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Abstract: The Semi-Analytical Finite-Element (SAFE) method represents one of the most established
numerical approaches for predicting the propagation of elastic waves in one-dimensional structures
of arbitrary cross-sections. Its implementation in the commercial finite-element software COMSOL
Multiphysics has been proposed in recent years; however, it is limited to only the free wave propaga-
tion for computing dispersion curves. To overcome this limitation, this paper proposes an extension
of this approach that combines COMSOL and its Livelink for Matlab tool. This enables the extraction
from COMSOL of the assembled mass and stiffness SAFE matrices to solve problems of both free
and forced wave propagation in the Matlab environment. The resulting customised software takes
advantage of both the potential of commercial FE software and the power of Matlab without worrying
about compatibility issues. A model of a simply supported plate strip and that of a more complex
geometry are implemented to validate, respectively, the SAFE matrix extraction procedure and the
implemented forced response formulation. The results agree well with corresponding analytical and
numerical results validating the proposed implementation of the SAFE method.

Keywords: semi-analytical finite-element (SAFE) method; forced wave propagation; non-destructive
evaluation techniques; structural health monitoring (SHM)

1. Introduction

The vibration of structures can be seen as a superposition of elastic waves that are
reflected within boundaries. The term “guided wave” is thus used to indicate a wave
formed by multiple reflections from boundaries and being guided along the structure (also
referred to as a waveguide). At particular frequencies of vibration, the waves reflected at
the structure terminations interfere with incident waves, forming the so-called standing
waves (or vibrational modes). The dynamic response of structures can be thus described
both in terms of waves or vibrations. Vibrations describe the response of a whole structure,
allowing a general analysis of various effects related to standing waves (e.g., natural
frequencies and mode shapes). The wave approach enables a deeper and local investigation
of the structural response. The study of free wave propagation is mainly associated with
the computation of dispersion curves (which show the trend of wavenumbers, or wave
velocities, against frequencies) and wave mode shapes that represent the local deformation
of the structure associated with each wave. The forced wave propagation is instead
associated with the structural response due to a single wave or a combination of waves.

In recent decades, thanks to their ability to travel long distances and detect discon-
tinuities or minor defects along their propagation path, guided waves have been widely
exploited by researchers for applications of structural health monitoring (SHM) [1], non-
destructive evaluation (NDE) techniques [2], and material characterisation of test struc-
tures [3]. A preliminary task to accomplish when dealing with guided wave problems is to
determine the dispersion curves, which provide useful information about the number and
types of propagating waves at any frequency, the attenuation, the frequency-dependent
velocities (dispersion), and other wave properties of interest.
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Analytical and matrix-based solution methods [4] have been employed for many
years to study the propagation of guided waves. However, their inadequacy in generating
dispersion curves for complex-shaped waveguides or inhomogeneous complex materi-
als [5–7] has led researchers to resort to numerical approaches based on finite-element (FE)
methods. These traditional 3D finite-element approaches become unsuitable though when
simulating large domains or high-frequency applications due to the fine mesh required
and the consequent high computational cost. A possible solution to adopt when simulating
problems with open boundaries is the use of a perfectly matched layer (PML), an artificial
layer designed to absorb waves from a computational region, thus avoiding the problem
of reflected waves. Alternatively, numerous studies on decreasing computational cost are
present in the literature under the names of boundary element method (BEM), finite differ-
ence method (FDM), and wave finite-element (WFE) method, to mention a few. However,
as reported in [8], these numerical approaches present advantages and disadvantages in
modelling different types of guided wave problems.

Another method that has been widely adopted by researchers for solving wave prop-
agation problems in uniform waveguides is the semi-analytical finite-element (SAFE)
method [6], also known in the literature as wavenumber finite-element method [9] or 2.5D
finite-element method [10]. It involves an FE-like procedure to discretise only the 2D
cross-section of the waveguide and an analytical solution of the displacement field in the
direction of propagation, hence the name semi-analytical. A system of linear equations is
constructed with the frequency and wavenumbers as unknowns, which are then solved
through standard eigenvalue routines. The SAFE method has many advantages for guided
wave calculation. In particular, for waveguides that are infinitely long in one dimension,
SAFE is superior to pure FEM since exact analytical representations are used for one or two
dimensions of the waveguide, reducing the computational cost.

The calculation of dispersion curves can be conveniently performed by taking ad-
vantage of the commercial FE software COMSOL Multiphysics. For periodic structures,
the most common approach is to use what COMSOL refers to as Floquet boundary condi-
tions [11]. Compared to the SAFE method, this approach assumes a geometric periodicity
of the domain of the problem rather than a displacement solution, providing a fast compu-
tation speed and a simple implementation. However, it does not allow for a reduction in
domain dimension and a consequent decrease in computational cost. Alternatively, disper-
sion curves can be computed in COMSOL by following the SAFE method implementation
proposed by Predoi [12].

The main contribution of this paper is to propose an extension of this method that
enables the extraction from COMSOL of the assembled mass and stiffness SAFE matrices
to solve both free and forced wave propagation in the Matlab environment. This is possible
thanks to a powerful tool of this software that allows the user to set up and solve COMSOL
models directly from Matlab. This results in customised software that takes advantage of
both the potential of commercial FE software and the power of Matlab without worrying
about compatibility issues. By extracting the assembled SAFE matrices from COMSOL,
the user can thus manipulate them in Matlab to obtain further results, such as the forced
wave propagation object of this paper. This could, in principle, be achieved in any other
software environment; the advantage of using Matlab is that it can be done seamlessly
through the Livelink COMSOL’s tool.

After presenting an overview of the SAFE framework for free wave propagation, its
implementation in COMSOL, as proposed by Predoi [12], is briefly introduced to assist
the extraction procedure from COMSOL of the assembled SAFE matrices. A formulation
for the forced response is then presented. This allows the prediction of the vibration
response to various types of excitation, in the frequency domain, through the expression
of the frequency response function (FRF). The framework for computing forced wave
propagation finds applications in many fields of study, including the modelling of wave
scattering at discontinuities and wave generation in coupled fluid-structure systems such
as pipes. Finally, two numerical examples are introduced to validate the proposed SAFE
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method implementation. A simply supported plate strip of known dispersion relationships
is modelled and used to validate the SAFE matrix extraction procedure. A waveguide with
a more complex geometry is also modelled and used to verify the correct implementation
of the forced response formulation. Its forced wave propagation will be computed and
compared with the one obtained by a conventional FE model of the same structure to whom
a PML is applied at the free terminations.

2. Overview of the SAFE Framework

The SAFE method represents, presently, one of the most established numerical ap-
proaches for predicting elastic wave propagation in one-dimensional structures of arbitrary
cross-section. Consider an elastic waveguide whose cross-section lies in the (x1−x2)-plane
with waves propagating harmonically along the x3-axis, as depicted in Figure 1.

Figure 1. SAFE modelling of an arbitrary waveguide of cross-section domain Ω and finite element of
surface Ωe.

The mathematical formulation starts from the displacement equations of motion, also
known as Navier’s equation of motion, which represents the most general form of wave
equation:

3

∑
g,m,l=1

[
Cimgl

∂2ug

∂xm∂xl

]
− ρ

∂2ui
∂t2 = 0, i = 1, 2, 3 (1)

where Cimgl are the terms of the elasticity tensor, ui are the components of the displacement
field, ρ is the mass density and t is the time variable. In the formulation, the three-
dimensional elasticity approach is considered, thus avoiding simplifications to the elastic
tensor and displacement field. The geometrical and material properties are assumed to
be uniform along the direction of propagation, allowing a separation of the cross-section
plane domain from the out-of-plane wave propagation domain. A solution of Equation (1)
may be hence expressed as

ui(x1, x2, x3, t) = Ui(x1, x2) ej(kx3−ωt) i = 1, 2, 3 (2)

where Ui is the amplitude of the displacement field, j =
√
−1 is the imaginary unit, k(ω) is

the wavenumber in the propagation direction and ω is the angular frequency.
After substitution of Equation (2) into Equation (1) and some intermediary transfor-

mations, one obtains

Cimgl
∂2Ug

∂xm∂xl
+ j(Ci3gm + Cimg3)

∂(kUg)

∂xm
− k Ci3g3(kUg) + ρω2δigUg = 0, (3)
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with summation over the indices g, i = 1, 2, 3 and m, l = 1, 2. Analogously, by defining as
Ti the traction vector, and nm the components of the outward unit vector normal to the
boundaries ∂Ω of the elastic domain Ω, the Newmann boundary condition is expressed as

Ti = σim nm = Cimgl
∂Ug

∂xl
nm + j Cimg3(kUg) nm on ∂Ω (4)

with summation over the indices i, g = 1, 2, 3 and m, l = 1, 2.
Equation (3) leads to a system of dispersion relationships, which, to be solved, requires

the calculation of the derivatives of Ug. A numerical approximation of the displacement
field is thus necessary, leading to the application of a finite-element discretisation. This
allows one to reformulate the strong form of Equation (3) as a similar quadratic eigenvalue
problem. In the next section, as an alternative to a laborious FE discretisation manually
implementable in Matlab or a similar environment, a method that takes advantage of the
FE software COMSOL to perform the calculation of dispersion curves is presented.

3. Computing Dispersion Curves by COMSOL Multiphysics Software

One of the advantages of COMSOL is the possibility to use a set of mathematical
interfaces for equation-based modelling. In particular, among its options, it allows one
to implement and solve user-defined Partial Differential Equations (PDE) through its
Coefficient Form PDE interface. The input formalism for eigenvalue problems of this
interface has the general expressions [13]:

λ2eaŨ− λdaŨ +∇ · (−c∇Ũ− αŨ + γ) + β · ∇Ũ + aŨ = f in Ω , (5)

−n · (−c∇Ũ− αŨ + γ) = 0 on ∂Ω . (6)

Equation (5) is the generic form of PDE which must be satisfied in the computational
domain Ω, while Equation (6) represents the generalised Neumann boundary condition.
In such equations, Ũ is a vector containing the unknown dependent variables, λ is the
eigenvalue,∇ is the nabla operator, and n is the outward unit normal vector on the domain
boundary ∂Ω. The remaining coefficients are user-specified coefficient matrices that can
admit complex values, which is essential for viscoelastic materials.

A reformulation of the SAFE problem, as given in Equation (3), into the COMSOL
formalism was proposed by Predoi et al. [12]. By setting ea = γ = f = 0, Equation (5) can
be expressed as

Cimgl
∂2Ũg

∂xm∂xl
+ (αigm − βigm)

∂Ũg

∂xm
− ag Ũg + λ digŨg = 0, (7)

and a similar expression can be obtained for the boundary condition of Equation (6).
The SAFE Equation (3) represents a quadratic eigenvalue problem in wavenumber k.

To cast it into the linear form of Equation (7), a new vector variable V = kU is introduced
by the equation

mV = k mU, (8)

in which m is an arbitrary diagonal matrix, and the wavenumber k corresponds to the
eigenvalue λ. By denoting with Ũ = [U1, U2, U3, V1, V2, V3]

T the new set of variables to be
determined, the coefficient matrices are thus given as

da =

[
0 k3
m 0

]
; c =

[
k1 0
0 0

]
; α =

[
0 j kF
0 0

]
; (9)

β =

[
0 −j kT

F
0 0

]
; a =

[
m 0
0 m

]
,

where 0 represents a zero matrix of appropriate dimensions. The submatrices are given by
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k3 =

−C55 −C54 −C53
−C45 −C44 −C43
−C35 −C34 −C33

; m =

−ρω2 0 0
0 −ρω2 0
0 0 −ρω2

;

kF =



[
C15
C65

][
C14
C64

][
C13
C63

]
[

C65
C25

][
C64
C24

][
C63
C23

]
[

C55
C45

][
C54
C44

][
C53
C43

]

; kF
T =



[
C51
C56

][
C56
C52

][
C55
C54

]
[

C41
C46

][
C46
C42

][
C45
C44

]
[

C31
C36

][
C36
C32

][
C35
C34

]

; (10)

k1 =



[
C11 C16
C61 C66

][
C16 C12
C66 C62

][
C15 C14
C65 C64

]
[

C61 C66
C21 C26

][
C66 C62
C26 C22

][
C65 C64
C25 C24

]
[

C51 C56
C41 C46

][
C56 C52
C46 C42

][
C55 C54
C45 C44

]

,

where Cig(i, g = 1, . . . , 6) is the contracted notation for the elasticity tensor, ρ is the material
density and ω the angular frequency.

The above coefficient matrices, as given in [12], allow the user to easily implement the
SAFE problem on COMSOL, avoiding the laborious implementation of the FE discretisation
in Matlab or a similar environment. However, this method is limited to only the compu-
tation of the dispersion curves. To overcome this limitation, the next section proposes an
extension of this method that combines COMSOL and Matlab to solve problems of both
free and forced wave propagation.

4. SAFE Method for Free and Forced Wave Propagation through Livelink for Matlab

As previously described, through the Coefficient Form PDE interface, COMSOL
offers a simple method to implement the SAFE problem and perform the calculation of
dispersion curves. Moreover, another important feature of this software is the Livelink
for Matlab, a tool that allows the user to create a link between the COMSOL and Matlab
environments. With this functionality, it is possible to use Matlab as a scripting tool to set
up and solve COMSOL models and extract data such as FE mesh coordinates and other
useful information as Matlab variables.

In this section, by combining these COMSOL features, a procedure to extract the global
mass and stiffness SAFE matrices is proposed, thus allowing the carrying out of the SAFE
modelling of any arbitrary waveguide and solving of both free and forced wave propagation
problems entirely from the MATLAB environment. This will result in customised software
that takes advantage of both the potential of commercial FE software and the power of
Matlab without worrying about compatibility issues.

4.1. Extraction of the SAFE Matrices from COMSOL Multiphysics

The SAFE matrix extraction procedure starts from the reformulation of the SAFE prob-
lem into the COMSOL formalism, as provided by Predoi [12]. By setting ea = γ = f = 0 in
Equation (5) one obtains

∇ · (c∇Ũ + αŨ)− β ∇Ũ− aŨ + λ daŨ = 0 . (11)

This time, with the only intent to extract the SAFE matrices, the following coefficient
matrices are considered:

da =

[
0 k3
m 0

]
; c =

[
k1 0
0 0

]
; α =

[
0 kF
0 0

]
; (12)



Vibration 2023, 6 364

β =

[
0 0
0 0

]
; a =

[
m 0
0 m

]
.

They are the same as the ones presented in Equation (9) with the difference that they
are all real and the coefficient matrix β is set to zero. Moreover, the following submatrix m
has been modified such that the dependency from the angular frequency, ω2, is omitted:

m =

−ρ 0 0
0 −ρ 0
0 0 −ρ

. (13)

With this new set of coefficient matrices and the vector of variable Ũ introduced by
Equation (8), the system of Equations (11) can be rewritten in matrix form as[

k1 + m kF
0 m

]
︸ ︷︷ ︸

c, α, β, a

{
U
kU

}
6×1

= k
[

0 k3
m 0

]
︸ ︷︷ ︸

da

{
U
kU

}
, (14)

where the wavenumber k corresponds to the eigenvalue λ.
After performing SAFE modelling through the Livelink for Matlab tool, it is possible

to export to Matlab the COMSOL system matrices K and D by calling the function mphma-
trix [13]. The system matrices are returned by COMSOL in sparse format and thus need to
be converted in Matlab to the full (or dense) format to enable the extraction of the single
SAFE matrices. Sketched in Tables 1 and 2 are the system matrices obtained with the above
coefficient matrices after being converted to the full format. They are matrices of order
2N where, for solid elements, N is three times the total number of nodes, composed of
blocks of 6 × 6 matrices. As one can notice, every single block corresponds to the system of
Equations (14), but with their order switched. In particular, it emerges that the coefficient
matrix da controls the system matrix D, while the remaining coefficients control the system
matrix K.

At this point, from the system matrices K and D, it is straightforward to extract in
Matlab the global mass and stiffness SAFE matrices M, K1, KF, and K3, of order N, by con-
catenating opportunely the rows and columns corresponding to the single submatrices.

Table 1. System matrix D of order 2N imported from COMSOL after being converted to full format.

0 m . . . 0 m
k3 0 k3 0

.
. . .
. . .

.
0 m . . . 0 m

k3 0 k3 0

Table 2. System matrix K of order 2N imported from COMSOL after being converted to full format.

m 0 . . . m 0
kF k1 + m kF k1 + m

.
. . .
. . .

.
m 0 . . . m 0
kF k1 + m kF k1 + m
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4.2. Free Wave Propagation

Once the assembled mass and stiffness SAFE matrices have been extracted from
COMSOL, the system of dispersion Equation (3) can be rewritten in matrix form as[

K1 + jk K2 − k2K3 + ω2M
]

N
U = 0 (15)

where
K2 = KF −KF

T.

Equation (15) represents a twin-parameter eigenvalue problem in wavenumber k and angu-
lar frequency ω, thus can be solved using two alternative approaches [14]. One approach is
to propose a real wavenumber k and solve it as a linear generalised eigenvalue problem in
ω(k). Although simpler, this approach allows only the computation of propagating modes
in undamped systems. For this reason, the most common approach consists of proposing
the frequency ω and solving it as a second-order polynomial eigenvalue problem in k(ω).
However, to be solved with standard numerical solvers, it must be recast into a linear form
by doubling its algebraic size: [

A(ω)− k B(ω)
]

2N
Q = 0 (16)

where

A =

[
K1 + ω2M j K2

0 ω2M

]
, B =

[
0 K3

ω2M 0

]
, Q =

[
U
kU

]
. (17)

By solving Equation (16) for a given frequency ωi, 2N complex wavenumbers ki are
returned by the eigenvalues in pairs, accounting for positive-going and negative-going
waves (denoted by subscripts +/− hereafter). These can be grouped accordingly and
written, for later convenience, as

Λ+ = diag{k1+, · · · , kn+}, Λ− = diag{k1−, · · · , kn−}. (18)

For undamped waveguides, the purely real and imaginary wavenumber solutions
appear in pairs of opposite signs and correspond, respectively, to propagating and evanes-
cent waves. The fully complex wavenumbers represent inhomogeneous evanescent waves
(decaying but oscillatory); they appear in quadruples of complex conjugates and opposite
signs (i.e., if k is an eigenvalue, then −k, k∗ and −k∗ are also eigenvalues). In the presence
of material damping, the structure of the eigensolutions changes. Every root is complex
and appears in pairs of opposite signs, therefore a straightforward distinction between
propagating and evanescent waves is no longer possible [14,15].

The corresponding wave mode shapes Ui are obtained from the top half of the eigen-
vectors Qi. They can be separated similarly for each region of the waveguide and written
in matrix form as

U+ =
[

U1+ , · · · , Un+
]
, U− =

[
U1− , · · · , Un−

]
. (19)

From the 2N eigensolutions, the nodal displacements (i.e., the DOFs) in either region
of the waveguide are obtained by a linear combination of corresponding wave modes Ui
and wavenumbers ki as

b+(x3) =
N

∑
i=1

Ui+ ejki+x3 b−(x3) =
N

∑
i=1

Ui- ejki-x3 (20)

in which the harmonic time dependence e−jωt is assumed and omitted.
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4.3. Forced Response Formulation

In this work, the forced response for the SAFE method is implemented through
the wave approach, as reported in [16]. The formulation starts from the expressions
of displacement continuity and force equilibrium conditions for a cross-section of the
waveguide to which the external loads are applied. As sketched in Figure 2, the origin of
the axis of propagation, x3, is conveniently positioned at the point of application of the
loads, from which propagating and evanescent waves in either region of the waveguide
are expected to be generated. In the following, as for Equations (20), the harmonic time
dependence e−jωt is assumed and omitted to simplify the notation.

Figure 2. Sketch of an arbitrary waveguide subject to a load vector applied at the origin of the
reference system, exciting waves in both directions.

By denoting as p the N-dimensional vector of the external forces applied to the
cross-section nodes at x3 = 0, f+(x3) and f-(x3) the vectors of the internal nodal forces
of the waveguide, respectively, in the positive and negative wave propagation direction,
the aforementioned conditions can be expressed as{

b−(0)− b+(0) = 0

f−(0)− f+(0) = p
(21)

The vector of nodal displacements related to the positive-going waves can be written
in matrix form as

b+(x3) = U+Υ+(x3) c+ (22)

where Υ+(x3) is an N × N diagonal matrix of propagation terms corresponding to each
positive-going wave, i.e.,

Υ+(x3) = diag
{

ejk1+x3 , · · · , ejkn+x3
}

(23)

and c+ is an N-dimensional vector of unknown wave amplitudes arising from the excitation.
Similarly, the nodal displacements related to the negative-going waves are expressed as

b−(x3) = U−Υ−(x3)c− (24)

where Υ−(x3) and c− are analogously defined.
The vector of the internal nodal forces, according to the formulation used in [17], is

expressed as

f(x3) = K3
∂b(x3)

∂x3
+ KF b(x3). (25)

The continuity and equilibrium conditions of Equations (21) forms a linear system of 2N
equations with the unknown wave amplitudes, c+ and c−, as solutions to be determined.
The internal nodal forces immediately on either side of the external forces can be obtained
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by substituting for b+(x3) and b−(x3) from Equations (22) and (24) into Equation (25) and
evaluating at x3 = 0 to give{

f+(0) = j K3 U+ Λ+ c+ + KF U+ c+

f−(0) = j K3 U− Λ− c− + KF U− c− .
(26)

It follows that the system of linear Equations (21) can be expressed in matrix form as

Ψ−1

[
c−

c+

]
=

[
0

p

]
(27)

where

Ψ−1 =

[
U− −U+

j K3 U− Λ− + KF U− −j K3 U+ Λ+ −KF U+

]
. (28)

The wave amplitudes are then obtained from Equations (27) by inversion of Ψ−1 as[
c−

c+

]
=

[
Ψ11 Ψ12

Ψ21 Ψ22

][
0

p

]
. (29)

Substituting for c+ and c− from Equations (29) into Equations (22) and (24) gives
the vector of nodal displacements, at any position x3 along the waveguide and at any
frequency, as

b+(x3) = H+(x3) p b−(x3) = H−(x3) p (30)

where receptance matrices H+(x3) and H−(x3) are given by

H+(x3) = U+ Υ+(x3) Ψ22 H−(x3) = U− Υ−(x3) Ψ12 . (31)

Consider now a case study where a single transfer function is sought relating the response
at the rth DOF to a single input at the sth DOF, i.e.,

pT =
[

0, · · · 0, ps, 0, · · · 0
]

. (32)

Substituting p into Equation (30) and extracting the rth element of the response vector
gives the single-input/singe-output relationship for either region of the waveguide,

b+r(x3) = H+r,s(x3) ps b−r(x3) = H−r,s(x3) ps . (33)

The nodal acceleration can be readily derived from the nodal displacement and ex-
pressed as

ar(x3) = −ω2 Hr,s(x3) ps . (34)

5. Validation of the Implemented SAFE Method

In this section, as a validation of the proposed SAFE method implementation, two
numerical examples are presented. A model of a simply supported plate strip of known
dispersion relationships is first implemented to validate the SAFE matrix extraction pro-
cedure. Cut-off frequencies and dispersion curves for bending waves are computed and
compared with the corresponding analytical solutions. A few examples of wave mode
shapes are also presented.

Successively, a waveguide of more complex geometry is modelled and used to ver-
ify the correct implementation of the forced response formulation. Its SAFE results are
computed and compared with the ones obtained by a conventional FE model of the same
structure to which a PML is applied at the free terminations. The two models have been
implemented using MATLAB 2018 and COMSOL Multiphysics 5.5.
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5.1. A Simply Supported Plate Strip Model

Consider an infinitely long plate of uniform width, L, located between boundaries that
provide simple supports, as depicted in Figure 3. The plate is thin, isotropic and undamped.

Figure 3. Sketch of a simply supported plate strip.

For such a plate, the analytical expression for free bending wavenumber is given
by [18] as

k2
b = k2

x1
+ k2

x3
= ±

√
ρh
D

ω , (35)

where D = Eh3/12(1− ν2) is the bending stiffness, E the Young’s modulus, ν the Poisson’s
ratio, h the thickness of the plate strip, ρ the mass density and ω the angular frequency.

For the simply supported boundary condition along the plate edges, x1 = 0, L,
the wave modes take the form of a standing pattern proportional to sin (nπx1/L) with n
being an integer. The wavenumber along the direction of propagation x3 is thus given by

k2
x3,n = ±

√
ρh
D

ω−
(

nπ

L

)2

(n = 1, 2, . . . ) . (36)

Substituting kx3,n = 0 into the dispersion Equation (36) gives the cut-off frequency of the
nth wave mode as

ωn =

√
D
ρh

(
nπ

L

)2

(n = 1, 2, . . . ) . (37)

A numerical SAFE model for free wave propagation of such a structure is then imple-
mented. The plate, made of aluminium, has a rectangular cross-section of 300 mm by 3 mm
and is assumed to be uniform, isotropic, and homogeneous. Its material properties are:
ρ = 2700 kg/m3, ν = 0.33 and E = 70 GPa.

The cross-section has been discretised by 32 four-sided elements, which use quadratic
Lagrange shape functions, with a total of 195 nodes and corresponding 585 DOFs, as shown
in Figure 4. No damping is assumed in the model and the upper and lower boundaries of
the cross-section are considered to be traction-free. After removing the DOFs associated
with the boundary conditions, there are 581 resulting DOFs for the model.

It is worth highlighting that the 2D cross-section of the waveguide has been discretised
using the COMSOL “mapped” mesh, which allows the user to control the number of
elements and their distribution along the edges. This has allowed obtaining the optimal
meshing by conducting a study that evaluates the convergence of the cut-off frequencies
when using different mesh configurations.

Figure 4. Mesh of the 2D cross-section of the simply supported plate strip model.

At any given frequency, the SAFE method can predict all the possible elastic waves
in the waveguide propagation direction. In this example, the eigenvalue problem of
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Equation (16) has been solved for a frequency bandwidth of 10 kHz and a frequency reso-
lution of 20 Hz. In Figure 5, the numerical dispersion curves, in the form of wavenumber
against frequency, are overlaid with the analytical solutions obtained from Equation (36).
The SAFE solutions are plotted by black discrete dots, whereas the analytical solutions are
plotted in red. As one can notice, the analytical wave solutions overlay the corresponding
numerical ones validating the SAFE model. The remaining curves consist of a zero-order
wave mode, which propagates at all frequencies, and two high-order wave modes that cut
off at approximately 5 and 9 kHz.

In Table 3, a comparison between analytical and numerical solutions of the first six
cut-off frequencies is reported. The analytical solutions are calculated from Equation (37),
whereas the corresponding numerical ones are obtained from the eigenvalue problem of
Equation (15) by setting the wavenumber k to zero. The values show an excellent agreement
validating the SAFE model.

Figure 5. Comparison between analytical and numerical dispersion curves of the simply supported
plate strip. Numerical solutions are obtained using the proposed SAFE method implementation.

Table 3. First six cut-off frequencies of the simply supported plate strip.

1st 2nd 3rd 4th 5th 6th

Analytical
values (Hz) 81.53 326.12 733.76 1304.46 2038.22 2935.04

SAFE
values (Hz) 81.53 326.13 733.84 1304.73 2038.91 2936.56

Finally, as an example, the first four wave mode shapes for the simply supported plate
strip at about a frequency step of their cut-off frequencies are shown in Figure 6.
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(a) First wave mode shape (b) Second wave mode shape

(c) Third wave mode shape (d) Fourth wave mode shape

Figure 6. Wave mode shapes for the first four cut-off frequencies of the simply supported plate strip
SAFE model. The red marks represent the nodal displacements corresponding to the 32 by 3 grid
mesh obtained using the quadratic Lagrange shape function.

5.2. SAFE Model of a More Complex-Shaped Waveguide

In the following, a SAFE model of a more complex-shaped waveguide is presented,
and both free and forced wave propagation are solved. In Figure 7a and Figure 7b, the ge-
ometry and mesh of the implemented model are shown, respectively. The waveguide,
made of aluminium, has a cross-section composed of a rectangular plate 100 mm by 10 mm,
and a half-round plate with a diameter of 100 mm and a skin thickness of 1.2 mm. No
structural damping is assumed in the model and its material properties are ρ = 2700 kg/m3,
ν = 0.33 and E = 70 GPa. The mesh, Figure 7b, consists of 16 four-sided elements which
use quadratic Lagrange shape functions, for a total of 88 nodes and 264 DOFs.

(a) (b)
Figure 7. SAFE model of a waveguide of arbitrary cross-section: (a) geometry, and (b) mesh.
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In this work, with the only intent of verifying the correct implementation of the forced
response formulation, the structural response was validated against a conventional FE
model. However, a more refined mesh and the corresponding experimental validation can
be found in [19].

Shown in Figure 8 are the dispersion curves of the propagating waves, in the form of
wavenumber against frequency, obtained from the solutions of the eigenvalue problem of
Equation (16) for a set of frequencies from 0 to about 8 kHz and a frequency resolution of
4 Hz. It is worth highlighting that the chosen frequency bandwidth is purely arbitrary and
thus does not represent a limitation of the method. As one can notice, within the chosen
frequency range, the SAFE model predicts the presence of four zero-order wave modes,
which propagate at all frequencies, and four higher-order wave modes, which cut off at
about 2, 3, 5, and 8 kHz, respectively. The zero-order wave modes consist of two bending
modes, a torsional and a compressional mode.

Figure 8. Wavenumber against frequency for the propagating waves of the (undamped) waveguide
of arbitrary cross-section predicted by the SAFE method.

The SAFE model is then used to compute the forced response. Depicted in Figure 9
is the source–receiver configuration used in the calculation; a concentrated load, pS, is
applied normally to the curved profile of the cross-section on point S, located at an angle of
60 degrees to the rectangular plate component. The acceleration response is detected at
point R at a distance of 2 m from the applied load along the propagation path. For the sake
of clarity, points S and R correspond to the same cross-section node of the SAFE mesh but
in two different locations along the direction of propagation.

Figure 9. Source–receiver configuration for the SAFE model of the waveguide of arbitrary cross-
section. A single load, pS, is applied normally to the curved profile on point S, located at 60 degrees
from the bonded rectangular plate component. Acceleration of a single node in the same position is
predicted 2 m away from the source.
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Figure 10 shows, in black, the magnitude of the transfer acceleration FRF obtained
from Equation (34). To verify the correct implementation of the forced response formulation,
it is compared with the corresponding one, in red, obtained by a conventional FE model
of the same waveguide implemented on COMSOL. The FE model has a length of 3 m
to which a PML of 100 mm length has been added to the free terminations to cancel the
contribution to the response of the reflected waves and thus make its results comparable
to the SAFE ones. The PMLs and the waveguide have been discretised, respectively, with
5 and 240 finite elements along their length using the COMSOL “mapped” mesh and the
quadratic Lagrange shape function.

As one can see, the magnitude presents high peaks at particular frequency values.
These correspond to the cut-off frequencies of the higher-order waves, which start to
propagate, respectively, at about 2 kHz, 3 kHz, 5 kHz, and 8 kHz. The high response peaks
are due to the absence of damping in the model. In fact, at the cut-off frequencies, the new
excited waves propagate with an infinite wavelength, and the whole structure resonates.

Figure 10. Magnitude of the transfer acceleration FRF predicted by the SAFE model of the arbitrary
cross-section waveguide through the source–receiver configuration shown in Figure 9. The results
are compared with the corresponding ones obtained, in COMSOL, through a conventional FE model
of the same structure to which a PML has been applied to both terminations.

As simulations suggested, the discrepancies noticed in Figure 10 are due to the reduced
number of finite elements used to discretise the length of the FE model and the residual of
reflecting waves not absorbed by the PMLs. The SAFE model was thus capable of predicting
the transfer acceleration FRF with good accuracy, validating the presented forced response
formulation. It is worth highlighting that the SAFE method requires less computational
cost than the conventional FE approach, particularly for long waveguides such as pipes
and rails. It also does not require the use of PMLs to avoid the contamination of reflected
waves on the structural response.

6. Conclusions

In this paper, by using the FE software COMSOL Multiphysics and its “Livelink
for Matlab” tool, a SAFE method implementation for free and forced wave propagation
was proposed. Compared to a previous SAFE method implementation on COMSOL for
the computation of the dispersion curves, the proposed approach enables the extraction
from COMSOL of the assembled mass and stiffness SAFE matrices in the form of Matlab
variables. This allows the prediction of free and forced wave propagation in Matlab,
resulting in customised software that takes advantage of both the potential of commercial
FE software and the power of Matlab without worrying about compatibility issues.

After describing the extraction procedure of the SAFE matrices from COMSOL, the im-
plementation of free and forced wave propagation was presented. Two numerical examples
were then introduced and used to validate the proposed SAFE modelling implementation.
A simply supported plate strip of known dispersion relationships was first modelled and
used to validate the SAFE matrix extraction procedure. Cut-off frequencies and disper-
sion curves were computed and compared with the corresponding analytical solutions,
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showing excellent agreement. A few examples of wave mode shapes were also presented.
Successively, a waveguide model with a more complex geometry was implemented, and its
dispersion curves of propagating waves were computed. To verify the correct implemen-
tation of the forced response formulation, an example of transfer acceleration FRF was
computed and compared with the corresponding one obtained by a conventional FE model
of the same structure implemented in COMSOL. To make the results comparable, a PML
has been added to the free terminations of the FE model to minimise the contribution to
the response of the reflected waves. The SAFE model could predict the transfer acceler-
ation FRF with good accuracy, validating the forced response formulation. In principle,
the presented method could be extended to predicting the forced response of homogeneous
structures with discontinuities.
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7. Damljanović, V.; Weaver, R.L. Forced response of a cylindrical waveguide with simulation of the wavenumber extraction problem.

J. Acoust. Soc. Am. 2004, 115, 1582–1591. [CrossRef]
8. Lee, B.C.; Staszewski, W.J. Modelling of Lamb waves for damage detection in metallic structures: Part II. Wave interactions with

damage. Smart Mater. Struct. 2003, 12, 815–824. [CrossRef]
9. Sheng, X.; Jones, C.; Thompson, D. Modelling ground vibration from railways using wavenumber finite- and boundary-element

methods. Proc. R. Soc. A Math. Phys. Eng. Sci. 2005, 461, 2043–2070.
10. François, S.; Schevenels, M.; Galvín, P.; Lombaert, G.; Degrande, G. A 2.5D coupled FE–BE methodology for the dynamic

interaction between longitudinally invariant structures and a layered halfspace. Comput. Methods Appl. Mech. Eng. 2010,
199, 1536–1548. [CrossRef]

11. Hakoda, C.; Rose, J.; Shokouhi, P.; Lissenden, C. Using Floquet periodicity to easily calculate dispersion curves and wave
structures of homogeneous waveguides. AIP Conf. Proc. 2018, 1949, 020016. [CrossRef]

12. Predoi, M.V.; Castaings, M.; Hosten, B.; Bacon, C. Wave propagation along transversely periodic structures. J. Acoust. Soc. Am.
2007, 121, 1935–1944. [CrossRef] [PubMed]

13. COMSOL Multiphysics®, v. 5.5; COMSOL AB: Stockholm, Sweden, 2019.

http://dx.doi.org/10.1115/1.3101707
http://dx.doi.org/10.1109/58.393096
http://dx.doi.org/10.1006/jsvi.1995.0398
http://dx.doi.org/10.1016/S0041-624X(03)00097-0
http://www.ncbi.nlm.nih.gov/pubmed/12726938
http://dx.doi.org/10.1121/1.1675818
http://dx.doi.org/10.1088/0964-1726/12/5/019
http://dx.doi.org/10.1016/j.cma.2010.01.001
http://dx.doi.org/10.1063/1.5031513
http://dx.doi.org/10.1121/1.2534256
http://www.ncbi.nlm.nih.gov/pubmed/17471709


Vibration 2023, 6 374

14. Viola, E.; Marzani, A.; Bartoli, I. Semi-analytical Formulation for Guided Wave Propagation. In Mechanical Vibration: Where Do We
Stand? Series Title: International Centre for Mechanical Sciences; Elishakoff, I., Ed.; Springer: Vienna, Austria, 2007; Volume 488,
pp. 105–121. [CrossRef]

15. Treyssède, F. Elastic waves in helical waveguides. Wave Motion 2008, 45, 457–470. [CrossRef]
16. Zarini, G. Propagation and Sensing of Acoustic Emissions in Main Load-Bearing Aircraft Structures. Ph.D. Thesis, Univerisity of

Southampton, Southampton, UK, 2015.
17. Treyssède, F.; Laguerre, L. Numerical and analytical calculation of modal excitability for elastic wave generation in lossy

waveguides. J. Acoust. Soc. Am. 2013, 133, 3827–3837. [CrossRef]
18. Graff, K.F. Wave Motion in Elastic Solids; Dover Publications: New York, NY, USA, 1991.
19. Davide, R. Focussing Elastic Waves in Wing Leading Edge Structures. Ph.D. Thesis, Univerisity of Southampton, Southampton,

UK, 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-211-70963-4_6
http://dx.doi.org/10.1016/j.wavemoti.2007.09.004
http://dx.doi.org/10.1121/1.4802651

	Introduction
	Overview of the SAFE Framework
	Computing Dispersion Curves by COMSOL Multiphysics Software
	SAFE Method for Free and Forced Wave Propagation through Livelink for Matlab
	Extraction of the SAFE Matrices from COMSOL Multiphysics
	Free Wave Propagation
	Forced Response Formulation

	Validation of the Implemented SAFE Method
	A Simply Supported Plate Strip Model
	SAFE Model of a More Complex-Shaped Waveguide

	Conclusions
	References

