Supporting Data for "Does a Machine-Learned Potential Perform Better Than an Optimally Tuned Traditional Force Field? A Case Study on Fluorohydrins"
Supporting Data for "Does a Machine-Learned Potential Perform Better Than an Optimally Tuned Traditional Force Field? A Case Study on Fluorohydrins"
Supporting Data for "Does a Machine-Learned Potential Perform Better Than an Optimally Tuned Traditional Force Field? A Case Study on Fluorohydrins"
Skylaris, Dr Chris-Kriton
8f593d13-3ace-4558-ba08-04e48211af61
Morado, João
f83f0c26-bbe3-420c-9999-e22ab439c9c6
Mortenson, Dr Paul Neil
765f1d79-fcd6-4104-b033-b534d8d31f65
Essex, Dr Joanthan W.
1f409cfe-6ba4-42e2-a0ab-a931826314b5
Nissink, Dr J. Willem M.
54572021-91eb-4562-a80b-1b633bb94db5
Skylaris, Dr Chris-Kriton
8f593d13-3ace-4558-ba08-04e48211af61
Morado, João
f83f0c26-bbe3-420c-9999-e22ab439c9c6
Mortenson, Dr Paul Neil
765f1d79-fcd6-4104-b033-b534d8d31f65
Essex, Dr Joanthan W.
1f409cfe-6ba4-42e2-a0ab-a931826314b5
Nissink, Dr J. Willem M.
54572021-91eb-4562-a80b-1b633bb94db5
(2022)
Supporting Data for "Does a Machine-Learned Potential Perform Better Than an Optimally Tuned Traditional Force Field? A Case Study on Fluorohydrins".
Zenodo
doi:10.5281/zenodo.7839023
[Dataset]
Abstract
Supporting Data for "Does a Machine-Learned Potential Perform Better Than an Optimally Tuned Traditional Force Field? A Case Study on Fluorohydrins"
This record has no associated files available for download.
More information
Published date: 28 November 2022
Identifiers
Local EPrints ID: 476471
URI: http://eprints.soton.ac.uk/id/eprint/476471
PURE UUID: 3787e155-52a7-4f83-8650-515f822b2624
Catalogue record
Date deposited: 03 May 2023 16:59
Last modified: 20 Jul 2023 01:38
Export record
Altmetrics
Contributors
Contributor:
João Morado
Contributor:
Dr Paul Neil Mortenson
Contributor:
Dr J. Willem M. Nissink
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics