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Image-Based Biological Heart Age
Estimation Reveals Differential Aging
Patterns Across Cardiac Chambers

Ahmed M. Salih, PhD,1* Esmeralda Ruiz Pujadas, PhD,2 Víctor M. Campello, MSc,2

Celeste McCracken, MSc,3 Nicholas C. Harvey, PhD,4,5 Stefan Neubauer, MD,3

Karim Lekadir, PhD,2 Thomas E. Nichols, PhD,6,7 Steffen E. Petersen, DPHIL,1,8,9,10 and

Zahra Raisi-Estabragh, PhD1,8

Background: Biological heart age estimation can provide insights into cardiac aging. However, existing studies do not
consider differential aging across cardiac regions.
Purpose: To estimate biological age of the left ventricle (LV), right ventricle (RV), myocardium, left atrium, and right atrium
using magnetic resonance imaging radiomics phenotypes and to investigate determinants of aging by cardiac region.
Study type: Cross-sectional.
Population: A total of 18,117 healthy UK Biobank participants including 8338 men (mean age = 64.2 � 7.5) and 9779
women (mean age = 63.0 � 7.4).
Field Strength/Sequence: A 1.5 T/balanced steady-state free precession.
Assessment: An automated algorithm was used to segment the five cardiac regions, from which radiomic features were
extracted. Bayesian ridge regression was used to estimate biological age of each cardiac region with radiomics features as
predictors and chronological age as the output. The “age gap” was the difference between biological and chronological
age. Linear regression was used to calculate associations of age gap from each cardiac region with socioeconomic, life-
style, body composition, blood pressure and arterial stiffness, blood biomarkers, mental well-being, multiorgan health,
and sex hormone exposures (n = 49).
Statistical Test: Multiple testing correction with false discovery method (threshold = 5%).
Results: The largest model error was with RV and the smallest with LV age (mean absolute error in men: 5.26
vs. 4.96 years). There were 172 statistically significant age gap associations. Greater visceral adiposity was the strongest
correlate of larger age gaps, for example, myocardial age gap in women (Beta = 0.85, P = 1.69 � 10�26). Poor mental
health associated with large age gaps, for example, “disinterested” episodes and myocardial age gap in men
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(Beta = 0.25, P = 0.001), as did a history of dental problems (eg LV in men Beta = 0.19, P = 0.02). Higher bone mineral
density was the strongest associate of smaller age gaps, for example, myocardial age gap in men (Beta = �1.52,
P = 7.44 � 10�6).
Data Conclusion: This work demonstrates image-based heart age estimation as a novel method for understanding cardiac
aging.
Evidence Level: 1.
Technical Efficacy: Stage 1.

J. MAGN. RESON. IMAGING 2023.

Epidemiologic trends indicate aging global populations and
increasing burden from diseases of older age.1 Cardiovas-

cular diseases (CVDs) are the most common cause of disabil-
ity and premature death worldwide and occur more
commonly in older individuals.2 Optimizing healthy cardiac
aging is a global public health priority.3

Cardiac imaging may capture distinct age-related cardiac
alterations. Magnetic resonance imaging (MRI) is the refer-
ence modality for cardiac chamber quantification and can
provide evaluation of myocardial tissue character.4

MRI derived phenotypes (IDPs) permit noninvasive
characterization of cardiovascular health and detection of pre-
clinical organ-level remodeling.5 Alteration of MRI pheno-
types reflects exposure to specific cardiovascular stressors,
which may differentially impact individual cardiac chambers.
For instance, chronic pulmonary disorders are known to pref-
erentially impact right atrial and right ventricular pheno-
types6; while hypertension-related remodeling primarily
affects the left heart.7 Thus, the exposure profile of an indi-
vidual can determine the pattern of aging across different
heart structures. The recognition of such remodeling patterns
is important, as they have different clinical and prognostic
consequences. Furthermore, the pattern of remodeling associ-
ated with an exposure can provide insight into the mecha-
nisms through which it alters cardiovascular health.

In previous reports, researchers have used deep learning
methods applied to cardiovascular imaging to develop esti-
mates of heart age.8,9 These studies present novel approaches
to evaluating heart age based on its image appearance. How-
ever, given the “black box” nature of these methods, the
interpretability of the developed models is limited. Impor-
tantly, it is not possible to highlight the precise impact of an
exposure on specific cardiac structures. This severely limits
biological and clinical inferences from such models.

MRI radiomics analysis permits extraction of many
quantitative measures of cardiac shape and myocardial charac-
ter using voxel-level data.5 The large number of features gen-
erated lends itself ideally to machine learning methods. A key
advantage of MRI radiomics features over black box methods
is the potential to produce interpretable models.

We hypothesized that heart age of individual cardiac
structures may be modeled using radiomics features extracted
from related regions, that is, it may be possible to describe, in
a quantitative and interpretable manner, differential aging

patterns across cardiac chambers. This information could in
turn be used to evaluate patterns of aging across different car-
diovascular structures ascribed to specific exposures.

The aim of this study was to use MRI radiomics fea-
tures to estimate biological age of the left and right ventricles
(LV, RV) and atria (LA, RA), and the LV myocardium. A
further aim was to investigate the association of selected expo-
sures on aging across these structures, separately in men and
women.

Materials and Methods
Data Source and Population Characteristics
The UK Biobank comprises detailed characterization of approxi-
mately 500,000 individuals from across the United Kingdom. The
participants were aged 40–69 at recruitment (2006–2010). Baseline
assessment was conducted according to a published research
protocol,10 gathering information on demographic, lifestyle and
environment factors, cognitive tests, and blood sampling. The UK
Biobank Imaging Study was launched in 2015 and is ongoing,
aiming to perform multiorgan imaging for a 20% (n = 100,000)
subset of the original participants. In this study, we included 29,144
participants for whom MRI data were available. We excluded
11,027 participants with history of CVD at time of imaging
(Table S1 Supplemental Material). The analysis sample included
8338 men and 9779 women. The average age was 64.2 (�7.5) years
for men and 63.0 (�7.4) years for women.

Image Acquisition
Imaging was performed in dedicated UK Biobank centers using uni-
form staff training, equipment, and predefined acquisition proto-
cols.11 MRI scans were performed using 1.5 T scanners
(MAGNETOM Aera, Syngo Platform VD13A, Siemens Healthcare,
Erlangen, Germany). Cardiac structure and function were assessed
using standard long-axis slices (vertical long axis, horizontal long
axis, and left ventricular outflow tract) and a short-axis stack cover-
ing the ventricles from base to apex. All cine images were acquired
with a balanced steady-state free precession sequence. The imaging
protocol parameters were set to as slice thickness (6.0), matrix size
(208 � 187), voxel size (1.8 � 1.8 � 6.0), TR (msec) (2.7), TE
(msec) (1.16), and acquired temporal resolution (msec) (32.64). Fur-
ther details of pulse sequence parameters have been previously
published.11

Image Segmentation
We computed radiomics features from the voxels identified by the
atrial contours from long axis and the RV, LV, and LV myocardium
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from short-axis images, in end-systole and end-diastole. Automated
segmentation of the ventricular and myocardial regions was per-
formed using a previously developed pipeline, trained on a large
expert annotated manual segmentation dataset. End-diastolic was
considered as the first phase of the acquisition. Experts determined
the end-systolic phase visually by which the LV intracavity blood
pool is in its smallest size at the mid-ventricular level.12

To define the atrial contours from the long-axis images, an auto-
matic segmentation model based on a traditional U-Net architecture
was implemented. Ground truth manually annotated datasets
(n = 764) were used for model fitting.12 Data augmentation tech-
niques were used to introduce more variability in the overall structure
and appearance of images and to improve the generalizability of the
model. These included small rotations of the image, random bias field
perturbations, random contrast adjustments, and random intensity his-
togram shifting. The model was trained for 100 epochs with a batch
size of 16 on 256 � 256 images using the Adam optimizer with a
learning rate of 0.0001 and 0.9 and 0.999 first and second moments,
respectively. Binary cross entropy was used as loss function. The
resulting model was used to generate automatic delineations for the rest
of the studies considered in this work. Two postprocessing steps were
used to ensure smooth contours: an algorithm to fill potential holes in
the final mask and a selection of the largest connected component
predicted for each region of interest (ROI). A fully automated quality-
controlled image analysis pipeline, previously developed and validated
in a large subset of the UK Biobank,12,13 was applied to short-axis
images to define the LV, RV, and myocardial contours.

For each study, the RV, LV, and myocardial contours were
automatically defined and exported in a single xml file. We devel-
oped an in-house software in Python (version 3.7.9) to convert the
contours into binary masks, which we have made publicly avail-
able.14 This software builds a polygon from the contour points in
the coordinate space to form the mask, given the xml file and the
corresponding MR DICOM images. The area bounded by the con-
tour in every slice was filled with ones using the fillpoly function
from the OpenCV15 library, resulting in the binary ROI. This pro-
cess was repeated for all delineated contours. For the atrial contours,
the deep learning method was designed to automatically return a
binary mask without the need for any intermediate steps.

Feature Extraction
The open-source PyRadiomics platform (version 2.2.0.) was used to
extract Radiomics features given the contours and the corresponding
images. For intensity-based and texture features, brightness harmoniza-
tion was achieved by histogram standardization, and gray values were
discretized with a bin width of 25 (units). For each frame, we com-
puted 13 shape, 18 first-order, and 75 texture features. In the long
axis, one 3D shape feature, “flatness,” was discarded in outlier removal
checks. The texture features were extracted using five different matri-
ces: gray-level co-occurrence matrix (24 features), gray-level run-length
matrix (16 features), gray-level size-zone matrix (16 features), neighbor-
ing gray tone difference matrix (5 features), and gray-level dependence
matrix (14 features). In all, we computed a total of 210 radiomics fea-
tures for each ROI (shape n = 24, first order n = 36, texture
n = 150). The full list of the radiomic features extracted is displayed
in Table S2 Supplemental Material. Further background information
to radiomics can be found in dedicated review articles.5,16–18

Feature Selection
All the following steps were implemented using Python 3.8.10 and
Scikit-learn 1.0.2. A total of 1050 radiomics features were available
(210 from each of 5 ROIs [LV, RV, LA, RA, myocardium]). We
built individual models for each ROI, separately for men and
women, resulting in a total of 10 models. Model development
methods were uniform across all 10 models. First, we applied recur-
sive feature elimination with cross-validation (RFECV) to choose the
optimal number of features (among the 210 per ROI) using Bayes-
ian ridge regression19 as the model (10-fold), and with chronological
age set as the dependent variable. Thereafter, we applied Cook’s Dis-
tance20 method to detect and remove any outliers. A data point was
considered an outlier by Cook’s distance if its value was larger than
three times the mean of all the data points (Table S3 Supplemental
Material).

Model Building
Figure 1 explains the overall of the study and modeling. Height and
weight were considered as confounds and regressed out from the fea-
tures using a linear regression model where the confounds are the
independent variables and each feature is the dependent variable.
Thereafter, the features were normalized to have zero mean and unit
variance. Bayesian ridge regression was used to estimate the age of
each ROI. The “age gap” values were calculated by subtracting the
actual age from the predicted age for each cardiac structure
(or ROI). We examined the association of age gap metrics with life-
style and health exposures.

Explainability
To aid interpretability of our models, we identified the most infor-
mative features driving the model output using the SHapley Additive
exPlanations (SHAP) method. SHAP calculates a value for each radi-
omics feature representing the contribution of that feature to the
model output. The output of SHAP is a list of the most informative
features in the model in descending order. The list is based on the
SHAP value for each feature in the model, which quantifies the
impact (magnitude, direction) of the feature on the model output.

Associations of Age Gap With Selected Exposures
We considered associations between age gap from each structural
region and a selection of key exposures selected based on biological
knowledge of their associations with cardiovascular health. We con-
sidered 49 exposures (Table S4 Supplemental Material), including
socioeconomic factors (n = 5), lifestyle factors (n = 6), obesity and
body composition metrics (n = 9), blood pressure and arterial stiff-
ness (n = 4), blood biomarkers (n = 7), mental well-being (n = 6),
multiorgan health indicators (n = 10), and sex hormones (n = 2).
The following quality control steps were performed on the exposures
before investigating the association with age gap. Levels within cate-
gorical variables were re-ordered to align higher scores with healthier
exposure levels (applies to educational level, health satisfaction,
financial satisfaction). Blood pressure and resting heart rate were lim-
ited to biologically plausible ranges: systolic blood pressure:
>60 mmHg and <200 mmHg; diastolic blood pressure: >40 mmHg
and <120 mmHg, resting heart rate: >40 bpm and <140 bpm.
Blood biochemistry parameters were restricted to values within the
manufacturer’s analytical range.21
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Statistical Analysis
Model performance was assessed using mean absolute error (MAE)
and prediction coefficient of determination (R2). MAE is the differ-
ence between the predicted value (estimated heart age) and the
actual value (actual age). Prediction R2 measures how much of the
variation in the outcome (predicted heart age) is explained by the
input data (radiomics features) and is calculated as: Prediction
R2 = 1- Prediction mean squared error/total sum of squares. We
applied a regression to the mean correction to remove dependency
of heart age gap (delta) on age.22

Linear regression was used to examine associations of heart age
gap from each ROI with each exposure. Models were adjusted for
height, weight, and age. We report beta coefficients and 95% confi-
dence intervals (CI) relating to the age gap value associated with each
exposure—which indicates difference in cardiac age (for each ana-
tomic region) for each unit increase in the exposure. A positive beta
value indicates direction of association toward a more positive age
gap—that is, greater cardiac age than actual age (likely adverse expo-
sure). We corrected for multiple testing using the false discovery rate
method (threshold P < 0.05).

Results
Baseline Characteristics
Compared to women, men had poorer cardiometabolic pro-
file, with greater obesity, poorer glycemic control, and higher
blood pressure and arterial stiffness. Women had, on average,
greater levels of deprivation, lower educational level, and lived

in lower income households. Women also scored higher on
all indicators of poorer mental well-being. More details of
baseline population characteristics are explained in Table 1.

Model Performance
We present model performance metrics in Table 2 as the
average MAE and predicted R2 across all folds (from our
10-folds cross validation) for each ROI in men and women,
before application of the regression to the mean correction.
Across all cardiac regions, age estimation models had greater
error in men (higher MAE, lower R2) than women. For both
men and women, the greatest discrepancy between model
estimated age and chronological age was observed for the RV
followed by the myocardium, as indicated by greatest error in
these models (higher MAE, lower R2). In comparison, LV
cavity age estimation models had the best performance met-
rics (lower MAE, higher R2).

Left Atrium
Geometric alterations of the LA (radiomics shape features)
were informative age-related metrics (major and minor axis
length, 2D diameter row, and column) in both women and
men, all indicating that greater LA age was linked to smaller
chamber size (Fig. 2). In women, we additionally observed
that smaller surface area, mesh volume, and voxel volume
were all linked to greater LA age. SI-based features had a

FIGURE 1: Conceptual overview of the steps used to estimate heart age for each cardiac region and perform PheWAS. These steps
were performed separately for women and men. LA = left atrium; LV = left ventricle; MYO = myocardium; PheWAS = phenome
wide association study; RA = right atrium; RV = right ventricle. The full list of exposures is presented in Table S4 in the
Supplemental Material.
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TABLE 1. Baseline Population Characteristics

Men Women

n 8338 9779

Age (years) 64.17 (�7.50) 63.04 (�7.36)

Cardiac MRI metric

Left ventricular end-diastolic volume index 82.83 (�14.32) 73.50 (�10.91)

Left ventricular mass index 50.94 (�7.7) 40.66 (�5.81)

Left ventricular ejection fraction 58.02 (�5.99) 61.02 (�5.59)

Right ventricular end-diastolic volume index 89.07 (�15.16) 76.13 (�11.89)

Right ventricular ejection fraction 55.28 (�5.78) 59.25 (�5.63)

Socioeconomic factors

Townsend score �2.70 [�3.93–0.62] �2.55 [�3.85–0.47]

Education level

None 1 [6.04%] 1 [5.84%]

Secondary education 2 [4.00%] 2 [3.92%]

High school diploma 3 [16.87%] 3 [21.22%]

Vocational diploma 4 [7.71%] 4 [3.24%]

Other professional qualifications,
for example, nursing, teaching

5 [4.13%] 5 [6.20%]

A levels/AS levels or equivalent 6 [11.85%] 6 [14.31%]

College or University degree 7 [49.41%] 7 [45.28%]

Number of vehicles in household

1, None 1 [3.24%] 1 [4.10%]

2, One 2 [34.35%] 2 [39.39%]

3, Two 3 [47.68%] 3 [43.47%]

4, Three 4 [11.49%] 4 [9.95%]

5, Four or more 5 [3.24%] 5 [3.09%]

Average total household income before tax

1, Less than £18,000 1 [8.92%] 1 [13.55%]

2, 18,000–30,999 2 [20.30%] 2 [24.86%]

3, 31,000–51,999 3 [31.63%] 3 [30.03%]

4, 52,000–100,000 4 [31.15%] 4 [26.00%]

5, Greater than 100,000 5 [8.00%] 5 [5.55%]

Number of people in household 2.54 [1.16] 2.48 [1.15]

Lifestyle factors

Time spent watching television (hours/day) 2 [1–3] 2 [1–3]

Oily fish intake

0 = Never 0 [9.22%] 0 [9.52%]
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TABLE 1. Continued

Men Women

1 = Less than once a week 1 [36.14%] 1 [33.52%]

2 = Once a week 2 [37.61%] 2 [40.03%]

3 = 2–4 times a week 3 [15.99%] 3 [16.38%]

4 = 5–6 times a week 4 [0.81%] 4 [0.49%]

5 = Once or more daily 5 [0.22%] 5 [0.05%]

Beef intake

0 = Never 0 [7.38%] 0 [13.54%]

1 = Less than once a week 1 [47.06%] 1 [45.55%]

2 = Once a week 2 [33.88%] 2 [29.58%]

3 = 2–4 times a week 3 [11.48%] 3 [11.25%]

4 = 5–6 times a week 4 [0.16%] 4 [0.06%]

5 = Once or more daily 5 [0.04%] 5 [0.01%]

Pork intake

0 = Never 0 [11.67%] 0 [19.49%]

1 = Less than once a week 1 [60.84%] 1 [59.35%]

2 = Once a week 2 [23.65%] 2 [18.74%]

3 = 2–4 times a week 3 [3.71%] 3 [2.38%]

4 = 5–6 times a week 4 [0.10%] 4 [0.04%]

5 = Once or more daily 5 [0.02%] 5 [0%]

Number of days/week of moderate
physical activity 10+ minutes (days/week)

3.33 [2.24] 3.50 [2.28]

Smoking status

0, Never 0 [56.05%] 0 [63.87%]

1, Previous 1 [36.81%] 1 [31.19%]

2, Current 2 [7.14%] 2 [4.94%]

Obesity and body composition metrics

Visceral adipose tissue volume (liters) 4.77 [3.33–6.49] 2.37 [1.51–3.57]

Abdominal subcutaneous adipose tissue volume (liters) 5.53 [4.29–7.16] 7.59 [5.66–9.94]

Total trunk fat volume (liters) 10.97 [4.29] 10.71 [4.61]

Body mass index (kg/m2) 26.85 [24.76–29.37] 25.43 [23.09–28.85]

Whole body fat mass (kg) 21.45 [7.23] 25.74 [8.88]

Waist circumference (cm) 95.13 [10.26] 82.51 [11.13]

Liver PDFF (proton density fat fraction, %) 2.92 [1.80–6.13] 1.98 [1.33–3.81]

Total lean tissue volume (liters) 27.38 [25.77–29.87] 20.25 [18.60–22.14]

Trunk fat mass (kg) 14.02[4.54] 13.23[4.84]

Blood pressure and arterial stiffness

Pulse rate (bpm) 67 [60–74] 68 [62–75]
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TABLE 1. Continued

Men Women

Pulse wave arterial stiffness index (m/sec) 9.63 [7.72–11.83] 8.12 [6.20–10.33]

Diastolic blood pressure, automated reading (mmHg) 84.10 [9.93] 79.88 [10.28]

Systolic blood pressure, automated reading (mmHg) 141.31 [16.81] 134.19 [18.99]

Blood biomarkers

Alanine aminotransferase (units per liter) 23.97 [18.63–32.18] 17.19 [13.62–22.47]

Gamma glutamyltransferase (units per liter) 31.90 [23.10–47.30] 20.25 [15.30–28.80]

Glycated hemoglobin (mmol/mol) 34.80 [32.40–37.30] 34.60 [32.30–37.10]

Triglycerides level (mmol/liter) 1.67 [1.18–2.38] 1.27 [0.93–1.78]

Cholesterol (mmol/liter) 5.55 [1.07] 5.86 [1.07]

LDL (mmol/liter) 3.54 [0.83] 3.62 [0.83]

HDL (mmol/liter) 1.26 [1.08–1.46] 1.58 [1.35–1.83]

Mental health

Fed-up feelings

1, Yes 1 [33.78%] 1 [40.13%]

0, No 0 [66.22%] 0 [59.87%]

Nervous feelings

1, Yes 1 [18.22%] 1 [23.98%]

0, No 0 [81.78%] 0 [76.02%]

Neuroticism score 3.52 [3.17] 4.47 [3.20]

Health satisfaction

1, Extremely unhappy 1 [0.34%] 1 [0.74%]

2, Very unhappy 2 [1.47%] 2 [1.67%]

3, Moderately unhappy 3 [7.11%] 3 [7.94%]

4, Moderately happy 4 [48.69%] 4 [48.59%]

5, Very happy 5 [37.07%] 5 [35.93%]

6, Extremely happy 6 [5.32%] 6 [5.12%]

Financial situation satisfaction

1, Extremely unhappy 1 [0.73%] 1 [0.90%]

2, Very unhappy 2 [1.77%] 2 [1.67%]

3, Moderately unhappy 3 [5.19%] 3 [5.59%]

4, Moderately happy 4 [38.55%] 4 [37.86%]

5, Very happy 5 [41.06%] 5 [41.84%]

6, Extremely happy 6 [12.71%] 6 [12.14%]

Ever unenthusiastic/disinterested for a whole week

1, Yes 1 [29.89%] 1 [41.47%]

0, No 0 [70.11%] 0 [58.53%]
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more minor role in these models, however overall, they indi-
cated that greater LA age gap was linked to smoother less
coarse texture in the LA blood pool (eg lower autocorrelation)
in both men and women (Fig. 2).

Left Ventricle
In both men and women, radiomics phenotypes indicating
smaller and less spherical LV shape were among the most
informative individual model features according to SHAP
values (Fig. 2). Signal intensity (SI)-based features also con-
tributed importantly to models for men and women includ-
ing features indicating greater skewness and variance in men.
In women, features indicating greater autocorrelation of LV
cavity pixel intensities (greater coarseness) and high gray-level
emphasis were informative. Another notable result is that the

range of SHAP values in female cohorts was bigger than in
the male cohort indicating greater impact of these features in
the age model for women.

LV Myocardium
In men, shape features were most informative to LV myocar-
dial age estimation, while for women myocardial SI-based fea-
tures were more prominent (Fig. 2). In men, greater
myocardial age was linked to smaller surface area, larger voxel
volume, and smaller minor and major axis lengths. In
women, myocardial age was indicated by features representing
a dimmer and more homogenous pattern of myocardial
SI. For instance, in women, greater myocardial age was linked
to lower mean gray level intensity level (lower “joint aver-
age”), higher proportion of low SI pixel pairs in relation to

TABLE 1. Continued

Men Women

Multiorgan health indicators

Number of treatments/medications taken 2 [0–3] 2 [1–4]

Overall health rating

1, Poor 1 [1.86%] 1 [2.17%]

2, Fair 2 [17.69%] 2 [15.73%]

3, Good 3 [61.81%] 3 [63.30%]

4, Excellent 4 [18.63%] 4 [18.79%]

Fluid intelligence score 6.67 [2.14] 6.39 [1.94]

Mouth/teeth dental problems

0, No 0 [66.58%] 0 [63.23%]

1, Yes (mouth ulcers, painful gums,
bleeding gums, loose teeth, toothache, dentures)

1 [33.42%] 1 [36.77%]

Heel bone mineral density (g/m2) 0.58 [0.14] 0.53 [0.12]

Hand grip strength (left, kg) 40 [34–46] 24 [20–28]

Hand grip strength (right, kg) 42 [36–48] 26 [22–30]

Forced expiratory volume in
1-second (FEV1), Best measure (liters)

3.42 [0.68] 2.50 [0.50]

Forced vital capacity (FVC, liters) 4.54 [1.06] 3.24 [0.61]

Peak expiratory flow (PEF, liters/min) 502 [427–573] 350 [300–400]

Sex hormones

Oestradiol 202.30 [187.45–223.15] 410.7 [275.5–674.3]

Testosterone 13.12 [10.9–15.4] 1.1 [0.9–1.5]

Discrete variables are presented as number (percentage). Continuous measures are mean (�SD) if normal distribution. Continuous mea-
sures are median [25th percentile, 75th percentile] if skewed distribution. All individuals with answers: do not know (�1) and prefer
not to answer (�3) were removed.
MRI = magnetic resonance imaging.
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high SI pairs (lower “sum average”), and less variation in
intensity levels (lower “skewness,” higher “low run gray level
emphasis”). The intensity variations related to myocardial age
in men were in a similar direction to those in women but
were less extensive and less informative to the overall
model (Fig. 2).

Right Atrium
The list of most informative predictors produced by SHAP
shows that the most informative features for the RA age
model were dominated by texture features in both men and
women (Fig. 3). In men, greater RA age was linked to smaller
RA size (lower major axis length in end-diastole and end-sys-
tole), and greater homogeneity in RA (lower: “dependence
nonuniformity,” “cluster prominence,” and “difference aver-
age”). In women, greater RA age was linked to larger RA size
(higher “maximum 2D diameter column”) and higher hetero-
geneity of RA blood pool pixel intensities (higher: “gray level
non-uniformity,” “contrast,” “sum squares”).

Right Ventricle
In women, greater RV age was linked to smaller chamber size
(lower “mesh volume”, increasing R “maximum 2D diameter
row”), less spherical RV shape (lower “sphericity”), and
greater surface area of the cavity (higher “surface area”). In
men, greater RV age was linked to larger “minor axis length,”
lower “maximum 2D diameter,” and lower “major axis
length” (Fig. 3). In women, increasing RV age was also linked
to greater “autocorrelation,” indicating coarser pattern of
blood pool SIs. In men, the informative SI-based features
indicated a less complex pattern of SIs (lower “complexity”)
and greater variation in SI levels (“gray level variance”).

Exposure Associations With Heart Age Gap
A total of 172 associations showed significant relationships
with heart age gap in both women and men across the five
ROIs. The largest number of associations was observed with
the LV myocardium (n = 52) age gap with 52 significant
associations divided into 27 in men and 25 in women. The
LV (n = 44) and RV (n = 20) had the second and third
highest number of significant associations with the tested
exposures. On the other hand, LA had fewer associations with
the tested exposures with only 15 significant associations,
8 in women and 7 in men (Table 3).

In terms of the number of significant associations in each
of the exposure categories, obesity and body composition met-
rics were dominant (51 significant associations), showing consis-
tent associations between greater adiposity and with larger heart
age gap across all cardiac structures (Table 4). Granular results
of all exposure associations are available in Table S4 Supple-
mental Material and are summarized in Fig. 4.

Amongst the obesity measures considered, the strongest
(largest magnitude) association was observed with visceral adi-
posity derived from abdominal MRI scans. Greater waist cir-
cumference was positively associated with heart age gap in
both men and women. The relationships with obesity, across
all the metrics, appeared stronger in women than in men.
Higher high-density lipoprotein (HDL) cholesterol was
linked to greater heart age gap across the LV, RV, and myo-
cardium, having stronger association in women than in men.
The magnitude of this association appeared greatest with the
LV myocardium age gap (higher HDL, smaller heart age
gap). Higher levels of low-density lipoprotein (LDL) choles-
terol and triglyceride were linked to higher age gaps, although
the magnitude of these associations was smaller than with
HDL cholesterol.

TABLE 2. Summary of Model Performance Metrics

Women

LV RV MYO LA RA

Mean MAE (years) 4.96 5.26 5.10 5.10 5.07

Mean predicted R2 0.29 0.20 0.24 0.24 0.26

Correlation between predicted cardiac structure age and actual age 0.90 0.92 0.91 0.91 0.91

Men

LV RV MYO LA RA

Mean MAE (years) 5.33 5.49 5.42 5.36 5.37

Mean predicted R2 0.22 0.17 0.19 0.21 0.20

Correlation between predicted cardiac structure age and actual age 0.92 0.93 0.93 0.92 0.92

Reported performance metrics are prior to application of the regression to the mean correction.
LA = left atrium; LV = left ventricle; MAE = mean absolute error; MYO = myocardium; RA = right atrium; RV = right ventricle.

9

Salih et al.: Heart Age Estimation in Cardiac Chambers

 15222586, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jm

ri.28675 by U
niversity O

f Southam
pton, W

iley O
nline L

ibrary on [21/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Higher diastolic blood pressure, faster resting heart rate,
and greater arterial stiffness were all significant positive associ-
ates of heart age gap, although the magnitude of these associa-
tions was small.

Indicators of better multiorgan health, such as higher
hand grip strength (right, left), forced vital capacity, and heel
bone mineral density were linked to smaller heart age gaps.
Notably, for both men and women, better bone health as

indicated by greater heel bone mineral density, showed the
largest magnitude association with smaller heart age gap of all
exposures considered.

In our sample, socioeconomic and lifestyle factors
showed few significant associations with heart age gap. The
number of vehicles in household, education level, and the
Townsend score (measure of deprivation) did not show any
significant (P value > 0.05) association with heart age gap. In

FIGURE 2: Top 10 more informative features for heart age models of left heart cardiac region for men and women, as identified by
SHAP values. The x axis indicates the SHAP value range of each feature while the y axis displays the feature name. Each dot or circle
in the plot indicates one subject in the model while the color shows how that feature is associated with the outcome. Red color
indicates positive correlation while the blue color means negative correlation. A Zero SHAP value means the feature does not affect
the outcome of the model. Asterisk indicates features extracted at end systole. SHAP = SHapley Additive exPlanations;
GLCM = gray level co-occurrence matrix; GLDM = gray-level dependence matrix; GLRLM = gray-level run length matrix;
GLSZM = gray-level size zone matrix.
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terms of daily lifestyle factors, greater physical activity levels
were linked to smaller heart age gap in men (myocardium,
LV, RV) and women (LV). Smoking, beef, and pork intake
did not show any significant (P value > 0.05) associations.
Greater time spent watching television was associated with
greater RV and myocardium heart age gaps in men. Higher

testosterone level was observed with larger age LV age gap
(greater biological aging) in men (coefficient 0.08,
P value = 0.03).

Discussion
In this study, we present age estimation models for key car-
diac structures developed using cardiac MRI radiomics phe-
notypes in 18,117 UK Biobank participants free from clinical
CVD. We selected this model due to its ability to handle the
collinearity among the model predictors.23,24 We considered
discrepancy in age estimation from chronological age (heart
age gap) as an indicator of greater cardiac aging, demonstrat-
ing differential aging patterns across heart structures and the
associations of selected exposures with greater age gap.

Amongst the cardiac regions modeled, the LV age
models had the best performance, while the RV models had
the greatest error. This is in keeping with known greater ana-
tomic complexity and irregularity of the RV25 compared to

FIGURE 3: Top 10 more informative features for heart age models of right heart cardiac region for men and women, as identified by
SHAP values. The x axis indicates the SHAP value range of each feature while the y axis displays the feature name. Each dot or circle
in the plot indicates one subject in the model while the color shows how that feature is associated with the outcome. Red color
indicates positive correlation while the blue color means negative correlation. A zero SHAP value means the feature does not affect
the outcome of the model. Asterisk indicates features extracted at end systole. SHAP = SHapley Additive exPlanations;
GLCM = gray-level co-occurrence matrix; GLDM = gray-level dependence matrix; GLRLM = gray-level run length matrix;
GLSZM = gray-level size zone matrix; NGTDM = neighboring gray tone difference matrix.

TABLE 3. The Number of Significant Associations in
Each of the Five Regions Separated by Sex

Sex LA LV MYO RA RV Total

Men 7 23 27 9 17 83

Women 8 22 25 11 23 89

Total 15 45 52 20 40 172

LA = left atrium; LV = left ventricle; MYO = myocardium;
RA = right atrium; RV = right ventricle.
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the LV, which is reflected in greater heterogeneity of RV phe-
notypes and greater error in our age models. Model perfor-
mance showed greater error in men than women across all
regions modeled, possibly indicating greater variation of IDPs
in men.

The error in biological age estimation model comprises
model error and biological age gap. In our study, we modeled
biological age for the four cardiac chambers and the LV myo-
cardium, observing different magnitude of error across these
cardiac sites. This may reflect more advanced aging in cardiac
regions with larger model error. For instance, the RV biologi-
cal age estimation model had the largest MAE, which may
indicate greater susceptibility of the RV to age-related remo-
deling and greater biological aging in this chamber compared
to other cardiac regions. The second largest error was in the
model for myocardial biological age, which may highlight that
the myocardium is also a site where age-related alterations are
prominent. In comparison, the LV had the smallest MAE of
all chambers modeled, perhaps indicating that morphological
age-related alterations of the LV are less pronounced or occur
at more advanced stages compared to other chambers. Alter-
natively, it is possible that the larger model error reflects
“actual” error, that is, poorer model performance in age

estimation for the RV and myocardium and better perfor-
mance in age estimation for the LV. While it is not possible
to definitively disentangle these two components of error, it is
likely that they both contribute somewhat to the magnitude
of MAE in our models.26

In evaluating the most informative features, overall, we
observed importance of both shape and SI-based radiomics
features. Several features appeared informative across all ROI
models. For instance, the major and minor axis length and
surface area in the shape feature group were among the top
informative predictors in the most regions and in both male
and female cohorts. In addition, auto-correlation from the
texture feature group frequently appeared among the most
informative features. The presence of these features in all
examined regions in both male and female cohorts highlights
their potential value as predictors in cardiac phenotype stud-
ies. The impact of the features on the model outcome was
different from one ROI to another based on the SHAP value.
For example, the range of the SHAP values for the features in
the RA (female cohort) was smaller than in other regions. On
the other hand, the impact of the features on the outcome
was the largest when modeling LV age in women. Further-
more, the impact of the features on the outcome between

TABLE 4. The Number of Significant Associations in Each of the Exposure Group Separated by Sex and Cardiac
Structures

Exposures Groups Sex LA LV MYO RA RV Total

Blood biomarkers (n = 7) Men 1 1 3 0 0 5 21

Women 2 2 5 2 5 16

Blood pressure and arterial stiffness (n = 4) Men 1 2 3 2 2 10 24

Women 0 4 4 2 4 14

Lifestyle (n = 6) Men 0 1 2 0 2 5 7

Women 0 2 0 0 0 2

Mental well-being (n = 6) Men 0 4 4 2 5 15 21

Women 2 1 2 0 1 6

Multiorgan health indicators (n = 10) Men 3 6 5 5 1 20 40

Women 3 5 6 1 5 20

Obesity and body composition metrics (n = 9) Men 0 8 8 0 7 23 51

Women 0 7 7 6 8 28

Socioeconomic (n = 5) Men 2 0 2 0 0 4 7

Women 1 1 1 0 0 3

Sex hormones (n = 2) Men 0 1 0 0 0 1 1

Women 0 0 0 0 0 0

LA = left atrium; LV = left ventricle; MYO = myocardium; RA = right atrium; RV = right ventricle.
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male and female was different in some regions including LA,
LV, and RV.

We evaluated associations of exposures with heart age
gap metrics. The myocardial age gap had the largest number
of significant associations, indicating that age-related changes
of the myocardium are importantly influenced by a wide
range of different exposures. Obesity was a prominent associ-
ate of greater age gap across all cardiac structures, as represen-
ted by image-derived measures of obesity, body size measures,
and blood lipids. These associations were stronger in women
than men. The myocardium and LV age gaps showed a
greater number of significant associations with the exposures
examined than the other regions, while LA and RA had fewer

associations. In both men and women, significant associations
between greater age gap of the LV, RV and myocardium were
observed across a range of exposures including higher visceral
adipose tissue volume, pulse rate, total trunk fat volume,
abdominal subcutaneous adipose tissue volume, trunk fat
mass, and whole bad fat mass. The most significant associa-
tions with myocardium and LV age gap were exposures from
multiorgans indicators and obesity and body composition
metrics.

MRI is unique as a modality in its ability to noninva-
sively characterize myocardial tissue. Previous work using
MRI radiomics has demonstrated the value of radiomics SI-
based features extracted from the LV myocardium in

FIGURE 4: Association of all exposures with heart age gap in the five cardiac regions modeled for men and women. The x axis
represents the coefficient value of the association of each exposure with the cardiac age gap while the y axis represents the
exposure names. The coefficient values (beta) are not standardized which means every one unit increasing or decreasing in these
exposures (independent variables) lead to increasing or decreasing in the heart age gap (dependent variable) in years based on the
beta value when all other exposures are constant. Exposures with asterisk are statistically significant (corrected P value <0.05).
Please refer to Table S3 Supplemental Material for full explanation of each exposure and its measurement units. BMD = heel bone
mineral density; HDLC = HDL cholesterol; FVC = forced vital capacity; OHR = overall health rating; FEV1 = forced expiratory
volume in 1-second, best measure; HeSa = health satisfaction; ASAT = abdominal subcutaneous adipose tissue volume; TLTV = total
lean tissue volume; NeFe = nervous feelings; NinH = number in household; LDLD = LDL direct; OFiI = oily fish intake;
SmSt = smoking status; FSS = financial situation satisfaction; CHOL = cholesterol; Uu/Di = ever unenthusiastic/disinterested for a
whole week; ATHI = average total household income before tax; NVH = number of vehicles in household; NMPA = number of days/
week of moderate physical activity 10+ minutes; TriL = triglycerides level; TFM = trunk fat mass; MTDP = mouth/teeth dental
problems; PorI = pork intake; BMI = body mass index; FUF = fed-up feelings; EDUL = education level; TowS = Townsend score;
PWAS = pulse wave arterial stiffness index (m/s); BEEI = beef_intake; FIS = fluid intelligence score; HGSL = hand grip strength
(left); PDFF = 10P Liver PDFF (proton density fat fraction); TTFV = total trunk fat volume; TSWT = time spent watching television;
NTMT = number of treatments/medications taken; HGSR = hand grip strength (right); HbA1c = glycated hemoglobin;
WBFM = whole body fat mass; SBP = systolic blood pressure, automated reading (mmHg); ALAM = alanine aminotransferase;
DBP = diastolic blood pressure, automated reading (mmHg); PulR = pulse rate; NeSc = neuroticism score; PEF = peak expiratory
flow; GaGl = gamma glutamyltransferase; GaGl = gamma glutamyltransferase; WaiC = waist circumference; VATV = visceral
adipose tissue volume.
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discriminating disease states.27–29 The use of MRI radiomics
is currently limited to research settings and further research is
required before implementation in clinical settings. Other
methods for myocardial tissue characterization include non-
parametric mapping techniques and contrast-enhanced image
acquisitions. Late gadolinium enhancement (LGE) techniques
are most established, and their clinical utility has been dem-
onstrated in multiple previous studies in the setting of both
ischemic and nonischemic cardiomyopathies.30,31 The use of
LGE acquisitions is accordingly widely adopted in clinical set-
tings. Greater scan time (�15 minutes) and a small risk asso-
ciated with intravenous gadolinium administration are
drawbacks of this technique.32 Nonparametric mapping
methods (T1, T2, T2*) have shown utility in disease discrim-
ination and outcome prediction in multiple settings.33 These
are noncontrast methods but do require dedicated specialist
acquisitions. Although these methods are implemented in
clinical practice, there are many outstanding technical issues,
in particular regarding standardization of the techniques, that
currently limited widespread generalizability.34 Furthermore,
the role of these metrics in the setting of a healthy population
is not yet definitively established.

Previous studies have examined associations of myocar-
dial native T1 and T2 with increasing age. A large population
study in the UK Biobank found increasing age-related
increase in myocardial native T1 in men and a decreasing
trend in women.35 A smaller study of the Multi-Ethnic Study
of Atherosclerosis cohort reports positive association of native
T1 with increasing age in men, but no significant age trend
in women.35 The age dependency of T2 is less consistent,
with some researchers reporting no relationship between T2
and age,36 while others report a decreasing trend.37 In our
analysis, we used shape and SI-based radiomics features
extracted from bSSFPF short-axis cine images. The associa-
tion of these features with T1 and T2 extracted from map-
ping sequences is not known.

A key advantage of radiomics analysis is that it can be
applied to existing standard of care contrast-free images, pre-
senting a potentially highly efficient method for tissue charac-
terization. Our findings suggest that myocardial SI radiomics
features may provide important information about myocardial
aging in population cohorts. Our work encourages further
research in this area to determine the clinical utility of this
technique.

Of all the exposures considered, measures of obesity
and serum lipids showed the most prominent associations
with greater heart age gap across all the structures considered,
appearing more important in women than men. Obesity is a
global public health priority and its associations with adverse
cardiovascular health are widely reported.38 Furthermore,
others have reported phenotypic alterations of the LV in asso-
ciation with greater obesity39 The association of obesity expo-
sures with greater heart age gap support the validity of our

age estimation models. Furthermore, our study has described
the associations of obesity with cardiac aging (as defined by
age-related phenotypic alterations) across all key cardiac
chambers. Our observations highlight the importance of tack-
ling obesity for alleviation of the global burden of CVD. The
strongest associations were with abdominal MRI measures of
obesity (visceral adipose tissue volume, abdominal subcutane-
ous adipose tissue volume, and total trunk fat volume). Nota-
bly, of the anthropometric measures of obesity, waist
circumference showed stronger associations to larger heart age
gap than body mass index, indicating the value of this metric
in assessment of obesity-related cardiovascular risk. Further-
more, although the baseline levels of obesity were greater for
men, their associations with greater heart aging were stronger
in women than men. This may indicate differential magni-
tude of the cardiovascular impact of obesity in women and
warrants further dedicated study. Higher blood pressure, rest-
ing heart rate, and arterial stiffness were associated with sig-
nificantly larger heart age gap across most cardiac regions.
This observation highlights the utility of these established vas-
cular health indicators as indices for monitoring heart aging.

Limitations
The UK Biobank provided access to a large bank of uni-
formly acquired cardiac MR scans, which was essential for
development of our models. The detailed characterization of
participants permitted reliable ascertainment of health status
using UK Biobank assessments and linked health records.
However, given that our models were developed on a healthy
population-based cohort, further study is required to deter-
mine whether the observations made translate to a clinical
cohort. Second, our models performed well within this
dataset of homogenously acquired scans. However, cardiac
MR radiomics features are susceptible to variation in pulse
sequence parameters, scanner vendor, and case mix.40 Thus,
these models may not perform in the same way in external
cohorts. Third, our findings suggest that the age gap metrics
extracted from our models may be useful as imaging bio-
markers of cardiovascular health. However, direct comparison
of our work with existing publications is challenging. Fourth,
in this study, we used a simple model to estimate heart age to
establish a benchmark for more complex methods with
potentially better performance, as heart age modeling is not
well established as it is for other organs such as brain age esti-
mation. In the latter, there is a well-described regression to
the mean effect, which we also observed in our analysis. We
opted to correct for this with the widely used method pro-
posed by Beheshti et al.22 A limitation of this approach is
false improvement of model performance26; with this in
mind, we report precorrected performance metrics in this
study. The correction is not expected to influence exposure
associations with heart age gap (delta). Fifth, the clinical
interpretation of the radiomics features in the model is not
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known as they have not been used and examined widely in
morbidities and phenotypes to establish connections between
the features and clinical outcomes. However, more work in
this direction may solve the issues raised above. Further work
is required to determine the clinical utility of these metrics.
Moreover, we limit our study to participants without clini-
cally diagnosed CVD. As we do not have access to clinically
evaluate individual patients, we cannot exclude undiagnosed
disease in the study sample.

Conclusion
We demonstrate an interpretable model for biological age
estimation across different cardiac structures developed using
cardiac MRI radiomics phenotypes. Our findings indicate
that discrepancy in image-based age estimates and chronologi-
cal age (heart age gap) may be a useful indicator of cardiovas-
cular health and specifically for investigation of cardiovascular
aging. A key advantage of the biological age estimation
models presented in our study, is that the radiomics features
extracted are obtained from routinely acquired standard of
care cine MRI images. This means that our models have
potential for broad application across research and clinical
studies.

Our findings demonstrate obesity as an important cor-
relate of heart aging, highlighting the importance of public
health strategies for tackling obesity in ensuring population
cardiovascular health. Further work is required to establish
the potential wider utility of age gap metrics extracted from
our models for risk estimation and outcome prediction.
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