturbations, random contrast adjustments and random intensity histogram 

shifting. The model was trained for 100 epochs with a batch size of 16 on 256x256 images 

using the Adam optimizer with a learning rate of 0.0001 and 0.9 and 0.999 first and second 

moments, respectively. Binary cross entropy was used as loss function. The resulting model 

was used to generate automatic delineations for the rest of the studies considered in this work. 

Two post-processing steps were used to ensure smooth contours: an algorithm to fill potential 

holes in the final mask and a selection of the largest connected component predicted for each 

region of interest (ROI). A fully automated quality-controlled image analysis pipeline, 

previously developed and validated in a large subset of the UK Biobank(13),(12), was applied 

to short axis images to define the LV, RV, and myocardial contours. 



For each study, the RV, LV, and myocardial contours were automatically defined and 

exported in a single xml file. We developed an in-house software in Python (version 3.7.9) to 

convert the contours into binary masks, which we have made publicly available(14). This 

software builds a polygon from the contour points in the coordinate space to form the mask, 

given the xml file and the corresponding MR DICOM images. The area bounded by the 

contour in every slice was filled with ones using the fillpoly function from the OpenCV(15) 

library, resulting in the binary ROI. This process was repeated for all delineated contours. For 

the atrial contours, the deep learning method was designed to automatically return a binary 

mask without the need for any intermediate steps. 

Feature Extraction 

The open-source PyRadiomics platform (version 2.2.0.) was used to extract Radiomics 

features given the contours and the corresponding images. For intensity-based and texture 

features, brightness harmonization was achieved by histogram standardization, and gray 

values were discretized with a bin width of 25 (units). For each frame, we computed 13 

shape, 18 first-order, and 75 texture features. In the long axis, one 3D shape feature, 

“flatness”, was discarded in outlier removal checks. The texture features were extracted using 

five different matrices: gray-level co-occurrence matrix (24 features), gray-level run-length 

matrix (16 features), gray-level size-zone matrix (16 features), neighboring gray tone 

difference matrix (5 features), and gray-level dependence matrix (14 features). In all, we 

computed a total of 210 radiomics features for each ROI (shape n=24, first-order n=36, 

texture n=150). The full list of the radiomic features extracted is displayed in Supplementary 

Table 2. Further background information to radiomics, can be found in dedicated review 

articles(5,16–18). 

 



Feature Selection 

All the following steps were implemented using Python 3.8.10 and Scikit-learn 1.0.2. A total 

of 1,050 radiomics features were available (210 from each of 5 ROIs (LV, RV, LA, RA, 

myocardium)). We built individual models for each ROI, separately for men and women, 

resulting in a total of 10 models. Model development methods were uniform across all 10 

models. First, we applied recursive feature elimination with cross-validation (RFECV) to 

choose the optimal number of features (among the 210 per ROI) using Bayesian ridge 

regression(19) as the model (10-fold), and with chronological age set as the dependent 

variable. Thereafter, we applied Cook’s Distance(20) method to detect and remove any 

outliers. A data point was considered an outlier by Cook’s Distance if its value was larger 

than 3 times the mean of all the data points (Supplementary Table 3). 

Model Building 

Figure 1 explains the overall of the study and modeling. Height and weight were considered 

as confounds and regressed out from the features using a linear regression model where the 

confounds are the independent variables and each feature is the dependent variable. 

Thereafter, the features were normalized to have zero mean and unit variance. Bayesian ridge 

regression was used to estimate the age of each ROI. The “age gap” values were calculated 

by subtracting the actual age from the predicted age for each cardiac structure (or ROI). We 

examined the association of age gap metrics with lifestyle and health exposures. 

Explainability 

To aid interpretability of our models, we identified the most informative features driving the 

model output using the SHapley Additive exPlanations (SHAP) method. SHAP calculates a 

value for each radiomics feature representing the contribution of that feature to the model 

output. The output of SHAP is a list of the most informative features in the model in 



descending order. The list is based on the SHAP value for each feature in the model which 

quantifies the impact (magnitude, direction) of the feature on the model output. 

Associations of Age Gap with Selected Exposures 

We considered associations between age gap from each structural region and a selection of 

key exposures selected based on biological knowledge of their associations with 

cardiovascular health. We considered 49 exposures (Supplementary table 4), including socio-

economic factors (n=5), lifestyle factors (n=6), obesity and body composition metrics (n=9), 

blood pressure and arterial stiffness (n=4), blood biomarkers (n=7), mental well-being (n=6), 

multi-organ health indicators (n=10) and Sex hormones (n=2). The following quality control 

steps were performed on the exposures before investigating the association with age gap. 

Levels within categorical variables were re-ordered to align higher scores with healthier 

exposure levels (applies to educational level, health satisfaction, financial satisfaction). Blood 

pressure and resting heart rate were limited to biologically plausible ranges: systolic blood 

pressure: >60mmHg and <200mmHg; diastolic blood pressure: >40 mmHg and <120mmHg), 

resting heart rate: >40bpm and <140bpm. Blood biochemistry parameters were restricted to 

values within the manufacturer’s analytical range(21).  

Statistical Analysis 

Model performance was assessed using Mean Absolute Error (MAE) and Prediction 

Coefficient of Determination (R2). MAE is the difference between the predicted value 

(estimated heart age) and the actual value (actual age). Prediction R2 measures how much of 

the variation in the outcome (predicted heart age) is explained by the input data (radiomics 

features) and is calculated as: Prediction R2= 1- Prediction mean squared error /total sum of 

squares. We applied a regression to the mean correction to remove dependency of heart age 

gap (delta) on age(22).  



Linear regression was used to examine associations of heart age gap from each ROI 

with each exposure. Models were adjusted for height, weight, and age. We report beta 

coefficients and 95% confidence intervals (CI) relating to the age gap value associated with 

each exposure – which indicates difference in cardiac age (for each anatomic region) for each 

unit increase in the exposure. A positive beta value indicates direction of association towards 

a more positive age gap – i.e., greater cardiac age than actual age (likely adverse exposure). 

We corrected for multiple testing using the false discovery rate method (threshold p< 0.05). 

RESULTS  

Baseline characteristics 

Compared to women, men had poorer cardiometabolic profile, with greater obesity, poorer 

glycemic control, and higher blood pressure and arterial stiffness. Women had, on average, 

greater levels of deprivation, lower educational level, and lived in lower income households. 

Women also scored higher on all indicators of poorer mental wellbeing. More details of 

baseline population characteristics are explained in table 1. 

Model Performance 

We present model performance metrics in Table 2 as the average MAE and predicted R2 

across all folds (from our 10-folds cross validation) for each ROI in men and women, before 

application of the regression to the mean correction. Across all cardiac regions, age 

estimation models had greater error in men (higher MAE, lower R2) than women. For both 

men and women, the greatest discrepancy between model estimated age and chronological 

age was observed for the RV followed by the myocardium, as indicated by greatest error in 

these models (higher MAE, lower R2). In comparison, LV cavity age estimation models had 

the best performance metrics (lower MAE, higher R2). 

 



Left Atrium 

Geometric alterations of the LA (radiomics shape features) were informative age-related 

metrics (major and minor axis length, 2D diameter row and column) in both women and men, 

all indicating that greater LA age was linked to smaller chamber size (Figure 2). In women, 

we additionally observed that smaller surface area, mesh volume, and voxel volume were all 

linked to greater LA age. SI-based features had a more minor role in these models, however 

overall, they indicated that greater LA age gap was linked to smoother less coarse texture in 

the LA blood pool (e.g., lower autocorrelation) in both men and women (Figure 2). 

Left Ventricle  

In both men and women, radiomics phenotypes indicating smaller and less spherical LV 

shape were amongst the most informative individual model features according to SHAP 

values (Figure 2). Signal intensity (SI)-based features also contributed importantly to models 

for men and women including features indicating greater skewness and variance in men. In 

women, features indicating greater autocorrelation of LV cavity pixel intensities (greater 

coarseness) and high gray level emphasis were informative. Another notable result is that the 

range of SHAP values in female cohorts was bigger than in the male cohort indicating greater 

impact of these features in the age model for women.  

LV Myocardium  

In men, shape features were most informative to LV myocardial age estimation, while for 

women myocardial SI-based features were more prominent (Figure 2). In men, greater 

myocardial age was linked to smaller surface area, larger voxel volume, and smaller minor 

and major axis lengths. In women, myocardial age was indicated by features representing a 

dimmer and more homogenous pattern of myocardial SI. For instance, in women, greater 

myocardial age was linked to lower mean gray level intensity level (lower “joint average”), 



higher proportion of low SI pixel pairs in relation to high SI pairs (lower “sum average”), and 

less variation in intensity levels (lower “skewness”, higher “low run gray level emphasis”). 

The intensity variations related to myocardial age in men were in a similar direction to those 

in women but were less extensive and less informative to the overall model (Figure 2). 

Right Atrium  

The list of most informative predictors produced by SHAP shows that the most informative 

features for the RA age model were dominated by texture features in both men and women 

(Figure 3). In men, greater RA age was linked to smaller RA size (lower major axis length in 

end-diastole and end-systole), and greater homogeneity in RA (lower: “dependence non-

uniformity”, “cluster prominence”, “difference average”). In women, greater RA age was 

linked to larger RA size (higher “maximum 2D diameter column”) and higher heterogeneity 

of RA blood pool pixel intensities (higher: “gray level non-uniformity”, “contrast”, “sum 

squares”). 

Right Ventricle 

In women, greater RV age was linked to smaller chamber size (lower “mesh volume”, 

increasing R “maximum 2D diameter row”), less spherical RV shape (lower “sphericity”), 

and greater surface area of the cavity (higher “surface area”). In men, greater RV age was 

linked to larger “minor axis length”, lower “maximum 2D diameter”, and lower “major axis 

length” (Figure 3). In women, increasing RV age was also linked to greater 

“autocorrelation”, indicating coarser pattern of blood pool SIs. In men, the informative SI-

based features indicated a less complex pattern of SIs (lower “complexity”) and greater 

variation in SI levels (“gray level variance”).  

  



Exposure Associations with Heart Age Gap 

A total of 172 associations showed significant relationships with heart age gap in both 

women and men across the five ROIs. The largest number of associations was observed with 

the LV myocardium (n=52) age gap with 52 significant associations divided into 27 in men 

and 25 in women. The LV (n=44) and RV (n=20) had the second and third highest number of 

significant associations with the tested exposures. On the other hand, LA had fewer 

associations with the tested exposures with only 15 significant associations, 8 in women and 

7 in men (Table 3). 

In terms of the number of significant associations in each of the exposure categories, 

obesity and body composition metrics were dominant (51 significant associations), showing 

consistent associations between greater adiposity and with larger heart age gap across all 

cardiac structures (Table 4). Granular results of all exposure associations are available in 

Supplementary table 4 and are summarized in Figure 4. 

Amongst the obesity measures considered, the strongest (largest magnitude) 

association was observed with visceral adiposity derived from abdominal MRI scans. Greater 

waist circumference was positively associated with heart age gap in both men and women. 

The relationships with obesity, across all the metrics, appeared stronger in women than in 

men. Higher high-density lipoprotein (HDL) cholesterol was linked to greater heart age gap 

across the LV, RV, and myocardium, having stronger association in women than in men. The 

magnitude of this association appeared greatest with the LV myocardium age gap (higher 

HDL, smaller heart age gap). Higher levels of low-density lipoprotein (LDL) cholesterol and 

triglyceride were linked to higher age gaps, although the magnitude of these associations was 

smaller than with HDL cholesterol.  



Higher diastolic blood pressure, faster resting heart rate, and greater arterial stiffness 

were all significant positive associates of heart age gap, although the magnitude of these 

associations was small.  

Indicators of better multi-organ health, such as higher hand grip strength (right, left), 

forced vital capacity, and heel bone mineral density were linked to smaller heart age gaps. 

Notably, for both men and women, better bone health as indicated by greater heel bone 

mineral density, showed the largest magnitude association with smaller heart age gap of all 

exposures considered. 

In our sample, socio-economic and lifestyle factors showed few significant 

associations with heart age gap. The number of vehicles in household, education level, and 

the Townsend score (measure of deprivation) did not show any significant (p-value > 0.05) 

association with heart age gap. In terms of daily lifestyle factors, greater physical activity 

levels were linked to smaller heart age gap in men (myocardium, LV, RV) and women (LV). 

Smoking, beef, and pork intake did not show any significant (p-value > 0.05) associations. 

Greater time spent watching television was associated with greater RV and myocardium heart 

age gaps in men. Higher testosterone level was observed with larger age LV age gap (greater 

biological aging) in men (coefficient 0.08, p-value = 0.03). 

DISCUSSION  

In this study, we present age estimation models for key cardiac structures developed using 

cardiac MRI radiomics phenotypes in 18,117 UK Biobank participants free from clinical 

CVD. We selected this model due to its ability to handle the collinearity among the model 

predictors(23,24). We considered discrepancy in age estimation from chronological age 

(heart age gap) as an indicator of greater cardiac aging, demonstrating differential aging 



patterns across heart structures and the associations of selected exposures with greater age 

gap. 

Amongst the cardiac regions modelled, the LV age models had the best performance, 

whilst the RV models had the greatest error. This is in keeping with known greater anatomic 

complexity and irregularity of the RV (25) compared to the LV, which is reflected in greater 

heterogeneity of RV phenotypes and greater error in our age models. Model performance 

showed greater error in men than women across all regions modelled, possibly indicating 

greater variation of IDPs in men. 

The error in biological age estimation model comprises model error and biological 

age gap. In our study, we modelled biological age for the four cardiac chambers and the LV 

myocardium, observing different magnitude of error across these cardiac sites. This may 

reflect more advanced aging in cardiac regions with larger model error. For instance, the RV 

biological age estimation model had the largest MAE, which may indicate greater 

susceptibility of the RV to age-related remodelling and greater biological aging in this 

chamber compared to other cardiac regions. The second largest error was in the model for 

myocardial biological age, which may highlight that the myocardium is also a site where age-

related alterations are prominent. In comparison, the LV had the smallest MAE of all 

chambers modelled, perhaps indicating that morphological age-related alterations of the LV 

are less pronounced or occur at more advanced stages compared to other chambers. 

Alternatively, it is possible that the larger model error reflects “actual” error, that is poorer 

model performance in age estimation for the RV and myocardium, and better performance in 

age estimation for the LV. While it is not possible to definitively disentangle these two 

components of error, it is likely that they both contribute somewhat to the magnitude of MAE 

in our models (26). 



In evaluating the most informative features, overall, we observed importance of both 

shape and signal intensity based radiomics features. Several features appeared informative 

across all ROI models. For instance, the major and minor axis length and surface area in the 

shape feature group were among the top informative predictors in the most regions and in 

both male and female cohorts. In addition, auto-correlation from the texture feature group 

frequently appeared among the most informative features. The presence of these features in 

all examined regions in both male and female cohorts highlights their potential value as 

predictors in cardiac phenotype studies. The impact of the features on the model outcome was 

different from one ROI to another based on the SHAP value. For example, the range of the 

SHAP values for the features in the RA (female cohort) was smaller than in other regions. On 

the other hand, the impact of the features on the outcome was the largest when modelling LV 

age in women. Furthermore, the impact of the features on the outcome between male and 

female was different in some regions including LA, LV, and RV.  

We evaluated associations of exposures with heart age gap metrics. The myocardial 

age gap had the largest number of significant associations, indicating that age-related changes 

of the myocardium are importantly influenced by a wide range of different exposures. 

Obesity was a prominent associate of greater age gap across all cardiac structures, as 

represented by image-derived measures of obesity, body size measures, and blood lipids. 

These associations were stronger in women than men. The myocardium and LV age gaps 

showed a greater number of significant associations with the exposures examined than the 

other regions, while LA and RA had fewer associations. In both men and women, significant 

associations between greater age gap of the LV, RV and myocardium were observed across a 

range of exposures including higher visceral adipose tissue volume, pulse rate, total trunk fat 

volume, abdominal subcutaneous adipose tissue volume, trunk fat mass and whole bad fat 



mass. The most significant associations with myocardium and LV age gap were exposures 

from multi-organs indicators and obesity and body composition metrics. 

MRI is unique as a modality in its ability to non-invasively characterize myocardial 

tissue. Previous work using MRI radiomics has demonstrated the value of radiomics signal-

intensity based features extracted from the LV myocardium in discriminating disease states  

(27–29). The use of MRI radiomics is currently limited to research settings and further 

research is required before implementation in clinical settings. Other methods for myocardial 

tissue characterization include non-parametric mapping techniques and contrast-enhanced 

image acquisitions. Late gadolinium enhancement (LGE) techniques are most established, 

and their clinical utility has been demonstrated in multiple previous studies in the setting of 

both ischemic and non-ischemic cardiomyopathies(30,31). The use of LGE acquisitions is 

accordingly widely adopted in clinical settings. Greater scan time (approx. 15 mins) as well 

as a small risk associated with intravenous gadolinium administration are drawbacks of this 

technique (32). Non-parametric mapping methods (T1, T2, T2*) have shown utility in disease 

discrimination and outcome prediction in multiple settings(33). These are non-contrast 

methods but do require dedicated specialist acquisitions. Although these methods are 

implemented in clinical practice, there are many outstanding technical issues, in particular 

regarding standardization of the techniques, that currently limited widespread generalizability 

(34). Furthermore, the role of these metrics in the setting of a healthy population is not yet 

definitively established.  

Previous studies have examined associations of myocardial native T1 and T2 with 

increasing age. A large population study in the UK Biobank found increasing age-related 

increase in myocardial native T1 in men and a decreasing trend in women (35). A smaller 

study of the Multi-Ethnic Study of Atherosclerosis) cohort reports positive association of 

native T1 with increasing age in men, but no significant age trend in women (35). The age-



dependency of T2 is less consistent, with some researchers reporting no relationship between 

T2 and age (36), whilst others report a decreasing trend (37). In our analysis, we used shape 

and signal-intensity based radiomics features extracted from bSSFPF short axis cine images. 

The association of these features with T1 and T2 extracted from mapping sequences is not 

known. 

A key advantage of radiomics analysis is that it can be applied to existing standard of 

care contrast-free images, presenting a potentially highly efficient method for tissue 

characterization. Our findings suggest that myocardial signal intensity radiomics features 

may provide important information about myocardial aging in population cohorts. Our work 

encourages further research in this area to determine the clinical utility of this technique. 

Of all the exposures considered, measures of obesity and serum lipids showed the 

most prominent associations with greater heart age gap across all the structures considered, 

appearing more important in women than men. Obesity is a global public health priority and 

its associations with adverse cardiovascular health are widely reported(38). Furthermore, 

others have reported phenotypic alterations of the LV in association with greater obesity (39) 

The association of obesity exposures with greater heart age gap support the validity of our 

age estimation models. Furthermore, our study has described the associations of obesity with 

cardiac aging (as defined by age-related phenotypic alterations) across all key cardiac 

chambers. Our observations highlight the importance of tackling obesity for alleviation of the 

global burden of cardiovascular disease. The strongest associations were with abdominal 

MRI measures of obesity (visceral adipose tissue volume, abdominal subcutaneous adipose 

tissue volume, and total trunk fat volume). Notably, of the anthropometric measures of 

obesity, waist circumference showed stronger associations to larger heart age gap than body 

mass index, indicating the value of this metric in assessment of obesity-related cardiovascular 

risk. Furthermore, although the baseline levels of obesity were greater for men, their 



associations with greater heart aging were stronger in women than men. This may indicate 

differential magnitude of the cardiovascular impact of obesity in women, and warrants further 

dedicated study. Higher blood pressure, resting heart rate, and arterial stiffness were 

associated with significantly larger heart age gap across most cardiac regions. This 

observation highlights the utility of these established vascular health indicators as indices for 

monitoring heart aging. 

Limitations 

The UK Biobank provided access to a large bank of uniformly acquired cardiac MR scans, 

which was essential for development of our models. The detailed characterization of 

participants permitted reliable ascertainment of health status using UK Biobank assessments 

and linked health records. However, given that our models were developed on a healthy 

population-based cohort, further study is required to determine if the observations made 

translate to a clinical cohort. Second, our models performed well within this dataset of 

homogenously acquired scans. However, cardiac MR radiomics features are susceptible to 

variation in pulse sequence parameters, scanner vendor, and case mix(40). Thus, these 

models may not perform in the same way in external cohorts. Third, our findings suggest that 

the age gap metrics extracted from our models may be useful as imaging biomarkers of 

cardiovascular health. However, direct comparison of our work with existing publications is 

challenging. Fourth,  in this study, we used a simple model to estimate heart age to establish a 

benchmark for more complex methods with potentially better performance, as heart age 

modelling is not well-stablished as it is for other organs such as brain age estimation. In the 

latter, there is a well described regression to the mean effect, which we also observed in our 

analysis. We opted to correct for this with the widely used method proposed by Beheshti et 

al.(22). A limitation of this approach is false improvement of model performance(26); with 

this in mind, we report pre-corrected performance metrics in this study. The correction is not 



expected to influence exposure associations with heart age gap (delta). Fifth,  the clinical 

interpretation of the radiomics features in the model is not known as they have not been used 

and examined widely in morbidities and phenotypes to establish connections between the 

features and clinical outcomes. However, more work in this direction may solve the issues 

raised above. Further work is required to determine the clinical utility of these metrics. 

Moreover, we limit our study to participants without clinically diagnosed cardiovascular 

disease. As we do not have access to clinically evaluate individual patients, we cannot 

exclude undiagnosed disease in the study sample. 

Conclusion  

We demonstrate an interpretable model for biological age estimation across different cardiac 

structures developed using cardiac MRI radiomics phenotypes. Our findings indicate that 

discrepancy in image-based age estimates and chronological age (heart age gap) may be a 

useful indicator of cardiovascular health, and specifically for investigation of cardiovascular 

aging. A key advantage of the biological age estimation models presented in our study, is that 

the radiomics features extracted are obtained from routinely acquired standard of care cine 

MRI images. This means that our models have potential for broad application across research 

and clinical studies. 

Our findings demonstrate obesity as an important correlate of heart aging, 

highlighting the importance of public health strategies for tackling obesity in ensuring 

population cardiovascular health. Further work is required to establish the potential wider 

utility of age gap metrics extracted from our models for risk estimation and outcome 

prediction.  
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TABLES  

Table 1. Baseline population characteristics 

 Men Women 

n 8,338 9,779 

Age (years) 64.17 (±7.50) 63.04 (±7.36) 

Cardiac MRI metric   

left ventricular end-diastolic volume index  82.83 (±14.32) 73.50 (±10.91) 

Left ventricular mass index 50.94 (±7.7) 40.66 (±5.81) 

Left ventricular ejection fraction 58.02 (±5.99) 61.02 (±5.59) 

Right ventricular end-diastolic volume index 89.07 (±15.16) 76.13 (±11.89) 

Right ventricular ejection fraction 55.28 (±5.78) 59.25 (±5.63) 

Socio-economic factors   

Townsend score -2.70[-3.93-0.62] -2.55[-3.85-0.47] 

Education level:-   

None 1[6.04%] 1 [5.84%] 

Secondary education  2 [4.00%] 2 [3.92%] 

High school diploma 3[16.87%] 3 [21.22%] 

Vocational diploma  4[7.71%] 4 [3.24%] 

Other professional qualifications eg: nursing, 

teaching  

5[4.13%] 5 [6.20%] 

A levels/AS levels or equivalent  6[11.85%] 6 [14.31%] 

College or University degree 7 [49.41%] 7 [45.28%] 

Number of vehicles in household:-   

1 None,  1 [3.24%] 1 [4.10%] 

2 One,  2 [34.35%] 2 [39.39%] 

3 Two,  3 [47.68%] 3 [43.47%] 

4 Three,  4 [11.49%] 4 [9.95%] 

5 Four or more,  5 [3.24%] 5 [3.09%] 

Average total household income before tax:-   

1 Less than £18,000,  1 [8.92%] 1 [13.55%] 

2 18,000 to 30,999 2 [20.30%] 2 [24.86%] 

3 31,000 to 51,999 3 [31.63%] 3 [30.03%] 

4 52,000 to 100,000 4 [31.15%] 4 [26.00%] 

5 Greater than 100,000 5 [8.00%] 5 [5.55%] 

Number of people in household 2.54[1.16] 2.48[1.15] 

Lifestyle factors   

Time spent watching television (Hours/day) 2[1-3] 2[1-3] 

Oily fish intake:-   

0= Never,  0 [9.22%] 0 [9.52%] 

1= Less than once a week,  1 [36.14%] 1 [33.52%] 

2= Once a week,  2 [37.61%] 2 [40.03%] 

3= 2-4 times a week,  3 [15.99%] 3 [16.38%] 

4= 5-6 times a week,  4 [0.81%] 4 [0.49%] 

5= Once or more daily 5 [0.22%] 5 [0.05%] 

Beef intake:-   

0= Never,  0 [7.38%] 0 [13.54%] 

1= Less than once a week,  1 [47.06%] 1 [45.55%] 



2= Once a week,  2 [33.88%] 2 [29.58%] 

3= 2-4 times a week,  3 [11.48%] 3 [11.25%] 

4= 5-6 times a week, 4 [0.16%] 4 [0.06%] 

5= Once or more daily 5 [0.04%] 5 [0.01%] 

Pork intake:-   

0= Never,  0 [11.67%] 0 [19.49%] 

1= Less than once a week,  1 [60.84%] 1 [59.35%] 

2= Once a week,  2 [23.65%] 2 [18.74%] 

3= 2-4 times a week,  3 [3.71%] 3 [2.38%] 

4= 5-6 times a week,  4 [0.10%] 4 [0.04%] 

5= Once or more daily 5 [0.02%] 5[0%] 

Number of days/week of moderate physical activity 

10+ minutes (days/week) 

3.33[2.24] 3.50[2.28] 

Smoking status   

0, Never 0 [56.05%] 0 [63.87%] 

1, Previous 1 [36.81%] 1 [31.19%] 

2, Current 2 [7.14%] 2 [4.94%] 

Obesity and body composition metrics   

Visceral adipose tissue volume (Litres) 4.77[3.33 -6.49] 2.37[1.51-3.57] 

Abdominal subcutaneous adipose tissue volume 

(Litres) 

5.53[4.29-7.16] 7.59[5.66-9.94] 

Total trunk fat volume (Litres) 10.97[4.29] 10.71[4.61] 

Body mass index (kg/m2) 26.85[24.76-29.37] 25.43[23.09-28.85] 

Whole body fat mass (kg) 21.45[7.23] 25.74[8.88] 

Waist circumference (cm) 95.13[10.26] 82.51[11.13] 

Liver PDFF (proton density fat fraction, %) 2.92[1.80-6.13] 1.98[1.33-3.81] 

Total lean tissue volume (Litres) 27.38[25.77-29.87] 20.25[18.60-22.14] 

Trunk fat mass (kg) 14.02[4.54] 13.23[4.84] 

Blood pressure and arterial stiffness   

Pulse rate (bpm) 67[60-74] 68[62-75] 

Pulse wave Arterial Stiffness index (m/s) 9.63[7.72-11.83] 8.12[6.20-10.33] 

Diastolic blood pressure, automated reading 

(mmHg) 

84.10[9.93] 79.88[10.28] 

Systolic blood pressure, automated reading (mmHg) 141.31[16.81] 134.19[18.99] 

Blood biomarkers     

Alanine aminotransferase (units per Litre) 23.97[18.63-32.18] 17.19[13.62-22.47] 

Gamma glutamyltransferase (units per Litre) 31.90[23.10-47.30] 20.25[15.30-28.80] 

Glycated haemoglobin (mmol/mol) 34.80[32.40-37.30] 34.60[32.30-37.10] 

Triglycerides Level (mmol/L) 1.67[1.18-2.38] 1.27[0.93-1.78] 

Cholesterol (mmol/L) 5.55[1.07]  5.86[1.07]  

LDL (mmol/L) 3.54[0.83]  3.62[0.83]  

HDL (mmol/L) 1.26[1.08-1.46] 1.58[1.35-1.83] 

Mental health   

Fed-up feelings:-   

1 Yes,  1 [33.78%] 1 [40.13%] 

0 No 0 [66.22%] 0 [59.87%] 

Nervous feelings:-   

1 Yes,  1 [18.22%] 1 [23.98%] 



0 No 0 [81.78%] 0 [76.02%] 

Neuroticism score 3.52[3.17] 4.47[3.20] 

Health satisfaction:-   

1-Extremely unhappy, 1 [0.34%] 1 [0.74%] 

2-Very unhappy, 2 [1.47%] 2 [1.67%] 

3-Moderately unhappy, 3 [7.11%] 3 [7.94%] 

4-Moderately happy, 4 [48.69%] 4 [48.59%] 

5-Very happy, 5 [37.07%] 5 [35.93%] 

6-Extremely happy, 6 [5.32%] 6 [5.12%] 

Financial situation satisfaction:-   

1-Extremely unhappy, 1 [0.73%] 1 [0.90%] 

2-Very unhappy, 2 [1.77%] 2 [1.67%] 

3-Moderately unhappy, 3 [5.19%] 3 [5.59%] 

4-Moderately happy, 4 [38.55%] 4 [37.86%] 

5-Very happy, 5 [41.06%] 5 [41.84%] 

6-Extremely happy, 6 [12.71%] 6 [12.14%] 

Ever unenthusiastic/disinterested for a whole week   

1-Yes,  1 [29.89%] 1 [41.47%] 

0-No, 0 [70.11%] 0 [58.53%] 

Multi-organ health indicators   

Number of treatments/medications taken 2[0-3] 2[1-4] 

Overall health rating:-   

1-Poor, 1 [1.86%] 1 [2.17%] 

2-Fair,  2 [17.69%] 2 [15.73%] 

3-Good,  3 [61.81%] 3 [63.30%] 

4-Excellent  4 [18.63%] 4 [18.79%] 

Fluid intelligence score 6.67[2.14] 6.39[1.94] 

Mouth/teeth dental problems:-   

0 No,  0 [66.58%] 0 [63.23%] 

1 Yes (Mouth ulcers, Painful gums, Bleeding gums, 

Loose teeth, Toothache, Dentures, 

1 [33.42%] 1 [36.77%] 

Heel bone mineral density (g/m2) 0.58[0.14] 0.53[0.12] 

Hand grip strength (left, kg) 40[34-46] 24[20-28] 

Hand grip strength (right, kg)) 42[36-48] 26[22-30] 

Forced expiratory volume in 1-second (FEV1), Best 

measure (litres) 

3.42[0.68] 2.50[0.50] 

Forced vital capacity (FVC, litres) 4.54[1.06] 3.24[0.61] 

Peak expiratory flow (PEF, litres/min) 502[427-573] 350[300-400] 

Sex hormones   

Oestradiol 202.30[187.45-223.15] 410.7 [275.5 - 674.3] 

Testosterone 13.12[10.9-15.4] 1.1[0.9-1.5] 

Table 1 footnote. Discrete variables are presented as number (percentage). Continuous 

measures are mean (±SD) if normal distribution. Continuous measures are median [25th 

percentile, 75th percentile] if skewed distribution. Note: All individuals with answers: don’t 

know (-1) & prefer not to answer (-3) were removed. MRI: Magnetic resonance imaging.   



Table 2. Summary of model performance metrics 

Women 

 LV RV MYO LA RA 

Mean MAE (years) 4.96 5.26 5.10 5.10 5.07 

Mean Predicted R2 0.29 0.20 0.24 0.24 0.26 

Correlation between predicted cardiac structure age 

and actual age 

0.90 0.92 0.91 0.91 0.91 

Men 

 LV RV MYO LA RA 

Mean MAE (years) 5.33 5.49 5.42 5.36 5.37 

Mean Predicted R2 0.22 0.17 0.19 0.21 0.20 

Correlation between predicted cardiac structure age 

and actual age 

0.92 0.93 0.93 0.92 0.92 

Table 2 footnote. LA: left atrium; LV: left ventricle; MAE: mean absolute error; MYO: 

myocardium; RA: right atrium; RV: right ventricle. *Reported performance metrics are prior 

to application of the regression to the mean correction. 

  



Table 3. The number of significant associations in each of the five regions separated by 

sex. 

Sex LA LV MYO RA RV Total 

Men 7 23 27 9 17 83 

Women 8 22 25 11 23 89 

Total 15 45 52 20 40 172 

Table 3 footnote. LA: left atrium; LV: left ventricle; MYO: myocardium; RA: right atrium; 

RV: right ventricle. 

 

Table 4. The number of significant associations in each of the exposure group separated 

by sex and cardiac structures. 

Exposures groups Sex LA LV MYO RA RV Total 

Blood Biomarkers (n= 7) Men 1 1 3 0 0 5 21 

Women 2 2 5 2 5 16 

Blood pressure and 

arterial stiffness (n= 4) 

Men 1 2 3 2 2 10 24 

Women 0 4 4 2 4 14 

Lifestyle (n= 6) Men 0 1 2 0 2 5 7 

Women 0 2 0 0 0 2 

Mental well-being (n= 6) Men 0 4 4 2 5 15 21 

Women 2 1 2 0 1 6 

Multi-organ health 

indicators (n= 10) 

Men 3 6 5 5 1 20 40 

Women 3 5 6 1 5 20 

Obesity and body 

composition metrics (n= 

9) 

Men 0 8 8 0 7 23 51 

Women 0 7 7 6 8 28 

Socio-economic (n= 5) Men 2 0 2 0 0 4 7 

Women 1 1 1 0 0 3 

Sex hormones (n= 2) Men 0 1 0 0 0 1 1 

Women 0 0 0 0 0 0 

Table 4 footnote. LA: left atrium; LV: left ventricle; MYO: myocardium; RA: right atrium; 

RV: right ventricle. 

 

 

 

 

 



FIGURE LEGENDS 

Figure 1. Conceptual overview of the steps used to estimate heart age for each cardiac region 

and perform PheWAS 

Figure 1 footnote. These steps were performed separately for women and men. LA: left 

atrium; LV: left ventricle; MYO: myocardium; PheWAS: phenome wide association study; 

RA: right atrium; RV: right ventricle. The full list of exposures is presented in Supplementary 

table 4 

Figure 2. Top 10 more informative features for heart age models of left heart cardiac region 

for men and women, as identified by SHAP values 

Figure 2 footnote. The x axis indicates the SHAP value range of each feature while the y 

axis displays the feature name. Each dot or circle in the plot indicates one subject in the 

model while the color shows how that feature is associated with the outcome. Red color 

indicates positive correlation while the blue color means negative correlation. A Zero SHAP 

value means the feature does not affect the outcome of the model. Asterisk indicates features 

extracted at end systole. SHAP: SHapley Additive exPlanations; GLCM: Gray Level Co-

occurrence Matrix; GLDM: Gray Level Dependence Matrix; GLRLM: Gray Level Run 

Length Matrix; GLSZM: Gray Level Size Zone Matrix. 

Figure 3. Top 10 more informative features for heart age models of right heart cardiac region 

for men and women, as identified by SHAP values 

Figure 3 footnote. The x axis indicates the SHAP value range of each feature while the y axis 

displays the feature name. Each dot or circle in the plot indicates one subject in the model while 

the color shows how that feature is associated with the outcome. Red color indicates positive 

correlation while the blue color means negative correlation. A Zero SHAP value means the 

feature does not affect the outcome of the model. Asterisk indicates features extracted at end 



systole. SHAP: SHapley Additive exPlanations; GLCM: Gray Level Co-occurrence Matrix; 

GLDM: Gray Level Dependence Matrix; GLRLM: Gray Level Run Length Matrix; GLSZM: 

Gray Level Size Zone Matrix; NGTDM: Neighbouring Gray Tone Difference Matrix. 

Figure 4. Association of all exposures with heart age gap in the five cardiac regions modelled 

for men and women 

Figure 4 footnote. The x axis represents the coefficient value of the association of each 

exposure with the cardiac age gap while the y axis represents the exposure names. The 

coefficient values (beta) are not standardized which means every one unit increasing or 

decreasing in these exposures (independent variables) lead to increasing or decreasing in the 

heart age gap (dependent variable) in years based on the beta value when all other exposures 

are constant. Exposures with asterisk are statistically significant (corrected p-value < 0.05). 

Please refer to Supplementary Table 3 for full explanation of each exposure and its 

measurement units. BMD: Heel bone mineral density; HDLC: HDL cholesterol; FVC: Forced 

vital capacity; OHR: Overall health rating; FEV1: Forced expiratory volume in 1-second, Best 

measure; HeSa: Health satisfaction; ASAT: Abdominal subcutaneous adipose tissue volume; 

TLTV: Total lean tissue volume; NeFe: Nervous feelings; NinH: Number in household; LDLD: 

LDL direct; OFiI: Oily fish intake; SmSt: Smoking status; FSS: Financial situation satisfaction; 

CHOL: Cholesterol; Uu/Di: Ever unenthusiastic/ disinterested for a whole week ; ATHI: 

Average total household income before tax; NVH: Number of vehicles in household; NMPA: 

Number of days/week of moderate physical activity 10+ minutes; TriL: Triglycerides Level; 

TFM: Trunk fat mass; MTDP: Mouth/teeth dental problems; PorI: Pork intake; BMI: Body 

mass index; FUF: Fed-up feelings; EDUL: Education level; TowS: Townsend score; PWAS: 

Pulse wave Arterial Stiffness index (m/s); BEEI: Beef_intake; FIS: Fluid intelligence score; 

HGSL: Hand grip strength (left); PDFF: 10P Liver PDFF (proton density fat fraction); TTFV: 

Total trunk fat volume; TSWT: Time spent watching television; NTMT: Number of 



treatments/medications taken; HGSR: Hand grip strength (right); HbA1c: Glycated 

haemoglobin; WBFM: Whole body fat mass; SBP: Systolic blood pressure, automated reading 

(mmHg); ALAM: Alanine aminotransferase; DBP: Diastolic blood pressure, automated 

reading (mmHg); PulR: Pulse rate; NeSc: Neuroticism score; PEF: Peak expiratory flow; GaGl: 

Gamma glutamyltransferase; GaGl: Gamma glutamyltransferase; WaiC: Waist circumference; 

VATV: Visceral adipose tissue volum. 
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Supplementary Table 1: Approach to ascertainment of cardiac diseases 

Variable UK Biobank field ID  Condition 

Self-report  20002 Angina 

Heart attack/myocardial infarction 

Mitral stenosis  

Mitral valve disease 

Heart valve problem/heart murmur 

Mitral regurgitation / incompetence 

Aortic valve disease 

Aortic stenosis 

Aortic regurgitation / incompetence  

Cardiomyopathy  

Hypertrophic cardiomyopathy (HCM / HOCM) 

Heart failure/pulmonary odema 

Sick sinus syndrome 

Supraventricular tachycardia 

Atrial fibrillation 

Atrial flutter  

Heart arrhythmia 

Irregular heart beat 

ICD-10 41202 Angina pectoris 

Other acute ischaemic heart diseases 

Chronic ischaemic heart disease 

Acute myocardial infarction 

Subsequent myocardial infarction 

Certain current complications following acute myocardial infarction 

Mitral (valve) insufficiency 

Nonrheumatic mitral (valve) stenosis 

Other nonrheumatic mitral valve disorders 

Non-rheumatic mitral valve disorder, unspecified 

Non-rheumatic aortic valve disorders 

Non-rheumatic tricuspid valve disorders 

Pulmonary valve disorders 

Endocarditis, valve unspecified 

Mitral valve disorders in diseases classified elsewhere 

Aortic valve disorders in diseases classified elsewhere 

Pulmonary valve disorders in diseases classified elsewhere 

Multiple valve disorders in diseases classified elsewhere 

Endocarditis, valve unspecified, in diseases classified elsewhere 

Cardiomyopathy 

Cardiomyopathy in diseases classified elsewhere 

Congestive heart failure 

Left ventricular failure 

Heart failure, unspecified 

Atrioventricular block, second degree 

Atrioventricular block, complete 

Trifascicular block 

Preexcitation syndrome 

Cardiac arrest with successful resuscitation 

Sudden cardiac death, so described 

Cardiac arrest, unspecified 

Re-entry ventricular arrhythmia 



Supraventricular tachycardia 

Ventricular tachycardia 

Paroxysmal tachycardia, unspecified 

Paroxysmal atrial fibrillation 

Persistent atrial fibrillation 

Chronic atrial fibrillation 

Typical atrial flutter 

Atypical atrial flutter 

Atrial fibrillation and atrial flutter, unspecified 

Ventricular fibrillation and flutter 

Sick sinus syndrome 

Rheumatic mitral valve diseases 

Rheumatic aortic valve diseases 

Rheumatic tricuspid valve diseases 

Multiple valve diseases 

Hypertensive heart disease 

Hypertensive heart and renal disease 

ICD-9 41203 Coronary atherosclerosis 

Other specified forms of chronic ischaemic heart disease 

Chronic ischaemic heart disease, unspecified 

Acute myocardial infarction 

Other acute and subacute forms of ischaemic heart disease 

Old myocardial infarction 

Algorithm 42000 Date of myocardial infarction 

Diagnosed by doctor 6150 Angina 

3627 Age angina diagnosed 

6150 Heart attack 

3894 Age heart attack diagnosed 

First occurrences 131296 Angina pectoris 

131304 Other acute ischaemic heart diseases 

131306 Chronic ischaemic heart disease 

131298 Acute myocardial infarction 

131300 Subsequent myocardial infarction 

131302 Certain current complications following acute myocardial infarction 

131322 Nonrheumatic mitral valve disorders 

131324 Nonrheumatic aortic valve disorders 

131326 Nonrheumatic tricuspid valve disorders 

131328 Pulmonary valve disorders 

131330 Endocarditis, valve unspecified 

131332 Endocarditis and heart valve disorders in diseases classified elsewhere 

131338 Cardiomyopathy 

131340 Cardiomyopathy in diseases classified elsewhere 

131346 Cardiac arrest 

131348 Paroxysmal tachycardia 

131350 Atrial fibrillation and flutter 

131276 Rheumatic mitral valve diseases 

131278 Rheumatic aortic valve diseases 

131280 Rheumatic tricuspid valve diseases 

131282 Multiple valve diseases 

131288 Hypertensive heart disease 



131292 Hypertensive heart and renal disease 

131354 Heart failure 

Supplementary Table 1 footnote. ICD: international classification of disease. 

  



Supplementary Table 2. List of radiomic features used to estimate cardiac age 

shape_Elongation glcm_SumEntropy 

shape_MajorAxisLength glcm_SumSquares 

shape_Maximum2DDiameterColumn gldm_DependenceEntropy 

shape_Maximum2DDiameterRow gldm_DependenceNonUniformity 

shape_Maximum2DDiameterSlice gldm_DependenceNonUniformityNormalized 

shape_Maximum3DDiameter gldm_DependenceVariance 

shape_MeshVolume gldm_GrayLevelNonUniformity 

shape_MinorAxisLength gldm_GrayLevelVariance 

shape_Sphericity gldm_HighGrayLevelEmphasis 

shape_SurfaceArea gldm_LargeDependenceEmphasis 

shape_SurfaceVolumeRatio gldm_LargeDependenceHighGrayLevelEmphasis 

shape_VoxelVolume gldm_LargeDependenceLowGrayLevelEmphasis 

firstorder_10Percentile gldm_LowGrayLevelEmphasis 

firstorder_90Percentile gldm_SmallDependenceEmphasis 

firstorder_Energy gldm_SmallDependenceHighGrayLevelEmphasis 

firstorder_Entropy gldm_SmallDependenceLowGrayLevelEmphasis 

firstorder_InterquartileRange glrlm_GrayLevelNonUniformity 

firstorder_Kurtosis glrlm_GrayLevelNonUniformityNormalized 

firstorder_Maximum glrlm_GrayLevelVariance 

firstorder_MeanAbsoluteDeviation glrlm_HighGrayLevelRunEmphasis 

firstorder_Mean glrlm_LongRunEmphasis 

firstorder_Median glrlm_LongRunHighGrayLevelEmphasis 

firstorder_Minimum glrlm_LongRunLowGrayLevelEmphasis 

firstorder_Range glrlm_LowGrayLevelRunEmphasis 

firstorder_RobustMeanAbsoluteDeviation glrlm_RunEntropy 

firstorder_RootMeanSquared glrlm_RunLengthNonUniformity 

firstorder_Skewness glrlm_RunLengthNonUniformityNormalized 

firstorder_TotalEnergy glrlm_RunPercentage 

firstorder_Uniformity glrlm_RunVariance 

firstorder_Variance glrlm_ShortRunEmphasis 

glcm_Autocorrelation glrlm_ShortRunHighGrayLevelEmphasis 

glcm_ClusterProminence glrlm_ShortRunLowGrayLevelEmphasis 

glcm_ClusterShade glszm_GrayLevelNonUniformity 

glcm_ClusterTendency glszm_GrayLevelNonUniformityNormalized 

glcm_Contrast glszm_GrayLevelVariance 

glcm_Correlation glszm_HighGrayLevelZoneEmphasis 

glcm_DifferenceAverage glszm_LargeAreaEmphasis 

glcm_DifferenceEntropy glszm_LargeAreaHighGrayLevelEmphasis 

glcm_DifferenceVariance glszm_LargeAreaLowGrayLevelEmphasis 

glcm_Id glszm_LowGrayLevelZoneEmphasis 

glcm_Idm glszm_SizeZoneNonUniformity 

glcm_Idmn glszm_SizeZoneNonUniformityNormalized 

glcm_Idn glszm_SmallAreaEmphasis 

glcm_Imc1 glszm_SmallAreaHighGrayLevelEmphasis 

glcm_Imc2 glszm_SmallAreaLowGrayLevelEmphasis 

glcm_InverseVariance glszm_ZoneEntropy 

glcm_JointAverage glszm_ZonePercentage 

glcm_JointEnergy glszm_ZoneVariance 

glcm_JointEntropy ngtdm_Busyness 

glcm_MCC ngtdm_Coarseness 

glcm_MaximumProbability ngtdm_Complexity 



glcm_SumAverage ngtdm_Contrast 

 ngtdm_Strength 

Supplementary Table 2 footnote. Each feature was extracted twice (end-systole, end-diastole) from 

each cardiac region resulting in a total of 210 features for each region. GLCM: gray-level co-

occurrence matrix; GLRLM: gray-level run-length matrix; GLSZM: gray-level size-zone matrix; 

NGTDM: neighboring gray tone difference matrix; GLDM: gray-level dependence matrix. 

  



Supplementary Table 3: Number of features and subjects included in modelling for each region 

of interest after feature selection and outlier removal procedures  

Women 

  LV RV MYO LA RA 

Original number of features  210 

Optimal number of features using RFECV  125 91 121 102 65 

Original number of subjects  15095 

Number of subjects free of heart diseases  9779 

Final number of subjects after applying outliers’ 

removal  

9402 9402 9416 9419 9409 

Men 

  LV RV MYO LA RA 

Original number of features  210 

Optimal number of features using RFECV  118 95 43 91 58 

Original number of subjects  14049 

Number of subjects free of heart diseases  8338 

Final number of subjects after applying outliers’ 

removal  

8040 8051 8049 8065 8070 

Supplementary Table 3 footnote. LA: left atrium; LV: left ventricle; MYO: myocardium; RA: right 

atrium; RV: right ventricle; RFECV: recursive feature elimination with cross-validation.  

  



Supplementary Table 4. Associations of all exposures with heart age gap from the five cardiac 

regions modelled 

Coefficient Sex Anatomy P-value Exposures 

-1.51788 Male MYO 7.44E-06 Heel bone mineral density (BMD) 

-1.39966 Female LA 5.29E-04 Heel bone mineral density (BMD) 

-1.17606 Male LV 2.26E-03 Heel bone mineral density (BMD) 

-1.11439 Female MYO 3.14E-03 Heel bone mineral density (BMD) 

-1.08438 Female RA 2.37E-02 Heel bone mineral density (BMD) 

-1.02737 Female MYO 7.71E-21 HDL cholesterol 

-0.98516 Female LV 1.66E-02 Heel bone mineral density (BMD) 

-0.92931 Male MYO 3.55E-13 HDL cholesterol 

-0.88149 Male LA 2.85E-02 Heel bone mineral density (BMD) 

-0.74638 Female RV 4.35E-02 Heel bone mineral density (BMD) 

-0.74552 Female LV 1.65E-10 HDL cholesterol 

-0.66669 Male RV 8.73E-02 Heel bone mineral density (BMD) 

-0.55235 Male LV 1.80E-04 HDL cholesterol 

-0.52283 Female RV 6.23E-07 HDL cholesterol 

-0.37027 Female LV 1.62E-07 Forced vital capacity (FVC) 

-0.33161 Male LV 3.53E-09 Overall health rating 

-0.33055 Male MYO 2.88E-10 Overall health rating 

-0.31878 Female MYO 1.40E-09 Overall health rating 

-0.31826 Female LV 1.44E-03 Forced expiratory volume in 1-second (FEV1), Best measure 

-0.31065 Female LV 3.72E-08 Overall health rating 

-0.31039 Male RV 6.88E-02 HDL cholesterol 

-0.28894 Female MYO 1.93E-11 Health satisfaction 

-0.26208 Female LV 1.73E-08 Health satisfaction 

-0.26087 Female MYO 2.03E-04 Forced vital capacity (FVC) 

-0.25658 Male LV 1.57E-07 Health satisfaction 

-0.25254 Male MYO 3.76E-08 Health satisfaction 

-0.24338 Female RA 5.91E-02 HDL cholesterol 

-0.23725 Male RV 7.66E-06 Overall health rating 

-0.23346 Female RV 4.98E-06 Overall health rating 

-0.22582 Male RA 5.47E-01 Heel bone mineral density (BMD) 

-0.21006 Female RV 2.13E-02 Forced expiratory volume in 1-second (FEV1), Best measure 

-0.17409 Male RV 1.81E-04 Health satisfaction 

-0.17015 Female LA 1.99E-01 HDL cholesterol 

-0.14991 Female MYO 1.15E-01 Forced expiratory volume in 1-second (FEV1), Best measure 

-0.14897 Female RV 7.75E-04 Health satisfaction 

-0.14705 Male RA 1.51E-02 Overall health rating 

-0.14154 Female LA 1.54E-02 Overall health rating 

-0.13961 Male LA 1.93E-01 Abdominal subcutaneous adipose tissue volume 

-0.13593 Male RV 8.29E-05 Total lean tissue volume 

-0.13376 Female LA 8.60E-03 Health satisfaction 

-0.1296 Male LA 4.60E-01 Nervous feelings 

-0.12773 Female RV 5.17E-02 Forced vital capacity (FVC) 

-0.12686 Male LA 3.61E-04 Number in household 



-0.12681 Female LA 1.63E-02 LDL direct 

-0.12084 Male RA 2.28E-02 Health satisfaction 

-0.11941 Male LV 1.34E-03 Total lean tissue volume 

-0.11917 Male MYO 7.04E-04 Total lean tissue volume 

-0.11265 Female LV 1.22E-02 Oily fish intake 

-0.11152 Male LV 8.68E-02 Smoking status 

-0.10913 Female MYO 3.08E-03 Number in household 

-0.1088 Female MYO 1.11E-02 Financial situation satisfaction 

-0.1084 Male RA 2.28E-02 Financial situation satisfaction 

-0.10796 Female RA 1.14E-01 Overall health rating 

-0.10623 Female LA 1.57E-02 Cholesterol 

-0.10468 Female LV 8.63E-03 Number in household 

-0.10392 Male LA 7.75E-02 LDL direct 

-0.10277 Male LV 2.62E-02 Forced vital capacity (FVC) 

-0.10262 Male MYO 3.14E-03 Number in household 

-0.10195 Male MYO 9.93E-03 Financial situation satisfaction 

-0.09994 Male LV 1.87E-02 Financial situation satisfaction 

-0.09562 Female RA 4.58E-01 Ever unenthusiastic/disinterested for a whole week 

-0.095 Male RV 1.04E-02 Financial situation satisfaction 

-0.08802 Female RV 3.31E-02 Total lean tissue volume 

-0.08728 Male LA 1.42E-01 Overall health rating 

-0.08236 Female LV 7.50E-02 Financial situation satisfaction 

-0.08224 Male LA 3.18E-02 Average total household income before tax 

-0.08182 Female LA 4.83E-02 Number in household 

-0.08132 Female LV 9.87E-02 Number of vehicles in household 

-0.08122 Male RA 8.15E-01 Abdominal subcutaneous adipose tissue volume 

-0.08046 Male MYO 2.39E-02 Average total household income before tax 

-0.07284 Male LV 5.79E-02 Number in household 

-0.07158 Male MYO 5.04E-06 
Number of days/week of moderate physical activity 10+ 

minutes 

-0.06936 Female RA 4.58E-01 Health satisfaction 

-0.06776 Female RV 7.69E-02 Oily fish intake 

-0.06762 Male RV 1.38E-01 Number of vehicles in household 

-0.0672 Male RA 4.08E-01 LDL direct 

-0.06705 Male LA 9.87E-02 Triglycerides Level 

-0.06692 Female LV 1.65E-01 Total lean tissue volume 

-0.06683 Male LA 9.59E-02 Cholesterol 

-0.06426 Male LV 3.54E-01 Forced expiratory volume in 1-second (FEV1), Best measure 

-0.06389 Male LV 1.48E-01 Oily fish intake 

-0.06373 Male RV 7.11E-02 Number in household 

-0.06278 Male LV 2.87E-04 
Number of days/week of moderate physical activity 10+ 

minutes 

-0.0592 Male MYO 2.21E-01 Number of vehicles in household 

-0.05888 Male LA 3.81E-01 Trunk fat mass 

-0.05866 Male LA 2.16E-01 Number of vehicles in household 

-0.05742 Male MYO 2.30E-01 Oily fish intake 

-0.05595 Male LA 4.60E-01 Health satisfaction 



-0.05535 Female RA 5.95E-01 Mouth/teeth dental problems 

-0.05496 Male RA 4.23E-01 Smoking status 

-0.05114 Male MYO 2.51E-01 Forced vital capacity (FVC) 

-0.05054 Male MYO 4.02E-01 Forced expiratory volume in 1-second (FEV1), Best measure 

-0.04976 Male RA 7.64E-01 Ever unenthusiastic/disinterested for a whole week 

-0.0492 Female LV 4.87E-01 Pork intake 

-0.04887 Male RV 3.04E-03 
Number of days/week of moderate physical activity 10+ 

minutes 

-0.04792 Female LV 9.75E-03 
Number of days/week of moderate physical activity 10+ 

minutes 

-0.04781 Female RV 2.51E-01 Financial situation satisfaction 

-0.047 Male RA 3.34E-01 Number in household 

-0.04639 Male LA 3.98E-01 Body mass index 

-0.04586 Female RA 4.58E-01 Financial situation satisfaction 

-0.04369 Male LA 8.32E-01 Fed-up feelings 

-0.0418 Female LV 5.58E-01 Ever unenthusiastic/disinterested for a whole week 

-0.04022 Male RV 6.48E-01 Smoking status 

-0.04 Female MYO 3.36E-01 Average total household income before tax 

-0.03887 Female MYO 5.66E-01 Ever unenthusiastic/disinterested for a whole week 

-0.03859 Female LA 4.50E-01 Oily fish intake 

-0.03811 Male LV 3.25E-01 Average total household income before tax 

-0.03676 Female RA 4.63E-01 Number in household 

-0.03588 Male RA 4.08E-01 Cholesterol 

-0.03545 Female MYO 9.43E-02 Education level 

-0.03415 Female RA 8.01E-01 Nervous feelings 

-0.03325 Female RV 8.81E-02 Education level 

-0.03246 Male RA 4.33E-01 Triglycerides Level 

-0.03099 Male RA 5.78E-01 Number of vehicles in household 

-0.03061 Female MYO 7.75E-02 
Number of days/week of moderate physical activity 10+ 

minutes 

-0.02994 Female LA 4.71E-01 Body mass index 

-0.02902 Male LV 5.02E-01 Number of vehicles in household 

-0.02847 Female LV 7.95E-02 Townsend score 

-0.02833 Male LA 2.11E-01 Pulse wave Arterial Stiffness index (m/s) 

-0.02726 Male RV 3.63E-01 Average total household income before tax 

-0.02699 Female LA 1.85E-01 
Number of days/week of moderate physical activity 10+ 

minutes 

-0.02687 Female RV 8.81E-02 Townsend score 

-0.02619 Male MYO 4.27E-01 Body mass index 

-0.02575 Male LA 6.58E-01 Beef intake 

-0.02514 Female MYO 6.75E-01 Number of vehicles in household 

-0.02496 Male RA 2.97E-01 
Number of days/week of moderate physical activity 10+ 

minutes 

-0.02457 Female RA 2.82E-01 Townsend score 

-0.02456 Male RV 6.48E-01 Oily fish intake 

-0.0241 Male RV 6.48E-01 Beef intake 

-0.02117 Male RV 2.26E-01 Fluid intelligence score 

-0.02081 Female MYO 3.44E-04 Hand grip strength (left) 

-0.02042 Male MYO 2.21E-01 Education level 



-0.02037 Female LA 2.64E-01 Pulse wave Arterial Stiffness index (m/s) 

-0.02021 Male RA 8.15E-01 Liver PDFF (proton density fat fraction) 

-0.01972 Male RA 9.29E-01 Nervous feelings 

-0.01845 Female RV 7.43E-01 Number in household 

-0.01814 Female RA 3.27E-01 
Number of days/week of moderate physical activity 10+ 

minutes 

-0.01775 Male LA 6.64E-01 Total trunk fat volume 

-0.01773 Female LA 1.85E-01 Time spent watching television 

-0.01771 Male LA 3.90E-01 Number of treatments/medications taken 

-0.01744 Male LV 8.41E-01 Cholesterol 

-0.01714 Male RA 8.51E-01 Body mass index 

-0.01705 Male MYO 7.01E-01 Cholesterol 

-0.01653 Female LA 8.32E-01 Nervous feelings 

-0.01607 Male MYO 9.93E-05 Hand grip strength (right) 

-0.01597 Male LV 4.33E-01 Pulse wave Arterial Stiffness index (m/s) 

-0.01587 Male MYO 3.41E-01 Fluid intelligence score 

-0.01524 Female RV 7.69E-03 Hand grip strength (left) 

-0.01502 Female RV 7.69E-03 Hand grip strength (right) 

-0.014996 Female RA 8.80E-01 Testosterone 

-0.01498 Male RV 3.63E-01 Education level 

-0.01495 Female LV 1.66E-02 Hand grip strength (left) 

-0.01481 Female RA 8.21E-01 Forced vital capacity (FVC) 

-0.01445 Female MYO 9.89E-03 Hand grip strength (right) 

-0.01441 Female LA 8.32E-01 Financial situation satisfaction 

-0.01416 Male MYO 7.38E-04 Hand grip strength (left) 

-0.01402 Female LV 9.85E-01 Testosterone 

-0.0139 Male LA 8.43E-02 Glycated haemoglobin (HbA1c) 

-0.01383 Male LA 4.20E-01 Time spent watching television 

-0.01332 Female RV 3.88E-01 
Number of days/week of moderate physical activity 10+ 

minutes 

-0.01329 Female RA 3.27E-01 Time spent watching television 

-0.01174 Male LV 8.41E-01 LDL direct 

-0.01157 Male LV 1.63E-02 Hand grip strength (left) 

-0.01151 Male LA 6.64E-01 Whole body fat mass 

-0.01122 Male LA 2.26E-07 Systolic blood pressure, automated reading (mmHg) 

-0.01112 Male LV 1.63E-02 Hand grip strength (right) 

-0.01095 Female LV 8.07E-02 Hand grip strength (right) 

-0.01008 Female MYO 8.36E-01 Oily fish intake 

-0.01006 Female LA 5.31E-01 Townsend score 

-0.00996 Female LV 5.78E-01 Education level 

-0.00976 Male RA 4.08E-01 Glycated haemoglobin (HbA1c) 

-0.00938 Male LA 1.07E-03 Alanine aminotransferase 

-0.00935 Male RA 4.38E-02 Hand grip strength (left) 

-0.00922 Female LA 3.30E-01 Glycated haemoglobin (HbA1c) 

-0.00864 Female RV 2.36E-01 Glycated haemoglobin (HbA1c) 

-0.00798 Male RV 8.73E-02 Hand grip strength (left) 

-0.00797 Male LA 6.64E-01 Liver PDFF (proton density fat fraction) 



-0.00778 Female LA 8.37E-01 Beef intake 

-0.00764 Male MYO 1.20E-04 Systolic blood pressure, automated reading (mmHg) 

-0.00706 Male RA 4.92E-01 Time spent watching television 

-0.00659 Male RV 9.75E-01 Cholesterol 

-0.00619 Male RV 1.91E-01 Hand grip strength (right) 

-0.00618 Male RA 1.76E-01 Hand grip strength (right) 

-0.0061 Male RA 9.31E-01 Mouth/teeth dental problems 

-0.00603 Female RA 9.15E-01 Smoking status 

-0.0058 Male RV 7.53E-01 Pulse wave Arterial Stiffness index (m/s) 

-0.00558 Male LA 2.00E-01 Diastolic blood pressure, automated reading (mmHg) 

-0.00541 Female LA 9.66E-01 Abdominal subcutaneous adipose tissue volume 

-0.00486 Male LA 7.52E-01 
Number of days/week of moderate physical activity 10+ 

minutes 

-0.00475 Female LA 1.99E-01 Alanine aminotransferase 

-0.00418 Male RV 6.83E-01 Glycated haemoglobin (HbA1c) 

-0.00408 Male LV 6.67E-02 Systolic blood pressure, automated reading (mmHg) 

-0.00401 Female LA 2.64E-01 Pulse rate 

-0.00371 Male MYO 7.01E-01 Glycated haemoglobin (HbA1c) 

-0.00358 Male LA 8.49E-01 Neuroticism score 

-0.00352 Female RA 6.52E-01 Hand grip strength (left) 

-0.00341 Female LV 9.05E-01 Body mass index 

-0.00339 Female RA 7.75E-01 Glycated haemoglobin (HbA1c) 

-0.00316 Female LA 1.62E-01 Systolic blood pressure, automated reading (mmHg) 

-0.00231 Female RA 7.42E-01 Hand grip strength (right) 

-0.00186 Female RA 9.64E-01 Number of vehicles in household 

-0.00175 Female RA 8.78E-01 Neuroticism score 

-0.00081 Female LV 8.07E-02 Peak expiratory flow (PEF) 

-0.0008 Male RA 7.40E-01 Alanine aminotransferase 

-0.00072 Male LA 4.58E-01 Gamma glutamyltransferase 

-0.00059 Male RA 7.72E-01 Systolic blood pressure, automated reading (mmHg) 

-0.00047 Female RV 9.85E-01 Body mass index 

-0.00046 Male RV 8.82E-01 Oestradiol 

-0.0003 Female RV 5.25E-01 Peak expiratory flow (PEF) 

-0.00027 Female MYO 6.35E-01 Peak expiratory flow (PEF) 

-0.00015 Female RV 9.91E-01 Number of treatments/medications taken 

-0.00013 Female LA 8.19E-01 Peak expiratory flow (PEF) 

-9.15E-05 Male RV 9.98E-01 LDL direct 

-6.88E-05 Female MYO 6.04E-01 Oestradiol 

-4.08E-05 Female RA 8.80E-01 Oestradiol 

-3.48E-05 Male RV 8.93E-01 Peak expiratory flow (PEF) 

-3.27E-06 Female LV 9.85E-01 Oestradiol 

2.17E-05 Female LA 8.69E-01 Oestradiol 

2.76E-05 Female RV 8.20E-01 Oestradiol 

0.000118 Female LV 9.24E-01 Gamma glutamyltransferase 

0.000323 Female LA 9.51E-01 Hand grip strength (right) 

0.000354 Male LV 2.69E-01 Peak expiratory flow (PEF) 

0.000406 Female LA 9.66E-01 Waist circumference 



0.000409 Male MYO 1.83E-01 Peak expiratory flow (PEF) 

0.000425 Female LA 7.49E-01 Gamma glutamyltransferase 

0.000732 Female RA 1.88E-01 Peak expiratory flow (PEF) 

0.000859 Female MYO 9.46E-01 Townsend score 

0.000874 Male LA 1.15E-02 Peak expiratory flow (PEF) 

0.000923 Male RA 9.76E-03 Peak expiratory flow (PEF) 

0.000964 Female RA 6.40E-01 Gamma glutamyltransferase 

0.001009 Male RV 7.53E-01 Systolic blood pressure, automated reading (mmHg) 

0.001025 Male RA 9.29E-01 Neuroticism score 

0.001036 Male RA 4.08E-01 Gamma glutamyltransferase 

0.00104 Male RV 9.74E-01 Body mass index 

0.00114 Female MYO 9.46E-01 Fluid intelligence score 

0.001144 Male MYO 5.07E-01 Oestradiol 

0.001147 Male RV 3.37E-01 Gamma glutamyltransferase 

0.001317 Male LV 8.41E-01 Glycated haemoglobin (HbA1c) 

0.001333 Male LV 3.87E-01 Gamma glutamyltransferase 

0.001419 Female LV 9.72E-01 Beef_intake 

0.001551 Male MYO 1.48E-01 Gamma glutamyltransferase 

0.00162 Female LA 9.68E-01 Number of vehicles in household 

0.00212 Male LA 6.70E-01 Hand grip strength (right) 

0.002178 Male LV 6.62E-01 Alanine aminotransferase 

0.002202 Male RA 9.54E-01 Trunk fat mass 

0.002232 Male LV 8.92E-01 Fluid intelligence score 

0.002275 Female LV 9.24E-01 Glycated haemoglobin (HbA1c) 

0.002476 Male LV 3.27E-01 Oestradiol 

0.002503 Female RV 2.76E-02 Gamma glutamyltransferase 

0.002796 Female LA 7.54E-01 Hand grip strength (left) 

0.003098 Male RV 3.37E-01 Alanine aminotransferase 

0.003178 Female LV 5.08E-01 Alanine aminotransferase 

0.003229 Female MYO 7.22E-03 Gamma glutamyltransferase 

0.0036 Male LA 7.93E-02 Oestradiol 

0.003685 Female RV 9.23E-01 Number of vehicles in household 

0.003753 Male RA 8.19E-02 Oestradiol 

0.003826 Male LA 2.11E-01 Pulse rate 

0.003916 Male RA 9.40E-01 Whole body fat mass 

0.004289 Male RV 8.82E-01 Testosterone 

0.004591 Female RA 2.03E-01 Pulse rate 

0.004768 Male RA 7.10E-01 Townsend score 

0.005053 Male MYO 9.06E-01 LDL direct 

0.00509 Female RA 9.15E-01 Oily fish intake 

0.005167 Male RA 8.51E-01 Waist circumference 

0.006194 Female RV 2.76E-02 Alanine aminotransferase 

0.006251 Female RA 8.59E-01 Cholesterol 

0.006333 Female RV 7.60E-01 Fluid intelligence score 

0.006958 Female RA 8.60E-01 Education level 

0.007081 Male MYO 4.98E-03 Alanine aminotransferase 



0.007166 Female LA 9.76E-02 Diastolic blood pressure, automated reading (mmHg) 

0.007544 Male LA 8.49E-01 Financial situation satisfaction 

0.008225 Female RA 3.35E-02 Alanine aminotransferase 

0.008231 Male LA 1.12E-01 Hand grip strength (left) 

0.008304 Female RA 1.45E-05 Systolic blood pressure, automated reading (mmHg) 

0.008628 Female LV 9.24E-01 Cholesterol 

0.008963 Female RV 1.57E-07 Systolic blood pressure, automated reading (mmHg) 

0.009011 Female MYO 3.00E-03 Alanine aminotransferase 

0.010129 Female RA 5.89E-01 Pulse wave Arterial Stiffness index (m/s) 

0.010259 Female LV 1.04E-07 Systolic blood pressure, automated reading (mmHg) 

0.01159 Female MYO 8.36E-01 Smoking status 

0.011616 Female LV 5.57E-01 Fluid intelligence score 

0.012859 Male LA 8.59E-01 Mouth/teeth dental problems 

0.013018 Female LV 4.80E-01 Number of treatments/medications taken 

0.013066 Female RV 2.51E-01 Neuroticism score 

0.013227 Female LV 3.14E-01 Neuroticism score 

0.013374 Female LA 8.94E-01 Trunk fat mass 

0.013573 Male RV 4.96E-01 Number of treatments/medications taken 

0.013734 Female MYO 9.30E-01 Mouth/teeth dental problems 

0.013779 Male MYO 3.32E-05 Diastolic blood pressure, automated reading (mmHg) 

0.013796 Female MYO 3.84E-14 Systolic blood pressure, automated reading (mmHg) 

0.013914 Male LA 4.30E-01 Waist circumference 

0.014259 Male MYO 7.62E-01 Pork intake 

0.014809 Female LV 2.77E-01 Time spent watching television 

0.015045 Female MYO 6.11E-02 Glycated haemoglobin (HbA1c) 

0.015446 Female RV 7.43E-01 Average total household income before tax 

0.015643 Female LA 7.49E-01 Triglycerides Level 

0.016005 Male MYO 2.21E-01 Townsend score 

0.016016 Male RA 2.46E-07 Pulse rate 

0.016899 Male RA 8.51E-01 Total lean tissue volume 

0.017276 Male RV 5.33E-08 Diastolic blood pressure, automated reading (mmHg) 

0.017366 Female LA 2.39E-01 Neuroticism score 

0.017673 Female MYO 9.40E-02 Time spent watching television 

0.017893 Male RA 4.94E-01 Pulse wave Arterial Stiffness index (m/s) 

0.017952 Female RV 1.80E-09 Pulse rate 

0.018164 Male MYO 1.21E-01 Neuroticism score 

0.018332 Female LV 5.78E-01 Average total household income before tax 

0.01842 Male LV 7.14E-01 Pork intake 

0.018513 Female RA 3.39E-01 Liver PDFF (proton density fat fraction) 

0.018655 Female LA 4.71E-01 Whole body fat mass 

0.018734 Female MYO 5.49E-01 Body mass index 

0.019297 Male RV 8.25E-01 Forced expiratory volume in 1-second (FEV1), Best measure 

0.02002 Male LV 3.25E-01 Education level 

0.020101 Male LA 2.56E-01 Education level 

0.020173 Female RV 3.81E-11 Diastolic blood pressure, automated reading (mmHg) 

0.020384 Male RA 4.00E-01 Education level 



0.02047 Female LA 3.76E-01 Education level 

0.020695 Male RV 6.49E-01 Pork intake 

0.02131 Male RV 1.31E-13 Pulse rate 

0.021573 Female RV 7.69E-02 Time spent watching television 

0.021827 Male LV 2.69E-01 Number of treatments/medications taken 

0.022173 Male LV 1.68E-10 Diastolic blood pressure, automated reading (mmHg) 

0.022195 Female LA 2.36E-01 Number of treatments/medications taken 

0.022448 Female MYO 6.07E-01 Total lean tissue volume 

0.02258 Male RA 6.87E-11 Diastolic blood pressure, automated reading (mmHg) 

0.022957 Female RA 1.88E-01 Number of treatments/medications taken 

0.023372 Male RA 8.51E-01 Total trunk fat volume 

0.023783 Male LA 6.64E-01 Total lean tissue volume 

0.024256 Male RV 1.78E-01 Liver PDFF (proton density fat fraction) 

0.02427 Male LV 6.07E-02 Time spent watching television 

0.024882 Female MYO 5.11E-02 Neuroticism score 

0.025958 Female MYO 2.62E-16 Pulse rate 

0.025995 Male LA 7.74E-02 Townsend score 

0.02676 Male MYO 2.33E-02 Waist circumference 

0.02712 Female LA 6.78E-01 Pork intake 

0.028351 Male RV 7.11E-02 Townsend score 

0.028363 Male RV 1.04E-02 Neuroticism score 

0.028678 Male MYO 5.77E-01 Beef intake 

0.028733 Female RV 2.35E-03 Waist circumference 

0.029013 Female LA 6.47E-01 Total trunk fat volume 

0.029054 Male MYO 1.64E-23 Pulse rate 

0.029402 Male LA 1.24E-01 Fluid intelligence score 

0.029977 Female RA 8.01E-01 Fed-up feelings 

0.030005 Male LV 3.88E-01 Body mass index 

0.030019 Male MYO 1.14E-01 Pulse wave Arterial Stiffness index (m/s) 

0.030209 Male RV 4.61E-03 Time spent watching television 

0.030333 Female RA 4.26E-20 Diastolic blood pressure, automated reading (mmHg) 

0.030973 Male LV 5.79E-02 Townsend score 

0.031016 Male LV 1.70E-02 Neuroticism score 

0.032119 Female LA 2.04E-01 Liver PDFF (proton density fat fraction) 

0.032471 Female LV 1.81E-22 Pulse rate 

0.032482 Female LV 6.96E-01 Smoking status 

0.03291 Female LV 1.81E-22 Diastolic blood pressure, automated reading (mmHg) 

0.033713 Male RV 3.38E-03 Waist circumference 

0.03381 Female RA 1.34E-03 Waist circumference 

0.034311 Female RA 6.40E-01 LDL direct 

0.034434 Male LA 6.58E-01 Pork intake 

0.034603 Female RA 4.63E-01 Average total household income before tax 

0.03513 Female LV 1.05E-03 Waist circumference 

0.035547 Female MYO 1.32E-28 Diastolic blood pressure, automated reading (mmHg) 

0.03557 Male LV 4.92E-01 Beef intake 

0.036067 Male LV 2.63E-31 Pulse rate 



0.037388 Female RV 1.54E-02 Whole body fat mass 

0.037587 Female RV 2.84E-02 Pulse wave Arterial Stiffness index (m/s) 

0.03759 Male RA 4.38E-02 Fluid intelligence score 

0.038001 Female LV 4.97E-02 Pulse wave Arterial Stiffness index (m/s) 

0.03804 Female LA 8.69E-01 Testosterone 

0.038597 Male LV 1.67E-03 Waist circumference 

0.038675 Female MYO 3.56E-02 Pulse wave Arterial Stiffness index (m/s) 

0.03923 Male RA 4.23E-01 Beef intake 

0.040347 Male MYO 2.87E-02 Whole body fat mass 

0.040519 Female RV 8.20E-01 Testosterone 

0.040767 Female RA 8.31E-02 Fluid intelligence score 

0.041228 Female LV 5.57E-01 Mouth/teeth dental problems 

0.042962 Female MYO 4.47E-03 Number of treatments/medications taken 

0.04317 Male RV 1.94E-02 Whole body fat mass 

0.044335 Female RV 3.95E-01 Smoking status 

0.044336 Male MYO 2.81E-01 Testosterone 

0.044729 Male MYO 1.95E-05 Time spent watching television 

0.044991 Female RV 1.14E-02 Liver PDFF (proton density fat fraction) 

0.045188 Female RA 3.65E-01 Abdominal subcutaneous adipose tissue volume 

0.045695 Female LV 1.03E-02 Whole body fat mass 

0.047249 Female LA 7.54E-01 Forced expiratory volume in 1-second (FEV1), Best measure 

0.047391 Female LV 1.71E-02 Liver PDFF (proton density fat fraction) 

0.04784 Female RV 4.49E-01 Ever unenthusiastic/disinterested for a whole week 

0.048272 Male LA 4.20E-01 Oily fish intake 

0.049317 Female MYO 1.58E-01 Cholesterol 

0.050001 Male RA 4.23E-01 Pork intake 

0.050022 Female LA 1.33E-02 Fluid intelligence score 

0.050123 Male RA 2.87E-01 Forced vital capacity (FVC) 

0.05041 Female RA 1.94E-01 Trunk fat mass 

0.050594 Female RV 1.38E-01 Cholesterol 

0.050966 Male RA 1.51E-02 Number of treatments/medications taken 

0.051335 Female LA 2.50E-01 Average total household income before tax 

0.051703 Male LV 6.29E-03 Liver PDFF (proton density fat fraction) 

0.051759 Female MYO 2.10E-07 Waist circumference 

0.051997 Male RA 3.34E-01 Average total household income before tax 

0.055749 Male MYO 4.24E-01 Smoking status 

0.057337 Female MYO 4.63E-04 Whole body fat mass 

0.057784 Male MYO 9.18E-04 Number of treatments/medications taken 

0.0595 Female RA 1.06E-03 Whole body fat mass 

0.060208 Male RA 7.64E-01 Fed-up feelings 

0.061018 Male RV 1.91E-01 Forced vital capacity (FVC) 

0.06288 Male LA 7.93E-02 Testosterone 

0.063131 Male RA 8.19E-02 Testosterone 

0.065033 Male RA 2.97E-01 Oily fish intake 

0.066165 Male MYO 3.72E-04 Liver PDFF (proton density fat fraction) 

0.066824 Female RA 2.58E-02 Body mass index 



0.067624 Female RA 3.27E-01 Beef intake 

0.068038 Female RA 3.27E-01 Pork intake 

0.069743 Male LV 2.11E-01 Triglycerides Level 

0.071108 Female LA 4.05E-01 Smoking status 

0.073117 Female MYO 8.24E-05 Liver PDFF (proton density fat fraction) 

0.0748 Male RV 9.63E-02 Triglycerides Level 

0.076552 Female LV 2.46E-01 LDL direct 

0.078694 Female MYO 7.75E-02 Beef intake 

0.078778 Female RV 7.69E-02 Beef intake 

0.080425 Female LA 3.61E-01 Fed-up feelings 

0.08075 Male LV 3.11E-02 Testosterone 

0.082287 Female RV 2.51E-01 Fed-up feelings 

0.08569 Female RA 3.29E-02 Total trunk fat volume 

0.085981 Male LA 3.81E-01 Visceral adipose tissue volume 

0.086189 Female RV 7.69E-02 Pork intake 

0.086298 Male LA 4.20E-01 Smoking status 

0.090747 Female LA 2.89E-01 Mouth/teeth dental problems 

0.091294 Male LA 4.60E-01 Ever unenthusiastic/disinterested for a whole week 

0.091561 Male LV 5.23E-06 Whole body fat mass 

0.095059 Female RV 1.80E-01 Mouth/teeth dental problems 

0.09871 Female MYO 1.79E-01 Fed-up feelings 

0.099598 Female LA 2.36E-01 Forced vital capacity (FVC) 

0.100327 Female RV 2.51E-01 Nervous feelings 

0.108701 Female LA 1.09E-01 Total lean tissue volume 

0.114163 Female RV 1.47E-02 LDL direct 

0.114343 Male RA 3.71E-01 Visceral adipose tissue volume 

0.115573 Male LV 2.05E-01 Nervous feelings 

0.116879 Female MYO 7.75E-02 Pork intake 

0.120035 Female LV 1.44E-01 Fed-up feelings 

0.122298 Female RA 4.65E-02 Triglycerides Level 

0.122706 Male LA 1.12E-01 Forced expiratory volume in 1-second (FEV1), Best measure 

0.124078 Male LV 1.67E-03 Trunk fat mass 

0.127514 Male RA 7.19E-02 Forced expiratory volume in 1-second (FEV1), Best measure 

0.128558 Male LV 1.13E-01 Ever unenthusiastic/disinterested for a whole week 

0.12921 Male RV 6.33E-02 Ever unenthusiastic/disinterested for a whole week 

0.132066 Male MYO 1.22E-01 Nervous feelings 

0.133002 Male MYO 8.46E-02 Mouth/teeth dental problems 

0.140762 Female MYO 1.05E-01 Nervous feelings 

0.141867 Male RV 8.73E-02 Mouth/teeth dental problems 

0.142461 Male RA 4.08E-01 HDL cholesterol 

0.144279 Female RA 1.88E-01 Forced expiratory volume in 1-second (FEV1), Best measure 

0.145804 Female LA 2.04E-01 Visceral adipose tissue volume 

0.146015 Male LA 3.14E-01 HDL cholesterol 

0.153246 Female MYO 1.59E-03 LDL direct 

0.154065 Female MYO 1.87E-05 Trunk fat mass 

0.164722 Female LA 4.52E-02 Ever unenthusiastic/disinterested for a whole week 



0.165059 Male MYO 1.86E-05 Trunk fat mass 

0.165441 Female LV 2.17E-05 Trunk fat mass 

0.166173 Male RV 8.94E-06 Trunk fat mass 

0.170246 Male MYO 5.88E-03 Abdominal subcutaneous adipose tissue volume 

0.175765 Female LV 7.50E-02 Nervous feelings 

0.176136 Female MYO 4.63E-04 Abdominal subcutaneous adipose tissue volume 

0.179568 Female RA 3.91E-04 Total lean tissue volume 

0.188082 Female RV 1.50E-08 Trunk fat mass 

0.190211 Male LV 1.71E-02 Mouth/teeth dental problems 

0.190316 Male RV 1.57E-03 Abdominal subcutaneous adipose tissue volume 

0.194299 Male MYO 9.93E-03 Fed-up feelings 

0.200027 Male LV 1.70E-02 Fed-up feelings 

0.204291 Male MYO 1.31E-08 Triglycerides Level 

0.210139 Male RV 1.62E-07 Total trunk fat volume 

0.213111 Female MYO 6.38E-02 Testosterone 

0.21504 Male LV 1.12E-03 Abdominal subcutaneous adipose tissue volume 

0.221961 Male LA 1.81E-06 Forced vital capacity (FVC) 

0.222448 Female LV 4.44E-05 Abdominal subcutaneous adipose tissue volume 

0.233626 Male RV 9.34E-03 Nervous feelings 

0.233738 Female RV 7.56E-07 Abdominal subcutaneous adipose tissue volume 

0.246222 Male RV 7.91E-04 Fed-up feelings 

0.253944 Male RV 5.86E-06 Visceral adipose tissue volume 

0.256255 Female RV 3.21E-13 Total trunk fat volume 

0.258549 Male MYO 1.04E-03 Ever unenthusiastic/disinterested for a whole week 

0.26172 Male LV 9.68E-10 Total trunk fat volume 

0.26459 Female RV 3.30E-08 Triglycerides Level 

0.273218 Female RA 1.34E-03 Visceral adipose tissue volume 

0.276088 Female LV 6.48E-12 Total trunk fat volume 

0.285929 Female MYO 4.05E-14 Total trunk fat volume 

0.32992 Male LV 2.92E-08 Visceral adipose tissue volume 

0.347695 Female LV 5.85E-11 Triglycerides Level 

0.347953 Male MYO 2.65E-19 Total trunk fat volume 

0.462521 Female MYO 7.71E-21 Triglycerides Level 

0.53184 Male MYO 5.39E-23 Visceral adipose tissue volume 

0.564127 Female RV 8.34E-14 Visceral adipose tissue volume 

0.691806 Female LV 9.78E-16 Visceral adipose tissue volume 

0.846548 Female MYO 1.69E-26 Visceral adipose tissue volume 

Supplementary Table 4 footnote. HDL: high-density lipoprotein; LA: left atrium; LDL: low-density 

lipoprotein; LV: left ventricle; MYO: myocardium; RA: right atrium; RV: right ventricle. 

 

 


