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by 
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Auditory brainstem response (ABR) testing is a form of electrophysiological assessment used 
clinically to evaluate the auditory system. One of the main uses of ABR testing is in the evaluation 
of hearing thresholds in patients for whom behavioural hearing assessments are unreliable, e.g. 
newborns. Accurate interpretation of the ABR is important, as this will inform clinical decision 
making and potentially be used to prescribe hearing aid amplification. The overall aim of this 
research project was to explore methods for improving objective analysis of the ABR. 

The first study in this thesis evaluated machine learning approaches for ABR detection. Using 
simulation, based on data recorded from participants, a range of machine learning algorithms 
were evaluated using nested k-fold cross-validation. The best algorithm, a stacked ensemble, was 
evaluated on previously unseen test set data. Using the bootstrap method to set the critical value 
for determining whether a response is present or absent, the stacked ensemble was able to 
achieve a high and stable level of specificity across ensemble sizes. Additionally, the detection 
rate of the stacked ensemble was statistically significantly better across all ensemble sizes, 
compared to the statistical detection methods evaluated. These results suggest that the proposed 
stacked ensemble algorithm may have the potential to assist clinicians in interpreting ABR 
waveforms, as well as in improving the performance of automated detection algorithms in ABR 
screening devices. 

Due to the low signal-to-noise ratio of the ABR, detection of a response using visual inspection 
and statistical detection methods can be extremely challenging. Weighted averaging has been 
proposed as a method of maximising the signal-to-noise ratio in the averaged waveform. A 
second study aimed to further the understanding of weighted averaging, optimise the parameters 
of this technique, and quantify its effects on ABR detection using the Fmp statistical detection 
method. In this second study, the noise level estimation method was optimised, as was the 
parameter for the number of epochs in each block. 

As well as being used for hearing threshold estimation, the ABR test may be used diagnostically 
in the functional assessment of the auditory brainstem pathway, e.g. for the detection of 
pathologies affecting the structures of this pathway. In a bid to reduce subjectivity in waveform 
interpretation, in study three of this thesis, several machine learning algorithms were compared 
in their ability to correctly predict ABR wave latencies. A convolutional recurrent neural network 
performed best, with 95.9% of predictions being within 0.1 milliseconds of the target label. 
Overall, this thesis provides three main approaches for improving objective analysis of the ABR. 
Further work is recommended to help translate this research into clinical practice.
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Chapter 1 Introduction 

This thesis will present the findings of research undertaken with the aim of improving analysis of 

the auditory brainstem response (ABR). The ABR is an electrophysiological test which is used 

clinically to evaluate the auditory system. The test involves playing repeated auditory stimuli to 

the subject and recording the electrical response of the auditory brainstem via scalp surface 

electrodes. The electrical activity of the auditory brainstem is of a low signal-to-noise ratio and so 

each individual recording is dominated by background electrical activity. This background EEG is 

generated by the activity of neurones within the brain (Kirschstein and Köhling, 2009). By 

averaging together hundreds/thousands of recordings, the signal-to-noise ratio may be improved, 

allowing the ABR signal to be estimated (if it is present). The ABR may be used to objectively 

determine the hearing threshold of an individual. This is especially useful when audiologically 

assessing individuals who may be unable to undertake hearing tests requiring subjective input, 

e.g. newborns, hence the use of the ABR in the Newborn Hearing Screening Programme (NHSP) 

(British Society of Audiology, 2021), both as a screening test and as a diagnostic test for those 

newborns referred by the NHSP. The ABR is also used clinically in the neurological evaluation of 

the auditory brainstem pathway, helping to diagnose conditions affecting this pathway, such as 

vestibular schwannomas (tumours affecting the eighth cranial nerve). Chapter 2 of this thesis 

provides detailed background information regarding the anatomy and physiology which underpin 

the ABR, as well as an overview of the key clinical uses of this versatile test. 

This thesis will explore how objective analysis of the ABR may be improved. The scope of this 

subject is very broad, and so this thesis will focus on three main research areas which shall be 

considered in turn. The first topic of this thesis focuses on improving ABR detection, specifically 

through the use of machine learning algorithms. Interpretation of the ABR is typically performed 

by trained clinicians who visually inspect the recorded waveforms. However, interpretation of 

waveforms, even amongst experienced clinicians, is known to be highly variable (Vidler and 

Parker, 2004). Statistical detection methods exist which may be used by clinicians to assist with 

ABR interpretation. Recent studies have examined how ABR detection may be improved using 

statistical methods (Chesnaye et al., 2018; Chesnaye, 2019). A background of ABR detection using 

statistical detection methods is presented in Chapter 3. There has also been interest in applying 

machine learning techniques to this clinical challenge (Acir, Erkan and Bahtiyar, 2013; McKearney 

and MacKinnon, 2019). Given the successes of recent studies using machine learning algorithms in 

a variety of related signal processing studies (Hannun et al., 2019; Medvedev, Agoureeva and 

Murro, 2019), there is potential that machine learning algorithms may be applied to this field in 

order to further improve detection performance. The topic of ABR detection using machine 
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learning is explored in Chapter 4, where it will be shown that machine learning algorithms have 

the potential to outperform the prominent, more conventional, statistical ABR detection 

methods. Improved ABR detection performance could lead to improved performance of newborn 

hearing screening programmes, e.g. by reducing the number of cases where a hearing loss fails to 

be correctly detected and/or reducing the number of cases where an individual with normal 

hearing is incorrectly identified as having a hearing loss. Improving detection of hearing loss at an 

early age allows the early provision of audiological habilitation, which has been shown to lead to 

improved receptive and expressive language development (Yoshinaga-Itano, Coulter and 

Thomson, 2001; Pimperton and Kennedy, 2012). 

The second topic explored in this thesis is how weighted averaging may be optimised to improve 

ABR detection (Chapter 5). Detection of the ABR signal relies on averaging together numerous 

(hundreds/thousands) individual recordings. Unweighted averaging is suboptimal if the 

background noise in the recording is non-stationary (Hoke et al., 1984). Weighted averaging has 

therefore been proposed in order to provide a better estimate of the ABR signal within the 

averaged waveform (Elberling and Wahlgreen, 1985). However, there has been relatively little 

work in the field on how to optimise the weighted averaging technique, e.g. the noise level 

estimation method and the optimal block size to use. The second topic in this thesis therefore 

focuses on how weighted averaging may be optimised in order to improve ABR detection. 

Incremental gains in detection performance may lead to a large population-level benefit, 

especially given the widespread use of the ABR as part of newborn hearing screening programmes 

around the world. Chapter 5 will show how the parameters of weighted averaging may be 

optimised in order to improve detection of the ABR. This chapter will also show how weighted 

averaging performs in combination with statistical detection methods (the Fmp), as well as how 

changes to the false positive rate may be overcome by applying the bootstrap method to the 

weighted test statistic (Lv, Simpson and Bell, 2007; Chesnaye et al., 2018). 

The third and final topic of this thesis is on improving analysis of the diagnostic ABR using machine 

learning (Chapter 6). Whilst the first two topics of this thesis have focused on improving detection 

of the ABR in order to better estimate hearing thresholds, this third topic centres around a 

different clinical use for the ABR: diagnostic evaluation of the auditory brainstem pathway. When 

a sound is played at suprathreshold levels, the full morphology of the ABR waveform and all of its 

component waves becomes evident (Jewett, Romano and Williston, 1970). The morphology of the 

ABR waveform represents the function of the structures that make up the auditory brainstem 

pathway, and so abnormalities in the waveform may be used to detect pathology affecting this 

pathway, e.g. tumours of the vestibulocochlear nerve. This third study applies machine learning 

algorithms to the analysis of the diagnostic ABR. Specifically, the proposed technique aims to label 



Chapter 1 

3 

the key waves of the ABR waveform, estimating their latencies, which is useful for clinical decision 

making (British Society of Audiology, 2019b). Chapter 6 will show how machine learning 

algorithms can successfully label the key waves of the ABR waveform, as well as provide a 

measure of confidence to assist in interpretation of the results.  

The main aims of this thesis were therefore as follows: 

1.1.1 ABR Detection using Machine Learning 

1. Develop a suitable database of ‘response present’ and ‘response absent’ data by which to 

train and evaluate machine learning algorithms. 

2. To train a machine learning algorithm to be able to determine whether EEG data contains 

an ABR or not. 

3. Compare the performance of the machine learning algorithm with that of prominent 

statistical ABR detection methods. 

1.1.2 Automated ABR Detection and Weighted Averaging 

1. To optimise weighted averaging by identifying the value of the epochs-per-block 

parameter that reduces noise within the averaged waveform and improves ABR detection 

the most. 

2. Compare methods of estimating the variance of the noise level within each block, to 

further optimise weighted averaging. 

3. Investigate the effects of weighted averaging on the Fmp statistical ABR detection 

method. 

1.1.3 Automated Analysis of the Diagnostic ABR using Machine Learning 

1. To propose, train, and evaluate automated machine learning algorithms which are able to 

label waves I, III and V of the diagnostic ABR. Multiple state-of-the-art algorithms should 

be evaluated to select the best approach. The automated algorithm should also provide a 

confidence measure to help clinicians interpret the latency values provided. The aim is 

not to present a final model, ready for clinical implementation, but rather to identify 

promising algorithms which may then be evaluated on larger datasets reflective of the 

intended clinical population. 

Whilst a brief introduction has been provided here, a more detailed introduction, including a 

literature review for each topic, will be provided in the relevant chapter.  
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1.2 Research Hypotheses 

The main hypotheses which will be evaluated in this thesis are outlined below. 

1.2.1 ABR Detection using Machine Learning 

1. Trained machine learning algorithms can provide a more effective method of detecting 

the ABR compared to prominent statistical detection methods, specifically with regard to 

sensitivity and specificity. 

1.2.2 Automated ABR Detection and Weighted Averaging 

1. ABR detection may be improved by more accurately estimating the variance of the 

background noise, using the ‘VAR Whole Block’ method, compared to the ‘VAR MP’ 

method. 

1.2.3 Automated Analysis of the Diagnostic ABR using Machine Learning 

1. Machine learning algorithms may be trained to accurately estimate the latency of ABR 

waves I, III, and V, performing better than a baseline estimator. 

2. Confidence predictions for wave latency estimates, provided by machine learning 

algorithms, will be able to reflect those provided by a human clinician as measured by 

their correlation.  

1.3 Research Significance 

The ABR forms a critical component of the Newborn Hearing Screening Programme (Public Health 

England, 2020). The performance of the Newborn Hearing Screening Programmes is therefore 

intricately linked to the performance of the ABR detection algorithm used (as well as the 

performance of the otoacoustic emissions test used). Approximately 660,000 babies are born in 

the England per annum (Wood, Sutton and Davis, 2015). The coverage (i.e. uptake) of the NHSP is 

98.95% (Wood, Sutton and Davis, 2015). The referral rate of the NHSP in England is between 2–

3% (Wood, Sutton and Davis, 2015). This means that approximately 16,000 babies per annum 

(minus the number of babies referred direct for follow-up assessment without screening, e.g. due 

to microtia) will have an automated ABR (AABR) test and not pass it in one or both ears, leading to 

a referral from the NHSP for follow-up audiological assessment. A number of other babies will 

have had the AABR and passed, and therefore not be referred on. Babies who are referred by the 

NHSP will typically have diagnostic ABR testing to objectively establish their hearing thresholds 
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(British Society of Audiology, 2021). In England alone, the use of the ABR in the newborn 

population is widespread. This is reflected globally, to various extents, by other national hearing 

screening programmes (New Zealand Ministry of Health, 2016; Linnebjerg, Hansen and Møller, 

2017). Improvement in the performance of the ABR test, which was the main aim of this thesis, 

therefore has the potential to positively influence the performance of these screening 

programmes. This may be through improved screening programme sensitivity, where a greater 

number of cases of newborns with hearing loss are correctly identified which would otherwise 

have been missed. This would allow audiological support for their hearing loss to be initiated 

earlier, leading to improved outcomes (Pimperton and Kennedy, 2012). Improved test 

performance may also be reflected by an improved screening programme specificity, whereby 

fewer newborns with normal hearing are referred on for further diagnostic testing. Increasing 

screening programme specificity would therefore prevent unnecessary stress and anxiety for 

parents/carers by reducing the number of newborns with normal hearing who are referred on for 

further testing, as well as saving administrative and clinical time. Improving ABR detection has the 

potential to decrease the time required to complete testing (Chesnaye et al., 2018). This is helpful 

as ABR testing is typically performed on newborns when they are sleeping; testing may be 

stopped prematurely if the newborn wakes up, potentially necessitating a further appointment to 

complete testing (British Society of Audiology, 2021). The ABR is also used for hearing threshold 

estimation in older children and adults for whom subjective hearing evaluation may potentially be 

unreliable, e.g. some individuals with a learning disability. Improving the performance of ABR 

detection algorithms therefore has the potential to assist clinicians in providing more effective 

audiological care in a variety of clinical situations. Benefits in ABR detection also have the 

potential to be transferred to other evoked potential modalities, e.g. the visual evoked potential, 

and the somatosensory evoked potential (Walsh, Kane and Butler, 2005). 

The diagnostic ABR is used in a variety of clinical situations to help diagnose pathologies affecting 

the structures which contribute to the auditory brainstem pathway. By using machine learning 

algorithms to improve the estimation of the latency of the key waves of the ABR, it is anticipated 

that clinicians may be supported in interpreting the ABR waveform, improving the accuracy and 

consistency of interpretation. 

1.4 Original Contributions 

1.4.1  ABR Detection using Machine Learning 

The work presented in Chapter 4 focuses on how machine learning algorithms may be effectively 

trained to detect the ABR. Previous studies in this field have suffered from the limitation that the 
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true labels of the data (whether a response is present or absent) are unknown (Alpsan, 1991; 

Bradley and Wilson, 2005; McKearney and MacKinnon, 2019). Unlike previous studies in the field 

of ABR detection using machine learning, this work uses simulated ABR data in order to overcome 

this limitation. Due to differences in methodology, datasets, and outcome measures used, it is 

challenging to compare the performance of different machine learning algorithms developed to 

detect the ABR (McKearney et al., 2022). An original contribution of this work is that the 

performance of the presented machine learning algorithm is compared to that of prominent 

established statistical detection methods. The presented algorithm is the first one to have been 

objectively demonstrated to exceed the performance of statistical ABR detection methods. The 

comparison with statistical ABR detection methods means that, even if future studies use 

different datasets and algorithms, a form of relative performance comparison will be able to be 

drawn via a comparison between the proposed algorithm and statistical detection methods which 

are relatively straightforward to implement. A further original contribution of this work is that it 

represents the first reported application of the previously developed ABR bootstrap technique 

(Lv, Simpson and Bell, 2007) to an ABR machine learning detection algorithm, showing it to be 

effective at controlling the false positive rate, obviating the need to define the detection criterion 

using a separate set of data. 

1.4.2 Automated ABR Detection and Weighted Averaging 

The work presented in Chapter 5 is focused on improving weighted averaging in terms of ABR 

detection. In general terms, weighted averaging involves estimating the noise level within one or 

more recording epochs and then weighting that block of recording epochs inversely proportional 

to the estimated noise level. This upweights the information provided by epochs with low noise, 

and downweights the information from epochs containing lots of background noise (Elberling and 

Wahlgreen, 1985). Whilst previous studies have already provided guidance on the optimal block 

size for weighting averaging (Elberling and Wahlgreen, 1985; Don and Elberling, 1994; Riedel, 

Granzow and Kollmeier, 2001), the work presented in this thesis provides detailed additional 

evidence, optimising the block size for weighted averaging both in terms of residual noise levels 

and for ABR detection using the Fmp test statistic. Elberling and Wahlgreen (1985) provide some 

evidence for the effects of weighted averaging on the Fmp statistic in the form of a few individual 

recordings. The presented study, however, through the use of subject recorded background EEG 

data and simulated ‘response present’ data, provides an in-depth analysis of the effects of 

weighted averaging on the Fmp test statistic. The experiment presented in this thesis measured 

the mean null condition Fmp statistic to have a value below the expected value of around one. 

After discussion with colleagues in the field of evoked potential research (J. Undurraga, personal 
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communication, 2022), this finding was shown to be due to the finite length of the analysis 

window. Whilst this potential effect was theorised by Elberling and Don in 1984, the experiment 

published in this thesis describes the effect that this has on ABR detection when combined with 

weighted averaging. The presented work also shows how the characteristics of the data affecting 

statistical test performance when coupled with weighted averaging, may be controlled for by 

using the bootstrap method (Lv, Simpson and Bell, 2007), leading to improved ABR detection with 

a controlled specificity level.  

Within the weighted averaging procedure, the noise level in groups of recording epochs may be 

estimated using either a single point (Elberling and Wahlgreen, 1985) or multiple points method 

(‘VAR MP’), whereby the average of the variance of samples down one (single point) or multiple 

(multiple point) columns within a block of epochs is taken. A further original contribution is 

through the comparison of the ‘VAR MP’ method with a method whereby the variance of all the 

samples within the block are used as the noise level estimate (‘VAR Whole Block’), with the ‘VAR 

Whole Block’ method being shown to be superior for the dataset used in the study in terms of 

reducing residual noise and improving ABR detection using the Fmp statistic (McKearney et al., 

2023). 

1.4.3 Automated Analysis of the Diagnostic ABR using Machine Learning 

The work in Chapter 6 presents the findings of a study using machine learning to estimate the 

latency of waves I, III, and V of the ABR. The presented work represents the first instance in the 

literature of convolutional layers being used for analysis of the diagnostic ABR. The best algorithm 

presented (a convolutional recurrent neural network) performs better than the state-of-the-art 

algorithms described in the literature (Chen et al., 2021). However, it is acknowledged that the 

methodological differences between the studies, as well as the data used, make drawing direct 

comparisons difficult. An additional original contribution is that, unlike most other studies in the 

field of using machine learning to label the waves of the ABR, the present study provides an 

algorithm which predicts a confidence measure for how likely it is that an accurate wave latency 

prediction can be made. Whilst the rule-based algorithm provided by Boston (1989) provides a 

confidence measure for the wave V latency prediction, the proposed method uses a neural 

network to make this confidence level prediction. Providing a confidence level estimate may help 

clinicians to be able to better interpret the wave latency predictions, by paying greater heed to 

the predictions where there is high confidence and relying to a greater extent on their own visual 

interpretation of the waveform when a low confidence prediction is provided. 
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1.5 A Note on the Format of this Thesis 

The work in this thesis centres around three main studies presented in Chapters 4, 5, and 6. As 

well as the Introduction and Conclusions chapters, which bring the overall work in the three mains 

studies together, further study-specific literature reviews, discussion and conclusions are 

presented in the relevant chapters. This format was selected in order to present the relevant 

information in a coherent and accessible format. 

1.6 Publications and Presentations 

1.6.1 Published Articles 

McKearney, R. M., Bell, S. L., Chesnaye, M. A., and Simpson, D. M. (2022) ‘Auditory brainstem 

Response Detection Using Machine Learning: A Comparison with Statistical Detection Methods’, 

Ear & Hearing, 43(3), pp. 949–960. 

McKearney, R. M., Bell, S. L., Chesnaye, M. A., and Simpson, D. M. (2023) ‘Optimising Weighted 

Averaging for Auditory Brainstem Response Detection’. Biomedical Signal Processing and Control, 

83, p. 104676. Available at: https://doi.org/10.1016/j.bspc.2023.104676. 

1.6.2 Planned Article Submissions 

McKearney, R. M., Bell, S. L., and Simpson, D. M. ‘Objective Analysis of the Diagnostic Auditory 

Brainstem Response using Machine Learning’. 

1.6.3 Conference Presentations 

McKearney, R. M., Bell, S. L., Chesnaye, M. A., and Simpson, D. M. (2021) ‘Detecting the ABR using 

Machine Learning’. XXVII Symposium International Evoked Response Audiometry Study Group. 

Online (virtual conference). Recorded oral presentation. 

McKearney, R. M., Bell, S. L., and Simpson, D. M. (2022) ‘Analysing the diagnostic auditory 

brainstem response using machine learning’. UK ‘Ear and Hear’ Meeting, The UK Acoustics 

Network. Southampton, UK. Poster presentation. 

https://doi.org/10.1016/j.bspc.2023.104676
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Chapter 2 The Auditory Brainstem Response 

2.1 Background and Physiology 

2.1.1 The Human Auditory System 

This chapter provides an overview of the core topic of this thesis—the auditory brainstem 

response (ABR). In order to describe the ABR in a meaningful context it is useful to first briefly 

consider the auditory system as a whole.  

The human auditory system is a remarkable apparatus which operates over a wide dynamic range 

and is capable of detecting and interpreting tiny fluctuations in air pressure: for example, for 1kHz 

tones, a healthy human ear can detect sounds pressures at a level of 47 µPa (Gelfand, 2009). 

Hearing is useful not only in detecting environmental sounds but is also crucial for speech 

perception. The peripheral auditory system comprises the structures of the outer, middle, and 

inner ear up to where the cochlear nerve ends where it connects at the brainstem (Figure 2-1A). 

The role of the peripheral auditory system is to convert fluctuations in air pressure into 

electrochemical signals which can subsequently be interpreted by the brain. The anatomy of the 

auditory system comprises a variety of specialised components which enable this process to occur 

(Figure 2-1A). The outer ear consists of the pinna and ear canal, which direct sound waves to the 

middle ear via the tympanic membrane. The middle ear acts as a transformer, allowing the sound 

waves to be transferred from the air around us into the fluid-filled cochlea via the oval window 

without being severely attenuated (Wilson, 1987). This is achieved by the lever action of the three 

small bones of the middle ear (ossicles) as well as the advantageous area ratio between the 

tympanic membrane and round window (Wilson, 1987). Vibrations of the tympanic membrane 

therefore lead to displacement of the oval window and subsequently displacement of the 

perilymph fluid within the cochlea. The transduction of sound (mechanical energy) into 

electrochemical energy takes place in the cochlea (Naftalin, 1981). This process is necessary in 

order for the sound to be transmitted via neurones to the brain. Inner hair cells are the site of this 

transduction, with inner hair cells being displaced by vibrations of the fluid in the cochlea leading 

to their depolarisation (Zwislocki, 1980; Kiang et al., 1986). This cascades into the release of 

neurotransmitters which cause the cochlear nerve to fire an action potential.  
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Figure 2-1 The human auditory system. Figure A shows the anatomical structures of the 

peripheral auditory system: the outer, middle and inner ear. Figure B shows the 

auditory cortex. This figure (‘Frequency Coding in the Human Ear and Cortex’) is 

reproduced, with no changes made, from Chittka, L. and Brockmann, A. (2005) 

‘Perception Space—The Final Frontier’, PLoS Biology. Public Library of Science, 3(4), 

p. e137. Available at: https://doi.org/10.1371/journal.pbio.0030137. This figure is 

reproduced in accordance with the terms of the CC BY 2.5 license under which the 

image was published. 

https://doi.org/10.1371/journal.pbio.0030137
https://creativecommons.org/licenses/by/2.5/
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It is the role of the central auditory nervous system (CANS) to process and interpret the 

information received (Figure 2-1A and Figure 2-2). It is in the CANS where the complex tasks of 

sound recognition and sound localisation take place (Staecker and Thompson, 2013). 

 

Figure 2-2 The auditory nervous system. This figure is reproduced, from Peelle, J. E. (2016) 

Human Auditory Pathway, available at: https://osf.io/u2gxc/. This figure is 

reproduced under the terms of the CC BY 4.0 license, with the image changed to crop 

out the rest of the figure.  

2.1.2 Auditory Evoked Potentials 

Auditory Evoked Potentials (AEPs) are measurements of auditory system activity in response to a 

sound (auditory stimulus). When an auditory stimulus is delivered to the ear, a cascade of 

https://osf.io/u2gxc/
https://creativecommons.org/licenses/by/4.0/
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electrochemical activity occurs, converting a sound from a mechanical wave into a format 

interpretable by our brain. Electrophysiological recording equipment can be used to measure 

these electrochemical events. The traditional hearing test (audiometry) where a patient is asked 

to press a button in response to a sound is a form of behavioural test as it relies on the subjective 

behavioural response of the participant. Unlike behavioural tests, evoked potentials do not 

require the patient’s subjective input. They are therefore considered to be an objective form of 

hearing assessment. Evoked responses are typically recorded as voltage amplitudes fluctuating 

over time and can be used to make inferences regarding the status of an individual’s auditory 

system (Stapells, 2000; Gorga et al., 2006). This makes AEPs useful clinically. Evoked potentials are 

recorded as a potential difference between two recording electrodes. Clinically, AEPs such as the 

ABR are measured as far-field recordings, i.e. they are not measured directly from neurological 

generators close to the electrode, but are instead recorded at a distance from the source of the 

electrical activity by electrodes placed in standard positions on the scalp (Figure 2-3). 
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Figure 2-3 International 10–20 system of electrode placement as described by Klem et al. 

(1999). Figure redrawn based on a figure in Kim, J. H., Kim, C. M. and Yim, M. S. 

(2020) ‘An Investigation of Insider Threat Mitigation Based on EEG Signal 

Classification’, Sensors 2020, Vol. 20, Page 6365. Multidisciplinary Digital Publishing 

Institute, 20(21), p. 6365. Available at: https://doi.org/10.3390/s20216365. This work 

was published by MDPI under a CC BY 4.0 license. This figure is redrawn, with 

changes made (added text/extra electrode positions/different colour scheme), under 

the terms of this license. 

Using scalp recording electrodes makes the test non-invasive, but also means that the recorded 

voltages are smaller, especially in relation to the background electrical noise from ongoing EEG 

and muscular activity (Stegeman et al., 1997). As an example the amplitude of the ABR signal can 

be up to ~500 nV (Hall, 2007), with background noise derived from unrelated neuronal activity, 

myogenic (muscular) activity and electrical interference having an amplitude upward of 15 µV. 

There are several different AEPs whose nomenclature is typically informed by their physiological 

site of origin and therefore latency, with latency referring to how long after the auditory stimulus 

the response occurs (Figure 2-2). Responses which occur peripherally (i.e. earlier on in the 

auditory pathway) such as the cochlear microphonic, an alternating current potential reflecting 

https://doi.org/10.3390/s20216365
https://creativecommons.org/licenses/by/4.0/
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outer hair cell function (Hall, 2007), will have shorter latencies compared to responses of a central 

origin, e.g. the cortical auditory evoked potential (CAEP). Another significant distinguishing factor 

which classifies AEPs is whether they are transient or steady-state responses. Transient evoked 

responses, such as the ABR, are transient fluctuations which occur after the onset of each single 

stimulus. Steady-state responses, such as the auditory steady-state response (ASSR), are 

continuous and elicited by a rapidly periodically repeating stimulus (Galambos, Makeig and 

Talmachoff, 1981). Whilst there are numerous AEPs, the research in this thesis will focus on the 

ABR due to its widespread clinical adoption and prominent use in the UK Newborn Hearing 

Screening Programme (NHSP) (British Society of Audiology, 2019c). However, due to their 

common underlying principles, many of the findings will likely generalise not just across all 

transient AEPs but also to transient evoked potentials of other modalities, e.g. visual and 

somatosensory evoked potentials. 

2.1.3 The Auditory Brainstem Response 

The ABR first appeared in the literature in a study by Sohmer & Feinmesser (1967), however, the 

recording was initially interpreted as being a cochlear action potential. The response was first 

correctly ascribed as auditory brainstem activity by Jewett et al. (1970) who related the latency of 

the response to its physiological source of origin (Atcherson, 2012). The ABR waveform comprises 

of a series of peaks and troughs which give the response a characteristic appearance 

(morphology).  

To record the ABR, the electrode configuration is chosen to reflect the orientation of the electrical 

dipole created by the flow of current during the evoked potential, thus maximising the amplitude 

of the recorded response (Stegeman et al., 1997). An active (‘positive’) recording electrode is 

typically sited at Fz/Cz (high forehead/on top of the head), with the reference (‘negative’) 

electrode positioned on either the ipsilateral mastoid bone (British Society of Audiology, 2019c), 

or the nape of the neck (King and Sininger, 1992) (Figure 2-3). The largest component of the ABR 

waveform (wave V) arises from neurological generators with a vertical alignment; the typically 

vertically aligned electrode montage capitalises on this (Atcherson, 2012). The neurological 

generators of the ABR extend from the distal part of the auditory nerve, possibly up to the 

thalamic level (the medial geniculate body) (Møller et al, 1981; Hashimoto et al, 1981 in Hall, 

2007) (Figure 2-2). The generators of the later ABR components are complex, poorly defined, and 

a subject of ongoing debate (Hall, 2007). 
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2.1.4 Clinical Use of the ABR 

Of the AEPs, the ABR is one of the most commonly used tests in clinical practice (Atcherson, 

2012), owing largely to the ability of the test to provide reliable estimates of an individual’s 

hearing thresholds (Stapells, 2000; Gorga et al., 2006). The groups of patients for whom objective 

ABR assessment is considered most useful typically reflects those patient groups who may not be 

expected to be able to readily engage with behavioural hearing assessments: newborn babies, 

infants, some adults with learning disabilities, some individuals with cognitive impairment, e.g. 

dementia, and some individuals with a non-organic hearing loss (NOHL) (British Society of 

Audiology, 2019c, 2019b). NOHL is commonly defined as ‘responses to hearing tests indicating 

deficits that cannot be explained by known pathology’ (Austen and Lynch, 2009). The caveat 

‘some’ has been applied to some of the patient populations in the aforementioned list as the test 

strategy employed will very much be decided on an individual basis. For example, many adults 

with learning disabilities will be able to readily perform behavioural hearing assessments, 

producing reliable and accurate results. As well as being used for hearing threshold estimation, 

the ABR can provide insight into the neurological state of the auditory system by providing 

qualitative information regarding the function of the auditory nerve and auditory brainstem. 

These two functional use cases of the ABR shall be considered in turn. 

2.1.4.1 Hearing Screening 

In the UK (Public Health England, 2020), as well as many other countries (New Zealand Ministry of 

Health, 2016; Linnebjerg, Hansen and Møller, 2017), the ABR has a key role in the early 

identification of hearing loss in newborns. Permanent Childhood Hearing Impairment (PCHI) may 

either arise congenitally (e.g. genetically), or be acquired (e.g. secondary to congenital infection, 

hypoxia, ototoxicity, bacterial meningitis etc.) (Billings and Kenna, 1999). Early identification of 

hearing loss is important as it allows management strategies such as hearing aids or cochlear 

implantation to be initiated early in the baby’s life (Pimperton and Kennedy, 2012). Providing 

babies access to sound is critical to their effective speech development and is associated with 

numerous positive health and educational outcomes throughout life (Yoshinaga-Itano et al., 2001; 

Kennedy et al., 2006; Fulcher et al., 2012). Early intervention is critical as it allows a critical 

window in the brain’s development to be harnessed, during a time when neural plasticity is high 

(Cardon, Campbell and Sharma, 2012). There is strong evidence for the need for early detection 

and treatment of hearing loss in babies and is the rationale for newborn hearing screening 

programmes. The UK Newborn Hearing Screening Programme (NHSP) relies on two forms of 

objective hearing assessment techniques, namely automated versions of the otoacoustic 

emissions (OAE) test and the ABR (Figure 2-4). Newborns who do not attain a clear response (CR) 
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in both ears for all three steps of the screening process are referred urgently to audiology for 

definitive assessment of their hearing (Public Health England, 2020). In this appointment the 

audiologist will typically perform ABR measurements to establish the hearing thresholds of the 

referred newborn (British Society of Audiology, 2021). 
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Figure 2-4 Summary of the Newborn Hearing Screening Programme pathway for well babies, for 

babies with no contraindications for screening. Please see Public Health England, 

2020), for full details of the pathway. Babies with certain risk factors are at a higher 

risk of PCHI. Such risk factors include syndromes associated with hearing loss, e.g. 

Down syndrome, craniofacial abnormalities, e.g. cleft palate, congenital 

toxoplasmosis or rubella infection, amongst others (Public Health England, 2019). 

Babies with such risk factors should be referred for targeted audiology follow-up 

assessment (behavioural audiological assessment at around 8 months of age), even if 

AOAE1, AOAE2, and AABR provide a clear response (Public Health England, 2019). 

Note that there is a separate for babies in neonatal intensive care units (NICU) AOAE 

= Automated Otoacoustic Emissions; AABR = Automated Auditory Brainstem 

Response; CR = Clear Response. Contains public sector information licensed under 

the Open Government Licence v3.0. Figure redrawn with permission, with changes 

made, based on a figure produced by Public Health England (2020). Available at: 

https://www.gov.uk/government/publications/newborn-hearing-screening-care-

pathways/newborn-hearing-screening-programme-nhsp-care-pathways-for-well-

babies.  

2.1.4.2 Hearing Threshold Estimation 

Where behavioural hearing thresholds are unobtainable, e.g. in newborns, or otherwise not 

reliable, the ABR provides an objective method of assessing an individual’s hearing thresholds. An 

example of the ABR recorded across a range of stimulus levels is shown in Figure 2-5. During the 

ABR test, an auditory stimulus is played repeatedly into the ear of the patient whilst the EEG is 

https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
https://www.gov.uk/government/publications/newborn-hearing-screening-care-pathways/newborn-hearing-screening-programme-nhsp-care-pathways-for-well-babies
https://www.gov.uk/government/publications/newborn-hearing-screening-care-pathways/newborn-hearing-screening-programme-nhsp-care-pathways-for-well-babies
https://www.gov.uk/government/publications/newborn-hearing-screening-care-pathways/newborn-hearing-screening-programme-nhsp-care-pathways-for-well-babies
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being concurrently recorded. A ‘loud’ sound stimulus played above the individual’s hearing 

threshold is expected to elicit a response of large amplitude (Hecox and Galambos, 1974). As the 

auditory stimulus level is reduced, the ABR amplitude is known to decrease, whilst the latency of 

the response increases (Hecox and Galambos, 1974) (Figure 2-5). As the auditory stimulus level is 

lowered further, there will be a point when the ABR is no longer detectible (Hall, 2007). The point 

at which the ABR is only just detectible is considered to be the ABR threshold. The clinical utility of 

this arises from the knowledge that the ABR threshold typically coincides closely with an 

individual’s behavioural hearing threshold (Stapells, 2000; Gorga et al., 2006). This means that the 

estimated thresholds obtained can be used to: inform diagnostic decision-making, programme 

hearing aids (using a correction factor) (Bagatto et al., 2005), and to help provide guidance on 

effective communication tactics to parents/guardians/carers.  

 

Figure 2-5 The auditory brainstem response from one adult with normal hearing. ABR 

recordings are shown across a range of stimulus levels from 0 to 50 dB SL (Sensation 

Level—relative to the individual's audiogram threshold). Where deemed present, 



Chapter 2 

19 

wave V has been labelled. Note the increasing wave V latency and reduced amplitude 

with decreasing stimulus level. 

The ABR is clearly a very useful testing in screening the hearing of newborn babies. In addition to 

this vital role in detecting congenital or early acquired causes, the ABR may also be used at a later 

stage in an infant’s life to detect hearing loss which may be acquired after this period, e.g. 

following exposure to ototoxic medication (medication with the side-effect of harming the ear) or 

bacterial meningitis. 

2.1.4.3 Neurological Assessment 

As well as being used for hearing threshold estimation, the ABR can be used to evaluate the 

neurological functioning of part of the auditory nervous system (the neurological structures which 

contribute to the generation of the ABR—Figure 2-2). The ABR when used for this purpose may be 

referred to the neurodiagnostic or neurological ABR (Figure 2-6). In particular the ABR has been 

widely used for evaluating the integrity of the auditory nerve (Selters and Brackmann, 1977; 

Schmidt et al., 2001). Conditions affecting the integrity of the auditory nerve can lead to 

disruption in the ABR morphology including increased latencies of ABR peaks. For example, 

acoustic neuromas (benign tumours affecting the vestibulocochlear nerve) may impair the 

function of the auditory nerve, leading to delayed nerve propagation and an increase in the 

latency of waves III and V (generated by structures proximal to the disruption). The latency of 
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wave I (generated by the distal portion of the auditory nerve), would be expected to display a 

normal latency as it is distal to the site of lesion. 

 

Figure 2-6  Neurodiagnostic ABR. This Figure shows an example ABR waveform recorded using a 

neurodiagnostic protocol from the database recorded by Sundaramoorthy et al. 

(2000). Waves I–VII are labelled using the Roman numeral convention established by 

Jewett et al. (1970). 

In the case of an acoustic neuroma, the latency of wave I (generated by the distal portion of the 

auditory nerve—distal to the lesion), would be expected to display a normal latency. Reliance on 

the ABR for retrocochlear (proximal to the cochlea, i.e. auditory nerve and central auditory 

system) disease detection has been diminished by the availability of high-resolution magnetic 

resonance imaging (MRI). However, the need for the ABR has not been entirely superseded as it 

still acts as an effective screening test. Additionally, some patients may have contraindications to 

MRI testing (Doyle, 1999) and certain functional conditions, e.g. auditory neuropathy spectrum 

disorder (ANSD) may not be readily detected by imaging (Buchman et al., 2006).  

2.1.5 Conclusion 

Accurate assessment of the auditory system is necessary for a number of important clinical 

applications. The ABR is an effective tool for evaluating the peripheral auditory nervous system 

and for estimating an individual’s hearing thresholds. This is particularly useful for populations for 

whom traditional behavioural hearing tests are not possible (e.g. newborns). Accurate estimation 

of an individual’s hearing threshold through ABR testing is reliant on the evoked potential being 



Chapter 2 

21 

accurately detected from noisy EEG recordings. ABR detection is the topic of the next chapter of 

this thesis where statistical ABR detection methods will be reviewed. 
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Chapter 3 ABR Detection 

3.1 Recording the ABR 

ABR detection is a very challenging task indeed. This is primarily the result of the signal of interest 

(the ABR) being much lower in amplitude than the background noise present in the measurement. 

This noise may arise from endogenous (physiological) sources, or exogenous (environmental) 

sources. Endogenous/physiological sources of noise include background EEG activity, myogenic 

(muscular) activity, cardiac activity, and ocular movements (largely myogenic plus movement of 

the corneo-retinal potential—a standing potential between the cornea and retina of the eye). 

External, exogenous, sources of noise in the recording include: mains interference, electrical 

equipment, and stimulus artefact (McLean, Scott and Parker, 1996). Stimulus artefact refers to 

the unwanted electrical activity picked up by the recording electrodes as a result of the 

electromagnetic activity of the transducer delivering acoustic stimuli to the ear (McLean, Scott 

and Parker, 1996). A large ABR may have an amplitude of 0.5 µV, whereas the background noise 

may be upwards of ±15 µV. The signal-to-noise ratio (SNR) of the ABR within the continuous EEG 

is therefore very low (around -35 to -23 dB depending on the stimulus level used—Chesnaye, 

2019). Filtering to reduce energy in noisy frequency bands is useful, however, the benefits are 

limited by the significantly overlapping frequency spectra of the ABR signal and the background 

noise (Schimmel, Rapin and Cohen, 1974). The primary method of improving the SNR to allow ABR 

detection is through careful experimental technique to reduce noise and artefact at source, 

coupled with collecting multiple repeated measurements and applying coherent averaging. 

3.1.1 Coherent Averaging 

In order to improve the SNR of the ABR, multiple stimulus repetitions are performed. The EEG 

following each acoustic stimulus is recorded. These individual recordings are subsequently 

averaged together, decreasing the noise levels within the average whilst sparing the deterministic 

signal of interest (Dawson, 1954; Jewett, Romano and Williston, 1970). Each of these short EEG 

recordings is known as a ‘recording epoch’ and consists of a fixed period of EEG recorded 

following the onset of an auditory stimulus. The effectiveness of coherent averaging depends on a 

number of assumptions regarding the nature of evoked potentials (Elberling and Don, 1984): 

1. The evoked potential is deterministic, i.e. the evoked potential signal is the same over 

each point in time for each recording epoch. 
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2. The noise is random, zero mean, independent and identically distributed (i.i.d.), and 

stationary. 

3. The noise and the evoked potential signal are independent. 

Whilst coherent averaging may still be performed if one or more of these assumptions are not 

met, the effectiveness of the technique will be reduced. In order to better visualise the structure 

of the ABR recordings it is helpful to consider the data as a matrix (𝐗𝐗) consisting of 𝑁𝑁 rows of 

recording epochs (i.e. 𝑁𝑁 acoustic stimuli) and 𝑀𝑀 columns of sample points (i.e. each recording is 

of length 𝑀𝑀 samples) (Chesnaye, 2019): 

𝐗𝐗 =  

⎣
⎢
⎢
⎡
𝑥𝑥1,1 𝑥𝑥1,2 … 𝑥𝑥1,𝑀𝑀
𝑥𝑥2,1 ⋱ ⋮
⋮ ⋱ ⋮

𝑥𝑥𝑁𝑁,1 ⋯ … 𝑥𝑥𝑁𝑁,𝑀𝑀⎦
⎥
⎥
⎤
 

The individual recording epochs may be averaged together in the time-domain using the following 

equation provided by Lyons (2010): 

𝑥𝑥(𝑡𝑡)  =  
1
𝑁𝑁
�𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

(𝑡𝑡) (3.1) ̅

where �̅�𝑥 is the coherent average, and 𝑥𝑥𝑖𝑖(𝑡𝑡) is sample point (𝑡𝑡) of the 𝑖𝑖𝑡𝑡ℎ recording epoch. As the 

temporal relation of the recording epochs to the onset of the auditory stimulus is constant, the 

averaging is said to be ‘coherent’. With the evoked potential signal being deterministic, the noise 

will average out over a large number of recording epochs, leaving the averaged waveform with an 

improved SNR. A visual example of the effects of coherent averaging is presented below in Figure 

3-1. Provided that the noise is stationary and that the number of recording epochs is large 

enough, the unweighted coherent average approximates the minimum mean square error 

(MMSE) estimate of the evoked potential signal (Schwartz and Shaw, 1975 in Hoke et al., 1984). 

The noise is often not stationary and multiple alternative averaging methods have been proposed. 

Some of these methods will be explored in more detail in a subsequent chapter of this thesis 

(Chapter 5—Automated ABR Detection and Weighted Averaging). 
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Figure 3-1 The averaged ABR waveform relative to background noise levels.                                                              

LEFT—The coloured traces each represent an individual recording epoch. The white 

line is the coherently averaged waveform, produced by averaging together all 3,000+ 

recording epochs. This shows clearly that the coherent average is very small in 

amplitude, compared to the signal from the individual epochs which comprise largely 

of noise.                                                                                                                                    

 RIGHT—This is the same waveform as the coherent average shown in the left plot 

(white), however, the y-axis display has been expanded to better view the ABR 

waveform morphology. 

3.1.1.1 How Coherent Averaging Improves the SNR 

The effect that averaging has on reducing noise whilst maintaining a constant evoked potential 

signal is relatively intuitive, however, it is important to understand the mathematical principles 

underlying this process. The structure of each epoch is demonstrated in an equation provided by 

Elberling & Don (1984):  

𝑥𝑥𝑖𝑖(𝑡𝑡) = 𝑠𝑠𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖(𝑡𝑡) (3.2) 

where s is the evoked potential of interest (the signal) and v is the background noise for sample 

point (𝑡𝑡) within the 𝑖𝑖𝑡𝑡ℎ recording epoch, 𝑥𝑥𝑖𝑖(𝑡𝑡). The 𝑁𝑁 recording epochs can be coherently 

averaged together across each sample point (Van Drongelen, 2018): 

𝑥𝑥(𝑡𝑡)  =  
1
𝑁𝑁
�𝑥𝑥𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑖𝑖=1

(3.3) ̅

where �̅�𝑥 is the coherent average of for sample point (𝑡𝑡). Given that the evoked potential signal is 

considered to be deterministic and therefore identical for each sample point across recording 

epochs this can be rewritten as (Arar, 2019): 
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𝑥𝑥(𝑡𝑡)  =  𝑠𝑠(𝑡𝑡) +
1
𝑁𝑁
�𝑣𝑣𝑖𝑖(𝑡𝑡)
𝑖𝑖=1

(3.4) ̅
𝑁𝑁

As the signal strength is theoretically unchanged with coherent averaging of a deterministic signal, 

the improvement of the SNR within the coherent average therefore arises as a result of a 

decrease in the denominator, i.e. the background noise level.  

The SNR can be calculated as (Van Drongelen, 2018): 

𝑆𝑆𝑁𝑁𝑆𝑆 =
𝑃𝑃𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑃𝑃𝑠𝑠𝑛𝑛𝑖𝑖𝑠𝑠𝑛𝑛

(3.5) 

𝑆𝑆𝑁𝑁𝑆𝑆𝑑𝑑𝑑𝑑 = 10 log10
𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃𝑠𝑠𝑛𝑛𝑖𝑖𝑠𝑠𝑛𝑛
(3.6) 

𝑃𝑃

with the average power (𝑃𝑃) of a discrete time series being equal to its mean squared amplitude 

(Van Drongelen, 2018): 

𝑃𝑃 =  
1
𝐾𝐾
�𝑥𝑥(𝑡𝑡)2
𝐾𝐾

𝑡𝑡=1

(3.7) 

where 𝐾𝐾 is the number of sample points in the time series. The variance of a signal is calculated 

similarly, however, with the mean value subtracted from each individual value: 

𝜎𝜎2 =  
1
𝐾𝐾
�(𝑥𝑥(𝑡𝑡) − 𝜇𝜇)2
𝐾𝐾

𝑡𝑡=1

(3.8) 

For a zero-mean time-series, as EEG background noise is assumed to be, the power of the time-

series will be equal to its variance (𝜎𝜎2), which is the square of the standard deviation (𝜎𝜎). The 

variance of the noise is a measure of the intensity of the fluctuations in noise amplitude 

(Davenport Jr. and Root, 1987). 

To understand how coherent averaging improves the SNR with increasing recording epochs (𝑁𝑁), 

we must consider the effect of averaging on the variance of the noise (𝑣𝑣) within the averaged 

waveform (�̅�𝑥). Van Drongelen (2018) and Arar (2019) provide the following equation: 

̅ ̅
̅ ̅ ̅

𝑉𝑉𝑉𝑉𝑉𝑉�𝑣𝑣(𝑡𝑡)�   =    𝐸𝐸[(𝑣𝑣(𝑡𝑡) − 𝜇𝜇)2]
=    𝐸𝐸[𝑣𝑣(𝑡𝑡)2 − 2𝑣𝑣(𝑡𝑡)𝜇𝜇 + 𝜇𝜇2 ]  =     𝐸𝐸[𝑣𝑣(𝑡𝑡)2] − 2𝜇𝜇𝐸𝐸[𝑣𝑣(𝑡𝑡)] + 𝜇𝜇2    =    𝐸𝐸[𝑣𝑣(𝑡𝑡)2] − 𝜇𝜇 2  

=  𝐸𝐸 ��
1
𝑁𝑁
�𝑣𝑣𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑖𝑖=1

� 2� − 𝜇𝜇2   =   𝐸𝐸 �
1
𝑁𝑁2�𝑣𝑣𝑖𝑖(𝑡𝑡)�𝑣𝑣𝑗𝑗(𝑡𝑡)

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

� − 𝜇𝜇2 (3.9)
 

̅ ̅
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where 𝐸𝐸 is the expectation operator and 𝜇𝜇 is the mean value of the noise within the coherently 

averaged background noise, �̅�𝑣, for sample point (𝑡𝑡). Note that 𝜇𝜇 is the true mean value of �̅�𝑣(𝑡𝑡), 

and so 𝐸𝐸[𝜇𝜇] = 𝜇𝜇 (Van Drongelen, 2018). Additionally, 𝐸𝐸[�̅�𝑣(𝑡𝑡)] = 𝜇𝜇, allowing the simplifications 

which occur in the second line of Equation 3.9 (Van Drongelen, 2018). The two summations in the 

final expression of Equation 3.9 represent 𝑁𝑁2 possible combinations of 𝑖𝑖 and 𝑗𝑗 (Van Drongelen, 

2018). To better understand what’s happening, we may separate this expression into the 𝑁𝑁(𝑁𝑁 −

1) terms in the expression where 𝑖𝑖 ≠ 𝑗𝑗, and the 𝑁𝑁 terms where 𝑖𝑖 = 𝑗𝑗, in an equation provided by 

Van Drongelen (2018): 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑣𝑣(𝑡𝑡)) =
1
𝑁𝑁2  �𝐸𝐸[𝑣𝑣𝑖𝑖(𝑡𝑡)2]

𝑁𝑁

𝑖𝑖=1

���������
𝑁𝑁 𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑠𝑠

���������
𝑓𝑓𝑛𝑛𝑡𝑡 𝑖𝑖=𝑗𝑗

+
1
𝑁𝑁2  ��𝐸𝐸�𝑣𝑣𝑗𝑗(𝑡𝑡)𝑣𝑣𝑖𝑖(𝑡𝑡)�

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

�������������
𝑁𝑁(𝑁𝑁−1)𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑠𝑠

�������������
𝑓𝑓𝑛𝑛𝑡𝑡 𝑖𝑖≠𝑗𝑗

−  𝜇𝜇2 (3.10) ̅

On the basis that the mean value of the noise (𝜇𝜇) is assumed to be equal to zero, 𝜇𝜇2 may be 

disregarded. A further assumption made regarding the properties of the noise is that the noise is 

independent between recording epochs (i.e. the ‘independence assumption’) (Van Drongelen, 

2018). For the 𝑁𝑁(𝑁𝑁 − 1) terms in the expression where 𝑖𝑖 ≠ 𝑗𝑗, two different i.i.d. random 

variables with an expected value of zero are multiplied together producing a value of zero (Arar, 

2019): 

𝐸𝐸�𝑣𝑣𝑖𝑖(𝑡𝑡)𝑣𝑣𝑗𝑗(𝑡𝑡)� =  𝐸𝐸[𝑣𝑣𝑖𝑖(𝑡𝑡)]𝐸𝐸�𝑣𝑣𝑗𝑗(𝑡𝑡)� = 0     𝑓𝑓𝑓𝑓𝑉𝑉 𝑖𝑖 ≠ 𝑗𝑗 (3.11) 

The second component of the final expression in Equation 3.10 is therefore assumed to be zero 

and can be removed. For the remaining 𝑁𝑁 terms in the expression where 𝑖𝑖 = 𝑗𝑗, Arar (2019) 

provides the following equation: 

𝐸𝐸�𝑣𝑣𝑖𝑖(𝑡𝑡)𝑣𝑣𝑗𝑗(𝑡𝑡)� =  𝐸𝐸[𝑣𝑣𝑖𝑖(𝑡𝑡)2] = 𝜎𝜎𝑣𝑣(𝑡𝑡)2    𝑓𝑓𝑓𝑓𝑉𝑉 𝑖𝑖 = 𝑗𝑗 (3.12) 

where 𝜎𝜎𝑣𝑣2 is the variance of the background noise, 𝑣𝑣. Combining Equations 3.10, 3.11and 3.12, 

for the 𝑁𝑁 terms where 𝑖𝑖 = 𝑗𝑗, we can observe the effect of averaging on the noise within the 

coherent average in the equation provided by Arar (2019): 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑣𝑣(𝑡𝑡)) =  
1
𝑁𝑁2  �𝐸𝐸�𝑣𝑣𝑗𝑗(𝑡𝑡)2�

𝑁𝑁

𝑗𝑗=1

���������
𝑁𝑁 𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑠𝑠

���������
𝑓𝑓𝑛𝑛𝑡𝑡 𝑖𝑖=𝑗𝑗

=  
1
𝑁𝑁2 𝑁𝑁𝜎𝜎𝑣𝑣(𝑡𝑡)2 =  

𝜎𝜎𝑣𝑣(𝑡𝑡)2

𝑁𝑁
(3.13) ̅

The variance of the noise therefore decreases by a factor of N with coherent averaging. 
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Now that the effect of averaging on the noise level has been considered, we move on to 

observing the effects of averaging on the SNR. Based on Equations 3.5 and 3.13, we can observe 

that the variance of the noise in the averaged waveform decreases by a factor of 𝑁𝑁 with coherent 

averaging, whilst the SNR increases by the same factor for EEG where a response is present: 

𝑆𝑆𝑁𝑁𝑆𝑆𝐱𝐱� = 𝑁𝑁 
𝑃𝑃𝐬𝐬
𝜎𝜎𝐯𝐯2

(3.14) 

Some authors describe the SNR in terms of the amplitude of the signal in relation to the 

amplitude of the noise (Hall, 2007; Lyons, 2010). For clarity, this version of calculating the SNR will 

be referred to as the Signal-amplitude-to-noise ratio (SANR). As the maximum amplitude of the 

noise is a much less stable estimate of the noise level compared to the standard deviation and 

both are linearly related, the SANR may be calculated as (Lyons, 2010): 

𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆𝐱𝐱� =
𝑆𝑆𝐬𝐬
𝜎𝜎𝐯𝐯�

(3.15) 

where 𝑆𝑆𝑆𝑆 represents the amplitude of the coherently averaged ABR (from the peak of wave V to 

the trough of SN10) and 𝜎𝜎𝐯𝐯� represents the standard deviation of the noise, within the coherent 

average. Whereas the variance of the noise decreases by a factor of N with coherent averaging 

(Equation 3.13), the denominator of the SANR is the standard deviation of the noise (the square 

root of the variance). The SANR therefore improves by a factor of √𝑁𝑁 for EEG where a response is 

present:  

𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆𝐱𝐱� = √𝑁𝑁  
𝑆𝑆𝐬𝐬
𝜎𝜎𝐯𝐯

(3.16) 

where 𝜎𝜎𝐯𝐯 is the standard deviation of the noise within a single recording epoch/the continuous 

EEG. The above theory regarding how coherent averaging improves the SNR and SANR is 

demonstrated experimentally, through simulation, in Figure 3-2.  
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Figure 3-2 SNR (Equation 3.5) improves with the number of recording epochs in the coherent 

average. Both the left and right graphs are based on the same simulated ABR data; a 

fixed ABR template has been added to 40,000 epochs of noise drawn randomly from 

a Gaussian distribution centred at zero, repeated 100 times. The LEFT graph shows 

how SNR as a ratio of signal power to noise power increases by a factor of 𝑁𝑁 epochs 

with coherent averaging. Note the approximately linear relationship between the 

SNR of the coherent average and the number of recording epochs, as predicted by 

Equation 3.14. The RIGHT graph demonstrates how the signal-to-noise amplitude 

ratio increases by a factor of √𝑁𝑁 epochs with coherent averaging, as predicted from 

Equation 3.16—note the square root scale on the x-axis. 

3.2 ABR Detection Methods 

3.2.1 Signal Detection 

The goal of ABR detection methods is to successfully differentiate between EEG recordings 

containing a signal (the ABR) and EEG recordings containing just noise (no response). As a result of 

the high noise levels present in EEG recordings and the low amplitude of the ABR evoked 

potential signal, differentiating recordings containing a response from recordings containing 

solely noise is extremely challenging. As there are typically considered to be two possible 

detection outcomes (‘response present’ or ‘response absent’), this task is considered to be a 

binary classification problem (Figure 3-3). With clinical applications in mind, it is helpful to be 

aware of uncertainty and so some detection procedures include the possibility of a third 

‘inconclusive’ class (British Society of Audiology, 2019c; McKearney and MacKinnon, 2019). 
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Figure 3-3 Signal detection—binary classification. The LEFT graph shows the ideal scenario 

whereby the detection method is able to differentiate fully between the EEG 

containing an evoked potential signal and EEG containing no signal when using an 

appropriately chosen decision criterion (𝛽𝛽). In this example, there are no false alarms 

or misses, as the detection criterion perfectly separates the signal and the noise. The 

RIGHT graph shows the more commonplace scenario whereby the detection variable 

is not entirely able to differentiate between the case where the recording contains an 

evoked response or only the noise. A detection criterion will have to be chosen to 

optimise the detection performance for the specific application. Cases where a ABR 

signal is present, but the detection variable is below the detection criterion (𝛽𝛽) 

represent misses as the response is not detected (Anderson, 2015). Cases where 

there is no response present, but the detection variable is above the detect ion 

criterion (𝛽𝛽) represent false alarms (Anderson, 2015). This figure was redrawn, with 

changes made (not all graphs were included, and the data used in the graphs was 

based on simulated data produced by the present author), from a figure by 

Anderson, N. D. (2015) ‘Teaching signal detection theory with pseudoscience’, 

Frontiers in Psychology. Frontiers Research Foundation, 6(JUN), p. 762. Available at: 

https://doi.org/10.3389/fpsyg.2015.00762, under the terms of the CC BY 4.0 licence 

under which the work was published. 

3.2.2 Visual Inspection 

ABR detection in clinical practice is largely based on visual inspection (Vidler and Parker, 2004; 

British Society of Audiology, 2019c). Clinicians will typically examine pairs or single coherently 

averaged waveforms across a range of stimulus levels (Figure 3-4). Information from these 

waveforms such as the reproducibility, latency and amplitude of any response, and morphology 

will be used to estimate the individual’s ABR threshold (British Society of Audiology, 2019c). 

https://doi.org/10.3389/fpsyg.2015.00762
https://creativecommons.org/licenses/by/4.0/
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Figure 3-4 Example of ABR data used for threshold detection. Repeat recordings have been 

performed for stimulus levels from 0 to 50 dB SL in steps of 10 dB. Using the using 

the British Society of Audiology (2019c) guidelines to aid interpretation, clear 

responses appear to be present for stimulus levels down to and including 10 dB SL. At 

10 dB SL the response size is small (~220 nV), and background noise is present. 

However, the response amplitude is greater than three times the background noise 
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amplitude, as estimated by the average absolute difference between the two 

waveforms (57 nV). At 0 dB SL, the waveforms are not appropriately flat, nor is the 

background noise level below 25 nV. The waveforms at 0 dB SL are therefore 

‘inconclusive’. The threshold in this case is considered to be <= 10 dB SL. 

Visual interpretation requires skill and training and interpretation is known to vary significantly, 

even amongst experienced clinicians (Cohen et al., 1971; Vidler and Parker, 2004). Cohen et al. 

(1971) remark that ‘while the human visual system is an extremely sensitive one for pattern 

recognition, it is also highly subjective and, accordingly, visual scoring of the [auditory evoked 

response] leads to inconsistent results’. Vidler and Parker (2004) designed a study whereby 16 

experienced clinical audiologists (with an average of 8-years’ experience in ABR interpretation) 

were asked to take part in a simulation of ABR recording and interpret the results. Pre-recorded 

ABR data were made available in a simulation which the clinicians controlled, with clinicians being 

able to choose the stimulus levels used and the number of recording epochs obtained. The 

clinicians were tasked with running the ABR recording simulation in order to make a decision 

regarding the participant’s ABR threshold across 12 ABR datasets. Interpretation varied 

significantly; for nine of the 12 ABR datasets the difference between the lowest and highest 

estimated ABR threshold was ≥40 dB nHL. This level of variability could significantly affect the 

diagnosis of an individual’s hearing status and in turn their management, including any amount of 

amplification prescribed. There are some mitigating factors that may account in part for the 

variability in performance observed: the simulation being constrictive compared to real-life ABR 

recording, and the simulation software being unfamiliar to the clinicians (Vidler and Parker, 2004). 

These factors are unlikely to account wholly for the variability observed in expert threshold 

estimation and so the results bring concern regarding the ability of human experts to reliably 

interpret the ABR through visual inspection. 

3.2.3 Statistical Detection Methods 

Some clinical AEP software provides clinicians with statistical response confidence measures. 

These confidence measures provide a quantitative estimate of the magnitude of the response 

and/or a significance level (p-value) for a given hypothesis test, to help clinicians determine if a 

response is present. These include the Fsp (Elberling and Don, 1984) and Fmp (Martin et al., 1994) 

which both compare the variance of the coherent average (the estimated signal) to the variance 

of the estimated noise level (British Society of Audiology, 2019c). The British Society of Audiology 

guidelines (2019c) advise that these confidence measures may be used to determine whether a 

recording satisfies the criterion of having a SNR of ≥ 3:1 in order to be deemed a ‘clear response’. 

However, the other ‘clear response’ criteria relating to the ABR morphology and waveform 



Chapter 3 

33 

replicability rely upon visual inspection. Additionally, the Fsp/Fmp may not be used to determine 

if a response is absent. Interpretation therefore remains reliant upon visual inspection. Some AEP 

software also include a measure of the residual noise level within the coherent average. The 

British Society of Audiology guidelines (2019c) recommend that residual noise measures may 

guide clinicians’ decisions as to when to stop a recording. However, in order for EEG to be 

considered ‘response absent’, the EEG must still fulfil all of the ‘response absent’ criteria which 

rely wholly upon visual inspection (British Society of Audiology, 2019c). In conclusion, whilst there 

are tools available to help clinicians in their interpretation of EEG recordings, current national 

guidelines are clear that interpretation should be based on visual interpretation by trained 

clinicians. Improvements in the performance of automated ABR detection methods may have the 

potential to shift emphasis away from visual inspection if they are deemed more reliable. The 

next sections of this chapter will provide an overview of the more prominent statistical ABR 

detection methods in the literature. These have been previously described and compared by 

Chesnaye et al. (2018;2019) for readers who seek additional detail. The work by Chesnaye et al. 

(2018;2019) served as inspiration for inclusion of the following statistical detection methods in 

this review and in the study presented in Chapter 4. 

3.2.3.1 The Fsp and the Fmp 

The Fsp and Fmp are very closely related and so will be considered together in this section. 

Originally described by Elberling and Don in 1984, the Fsp provides a measure of the likelihood 

that the null hypothesis (‘response absent’) can be rejected. The Fsp is a calculation of the ratio of 

the estimated variance of the estimated evoked potential signal (the coherent average) over the 

variance of the estimated background noise levels within the coherent average. The equation for 

calculating the Fsp is provided by Elberling and Don (1984) as follows: 

𝐹𝐹𝑠𝑠𝐹𝐹 =
𝑉𝑉𝑉𝑉𝑉𝑉(𝐱𝐱�)
𝑉𝑉𝑉𝑉𝑉𝑉(𝐬𝐬𝐬𝐬���)

(3.17) 

with 𝐱𝐱� being the coherent average and 𝐬𝐬𝐬𝐬��� being calculated as: 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐬𝐬𝐬𝐬���) =  
𝑉𝑉𝑉𝑉𝑉𝑉�𝐗𝐗∙,𝒋𝒋�

𝑁𝑁
(3.18) 

where 𝐗𝐗∙,𝒋𝒋 is a column vector of sample points down a single chosen column (𝑗𝑗) of the ensemble 

matrix 𝐗𝐗. Equations 3.17 and 3.18 may therefore be combined to be written as: 

𝐹𝐹𝑠𝑠𝐹𝐹 =
𝑉𝑉𝑉𝑉𝑉𝑉(𝐱𝐱�)

1
𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉�𝐗𝐗∙,𝒋𝒋�

(3.19) 
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The Fsp is a variance-ratio test (F-test). The denominator is 1
𝑁𝑁

 the estimated variance of the 

continuous EEG, as the variance of the noise within the coherent average is expected to reduce by 

a factor of 𝑁𝑁 with coherent averaging, as discussed in section 3.1.1.1, under the assumption of 

Gaussianity. The numerator of the Fsp equation provides an estimate of the variance of the ABR 

signal intertwined with the variance of the averaged background noise (Elberling and Don, 1984): 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐱𝐱�) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝐬𝐬) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝐯𝐯�) + 2 ∙ 𝐶𝐶𝑓𝑓𝑣𝑣(𝐬𝐬, 𝐯𝐯�) (3.20) 

If no ABR signal is present, then the Fsp would simply be a ratio of the estimated variance of the 

averaged background noise over the estimated variance of the averaged background noise and be 

expected have a value of ~1. In the case of an evoked potential signal being present, the value of 

the numerator is expected to be greater than that of the denominator, leading to an expected Fsp 

value of >1. As a variance-ratio test, the Fsp is expected to follow an F-distribution with the 

degrees of freedom 𝑣𝑣1 relating to the independence between samples in the coherent average 

(numerator, see below) and 𝑣𝑣2 = 𝑁𝑁 − 1 degrees of freedom (Elberling and Don, 1984), assuming 

independence between the background EEG noise between recording epochs (Chesnaye, 2019). If 

the average EEG background noise were i.i.d. random variables, then 𝑣𝑣1 would be equal to 𝑀𝑀 − 1, 

with 𝑀𝑀 being the number of samples in the coherent average (Elberling and Don, 1984). However, 

EEG noise does not meet this assumption, with narrow bands of dominant frequencies leading to 

reduced independence between samples within recording epochs and therefore a reduced 

number of degrees of freedom (𝑣𝑣1) (Elberling and Don, 1984; Chesnaye et al., 2018). The degrees 

of freedom of the numerator in the EEG noise is unknown and difficult to estimate. Based on 

empirical data, Elberling and Don (1984) recommended a conservative value for the degrees of 

freedom of 𝑣𝑣1 = 5, as most EEG noise will have at least this number of degrees of freedom for 𝑣𝑣1. 

Choosing a conservative value for 𝑣𝑣1, prevents the false positive rate from being too high (i.e. a 

conservative detector of evoked responses) as most EEG noise will have a greater number of 

degrees of freedom than this. The value 𝑣𝑣2 relates to the degrees of freedom for the 

denominator. As the column vector 𝐬𝐬𝐬𝐬 comprises 𝑁𝑁 sample points which are assumed to be 

independent, i.e. independence between recording epochs, 𝑣𝑣2 is said to be equal to the number 

of recording epochs in the ensemble (𝑁𝑁). 

The relationship of the Fsp statistic to the SNR of the averaged recording is provided by Elberling 

and Don (1984): 

𝐹𝐹𝑠𝑠𝐹𝐹 = �𝑆𝑆𝑁𝑁𝑆𝑆 + 1 + 2 ∙ 𝑆𝑆(𝐬𝐬, 𝐯𝐯�) ∙ √𝑆𝑆𝑁𝑁𝑆𝑆� ∙
𝑉𝑉𝑉𝑉𝑉𝑉(𝐯𝐯�)
𝑉𝑉𝑉𝑉𝑉𝑉(𝐬𝐬𝐬𝐬���)

(3.21) 

The Fsp is influenced by previous work. Schimmel, Rapin and Cohen (1974) proposed a variety of 

methods for objectively evaluating evoked potential data, including a power ratio of the mean 
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post-stimulus interval to the mean pre-stimulus interval which ‘resembles the variance statistic F’. 

Wong and Bickford (1980) adapted this measure to be the ratio of the variance of the coherent 

average to the variance of the background noise, estimated using the ± reference technique 

described by Schimmel (1967). The ± reference is a form of average calculated by alternate 

addition and subtraction of alternate recording epochs, cancelling out the response if present 

(Schimmel, 1967).  

The Fmp, proposed by Martin et al., 1994, involves an alteration to the denominator of Fsp 

equation (Equation 3.17). Rather than estimating the level of the background noise by calculating 

the variance down a single column across recording epochs, the variance is calculated down 

multiple columns of points before being averaged together. Whilst first described verbally by 

Martin et al. (1994), the equation for calculating the Fmp is provided by Cebulla, Stürzebecher and 

Wernecke (2000): 

𝐹𝐹𝐹𝐹𝐹𝐹 =
𝑉𝑉𝑉𝑉𝑉𝑉(𝐱𝐱�)

1
𝑁𝑁 �

1
𝑄𝑄∑ 𝑉𝑉𝑉𝑉𝑉𝑉�𝐗𝐗∙,𝒊𝒊�

𝑄𝑄
𝑖𝑖=1 �

(3.22) 

Where 𝑄𝑄 is the number of chosen single point columns that are used to estimate the noise level 

and 𝐗𝐗∙,𝒊𝒊 is the 𝑖𝑖𝑡𝑡ℎ chosen column of the ensemble matrix 𝐗𝐗. The number of single point columns 

used for analysis (𝑄𝑄) may be multiple or all columns available, i.e. 1 < 𝑄𝑄 ≤ 𝑀𝑀. If the number of 

single point columns used (𝑄𝑄), is equal to 1, the F statistic calculated would be equal to the Fsp as 

provided by Equation 3.17, assuming the same single point column were used. 

3.2.3.2 Hotelling’s T2 Test 

Another statistical detection method which has been effectively applied to AEP detection is the 

one-sample Hotelling’s T2 test (HT2) (Picton et al., 1987; Valdes-Sosa et al., 2009). The HT2 test 

was originally described by Hotelling in 1931, and is a multivariate extension of the one-sample 

Student’s t-test (Student, 1908). The one-sample Student’s t-test explores the hypothesis that a 

population mean is significantly different to a known or theoretical mean, whereas the one-

sample HT2 test explores the hypothesis that a multivariate sample mean (containing two or 

more variables) is significantly different to an expected (known or theoretical) multivariate mean 

(King and Eckersley, 2019). In the case of ABR detection in the time domain we explore the 

hypothesis that the means within the coherent average are significantly different from a 

hypothesised mean value of zero (Elberling and Don, 1984). The Hotelling’s T2 test may also be 

applied to frequency domain ABR data (Chesnaye et al., 2018). The Hotelling’s T2 is calculated as 

follows (Hotelling, 1931; King and Eckersley, 2019): 

𝑇𝑇2 = 𝑁𝑁 (𝐱𝐱� −  𝛍𝛍)𝑇𝑇  𝐂𝐂−1 (𝐱𝐱� −  𝛍𝛍) (3.23) 
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where 𝐱𝐱� is the vector of sample means, µ is the vector of expected mean values (under the null 

hypothesis, i.e. zero in the case of evoked potentials), 𝐂𝐂 is the sample covariance matrix, and 𝑁𝑁 is 

the sample size of the population (equal to the number of recording epochs). 

The test statistic for the Hotelling’s T2 test may be calculated using the 𝑇𝑇2 value produced by 

Equation 3.23, using the following equation (King and Eckersley, 2019): 

𝐹𝐹 =  
𝑁𝑁 − 𝐹𝐹

𝐹𝐹(𝑁𝑁 − 1) 𝑇𝑇2 (3.24) 

where 𝐹𝐹 is the number of different variables, which will be elaborated upon in the next section of 

this chapter. This F statistic is known to follow an F-distribution with 𝑣𝑣1 = 𝐹𝐹 and 𝑣𝑣2 = (𝑁𝑁 − 𝐹𝐹) 

degrees of freedom (King and Eckersley, 2019). The critical value for rejecting the null hypothesis 

may therefore be obtained from this F-distribution. 

3.2.3.2.1 The Number of Voltage Means  

An important parameter value to be chosen when applying the HT2 test to ABR data in the time 

domain is the number of different variables, i.e. the value of 𝐹𝐹 from Equation 3.24 (Golding et al., 

2009; Van Dun, Dillon and Seeto, 2015; Chesnaye et al., 2018; Chesnaye, 2019). The ABR data 

consist of an ensemble matrix of 𝑁𝑁 rows of recording epochs by 𝑀𝑀 columns of sample points. The 

HT2 test may be applied to all of the 𝑀𝑀 columns, i.e. such that the number of variables 𝐹𝐹 = 𝑀𝑀. 

However, it is known that including too many variables reduces the sensitivity of the test as the 

likelihood of chance affecting the outcome increases (Golding et al., 2009). In the time domain, 

the 𝑀𝑀 sample points in each recording epoch may be compressed into a smaller number of data-

bins by averaging groups of adjacent sample points, so that 1 < 𝐹𝐹 < 𝑀𝑀 (Golding et al., 2009). 

These will be referred to as voltage means (Chesnaye et al., 2018). The number of voltage means 

should neither be so high that each additional bin adds little/no additional information, nor be so 

low that information is lost as a result of over-compression (Golding et al., 2009; Van Dun, Dillon 

and Seeto, 2015; Chesnaye et al., 2018). In relation to the ABR, using too few voltage means 

would lead to peaks and troughs of the ABR morphology falling within the same data-bin, 

cancelling each other out and resulting in the corresponding voltage means being close to zero 

(Van Dun, Dillon and Seeto, 2015; Chesnaye, 2019). A previous study by Chesnaye et al., 2018b, 

found the optimal number of voltage means to be 25 for the ABR, with similar levels of 

performance using any number of voltage means between 20 and 40. The optimal number of 

voltage means will be data dependant relying on factors such as the length of the analysis window 

and the sampling rate. 
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3.2.3.3 The q-sample Uniform Scores Test 

The q-sample uniform scores test was described by Mardia in 1972 and was first applied to AEP 

detection by Stürzebecher, Cebulla and Wernecke in 1999. The q-sample uniform scores test 

evaluates the uniformity of 𝑞𝑞 samples of phase distributions (Stürzebecher, Cebulla and 

Wernecke, 1999) (Figure 3-5). First a fast Fourier transform (FFT) is applied to each of the 𝑁𝑁 

recording epochs in the ensemble. The phase angle of each of 𝑞𝑞 Fourier components in each 

recording epoch are then calculated, concatenated into a single sequence (of length 𝑁𝑁 × 𝑞𝑞), and 

then ranked. The equation for calculating the test statistic (𝑊𝑊) is provided by Stürzebecher, 

Cebulla and Wernecke (1999): 

𝑊𝑊 =  
2
𝑁𝑁
∙��𝐶𝐶𝑘𝑘2 + 𝑆𝑆𝑘𝑘2�
𝑘𝑘=1

(3.25) 
𝑞𝑞

with: 

𝐶𝐶𝑘𝑘 = � cos𝛽𝛽𝑖𝑖𝑘𝑘

𝑁𝑁

𝑖𝑖=1

;       𝑆𝑆𝑘𝑘 = � sin𝛽𝛽𝑖𝑖𝑘𝑘

𝑁𝑁

𝑖𝑖=1

(3.26) 

and with 𝛽𝛽𝑖𝑖𝑘𝑘 being the uniform scores of the phase ranks: 

𝛽𝛽𝑖𝑖𝑘𝑘 =
2 ∙ 𝜋𝜋 ∙ 𝑉𝑉𝑖𝑖𝑘𝑘
𝑁𝑁 ∙ 𝑞𝑞

(3.27) 

where 𝑉𝑉𝑖𝑖𝑘𝑘 is the phase rank of the 𝑘𝑘𝑡𝑡ℎ sample within the 𝑖𝑖𝑡𝑡ℎ recording epoch. The test statistic 𝑊𝑊 

is expected to follow a 𝜒𝜒2 distribution with 2(𝑞𝑞 − 1) degrees of freedom (Stürzebecher, Cebulla 

and Wernecke, 1999) under the null hypothesis of a uniform phase distribution. 
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Figure 3-5 Analysing the uniformity of phase distributions. This figure shows circular histograms 

of phase angles, for simulated white noise (‘Response Absent’), and white noise 

containing a 100 Hz sine wave response signal (‘Response Present’). Two frequency 

bins (50–130 and 130–210 Hz) are evaluated (𝑞𝑞 = 2). The q-sample uniform scores 

test evaluates the uniformity of the phase angle distributions in combination across 

the 𝑞𝑞 samples. The ‘Response Present’ histogram for the 50–130Hz frequency bin 

shows a highly non-uniform distribution, resulting in a low q-sample uniform scores 

test p value. The distributions of the phases in the two frequency bins of the 

‘Response Absent’ data are uniformly distributed, resulting in a large p value. 

3.2.3.4 Modified Versions of the Test 

The original q-samples uniform scores test considers only the phase angles, neglecting the 

amplitude of the frequency components which potentially contains information which may aid 
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AEP detection (Stürzebecher, Cebulla and Wernecke, 1999). Various modified versions of the test 

exist which include information regarding the phase angles, spectrum amplitudes, or both 

(Cebulla, Stürzebecher and Elberling, 2006). The original version uses the phase angle ranks only 

(Mardia, 1972). Version 1 uses the raw phase angle values only (Cebulla, Stürzebecher and 

Elberling, 2006). Version 2 uses the ranks of both the phase angles and the spectral amplitudes  

(Stürzebecher et al., 1996; Stürzebecher, Cebulla and Wernecke, 1999). Version 3 uses the raw 

values of the phase angles and the ranks of the spectral amplitudes (Cebulla, Stürzebecher and 

Elberling, 2006). Version 4 uses the raw values of both the phase angles and the spectral 

amplitudes (Cebulla, Stürzebecher and Elberling, 2006). This version numbering is consistent with 

that used by Cebulla, Stürzebecher and Elberling (2006). 

There are a number of parameters which may be used to optimise these detection methods, 

including (Chesnaye et al., 2018; Chesnaye, 2019): 

- The length and position of the analysis window. 

- Which spectral components to include. 

- Increasing the number of frequency bins using zero padding. 

In a comparison study by Stürzebecher, Cebulla and Wernecke (1999), the version 2 modified q-

sample uniform scores test was found to be more effective than the original q-sample test and 

the q-sample analogue of the Watsons U2 test (Maag, 1966). In a study by Chesnaye et al. (2018; 

2019), version 2 of the q-sample uniform scores test was found to be more effective at detecting 

the ABR than version 4, using simulated data (Figure 3-6). 
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Figure 3-6 Comparison of ABR detection methods. Figure from Chesnaye et al., 2018, 

reproduced with permission from Taylor and Francis (www.tandfonline.com). 

3.3 The Bootstrap Technique 

Many of the aforementioned ABR detection methods produce statistics which are expected to 

follow distributions that can be derived from mathematical theory under certain assumptions: the 

Fsp/Fmp (when assuming the degrees of freedom for the numerator), Hotelling’s T2 test, and the 

original q-sample uniform scores test. This allows the significance of the test statistic to be 

evaluated and a p value to be obtained. For other detection methods (e.g. the modified versions 

of the q-sample uniform scores tests), the mathematical derivations are difficult or intractable. 

However, critical values for rejecting the null hypothesis (‘response absent’) may be estimated by 

simulation (Feiveson, 2002). In other cases, the sampling distribution of the test statistic is 

strongly dependant on the characteristics of the individual recording and therefore cannot be 

estimated a priori. This would also be the case for new detection methods developed based on 

machine learning techniques. An effective method of obtaining a p value for these methods is to 

use the bootstrap (Efron and Gong, 1983; Lv, Simpson and Bell, 2007; Chesnaye et al., 2018; 

Chesnaye, 2019). 

For each ensemble of ABR data being evaluated, the first step is to calculate the test statistic in 

the conventional manner using the coherently arranged ensemble (a matrix of 𝑁𝑁 recording 

epochs by 𝑀𝑀 EEG sample points) (Lv, Simpson and Bell, 2007). This is demonstrated in Figure 3-7, 

where the Fsp value was calculated to be 2.15. 

https://eur03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.tandfonline.com%2F&data=04%7C01%7Crm1n16%40soton.ac.uk%7Cf3faae6df09b42dda91908d9eada2bfb%7C4a5378f929f44d3ebe89669d03ada9d8%7C0%7C0%7C637799045031064464%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=iNIrluTIUgX71KWTE%2BstPQvNwl1DVq4%2FXhavXySZ9%2FU%3D&reserved=0
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Figure 3-7 Calculation of the test statistic from the coherently arranged data. Each recording 

epoch, starting at each stimulus onset (green arrows), was aligned into a coherently 

arranged ensemble. The Fsp value was then calculated based on the coherently 

arranged data. Note, for the sake of clarity, the number of recording epochs (𝑁𝑁) in 

the top figure is limited to 20, however, the coherent average and test statistic were 

calculated from all of the recording epochs in the ensemble (𝑁𝑁 = 450 in this case). 

The next step is to determine the significance of the original test statistic by estimating the null 

distribution (i.e. the sampling distribution under the null hypothesis) of the data using the 

bootstrap. For each bootstrap sample, 𝑁𝑁 random locations within the continuous EEG data are 

selected, irrespective to the stimulus onset timings (Lv, Simpson and Bell, 2007). Continuous 

sections of 𝑀𝑀 discrete-time EEG samples are taken from each of the 𝑁𝑁 randomly selected start 

points and used to construct an ‘incoherent’ ensemble. The ensemble is said to be incoherent as 

the starting points of each section of continuous EEG data are aligned irrespective of the stimulus 
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onset (Lv, Simpson and Bell, 2007). When these incoherently aligned continuous sections of EEG 

data are averaged together, the evoked potential signal is disrupted and cancelled out, thereby 

reflecting the properties of the null data (‘no response’) Figure 3-8. As an extra precaution, 

alternate EEG sections in the bootstrap sample ensemble may be inverted to help ensure that the 

evoked potential is fully disrupted in order to estimate the null distribution without bias 

(Chesnaye, 2019). 

 

Figure 3-8 A bootstrap sample generated by selecting 𝑁𝑁 sections of EEG from random locations 

within the continuous EEG. 

This process is repeated for each of the bootstrap samples, with random start points chosen for 

the continuous EEG sections in each bootstrap sample, generating an estimated null distribution 

(Figure 3-9). The significance level of the original test statistic may then be calculated by 

evaluating its position within the bootstrapped null distribution (Lv, Simpson and Bell, 2007; 

Chesnaye et al., 2018; Chesnaye, 2019). It should be noted that the bootstrap approach tests if 
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the test statistic calculated from the coherently arranged data differs significantly to the test 

statistic calculated from the data when recording epochs are not synchronised with the stimulus 

(Chesnaye, 2019). This approximates, but is not identical to, the null hypothesis of no response 

being present as the responses are still present (albeit asynchronously) when calculating the 

bootstrapped sampling distribution using incoherent averaging (Chesnaye, 2019). For evoked 

potentials such as the ABR, where the response amplitude is small, this is not expected to have a 

meaningful impact, with the bootstrapped null distribution closely approximating the true null 

distribution (Chesnaye, 2019). Further measures such as subtracting the coherent average from 

the recording epochs before performing the bootstrap, or inverting alternate EEG sections 

forming the bootstrapped ensemble may serve to allow the bootstrapped condition to better 

mimic the target null hypothesis (Chesnaye, 2019).  

 

Figure 3-9 The estimated null distribution for a test statistic generated using the bootstrap. The 

significance of the original test statistic (from the coherently arranged ensemble 

data) can be obtained by evaluating its position within the estimated null 

distribution. The test statistic lies above 98% of the values of the estimated null 

distribution, providing a p value of 0.02, indicating that the null hypothesis of no ABR 

being present, can be rejected (for a significance level of 0.05). Figure redrawn with 

permission based on a figure in Chesnaye (2019). 
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3.3.1 Conclusion 

Effective prediction of hearing thresholds using the ABR is in turn reliant upon effective detection 

of the response buried in background noise several orders of magnitude larger. Through collecting 

repeated recording epochs, coherent averaging may be used to improve the SNR of the 

measurement. Several statistical detection methods have been shown to be effective at detecting 

the ABR. These include the Fsp, the Fmp, the q-sample uniform scores test and its modified 

versions, as well as Hotelling’s T2 test. In the next chapter we shall review how machine learning 

has been applied effectively to numerous clinical signal detection challenges and how it may be 

used to detect the ABR.
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Chapter 4 ABR Detection using Machine Learning 

4.1 Introduction 

As discussed in Chapter 2, the ABR is an important clinical tool used to objectively assess 

individuals’ hearing thresholds. It is especially useful for assessing individuals for whom it may not 

be possible to obtain reliable behavioural hearing thresholds, e.g. newborn babies, infants, some 

adults with learning disabilities, and some adults with cognitive impairment (Section 2.1.4.2—

Hearing Threshold Estimation). In clinical practice, ABR interpretation is based on visual inspection 

of the coherently averaged waveform by clinicians. Interpretation based on visual inspection is 

known to be variable, even amongst experienced clinicians (Cohen et al., 1971; Vidler and Parker, 

2004) (Section 3.2.2—Visual Inspection). Whilst several statistical ABR detection methods exist, 

visual inspection is still purported to be the gold standard and remains the basis for ABR detection 

in clinical practice (British Society of Audiology, 2019c).  

The use of machine learning techniques is becoming increasingly prevalent in the biomedical 

literature as the effectiveness of these methods become more widely recognised and adopted. 

Machine learning algorithms have been found to exceed the contemporary gold-standard of 

human expert performance in a number of clinical fields (Sidey-Gibbons and Sidey-Gibbons, 

2019). Examples of this include ECG interpretation (Hannun et al., 2019), retinal disease detection 

from optical coherence tomography (OCT) scans (De Fauw et al., 2018), lung cancer screening 

(Ardila et al., 2019), and EEG interpretation (Medvedev, Agoureeva and Murro, 2019). Objective 

detection methods have the potential to assist clinicians in deciding whether an ABR response is 

present or absent. This has the potential to save clinical staff time by reducing the time required 

to interpret ABR waveforms. This has an associated cost benefit and frees up clinical staff time to 

be used for other endeavours. Automated ABR detection also has the potential to exceed the 

performance of human clinicians which, by extension, would be expected to lead to better patient 

outcomes. The purpose of the work presented in the current chapter is to leverage the effects of 

machine learning and apply these to the task of ABR detection. In this chapter the state of the 

literature regarding the detection of the ABR using machine learning will be discussed. 

Subsequently, a study will be presented whereby the performance of a trained machine learning 

algorithm is compared to that of prominent statistical ABR detection methods. 
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4.1.1 Chapter-Specific Acknowledgements 

Please note that most of the findings of the study presented in this chapter have been published 

in McKearney et al. (2021). The figures from this published article are adapted with permission 

from Wolters Kluwer Health, Inc.: McKearney RM, Bell SL, Chesnaye MA, and Simpson DM. (2022) 

‘Auditory Brainstem Response Detection Using Machine Learning: A Comparison With Statistical 

Detection Methods’, Ear & Hearing, 43(3), pp. 949–960, doi: 10.1097/AUD.0000000000001151. 

The written contents of this article are paraphrased from the final peer-reviewed manuscript for 

use in this thesis chapters as permitted by Kluwer Law International who provide the right to 

reproduce and distribute one’s published work in order to further one’s career, e.g. for use in 

non-commercial dissertations. Regarding author contributions, the published manuscript was 

written by the present author with feedback provided by all other authors (Prof. Steven Bell, Dr 

Michael Chesnaye, and Prof. David Simpson). This thesis chapter is based on the published article 

but has been rewritten and includes additional content. The code for the frequency domain 

bootstrap was provided by Dr Michael Chesnaye. Prof. Steven Bell and Prof. David Simpson (PhD 

supervisors of the present author) provided supervisory guidance regarding all aspects of the 

study. 

4.1.2 Literature Review 

The first study to use machine learning for ABR detection was published in 1991 by Alpsan (1991). 

In this study, 285 EEG recordings were labelled independently by three experts as belonging to 

one of two classes: ‘Response’ or ‘No Response’. EEG waveforms which could not be clearly 

labelled by the experts were discarded and not used to train or evaluate the machine learning 

algorithm. The discarded waveforms were reported as being those recorded at low stimulus levels 

or containing noise, representing those waveforms most challenging to label. Discarding these 

waveforms therefore overly simplifies the task, biasing the performance level reported to being 

overly optimistic (McKearney and MacKinnon, 2019). Inter-observer agreement of the three 

labelling experts was 78.2%, with 21.8% of waveforms therefore being considered difficult to label 

and discarded. A three-layered artificial neural network (multilayer perceptron—MLP) was trained 

and tested on the averaged EEG waveforms which had been smoothed and compressed prior to 

normalisation or scaling (both of these were evaluated separately), achieving a maximum 

accuracy of 75%. A breakdown of the results is shown in Figure 4-1. It can be observed that there 

is a class imbalance with ~4:1 ratio of ‘response present’ to ‘response absent’ data. This may 

inform interpretation of the reported accuracy statistic, which is known to be an unreliable 

outcome measure for imbalanced datasets (Luque et al., 2019). 
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Figure 4-1 Confusion matrix showing the results from Alpsan (1991). The results represent the 

average percentage score obtained over 10 trials using randomly initialised neural 

network weights. The predicted results of the neural network were compared to the 

labels provided by three human experts. Note that the results do not sum to 100 

percent, presumably as a result of rounding. 

A very small amount of the data was used for training—up to 60 training instances from the 

dataset, with the remining data being used to evaluate the model performance. It is reported that 

test set performance saturated above a training set size of 𝑛𝑛 = 45. This is surprising given the 

large amounts of data typically required to effectively train machine learning algorithms. This 

finding may reflect a restricted number of parameters within the model, giving it a low capacity to 

learn and therefore making it liable to underfitting. The hyperparameters (the number of units in 

the one hidden layer in this study) appear to have been optimised using the performance on the 

test set data which could result in an overly optimistic bias of the model’s generalizable 

performance on unseen data. An extension to this work was published by Alpsan et al. (1994), 

with a focus on how hyperparameter optimisation of a multilayer perceptron affected detection 

performance. In summary, the authors found that hyperparameter optimisation was a worthwhile 

endeavour with some hyperparameter combinations noticeably outperforming others. 

Acir, Özdamar and Güzeliş (2006) trained a support vector machine to classify EEG data as either 

ABR ‘response present’ or ‘response absent’. Three separate feature sets were evaluated: 

1. Amplitude values of the normalised coherent average. 

2. Discrete cosine transform (DCT) coefficients. 
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3. Discrete wavelet transform (DWT) coefficients. 

After feature extraction (applied to the normalised coherent average) a feature selection process 

was applied to select the most salient features for each of the three feature sets. This was 

performed by applying a sensitivity analysis (Belue and Bauer, 1995) which calculates the 

sensitivity of the classifier’s output to changes to its input. The sensitivity analysis was performed 

iteratively, with the support vector machine (SVM) classifier being trained on increasingly reduced 

feature subsets from the training set and then evaluated on the test data over each iteration. A 

limitation of this study is therefore that feature selection appears to be informed by data from the 

test set, which likely serves to leak information from the test set into the choice of features, 

resulting in an overly optimistic bias in the reported test set results (McKearney and MacKinnon, 

2019). The highest score reported using the test set data was 97.7% (n=180 test set) using the 

DCT coefficient feature set. Performance of the SVM was compared to labels provided by a 

human expert. 

In 2007, Davey et al. reported the use of a hybrid model making use of both time and frequency 

domain features to classify ABR waveforms. The data used consisted of EEG waveforms recorded 

from 85 subjects of varying hearing status. The data were labelled as belonging into one of two 

classes (‘response present’ or ‘response absent’) by a human expert. A summary of the 

classification process is provided in Figure 4-2. For potential small responses with a mean pre-

stimulus-to-mean post-stimulus power ratio of <5, a hybrid classification system was employed by 

combining the predictions of a time domain and a frequency domain classifier. An artificial neural 

network or a decision tree were used as time-domain and frequency domain classifiers and 

optimised to see which performed best. The two predictions were combined by using a Dempster-

Shafer discounting factor (Shafer, 1976; Liu, 2001). Dempster-Shafer theory provides a method of 

combining evidence (in this case model predictions) from different sources in order to come to a 

more complete estimate regarding the hypothesis (Bezerra et al., 2021). A validation data portion 

within each iteration of k-fold cross-validation was used to inform the value of the discounting 

factor. This study is one of the few studies in the field of ABR to apply k-fold cross-validation when 

evaluating model performance. For the data where the mean pre-stimulus-to-mean post-stimulus 

power ratio was >5 the hybrid classifier achieved an accuracy was 95.6%. For the potential small 

response data where the mean pre-stimulus-to-mean post-stimulus power ratio power ratio was 

<5, the hybrid algorithm classification accuracy was 85.0%. This reporting of the model 

performance highlights how difference performance can be depending on the quality of the data 

(McKearney and MacKinnon, 2019); it is much easier for a classifier to achieve a high accuracy if 

the SNR of the ‘response present’ data is high and if the noise level in the ‘response absent’ data 

is low. 
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Figure 4-2 The outline of the hybrid model used by Davey et al. (2007) to classify EEG 

waveforms. The first stage is to differentiate large responses from potential small 

responses using the mean pre-stimulus-to-mean post-stimulus power ratio power 

ratio. For large responses where the power ratio was >5, one method of either: visual 

inspection, FFT power, or cross-correlation was used to confirm the presence of a 

response, ensuring that it was not artefact. For waveforms with a mean pre-stimulus-

to-mean post-stimulus power ratio power ratio of <5, where a potential small 

response was present, the next step was to combine the predictions of a time-

domain and a frequency-domain classifier using a discounting factor in order to make 

the final prediction. An artificial neural network or a decision tree were used as time-

domain and frequency domain classifiers and optimised to see which performed 

best. Figure redrawn from Davey, R. et al. (2007) ‘Auditory brainstem response 

classification: A hybrid model using time and frequency features’, Artificial 

Intelligence in Medicine. Elsevier, 40(1), pp. 1–14. doi: 

10.1016/J.ARTMED.2006.07.001., with permission from Elsevier. 

Another study using wavelet analysis for feature extraction was reported by Rahbar et al. (2007). 

As the ABR latency is variable, being affected by stimulus level, a dual-tree complex wavelet 

transform was used as this technique is suggested to avoid shift variance. Shift invariance is 

theorised to improve ABR detection (Rahbar et al., 2007). Data were divided into a training set 

and a test set. A three-layered multilayer perceptron (MLP) was used to classify the extracted 

features into one of three classes: ‘response present with a normal wave V’, ‘response present 

with no clear wave V’, or ‘response absent’. The mean accuracy across all three classes was 83.3%. 
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In another study using DWT-extracted features combined with a MLP, Dass, Holi and 

Soundararajan (2016) used a combination of time and frequency domain features. An accuracy of 

90.7% was achieved. Interestingly, the time domain features included the peak latencies of waves 

I, III, and V. It is not explained in the article how these were obtained and whether these were 

manually extracted by humans or automated. Neither is it clear what the wave latency input data 

values would be should the waveform be considered ‘response absent’ and therefore not exhibit 

any wave peaks. Following the theme of DWT features, Zhang et al. (2005) combine DWT feature 

extraction with a Bayesian network classifier, achieving an accuracy of 78.9%. A Bior 5.5 wavelet 

was used. 

McCullagh et al. (2007) compared the performance of four different classification methods at 

detecting the ABR using 10-fold cross-validation: SVM, MLP, Naïve Bayes, and KStar algorithms. A 

clinical expert labelled the 550 EEG waveforms as being either ‘response present’ or ‘response 

absent’. All four algorithms performed well (81.9–83.4% accuracy), with the highest accuracy 

being achieved using the Naïve Bayes algorithm. 

Acir, Erkan and Bahtiyar (2013), used a support vector machine to detect the ABR, but with a 

focus on comparing two particular feature extraction methods: 

1. DWT coefficients extracted from the unweighted coherent average. 

2. DWT coefficients extracted from an estimated signal using a wavelet network-based 

adaptive estimation. 

The highest accuracy achieved was 96.0%, which in required only 64 recording epochs per 

waveform to reach this level of performance. A limitation of this study is that test data appear to 

be used during the feature selection process to calculate the feature saliency values. This would 

leak information from the test set data into the features chosen, meaning that the test set score is 

likely to be overly optimistic in its estimation of how the model would perform on unseen data. 

In a more recent study, McKearney and MacKinnon (2019) used k-fold cross-validation to 

compare the performance of a variety of deep learning algorithms before evaluating the best one 

on a separate test set. The data were labelled by two clinicians as belonging to one of three 

classes: ‘response absent’, ‘inconclusive’ or ‘clear response’. These classes reflect the decision 

criteria used by the British Society of Audiology (2019c), acknowledging that some waveforms 

contain insufficient information to confidently determine whether a response is truly present or 

absent at the stimulus level in question. Information from ‘inconclusive’ waveforms would not be 

used to inform the decision of the level of the ABR threshold. The test set accuracy achieved 

across all three classes was 92.9%. 
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More recently still, Thalmeier et al. (2021) evaluated two approaches for classifying whether 

averaged raw EEG recorded from mice contained an ABR or not. The first approach was to use a 

supervised pair of convolutional neural networks. The first CNN would predict if an ABR response 

was present or absent for each stimulus level. The second CNN would then estimate the hearing 

threshold using the outputs of the first CNN as its input. The second approach evaluated was a 

self-supervised method termed by the authors as ‘sound level regression’. Here a random forest 

regression model would first predict the sound stimulus level used to evoke a given response, for 

each of the recordings made (across stimulus levels). It seems initially counter-intuitive to predict 

the stimulus level, however, the authors clarify that this step is essentially used to produce a 

series of values for use in step 2, with the sound level predictions only being reliably possible if 

the actual stimulus level used is above that of the hearing threshold. A function was then fitted to 

the sound level predictions from step 1 and used to predict the hearing threshold. The supervised 

neural network (maximum 77.7% within ±5 dB SL of the human-defined label) performed better 

than the self-supervised ‘sound level regression’ method (maximum 72.1% within ±5 dB SL). 

However, the authors note that supervised algorithms require human experts to spend lots of 

time labelling the data. The self-supervised method is therefore proposed as an effective 

alternative which can be used readily on any ABR dataset without the need for data labelling 

(Thalmeier et al., 2021). 

4.1.3 Challenges in this Field 

It is extremely challenging to draw any meaningful comparisons between the results of the 

various studies using machine learning to detect the ABR. This is a by-product of the substantial 

heterogeneity present between studies in terms of the data used, data labelling processes, 

methodology employed, and outcome measures reported (McKearney and MacKinnon, 2019).  

Differences between datasets may account substantially for the differences in performance 

observed between detection algorithms. For example, detection will be undeniably easier for 

datasets containing high-SNR data (e.g. if a higher stimulus level is used) than with datasets 

containing low-SNR data. Of the results presented in Section 4.1.2, accuracies range from 74.8–

96.0%. To be truly informative, the accuracy needs to be interpreted in light of the class balance 

and the characteristics of the dataset (e.g. the SNR of ‘response present’ data) and ideally be 

supplemented by clinically relevant outcome measures (such as sensitivity/specificity 

performance). Accuracy remains among the most popularly reported outcome measures in the 

studies presented in the Literature Review. However, this outcome measure becomes less 

meaningful if the data are imbalanced, e.g. if one class is underrepresented. In the case of ABR 

detection, additional outcome measures which reflect the nature of the test’s clinical use are 
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beneficial. For example, having a high specificity is important as it is clinically desirable to have a 

low false positive rate in order to avoid falsely determining that an infant can hear normally when 

they in fact cannot (British Society of Audiology, 2019c). The differences in outcome measure 

used between studies again makes drawing meaningful comparisons between studies challenging. 

Additionally, the methodologies employed by the studies in this field vary significantly, with some 

studies more diligently than others employing methodologies such as cross-validation to obtain 

unbiased estimates of their model’s generalisable performance. 

At present, there is really no benchmark by which to compare performance to see if any newly 

proposed approach is better than any previous one. The use of a standardised published dataset 

may help to solve this problem (as used in Kaggle machine learning competitions—Kaggle, 2021), 

but would introduce its own limitations, such as perhaps limiting research to focus on data 

recorded using one particular set of recording parameters. There is also the potential for chance 

high performance findings to occur due to multiple algorithms being evaluated using the same 

dataset. It could however be argued that this is still the case should different datasets be used. 

One way of providing a performance benchmark, allowing comparison between studies, could be 

to compare machine learning algorithm performance to that of prominent statistical ABR 

detection methods (as presented in Section 3.2—ABR Detection Methods) (McKearney et al., 

2022). Dependant on the outcome measures reported, this would allow a degree of comparability 

between studies using heterogenous datasets. None of the previous studies in this field have 

compared the performance of their proposed algorithm with a statistical detection method. 

Data labelling is an integral part of the supervised machine learning process, affecting both the 

training of the algorithm as well as determining which of the predictions of the algorithm are 

correct. Considering that this field is largely driven by the pursuit of providing an automated 

objective detection algorithm, it is somewhat paradoxical that the performance of these 

algorithms be compared to the yardstick of subjective human interpretation (McKearney et al., 

2022). A supervised machine learning algorithm may only be as effective as the subjective ratings 

of the human experts, with algorithmic predictions being incorrect by virtue of not matching 

those of the human experts—even if the experts are wrong. Using this subjective human-defined 

approach to labelling may allow machine learning algorithms to match the performance of human 

experts, which is helpful in standardising access to expert levels of signal interpretation which 

may not be readily accessible in regions where access to resources and clinical training may be 

limited. But why set the limit at human expert level performance when it is known that machine 

learning algorithms are able to surpass this level of performance in a number of different medical 

detection tasks (Haenssle et al., 2018; Yim et al., 2020). One method of partially overcoming the 

limitation of subjective human-defined labels is to standardise the recording process to label 



Chapter 4 

53 

recordings measured when no auditory stimulus is delivered to the ear as ‘response absent’ (e.g. 

using a clamped earphone tube, allowing the same environmental electromagnetic activity but 

preventing sound from arriving at the eardrum). Recordings obtained using a suprathreshold 

stimulus may be considered ‘response present’ with acknowledgment that near threshold 

labelling may become less accurate. Provided that certainty is present for the ‘no response’ class 

data, which should be achievable with appropriate experimental rigour, this will allow for 

effective training and evaluation of a machine learning algorithm. Alternatively, in order to 

definitively control the labels of both classes of data, simulation may be used whereby ABR 

templates are added to no-stimulus EEG data. The SNR of the data and true noise levels may 

therefore be known, allowing the ground truth (‘response present’/’response absent’) of the data 

to be known. Simulation additionally allows for large amounts of data to be produced, which is 

necessary to effectively train and evaluate data-hungry machine learning algorithms. 

This study addresses some of the limitations in the field, as highlighted above, in order to evaluate 

various machine learning algorithms effectively and compare their performance to that of 

prominent statistical ABR detection methods. 

4.1.4 Aims and Objectives 

Aim 1. Develop a suitable database of ‘response present’ and ‘response absent’ data by which 

to train and evaluate machine learning algorithms. 

 Objective 1a:   Use simulation to boost the amount of training data available. 

 Objective 1b:   Add ABR templates to half of the data in order to control the ground truth 

labels. 

Aim 2. To train a machine learning algorithm to be able to determine whether EEG data 

contains an ABR response or not. 

 Objective 2a: Compare several prominent machine learning approaches using nested 

k-fold cross-validation in order to select the best approach. 

 Objective 2b: Select the best machine learning algorithm for evaluation on the 

separate, previously unseen, test set. 

Aim 3. Compare the performance of the machine learning algorithm with that of prominent 

statistical ABR detection methods. 
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 Objective 3a: Prominent statistical ABR detection methods to evaluate are the Fsp, 

Fmp, Hotelling’s T2 test, and the q-sample uniform scores test. 

 Objective 2b: Evaluate sensitivity and specificity performance on the test set data with 

reference to the known ground truth labels. 

4.2 Methods 

4.2.1 Data 

4.2.1.1 Subject Recorded ABR Data 

The ABR data used in this study have been described in previously published works (Lv, Simpson 

and Bell, 2007; Chesnaye et al., 2018; Chesnaye, 2019), and were made available by Dr Michael 

Chesnaye in the University of Southampton Institutional Repository (doi:10.5258/SOTON/D0168). 

The ABR data were recorded from 12 participants (six female; six male), aged 18–30 years, with 

normal hearing (audiometric thresholds ≤ 20 dB HL, tested at octave intervals between 250 and 

8,000 Hz) (Lv, Simpson and Bell, 2007). The electrode montage comprised of the noninverting 

electrode being placed in the vertex (Cz) position, the inverting electrode being sited on the nape 

of the neck, and the common electrode being placed in the frontal (FZ) position. Electrode 

impedances were monitored to be below 5 kΩ throughout the recordings. A 100-µs click stimulus 

was delivered via ER-2 insert earphones (Etymotic, USA), at a stimulus rate of 33.3 Hz. Recordings 

were made at stimulus levels between 0–50 dB SL (sensation level), in 10-dB increments (Lv, 

Simpson and Bell, 2007). The click sensation level threshold (0 dB SL) was obtained using a 10-dB-

down, 5-dB-up procedure (Lv, Simpson and Bell, 2007). A recording window of 30.03 ms was used 

(following the delivery of each stimulus), with the signal sampled at a rate of 10 kHz. 

Offline processing of the recorded signals consisted of band-pass filtering from 30 to 1,500 Hz, 

using a 3rd-order Butterworth filter, and downsampling the signal from 10 kHz to 5 kHz. The filter 

settings used reflect the recommendations made by the British Society of Audiology (2019c). 

For the current study, artefact rejection was additionally applied offline, with the rejection level 

set at ±15 µV. There were ~3,400 epochs on average in each recording, after artefact rejection 

was applied. 

http://dx.doi.org/10.5258/SOTON/D0168
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Figure 4-3 ABR waveforms. This figure shows example ABR data recorded from one participant 

across a range of stimulus levels (0 to 50 dB SL, in 10-dB increments). The bold line is 

the grand average of the two sub-averages at each stimulus level. Adapted with 

permission from Wolters Kluwer Health, Inc.: McKearney RM, Bell SL, Chesnaye MA, 

and Simpson DM. (2022) ‘Auditory Brainstem Response Detection Using Machine 

Learning: A Comparison With Statistical Detection Methods’, Ear & Hearing, 43(3), 

pp. 949–960, doi: 10.1097/AUD.0000000000001151. 
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4.2.1.2 Subject Recorded No-stimulus EEG Data 

The subject recorded no-stimulus EEG data have been previously described in the literature 

(Madsen, 2010; Chesnaye et al., 2018; Madsen et al., 2018; Chesnaye, 2019; McKearney et al., 

2022). These data were recorded from 17 participants (5 female; 12 male), aged 24–52 years. EEG 

recordings were made under four separate recording conditions; asleep, lying still, blink (where 

subjects were prompted to blink every 1–3 seconds), and movement (where participants were 

instructed to move their heads) (Figure 4-4). Recordings were made using a Compumedics 

SynAmps 2 EEG amplifier, in an electrically shielded and acoustically isolated booth. The electrode 

montage consisted of a noninverting electrode sited in the left mastoid position, an inverting 

electrode sited on high forehead (FZ), and a common electrode placed on the right cheek. The 

sampling rate used was 20 kHz (Madsen, 2010; Madsen et al., 2018). 

The no-stimulus EEG data were pre-processed offline using the same procedure as that applied to 

the ABR data; the data were downsampled from 20 kHz to 5 kHz, band-pass filtered from 30 to 

1,500 Hz using a 3rd-order Butterworth filter, and artefact rejection was applied (±15 µV). 

 

Figure 4-4 Characteristics of the no-stimulus EEG database. The data were recorded under four 

conditions (‘sleep’, ‘still’, ‘blink’ and ‘movement’). The noise level within each group 

of recordings was quantified by the variance of the recordings. Note that variance 

was measured from the raw EEG data before artefact rejection had been applied. 

This figure is reproduced from: Madsen, S. M. K. et al. (2018) ‘Accuracy of averaged 

auditory brainstem response amplitude and latency estimates’, International Journal 
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of Audiology. Taylor and Francis Ltd, 57(5), pp. 345–353. Available at: 

https://doi.org/10.1080/14992027.2017.1381770. This work was published by 

Informa UK Limited, trading as Taylor & Francis Group under a CC BY-NC-ND 4.0 

license. This figure is reproduced, with no changes made, under the terms of this 

license. 

4.2.2 Ethics 

Overarching ethical approval was granted by the University of Southampton Faculty Ethics 

Committee to use the data from the subject recorded ABR and no-stimulus EEG datasets for the 

purpose of secondary data analysis for a range of research activities throughout these PhD studies 

(ERGO 55576). 

4.2.3 Data Partitioning 

Machine learning algorithms typically require large amounts of data to learn how to perform a 

task. The amount of data required will depend on the nature and difficulty of the task as well as 

the characteristics of the data. In order to have sufficient data, data were simulated using the 

subject recorded ABR data and the no-stimulus EEG data. The frequency domain bootstrap (FDB) 

(Paparoditis, 2002; Chesnaye et al., 2021) was used to generate a large number of realistic no-

stimulus EEG ensembles, based on the characteristics of the no-stimulus EEG database. I am 

grateful to Dr Michael Chesnaye who wrote the code for the frequency domain bootstrap which 

was used for the study presented in this chapter. The FDB is a parametric bootstrap technique 

whereby a section of EEG can be used to generate numerous surrogate EEG portions, which each 

reflect the spectral composition and change in amplitude over time of the original EEG sample 

(Figure 4-5) (Paparoditis, 2002; Chesnaye et al., 2021). 

https://doi.org/10.1080/14992027.2017.1381770
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 4-5 The frequency domain bootstrap procedure. The original EEG recording (a) is pre-

processed as desired (b), prior to the envelope being extracted (c) and used to 

rescale the EEG (d). The power spectral density (PSD) of the rescaled EEG is then 

estimated and used to generate random PSD surrogates which are converted into 

magnitudes (f). An inverse FFT is then applied (g) before rescaling the surrogate using 

the previously extracted envelope (h). The original recording (i) may be used to 

generate multiple realistic surrogates (j,k,l,m,n,o) (Chesnaye et al., 2021). Figure 

reused from Chesnaye et al. (2021) with permission from Elsevier. 

For the current study, EEG data from the ‘sleep’ and ‘still’ conditions only were used (representing 

15 participants), as these conditions most accurately reflect those observed in the clinical setting 

when recording the ABR. In total, 15,000 ensembles (each comprising 1,000 recording epochs), 

were generated using the FDB. These data were partitioned into a training set, a threshold set 

(used to set the detection criterion for the machine learning algorithm), and a test set, with no 

participant overlap between the sets (Raschka, 2020). It is important to avoid participant overlap 

in order to avoid overfitting and an overly optimistic assessment of an algorithm’s generalisable 

performance. 

For half of the data in the training set and the test set, an ABR template was added to the no-

stimulus FDB-generated ensembles in order to simulate ‘response present’ data, with the 

template scaled such that the SNR of the simulated ‘response present’ ensemble matched that of 

the estimated SNR of the original subject recorded ABR ensemble used to generate the ABR 

template (McKearney et al., 2022). The ensembles without an ABR template formed the ‘response 

absent’ data. In order to have high confidence that the ABR templates used contained a response, 

two audiologists were asked to independently assess the ABR waveforms, presented in the same 
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format as that displayed in Figure 4-3, and to label waveforms where a ‘clear response’ was 

deemed to be present, using the British Society of Audiology (BSA) criteria (2019c). Those 

coherent averages where both clinicians independently deemed there to be a ‘clear response’ 

were used as ABR templates to simulate the ‘response present’ data. Inter-observer agreement 

between the two audiologists was 93.1% (Cohen’s kappa = 0.83). In order to avoid participant 

overlap between the training and the test set, the ABR participants were split between the 

training and the test sets. The threshold set (used to set the detection criterion for the machine 

learning algorithm) contained only ‘response absent’ data as ‘response present’ data are not 

required to set the detection criterion required to meet a target specificity level. 

The ensembles in each set were split into 10 smaller constituent ensembles of varying size, 

including 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1,000 recording epochs. The training, 

threshold, and test set were made up of 90,000, 15,000, and 30,000 ensembles respectively 

(Figure 4-6). 

 

Figure 4-6 Data partitioning. The data were split into a training, threshold and a test set. There 

was no participant overlap between sets. In each set, there was an even split of 

ensembles of 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1,000 recording 

epochs. Adapted with permission from Wolters Kluwer Health, Inc.: McKearney RM, 

Bell SL, Chesnaye MA, and Simpson DM. (2022) ‘Auditory Brainstem Response 

Detection Using Machine Learning: A Comparison With Statistical Detection 

Methods’, Ear & Hearing, 43(3), pp. 949–960, doi: 10.1097/AUD.0000000000001151. 

The training set was used to train and compare the performance of the proposed machine 

learning algorithms. The best machine learning algorithm, as determined from the training set 

data, was selected for evaluation on the previously unseen test set data. Prior to test set 

evaluation, the critical value for rejecting the null hypothesis (‘response absent’) needed to be 
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determined using the threshold set data. Having a critical value is necessary in order to be able to 

evaluate specificity performance using the test set data. These three steps will be described in 

more detail in the upcoming sections. 

4.2.4 Nested K-Fold Cross-Validation on the Training Set Data 

The training set data were used for multiple purposes, including selecting the best 

hyperparameters, training the different models, and selecting the best machine learning 

algorithm for further analysis on the test set. The ‘no free lunch theorem’ (Wolpert and 

Macready, 1997 in McKearney et al., 2021) states that there is no single best machine learning 

approach to solve all problems; it is therefore necessary to consider several potential strategies. 

Several machine learning approaches were therefore considered. An effective way of combining 

these tasks in an unbiased manner is to use nested k-fold cross-validation (Varma and Simon, 

2006; Bergstra and Bengio, 2012; Raschka, 2020). Here an inner loop of cross-validation is 

performed, nested within an outer loop of cross-validation (Figure 4-7). For each outer loop 

iteration, the inner loop of cross-validation is used to select the best hyperparameters, here 

defined as the highest mean area under the receiver operating characteristic curve (ROC AUC) 

score. The ROC curve provides a measure of a binary classifier’s ability to discriminate between 

two different classes, as the threshold of the classifier is varied. The ROC AUC is the area under 

this curve, providing a single outcome measure, which is widely used to evaluate detection 

method performance (Fawcett, 2006). After the inner loop cross-validation, the model is then 

trained on the entire outer loop training fold data using the optimised hyperparameter 

combination. The trained model is then evaluated on the outer validation fold. This process is 

repeated in turn for each of the nine outer loop iterations, allowing a mean ROC AUC score across 

the outer validation folds to be calculated. The machine learning algorithm which achieved the 

highest mean ROC AUC score across the nine outer validation folds was selected as the best and 

used for subsequent analysis on the test set data. Each validation fold (for both the inner and 

outer loops) was contributed to by data from only one of the 15 no-stimulus EEG dataset 

participants, and only one of the 15 ABR dataset participants. There was therefore no participant 

overlap between training and validation folds during cross-validation (McKearney et al., 2022). 

Leave-one-group-out cross-validation was used, with one group of data (10,000 ensembles) being 

used as the validation fold, both for the inner and outer loops. This meant that the outer loop 

contained nine groups, whilst the inner loop contained eight groups. 
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Figure 4-7 An illustration of nested k-fold cross-validation. For each of the four outer loop 

iterations, an inner loop of cross-validation is performed on the outer loop training 

fold in order to select the best hyperparameter combination. Following this, the 

model is trained on the entire outer loop training fold using the best 

hyperparameters, before being evaluated on the outer validation fold. The mean 

score across the four outer validation folds is used to select the best algorithm. Note 

that for simplicity, this figure represents a reduced version of the cross-validation 

procedure used; the study used nine outer loop iterations and eight inner loop 

iterations. Figure adapted from Raschka (2020) and Rashcka and Mirjalili (2017) with 

permission from Dr Sebastian Raschka and Packt (www.packtpub.com). 

After completing nested k-fold cross-validation on the training set, the best machine learning 

algorithm was selected based on having the highest mean ROC AUC across the nine outer 

validation folds. The inner loop procedure of cross-validation was then applied to the entire 

training set data to select the best hyperparameter combination for the selected machine 

learning algorithm. Finally, the selected algorithm was trained using this hyperparameter 

combination on the entire training set. 

4.2.5 Setting the Critical Value using the Threshold Set 

Once the best machine learning algorithm had been selected and trained on the entire training 

set, using ROC AUC as the criterion for optimisation, it was necessary to select the critical value 

http://www.packtpub.com/
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for the detection method to determine if the null hypothesis of no response being present should 

be rejected. Unlike certain statistical detection methods such as the Fsp (Elberling and Don, 1984), 

the output of the machine learning algorithm does not follow a known theoretical distribution 

(McKearney et al., 2022). One way of deriving the critical value is to obtain it empirically from a 

separate set of ‘response absent’ data—the threshold set. The desired false positive rate (FPR) 

chosen for this study was 1%. This relatively low FPR was selected, because in clinical practice 

audiologists require a high degree of certainty when declaring a response to be present in order 

to avoid mistakenly diagnosing a patient’s hearing as being better than it truly is. This could 

potentially lead to patients not getting the hearing habilitation/rehabilitation that they require 

and lead to detrimental effects on, for example, a child’s speech development (Kennedy et al., 

2006; Fulcher et al., 2012). 

In order to obtain the critical value that corresponds to a FPR of 1%, the trained machine learning 

model made a prediction for all of the threshold set data. This provided an estimated null 

distribution. The critical value was then taken as the value at which 99% of predictions for the 

‘response absent’ data fell below. This process was performed separately for each of the separate 

ensemble sizes evaluated (100 up to 1,000 epochs). 

As this method was not found to be effective at controlling the false positive rate across ensemble 

sizes, a second method for obtaining the critical value was also used which did not use the 

threshold set data—the bootstrap method (Section 3.3). The bootstrap method allows the critical 

value for the test statistic to be calculated for each individual ensemble being analysed. This 

obviates the need for a separate set of data from which to obtain the critical value (i.e. the 

threshold set) (Chesnaye et al., 2018), and also allows the critical value to reflect the individual 

characteristics of the data being analysed. 

4.2.6 Final Evaluation on the Test Set 

Whilst the best machine learning algorithm was selected based on the highest ROC AUC score on 

the test set data, the ROC AUC metric does not provide a separate evaluation of the sensitivity 

and specificity performance of a classifier. It is important to know if a detection method is able to 

achieve the desired FPR to ensure that patients are not mistakenly diagnosed as being able to 

hear at a certain stimulus level when in fact they can’t. It is also important to analyse the 

detection rate across ensemble sizes. A separate analysis of specificity and sensitivity was 

therefore conducted using the test set. 
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4.2.7 Statistical Detection Methods Evaluated 

One of the aims of this study was to compare the performance of the machine learning algorithm 

with that of prominent statistical ABR detection methods. The statistical detection methods to 

which compare performance to include the Fsp (Section 3.2.3.1), the Fmp (Section 3.2.3.1), 

Hotelling’s T2 test (Section 3.2.3.2), the q-sample uniform scores test (Section 3.2.3.3), and the 

modified q-sample uniform scores test (modified version 2) (Section 3.2.3.4). Version 2 of the 

modified q-sample uniform scores test, which utilises the ranked phase angles in addition to the 

ranked spectral amplitudes, was chosen as it was found by Chesnaye et al. (2018) to have a higher 

detection rate compared to version 4 when using simulated data (Figure 3-6). All of these 

statistical detection methods, aside from the modified q-sample uniform scores test, produce test 

statistics which follow a known theoretical null distribution. The critical value of these detection 

methods may therefore be taken as the test statistic level which corresponds to a p value of <0.01 

(the desired FPR). For the Fsp and the Fmp, the p values were obtained based on an F-distribution 

with 𝑣𝑣1 = 5, and 𝑣𝑣2 = 𝑁𝑁 − 1 degrees of freedom (df) (Elberling and Don, 1984). For the modified 

q-sample uniform scores test, the critical value for each ensemble size was obtained empirically 

using the threshold set data (Section 4.2.5). 

Some of these statistical detection methods have parameters which may be optimised to improve 

detection performance. These include the number of voltage means for the Hotelling’s T2 test, the 

number and range of spectral bands to be included for both the modified and unmodified version 

of the q-sample uniform scores test1, as well as whether or not to use zero-padding to improve 

the FFT resolution, again for both the modified and unmodified versions of the q-sample uniform 

scores test. These parameters were optimised based on the mean ROC AUC score obtained using 

k-fold cross-validation performed on the training set data. 

4.2.8 Machine Learning Approaches Evaluated 

4.2.8.1 Multilayer Perceptron 

A perceptron is a single layer of artificial neurones, whereby each separate neurone is fully 

connected to every input (Géron, 2017). A multilayer perceptron (MLP) is therefore several layers 

of perceptrons with each layer being fully connected with each previous layer. This network 

structure of multiple layers of inter-connected neurones is said to mimic the structure of the brain 

 
1 The author is grateful to Dr Michael Chesnaye for providing MATLAB code for the q-sample uniform scores 
test and its modifications, which was helpful when writing the functions for these equations in Python. The 
author is also thankful to Dr Michael Chesnaye for cross-checking the output of a Python implementation of 
Hotelling’s T2 test with that of a MATLAB implementation. 
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(McCulloch and Pitts, 1943). For each artificial neurone in the network, all of the inputs will be 

weighted and summed, before being passed to an activation function which determines the 

output of the artificial neurone (Géron, 2017). During training, artificial neurones in the MLP will 

form ‘connections’ (the weights) with other artificial neurones in the network. ‘Connections’ 

which improve performance (decrease the error) will be reinforced (increasing weight values), 

whereas ‘connections’ which degrade performance (increase the error) will be diminished (Géron, 

2017). 

Feature engineering (extracting meaningful features from the raw data) was used to extract 

features from each ensemble to be used as input variables to the MLP. First the coherent average 

of the ensemble was calculated. Secondly, the DWT was applied to the coherent average with 

three levels of decomposition, performed using a biorthogonal (‘bior5.5’) wavelet (Bradley and 

Wilson, 2004; Zhang et al., 2004). Dimensionality reduction was achieved by extracting statistical 

features from each of the DWT coefficient subbands. These statistical features were the mean, 

mean of the absolute values, median, standard deviation, skew, kurtosis, RMS, variance, 

interquartile range, number of zero crossings, and the ratio of the mean absolute values between 

adjacent subbands. This feature extraction approach was based on that used by Subasi (2007) 

when detecting seizure activity from EEG data and Kandaswamy et al., (2004). 

The architecture of the multilayer perceptron is shown in Table 4-1. 

Table 4-1 The architecture of the multilayer perceptron. Optimised hyperparameters are 

shown in italics and underlined. Hyperparameters which were not fine-tuned are 

shown in regular typeface. 

Layer Hyperparameter settings 

Dense 43 units, input features=43, selu activation function  

Dense Number of units, selu activation function  

Dropout Dropout rate 

Dense Number of units, selu activation function  

Dropout Dropout rate 

Dense 8 units, selu activation function 

Dropout Dropout rate 

Dense 1 unit, sigmoid activation function 
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Hyperparameter optimisation was performed using a random search (using 90 hyperparameter 

combinations) of the hyperparameter space shown in Table 4-2. 

Table 4-2 The hyperparameter space searched for the multilayer perceptron. Note that some 

hyperparameters were not searched—for these hyperparameters only one value is 

shown.    

Hyperparameter Values searched 

Dropout rate 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 

0.4, 0.45 

Number of training epochs 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 

Learning rate 0.0004, 0.0006, 0.0008, 0.001, 0.0012, 

0.0014 

Number of units 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 

Batch size 256 

Optimiser Adam 

Loss function Binary cross-entropy 

 

4.2.8.2 Convolutional-LSTM 

A convolutional long short-term memory network (CNN-LSTM) is constructed by combining a 

convolutional neural network (CNN) with one or more recurrent long short-term memory (LSTM) 

layers. Convolutional neural networks are a type of neural network which are commonly used for 

computer vision tasks (Chollet, 2018). CNNs are characterised by convolutional layers (LeCun et 

al., 1998), often used in conjunction with pooling layers. Convolutional layers apply a convolution 

operation to the input, producing a ‘feature map’ (Chollet, 2018). The convolutional layer may be 

thought of as a filter whose coefficients (weights) are learnt from the training data. Pooling layers 

are used to downsample the feature maps produced by convolutional layers. Convolutional layers 

and pooling layers can work in combination to provide a degree of local translation invariance; 

this means that a response occurring at a different latency to that seen previously (during 

training) should still be interpreted as a response. Stacking convolutional layers allows machine 

learning algorithms to learn the temporal hierarchy of features (equivalent to spatial hierarchy in 

image processing) (Yamashita et al., 2018 in McKearney et al., 2022). 
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Recurrent neural networks (RNNs) are well suited to analysing sequence data such as EEG. Unlike 

feedforward neural networks (such as MLPs) where the activations flow only between the input 

and output layers, RNNs also utilise connections going backwards in time (Géron, 2017). This 

property imbues recurrent neurones with a ‘memory’ as its output at any given point in time is a 

function of all previous time steps (Géron, 2017). 

The architecture of the CNN-LSTM used in the current study was two repeated one-dimensional 

convolutional/max pooling layers, followed by an LSTM layer and three fully connected layers 

(Table 4-3). As input, this model received three vector features: the coherent average, a denoised 

version of the coherent average using the Teager-Kaiser energy operator (TKEO) (Kaiser, 1990), 

and a vector of the p values for the Student’s t-statistic as calculated down each column of the 

ensemble matrix (𝐗𝐗) (McKearney et al., 2022). 

Table 4-3 The convolutional long short-term memory network architecture. Optimised 

hyperparameters are shown in italics and underlined. Hyperparameters which were 

not fine-tuned are shown in regular typeface. 

Layer Hyperparameter settings 

Convolutional 1D relu activation function, number of units 

Max Pooling pool size=2, padding=’same’ 

Convolutional 1D relu activation function, number of units 

Max Pooling pool size=2, padding=’same’ 

LSTM Dropout rate, recurrent dropout rate, number of 

units 

Dense relu activation function, number of units 

Dropout Dropout rate 

Dense 7 units, relu activation function 

Dropout Dropout rate 

Dense 1 unit, sigmoid activation function 

Hyperparameter optimisation was performed using a random search (using 90 hyperparameter 

combinations) of the hyperparameter space shown in Table 4-4. 

Table 4-4 The hyperparameter space searched for the CNN-LSTM. Note that relatively low 

values for the number of training epochs were searched as the training set size was 
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quite large and to limit the computational expense when evaluating the model within 

nested the cross-validation procedure. 

Hyperparameter Values searched 

Dropout rate 0, 0.05, 0.1, 0.15, 0.2 

Recurrent dropout rate 0, 0.05, 0.1, 0.15, 0.2 

Learning rate Fifteen evenly spaced values in a log 

space between 0.005 and 0.25 

Batch size 128, 256, 512, 1024 

Convolutional kernel size 3, 5, 7 

Training epochs 3, 4, 5, 6, 7, 8, 9, 10 

Number of units 15, 18, 21, 24, 27, 30 

Optimiser Adam, stochastic gradient descent 

Loss function Binary cross-entropy 

 

4.2.8.3 Random Forest 

Random forests are made up of an ensemble of decision trees (Ho, 1995). Decision trees are 

machine learning algorithms which are able to learn to split data based on feature values using a 

decision algorithm and can be used for both classification and regression tasks (Raschka and 

Mirjalili, 2017). Individual decision trees are combined to form a random forest, which is an 

example of ensemble learning whereby multiple algorithms are combined to make a final 

classification/regression decision. Random forests are typically trained using ‘bagging’, a 

contraction of the words ‘bootstrap’ and ‘aggregation’ (Breiman, 1996 in McKearney et al., 2022). 

Here, random forests are trained on a randomly selected subsection of the data (with 

replacement—i.e. bootstrapping) before their individual predictions are aggregated. This process 

is considered to reduce the variance of the model, improving its generalisable performance 

(Breiman, 1996 in McKearney et al., 2022). 

This model aimed to combine, using machine learning, the properties of the prominent ABR 

statistical detection methods. This was accomplished by extracting features from the raw EEG 

data, using these statistical detection methods. Specifically, the features were extracted using the 

Fmp, Hotelling’s T2 test (applied in 34 iterations each using a different TVM parameter from two 
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to 35 TVMs), q-sample uniform scores test, and the residual noise within the coherent average. 

These 37 features served as the input to the random forest. The p values were used rather than 

the raw test statistics produced by the statistical detection methods, because unlike the raw test 

statistics, the p values are not dependant on the ensemble size for their interpretation. 

Hyperparameter optimisation was performed using a random search (using 90 hyperparameter 

combinations) of the hyperparameter space shown in Table 4-5. 

Table 4-5 The hyperparameter space searched for the random forest. Note that some 

hyperparameters were not searched—for these hyperparameters only one value is 

shown.    

Hyperparameter Values searched 

Maximum number of samples 

used to train each base 

estimator 

2500, 3500, 4500, 5500, 6500, 7500 

Number of trees in the random 

forest 

5000 

Maximum depth 10, 40, 70, 100, 130, 160, 190, None 

Number of features considered 

when determining the best split 

The square root of the number of 

features 

Minimum number of samples 

per split 

5, 10, 15 

Minimum number of samples 

per leaf 

1, 2 

Criterion for measuring the 

quality of each split 

gini, entropy 

 

4.2.8.4 Stacked Ensemble 

Like random forests, stacked ensembles make use of ensemble learning. Stacked ensembles 

combine the outputs of two or more base estimators using a meta-estimator which receives these 

base predictions as inputs and uses them in turn to make the final classification/regression 

decision (Wolpert, 1992). Combining multiple base estimators, which may each consider the data 
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in different ways, can improve generalisable performance. The two base estimators used in the 

stacked ensemble were the previously discussed convolutional-LSTM (Section 4.2.8.2) and 

random forest (Section 4.2.8.3). This approach was chosen in order to combine the template-

matching approach of the convolutional-LSTM with the random forest’s combined statistical 

detection approach, reducing over-reliance on any one input feature/approach. For each 

ensemble being evaluated, each of the two base estimators would produce an output prediction 

which in turn acted as the input variables to a logistic regression classifier meta-estimator in order 

to make a final single prediction. Hyperparameter optimisation was performed using a random 

search (using 90 hyperparameter combinations) of the combined hyperparameter space already 

displayed for the CNN-LSTM (Table 4-3, Table 4-4) and for the random forest (Table 4-5) (the two 

base estimators in the stacked ensemble) as well as the regularisation hyperparameter C for the 

logistic regression meta-estimator (Table 4-6). An illustration of the stacked ensemble 

architecture is provided in Appendix A.  

Table 4-6 The hyperparameter space searched for the logistic regression meta-estimator. 

Hyperparameter Values searched 

Regularisation 

hyperparameter C 

Eleven evenly spaced values on a log 

scale between 1e-4 and 10,000 

 

The machine learning algorithms compared also reflect the choice of input features used and so 

cannot be considered in isolation. 

The machine learning algorithms were constructed using the scikit-learn (Pedregosa et al., 2011) 

and Keras (Chollet and and others, 2015) Python software libraries. 

4.3 Results 

4.3.1 Optimisation of the Statistical Detection Methods 

Cross-validation using the training set data was used to optimise the Hotelling’s T2 test, as well as 

the original and modified versions of the q-sample uniform scores test. For Hotelling’s T2 test, the 

optimal number of voltage means was 16 (Figure 4-8), with a stable and high level of performance 

observed between 15–30 voltage means. 
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Figure 4-8 Optimisation of the number of voltage means used in the Hotelling’s T2 test. 

Both q-sample uniform scores test methods were found to achieve higher ROC AUC score when 

zero-padding was applied. The optimised original q-sample uniform scores test used 150 spectral 

bands in the range 30–600 Hz. The optimised modified q-sample uniform scores test used 150 

spectral bands in the range 30–1350 Hz. 

4.3.2 Training Set Cross-Validation 

The ROC AUC scores across the nine outer loop validation folds were compared across all of the 

detection methods evaluated (both traditional statistical and machine learning detection 

methods). The ROC AUC scores for each detection method were visually inspected using Q-Q plots 

and found not to be normally distributed. For this reason, and due to the low sample size, a non-

parametric test was used to compare the outer loop validation scores between detection 

methods. Using a Friedman test, there was found to be a significant difference between the 

performance of the nine different detection methods evaluated χ2(8)=53.2, p<0.001. 
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Figure 4-9 Training set cross-validation scores. The ROC AUC scores were compared across the 

nine detection methods evaluated. Adapted with permission from Wolters Kluwer 

Health, Inc.: McKearney RM, Bell SL, Chesnaye MA, and Simpson DM. (2022) 

‘Auditory Brainstem Response Detection Using Machine Learning: A Comparison 

With Statistical Detection Methods’, Ear & Hearing, 43(3), pp. 949–960, doi: 

10.1097/AUD.0000000000001151. 

Post hoc analysis was performed using the Wilcoxon signed-rank test, making multiple pairwise 

comparisons between the ABR detection methods evaluated. Correction for multiple comparisons 

was made using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995). The 

Benjamini-Hochberg method controls the false discovery rate (set to 0.05 in the current study) 

and is considered to be more powerful compared to methods which control the familywise error 

rate such as the Bonferroni correction method. 

Of the statistical ABR detection methods, the original and modified versions of the q-sample 

uniform scores test and Hotelling’s T2 test were found to be best, with no significant difference in 



Chapter 4  

72 

performance detected between the three methods. The modified q-sample uniform scores test 

was found to perform statistically significantly better than both the Fsp and the Fmp tests. 

Of the machine learning methods, the stacked ensemble and CNN-LSTM performed the best, with 

the stacked ensemble achieving the highest mean and median outer loop validation fold ROC AUC 

score. The stacked ensemble performed statistically significantly better than the random forest 

and the multilayer perceptron, although not significantly better than the CNN-LSTM. The stacked 

ensemble and random forest performed statistically significantly better than all of the statistical 

ABR detection methods evaluated. As the best machine learning method, as determined by 

nested cross-validation using the training set data (highest mean ROC AUC), the stacked ensemble 

was selected as the machine learning method to first have its detection criterion established using 

the threshold set data, before being evaluated on the unseen test set data. The optimised 

hyperparameters, as identified via a random search, were the same across six of the nine cross-

validation loops, suggesting a relatively stable algorithm. This same hyperparameter combination 

was also identified when applying the cross-validation procedure to the entire training set data in 

order to identify the optimal hyperparameter combination. This hyperparameter combination 

was used to train the stacked ensemble on the entire training set data before evaluating the 

algorithm on the threshold and test sets. 

4.3.3 Test Set Specificity Evaluation 

An effective ABR algorithm should have a low false positive rate, to ensure that clinicians do not 

mistakenly report an EEG recording as containing a response when it in fact does not. The target 

specificity level in the current study was 99%, i.e. a false positive rate of 0.01. Each of the ABR 

detection methods were evaluated on the 15,000 ‘response absent’ data within the test set. The 

specificities obtained are shown in Figure 4.3.3 for each of the ensemble sizes evaluated. The 

stacked ensemble (bootstrapped) and Hotelling’s T2 test were able to consistently (across ≥8/10 

ensemble sizes) achieve a specificity within the 95% CI for the expected level. When the stacked 

ensemble had its critical values set using the separate threshold set of ‘response absent’ data 

(rather than using the bootstrap), the specificities were below the 95% CI for 7/10 ensemble sizes. 

The modified q-sample uniform scores test also had its critical thresholds set using the threshold 

set of ‘response absent’ data, and again, the specificities achieved were significantly below the 

expected range for the larger ensemble sizes (≥500 epochs). The Fsp and the Fmp test specificities 

were outside of the upper range of the 95% CI across all ensemble sizes. The specificities achieved 

using the original q-sample uniform scores test (utilising zero-padding) were all significantly below 

the expected range. 
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Figure 4-10 Test set specificity evaluation as a function of ensemble size. The specificity of each 

ABR detection method was evaluated using the ‘response absent’ data contained 

within the test set. The expected specificity level and its 95% confidence interval, as 

calculated from the binomial distribution (n=1,500 trials per ensemble size) are 

shown. Adapted with permission from Wolters Kluwer Health, Inc.: McKearney RM, 

Bell SL, Chesnaye MA, and Simpson DM. (2022) ‘Auditory Brainstem Response 

Detection Using Machine Learning: A Comparison With Statistical Detection 

Methods’, Ear & Hearing, 43(3), pp. 949–960, doi: 10.1097/AUD.0000000000001151. 

4.3.4 Test Set Sensitivity Evaluation 

The next step of evaluating the ABR detection algorithms was to assess their sensitivity. In order 

to do this in a fair manner, the critical values for all of the detection algorithms were adjusted to 

the level at which they obtained the target specificity level of 99% on the test set ‘response 

absence’ data (Chesnaye et al., 2018). This ensured that detection methods with a high false 

positive rate were not afforded an unfair advantage in terms of sensitivity (Chesnaye et al., 2018). 

Cochran’s Q test found that there was a statistically significant difference in detection rate 

between the ABR detection methods evaluated, for each ensemble size evaluated, p<0.001 

(Figure 4-11). Post hoc comparison for detection performance at each ensemble size was 

performed using the pairwise McNemar test, with a correction for multiple comparisons applied 

using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995). The stacked ensemble 
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(both the bootstrapped version and the version whose detection criterion was set using the 

threshold set data) performed statistically significantly better than all of the other detection 

methods, across all of the ensemble sizes evaluated, on the previously unseen ‘response present’ 

test set data (largest adjusted p < 3×10−6) (McKearney et al., 2022). Of the statistical detection 

methods evaluated, the modified q-sample uniform scores test and the Hotelling’s T2 test 

achieved the highest detection rates across ensemble sizes, except from for the ensemble size of 

100 epochs, where the Hotelling’s T2 test performed least well. For ensemble sizes of 300 to 1,000 

epochs, both versions of the q-sample uniform scores test and the Hotelling’s T2 test were found 

to perform statistically significantly better than both the Fsp and the Fmp. 

 

Figure 4-11 Test set sensitivity evaluation. The stacked ensemble (both the bootstrapped version 

and the version whose detection criterion was set by the threshold set data) had a 

higher detection rate than all of the other ABR detection methods evaluated. The 

critical values for each detection method were adjusted to achieve a target false 

positive rate of 0.01. Error bars represent the 95% CI of the expected binomial 

distribution centred around each point. Adapted with permission from Wolters 

Kluwer Health, Inc.: McKearney RM, Bell SL, Chesnaye MA, and Simpson DM. (2022) 

‘Auditory Brainstem Response Detection Using Machine Learning: A Comparison 

With Statistical Detection Methods’, Ear & Hearing, 43(3), pp. 949–960, doi: 

10.1097/AUD.0000000000001151. 
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To evaluate the effects of training set sample size on detection performance, a learning curve 

analysis was conducted. The results of this are provided in Appendix B. 

4.3.5 Analysing ABR Detection Performance by SNR 

The test set data were simulated based on the estimated SNRs of the ABR signal within the 

subject recorded data. In order to provide further in-depth analysis of ABR detection by SNR, to 

help bring meaning to the detection rates achieved, the test set data were resimulated by taking 

the 12 ABR templates used to simulate the test set data, rescaling them to obtain the desired 

range of SNRs, and adding them to the 1,500 test set ‘response absent’ data (1,000 epochs per 

ensemble) (Figure 4-12). 

 

Figure 4-12 The ABR detection rate is shown as a function of SNR. The estimated SNRs (mean ± 

standard deviation) of the subject recorded data at each stimulus level are 

superimposed on the figure to provide clinical relevance to the detection 

performance of the ABR detection methods evaluated. The detection criterion of 

each detection method was adjusted to the level at which a false positive rate of 0.01 

was obtained. Adapted with permission from Wolters Kluwer Health, Inc.: McKearney 

RM, Bell SL, Chesnaye MA, and Simpson DM. (2022) ‘Auditory Brainstem Response 

Detection Using Machine Learning: A Comparison With Statistical Detection 

Methods’, Ear & Hearing, 43(3), pp. 949–960, doi: 10.1097/AUD.0000000000001151. 
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The stacked ensemble (without bootstrapping) achieved a notably higher detection rate 

compared to the statistical detection methods evaluated across the range of -35 to -25 dB (Figure 

4-12). The stacked ensemble was able to detect responses with the same detection rate as the 

best-performing statistical detection method (the modified q-sample uniform scores test) when 

the SNR was almost 2 dB lower, i.e. the sigmoid detection curve of the stacked ensemble was 

shifted just under 2 dB to the left of the detection curve of the best-performing statistical ABR 

detection method. Note that the critical value for each detection method was chosen to achieve a 

set false positive rate of 0.01, ensuring a fair comparison across detection methods (Chesnaye et 

al., 2018). 

4.4 Discussion 

The main aims of this study were to identify a machine learning algorithm able to detect the 

presence or absence of an ABR, and to compare this algorithm with prominent statistical 

detection methods. Nested k-fold cross-validation using the training set data identified a stacked 

ensemble as the best machine learning method evaluated. In-depth comparison of the stacked 

ensemble algorithm with statistical detection methods was performed using the separate test set 

data. Overall, the results were promising, indicating that machine learning methods can 

significantly outperform conventional statistical ABR detection methods, using the present 

dataset. This study also provides methods for training, designing, and evaluating machine learning 

algorithms for ABR detection. 

4.4.1 Specificity Analysis 

In clinical practice it is important to have a high level of confidence when deciding that an EEG 

signal does not contain an ABR (British Society of Audiology, 2019c). It is therefore paramount 

that ABR detection methods are able to achieve a high and reliable level of specificity. Two main 

methods were utilised to set the critical value of the stacked ensemble in order to achieve the 

desired false positive rate. The first was to use a separate set of ‘response absent’ data (the 

‘threshold set’) and to set the detection criterion at the level at which the desired false positive 

rate was achieved (for each ensemble size). This method was not successful at controlling the 

false positive rate for the stacked ensemble or the modified q-sample uniform scores test (Figure 

4-10). This is likely due to the data in the threshold set not reflecting the characteristics of the 

data in the test set, due to the relatively small number of participants which contributed to the 

data in each set. A second method was therefore employed to control the false positive rate: the 

bootstrap technique (Section 3.3) (Lv, Simpson and Bell, 2007; Chesnaye et al., 2018). Using the 

bootstrap technique, the stacked ensemble was able to achieve a specificity level within the 95% 
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CI of the expected binomial distribution across 8/10 ensemble sizes. Using the bootstrap means 

that a separate set of data was not required to set the detection criterion as this was determined 

by the bootstrap on a case-by-case basis for each individual ensemble being evaluated (Chesnaye 

et al., 2018). 

The Fsp and Fmp achieved higher-than-expected specificity levels across all ensemble sizes, with 

the critical value selected based on the theoretical distribution of the F statistic. This is 

hypothesised to be due to the conservatively applied five degrees of freedom for the numerator 

of these F statistics (Elberling and Don, 1984; Chesnaye et al., 2018). The q-sample uniform scores 

test achieved a lower-than-expected specificity across all 10 ensemble sizes. This was thought to 

be due to the use of zero-padding which violated the assumption made by the test that the 𝑞𝑞 sets 

of spectral bands analysed are independent (Stürzebecher, Cebulla and Wernecke, 1999). Zero-

padding was used as it was found to improve the ROC AUC of the test during optimisation of the 

statistical detection methods. Removal of zero-padding led to the specificity levels falling within, 

or just above, the 95% CI across ensemble sizes, albeit at the expense of a reduced detection rate 

when adjusting the detection criterion to a level which achieved a false positive rate of 0.01. 

In the case of ABR detection, the term ‘false positive’ is presently used to refer to the case where 

an EEG signal is mistakenly determined to contain and ABR. This is highly undesirable. For a 

newborn hearing screening test, a false positive result would mean an unnecessary referral of a 

baby for additional specialist testing. Reducing the false positive rate, or at least maintaining a 

consistent and low false positive rate, avoids unnecessary onward referrals for testing, saving 

health services administrative and clinical time, as well as avoiding unnecessary stress for 

parents/carers whilst they wait for an appointment to establish the child’s true hearing level. In 

the case of diagnostic ABR testing, a false positive result could lead to clinicians interpreting the 

data incorrectly, with the patient’s hearing threshold appearing better than it actually is. This 

error would negatively impact the clinical decision-making process regarding hearing habilitation. 

The high and stable level of specificity achieved by the bootstrapped stacked ensemble 

demonstrates that the bootstrap technique can be used to harness the detection ability of 

machine learning algorithms. There are numerous subject characteristics which may affect the 

ABR, e.g. age (Hall, 2007). Prematurely born newborns, newborns born at full term, and adults, 

may exhibit different ABR characteristics, e.g. due to differences in spectral content (Eggermont 

et al., 1996). This could result in varying false positive rates based on the individual subject 

characteristics of the patient and the statistical detection method used (Lv, Simpson and Bell, 

2007). Using the bootstrap method is expected to result in data from all population groups having 

an equal chance of a false positive result as the critical value is derived from each separate 

recording (Lv, Simpson and Bell, 2007). 
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4.4.2 Sensitivity Analysis 

The sensitivity analysis performed (Figure 4-11) showed that the stacked ensemble performed 

statistically significantly better than the statistical detection methods evaluated, across all 

ensemble sizes. This good detection performance was also observed in the SNR analysis (Figure 

4-12), where the stacked ensemble was able to achieve a better detection rate than statistical 

detection methods at SNRs that would correspond to behavioural hearing thresholds (0 dB SL). At 

high SNRs, all ABR detection methods perform well. However, when the SNR is lower, detection 

naturally becomes more difficult. A better-performing ABR detection method will be better at 

being able to resolve the ABR threshold. 

The results obtained suggest that machine learning algorithms may have the potential to be able 

to assist clinicians in determining electrophysiological hearing thresholds. Whilst the 

improvement in detection performance may be considered modest, if applied to say a national 

newborn hearing screening programme, the effect may be amplified at the population level. The 

stacked ensemble algorithm, when trained on a larger database of subject recorded clinical data 

(from both individuals with normal hearing and individuals with a hearing loss) reflecting the 

intended population for use, may be potentially useful in both evoked potential software to assist 

clinicians and also in ABR screening devices. Training clinicians on how the algorithm works and 

how to incorporate its outputs into their clinical decision-making process would be advisable in 

order to help develop confidence and trust in machine learning algorithms. Further validation 

using clinical data of the proposed model is first required. 

ABR detection performance in previous machine learning studies has been reported using a wide 

of outcome measures. Typically, most studies report the accuracy achieved (Alpsan, 1991; Acir, 

Özdamar and Güzeliş, 2006; Davey et al., 2007; Rahbar et al., 2007; Acir, Erkan and Bahtiyar, 

2013). Acir, Özdamar and Güzeliş (2006), as in the present study, examined sensitivity and 

specificity performance, achieving 99.2% sensitivity and 94.0% specificity. The sensitivity 

performance of the algorithms in the present study was compared using a critical value fixed at 

the level which achieved a specificity of 99%. This allowed a fair comparison of the different 

methods at the high level of specificity performance that is required in clinical practice (British 

Society of Audiology, 2019c). Performance between studies will not only rely on the ability of the 

proposed detection algorithms, but perhaps to a larger extent on the SNR of the data. Publishing 

datasets to compare performance between machine learning algorithms, e.g. Kaggle (2021), 

would make comparison easier. The breakdown of the performance of detection algorithms by 

SNR (for a fixed false positive rate) makes comparison more feasible. Of the statistical ABR 

detection methods assessed, the modified q-sample uniform scores test and the Hotelling’s T2 
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test performed the best (Figure 4-11, Figure 4-12). The reliable specificity performance of the 

Hotelling’s T2 test, coupled with its good sensitivity and straightforward implementation, makes 

this method a good benchmark by which future studies may compare new ABR detection 

algorithm performance. 

4.4.3 Limitations and Future Work 

Significant efforts were made to simulate the data in a manner which was realistic, however, it is 

acknowledged that the databases which were used to simulate these data contained data from a 

limited number of participants. The test set data were derived from ABR recordings from three 

individuals. The findings of this study must therefore be interpreted with caution, with the current 

study acting as a proof of concept that machine learning models may be trained to detect the 

ABR. With increased computational resources, cross-validation could also be applied to the whole 

train/test procedure as well, randomly allocating different participants to the test set in each 

iteration. Further research is warranted to further evaluate machine learning algorithms on large 

amounts of data recorded from individuals with normal hearing and individuals with hearing loss. 

These individuals should be reflective of the intended target clinical population for which any 

automated detection algorithm is intended to be used for, e.g. neonates (both with and without a 

hearing loss). This is necessary in order to validate the proposed algorithm. Learning curves 

(Appendix B), based on simulated data, suggest that a training set size of more than 900 instances 

may be expected to achieve a test set score above that of the 95 CI of the best statistical ABR 

detection method. Simulation and the frequency domain bootstrap may be useful tools to 

increase the training set size and help improve the generalisable performance of machine learning 

algorithms. 

Whilst efforts were made to optimise the statistical detection methods evaluated, there are 

always additional parameters and parameter values that may be explored, and so it is possible 

that the statistical detection method performance could be further enhanced (Chesnaye et al., 

2018). For example, the analysis windows used for each detection method could be optimised, as 

well as further optimisation the frequency components used in the q-sample uniform scores test 

(Chesnaye, 2019). Additionally, there is a nearly unending list of potential machine learning 

algorithms, hyperparameter combinations and input features to fine tune and it is possible that 

another combination of these may perform better than the combination used in this study. It is 

also quite possible, depending on the dataset used, that the optimal algorithm and 

hyperparameter combination may be different. 
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Whilst the bootstrap technique was able to reliably control the false positive rate of the stacked 

ensemble, it comes at the expense of increased computational cost. For example, for each EEG 

ensemble being analysed, a single prediction using the stacked ensemble would take ~0.5 seconds 

using a laptop. However, when applying the bootstrap, an additional 500 predictions were made 

to estimate the null distribution of the model output (taking around four minutes). This 

computational cost may certainly be readily reduced by simplifying the model structure, reducing 

the number of input features to minimise redundancy, streamlining the code (run presently in 

Python), and reducing the number of bootstrap samples (at the expense of reduced p-value 

resolution). 

4.5 Conclusions 

This study showed that a stacked ensemble machine learning algorithm was able to achieve a 

higher ABR detection rate than prominent statistical ABR detection methods, whilst achieving a 

reliable specificity level using the bootstrap method. The frequency domain bootstrap and 

simulation may be used to enhance the size of the dataset to improve model performance and 

allow sufficient data for model evaluation, whilst allowing the ground truth of the data to be 

known. Further research is required to evaluate the presented algorithm on a large amount of 

subject recorded data to assess whether the findings presented in this study will generalise to 

clinical practice. Successful performance on the target clinical population would need to be 

demonstrated prior to the methods presented being implemented for clinical use in an evoked 

potential measurement system. 
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Chapter 5 Automated ABR Detection and Weighted 

Averaging 

5.1 Introduction 

The amplitude of the ABR relative to the background noise in the EEG recording, i.e. the SNR, is 

very low. This makes detecting the ABR extremely challenging. Background noise in the recording 

may arise from a number of sources, including background EEG activity, myogenic artefact, ocular 

movement, and environmental interference, e.g. mains artefact. The primary means by which the 

SNR is improved is through recording repeated measurements, known as recording epochs, which 

are typically then combined with equal weighting through coherent averaging to produce a single 

averaged waveform to be interpreted by the clinician by visual inspection. Being an evoked 

potential, the ABR is considered to be deterministic, i.e. the evoked potential signal is identical 

across all recording epochs (Elberling and Don, 1984). Elberling & Don (1984) provide the 

following equation which describes how the deterministic evoked potential signal (𝑠𝑠) and the 

background noise (𝑣𝑣) sum together to form each recorded epoch (𝑥𝑥), over each point in time (𝑡𝑡): 

𝑥𝑥(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) + 𝑣𝑣(𝑡𝑡) (5.1) 

Evoked potential data are typically arranged as an ensemble matrix of 𝑁𝑁 rows of recording epochs 

by 𝑀𝑀 sample points of columns (Chesnaye, 2019): 

𝐗𝐗 =  

⎣
⎢
⎢
⎡
𝑥𝑥1,1 𝑥𝑥1,2 … 𝑥𝑥1,𝑀𝑀
𝑥𝑥2,1 ⋱ ⋮
⋮ ⋱ ⋮

𝑥𝑥𝑁𝑁,1 ⋯ … 𝑥𝑥𝑁𝑁,𝑀𝑀⎦
⎥
⎥
⎤
 

The individual recording epochs can be combined into an unweighted average using the following 

equation (Lyons, 2010): 

�̅�𝑥(𝑡𝑡)  =  
1
𝑁𝑁
�𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

(𝑡𝑡) (5.2) 

Assuming that the evoked potential signal is deterministic, the coherent average across the 𝑁𝑁 

recording epochs is therefore considered to be: 

𝑥𝑥(𝑡𝑡)  = 𝑠𝑠(𝑡𝑡) +  𝑣𝑣(𝑡𝑡) (5.3) ̅ ̅

with the diacritic referring to the coherent average across the 𝑁𝑁 recording epochs for each point 

in time (𝑡𝑡) (Elberling and Don, 1984). As the background noise is assumed to be random, zero 
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mean, stationary, i.i.d., and independent from the evoked potential signal, conventional 

unweighted (mean) averaging will improve the SNR by a factor of 𝑁𝑁 recording epochs (see Section 

3.1.1.1) (Wong and Bickford, 1980; Elberling and Don, 1984). This relies on the assumption that 

the noise is wide-sense stationary, i.e. the probability distribution of the stochastic noise process 

does not fluctuate over time (Van Drongelen, 2018), and therefore that the mean and variance of 

the noise is the same across each recording epoch. However, this assumption is often not met, 

with the variance of the background noise fluctuating over time, e.g. due to changing 

spontaneous background EEG activity, myogenic activity or changes in the environmental 

recording conditions meaning that the noise is non-stationary (Hoke et al., 1984; Bataillou et al., 

1995). Whilst the use of artefact rejection in recording equipment software may remove 

recording epochs where the noise exceeds a pre-specified threshold, periods of high noise activity 

which do not exceed the artefact rejection limit will be incorporated into the coherent average 

with equal weighting to recording epochs recorded in periods of low noise activity. Weighted 

averaging, whereby epochs containing less noise (and therefore a higher SNR for ‘response 

present’ data) are given greater emphasis relative to those containing more noise, has been 

proposed to overcome this shortcoming of conventional unweighted averaging (Elberling and 

Wahlgreen, 1985). As a result, weighted averaging should provide a greater SNR within the 

weighted average waveform (for ‘response present’ data) compared to the unweighted coherent 

average for non-stationary EEG. Weighted averaging may be used to help reduce the recording 

time required to achieve a desired SNR (Lightfoot and Stevens, 2014). Due to weighted averaging 

reducing the effect of high noise level epochs within the average, the necessity for artefact 

rejection becomes diminished, however not obsolete (Lightfoot and Stevens, 2014). Whilst 

weighted averaging is not a machine learning technique (one of the main focusses of this thesis), 

data pre-processing of the input features is an important first step in classification. Effective pre-

processing combined with optimised detection techniques will likely lead to improved overall 

detection performance. Weighted averaging reduces the dimensionality of the EEG data from a 

matrix of 𝑁𝑁 recording epochs by 𝑀𝑀 sample points to a vector of 𝑀𝑀 samples, i.e. feature 

extraction. 

5.1.1 Weighted Averaging 

Weighted averaging can be achieved using a variety of implementations and this section shall 

review some of the various methods presented in the literature. Numerous approaches exist 

including: weighting individual epochs or blocks of epochs inversely proportional to a measure 

related to the estimated variance of the noise (Hoke et al., 1984; Elberling and Wahlgreen, 1985; 

Davila and Mobin, 1992; Riedel, Granzow and Kollmeier, 2001), Kalman weighting (Li, Sokolov and 
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Kunov, 2002; Cone and Norrix, 2015), adaptive weighted averaging (Bataillou et al., 1995), and 

sorted averaging (Mühler and Von Specht, 1999; Rahne, von Specht and Mühler, 2008). Weighted 

averaging has also been successfully applied to the ASSR (Dobie and Wilson, 1994; John, 

Dimitrijevic and Picton, 2001) and Visual Evoked Potentials (VEPs) (Bezerianos et al., 1995; 

Bhargav N, Viswanatha and Shailesh M L, 2020). In 1984, Hoke et al. proposed a form of weighted 

averaging applied to the ABR whereby each individual epoch was inversely weighted to the noise 

within the epoch. In order to simplify the implementation of the algorithm (due to the 

contemporaneous computational limitations), Hoke et al. proposed using the maximum value of 

all of the samples within the epoch as a proxy estimate of the noise level, which was found to 

have a high degree of correlation with the standard deviation of the samples. Using simulations of 

an ABR waveform added to background EEG noise, Hoke et al. found that their weighted 

averaging technique approximated the least-mean square estimate of the true evoked potential 

signal, achieving a lower root-mean-square error (RMSE) than unweighted averaging, whilst 

maintained the expected amplitude of the signal. 

An alternative approach to weighted averaging was suggested by Elberling and Wahlgreen (1985) 

whereby the recording epochs were weighted in blocks rather than individually, using the a single 

point noise estimate calculated as: 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐬𝐬𝐬𝐬) = 𝑉𝑉𝑉𝑉𝑉𝑉 �

𝑥𝑥1,𝑗𝑗
𝑥𝑥2,𝑗𝑗
⋮

𝑥𝑥𝑁𝑁,𝑗𝑗

� (5.4)  

where 𝐬𝐬𝐬𝐬 is a column vector extracted from the column of sample point 𝑗𝑗 of the ensemble matrix. 

The equation for the weighted averaging method proposed by Elberling & Wahlgreen (1985) is 

shown below: 

𝐱𝐱�  =  �
𝐛𝐛1
𝑉𝑉1

+
𝐛𝐛2
𝑉𝑉2

+ ⋯
𝐛𝐛𝐿𝐿
𝑉𝑉𝐿𝐿
� ∙

1
𝑇𝑇

(5.5) 
̅ ̅ ̅

where 𝐱𝐱� is the weighted average, �̅�𝐛𝐿𝐿 is the coherent average of the 𝐿𝐿𝑡𝑡ℎ block, 𝑉𝑉𝐿𝐿 is the estimated 

variance of the noise in the 𝐿𝐿𝑡𝑡ℎ block, and 𝑇𝑇 is the sum of the inverse of the variances across the 𝐿𝐿 

blocks, providing a normalising factor. The normalising factor 𝑇𝑇 constrains the sum of the weights 

to unity, thereby ensuring that the signal amplitude is unchanged by weighted averaging, i.e. no 

bias error is introduced. Weighting in blocks of epochs (as opposed to individual epochs) is 

suggested to provide a more reliable estimate of the variance of the background noise as more 

data points are available for calculating the estimate (Elberling and Wahlgreen, 1985). Each block 

of epochs is weighted inversely proportionally to the estimated variance of the background noise 

within that block, i.e. inverse-variance weighting. The noise level is estimated by calculating the 
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variance down a single column of samples across all of the recording epochs within the block (in 

the same manner as the denominator in the Fsp equation—Elberling & Don, 1984). The block 

weights are scaled by a factor inversely proportional to the total the sum of the variances, 

meaning that the weighted average produced contains an unaugmented signal amplitude (i.e. the 

signal amplitude should be maintained and not increased or decreased by the weighted averaging 

procedure). This allows a direct comparison between the weighted average and the coherent 

average to be made (Elberling and Wahlgreen, 1985). A block size of 250 epochs was 

recommended by Elberling & Wahlgreen (1985), on the basis that this would include sufficient 

samples within the single point noise estimate for the noise estimate to be reliable (Elberling and 

Don, 1984). The size of the block of epochs to be weighted should not be so small such that the 

estimate of the variance of the background becomes unstable, leading to sub-optimal block 

weights. Neither should the block size be so large that changes in the background noise level are 

not resolvable, i.e. that both epochs of high and low noise levels are grouped together in the 

same block and weighted equally. The optimal block size is therefore a trade-off between these 

two extremes. Elberling & Wahlgreen (1985) elaborate that it would be worthwhile investigating 

whether the block size can be optimised further and that a much smaller block size may feasibly 

be more effective yet. Gerull et al. (1996) also identify that using too large a block size is not 

effective for recordings containing noise fluctuations of short duration.  

A later study by Don and Elberling (1994) explored the optimisation of block size for weighted 

averaging. Using 80 ABR recordings from eight individuals, Don & Elberling (1994) performed 

weighted averaging using four different block sizes (32, 64, 128, and 256 epochs-per-block—

Figure 5-1). Rather than using a single point to estimate the noise, they selected several spaced 

points in each recording epoch. They found that the residual noise level within the averaged 

waveform was lowest when using the smaller block sizes. Although the effect of the choice of 

block size parameter was relatively small (up to a ~1.3% decrease in residual noise relative to the 

largest block size used: 256). The residual noise continued to reduce as the block size decreased 

to 32 epochs-per-block and the present author believes it would be useful to investigate if the 

block size could be reduced even further in order to observe further noise reduction. One 

potential limitation of their study is that the outcome variable (reduction in residual noise) was 

estimated using the single point method whilst comparing weighted averaging block sizes which 

also estimated the variance of the noise using a similar method. The use of simulated data, as 

used by Hoke et al. (1984), where the residual noise levels are known definitively would help to 

overcome this limitation. Using simulations, Riedel et al. (2001) evaluated weighted averaging 

using a range block sizes (1,2,4,8,16,32,64,128,256). Riedel et al. (2001) investigated the use of 

weighted averaging, estimating the variance of the noise contained within each block by 
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calculating the average of the power of each of the individual recording epochs in the block. A 

block size of 32 produced the lowest mean residual noise level. The optimal block size decreased 

further from 32 to four epochs-per-block when iterative weighted averaging was applied. In 

iterative weighted averaging, the estimated ABR signal is subtracted from the block of recording 

epochs prior to calculating the weights. This is performed iteratively with the aim of each 

successive iteration providing a better ABR signal estimate and subsequently allowing a more 

accurate noise estimate to be calculated. However, due to the small number of recordings 

analysed the error bars are substantially overlapping with similar performance shown for all block 

sizes evaluated between 1–256 (iterative weighted averaging). Further research regarding the 

best method to estimate the noise levels within each block as well as the optimum block size is 

still required and is a topic explored in this chapter. 
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Figure 5-1 In this Figure the term Sweeps/Block is equivalent to the term epochs-per-block used 

in this study. (a) Histograms showing the percentage change in residual noise using weighted 

averaging with block sizes of 128, 64, and 32 epochs-per block, relative to using 256 epochs-per-

block (the horizontal reference line indicating 0% percentage change in residual noise). (b) The 

filled circles show the mean percentage change in residual noise across the whole dataset (‘All 
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Runs’) using: 32, 64 and 128 epochs-per-block, relative to using 256 epochs-per-block. 

Performance in Figure (b) is divided into three subsets: ‘Criterion Runs’ are ABR present 

ensembles which saw a 5% decrease in residual noise relative to unweighted averaging. ‘Non-

criterion Runs’ saw a <5% reduction in residual noise relative to unweighted averaging. ‘All Runs’ 

includes both of these two categories. Reproduced from Don, M. and Elberling, C. (1994) 

‘Evaluating Residual Background Noise In Human Auditory Brain-Stem Responses’, Journal of the 

Acoustical Society of America, 96(5), pp. 2746–2757. doi: 10.1121/1.411281, with the permission 

of the Acoustical Society of America.  

An example of the potential benefits of weighted averaging is shown in Figure 3-1. Here a 

simulated ensemble of 1,000 epochs was generated by adding an ABR template to a no-stimulus 

EEG recording. It can be seen that the estimated level of the background noise increased 

appreciably after 600 recording epochs. This coincided with a degradation in the estimated SNR of 

the EEG data based on the Fmp detection method (Martin et al., 1994). A form of weighted 

averaging based on the Elberling & Wahlgreen method (1985) was used to weight blocks of 50 

epochs in a simulated ABR ensemble of 1,000 epochs. It can be seen how weighted averaging led 

to a weighted average (green) which more closely reflected the true ABR signal (black) compared 

to the conventional (unweighted) averaging method (red). 

 

Figure 5-2 Weighted averaging—an example. Note how the estimated signal quality (within the 

averaged waveform), as estimated by the Fmp, began to decrease after ~700 

recording epochs when using unweighted averaging. This was not the case for 

weighted averaging where the ‘noisy’ recording epochs were incorporated into the 

average with lower weight. 

5.1.1.1 Alternative Approaches—Kalman Filtering 

Another approach to improving the SNR within the ABR waveform is Kalman filtering (Kalman, 

1960; Li, Sokolov and Kunov, 2002), which again aims to improve the quality of the estimate of the 

https://doi.org/10.1121/1.411281
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signal. Kalman filtering minimises the probability of error in the estimated signal, providing 

greater confidence in the estimate, and thus improve the SNR (Hall, 2007; Cone and Norrix, 2015). 

Kalman filtering is recursive, i.e. the information from the previous state (the estimated voltage of 

the evoked potential in this case) is used in conjunction with ongoing measurements to update 

the prediction in an iterative two-step process (Figure 5-3). Step one of the Kalman filter process 

is to ‘make an a priori estimate of the state of the system’ (Van Drongelen, 2018). In the second 

step, a new a posteriori estimate is computed, by fusing the information from the a priori 

estimate and the new measurement (Van Drongelen, 2018). 

 

Figure 5-3 The Kalman filter cycle. Figure redrawn, with changes made, based on a figure in Rao, 

G. M. Nandyala, S. P. and Satyanarayana, C. (2014) ‘Fast Visual Object Tracking Using 

Modified kalman and Particle Filtering Algorithms in the Presence of Occlusions’, 

International Journal of Image, Graphics and Signal Processing. MECS Publisher, 

6(10), pp. 43–54. Available at: https://doi.org/10.5815/IJIGSP.2014.10.06, under the 

terms of the CC BY 4.0 license 

At each time point, the projected estimate of the current state of the system is combined with the 

measurement in a weighted average (Khodarahmi and Maihami, 2022). As the ABR signal is 

considered to be deterministic, Kalman filtering, based on MMSE (Van Drongelen, 2018), will 

likely produce very similar results to weighted averaging, which also minimises the mean squared 

error (Elberling and Wahlgreen, 1985). The advantages of Kalman filtering are likely to be more 

evident in applications involving signals which vary dynamically over time (Kalman, 1960); 

however, this is not the case for the assumedly deterministic ABR signal. Kalman filtering may 

potentially be useful for surgical monitoring applications where the goal is to detect a change in 

the evoked potential signal over time (Hu et al., 2015), in order to help preserve physiological 

function. One difference between the two methods is that with Kalman filtering being recursive, 

Time update 

("predict") 

Measurement 

update 

("Correct") 

https://doi.org/10.5815/IJIGSP.2014.10.06
https://creativecommons.org/licenses/by/4.0/
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there is less data to store in computer memory (Caceres, Sottile and Spirito, 2009). A limitation of 

Kalman filtering as applied to ABR data is that it is not readily amenable to the application of the 

most prevalent ABR statistical detection methods (Fsp, Fmp, Hotelling’s T2 test, and the q-sample 

uniform scores test). Other forms of weighted averaging produce both a weighted ensemble and 

a final weighted average, allowing the application of these tests, whereas Kalman filtering does 

not. The result of Kalman filtering is a final signal estimate rather than a weighted ensemble. 

5.1.2 Weighted Averaging—Technical Considerations 

Some methods calculate the averaging weights (𝑤𝑤) based on a statistic such as the variance across 

the discrete-time samples within an epoch: 

𝑤𝑤𝑖𝑖 =  
1

𝑉𝑉𝑉𝑉𝑉𝑉(𝐱𝐱𝑖𝑖)
(5.6) 

where 𝐱𝐱𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ recording epoch in the ensemble. This has the limitation of also including 

information regarding the evoked potential signal energy as well as the noise energy which is the 

primary focus. As the SNR of the ABR within the continuous EEG is very low, this has not been 

considered to have a significant impact (Sörnmo and Laguna, 2005). The ABR signal is assumed to 

be independent of the background noise (Elberling and Don, 1984): 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐱𝐱𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝐬𝐬𝑖𝑖) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝐯𝐯𝑖𝑖) (5.7) 

where 𝐬𝐬 is the evoked potential signal vector and 𝐯𝐯 is the background noise vector in recording 

epoch 𝐱𝐱. Lütkenhöner et al. (1985) and Fan & Wang (1992) observed that the use of weighting 

strategies based on the variance of the samples within an epoch can lead to an underestimation 

of the amplitude of the signal. This has been hypothesised to be a result of the weights (not 

normalised) being influenced by the evoked potential signal energy within the noise estimate (Fan 

and Wang, 1992; Gerull, Graffunder and Wernicke, 1996). If the weights are not constrained by 

the sum of the variables used as the noise level estimates, the signal may be distorted and no 

longer comparable to the coherently averaged waveform. This will negatively impact visual 

interpretation by clinicians who make judgements regarding the evoked potential signal 

amplitude to inform their interpretation (British Society of Audiology, 2019c). Lütkenhöner et al. 

(1985) and Gerull et al. (1996) proposed alternative methods of avoiding signal waveform 

underestimation by increasing the degrees of freedom of the noise variance estimates. These 

include widening the analysis window and therefore the number of samples from which the noise 

variance is estimated (Lütkenhöner, Hoke and Pantev, 1985), and the use of filtering to pre-

whiten the EEG (Lütkenhöner, Hoke and Pantev, 1985; Gerull, Graffunder and Wernicke, 1996). By 

increasing the degrees of freedom of the noise variance estimate, the accuracy of the weighting 
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factor can be improved as a greater number of independent datapoints are available, thus 

avoiding misestimation of the signal. 

5.1.2.1 Weight Normalisation 

Elberling & Wahlgreen (1985) suggested that each weight incorporate the inverse of the total sum 

of the inverse of the variances calculated, thereby normalising each weight (Equation 5.5). On the 

basis that the evoked potential signal is deterministic across all epochs, and therefore that the 

signal is identical in each epoch, all of the noise estimates are scaled by this normalising factor to 

sum to unity. No misestimation of signal amplitude should therefore occur as the amplitude scale 

has been corrected (Gerull, Graffunder and Wernicke, 1996; Kumaragamage, Lithgow and 

Moussavi, 2016). This allows the weighted average to be compared to the unweighted average 

(Elberling and Wahlgreen, 1985). 

5.1.2.2 The Effects of Weighted Averaging on Statistical ABR Detection Methods 

Signal processing techniques including weighted averaging are known to have effects on the 

statistical properties of the EEG data (Hoke et al., 1984; Elberling and Wahlgreen, 1985; 

Lütkenhöner, Hoke and Pantev, 1985; Gerull, Graffunder and Wernicke, 1996), with an increase in 

residual high-frequency components (relative to conventional averaging) due to the weighting 

factor being predominantly influenced by low-frequency components (Hoke et al., 1984; Elberling 

and Wahlgreen, 1985). Due to the sometimes unpredictable effects of weighted averaging, 

Lütkenhöner et al. (1985) warned that ‘blind confidence in the method is dangerous’. The effects 

of any alterations to the statistical properties of the data on the statistical ABR detection methods 

used clinically have not been previously evaluated. Given the use of weighted averaging in clinical 

evoked potential devices, this topic merits further consideration including quantification of the 

problem as well as consideration of methods to mitigate any effects on detection method 

performance.  

5.1.3 Formulation of the Research Problem 

Weighted averaging has been shown to be an effective technique at improving the SNR of ABR 

recordings (Hoke et al., 1984; Elberling and Wahlgreen, 1985; Gerull, Graffunder and Wernicke, 

1996; Riedel, Granzow and Kollmeier, 2001; Cone and Norrix, 2015). One of the more prominent 

methods is the form of weighted averaging proposed by Elberling & Wahlgreen (1985) whereby 

groups of epochs are weighted together as a block in order to provide a more accurate estimation 

of the noise. Don & Elberling (1994) went on to show that using smaller block sizes, down to a size 

of 32 epochs-per-block, helped to reduce the residual noise level in the coherent average. Riedel, 
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Granzow and Kollmeier (2001) also found a block size of 32 to reduce the residual noise level most 

effectively in the averaged waveform (4 epochs-per-block when using iterative weighted 

averaging). It is possible that the observed benefit would continue to increase using even smaller 

block sizes and the optimal block size is not known. This parameter likely has a prominent impact 

on the effectiveness of a weighted averaging algorithm. Evidence-based recommendations for a 

value for the block size parameter are scarce in the literature and may improve ABR detection 

performance further if the SNR within the coherent average can be enhanced. It is acknowledged 

that these theoretical improvements may be marginal, however, at the population level small 

improvements, e.g. in the performance of a nationwide screening test, may have a meaningful 

impact. An additional feature requiring further research is the method by which the noise levels 

are estimated within each block (Section 5.1.2). Obtaining a better estimate of this would improve 

the accuracy of the weights and therefore likely increase the effectiveness of weighted averaging 

by allowing smaller block sizes to be used.  

Data processing techniques such as weighted averaging have the potential to alter the statistical 

properties of the data (Lütkenhöner, Hoke and Pantev, 1985). It is not known how these affect the 

performance of the detection methods commonly used in clinical evoked potential devices (the 

Fsp/Fmp). Weighted averaging will affect not only the signal estimate of the Fmp equation, 

calculated from the weighted average, but also the background noise estimate from the weighted 

ensemble. Research into the effects of weighted averaging on ABR test performance has typically 

focussed on the reduction of residual noise, the increase of the SNR for ‘response present data, or 

a detection measure statistic in ‘response present’ data (Elberling and Wahlgreen, 1985). The 

results in the literature are often anecdotal, using a handful of EEG recordings. Research using a 

large amount of data in order to observe the effects of weighted averaging on the sensitivity and 

specificity of detection methods has not been performed. This work is required in order to inform 

the use of statistical detection methods in conjunction with weighted averaging. 

5.1.4 Aims and Objectives 

Aim 1. To optimise weighted averaging by identifying the value of the epochs-per-block 

parameter that reduces noise within the averaged waveform and improves ABR 

detection the most. 

 Objective 1a: Compare a range of epoch-per-block parameter values across the range 

1–1,000 (equivalent to unweighted averaging in the case of a 1,000-epoch ensemble). 
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 Objective 1b: This parameter will be specifically evaluated across a range of 

performance measures including reduction in residual noise level, effects on Fmp value, 

and ABR detection. 

Aim 2. Compare methods of estimating the variance of the noise level within each block, to 

further optimise weighted averaging. 

 Objective 2a: Compare the ‘multiple points’ method of estimating the noise within a 

block with the ‘variance of the whole block’ method, specifically focussing on residual 

noise reduction within the averaged waveform and ABR detection (ROC AUC). 

Aim 3. Investigate the effects of weighted averaging on the Fmp statistical ABR detection 

method. 

 Objective 3a: For each block size parameter evaluated, compare the effects of 

weighted averaging on the Fmp value for both ‘response present’ and ‘response absent’ 

data. Evaluate the effects of weighted averaging on sensitivity and specificity. 

5.1.5 Chapter-Specific Acknowledgements 

Please note that most of the findings of the study presented in this chapter have been published 

as a journal article: 

McKearney, R. M., Bell, S. L., Chesnaye, M. A., and Simpson, D. M. (2023) ‘Optimising Weighted 

Averaging for Auditory Brainstem Response Detection’. Biomedical Signal Processing and Control, 

83, p. 104676. Available at: https://doi.org/10.1016/j.bspc.2023.104676. 

This article was published open access under a CC BY 4.0 license. The work published in this thesis 

is done so in accordance with the terms of this license. Regarding author contributions, the 

manuscript was based on the work conducted as part of this PhD thesis and was written by the 

present author with feedback provided by all other authors (Prof. Steven Bell, Dr Michael 

Chesnaye, and Prof. David Simpson). This thesis chapter has been updated to reflect feedback 

from the co-authors provided on the journal manuscript. Dr Michael Chesnaye helped by 

discussing ideas regarding the bias observed in the Fmp statistic and its interaction with the 

weighted averaging procedure. Dr Michael Chesnaye also provided feedback on the journal 

manuscript, including on the format of some equations in the manuscript to better reflect the 

number of degrees of freedom present in the noise variance estimates. Prof. Steven Bell and Prof. 

David Simpson (PhD supervisors of the present author) provided supervisory guidance regarding 

all aspects of the study. 
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5.2 Methods 

5.2.1 Data 

The data used in this study were the same as those described in Section 4.2.1. In summary, these 

comprised of a no-stimulus EEG database (~6.5 hours of recordings from 15 individuals) (Madsen, 

2010; Madsen et al., 2018), and an ABR database containing threshold series recordings from 12 

individuals (Chesnaye et al., 2018). These data were band-pass filtered from 30 to 1,500 Hz using 

a 3rd-order Butterworth filter. These filter settings were chosen to reflect those recommended by 

the British Society of Audiology (2019c). 

5.2.2 Ethics 

Overarching ethical approval was granted by the University of Southampton Faculty Ethics 

Committee to use the data from the subject recorded ABR and no-stimulus EEG datasets for the 

purpose of secondary data analysis for a range of research activities throughout these PhD studies 

(ERGO 55576). 

5.2.2.1 No Stimulus Data 

A set of ‘no response’ data were constructed by re-constructing the no-stimulus EEG database 

into a series of continuous recording epochs. These epochs were grouped together into sets of 

1,000 recording epochs to form ensembles. The recording epoch duration reflected a simulated 

stimulus rate of 30.3 Hz to match that used to record the ‘response present’ data, although 

naturally no auditory stimulus was used to collect the no stimulus data. A rejection level of ±25 µV 

was applied. A higher rejection level was used than might be applied clinically as including more 

noise will likely make it easier to observe any changes in the residual noise level as a result of 

weighted averaging in order to measure its effects. Artefact rejection levels used in clinical testing 

are recommended to be up to ±10 µV (British Society of Audiology, 2019c). Using the above 

procedure, 2,301 ensembles of 1,000 epochs were generated.  

5.2.2.2 ABR ‘Response Present’ Data 

The ABR ‘response present’ data were simulated by making a copy of the 2,301 no stimulus 

ensembles and adding a single scaled ABR template (from one adult participant with normal 

hearing) to every recording epoch within all of the 2,301 ensembles. By simulating the ‘response 

present’ data it was possible to know definitively the noise levels within each recording epoch as 

well as the true SNR. This allowed the exact effects of the averaging method used to be observed. 

The ABR template was given a peak-to-peak amplitude (wave V to SN10) of 500 nV which is at the 
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higher end of those physiologically observed (Hall, 2007). This amplitude was chosen as it was 

found to produce a wide spread of SNRs given the high noise levels in the dataset, helping to 

avoid floor and ceiling effects when evaluating detection. Another reason for this larger choice of 

ABR signal peak-to-peak amplitude is that one of the methods for estimating the noise levels in 

each block (the ‘VAR Whole Block’ method described in Section 5.2.6) is adversely affected by the 

presence of a large response. Some degree of certainty is required that this method will hold up 

even when a large response is present. 

5.2.3 Analysis Window 

All of the calculations performed in this study, e.g. residual noise, SNR, Fmp level and estimated 

noise level were applied to a fixed analysis window containing the discrete-time samples within 

1–15 ms of each recording epoch. This avoids stimulus artefact which may occur shortly after the 

onset of the stimulus and covers the main latency period expected of the ABR (Chesnaye et al., 

2018). This analysis window length corresponds to 71 digitised sample points per recording epoch 

at the sampling rate of 5 kHz. 

5.2.4 ABR Detection Method 

As well as evaluating the effects of weighted averaging on the noise levels and the SNR, it is also 

important to understand the effects of this alteration to the properties of the data on ABR 

detection methods. Whilst this has been done in previous studies using three ABR recordings as 

an illustrative example (Elberling and Wahlgreen, 1985), the effect of weighted averaging on ABR 

detection methods has not been evaluated in depth. For the purposes of this study the Fmp was 

used (Martin et al., 1994): 

𝐹𝐹𝐹𝐹𝐹𝐹 =
𝑉𝑉𝑉𝑉𝑉𝑉(𝐱𝐱�)

1
𝑁𝑁 �

1
𝑄𝑄∑ 𝑉𝑉𝑉𝑉𝑉𝑉(𝐬𝐬𝐬𝐬𝑖𝑖)

𝑄𝑄
𝑖𝑖=1 �

(5.8) 

where 𝑄𝑄 is the number of chosen single point columns (𝐬𝐬𝐬𝐬) down the ensemble matrix (i.e. across 

recording epochs) that are used to estimate the noise level. The number of chosen single point 

columns used (𝑄𝑄) may be multiple or all columns available, i.e. 1 < 𝑄𝑄 ≤ 𝑀𝑀. If 𝑄𝑄 = 1, then the F 

statistic calculated would be equivalent to the Fsp as provided by Equation 3.17. This detection 

method was chosen, out of a number of alternative methods (Chesnaye et al., 2018), as it is 

implemented in commercially available auditory evoked potential software, making it clinically 

relevant. The Fmp is also mathematically closely related to its predecessor, the Fsp. Therefore, 

conclusions drawn when using the Fmp can theoretically be extrapolated to the Fsp. 
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For the purposes of calculating the Fmp on weighted data: the numerator of the Fmp equation 

was calculated as the variance of the weighted average (as opposed to the unweighted coherent 

average), and the denominator was calculated as the mean of the variance taken down multiple 

points of the weighted recording epochs in the ensemble. The weighted ensemble can be 

calculated by reorganising Equation 5.5, provided by Elberling and Wahlgreen (1985), and 

applying it to the raw blocks of weighted EEG data as opposed to the block sub-averages: 

𝐗𝐗�  =  

⎣
⎢
⎢
⎢
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⎢
⎢
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(5.9) 

where 𝐿𝐿 is the number of separate blocks of recording epochs, 𝐗𝐗� is the weighted ensemble, 𝐁𝐁𝐿𝐿 is 

the 𝐿𝐿𝑡𝑡ℎ block, 𝑉𝑉𝐿𝐿 is the estimated variance of the noise in the 𝐿𝐿𝑡𝑡ℎ block, and 𝑇𝑇 is the sum of the 

inverse of the variances across the 𝐿𝐿 blocks (a normalising factor). The coherent average of the 

weighted ensemble 𝐗𝐗� is equal to the weighted average 𝐱𝐱�, provided in Equation 5.5, allowing the 

Fmp statistic to be calculated. 

The specificity level of the detection method was evaluated relative to a pre-determined desired 

false positive rate of 0.01. This high level of specificity was selected as ABR interpretation in 

clinical practice typically requires a high degree of specificity (i.e. a low false positive rate), due to 

the negative impact of falsely detected responses on clinical outcomes (British Society of 

Audiology, 2019c). 

5.2.5 Weighted Averaging: Block Size 

Weighted averaging applies weights to blocks of epochs based on an estimation of the noise level 

within each block. One of the key parameters to be evaluated was the number of epochs-per-

block. Ideally a block size of one would be used (i.e. epochs being weighted individually), in order 

to provide weights specific to each recording epoch as noise levels may fluctuate at any point in 

time (Don and Elberling, 1994). Unfortunately, due to the small number of samples present when 

using a small block size, the noise level cannot be accurately determined, and the estimated 

variance of the noise in the block may be inaccurate, leading to sub-optimal weights being 

calculated. A trade-off is therefore sought between having sufficient epochs within each block to 

be able to accurately estimate the noise level and applying the weights precisely over time to 

small numbers of epochs. 
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In this study a range of values of the epochs-per-block parameter were explored. Given the 

ensemble size of 1,000 recording epochs, the values explored were all of the factors of 1,000: 

 
1,  2,  4,  5,  8,  10 ,  20,  25,  40,  50,  100,  125,  200,  250,  500,  1000 

5.2.6 Weighted Averaging: Estimation of the Noise Level 

For any given block size, the data within each block is used to estimate the noise level in order to 

calculate the weights to be applied. Previous studies have estimated the noise level by calculating 

the variance down a single point of the ensemble (using the same sample point in time across 

recording epochs) (Elberling and Wahlgreen, 1985). Don and Elberling (1994) recommended 

calculating the variance using all samples across eight evenly spaced columns in the ensemble. In 

this study we have combined these methods, using a multiple points method (Martin et al., 1994) 

which takes the mean of the estimated variance of the noise across multiple time points, i.e. the 

denominator in the Fmp detection method equation (Martin et al., 1994). Specifically, the 

variance was computed separately down all 71 columns in the block of recording epochs and the 

noise level estimate was calculated as the mean of these separate point estimates: 

𝑉𝑉𝐿𝐿 =  
1
𝑄𝑄
�𝑉𝑉𝑉𝑉𝑉𝑉�𝐬𝐬𝐬𝐬𝒊𝒊(𝑩𝑩𝑳𝑳)�
𝑄𝑄

𝑖𝑖=1

(5.10) 

where 𝑉𝑉𝐿𝐿 is the estimated noise level of the 𝐿𝐿𝑡𝑡ℎ block of recording epochs, 𝑄𝑄 is the chosen 

number of single point columns used, and 𝐬𝐬𝐬𝐬𝒊𝒊(𝑩𝑩𝑳𝑳) is the 𝑖𝑖𝑡𝑡ℎ chosen single point noise estimate 

from the 𝐿𝐿𝑡𝑡ℎ block. By estimating the noise level down columns of the ensemble and then 

averaging them together, the noise level estimate is theoretically unaffected by the presence of 

an ABR signal as the response is assumed to be deterministic with identical amplitude across all of 

the recording epochs within each column. This method is subsequently referred to as the ‘VAR 

MP’ method and serves to act as a baseline by which to compare the performance of other noise 

level estimation methods. 

An alternative method of estimating the noise level within the block (‘VAR Whole Block’) was also 

considered. In this second method the variance was calculated across all of the concatenated 

points across all of the recording epochs in the block (an extension of the method proposed by 

Don and Elberling (1994) where eight columns of points were used): 

𝑉𝑉𝐿𝐿 =  𝑉𝑉𝑉𝑉𝑉𝑉(𝐁𝐁𝐿𝐿) (5.11) 

where 𝑉𝑉𝐿𝐿 is the estimated noise level of the 𝐿𝐿𝑡𝑡ℎ block of recording epochs (𝐁𝐁L): a matrix with the 

dimensions 𝑁𝑁
𝐿𝐿

  by 𝑀𝑀 (the number of recording epochs per block by the number of sample points 
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per recording epoch). For example, using a weighted block size of two epochs (71 samples in 

each), the variance of all 142 concatenated discrete-time sample points would be used to 

estimate the noise level within the recording epochs in that block. This method has the advantage 

of making use of more data samples in the estimation of the variance of the noise. The limitation, 

however, is that the noise level estimate is confounded by the presence of the ABR signal. It is 

anticipated that because the variance of the ABR signal within a recording is low relative to the 

variance of the noise, that this effect will have a limited impact (Sörnmo and Laguna, 2005). 

The equation used for applying the weights to the averaging process was that provided by 

Elberling & Wahlgreen (1985), shown previously in Equation 5.5. 

5.2.7 Additional Simulation of Stationary Data 

This study analysed subject recorded no-stimulus EEG data, with ‘response present’ data being 

simulated through the addition of an ABR template to the subject recorded no-stimulus EEG data. 

These data were of varying degrees of stationarity. In order to provide further evaluation on the 

effects of the presented weighted averaging algorithms on stationary data, a further simulation 

was performed. For stationary data, unweighted averaging will be optimal, and it is necessary to 

be aware of any untoward effects weighted averaging may have on these data. For all of the 

ensembles in the dataset used in the first part of this study, the mean variance of the noise across 

all 1,000 recording epochs was calculated. The noise in each recording epoch was then scaled so 

that its variance was made equal to the mean variance of the noise across all recording epochs in 

the ensemble. If present, the ABR template was readded after scaling the noise. 

5.3 Results 

5.3.1 Evaluation of Noise Level Estimation Methods 

Within each block of recording epochs, the noise level was estimated in order to obtain the 

weights for weighted averaging. The more accurately the noise level within each block can be 

estimated, the more effective weighted averaging will be. Two separate methods of estimating 

the variance of the noise were evaluated in order to calculate the weights for weighted averaging. 

These were: 

1. The mean of the estimated variance of noise calculated separately down each column of 

the ensemble—the ‘VAR MP’ method. All 71 sample point columns were used in this 

calculation. 
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2. The variance of all sample points in the block concatenated—termed herein as the ‘VAR 

Whole Block’ method. 

Figure 5-4 shows a comparison of the partial ROC AUC score (Walter, 2005) across a range of 

block sizes used with weighted averaging. The partial ROC AUC score is the area under a partial 

region of the ROC curve, in this case the region corresponding to a false positive rate of ≤ 0.05, 

placing emphasis on the high specificity levels expected in clinical practice. A block size of 1,000 

epochs includes all of the epochs in the ensemble and is therefore identical to applying no 

weighting, i.e. mean coherent averaging. This level may therefore serve as a baseline performance 

level. As the block size decreases, the performance of both noise estimation methods gradually 

improved before dropping off at low block sizes. The ‘VAR Whole Block’ method was able to reach 

a higher partial ROC AUC, using a lower block size, which may be expected as more sample points 

are included in the variance estimate when concatenating the entire block, making the noise 

estimate more reliable. Note that it is not possible to estimate the variance of the noise using the 

‘VAR MP’ method for a block size of one as it is not possible to calculate the sample variance of a 

single number. The bootstrap method (with 500 bootstrap samples) was used to estimate the 

distribution of the partial ROC AUC statistic for each block size evaluated, providing standard error 

values for Figure 5-4. A paired-sample permutation test (Fisher, 1935; Pitman, 1937; Good, 2000) 

(using 5,000 permutations) was used to evaluate whether there was a difference in detection 

performance between the ‘VAR Whole Block’ method and the ‘VAR MP’ method. Correction for 

multiple comparisons was performed using the Bonferroni method (Bonferroni, 1936). The ‘VAR 

Whole block’ method was found to perform statistically significantly better than the VAR MP 

method across block sizes of 2-to-10 epochs-per-block. 
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Figure 5-4 Comparison of two methods for estimating the variance of the noise within each 

block. The evaluation metric used was the partial ROC AUC, i.e. the area under a 

partial region of the ROC curve, in this case the region corresponding to a false 

positive rate of ≤ 0.05. A higher partial ROC AUC score corresponds to a better ability 

to discriminate between ‘response present’ and ‘response absent’ data, over the 

false positive rates of interest. A single asterisk, *, indicates a Bonferroni-corrected 

two-sided p value of < 0.05, as calculated using a paired permutation test. A double 

asterisk, **, indicates a Bonferroni-corrected two-sided p value of < 0.01. Error bars 

represent the bootstrapped standard error of the partial ROC AUC. Figure 

reproduced with minor adaptations, in accordance with the CC BY 4.0 license, from 

McKearney, R. M. et al. (2023) ‘Optimising Weighted Averaging for Auditory 

Brainstem Response Detection’, Biomedical Signal Processing and Control, 83, p. 

104676. Available at: https://doi.org/10.1016/j.bspc.2023.104676. 

 

Figure 5-5 shows the ROC curves for each of the block sizes evaluated using weighted averaging. 

Figure 5-5 provides information complementary to Figure 5-4, but by presenting the entire ROC 

curve instead of the ROC AUC, a detailed breakdown of the Fmp performance across a range of 

false positive rates may be observed. The right graph in Figure 5-5 shows partial ROC curves with 

a false positive rate of up to 0.05. In this range, the block size of one epoch-per-block was an 

outlier, performing least well. Aside from this, the general trend was that the smaller the block 

size used, the better the performance. As block size decreases, weights can be allocated more 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.bspc.2023.104676
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precisely to the recording epochs, however, at the expense of a potentially less accurate estimate 

of the noise level. The performance appears generally to increase until the estimate of the noise 

level becomes unreliable, e.g. for a block size of one epoch-per-block. 

 

Figure 5-5 Receiver operating characteristic curves for each block size used with weighted 

averaging. The graph on the right shows the partial ROC curves corresponding to the 

bottom-left hand corner of the graph on the left. This zoomed in region covers the 

levels of false positive rate that would typically be required for clinical purposes and 

is therefore the most relevant region. Whereas Figure 5-4 provides a summary of the 

area under the curves in the graph on the right, this graph provides a visual 

breakdown of detection performance by block size across a range of false positive 

rates, confirming that lower block sizes generally performed better than larger ones 

across a range of false positive rates.  

Figure 5-6 shows that across all block sizes used with weighted averaging, the mean and median 

residual noise in the averaged waveform using the ‘VAR Whole Block’ method was always less 

than or equal to that obtained when using the ‘VAR MP’ method. Generally speaking, weighted 

averaging led to lower residual noise levels (calculated as the RMS of the averaged waveform 

after the ABR signal template, if present, had been removed) within the averaged waveform 

provided that the block size used was not too low. Note that the mean residual noise levels were 

greater than the median residual noise levels across all the evaluated block sizes, indicating a 

positively skewed distribution. This indicates that whilst a block size that produces a lower median 

residual noise level will be optimal in most cases, there will be a minority of cases where this 

choice of low block size will be very detrimental to the recording (i.e. increasing the residual 

noise). 
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Figure 5-6 Mean and median residual noise levels in the averaged waveform. Figure reproduced 

with minor adaptations, in accordance with the CC BY 4.0 license, from McKearney, 

R. M. et al. (2023) ‘Optimising Weighted Averaging for Auditory Brainstem Response 

Detection’, Biomedical Signal Processing and Control, 83, p. 104676. Available at: 

https://doi.org/10.1016/j.bspc.2023.104676. 

Based on the evidence presented in Figure 5-4 and Figure 5-6, the subsequently presented data 

were performed using the ‘VAR Whole Block’ method as the data suggested it to be the better of 

the two noise estimation methods evaluated. Whilst the ‘VAR Whole Block’ method potentially 

makes better use of the available information when estimating the noise level in the block 

compared to the ‘VAR MP’ method, it has the limitation of including a bias error (the variance of 

the ABR signal). This bias error is expected to be small for low SNR signals such as the ABR 

(Sörnmo and Laguna, 2005). A separate simulation exploring the magnitude of this limitation is 

shown in Appendix C. In summary: the ‘VAR Whole Block’ method was able to estimate the 

variance of the noise at least equally effectively or more so than the ‘VAR MP’ method across 

block sizes, provided the SNR was less than approximately -15 dB. Large ABR responses elicited by 

a 50 dB SL stimulus have SNRs in the range of -34.6 to -22.9 (mean = -27.9, n=12) (Chesnaye, 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.bspc.2023.104676
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2019), suggesting that the ‘VAR Whole Block’ method is favourable for low-SNR evoked potentials 

such as the ABR. 

5.3.2 The Effects of Weighted Averaging on ABR Detection using the Fmp / Evaluation of 

the Optimal Block Size 

5.3.2.1 Fmp Values 

This section aimed to investigate the effects of weighted averaging on the Fmp statistic. It is 

tempting to assume that if residual noise is lower in the weighted average that the Fmp value 

must therefore be higher, however, this is not necessarily the case as the denominator within the 

Fmp equation also takes into account the estimated variance of the noise level across all of the 

weighted recording epochs. It was therefore necessary to explore separately the effects of 

weighted averaging on the Fmp statistic, including an analysis of the ‘response absent’ condition 

where a change in Fmp performance could impact the false positive rate. 

 

Figure 5-7 Evaluation of the effects of weighted averaging on Fmp values. In all four graphs, the 

values presented are the absolute difference between the block size in question and 

a block size of 1,000, i.e. no weighting. Graphs A and C are concerned with mean 

values, whereas graphs B and D are concerned with median values. Figure 

reproduced with changes made, in accordance with the CC BY 4.0 license, from 

McKearney, R. M. et al. (2023) ‘Optimising Weighted Averaging for Auditory 

Brainstem Response Detection’, Biomedical Signal Processing and Control, 83, p. 

104676. Available at: https://doi.org/10.1016/j.bspc.2023.104676. 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.bspc.2023.104676
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In Figure 5-7, in graphs A and B, it can be seen that as the block size used with weighted averaging 

decreased, the mean and median Fmp values of ABR present ensembles tended to increase. It can 

also be observed that an unintentional side-effect of the weighted averaging procedure using the 

‘VAR Whole Block’ method was an inflation of the Fmp values for ‘response absent’ ensembles, 

predominantly affecting small block sizes. This would serve to increase the false positive rate, i.e. 

the proportion of no-stimulus recordings that are incorrectly determined to contain a response. 

To evaluate this further, a separate individual evaluation on the effects of weighted averaging on 

the numerator (evoked potential signal estimate) and denominator (noise estimate) of the Fmp 

equation is shown in Figure 5-8. A separate evaluation (shown in Appendix D—Figure A 5) using 

the ‘VAR MP’ method found this same phenomenon to be present and in fact to a larger extent. 

 

Figure 5-8 Evaluation of the effects of weighted averaging on the numerator (evoked potential 

signal variance estimate) and denominator (noise variance estimate) of the Fmp 

equation for ‘response absent’ data. It can be seen that whilst the mean and median 

estimate of the variance of the ABR signal decreased with decreasing block size, the 

mean and median estimates of the variance of the noise decreased by a greater 

extent, resulting in the inflated Fmp values observed in Figure 5-7 for ‘response 

absent’ data. 

Figure 5-9 shows the mean change in Fmp value when applying weighted averaging, broken down 

by the original unweighted Fmp value of the ensemble. The Fmp statistic is expected to follow an 

F-distribution with a mean value of ~1 (Elberling and Don, 1984), as shown in the equation 

provided by Mood, Graybill and Boes (1974): 

𝐸𝐸[𝐹𝐹] =  
𝑣𝑣2

𝑣𝑣2 − 2
     𝑓𝑓𝑓𝑓𝑉𝑉 𝑣𝑣2 > 2 (5.12) 

The mean Fmp value obtained empirically from the unweighted no-stimulus data was 0.952, 

compared to an expected mean value of 1.002 (Equation 5.12). It can be seen from Figure 5-9A 
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that for ensembles with an unweighted Fmp of less than one, the weighted Fmp value tended to 

increase; in contrast, for ensembles with an unweighted Fmp of more than one, the weighted 

Fmp value tended to decrease. As there was a preponderance of low unweighted Fmp value 

ensembles within the dataset (Figure 5-9B), the mean Fmp value across all ensembles tended to 

increase when weighted averaging was applied. 

 

Figure 5-9 Analysis of the null distribution of the unweighted Fmp statistic and the impact of 

weighted averaging. Graph A shows the mean change in Fmp when applying 

weighted averaging with 2 epochs-per-block, compared to the original unweighted 

Fmp value. Graph B shows the null distribution of the unweighted Fmp statistic. 

Figure reproduced with changes made, in accordance with the CC BY 4.0 license, 

from McKearney, R. M. et al. (2023) ‘Optimising Weighted Averaging for Auditory 

Brainstem Response Detection’, Biomedical Signal Processing and Control, 83, p. 

104676. Available at: https://doi.org/10.1016/j.bspc.2023.104676. 

Figure 5-10 shows the density plot of the unweighted ‘response absent’ data Fmp statistic 

compared to the density plot of the closest-matching F-distribution with 𝑣𝑣2 constrained to be 

equal to 999 df (𝑣𝑣1=7). A one-sample permutation test (using 20,000 permutations) was 

performed in order to test the null hypothesis that there was no difference between the observed 

null mean Fmp value and the expected mean value of an F-distribution with 𝑣𝑣2 = 999 df 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.bspc.2023.104676
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(calculated using Equation 5.12 to be 1.002); the two-sided p value was <0.001, meaning that the 

difference between the observed mean and expected unweighted null Fmp statistic was 

statistically significantly different. If this result did not occur due to chance, then what was the 

reason for this difference in Fmp distribution? Is it possible that the assumptions of the F-test 

were violated? 

 

Figure 5-10 Density plot of the unweighted no-stimulus Fmp statistic compared to the closest-

fitting F-distribution. 

The deviation of the null distribution of the Fmp statistic from the expected F-distribution may be 

contributed to by a number of factors, including: 

• Independence violations. 

• Violation of the assumption of normality. 

• An interaction between artefacts, the artefact rejection threshold, and the filter settings. 

• Non-stationarity in the data. 

• Chance. 

• Any combination of the above. 

• Other. 

The F-test of equality of variances is sensitive to non-normality (Pearson, 1931; Box, 1953). The F-

test also makes the assumption that the two variances in the ratio are independent (Kenny, 1953), 

and that the samples are randomly selected (Mood, Graybill and Boes, 1974). In a study by 
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Zimmerman and Zumbo (1992) using simulations to examine the effects on non-independence 

between sample observations in ANOVA F-tests, it was observed that non-independence of 

sample values between groups led to a significant decrease in type I errors, and an associated 

increase in the probability of a type II error. This was initially thought to be the potential cause of 

the lower-than-expected null F statistic. Zimmerman and Zumbo (1992) note that violations to the 

independence assumption ‘can have severe consequences for significance testing’. 

An investigation into the effects of non-independence was performed, however, it later 

transpired that the simulated serial correlation was not the cause of the lower-than-expected 

mean Fmp value. This simulation study is presented in Appendix E. In summary, it was found that 

by increasing the strength of the low-pass filter applied to randomly generated white Gaussian 

noise, i.e. increasing dependence between samples, the distribution of the samples became less 

normally distributed and the mean Fmp value decreased. As it later emerged, the decrease in the 

null Fmp value observed when increasing the strength of the low-pass filter was not a result of 

increasing non-independence between samples. 

After much deliberation regarding the cause of the lower-than-expected mean Fmp value, my 

supervisors discussed this finding with a fellow researcher investigating auditory evoked 

potentials who was able to shed light on the matter. Dr Jaime Undurraga (J. Undurraga, personal 

communication, 2022) suggested that the observed low mean Fmp value may be due to the 

length of the analysis window, a caution that Elberling and Don (1984) voice in their original Fsp 

paper. This effect has also been reported on by the British Society of Audiology (2019c), where 

the median of the null Fsp statistic was found in a particular study to be noticeably below 1. 

Elberling and Don (1984) advise that if the analysis window is fixed in length, then the estimated 

variance of the coherent average will not fully reflect the signal power of frequency components 

below the level of 1 𝑉𝑉𝑛𝑛𝑉𝑉𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠 𝑤𝑤𝑖𝑖𝑛𝑛𝑤𝑤𝑓𝑓𝑤𝑤 𝑎𝑎𝑙𝑙𝑛𝑛𝑙𝑙𝑡𝑡ℎ (𝑖𝑖𝑛𝑛 𝑠𝑠𝑙𝑙𝑠𝑠𝑓𝑓𝑛𝑛𝑤𝑤𝑠𝑠)  𝐻𝐻𝐻𝐻⁄ . Any frequency components 

present in the coherent average below this frequency cut-off will not be represented fully in the 

calculation of the variance of the coherent average, i.e. the numerator of the Fmp equation. This 

effect does not affect the denominator of the Fsp/Fmp equation, resulting in a bias towards low 

Fmp values in the null condition. The analysis window in the experiment presented in this chapter 

was 14 ms in length. Frequency components below 71 Hz and above the high-pass filter level of 

30 Hz would therefore be partially excluded from contributing to the Fmp numerator but be 

present in the denominator. The decrease in mean Fmp value produced in the simulations in 

Appendix E, were therefore due to the variance estimate of the coherent average (the Fmp 

numerator) not fully reflecting the power of low-frequency signal components, rather than the 

serial correlation introduced by the autoregressive filter. Figure 5-11 demonstrates the effects of 

analysis window length on the mean Fmp value, using simulated coloured noise (using the 
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autoregressive filter as described in Appendix E, with a filter numerator coefficient value of 0.7). 

The analysis window over which to calculate the Fmp value was applied to the central samples 

within an ensemble of size 1,000 epochs by 1,000 discrete-time samples (2,000 simulations used). 

Shorter analysis windows corresponded to a lower Fmp value, due to a decrease in the Fmp 

numerator (Figure 5-11). It is important that the results presented in this chapter are interpreted 

in light of the bias present in the Fmp statistic as a result of the fixed analysis window length. 

 

Figure 5-11 Effect of analysis window size on Fmp value. Figure reproduced without changes, in 

accordance with the CC BY 4.0 license, from McKearney, R. M. et al. (2023) 

‘Optimising Weighted Averaging for Auditory Brainstem Response Detection’, 

Biomedical Signal Processing and Control, 83, p. 104676. Available at: 

https://doi.org/10.1016/j.bspc.2023.104676. 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.bspc.2023.104676


Chapter 5  

108 

5.3.2.2 Specificity 

A reliable level of specificity across all conditions is critical for an ABR detection method to be 

deemed reliable for use in clinical applications. Figure 5-12 shows the specificity obtained across a 

range of block sizes using the Fmp detection method. The significance of an Fmp value is 

traditionally obtained from a theoretical F-distribution with a conservatively selected five df 

(Elberling and Don, 1984; British Society of Audiology, 2019c). Conservative selection of this 

parameter is hypothesised to be the cause of higher-than-expected specificity levels (Chesnaye et 

al., 2018), i.e. the observed overly high specificity achieved across block sizes of 2–1,000. It is 

possible that the lower-than-expected mean Fmp value in the null distribution is also (partially) 

responsible for the higher-than-expected false positive rates observed. For the block size of one 

epoch-per-block, the specificity obtained was much lower than expected. Comparing these results 

to Figure 5-7; the mean Fmp value of the ‘response absent’ data increased sharply for one epoch-

per-block, coinciding with the sharp decrease in specificity observed in Figure 5-12. For all of the 

other block sizes, the Fmp inflation for no-stimulus data was low and therefore did not appear to 

significantly affect specificity performance. 

 

Figure 5-12 Fmp specificity using weighted averaging. Specificity was measured as the proportion 

of ‘response absent’ data correctly identified as containing no response. Figure 

reproduced with minor adaptations, in accordance with the CC BY 4.0 license, from 

McKearney, R. M. et al. (2023) ‘Optimising Weighted Averaging for Auditory 

Brainstem Response Detection’, Biomedical Signal Processing and Control, 83, p. 

104676. Available at: https://doi.org/10.1016/j.bspc.2023.104676. 

5.3.3 Sensitivity 

Figure 5-13 shows an evaluation of the sensitivity level achieved per block size used with 

weighted averaging. It also includes a break-down of performance according to the SNR of the 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.bspc.2023.104676
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‘response present’ data. The sensitivity is presented with the Fmp critical value adjusted to the 

level which maintained a false positive rate of exactly 0.01. This prevents a detection method 

where the specificity level is lower from having an unfair advantage (e.g. choosing a detection 

criterion which produces a specificity of 0 could yield a sensitivity of 1) (Chesnaye et al., 2018). 

Across all of the ‘response present’ data, the improvement in sensitivity observed between 

unweighted averaging and weighted averaging using 10 epochs-per-block was modest (0.410 

increasing to 0.467, i.e. a 13.9% relative increase). The low detection rate is in large part 

attributable to the inclusion of low SNR data. When the ABR present data were stratified into 

three equal sized SNR groups (low-, mid-, and high-SNR data), the improvement in detection 

performance using smaller block sizes was less marked for the low- and high-SNR strata. These 

ensembles likely correspond to data well below or well above the detection criterion. A greater 

effect was observed in the mid-SNR range as these data reflect the ensembles straddling the 

detection criterion on the cusp of being detected/not detected. The sensitivity for detecting these 

mid-SNR ‘response present’ ensembles increased from 0.257 to 0.368 comparing unweighted 

averaging to weighted averaging using a bock size of 10 epochs-per-block. This absolute increase 

in sensitivity of 0.111 corresponds to a relative improvement in detection of 43%. The data for 

this experiment, but instead using the ‘VAR MP’ method, are available in Appendix D for 

comparison. In summary, the graphs for the ‘VAR MP’ method followed the general trend of 

those shown in Figure 5-13 (using the ‘VAR Whole Block’ method) with a greater improvement in 

sensitivity observed for mid SNR data compared to low- and high-SNR data, however, the peak 

sensitivity levels were lower when using the ‘VAR MP’ method. Any observed gain in sensitivity 

from using a smaller block size being harnessed, relies on being able to control the false positive 

rate. 
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Figure 5-13 Sensitivity achieved across different block sizes. In order to assess the level of 

sensitivity fairly, the Fmp critical value was adjusted to that which achieved the 

desired false positive rate (0.01) exactly. Plot A shows the sensitivity level across 

block sizes as the proportion of all of the ‘response present’ ensembles correctly 

detected. For graphs A, B and C, the ‘response present’ data were stratified into 

three evenly split groups of low- (< -32 dB), mid- (-32 to-27 dB), and high-SNR 
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(> - 27 dB) ‘response present’ data. The sensitivity was then calculated for each 

portion of the ‘response present’ data. 

5.3.4 Controlling the False Positive Rate 

Data processing techniques such as weighted averaging may alter the properties of the data 

(Lütkenhöner, Hoke and Pantev, 1985) and potentially alter the performance of statistical 

detection methods. Figure 5-14 shows how weighted averaging (in combination with the data 

processing parameters used) can alter the Fmp null probability distribution. It could be that this is 

a result of the Fmp bias introduced by the analysis window length used. Weighted averaging is 

expected to affect low-frequency components in the EEG data the most (Hoke et al., 1984). This 

effect would vary by block size, with the effect of the Fmp bias therefore also varying. In order for 

the benefits of weighted averaging to be harnessed, the false positive rate must be controlled so 

that the detection method performs stably and reliably across a variety of data. One such method 

of controlling the false positive rate is through the use of the bootstrap technique described in 

Section 3.3 (The Bootstrap Technique).  

 

Figure 5-14 Weighted averaging can alter the null probability distribution. For low block sizes, a 

right-shift in the null probability distribution was observed, corresponding to an 

inflation in the Fmp values of the ‘response absent’ data. 

Figure 5-15 shows how the original bootstrap technique (Lv, Simpson and Bell, 2007) performed 

at stabilising the false positive rate. Using the bootstrap technique, the specificities recorded were 

consistently within the expected 95% CI across block sizes, even when no weighted averaging was 
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applied (i.e. unweighted averaging). The binomial proportion 95% CI was calculated using the 

Wilson score interval method (Wilson, 1927). 

 

Figure 5-15 Controlling the false positive rate using the bootstrap. The top graph shows the 

specificity achieved using the Fmp statistic combined with weighted averaging and 

the bootstrap technique. The bottom graph shows the sensitivity achieved using this 

method, with the critical value adjusted to give a false positive rate of exactly 0.01. 

Figure reproduced with changes made, in accordance with the CC BY 4.0 license, 

from McKearney, R. M. et al. (2023) ‘Optimising Weighted Averaging for Auditory 

Brainstem Response Detection’, Biomedical Signal Processing and Control, 83, p. 

104676. Available at: https://doi.org/10.1016/j.bspc.2023.104676. 

Using the bootstrap technique allowed a higher detection rate to be achieved using smaller block 

sizes, without incurring an increase in the false positive rate. 

5.3.5 Analysis of Simulated Stationary Data 

Figure 5-16 shows the distribution of a measure of the stationarity of the noise within each 

‘response absent’ ensemble. A large portion of the ensembles were mostly stationary. However, 

there are some ensembles which displayed a high degree of non-stationarity.  

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.bspc.2023.104676
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Figure 5-16 A histogram presenting the stationarity of the subject recorded no-stimulus EEG 

ensembles. The degree of stationarity was calculated as the variance of the variance 

of each of the 1,000 recording epochs in each ensemble. Data where the noise 

variance in each recording epoch was identical would be expected to have a value of 

zero. 

Weighted averaging confers a benefit over unweighted averaging only when the data are non-

stationary. It is important that detection methods combined with weighted averaging work well 

also when the background noise is stationary. Figure 5-16 shows an analysis of weighted 

averaging using simulated stationary data (see 5.2.7). Both methods of estimating the variance of 

the noise for applying weighted averaging performed increasingly worse using smaller block sizes, 

however, the ‘VAR MP’ method performed worse than the ‘VAR Whole Block’ method for these 

stationary data. These data highlight the danger of selecting too low a block-size where the 

estimate of the noise level in each block become inaccurate. Note that this result may be 

influenced by the length of the Fmp analysis window used. 
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Figure 5-17 Analysis using simulated stationary data where the noise had equal variance across 

all recording epochs in the ensemble. Unlike in Figure 5-4 where weighted averaging 

was evaluated on a dataset including non-stationary data, there is no increase in 

partial ROC AUC observed, only a decrease in performance when too low a block size 

was selected. Weighted averaging can therefore be harmful to detection 

performance for stationary data if too low a block size is chosen. 

5.3.6 Machine Learning—Feature Comparison 

Relating the work of the current study to the research presented in Chapter 4, weighted averaging 

may be used as a feature extraction technique to provide input features to the machine learning 

model which have a higher SNR compared to when using unweighted averaging. An additional 

research question was therefore proposed: providing the coherently weighted average to the 

stacked ensemble as an input feature will lead to improved ABR detection performance, 

compared to when using the unweighted coherent average. To compare performance when using 

the different input features, the stacked ensemble presented in Chapter 4 was trained on two 

versions of the training set: either the original features including the unweighted average, or the 

original features with the unweighted average replaced with the weighted average were used. 

Note that the other input variables, such as all of the input variables to the random forest branch 

of the stacked ensemble, were the same for both feature sets. Using optimised hyperparameters 

the stacked ensemble was trained on each training feature set and then evaluated on the test set 

data (containing the same extracted features), repeated 50 times, to produce Figure 5-18. No 

significant difference in test set performance was found between the two feature sets (Mann-

Whitney U test; U=1180, p=0.32 two-tailed). This may reflect the incremental benefits in residual 

noise reduction using weighted averaging compared to unweighted averaging (Figure 5-6). 
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Moreover, these incremental benefits may be eclipsed by the importance of the multiple other 

input features used by the stacked ensemble, rendering a slight improvement in the quality of this 

one input feature redundant. 

 

Figure 5-18 Feature comparison. The stacked ensemble was trained on each feature set 

containing either the unweighted average or weighted average (amongst the many 

other input features used by the stacked ensemble) and evaluated on the test set 

over 50 iterations. 

5.4 Discussion 

Weighted averaging is an effective technique for reducing the residual noise level present in the 

coherently averaged waveform (Hoke et al., 1984; Elberling and Wahlgreen, 1985). If the noise 

level within each recording epoch can be accurately estimated, weighted averaging using inverse-

variance weighting is known to minimise the variance present in the evoked potential signal 

estimate (Hartung, Knapp and Sinha, 2008).  

5.4.1 Observed Bias in the Fmp Statistic 

Data pre-processing algorithms such as weighted averaging can alter the properties of the data 

(Lütkenhöner, Hoke and Pantev, 1985), which may have unintended effects upon the 

performance of ABR detection methods. Figure 5-11 shows how a short-length analysis window 

led to lower-than-expected mean Fmp values. This is due to the exclusion of signal power for 



Chapter 5  

116 

frequencies below the cut-off imposed by the finite-length analysis window (Elberling and Don, 

1984). Increasing the length of the analysis window is one potential solution. However, increasing 

the length of the analysis window beyond the duration of the evoked potential being measured, 

has the potential to reduce the SNR obtained. Elberling and Don (1984) advocate ‘appropriate 

high-pass filtering’, i.e. increasing the level of the high-pass filter so that it is equal to or greater 

than the low-frequency component cut-off introduced by the finite analysis window length. This 

has the limitation of potentially excluding low-frequency components of the ABR signal. Note that 

the high-pass filter setting used in this study was 30 Hz, based on the recommendations of the 

BSA for ABR testing in infants (British Society of Audiology, 2019c). In order to investigate the 

effects of the high-pass filter setting, a simulation was performed, reanalysing the data used in 

the present study, but with the high-pass filter settings raised from 30 to 100 Hz. This avoids low-

frequency signal power from being excluded from the Fmp numerator due to the 14 ms window 

length used. The results of this simulation are presented in Appendix F. In summary, the results 

showed that, in terms of ABR detection and residual noise reduction, the ‘VAR Whole Block’ 

method still performed more effectively than the ‘VAR MP’ method, although the differences in 

performance between methods were less noticeable than in Figure 5-4. This is likely because 

raising the high-pass filter noticeably reduced the background noise levels, minimising the impact 

that weighted averaging can have. The mean null Fmp value in the dataset was 1.02 (expected 

value 1.002). The inflation in the ‘response absent’ Fmp statistic observed when weighted 

averaging was applied (Figure 5-7) may have been as a result of the low mean null Fmp statistic 

and caused by the effect of the finite analysis window length.  

When weighted averaging is applied, this will serve to reduce the frequency components most 

present in the noise, i.e. low frequencies for EEG data. By reducing the low-frequency noise 

content, weighted averaging would minimise the effect of the bias introduced by the analysis 

window length, thereby increasing the null Fmp value. Whilst this explanation is plausible, it 

should be noted that whilst raising the high-pass filter from 30 to 100 Hz much reduced the 

‘response absent’ Fmp inflation, the median Fmp value was still significantly raised when applying 

weighted averaging with a block size of one (Figure A 10). Further investigation into the effects of 

analysis window length, filter settings and weighted averaging parameters is warranted. 

Of note, the ABR detection performance was improved when raising the high-pass filter from 30 

to 100 Hz (Figure A 9). This is likely because the SNR of the data was increased by excluding the 

low-frequency power of the background noise. It should be noted, however, that this result is 

based on simulations using one single ABR template (spectral content will vary depending on the 

ABR template used). Further work is required to investigate the optimal filter settings, using 

clinical data recorded from a large number of individuals.  
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As a note of caution, a finite analysis window length which (partially) excludes low-frequency 

components in the Fmp numerator may have the potential to reduce ABR detection performance. 

This is because, as well as underestimating low-frequency signal power of the averaged 

background noise (which contributes to the Fmp numerator), it may also underestimate the low-

frequency power of the evoked potential signal (also contributing to the Fmp numerator). A short 

analysis window length, coupled with a high-pass filter setting which partially excludes low-

frequency signal power, will underestimate the averaged background noise level in the Fmp 

numerator as well as, possibly, the evoked potential for ‘response present’ data, decreasing the 

value of the Fmp statistic. The analysis window Fmp bias is therefore hypothesised to potentially 

have a double-reduction effect on the Fmp value of ‘response present’ data, where the Fmp value 

may be reduced by a greater factor than that of the ‘response absent’ data, reducing ABR 

detection performance. Increasing the length of the analysis window will allow more low 

frequency evoked potential signal power into the Fmp numerator variance estimate. This will only 

increase the SNR overall if the expansion of the analysis window length does not diminish the 

average power of the evoked potential signal by including latencies which capture little ABR signal 

power, i.e. it is possible that whilst increasing the analysis window length may introduce greater 

low-frequency signal power, the benefit to the overall SNR may be outweighed by the analysis 

window being expanded to include regions of low SNR. 

An alternative method to overcoming the bias in the Fmp statistic is to use the bootstrap 

technique. This has been shown to control the false positive rate (Figure 5-15) but may not 

overcome the effect of the Fmp bias on ABR detection performance. The bootstrap method may 

also be used in combination with the above recommendations. Figure 5-7 shows that whilst the 

Fmp value is boosted by weighted averaging for ‘response present’ ensembles, it can also be 

inflated for ‘response absent’ ensembles if too low a block size is used, leading to a raised false 

positive rate. Methods to control the false positive rate are required to harness any boost in 

detection offered by weighted averaging and to ensure that a stable level of specificity is 

achieved. The bootstrap technique (Lv, Simpson and Bell, 2007; Chesnaye et al., 2018; Chesnaye, 

2019) (Section 3.3) was found to successfully control the false positive rate across all of the block 

sizes evaluated (Figure 5-15), allowing even smaller block sizes to be used, achieving an increase 

in detection performance without an increase in the false positive rate. 

A high-pass filter setting of 30 Hz was chosen, based on the recommendation of the BSA 

guidelines for ABR testing in babies (British Society of Audiology, 2019c). Whilst a high-pass filter 

setting of 100 Hz was found later to be more effective than 30 Hz (Appendix F), the main data 

presented in this chapter reflect the 30 Hz condition. This is because, whilst performance was not 

as good, these data reflect more accurately what may be being currently observed in clinical 
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practice. These data also serve to warn clinicians on the combined effects of the Fmp analysis 

window length and the high-pass filter setting, especially when applying weighted averaging. This 

study highlights the need for further research optimising these parameters, with some additional 

data using a high-pass filter setting of 100 Hz presented in Appendix F. The recommendations in 

Section 5.4.3  regarding optimisation of the block size parameter are therefore based on the 

originally selected 30 Hz high-pass filter setting. 

5.4.2 Noise level Estimation Methods 

Due to the limited number of (independent) discrete-time sample points within each recording 

epoch it is typically not possible to accurately estimate the noise level in order to compute an 

accurate weight for each recording epoch. This has led to the approach of weighting groups of 

epochs together in blocks, rather than weighting them individually. Smaller block sizes allow the 

weights to be applied more precisely. However, if the block size is too small, the variance of the 

noise cannot be accurately estimated, and the weights calculated will not accurately reflect the 

changing noise levels over time within the EEG recording. A trade-off is therefore sought. This 

study explored two methods of estimating the variance of the background noise: calculating the 

variance down multiple points across recording epochs (Elberling and Wahlgreen, 1985; Martin et 

al., 1994), and calculating the variance of all samples within a block. Figure 5-4 shows how the 

‘VAR Whole Block’ method was able to achieve a higher partial ROC AUC score, compared to the 

‘VAR MP’ method; a statistically significant difference between the two methods was observed 

for block sizes of 2-to-10 epochs-per-block. This suggests that the ‘VAR Whole Block’ method was 

able to estimate the variance of the noise more accurately within each block, allowing more 

precise weighting using smaller block sizes to be applied. This is consistent with the findings 

presented in Figure A 3. The ‘VAR Whole Block’ method increases the degrees of freedom present 

in the variance estimate, compared to the ‘VAR MP’ method. However, the ‘VAR Whole Block’ 

method has the limitation of introducing a bias factor in the estimate due to the variance 

estimate being affected by the presence of the evoked potential signal. This type of bias is 

expected to be of little significance when analysing low SNR signals such as the ABR (Sörnmo and 

Laguna, 2005). Having said this, selecting the VAR MP method may still be a reasonable option 

given the relatively small amount of benefit conferred by the VAR Whole Block method and the 

potential for untoward effects due to the bias in the variance estimate. The accuracy of the noise 

estimate may be improved further by expanding the analysis window length (if possible) to 

include more sample points (note that varying the analysis window length may affect the SNR). 
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5.4.3 Optimising the Block Size Parameter 

Having assessed the optimal method for estimating the variance of the noise within each block, 

the optimal block size was subsequently analysed. A block size of 250 epochs-per block was 

recommended initially by Elberling and Wahlgreen (1985) using the single point method of 

estimating the noise level, with the acknowledgement that a lower value for this parameter 

would likely be more effective yet. Subsequent research showed that a block size of 32 epochs-

per block reduced the residual noise within the average the most, estimating the noise level from 

eight points within each recording epoch (Don and Elberling, 1994). This was the lowest value for 

the block size parameter evaluated by Don and Elberling (1994), with the indication that even 

lower values may improve performance further. Indeed, using a form of iterative weighted 

averaging, Riedel, Granzow and Kollmeier (2001) found a block size of four epochs-per-block to be 

most effective. However, due the small number of simulated recordings used in that particular 

analysis, interpretation of the optimal block size is challenging. 

Considering the data presented in the Results section, a reasonable best compromise for the 

block size parameter was found to be approximately 10–20 epochs-per-block. If a block size lower 

than this is used, performance may decline sharply as the accuracy of the noise level estimate 

decreases. Whilst median results (residual noise and Fmp levels) improved with lower block sizes, 

the mean values declined (Figure 5-7). This indicates that whilst a lower block size that optimises 

median residual noise reduction may be beneficial in the majority of cases, it will result in 

weighted averaging having a serious detrimental effect on a minority of recordings (increasing the 

residual noise levels). This increase in residual noise levels when using weighed averaging with a 

low block size was also observed by Riedel, Granzow and Kollmeier (2001). The optimal block size 

for clinical evaluation should avoid this drop-off in mean performance and probably therefore err 

on the side of caution, leading to the recommendation of selecting a slightly larger block size. The 

decrease in performance caused by cautiously selecting a slightly larger block size than may be 

optimal, likely outweighs the risks of selecting too low a block size. There is also the risk that the 

presented results may not tally exactly with those that may be obtained from other sources of 

EEG data using different recording parameters (e.g. sampling rate and filter settings). 

Performance too, depends on the degree of non-stationarity of the data. Selecting a slightly larger 

block size would provide leeway for any variation that may be observed in new data, avoiding the 

steep drop-off in detection performance observed when too low a block size was selected (Figure 

5-4). Based on this and the evidence provided using the present dataset, a block size of 20 is 

recommended. Using the ‘VAR Whole Block’ method, 20 epochs-per-block produced no sizeable 

decrease in performance using simulated stationary data, whereas lower block sizes caused an 

increasing drop-off in performance. For recording settings which may limit the degrees of 
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freedom of the data (i.e. there being fewer independent samples within the analysis window), an 

even higher value block size parameter would be recommended in order to allow accurate 

weights to be computed. Note that these recommendations are based on the recording 

parameters used in the study, including filter settings based on British Society of Audiology 

(2019c) recommendations, and the chosen analysis window length (14 ms), which contributed to 

a bias in the Fmp numerator. It should be noted, that when repeating the analysis using a high-

pass filter set to 100 Hz, the optimal block size was one epoch-per-block using the ‘VAR Whole 

Block’ method (Appendix F). Further analysis is provided in Appendix F where different filter 

settings are used to avoid the bias in the Fmp statistic. Raising the high-pass filter to 100Hz, 

reduced the Fmp inflation for the ‘response absent’ data. 

5.4.4 Limitations and Ideas for Future Work 

Whilst the ‘response absent’ data used in this study is recorded from subjects, the ‘response 

present’ data are simulated through the addition of an ABR template (derived from only one 

recording) to each recording epoch. Whilst the noise and response signal in evoked potential 

recordings are assumed to be additive (Wong and Bickford, 1980; Elberling and Don, 1984), the 

results obtained based on simulated data may not extrapolate wholly to subject recorded data. 

Simulation aside, it is also possible that the results based on subject recorded ‘response absent’ 

EEG used in this study may not generalise to other sources of EEG, especially if the recording 

settings vary to those used in the present study. The frequency spectrum of the EEG, 

independence between samples, independence between epochs, and Fmp analysis window 

length, may vary between datasets, and so it is possible that these the recommendations based 

on the findings presented may not be optimal across all recording setups and patient groups. A 

cautious approach to the use of processing methods such as weighted averaging is advisable, 

avoiding very low block sizes which can cause a steep drop in detection performance. The steep 

drop-off in performance observed for low block sizes may occur at a different block size if the 

characteristics of the EEG differ. Data factors which may warrant higher levels of caution in the 

choice of block size include:  

• A lower number of sample points in the block of epochs from which the variance of the 

noise is estimated. 

• A higher sampling rate, meaning that there will be greater correlation between samples 

within recording epochs which serves to reduce the number of independent samples in a 

noise estimate (assuming the overall number of samples in the analysis window remains 

the same). 
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• Spectral content of the EEG; EEG noise containing ‘a narrow band of dominant 

frequencies’ (Elberling and Don, 1984) will contain fewer independent samples from 

which to accurately estimate the variance of the noise in the block. 

A conservative choice of block size (erring on the side of choosing a larger value for this 

parameter) may not provide optimal detection performance but will help to avoid the significant 

untoward effect of selecting too low a block size which was observed. Whilst very low block sizes 

were found to be suboptimal, the peak performance by block size is quite level across a range of 

block sizes (Figure 5-6—residual noise reduction), providing a wide choice of reasonable block size 

parameter values. It should be noted that much of the analysis was performed using an Fmp 

analysis window of 14 ms as described in the Methods section. This introduced a bias to the Fmp 

statistic. This works highlights the importance of being cautious when considering the Fmp 

analysis window length and filter settings when applying weighted averaging to ABR data. Whilst 

additional data using a 100 Hz high-pass filter setting was found to improve ABR detection 

(Appendix F), the results are based on simulation using only one single ABR template. Further 

work is required to evaluate the combined effects of Fmp analysis window length, filter settings 

and weighted averaging parameters using a large database of subject recorded data before a 

definitive recommendation of parameter settings can be made. 

The Fsp/Fmp statistic has been observed to have a lower-than-expected false positive rate (Figure 

5-12—block sizes 2–1,000) (Chesnaye et al., 2018; Chesnaye, 2019; McKearney et al., 2022). This 

has been attributed to the conservative choice of five df applied to the Fmp numerator, when 

calculating the p value for a given Fmp statistic, when in practice the number of degrees of 

freedom within the coherent average is typically greater than this (Elberling and Don, 1984; 

Chesnaye et al., 2018). It is possible that this may also be partially contributed to by the low mean 

Fmp values caused by the analysis window length. Further work is recommended whereby the 

high-pass filter setting and analysis window length is varied, and the mean null Fmp statistic is 

measured as the dependant variable. This will help to determine the relative contributions of 

these two factors in causing the lower-than-expected false positive rate. 

The current work shows that optimised weighted averaging may significantly increase detection 

performance, however, the optimal recommendation for block size likely needs to be determined 

for specific recording setups. It is not possible to provide a single recommendation for optimal 

block size that will cover all eventualities. Further work is recommended to explore the combined 

effects of varying recording parameters, the weighted averaging noise estimation method, and 

the block size used with weighted averaging on the ABR detection performance levels prior to 

implementing any changes to clinical evoked potential equipment software on the basis of the 
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research in this chapter. The Fmp statistical detection method was chosen for evaluation in the 

current study due to the ubiquitous use of this detection method and its relation the Fsp in clinical 

auditory evoked potential recording software. These methods have been found to perform less 

well than Hotelling’s T2 test and the q-sample uniform scores test and its modifications (Chesnaye 

et al., 2018). Future work may explore the effects of combining weighted averaging with these 

alternative ABR detection methods. 

5.5 Conclusions 

Weighted averaging can be used to improve the SNR within the averaged waveform as well as 

improve ABR detection using the Fmp. Weighted averaging using a block size of 10 led to a 13.9% 

relative increase in ABR detection rate using the Fmp (corrected to maintain the same false 

positive rate), compared to conventional unweighted coherent averaging. Weighting blocks of 

epochs inversely to the variance of the noise using the ‘Whole Block’ method proved more 

effective than the ‘VAR MP’ method. Block size is an important parameter in weighting averaging. 

It must neither be so high such that weights are applied imprecisely, nor be too low—causing the 

noise level and therefore the weights to be inaccurately estimated. A block-size of 20 epochs-per-

block achieved near-optimal residual noise reduction for the dataset used, whilst providing some 

leeway for differences in EEG characteristics, and avoiding the roll-off in detection performance 

observed when using very low block sizes. This choice may be influenced by recording settings 

and if in doubt, it is safer to select a slightly larger block size than a smaller one. The bootstrap 

technique may be used to control the false positive rate, allowing the benefits in ABR detection 

from weighted averaging to be harnessed whilst preserving a stable level of specificity. The 

chosen Fmp analysis window length was found to bias the Fmp statistic and in turn the 

performance of weighted averaging. This study highlights the caution required when selecting 

Fmp analysis window length and weighted averaging parameters. Raising the high-pass filter from 

30 Hz to 100 Hz was found to minimise this issue and improved ABR detection further yet. 

However, further research is required using a large amount of clinical data to investigate the 

optimal filter settings, analysis window length, and weighted averaging parameters prior to 

recommending any definitive changes to current clinical practice. 
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Chapter 6 Automated Analysis of the Diagnostic ABR 

using Machine Learning 

6.1 Introduction 

6.1.1 Literature Review 

6.1.1.1 Clinical Context and Potential Research Impact 

The term ‘diagnostic ABR’ refers here to the ABR recorded using a suprathreshold stimulus in 

order to evaluate the function of the auditory nerve and auditory brainstem structures (rather 

than for the purpose of hearing threshold estimation). The application of the ABR for this purpose 

may also be referred to as the ‘neurological ABR’ (British Society of Audiology, 2019b). When 

recorded at a suprathreshold level, the entire morphology of the ABR waveform may be 

observed, with all of the key components visible (Figure 6-1). 

 

Figure 6-1 The neurological ABR waveform. Waves I–VII are labelled in accordance with the 

Roman numeral convention provided by Jewett, Romano and Williston (1970). 

6.1.1.1.1 Neural Generators of the ABR 

The waves of the ABR are generated by structures along the auditory nervous system as 

bioelectrical activity is propagated along the pathway, following the delivery of an auditory 
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stimulus. These electrical potentials arise from groups of neurones, e.g. within the brainstem 

nuclei, which are aligned, activated synchronously, and therefore generate a large-enough 

electrical dipole to be recordable from surface electrodes on the scalp (Atcherson, 2012). The 

neural generators of the ABR waves may be attributed to structures within the auditory nervous 

system pathway. Whilst there is reasonable confidence regarding the anatomical contributors to 

the early components of the ABR (waves I and II), this is not the case for the later ABR 

components (Hall, 2007). The reason for this is that the auditory brainstem pathway is complexly 

interconnected, with both ipsilateral and contralateral pathways, resulting in the conclusion that 

the generation of the later ABR components is likely contributed to by multiple anatomical 

sources (Atcherson, 2012). A summary of the likely neural generators of the ABR is provided in 

Table 6-1. See Figure 2-2 for a diagram of the auditory nervous system anatomy.  

Table 6-1 The neural generators of the ABR. The information summarised in this table is 

provided by Møller (2006) as outlined by Atcherson (2012). 

ABR Component Neural Generator 

Wave I Distal auditory nerve 

Wave II Proximal auditory nerve 

Wave III Cochlear nucleus 

Wave IV Midline brainstem structures 

including the superior olivary 

complex 

Wave V Termination of lateral 

lemniscus with contralateral 

inferior colliculus 

 

6.1.1.1.2 Diagnostic Uses of the ABR 

The diagnostic ABR provides a functional assessment of the auditory nerve and auditory 

brainstem structures. Pathologies affecting these structures may impact upon the morphology of 

the ABR, e.g. the presence of the ABR waves, their latency and their amplitudes. A previously 

common application of the diagnostic ABR was in the detection of acoustic neuromas (Selters and 

Brackmann, 1977); these are benign tumours which grow on the vestibulocochlear nerve. 

Tumours affecting the auditory nerve can cause a detectible shift in the latencies of the ABR 
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waves which are contributed to by neural generators proximal to the site of the lesion (Selters 

and Brackmann, 1977). Whilst largely superseded by the increasing use of MRI scans, the 

diagnostic ABR still offers utility in certain clinical situations (Montaguti et al., 2007): in areas 

where MRI scanners are not readily available (Montaguti et al., 2007), as a screening tool to guide 

the use of limited MRI resources (Montaguti et al., 2007), and in patients for whom MRI scanning 

may be contraindicated/not possible, e.g. due to metallic implants, claustrophobia, or severe 

obesity (Fortnum et al., 2009). 

The ABR is recommended to be used as part of the diagnostic test battery in the assessment of 

possible auditory neuropathy spectrum disorder (ANSD) in young infants (British Society of 

Audiology, 2019a). ANSD is a hearing disorder which is defined by an absent or grossly abnormal 

ABR morphology with present cochlear microphonic recordings and/or otoacoustic emissions 

(British Society of Audiology, 2019a). This pattern of results indicate normal outer hair cell 

function accompanied by a lack of neural synchrony (Madden et al., 2002). 

As well as for the above two conditions, the ABR may be used in the investigation of a wide range 

of retrocochlear pathologies affecting the functional integrity of the auditory nervous system 

(British Society of Audiology, 2019b). Some examples of these include disorders of the central 

nervous system (CNS) as summarised by Hall (2007): neurosarcoidosis (Souliere et al., 1991), 

cerebellar ataxia (Pal et al., 1995), Cogan’s syndrome (Benitez et al., 1990), and CNS miliary 

tuberculosis (Stach, Westerberg and Roberson Jr, 1998). 

6.1.1.1.3 Surgical Monitoring 

A further use case for automated ABR analysis is in the field of intraoperative monitoring. Some 

surgical procedures such as acoustic neuroma resection may be liable to cause damage to the 

auditory nerve. The ABR acts as a useful neuromonitoring tool, allowing the surgeon to receive 

direct feedback regarding the function of the auditory nerve during the procedure in order to help 

preserve hearing function (Hummel et al., 2016). The latency of ABR wave V may be used to 

monitor auditory function intraoperatively, with an increase in the wave V latency indicating 

neurological dysfunction (Hall, 2007). Surgical procedures can be lengthy and constant visual 

monitoring of wave V latency is subject to human error. Medical errors may occur as a result of 

fatigue, poor communication, and inattention (Krueger, 2006). Automated monitoring algorithms 

may help avoid human error in intraoperative ABR monitoring, alerting the clinicians 

automatically if an abnormality in the ABR is detected. In the next section, automated diagnostic 

ABR analysis algorithms presented in the literature will be reviewed. 
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6.1.1.1.4 Analysing the Diagnostic ABR 

As with the threshold ABR, analysis of the diagnostic ABR in clinical practice is based on the visual 

inspection of ABR waveforms by clinicians (British Society of Audiology, 2019b). This analysis is 

largely concerned with identifying the key components (waves) of the ABR waveform and 

measuring their latency (British Society of Audiology, 2019b). Increases in wave latencies or in the 

gaps between waves (inter-wave latencies) may indicate the presence of pathology (Hall, 2007). 

Wave labelling is not a straightforward procedure as even for normal ABR waveforms the 

morphology and latency of the peaks is heterogenous (Atcherson, 2012). In some cases the wave 

peaks may be clear and so the latency of the peak amplitude reflects the wave latency (Hall, 

2007). However, there are several other instances when wave labelling is more challenging, e.g. in 

the case of fused/bifid/missing/extra or uncertain peaks (Hall, 2007) (Figure 6-2). Automated 

analysis of the diagnostic ABR may assist clinicians, in particular for challenging cases where the 

wave latencies are not clear. This will be particularly useful when assisting clinicians with less 

experience at interpreting diagnostic ABR data. 
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Figure 6-2 Examples of variable ABR morphology. Graph A shows a fused wave IV/V complex 

(arrow), with wave V appearing as a shoulder to the right of wave IV. Graph B shows 

a potential bifid (split in two) wave I (arrows). Graph C shows an ABR waveform 

where the morphology of wave I is unclear. These examples highlight the challenges 

faced by clinicians in analysing the diagnostic ABR. 
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6.1.1.1.5 The Potential Benefits of Automated Analysis 

It has been pointed out that ‘consistency in how peaks are marked in the clinic or laboratory is of 

significant importance’ (Atcherson, 2012). This is because the ABR data must be analysed in the 

same manner as that used in defining the normative clinic data (Atcherson, 2012). Variability in 

the method used by clinicians to label the ABR data may result in waveforms falsely being 

classified as normal or abnormal. Automated ABR analysis algorithms may provide a method of 

standardising the analysis of the diagnostic ABR, providing clinicians with consistency, both when 

labelling a normative dataset and when labelling clinical data to be referenced with said 

normative data. 

6.1.1.2 Automated Diagnostic ABR Analysis Algorithms 

6.1.1.2.1 Rule-Based Algorithms 

Prior to considering the machine learning approaches for analysing the ABR, it is useful to first 

consider the traditional ‘rule-based’ algorithms. These approaches may provide a performance 

benchmark by which to compare newly developed algorithms, as well as inform feature extraction 

techniques which may be used in conjunction with machine learning approaches. 

In 1982, Fridman et al. used the zero-crossings of the first derivative of filtered waveforms to 

identify the peaks of the ABR. In a similar manner, Boston (1989) used zero-crossings of the first 

derivative to identify the ABR peaks. A rule-based algorithm was developed to label wave V based 

on parameters including peak-to-peak amplitude and peak latency (Boston, 1989). Wave V was 

correctly selected in 11/13 cases. The rule-based algorithm reported by Boston (1989), in addition 

to a wave V latency prediction, provided a confidence measure, rating the latency prediction as 

either being ‘possible’, ‘probable’, or ‘certain’. Pool and Finitzo (1989) developed a rule-based 

algorithm to identify waves I, III and V. Performance was compared to that of two clinicians. A 

mean latency difference of 0.052 ms was reported between the proposed algorithm and labels 

provided by the two experts (it is not specified if this is the mean absolute difference or simply the 

mean difference). An example of the use of the first derivative to identify signal peaks is shown in 

Figure 6-3. Smoothing is first required to remove high-frequency noise content from the signal 

which may give rise to an inflated number of zero-crossings (Felinger, 1998). Parameters such as 

the amount of smoothing applied, minimum peak width, and minimum peak height may need to 

be set to avoid detection of false peaks (Felinger, 1998). The first derivative may be approximated 

using this (finite difference) equation (Felinger, 1998): 

𝑥𝑥′𝑖𝑖 =  
𝑥𝑥𝑘𝑘+1 −  𝑥𝑥𝑘𝑘

∆𝑡𝑡
(7.1) 
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where 𝑥𝑥𝑘𝑘  is the 𝑘𝑘𝑡𝑡ℎ digitised sample of signal 𝐱𝐱, and ∆𝑡𝑡 is the difference in time between the two 

time points (𝑥𝑥𝑘𝑘+1 −  𝑥𝑥𝑘𝑘). A limitation of this method, as applied to ABR wave labelling, is that the 

ABR waves do not always correspond to voltage maxima (Atcherson, 2012). ABR wave labelling 

algorithms need to be able to account for missing, fused or bifid waves (Atcherson, 2012).  

 

Figure 6-3 Use of the first derivative to identify signal peaks. The bottom graph shows the first 

derivative calculated from the ABR waveform presented in the top graph. The zero-

crossings on a downward slope are marked with a vertical black line and correspond 

well to the latencies of waves I–VII of the ABR waveform. This approach works well in 

this example where the waves are nicely spaced and represent local voltage maxima. 

This is however not always the case. 

Bradley and Wilson (2005) presented an algorithm to detect ABR peaks I to VII, using Gaussian 

wavelet analysis, combining signal smoothing and derivative estimation within the same 

operation (Bradley and Wilson, 2005). This was combined with a rule-based algorithm to estimate 

the ABR wave latencies. The algorithm performed well with mean absolute errors (MAEs) of 0.03, 
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0.05 and 0.06 ms for waves I, III and V respectively. A limitation of the proposed algorithm is that 

peaks were searched for in a set order and if a peak was not found then the search would stop, 

potentially leaving some peaks unidentified (Bradley and Wilson, 2005).  

Other studies have also investigated the use of wavelet analysis to help identify the ABR wave 

latencies, e.g. work by Popescu et al. (1999) and Ikawa, Morimoto and Ashino (2014). Wavelet 

analysis is an effective biomedical signal analysis tool, helping to separate impulse-like events 

from diffuse EEG noise, and provides time-frequency localisation (Unser and Aldroubi, 1996). 

Delgado and Özdamar (1994) presented an ABR peak identification and labelling algorithm which 

combined matched filtering with a rule-based approach. The first step was to apply a first order 

differentiating algorithm to the smoothed waveform in order to detect all of the waveform peaks 

and troughs. Time-shifts introduced by the matched filters were corrected for. Following matched 

filtering, which improves the SNR and enhances the ABR peaks (Delgado and Özdamar, 1994), a 

rule-based approach was implemented to label the ABR wave peaks (Figure 6-4). 
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Figure 6-4 The rule-based ABR peak labelling algorithm presented by Delgado and Özdamar 

(1994). ABR waves I–V are labelled automatically using a combination of matched 

filtering and rule-based processing. Reproduced from Delgado and Özdamar (1994) 

with permission from IEEE (© 1994 IEEE). Note—a higher resolution image was not 

available. 



Chapter 6 

132 

 

As can be seen from Figure 6-4, the labelling of waves I–IV by the rule-based algorithm is done 

after wave V is labelled, allowing wave V to be used as a point of reference. This is similar to the 

approach that a human clinician may take, labelling the more obvious waves first and then using 

this information to help deduce the latency of the lower-amplitude waves. However, if wave V is 

incorrectly labelled, the effects of mislabelling will be cascaded down. Wave V was ‘correctly 

labelled’ for 96% of the data collected from individuals with normal hearing and 82.3% for data 

collected from individuals with a hearing loss. Two further methods in the literature making use of 

filtering to identify ABR peaks are provided by Pratt, Urbach and Bleic (1989) and Grönfors (1993). 

These references are provided for completeness, however, elaboration on the nature of these 

methods is omitted for the sake of conciseness. 

Vannier et al. (2001) used a pattern matching algorithm to analyse the ABR, based on a technique 

developed by Motsch (1987). Using this method, a model of the ABR is generated. An ABR 

template is divided into four sections, with each section of the template being transformed in 

order to maximise the similarity (as measured by cross-correlation) between the ABR waveform 

and the transformed template (Vannier et al., 2001). A related method using cross-correlation 

and template matching was previously presented by Elberling (1979). The latencies of waves I, II, 

III and V are then provided by the model where the ‘true’ latencies of the transformed template 

are known. Wave V was detected with an average deviation of 0.04 ms (SD 0.2 ms). Analysis of 

latency performance was not carried out for waves I, II and III. 

Valderrama et al. (2014) used fitted parametric peaks to analyse the ABR. This method is based on 

the premise of template matching, However, a bank of templates to match with the signal is not 

required, as the template is synthesised for each individual signal analysed using parametric peaks 

generated to try to match the signal (Valderrama et al., 2014). This approach was used to identify 

ABR waves III and V. These waves were searched for separately over a 3 ms window. This was 

used to ensure that adjacent waves weren’t given the incorrect label whilst allowing leeway for 

latency shifts (Valderrama et al., 2014). The disadvantage of this approach is that latency shifts 

outside of this window would not be detected. Unlike previous template matching studies which 

relied on subject recorded templates (Elberling, 1979; Motsch, 1987; Vannier et al., 2001), this 

method synthetically derives templates under the assumption that ABR waveforms are ‘shape-

invariant’ (Krumbholz, Hardy and de Boer, 2020). As discussed in Section 6.1.1.1.4, wave V 

morphology is highly variable, and the peak of the wave IV–V complex may not represent wave V. 

The assumption of ‘shape-invariance’ is therefore unlikely to be met (Krumbholz, Hardy and de 

Boer, 2020). Dynamic Time Warping (DTW) approaches do not rely on this assumption (Picton et 
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al., 1988 in Krumbholz, Hardy and de Boer, 2020). Krumbholz, Hardy and de Boer (2020) therefore 

opted to use a continuous version of DTW known as ‘non-linear curve registration’, overcoming 

the limitations of parametric template fitting techniques which use linear time shifts (Krumbholz, 

Hardy and de Boer, 2020). Continuous curve registration allows time warping of discretised 

continuous numerical data and ensures that each single point in the warped signal maps back to a 

single point of the original signal (Krumbholz, Hardy and de Boer, 2020). Bayesian analysis did not 

find any evidence to reject the null hypothesis of no difference being present between the 

manually and the automatically labelled wave latencies (Krumbholz, Hardy and de Boer, 2020). 

6.1.1.2.2 Machine Learning Algorithms 

In addition to traditional rule-based algorithms, several studies have investigated the use of 

machine learning algorithms to assist with automated ABR wave identification. Freeman (1992) 

identifies that rule-based algorithms require human experts in ABR labelling to be able to 

articulate the rules they use in order to translate them into an implementable algorithm, which 

can be challenging. Machine learning algorithms get around this by learning from the properties 

of the data how best to perform the task without any explicit need for defined a priori knowledge 

(Freeman, 1992). However, supervised machine learning algorithms do rely on labelled data from 

which to learn how to perform a task. 

Freeman (1992) evaluated four different multilayer perceptron (MLP) architectures (each with 

three layers) for the purpose of identifying the latency of wave V. Separate training and test sets 

were used. In one of the experiments performed the derivative of the averaged waveform was 

used as a feature in addition to the averaged waveform itself. The task was evaluated as a binary 

classification task with the machine learning algorithm being considered to be correct if a positive 

prediction was made for a waveform where wave V was present, and the predicted latency was 

within 0.2 ms of the target label. The best-performing architecture achieved an accuracy of 85% 

(17/20 correct) on the test set data. The variation in test set performance between the five 

combinations of architecture/input features was minimal with accuracy ranging from 15–17 

correct predictions out of 20. Due to the limited size of the dataset used it is difficult to have 

confidence in the generalisable performance of the proposed architecture. However, this study 

presents an early example of the potential promise that machine learning techniques have in 

interpreting the diagnostic ABR. 

Habraken, van Gils and Cluitmans (1993) initially attempted to determine the wave V latency of 

ABR data using a single multilayer perceptron; however, performance was deemed to be poor 

using a test set of synthetic ABR data (mean test set scores of 33–63% wave V latency correctly 

identified, depending on the hyperparameters selected). An alternative approach was therefore 
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explored, making use of a series of small feature selection networks (single perceptrons or 

multilayer perceptrons) which incrementally selected smaller and smaller segments of the data, 

narrowing down the location of wave V before the final neural network made a final prediction of 

the wave V latency. Upon evaluation using subject recorded ABR data, this method achieved an 

80% ± 6% SD agreement with the labels provided by a human expert. 

Tian, Juhola and Grönfors (1997) used a four-layer MLP to label waves I–V. The averaged ABR data 

were filtered before applying principal component analysis (PCA), reducing the number of 

dimensions of the input data to the neural network from 472 to 15. The trained neural network 

was evaluated on a test set containing data from 37 ABR recordings. The reported mean error for 

wave V latency was -0.003 ms ± 0.093 ms (SD). 

More recently, Chen et al. (2021) evaluated multiple deep neural network architectures in their 

ability to automatically identify waves I, III, and V of the ABR. An analysis window of 0–8 ms (321 

discrete sample points) was used. The target labels used were a vector of the same length as the 

input data, marked as ‘1’ where waves I, III, and V were deemed to be present, and otherwise 

marked as ‘0’. The four sample points before and after a labelled wave were marked as the 

‘characteristic area’ of a wave. Seven machine learning architectures were evaluated using k-fold 

cross-validation (𝑘𝑘 = 9 folds) (Table 6-2). 

Table 6-2 The neural network architectures evaluated by Chen et al. (2021), whereby the 

choice of a LSTM or bidirectional LSTM was evaluated as well as how many recurrent 

layers to use. 

Neural Network Architecture 

Single-layer LSTM. 

Two-layer LSTM. 

Single-layer bidirectional LSTM. 

Two-layer bidirectional LSTM. 

Three-layer bidirectional LSTM. 

Four-layer bidirectional LSTM. 

Five-layer bidirectional LSTM. 

The neural network architecture incorporating three bidirectional LSTM layers was found to be 

most efficacious with a mean accuracy of 85.46% of wave label predictions being within ±0.1 ms, 

and 92.91% within ±0.2 ms, of the human-defined target labels. In addition to optimising the 
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network architecture, the authors sought to determine whether discrete wavelet pre-processing 

of the ABR data would boost performance further yet. Overall, and certainly for the best-

performing neural network architectures, data pre-processing using the discrete wavelet 

transform was not found to be beneficial. The parameter value for the number of nodes in the 

hidden fully connected layer was also evaluated for the three-layer bidirectional LSTM (64, 128, 

256, and 512 nodes). The best result (85.46% mean accuracy within ±0.1 ms of the target label) 

was obtained using the largest number of nodes evaluated (512). As the model architecture and 

number of hidden layer nodes were optimised based on their k-fold cross-validation performance, 

there is a potential that the best version of the model selected was overfitted to the data 

contained within these validation folds, i.e. the best model architecture was chosen based on its 

cross-validation performance and so the cross-validation score may no longer serve as a good 

representation of the model’s generalisable performance. Using an additional set of test data or 

nested k-fold cross-validation (Varma and Simon, 2006) would help to overcome this limitation. 

Another limitation of the study is that other key hyperparameters do not appear to have been 

optimised. Such hyperparameters include the learning rate, batch size, dropout, activation 

function used, momentum, and the number of training epochs. It may well be that the 

performance of certain neural network architectures would be different had these 

hyperparameters been optimised. Having said that, it is unreasonable to expect every single 

hyperparameter combination to be evaluated, however, it would be beneficial to optimise values 

across a reasonable number of hyperparameters expected to most influence performance. 

Based on the properties of LSTM networks and their demonstrated suitability in the analysis of 

biomedical time-series data (Ahmedt-Aristizabal et al., 2018; Faust et al., 2018), Chen et al. (2021) 

provide evidence to support the use of recurrent neural networks in automated ABR analysis. A 

gap in the literature exists in that other deep learning algorithms such as CNNs and CNN-LSTMs 

have not been explored for labelling the diagnostic ABR. 

6.1.1.3 Summary of Algorithm Performance Presented in the Literature   

Table 6-3 provides a summary of the various automated approaches presented in the literature 

(both rule-based and machine learning) for labelling the waves of the ABR. 
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Table 6-3 A summary of the various methods presented in the literature for automated ABR 

wave latency estimation is provided along with a summary of the reported results. 

Study Method Results Summary 

Boston (1989) Rule-based algorithm using first 

order derivative. Provides a 

confidence output (‘possible’, 

‘probable’, or ‘certain’). 

Wave V ‘correctly identified’ 

(tolerance for a ‘correct’ prediction 

not specified) for 11/13 waveforms. 

Pool and Finitzo 

(1989) 

Rule-based algorithm. Mean latency difference between 

algorithm and experts of 0.052 ms for 

wave V. 

Delgado and 

Özdamar (1994) 

Matched filtering combined with a 

rule-based algorithm. 

Wave V ‘correctly labelled’ (‘correct’ 

definition not specified) for 96% of 

waveforms from individuals with 

normal hearing and 82.3% of 

waveforms from individuals with a 

hearing loss. 

Vannier et al. (2001) Pattern recognition/template 

matching. 

Wave V detected with an average 

deviation of 0.04 ms (SD 0.2 ms). 

Bradley and Wilson 

(2004) 

Derivative estimation wavelets and 

a rule-based algorithm. 

Mean absolute errors (MAEs) of 0.03, 

0.05 and 0.06 ms for waves I, III and V 

respectively. 

Kostorz et al. (2013) IPAN99 rule-based algorithm 

which analyses angles and 

amplitude differences between 

sample points. 

‘Relative error’ (definition not 

specified) of 1.04% for waves I, III and 

V. 

Krumbholz, Hardy 

and de Boer (2020) 

Non-linear curve registration. Bayesian analysis found no evidence 

to reject the null hypothesis of no 

difference being present between the 

manually and the automatically 

labelled wave latencies. 

Popescu et al. 

(1999) 

Neural network-based filtering 

method to analyse wavelet 

Wave V ‘correctly’ (definition not 

specified) identified in 92% of cases. 
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Study Method Results Summary 

transform maxima followed by 

rule-based localisation. 

Freeman (1992) Multilayer perceptron. A reported 85% accuracy (wave V 

correctly identified as being 

present/absent and, if present, the 

predicted label being within 0.2 ms of 

the target label). 

Habraken, van Gils 

and Cluitmans 

(1993) 

A series of perceptrons/multilayer 

perceptrons combined. 

80% ± 6% SD agreement with the 

labels provided by a human expert for 

wave V latency, using subject 

recorded ABR data. 

Chen et al. (2021) A variety of recurrent neural 

network architectures were 

evaluated with a bidirectional 

LSTM being found to perform best. 

85.46% of wave label predictions 

within ±0.1 ms, and 92.91% within 

±0.2 ms, of the human-defined target 

labels. 

6.1.2 Formulation of the Research Problem 

There exist multiple advantages to being able to automate the process of labelling the diagnostic 

ABR. These include reducing interpretation time, reducing variability in interpretation, and 

providing equitable access to signal interpretation skills which is particularly helpful in settings 

where training or experience are limited. Additionally, automated detection may be of benefit 

during surgical monitoring where numerous sequential interpretations need to be performed 

over a long period of time (Chui, Murkin and Drosdowech, 2019). 

Machine learning algorithms have been shown to be effective in a variety of biomedical signal 

processing tasks (Ahmedt-Aristizabal et al., 2018; Hannun et al., 2019) including in ABR detection 

(Alpsan, 1991; Acir, Özdamar and Güzeliş, 2006; Davey et al., 2007; McCullagh et al., 2007; 

McKearney et al., 2022). Machine learning algorithms have the benefit of being able to learn how 

to perform the task from the data, potentially making use of features or properties of the data 

that may be challenging to identify and/or incorporate into a rule-based approach. Several studies 

have explored the use of machine learning algorithms to label the waves of the ABR (Freeman, 

1992; Habraken, van Gils and Cluitmans, 1993; Tian, Juhola and Grönfors, 1997; Chen et al., 2021). 

Several of these studies were published before the turn of the century and therefore do not make 
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use of the latest advances in machine learning, such as advances in convolutional neural network 

performance (Gu et al., 2018), and were limited by the computational power available at the 

time. Methodological limitations also bring into question the generalisability of the findings of 

some of these studies. There is therefore a need for new research to explore and compare the 

performance of state-of-the-art machine learning algorithms using appropriate machine learning 

research methodology. 

If the diagnostic ABR test is solely being used for a single clinical purpose, it may be sensible for 

the target label to be the presence of the pathology to be detected, e.g. is an acoustic neuroma 

present or absent. However, the diagnostic ABR may be used for a variety of clinical purposes, 

and it may be useful to provide automated wave labelling, with more detailed interpretation of 

the results left to the clinician who is aware of the wider clinical context of the test. This prevents 

pathologies, other than the primary target pathology, from being missed. 

In terms of clinical usefulness, waves I, III, and V of the ABR are most important as these waves 

are the most robust (Atcherson, 2012). An automated detection algorithm should therefore 

prioritise and focus on being able to identify waves I, III, and V correctly. In addition to providing 

the wave latency values, it could be very useful for clinicians to be provided with a form of 

confidence measure, i.e. the degree of confidence that the machine learning algorithm has in 

being able to provide a reliable wave latency prediction. Providing a confidence measure for ABR 

latency predictions has received little discussion in the literature, with this review only identifying 

the work by Boston (1989) as having done so. An effective confidence measure would help 

clinicians better interpret the automated wave latency predictions and know how much weight to 

apply to these automated wave predictions when ultimately making the final decision using their 

overall clinical judgement. 

6.1.3 Aims and Objectives 

Aim 1. To propose, train, and evaluate automated machine learning algorithms which are able 

to label waves I, III and V of the diagnostic ABR. Multiple state-of-the-art algorithms 

should be evaluated to select the best approach. The automated algorithm should also 

provide a confidence measure to help clinicians interpret the latency values provided. 

The aim was not to present a final model, ready for clinical implementation, but rather 

to identify promising algorithms which may then be evaluated on larger datasets 

reflective of the intended clinical population. 
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 Objective 1a: Prepare the dataset by labelling waves I, III and V of the data as well as 

providing a confidence value label for the latencies provided, using custom-built 

software.  

 Objective 1b: Compare machine learning algorithms using nested k-fold cross-

validation. 

6.2 Methods 

6.2.1 Overview of Methods 

Waves I, III, and V of diagnostic ABR waveforms from a previously recorded database were 

labelled by an audiologist. A confidence measure (range 0–5) was also provided. A selection of 

machine learning algorithms was trained and tested using a cross-validation approach, both in 

their ability to correctly predict the target wave latency and the confidence level. 

6.2.2 ABR Data 

The ABR data used in this secondary data analysis study were made publicly available by 

Sundaramoorthy et al. (2000). The link for accessing the data had become broken 

(http:\\www.engg.le.ac.uk\abrdata), however, the corresponding author of Sundaramoorthy et 

al. (2000) (Dr Michael Pont) was contacted and kindly provided permission to use the dataset and 

access to it. The dataset consists of suprathreshold ABR data recorded from 81 individuals (39 

females; 42 males) aged 20–56 years with normal hearing (pure tone audiometry [PTA] thresholds 

≤ 20 dB HL at octave intervals between 250–8,000 Hz, inclusive). ABR recordings were performed 

using a Nicolet Spirit Evoked Potential System in an electrically screened and acoustically isolated 

room (Stancold Acoustics). Recordings were made using silver chloride electrodes placed on the 

left and the right mastoid processes (A1 and A2, respectively), the forehead (common), and the 

vertex (Cz). Electrode impendences were <10 kΩ, with impedance differences between electrodes 

<5 kΩ. The participants were in a reclined position in a darkened room and in a relaxed/sleeping 

state for the recordings. An 80 dB HL 100-µs click stimulus was delivered to the test ear, with a 

60 dB HL masking white noise delivered to the contralateral ear (Sundaramoorthy et al., 2000). A 

stimulus rate of 10 Hz is reported in Sundaramoorthy et al. (2000); this recording parameter value 

is an unconventional choice given that 10 Hz is a subharmonic of UK mains alternating current (50 

Hz). As the recordings appear free of mains artefact upon visual inspection, it is suspected that 

the reported nominal stimulus rate of 10 Hz is an approximate value. A 10 ms recording window 

was used, with a sampling rate of 50 kHz. 
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Further offline processing of these data in the current study included bandpass filtering between 

100–3,000 Hz using a 3rd-order Butterworth filter. These filter settings reflect those recommended 

by the BSA (2019b). 

For each of the 81 participants, both ipsilateral and contralateral recordings were made, using 

condensation, rarefaction, and alternating stimuli. Two repeat recordings of 1,024 recording 

epochs were made for each stimulus polarity/recording laterality combination, resulting in a total 

of 24 recordings for each of the 81 participants (Sundaramoorthy et al., 2000). Only the ipsilateral 

recordings were used in the current study. The repeat recordings were averaged together to 

generate a grand average from 2,048 individual epochs, resulting in a final tally of six averaged 

ABR waveforms per participant. For one of the participants, four duplicate recordings appeared in 

the database. After removal of these duplicates, the database totalled 482 recordings. 

6.2.3 Ethics 

This secondary data analysis study was granted ethical approval by the University of Southampton 

Faculty Ethics Committee (ERGO 66305). 

6.2.4 Data Labelling 

Custom software was built using the Matplotlib Python library (Hunter, 2007) to allow the peaks 

of the ABR data to be labelled. One clinical audiologist (the present author) labelled waves I, III 

and V (Figure 6-5). Waves I, III and V were selected as these waves are the most important 

clinically, and also the most robust (Atcherson, 2012). Unlike other studies which have combined 

the inputs of multiple clinicians to label ABR waves (Chen et al., 2021), the current study used the 

input of only one clinician. Using a group consensus labelling strategy has been shown to be 

effective, allowing machine learning models to classify data in a manner representative of the 

group of experts who labelled the data (Valizadegan, Nguyen and Hauskrecht, 2013). The machine 

learning approach presented by this current study is not intended to be used in its current state 

for clinical use, but rather to demonstrate the effectiveness a machine learning algorithm to be 

able to learn from the clinical acumen of an audiologist to label the waves of the ABR. Whilst 

using a single data labeller may be a potential limitation of the present study, using multiple 

labellers was considered superfluous for this early-stage study into the feasibility of using machine 

learning to label ABR waves. The presented machine learning approach may subsequently be 

trained on a larger dataset containing both normal and abnormal ABR data, labelled by a group of 

expert clinicians.  
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Figure 6-5 The custom software used to label the ABR waveforms. The custom labelling 

software presented each ABR waveform to be labelled (red), along with its two 

constituent sub-averages. This waveform represents one which the clinician had a 

high degree of confidence in labelling the latencies of waves I, III, and V, as the 

confidence label was five each of these waves. The zoom function allowed ABR 

waves to be labelled with a high degree of precision. 

Using the custom-built user interface (UI), the audiologist was asked to label ABR waves I, III, and 

V, with the UI locking the latency label to the nearest sample point (𝑇𝑇𝑠𝑠 = 0.02 𝐹𝐹𝑠𝑠). As well as 

labelling waves I, III, and V, the clinician was also asked to label the degree of confidence they had 

in their wave latency label, reflecting both their confidence in the wave being present, and also 

the labelled latency of said wave. A confidence rating was required for each of waves I, III, and V, 

and was provided as an integer between 0–5, inclusive. A description of the meaning of each of 

these ratings is provided in Table 6-4. Confidence labels may help clinicians interpret ABR 

waveforms, which are sometimes ambiguous. Having a confidence prediction provides the 

algorithm with the ability to deal with situations where an ABR is absent and alert the clinician to 

this possibility. This relatively novel feature of the methodology of the present study has not been 

used often in previous studies aiming to label the peaks of the ABR waveforms, apart from by 

Boston (1989). The confidence labels were additionally used to calculate sample weights when 

training the wave labelling algorithms, placing greater emphasis on training instances where the 

clinician had a high confidence in their wave latency labels (Byrd and Lipton, 2019). 
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Table 6-4 The confidence score descriptions used by the audiologist to label the confidence 

that they had in identifying and correctly labelling the latency of the ABR waves. Note 

how correct prediction of the latency is inherently linked to the ability to first 

correctly identify the presence of the wave in question. 

Confidence score Description 

5 Very high confidence in being able to 

identify the wave correctly and estimate its 

latency. 

4 High confidence in being able to identify the 

wave correctly and estimate its latency. 

3 Reasonable confidence in being able to 

identify the wave correctly and estimate its 

latency. 

2 Low confidence in being able to identify the 

wave correctly and estimate its latency. 

1 Very low confidence in being able to identify 

the wave correctly and estimate its latency. 

0 No confidence in being able to identify the 

wave correctly in order to estimate its 

latency. 

 

The custom software for labelling ABR waveforms was designed in accordance with the principles 

of good user interface design (Tang and Patel, 1994; Patel and Kushniruk, 1998), in combination 

with the user-experience of an audiologist (the present author). Good clinical software UI should 

be simple for the user to utilise without having excessive features, feedback any errors to the 

user, and be structured in a way that is logical and intuitive to the user (Constantine and 

Lockwood, 1999). As both the designer and the intended user of the ABR labelling UI were one 

and the same, the software UI was readily able to be designed in a manner that met the needs of 

the user, through an iterative process of creation, UI testing, and improvement. 
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6.2.5 Machine Learning Approaches Evaluated 

There is no single best machine learning approach for all tasks (Wolpert and Macready, 1997). 

One may therefore select potential machine learning approaches utilising a priori knowledge of 

the problem in combination with knowledge of machine learning approaches which may be 

suitable for the task, obtained from experience and from the literature. Given this information, 

several potential machine learning approaches with a track record in performing well for this kind 

of task were evaluated. 

The machine learning algorithms were constructed using the Keras (Chollet and and others, 2015) 

Python software library. 

6.2.5.1 Convolutional Neural Network 

CNNs have been used extensively and to good effect for a variety of biomedical applications 

related to ABR wave labelling, including evaluating chromatographic peaks (Risum and Bro, 2019), 

electrocardiogram (ECG) QRS complex detection (Sarlija, Jurisic and Popovic, 2017), ABR detection 

(McKearney and MacKinnon, 2019; McKearney et al., 2022), and EEG signal peak detection (Adam 

et al., 2017). The architecture of the CNN is shown in Table 6-5. 

Table 6-5 The convolutional neural network architecture. Optimised hyperparameters are 

shown in italics and underlined. Hyperparameters which were not fine-tuned are 

shown in regular typeface. 

Layer Hyperparameter settings 

Separable 

Convolutional 1D 

35 filters, kernel size, stride length=1, relu activation 

function, padding=same, kernel initialiser=he 

uniform 

Max Pooling 1D Pool size=2 

Dropout Dropout rate 

Convolutional 1D 20 filters, kernel size, stride length=1, relu activation 

function, padding=same 

Max Pooling 1D Pool size=2 

Dropout Dropout rate 

Flatten  
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Layer Hyperparameter settings 

Dense Number of units, activation function 

Dropout Dropout rate 

Dense 120 units, activation function 

Dense 3 units, linear activation 

Hyperparameter optimisation was performed using a random search (using 15 hyperparameter 

combinations) of the hyperparameter space shown in Table 6-6. 

Table 6-6 The hyperparameter space searched for the CNN. 

Hyperparameter Values searched 

Dropout rate 0, 0.25, 0.5 

Learning rate 0.00025, 0.0005, 0.00075, 0.001, 

0.00125 

Kernel size 5, 7, 9 

Number of units 1500, 1750, 2000, 2250, 2500, 2750, 

3000, 3250, 3500 

Dense unit activation function relu, selu 

Number of training epochs 500, 800, 1100, 1400, 1700, 2000, 2300, 

2600, 2900, 3200, 3500, 3800, 4100, 

4400, 4700, 5000 

Batch size 64, 128, 256 

Loss function Mean absolute error 

 

6.2.5.2 Recurrent Neural Network / Bidirectional RNN 

RNNs are particularly adapt to analysing sequential data such as biomedical signals due to the 

memory, or state, maintained from previously processed samples when considering the 

subsequent samples in the sequence (Chollet, 2018). The function of RNNs is considered in 

Section 4.2.8.2. There is a precedent set for the use of RNNs for biomedical signal peak detection: 

automated ECG wave labelling (Sampath and Sumithira, 2022), and EEG spike detection (Xu et al., 
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2021). In the current study, LSTM units were used in the recurrent layers as these have been 

shown to be more adept at retaining information over longer time intervals than simple RNN units 

(Hochreiter and Schmidhuber, 1997). 

RNN units will typically process a sequence unidirectionally from its beginning to its end, i.e. 

chronologically (Chollet, 2018). By evaluating a sequence in only one direction, RNNs may 

overlook patterns present in the data (Chollet, 2018). Bidirectional RNNs overcome this limitation 

by processing the sequence in both chronological and antichronological order (Schuster and 

Paliwal, 1997; Chollet, 2018). Chen et al. (2021) found bidirectional LSTM networks to be more 

effective than unidirectional LSTM networks at labelling the ABR waves, and so this approach was 

also evaluated in the current study. The architecture of the RNN used is shown in Table 6-7. 

Table 6-7 The recurrent neural network architecture. Optimised hyperparameters are shown in 

italics and underlined. Hyperparameters which were not fine-tuned are shown in 

regular typeface. 

Layer Hyperparameter settings 

LSTM (x1, x2, or x3 

layers) 

Number of recurrent units, dropout rate, recurrent 

dropout rate 

(The number of recurrent layers was optimised in 

the random hyperparameter search to be either 1, 2, 

or 3 LSTM layers.) 

Flatten (only if 

returning 

sequences: 

optimised) 

Return sequences (True/False) 

Dense Number of units, activation function 

Dense 3 units, linear activation function 

Hyperparameter optimisation was performed using a random search (using 15 hyperparameter 

combinations) of the hyperparameter space shown in Table 6-8. 

Table 6-8 The hyperparameter space searched for the RNN. 

Hyperparameter Values searched 

Number of LSTM layers 1, 2, 3 
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Hyperparameter Values searched 

Learning rate 0.00075, 0.001, 0.00125, 0.0015, 

0.00175 

Number of recurrent units 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 

Dropout rate 0, 0.1, 0.2, 0.3, 0.4 

Recurrent dropout rate 0, 0.1, 0.2, 0.3, 0.4 

Return sequences from last 

LSTM layer 

True, False 

Number of hidden Dense units 200, 300, 400, 500, 600, 700, 800, 900, 

1000 

Hidden Dense unit activation 

function 

relu, selu 

Number of training epochs 150, 200, 250, 300, 350 

Batch size 128, 256 

Loss function Mean absolute error 

The architecture and hyperparameter space searched for the bidirectional RNN algorithm were 

the same as those for the RNN (Table 6-7, Table 6-8), except bidirectional RNN layers were used 

instead of the standard (unidirectional) RNN layers. 

6.2.5.3 CNN-LSTM Network 

CNN-LSTMs combine convolutional layers with LSTM layers. This allows shorter sequences of 

features to be first extracted by the convolutional layer(s), before being further processed by the 

LSTM layer(s) (Chollet, 2018). LSTM algorithms have seen widespread use in biomedical signal 

analysis, including for foetal heart rate estimation from ECG (Fotiadou et al., 2021), automatic 

detection of schizophrenia from EEG (Shoeibi et al., 2021), and for seizure detection (Xu et al., 

2020). The architecture of the CNN-LSTM used is shown in Table 6-9. 
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Table 6-9 The convolutional long short-term memory network architecture. Optimised 

hyperparameters are shown in italics and underlined. Hyperparameters which were 

not fine-tuned are shown in regular typeface. 

Layer Hyperparameter settings 

Separable 

Convolutional 1D 

35 filters, kernel size, stride length=1, relu activation 

function, padding=same,  

Max Pooling 1D Pool size=2 

Dropout Dropout rate 

Convolutional 1D 35 filters, kernel size, stride length=1, relu activation 

function, padding=same,  

Max Pooling 1D Pool size=2 

Dropout Dropout rate 

LSTM 35 units, dropout rate, recurrent dropout, return 

sequences (True/False) 

Flatten layer added 

if sequences are 

returned by LSTM 

layer 

 

Dense Number of dense units, activation function 

Dropout Dropout rate 

Dense 100 units, activation function 

Dense 3 units, linear activation function 

Hyperparameter optimisation was performed using a random search (using 15 hyperparameter 

combinations) of the hyperparameter space shown in Table 6-10. 

Table 6-10 The hyperparameter space searched for the CNN-LSTM. 

Hyperparameter Values searched 

Dropout rate 0, 0.1, 0.2, 0.3, 0.4, 0.5 

Learning rate 0.0005, 0.00075, 0.001, 0.00125 
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Hyperparameter Values searched 

Kernel size 3, 5, 7 

Number of Dense units 500, 600, 700, 800, 900, 1000, 1100, 

1200, 1300, 1400, 1500 

Dense unit activation function relu, selu 

Recurrent dropout rate 0, 0.1, 0.2, 0.3, 0.4 

Return sequencers from LSTM 

layer 

True, False 

Number of training epochs 700, 900, 1100, 1300, 1500, 1700, 1900, 

2100, 2300, 2500 

Batch size 128, 256 

Optimiser Adam 

Loss function Mean absolute error 

6.2.5.4 Multilayer Perceptron 

MLPs consist of multiple layers of perceptrons and are considered in greater detail in Section 

4.2.8.1. This type of machine learning algorithm has been previously used in the literature to label 

the waves of the ABR (Freeman, 1992; Habraken, van Gils and Cluitmans, 1993), and may 

potentially serve to act as a baseline for comparison. The MLP architecture used is shown in Table 

6-11. 

Table 6-11 The multilayer perceptron architecture. Optimised hyperparameters are shown in 

italics and underlined. Hyperparameters which were not fine-tuned are shown in 

regular typeface. 

Layer Hyperparameter settings 

Flatten  

Dense Number of units in Dense layer 1, activation 

function, L2 bias regularisation=0.01, L2 kernel 

regulariser=0.01 

Dropout Dropout rate 
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Layer Hyperparameter settings 

Dense Number of units in Dense layer 2, activation 

function, L2 bias regularisation=0.01, L2 kernel 

regulariser=0.01 

Dropout Dropout rate 

Dense Number of units in Dense layer 3, activation 

function, L2 bias regularisation=0.01, L2 kernel 

regulariser=0.01 

Dense 3 units, linear activation function 

Hyperparameter optimisation was performed using a random search (using 15 hyperparameter 

combinations) of the hyperparameter space shown in Table 6-12. 

Table 6-12 The hyperparameter space searched for the MLP. 

Hyperparameter Values searched 

Dropout rate 0, 0.1, 0.2, 0.3, 0.4, 0.5  

Learning rate 0.0008, 0.00085, 0.0009, 0.00095, 0.001, 

0.00105, 0.0011 

Number of units in Dense 

layer 1 

150, 160, 170, 180, 190, 200, 210, 220, 

230, 240, 250, 260, 270, 280, 290, 300, 

310, 320, 330, 340, 351 

Number of units in Dense 

(hidden) layer 2 

50 fewer units than that used in Dense 

layer 1 

Number of units in Dense 

(hidden) layer 3 

50 fewer units than that used in Dense 

layer 2 

Dense unit activation function relu, selu 

Number of training epochs Values between 500 and 2,500 inclusive 

in 50 epoch increments.   

Batch size 16, 32, 64 

Optimiser Adam 

Loss function Mean absolute error 
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6.2.6 Input Features 

Deep neural networks such as those outlined above are able to learn salient features from data in 

order to effectively perform a task. The coherent average was therefore one of the features 

provided as an input to these deep neural networks. Having said that, it can be useful to apply a 

priori knowledge of the task in order to extract useful features to be inputted to the neural 

networks. Feature extraction, can help reduce the time needed to train the algorithm and reduce 

the generalisation error by highlighting features most important to the task whilst 

ignoring/removing those which are noisy (Raschka and Mirjalili, 2017). Thus, the second and final 

input feature was the first derivative of the coherent average, which has proven in the literature 

to be a useful tool for ABR peak selection (Boston, 1989). An analysis window of 1–8 ms was 

applied to the coherent average and its first derivative, avoiding stimulus artefact and extraneous 

information. Each input feature was standardised separately within the cross-validation 

procedure described in Section 6.2.7. This involved subtracting the mean value from each feature 

vector and scaling to unit variance, using mean and standard deviation parameters derived from 

the training fold data. 

6.2.7 Algorithm Evaluation using Nested K-Fold Cross-Validation 

Nested k-fold cross-validation (Bergstra and Bengio, 2012) was used to evaluate the performance 

of the five chosen machine learning algorithms (CNN, LSTM, bidirectional LSTM, CNN-LSTM, and 

MLP) at predicting the wave latencies for waves I, III, and V. The task was treated as a regression 

task, with each algorithm having three outputs—each output predicting the wave latency of one 

of ABR waves I, III, or V. The predicted latencies were rounded to the nearest sample point. These 

machine learning algorithms were additionally compared to the baseline performance of a 

‘baseline regressor’ (Pedregosa et al., 2011), which ignores the input features and always predicts 

the mean latency values of waves I, III, and V from the training set data. A detailed description of 

nested cross-validation is described in Section 4.2.4, along with a diagram (Figure 4-7). For the 

current study, the outer loop of cross-validation was used to evaluate the generalisable 

performance of each of the machine learning algorithms. The inner loop was used to select the 

optimal hyperparameters using a random search of the available hyperparameter space. Due to 

computational limitations, only 15 separate hyperparameter combinations were explored for 

each machine learning model. The data were grouped into 81 groups, with each group comprising 

recordings made from one of the 81 participants. Each group was made up of six recordings apart 

from one group which had two (where the four duplicates were removed). Group k-fold cross-

validation was used for both the outer and inner loops, with 27 folds in the outer loop and three 
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folds in the inner loop. There was therefore no participant overlap between the training and 

validation data portions. 

6.2.8 Evaluation of the Best Algorithm for Confidence Label Prediction 

Once the best-performing machine learning algorithm in terms of latency estimation was 

identified, the nested cross-validation procedure was repeated using the same algorithm, but this 

time using the wave confidence labels for waves I, III, and V instead of the wave latency labels. 

The nested cross-validation procedure was not repeated for all four machine learning algorithms 

due to the excessive computational cost that this would incur, and also on the basis that the best 

algorithm for ABR wave labelling would also have suitable properties for being able to link 

features of the ABR waveform to the confidence labels. Whilst a machine learning algorithm could 

have six outputs and have the dual task of predicting the three wave latencies and the three wave 

confidences, it should be noted that the confidence predictions would not relate specifically to 

the wave latency predictions made by the algorithm, but rather to the likelihood that an 

algorithm with a similar wave-labelling performance level to that of the human labeller in being 

able to label any specific wave with confidence, i.e. the ability of the algorithm to predict the 

same confidence levels as those labelled by the clinician for any given waveform. 

Whilst the two tasks of wave latency estimation and confidence estimation are related, it was 

chosen to use a separate algorithm of the same type for each task, rather than one combined 

approach. One reason for this is that the optimal hyperparameter combination for each task may 

be different, and so combining the two tasks under the umbrella of a single algorithm with six 

outputs may lead to sub-optimal performance in one or both tasks. Another reason is that a single 

algorithm used for both tasks would likely require a greater number of parameters to be adjusted 

during training in order for it to learn six tasks instead of three. This could lead to the algorithm 

being harder to train and potentially being more prone to overfitting, reducing its generalisable 

performance. The confidence label predictions of the machine learning algorithm were rounded 

to the nearest integer to be congruent with the data labelling process.  

6.2.9 Data Augmentation 

Data augmentation was applied to the training folds within the cross-validation procedure (not 

the validation fold data). Data augmentation consisted of taking each training instance within the 

training fold and applying a scaling factor to increase/decrease its amplitude and also a latency 

shift, moving the waveform forwards or backwards in time along with the associated training 

wave latency labels. The amplitude scaling factors were randomly sampled from a normal 
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distribution with a mean of one and a standard deviation of 0.25. The degree of latency shift was 

randomly selected from a range of integers between -5 to 5, excluding zero, where the waveform 

was shifted either forwards or backwards in time by up to five sample points, i.e. ±0.1 ms. These 

parameter values were chosen to be sufficiently large so as to expose the machine learning 

algorithms to a more heterogenous set of training data, whilst not being so large as to make the 

data physiologically implausible, thereby making them unrepresentative of the other training 

data. Data augmentation doubled the amount of data in the training folds by producing one 

augmented waveform for each subject recorded waveform. 

Note that data augmentation was not applied to the training data used by the ‘baseline 

regressor’, which simply predicted the mean latency values for waves I, III, and V, based on the 

subject recorded data in each training fold. 

6.3 Results 

In this section, the data from the ABR waveform labelling are reviewed first. Then the results of 

the wave latency estimation by the machine learning algorithms are reviewed. The confidence 

label estimation results will then be considered, before finally reviewing some example 

predictions, including examples where the machine learning algorithm performed poorly and 

where it performed well. 

6.3.1 Data Labelling 

6.3.1.1 ABR Wave Latency Labels 

Figure 6-6 shows the distribution of the ABR wave labels as provided by an audiologist. It can be 

seen that the latency distributions for each of waves I, III, and V were quite narrow. Interpretation 

of the performance of the machine learning algorithms therefore needs to take into consideration 

the low variance of the latency labels. 
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Figure 6-6 A histogram of the distribution of the ABR wave labels. The distributions of the ABR 

wave latencies as visually identified (the gold standard) were relatively narrow. The 

baseline regressor, which always predicted the mean latency values of waves I, III, 

and V as seen in the training data, provided a yardstick by which to compare the 

performance of the machine learning algorithms. 

6.3.1.1.1 Confidence Labels 

Figure 6-7 shows the distribution of the confidence labels for each of waves I, III, and V. It can be 

seen that for all three waves, the confidence level was generally high, with most confidence labels 

falling in the 3–5 range. 
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Figure 6-7 The confidence label distributions. These are broken down for each of waves I, III, 

and V. 

6.3.2 Wave Latency Estimation 

This section focuses on the wave latency estimation performance of the proposed algorithms. 

Nested k-fold cross-validation was used to evaluate the generalizable performance of the chosen 

machine learning approaches. Figure 6-8 shows the performance of the machine learning 

algorithms at predicting the latency of waves I, III, and V for data which had not been seen 

previously during model training. The performance of the machine learning algorithms was 

compared to that of the baseline regressor.  

 

Figure 6-8 A comparison of machine learning algorithms for ABR wave latency estimation. These 

box-whisker plots show the mean absolute error (MAE) of the ABR wave latency 
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predictions for the outer validation fold data across the 27 outer loop iterations. The 

MAE scores include the combined performance across waves I, III, and V. The 

baseline is provided by the baseline regressor which simply predicted the mean 

latency value for each of waves I, III, and V, based on the training fold data. LSTM = 

long short-term-memory network; MLP = multilayer perceptron; CNN = convolutional 

neural network. 

Figure 6-8 shows that even the performance of the baseline regressor was ‘reasonable’, with the 

baseline regressor achieving a median MAE of 0.123 ms across the 27 outer loop validation folds. 

This finding reflects the narrow variance of the ABR wave latency labels, which served to make 

the regression task easier to perform. Figure 6-6 shows the distribution of the latency labels for 

ABR waves I, III, and V in the dataset. This highlights the importance of providing a baseline 

performance measure, e.g. using a baseline regressor, which may help to make comparison 

between studies using different datasets easier. The best-performing algorithm was the CNN-

LSTM, which had a median MAE of 0.023. 

The distributions of the outer loop validation fold MAE scores were found not to be normally 

distributed for all of the algorithms, based on the visual inspection of probability plots and use of 

the Shapiro-Wilk test. The non-parametric Friedman’s test was therefore used to test for 

differences between the outer loop validation fold scores between the algorithms. Post hoc 

testing was performed using the Wilcoxon signed-rank test, with correction for multiple 

comparisons made using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995). A 

significant difference in latency prediction performance was found between algorithms: χ2 (5) = 

126, p < 0.001. The results of the post hoc testing are presented in Table 6-13. The best-

performing algorithm was found to be the CNN-LSTM. It performed statistically significantly better 

than all other algorithms except the CNN (the next best-performing algorithm). 
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Table 6-13 The results of post hoc testing to compare latency estimation performance between 

the algorithms investigated. Correction for multiple comparisons was made using the 

Benjamini-Hochberg method. The table shows the corrected p values, with the 

significant findings in bold. 

 Baseline LSTM Bidirectional 

LSTM 

MLP CNN CNN-LSTM 

Baseline       

LSTM < 0.001      

Bidirectional LSTM < 0.001 0.4004     

MLP < 0.001 < 0.001 < 0.001    

CNN < 0.001 < 0.001 < 0.001 < 0.001   

CNN-LSTM < 0.001 < 0.001 < 0.001 < 0.001 0.0585  

 

The CNN-LSTM achieved the lowest MAE for wave I and wave V, as well as the lowest overall MAE 

across all waves (Table 6-14). The CNN achieved the lowest MAE for wave III. As well as 

considering the MAE scores, it is useful to evaluate the percentage of latency predictions that 

occur within a given tolerance. This can help in evaluating the clinical utility of an algorithm which 

should both have a low mean error rate, and also a low number of outliers. Whilst a low mean 

error rate would likely indicate few outliers, this is not necessarily the case. Latency tolerance 

values of 0.1 and 0.2 ms were chosen as these have been previously reported in the literature 

(Chen et al., 2021), allowing comparison between studies. Overall, the CNN-LSTM achieved the 

lowest average MAE score across outer validation folds, as well as the highest percentage of 

predicted wave latencies within 0.1 ms of the clinician-defined wave labels (Table 6-15). The CNN 

algorithm achieved the highest overall percentage of predicted wave latencies within 0.2 ms of 

the clinician-defined wave labels. 
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Table 6-14 A summary of algorithmic performance for the task of ABR wave latency estimation. 

The mean absolute error (MAE) scores provided are the average calculated across 

the 27 outer loop validation folds for each algorithm. Rather than calculating a macro 

average (arithmetic mean), the micro (weighted) average was calculated as one of 

the 27 folds contained two samples instead of six (weighted by the number of 

samples in each fold). The samples from the smaller fold were therefore weighted 

proportionally to the size of the fold for fairness. That being said, due to the large 

number of folds, the impact of weighting is minimal. The ‘overall’ column (light grey) 

represents the data for waves I, III, and V combined. The best score for each column 

is highlighted green for ease of comparison. 

 Wave I MAE 

(ms) 

Wave III MAE 

(ms) 

Wave V MAE 

(ms) 

Overall MAE 

(ms) 

Baseline 0.084 0.111 0.164 0.120 

LSTM 0.055 0.052 0.080 0.063 

Bidirectional LSTM 0.055 0.061 0.081 0.066 

MLP 0.046 0.035 0.051 0.044 

CNN 0.030 0.016 0.039 0.028 

CNN-LSTM 0.025 0.018 0.032 0.025 
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Table 6-15 The latency prediction performance for set tolerance levels. The scores provided are 

the micro-average calculated across the 27 outer loop validation folds for each 

algorithm. The ‘overall’ columns (light grey) represent the data for waves I, III, and V 

combined. The best score for each column is highlighted green for ease of 

comparison. Cochran’s Q test showed a significant difference between the six 

algorithms evaluated, across each of the eight sub-columns in the table. Post hoc 

testing was performed using a pairwise McNemar test with correction for multiple 

corrections using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995), 

for each of the eight sub-columns in the table. ** This algorithm performed 

statistically significantly better than the other five algorithms for this given ABR wave 

and tolerance level. * There was no statistically significant difference between the 

performance of the multiple algorithms asterisked in this column, however, these 

asterisked algorithms all performed statistically significantly better than those not 

asterisked. 

Percentage 

within a 

tolerance of: 

  

±0.1 

 

ms 

   

±0.2 

 

ms 

 

 Wave I Wave 

III 

Wave V Overall Wave I Wave 

III 

Wave V Overall 

Baseline 65.1 54.1 34.2 51.2 94.2 86.5 64.3 81.7 

LSTM 85.3 85.5 72.4 81.1 97.3* 99.2* 94.2 96.9 

Bidirectional 

LSTM 

86.7 82.0 70.3 79.7 97.5* 98.5* 92.7 96.3 

MLP 88.4 94.6 86.9 90.0 97.3* 98.3* 97.1* 97.6 

CNN 92.3 98.3* 90.9 93.8 98.8* 99.6* 96.7* 98.3 

CNN-LSTM 94.8** 98.5* 94.4** 95.9** 98.8* 98.8* 96.9* 98.1 

6.3.2.1 Number of parameters 

The hyperparameters and architecture of the machine learning algorithms were optimised within 

a nested cross-validation procedure (Section 6.2.7). As such the number of trainable parameters 

(weights) varied across the 27 outer folds. The mean number of parameters for each machine 

learning algorithm across the 27 outer loop validation folds are provided in (Table 6-16) as well as 

the standard deviation. 
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Table 6-16 The mean number of trainable parameters across all 27 outer loop validation folds 

for each of the machine learning algorithms evaluated. 

Algorithm Mean number or parameters 

(± SD) 

LSTM 22,218,376 (4,312,155) 

Bidirectional LSTM 40,863,369 (14,215,107) 

MLP 253,294 (108,007) 

CNN 6,121,346 (517,278) 

CNN-LSTM 607,918 (765,450) 

6.3.3 Confidence Level Estimation 

As well as predicting the latency of waves I, III, and V, another aim of this study was to be able to 

predict the confidence that a clinician would have in being able to label a given ABR wave. As well 

as labelling the latency of all of the waveforms in the dataset, the audiologist (the present author) 

was tasked, for each of waves I, III, and V for each recording, with labelling the confidence level 

that they had in being able to identify the wave and label its latency accurately (Section 6.2.4). An 

integer rating was labelled in the range 0–5, inclusive. Nested k-fold cross-validation was 

performed again using the best machine learning algorithm at predicting the wave latencies (CNN-

LSTM), however, the algorithm was this time trained instead using the confidence level labels to 

predict the confidence of a clinician (with the same ability as the clinician who labelled the data) 

in being able to identify and label an ABR wave for a given waveform. It should be noted that the 

confidence predictions of the machine learning algorithm do not relate specifically to the latency 

values predicted by the companion algorithm (separate CNN-LSTMs were trained for latency 

prediction and confidence prediction). Figure 6-9 shows how the predicted confidence levels of 

the machine learning algorithm related to the corresponding wave latencies predicted by the 

latency prediction CNN-LSTM for each waveform. The confidence levels predicted by the CNN-

LSTM were rounded to the nearest integer. 
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Figure 6-9 The average mean absolute error (MAE) is shown as a function of the predicted 

confidence level. It can be seen that as the confidence level of the machine learning 

algorithm increased, the error of the latency predictions decreased. 

Figure 6-10 shows the percentage of wave latency predictions that occurred within a given 

tolerance (±0.1 ms and ±0.2 ms) of the target latency, for each level of confidence predicted by 

the CNN-LSTM. There were no confidence level predictions of 0 (n/a). There was a general trend 

that the higher the level of confidence predicted, the more accurate the latency predictions were, 

especially for a tolerance of ±0.1 ms. 
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Figure 6-10 The percentage of latency predictions within a given tolerance of the target label are 

shown as a function of the predicted confidence level. The top graph (blue bars) 

shows the percentage within a tolerance of ±0.1 ms. The bottom graph (green bars) 

shows the percentage within a tolerance of ±0.2 ms. There were no confidence level 

predictions of 0 (n/a). 

Overall, the predicted confidence levels corresponded reasonably well to the target confidence 

level labels provided by the audiologist. Spearman’s rank correlation was calculated to measure 

the relationship between the predicted confidence levels and the target confidence level labels 

issued by the clinician. The predicted and target confidence levels were found to be positively 

correlated; 𝑉𝑉(1444) = 0.53, 𝐹𝐹 < 0.001. Figure 6-11 provides a confusion matrix showing the 

relationship between the predicted confidence levels and the target confidence levels. It can be 

seen from Figure 6-11 that there were no predictions of 0 confidence, and that the majority of 

predictions and target confidence levels were in the 4–5 range. 
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Figure 6-11 A confusion matrix showing the relationship between the predicted confidence levels 

and the target confidence level labels provided by the clinician. 

6.3.4 Evaluation of Outlier Latency Predictions 

In order to evaluate the proposed CNN-LSTM algorithms (one for wave latency prediction and one 

for confidence level prediction) in more depth, this next section will analyse those cases where 

the algorithm performed most poorly. The CNN-LSTM predicted one or more of waves I, III, or V 

as being outside of a tolerance of ±0.2 ms of the target label for 22/482 waveforms. Visual 

inspection was performed to determine the types of errors that the CNN-LSTM algorithm made. 

Eight broad categories of error were identified, including: 

1. Wave V marked incorrectly as the peak of a wave IV/V complex where the right shoulder 

of the complex should have been marked. 

2. Wave V incorrectly marked on the downslope after wave V instead of the peak. 

3. Wave V error with wave V neither being marked as a peak or the shoulder of a wave IV/V 

complex. 

4. The incorrect part of the shoulder of the wave IV/V complex was marked as wave V. 

5. Wave I was bifid, with the incorrect location marked as the peak. 

6. Wave I with downsloping morphology incorrectly marked. 

7. Wave III error. 

8. All waves (I, III, and V) marked to the left, i.e. earlier than the audiologist labels. 
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Error types 1–4 are shown in Figure 6-12. 

 

Figure 6-12 Outlier analysis—focussing on wave V errors. Plots (b), (c), (d), (e), (f), (k), (l), and (n) 

all depict type 1 errors, whereby wave V was incorrectly marked as the peak of a wave IV/V 

complex where the right shoulder of the complex should have been marked. Plots (f) and (n) also 

show type 7 errors, with wave III incorrectly marked. Plots (i) and (j) show type 2 errors, where 

wave V was incorrectly marked on the downslope after wave V instead of the peak. Plots (g), (h), 

and (m) show type 3 errors with wave V neither being marked correctly as the peak or the 

shoulder of a wave IV/V complex. Plot (m) additionally contains a type 5 error with a bifid wave I 

marked in the incorrect location. Plot (a) shows a type 4 error with the incorrect part of the wave 

IV/V complex shoulder marked as wave V. The confidence predictions for waves I, III, and V are 

shown in red in the top right-hand corner of each plot and suggest that, whilst there was an 

overall correlation between the predicted and target confidence labels, there were several 

examples where the algorithm predicated a high confidence level whilst being incorrect. 
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Error types 5–8 are shown in Figure 6-13. 

 

 

Figure 6-13 Outlier analysis. Plots (c), (d), and (e) show type 5 errors where wave I is bifid, and 

the incorrect location was marked by the neural network. Plot (g) shows a type 6 

error where the incorrect part of wave I on a sloping baseline was marked. Plots (a), 

(f), and (h) show errors in the wave III latency prediction. Plot (b) shows a type 8 

error where all wave predictions were shifted left of the target, i.e. earlier. The 

confidence predictions for waves I, III, and V are shown in red in the top right-hand 

corner of each plot. 

6.3.5 Examples Where the Algorithm Worked Well 

In order to provide some balance, this section will provide some examples of where the latency 

and confidence prediction algorithms were effective. Whilst Section 6.3.4 focuses on errors made 

by the algorithm, it should be noted that for the best-performing algorithm (CNN-LSTM), 95.9% of 

latency predictions were within 0.1 ms of the clinician-defined label. Figure 6-14 provides an 

illustration of some examples where the machine learning algorithm performed well. 
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Figure 6-14 Examples where the CNN-LSTM performed well. In these examples, the error in each 

wave latency prediction is ≤0.02 ms. Some of these examples include tricky cases: 

plot (c) shows a wave IV/V complex where wave V is lower in amplitude than wave 

IV, plot (e) shows a wave I on a sloping baseline, and plot (g) shows a bifid wave I. 

6.4 Discussion 

6.4.1 Wave Latency Estimation 

The primary aim of the current study was to propose, train, and evaluate automated machine 

learning algorithms which are able to label waves I, III and V of the diagnostic ABR. Of the machine 

learning algorithms evaluated, the best machine learning algorithm (a CNN-LSTM) was able to 

label previously unseen data, on average, with a MAE of 0.025 ms, with 95.9% of latency 

predictions being within 0.1 ms of the target. A baseline regressor, which simply predicted the 

mean values of waves I, III, and V from the training data, was used to provide a baseline 

performance level by which to compare the performance of the machine learning algorithms. The 

average MAE of the baseline regressor was 0.12 ms—almost five times larger than the MAE 

achieved by the CNN-LSTM. The performance of related algorithms reported in the literature may 

also provide a benchmark level by which to compare the performance of newly proposed 

algorithms. That being said, there are multiple factors which make drawing meaningful 

comparisons between studies challenging. Namely, datasets may be heterogeneous, recorded 

from different populations (e.g. including both normal and abnormal data) with different variance 

of the target variable (wave I, III, and V latency) within the data. Indeed, studies may even use 
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different target variables, labelling different waves of the ABR, e.g. wave V only, or including also 

waves II, and IV in the analysis. Additionally, the outcome measures reported by studies may be 

vastly different. These factors can make it extremely challenging to draw comparisons between 

studies. There are several steps that studies may take to help reduce this variability and allow 

comparisons to be drawn more readily. Such steps include recording and processing the data in a 

standardised manner in accordance with the prevailing national/international guidelines; using 

standardised target variables (e.g. waves I, III, and V) as used commonly in clinical practice and 

reported in the majority of studies (additional target variables may be included on top of the 

standard ones, e.g. waves II, and IV); using standardised outcome measures to report results, or 

even a range of outcome measures; reporting the variability of the target variable within the 

dataset, or reporting the performance of a baseline estimator; and making the dataset available 

(where possible) to allow subsequently developed algorithms to be evaluated and compared to 

previous algorithms. 

Previous studies using machine learning methods to label the waves of the ABR include Freeman 

(1992); Habraken, van Gils and Cluitmans (1993); and Chen et al. (2021), (Table 6-3). Freeman 

(1992) used a multilayer perceptron and achieved an accuracy of 85%, where wave V was 

correctly predicted as present/absent, and if present, the predicted latency was within 0.2 ms of 

the target latency. In the current study, the overall best algorithm (CNN-LSTM), was able to 

correctly predict the latency of wave V within 0.2 ms for 98.1% of waveforms. This represents a 

significant improvement in performance over that previously reported, possibly due to the 

advances in machine learning techniques over the past decades, although acknowledging the 

caveats made previously for why drawing comparisons between studies is challenging. Notably, 

Chen et al. (2021) use a dataset which contains both normal and abnormal ABR data whereas the 

present study uses only ABR data recorded from individuals with normal hearing. Habraken, van 

Gils and Cluitmans (1993) used a series of perceptrons/multilayer perceptrons combined and 

achieved an 80% ± 6% SD agreement with the target labels provided by a human expert for wave 

V latency. The tolerance for a correct prediction is not provided, and so comparison of 

performance with that presently reported is not readily possible. One of the most recent and 

best-performing algorithms reported (including both machine learning and traditional rule-based 

algorithms) is that by Chen et al. (2021). They reported the performance of various configurations 

of recurrent neural networks using either unidirectional or bidirectional LSTM layers. The best 

performance reported by Chen et al. (2021) was an accuracy of 85.5% and 92.9% of wave latency 

predictions within 0.1 ms and 0.2 ms of the target label, respectively. This level of performance 

was achieved using a neural network with three bidirectional LSTM layers. In the current study, 

the CNN-LSTM achieved an accuracy of 95.9% and 98.1% of wave latency predictions within 
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0.1 ms and 0.2 ms of the target label, respectively. This represents an improvement upon the 

performance level reported by Chen et al. (2021). Again, it is important to acknowledge the 

heterogeneity between datasets. Unlike the dataset used in the present study, the dataset used 

by Chen et al. (2021) included data from individuals with hearing loss (as well as from individuals 

with normal hearing). This needn’t mean that the ABR morphology would be abnormal but would 

likely serve to increase the variability of latency values for the ABR waves in the dataset. This is 

because the latencies of the ABR waves are affected by the degree of cochlear hearing loss (Jerger 

and Johnson, 1988). This being said, the CNN-LSTM performed better than the bidirectional LSTM 

on the same dataset in the current study, suggesting that the use of convolutional layers may yet 

further improve algorithm performance. However, this performance may have been influenced by 

the differences in the number of trainable parameters between algorithms, with the CNN-LSTM 

having far fewer trainable parameters than the bidirectional LSTM. Note that the number of 

trainable parameters was optimised within the nested cross-validation procedure and so varied 

across machine learning algorithms and even across outer loops cross-validation folds for the 

same algorithm. Bidirectional LSTMs process sequences in both chronological and 

antichronological order allowing additional representations of the data to be learned (Chollet, 

2018). Whilst this may confer some performance benefit, the number of parameters in the layer 

are doubled (Table 6-16), potentially making training the network more challenging and leading to 

overfitting (Chollet, 2018). There was no statistically significant difference in performance 

between the bidirectional LSTM and the unidirectional LSTM in the present study (Table 6-13), 

despite a large difference in the number of trainable parameters (Table 6-16). There was also no 

statistically significant performance between the CNN and the CNN-LSTM when considering the 

latency estimation performance (Table 6-13). However, the CNN had far fewer trainable 

parameters on average than the CNN-LSTM. It could be that the CNN could perform better if it 

had more trainable parameters available, however, the number of parameters were optimised 

within the confines of nested k-fold cross-validation in terms of the kernel size and the number of 

units in the first dense hidden layer (Table 6-6) and these optimised hyperparameters were not 

always the largest values of the hyperparameter space explored. 

6.4.2 Confidence Labels 

Part of the aim of this study was to be able to provide a confidence measure to help clinicians 

interpret the ABR wave latency predictions provided. This feature is quite novel with only the 

study by Boston (1989) identified in the literature review as providing a confidence measure for 

wave latency predictions. Understanding the degree of uncertainty associated with a prediction 

can help clinicians know how much emphasis to allocate to it and to know when the prediction 
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should likely be discounted or at least interpreted with considerable caution (in the event of low 

confidence). Providing confidence predictions is a challenging aim to fulfil as the level of certainty 

regarding a latency prediction is challenging to quantify. The method adopted in the current study 

to achieve this aim was to train a second LSTM-CNN (chosen as this was the best identified 

algorithm for wave latency estimation) and to train it using the confidence labels provided by the 

clinician. This means that the predicted confidence level does not relate specifically to the latency 

predictions provided by the latency prediction algorithm, but rather to the level of confidence 

that one may place in a regression algorithm, of a similar ability to the clinician who labelled the 

ABR data, to be able to accurately predict the correct wave latencies for any given waveform. In 

other words, the confidence level prediction algorithm is trying to predict the level of confidence 

that the human clinician (who labelled the data) would have when labelling the latency of the ABR 

wave in question, which is expected to correlate to wave latency prediction accuracy. An 

alternative approach to providing a measure of confidence in the wave latency predictions could 

be to use deep Bayesian neural networks or Gaussian processes (Li et al., 2021). Li et al. (2021) 

state that ‘point predictions in absence of uncertainty estimates lack credibility quantification and 

raise concerns about safety’. Understanding and dealing with uncertainty is an important part of 

medical care. ABR detection in clinical practice uses confidence measures such as the Fsp or the 

Fmp, from which an associated p value may be obtained to aid the clinician’s interpretation of the 

data. Such a measure would be useful also for wave latency predictions. Whilst the predicted and 

target confidence levels were found to be positively correlated (𝑉𝑉(1444) = 0.53, 𝐹𝐹 < 0.001), the 

majority of the wave latency labels fell into the higher confidence range (4–5 out of 5). This means 

that the algorithm may not have been exposed sufficiently to data where low clinician confidence 

was present and therefore may not be able to recognise such cases effectively. 

6.4.3 Evaluation of Outlier Latency Predictions 

Figure 6-12 and Figure 6-13 display the ABR waveforms where one or more of the predictions for 

the wave I, III, and V latencies were outside a tolerance of ±0.2 ms of the target label provided by 

the clinician. The morphology of the ABR varies between individuals, making the task of labelling 

its waves challenging. Machine learning algorithms trained on too small a dataset may therefore 

not be exposed to the wide variety of ABR morphologies present in the general population. The 

key themes in the error analysis were the machine learning algorithm mistakenly labelling the 

peak of a wave IV/V complex instead of the shoulder (wave V), and also selecting the incorrect 

peak for wave I when it was bifid. These types of morphology may be challenging for clinicians to 

label correctly and so it is understandable, especially given the size of the dataset, how the 

machine learning algorithm may also struggle with these types of ABR morphology. 
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6.4.4 Limitations and Future Work 

A major limitation of the current study is that the dataset was obtained from individuals with no 

auditory pathology, i.e. all ABRs had a normal morphology, albeit in the presence of inter-subject 

waveform morphology variability. All of the participants had normal hearing. Whilst this study 

serves to compare the effectiveness of various machine learning approaches in labelling the ABR, 

an algorithm designed for implementation in the clinical setting would need to be trained and 

tested on a heterogeneous dataset which contained both normal and abnormal data, reflecting 

the characteristics of the target clinical population. The current study identifies suitable 

algorithms, accurate at labelling the normal ABR data, which may be suitable for use in future 

work. 

A further limitation of the current study is that only one clinician was used to label the ABR data, 

as opposed to a group of clinicians as was the case in the study by Chen et al. (2021). The impact 

of this limitation is relatively low in the present study, as the main aim related to how well a 

machine learning algorithm was able to mimic the wave labelling process of one audiologist, 

rather than a consensus of audiologists. If the algorithm were to be used in clinical practice it is 

essential that the data are labelled by a group of experts with significant experience in ABR 

interpretation so that the algorithm may be able to learn to mimic this ‘gold standard’ level of 

performance. 

Another limitation is that no previous traditional rule-based algorithms were implemented for 

comparison with the machine learning methods evaluated. The main reason why this was not 

performed is that, despite the publication of methods, there is often insufficient detail available 

to reproduce an algorithm in its entirety so that it is implementable in exactly the same format as 

that used in the published study. Additionally, certain algorithms may be set up for certain 

recording parameters and require adaptation for use on new datasets. One method of 

overcoming this limitation is to make datasets openly available for future researchers to use. A 

baseline regressor was used to provide a performance benchmark. 

6.5 Conclusions 

The main aim of this study was to train a machine learning algorithm to predict waves I, III and V 

of the diagnostic ABR. Of the algorithms compared, the CNN-LSTM performed the best and was 

able to label 95.9% of ABR waves within 0.1 ms of the target label. The average MAE was 

0.025 ms. This exceeds the state-of-the-art level performance reported in the literature; however, 

it is acknowledged that meaningful comparisons between studies can be difficult to make due to 

heterogeneity between the datasets used. This study also reports a novel method of estimating 
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the uncertainty associated with ABR wave latency predictions. Further research using a larger 

heterogenous dataset including abnormal ABR waveforms is required before the presented 

machine learning algorithm may be implemented for use in the clinical setting. This is important 

in order to evaluate whether the proposed algorithm will perform well across the range of data 

likely to be encountered in the clinical setting. A carefully trained algorithm has the potential to 

be able to assist clinicians in the complex task of analysing the diagnostic ABR. 
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Chapter 7 Conclusions 

The overarching theme of this PhD thesis is improving objective analysis of the auditory brainstem 

response. This has been achieved through work focussing on three key areas where gaps in the 

literature were identified: 

1. Improving ABR detection using machine learning (Chapter 4). 

2. Optimising weighted averaging and combining this with statistical ABR detection (Chapter 

5). 

3. Improving automated analysis of the diagnostic ABR using machine learning (Chapter 6). 

7.1 ABR Detection using Machine Learning 

Existing studies evaluating the use of machine learning to detect the ABR have demonstrated 

promising results. Improving ABR detection has the potential to benefit national newborn hearing 

screening programmes and also assist clinicians whose interpretations presently are reliant upon 

the visual inspection of often ambiguous waveforms. A significant limitation of studies in the field 

of ABR detection using machine learning is that the datasets used are often relatively small 

compared to those datasets used in the wider field of machine learning, e.g. 285 recordings 

(Alpsan et al., 1994), 550 recordings (Davey et al., 2007), 488 recordings (Acir, Erkan and Bahtiyar, 

2013), and 810 recordings of 64 epochs each (R Zhang et al., 2005). Additionally, it is very 

challenging to make meaningful comparisons between studies due to the varied datasets and 

outcome measures used. The research presented in this thesis aimed to overcome these 

limitations by using simulation to generate a large dataset with known labels by which to 

effectively train and evaluate machine learning algorithms. Having compared the performance of 

a range of machine learning algorithms, the proposed stacked ensemble was presented as an 

effective algorithm for ABR detection. Prior to this work, it was not known how the performance 

of machine learning algorithms compared to that of statistical ABR detection methods such as 

those used in commercially available evoked potential equipment.  

The hypothesis tested in Chapter 4 was that: 

Trained machine learning algorithms can provide a more effective method of detecting the ABR 

compared to prominent statistical detection methods, specifically with regard to sensitivity and 

specificity. 



Chapter 7 

172 

The work presented in Chapter 4 (Figure 4-11) showed how the presented stacked algorithm 

performed statistically significantly better than all of the statistical ABR detection methods 

evaluated, across all of the ensemble sizes evaluated. The recommendation in this thesis of 

comparing the performance of newly proposed machine learning algorithms with readily 

implementable statistical detection algorithms such as the Hotelling’s T2 test, makes comparison 

of the performance of algorithms used in different studies more straightforward. 

A hurdle to the clinical implementation of machine learning algorithms to detect the ABR is the 

need for a controlled level of specificity to be achieved across a wide range of ensemble sizes. This 

is necessary to ensure that the false positive rate (i.e. falsely detecting a response where none is 

present) is stable and consistent. The work presented evaluated two methods for achieving this 

Figure 4-10:  

1. Using a separate set of data by which to determine the detection criterion of the 

algorithm. 

2. Using the bootstrap technique (Lv, Simpson and Bell, 2007) (Section 3.3). 

Whilst the false positive rate was not controlled effectively using a separate set of data, the 

bootstrap technique was found to be effective in doing this. By estimating the null distribution of 

the output of the machine learning algorithm for each individual ensemble, the significance level 

of the machine learning algorithm prediction can be obtained. Overcoming this hurdle brings the 

field of ABR detection using machine learning one step closer towards the goal of clinical use. 

From an ethical perspective, machine learning algorithms must adhere to the ethical and legal 

structures in place (Vayena, Blasimme and Cohen, 2018). Machine learning algorithms used in 

clinical practice should be ‘representative of the target population’ (Vayena, Blasimme and Cohen, 

2018). Vayena, Blasimme and Cohen (2018) emphasise that evidence of safety and efficacy is 

important for machine learning algorithms used in healthcare. This should be evidenced by 

demonstratable good performance across all individuals for whom the algorithm will be used: 

• Individuals from a variety of age groups (e.g. pre-term neonates/newborns/infants). 

• Individuals with a variety of hearing levels (individuals with normal hearing, individuals 

with mild/moderate/severe/profound hearing losses). 

• Individuals with other medical factors which may be expected to affect their EEG 

recordings. 
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7.2 Automated ABR Detection and Weighted Averaging 

Weighted averaging (Elberling and Wahlgreen, 1985) has long been known to be effective at 

improving the SNR in the coherently weighted average. However, the literature was lacking in 

experiments confirming the optimal parameters for the technique. The experiment presented in 

Chapter 5 uses a large body of subject recorded data in combination with simulation to 

extensively evaluate and optimise the key parameter for weighted averaging: the block size. This 

work addresses a gap in the knowledge by providing an in-depth analysis on the effect of 

weighted averaging on the Fmp statistical detection method. Whilst research by Elberling and 

Wahlgreen (1985) provided anecdotal evidence, in the form of a selection of examples, that the 

Fsp was larger when using weighted averaging, further evidence was required to quantify the 

benefits that weighted averaging offers. An interesting and unexpected finding of the presented 

research was that the mean null Fmp value (i.e. calculated from the ‘response absent’ data) of the 

dataset used was significantly below the expected value of ~1. Additionally, when weighted 

averaging was applied, the mean Fmp value of ‘response absent’ data was found on average to 

increase, relative to the baseline of unweighted averaging. The cause of the mean Fmp value 

being below one was investigated. Whilst initially suspected to be due to an independence 

violation, after discussion with fellow researchers (J. Undurraga, personal communication, 2022), 

the low mean Fmp value was shown to be due to the finite length of the Fmp analysis window 

(Elberling and Don, 1984). Whilst the potential biasing effect of the analysis window length was 

described by Elberling and Don in 1984, this study quantifies the magnitude of the effect on the 

Fmp statistic and also demonstrates the linked effect that this has on the performance of ABR 

detection coupled with weighted averaging. 

The inflation in the Fmp value caused by weighted averaging in the dataset used, had a 

predictable impact on the specificity of the detection test (the Fmp), increasing the false positive 

rate. The bootstrap technique (Lv, Simpson and Bell, 2007) was able to control the false positive 

rate for all of the block sizes investigated, mitigating the unexpected effects of weighted 

averaging on the Fmp test statistic.  

A variety of methods have been proposed in the literature to estimate the background noise level 

within the blocks of recording epochs used for weighted averaging. A hypothesis investigated in 

this study was that: 

ABR detection may be improved by more accurately estimating the variance of the background 

noise, using the ‘VAR Whole Block’ method, compared to the ‘VAR MP’ method. 



Chapter 7 

174 

The results in Chapter 5 (Figure 5-4) showed that the ‘VAR Whole Block’ method was able to 

achieve a statistically significantly higher partial ROC AUC than the ‘VAR MP’ method across the 

block sizes evaluated between 2–10 epochs. Optimising the noise estimation method, as well as 

the block size parameter helps to improve the performance of ABR detection algorithms. This 

work helps move the field forward by providing incremental gains in detection performance. 

Whilst the pitfall that the analysis window length is associated with was described in the original 

paper on the Fsp statistic by Elberling and Don (1984), there has been little consideration of its 

impact on ABR analysis, let alone on ABR analysis combined with weighted averaging. The work in 

Chapter 5 highlights this issue and may be used to guide future recommendations for evoked 

potential equipment parameter settings for both the Fmp statistic and weighted averaging. The 

work in this study emphasises the complex interactions that pre-processing techniques such as 

filtering, artefact rejection, and weighted averaging have on the data and in turn the ABR 

detection methods applied to these data. The BSA recommend a high-pass filter setting of 30 Hz 

when recording the ABR in newborns, with an Fsp/Fmp analysis window length of 8–10 ms 

(depending on the evoked potential recording device used) (British Society of Audiology, 2019c). 

The results presented in Chapter 5 (30 Hz high-pass filter setting) and Appendix F (100-Hz high-

pass filter setting) provide evidence that further research is required to optimise the Fsp/Fmp 

analysis window length and filter settings in combination, which may in turn be used to inform 

these recommended parameter settings. 

7.3 Automated Analysis of the Diagnostic ABR using Machine Learning 

The diagnostic ABR is used in the neurological evaluation of the auditory brainstem pathway. This 

test can be used to diagnose pathologies affecting the cochlear nerve and auditory brainstem, and 

also be used for surgical monitoring (Hall, 2007). The diagnostic ABR is typically interpreted 

visually by clinicians who will label the key structures (waves) of the waveform and then use the 

latencies of these waves to make clinical decisions. Algorithms which perform this task 

automatically can bring objectivity to the procedure and offer support to clinicians.  

The aim of this study was: 

To propose, train, and evaluate automated machine learning algorithms which are able to label 

waves I, III and V of the diagnostic ABR. Multiple state-of-the-art algorithms should be evaluated 

to select the best approach. The automated algorithm should also provide a confidence measure 

to help clinicians interpret the latency values provided. The aim was not to present a final model, 

ready for clinical implementation, but rather to identify promising algorithms which may then be 

evaluated on larger datasets reflective of the intended clinical population. 
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Of the machine learning algorithms evaluated in this study, the CNN-LSTM was found to perform 

the best, with a MAE of 0.025 ms (Table 6-14), and 95.9% of latency predictions within 0.1 ms of 

the label (Table 6-15). This level of performance is higher than that achieved by state-of-the-art 

algorithms reported in the literature (Habraken, van Gils and Cluitmans, 1993; Chen et al., 2021). 

Whilst these results are promising, it is extremely difficult to meaningfully compare the 

performance of algorithms between studies. This is as a result of differences in the datasets used, 

study design, labelling procedures used, and outcome metrics reported. 

A relatively novel feature of this study was that, as well as providing a prediction for the ABR wave 

latencies, a confidence measure was also produced. Aside from the study by Boston (1989), which 

uses a rule-based algorithm rather than a neural network, no other studies were identified in the 

literature review where the ABR labelling algorithm also provided a confidence measure. It is the 

author’s firm belief that an effective confidence measure is advantageous for this type of 

algorithm in order to help clinicians with their interpretation of the predictions made by the wave 

labelling algorithm. As an audiologist, the present author is of the opinion that the provision of 

confidence measures which are evidenced to correlate well with the accuracy of wave latency 

predictions would help the adoption of objective ABR analysis algorithms by clinicians. 

7.4 Limitations 

7.4.1 ABR Detection using Machine Learning 

A significant limitation the work presented in Chapter 4 is that the simulated dataset used was 

derived from a small sample of subject recorded data. This may mean that the presented results 

are not generalisable to the wider population. Additionally the ABR data used were recorded from 

adults with normal hearing. It will be important in clinical practice for any algorithm to work 

effectively for all individuals and this will need to be verified prior to clinical use. 

While using the bootstrap technique to control the specificity level of the machine learning 

algorithm was found to be effective, it is also computationally expensive, taking approximately 

four minutes to compute a prediction compared to a fraction of a second without the bootstrap. 

This means that, in the presented format, the proposed algorithm is unlikely to be adoptable for 

clinical use. 

7.4.2 Automated ABR Detection and Weighted Averaging 

A limitation of the work presented in Chapter 5 is that it is based on a set of data using one 

particular set of pre-processing parameters. It is possible that the recommendations made in this 
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work may not be extrapolated directly to other datasets, especially if different pre-processing 

techniques/parameters, e.g. filter settings, are used. During the course of the study, it was found 

that the Fmp analysis window length (coupled with the chosen filter settings) had an impact on 

the Fmp statistic and interacted complexly with the weighted averaging technique. Additional 

data using different filter settings are presented in Appendix F. These additional data highlight 

how different recording parameters impact upon the optimal weighted averaging parameters. 

As for the work in Chapter 4, the study relies on data recorded from a small number of 

individuals. Additionally, only one ABR template was used in the analysis. This may limit the 

generalisability of the presented findings. Additional work on this topic is required (see Section 

7.5—Recommendations and Future Work). 

7.4.3 Automated Analysis of the Diagnostic ABR using Machine Learning 

A limitation of the present study is that only data recorded from individuals with normal hearing 

were used. This means that ABR wave latencies will have a lower variance compared to datasets 

containing combined ABR data recorded from individuals with normal hearing, individuals with a 

hearing loss, and individuals with neurological pathologies affecting the auditory nerve and/or 

auditory brainstem. The high performance level observed may therefore not generalise to more 

heterogenous datasets.  

7.5 Recommendations and Future Work 

7.5.1 ABR Detection using Machine Learning 

The research presented in Chapter 4 represents a proof of concept, identifying a suitable machine 

learning approach to detecting the ABR using machine learning. Further research, e.g. a clinical 

study using large subject recorded datasets would be required, prior to the proposed machine 

learning methods being implemented in clinical practice. The machine learning algorithm would 

additionally need to be trained on data using the same recording settings as the data that it was 

intended to be used for. A relatively large amount of training data will likely be required, e.g. 900 

training instances, for the machine learning model to be able to exceed the performance of 

optimised statistical detection methods (see the ABR detection learning curve presented in 

Appendix B). The dataset may be added to through use of the frequency domain bootstrap and 

simulation; however, it is recommended that this does not form the main portion of the dataset 

as it is unlikely to capture of the heterogeneity (i.e. between-subject variability) present in the 
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whole population, but rather extrapolate the variability from the subject recorded data already 

contributing to the dataset. 

7.5.2 Automated ABR Detection and Weighted Averaging 

As the results presented in Chapter 5 are based on one particular set of recording parameters, it is 

recommended that the optimisation process performed in this study be repeated using the 

intended clinical evoked potential equipment with the desired recording parameters, prior to 

implementation in clinical practice. 

Whilst the work presented in Chapter 5 focusses on the Fmp due to its prominent use in clinical 

practice, other statistical detection methods such as Hotelling’s T2 test have been found to 

perform better (Chesnaye et al., 2018). Further work in this area might evaluating the effects of 

weighted averaging on ABR detection when combined with other prominent statistical ABR 

detection methods such as Hotelling’s T2 test and the q-sample uniform scores test. 

This study highlighted the impact of the finite-length Fmp analysis window on the Fmp statistic, 

which interacted with the weighted averaging technique. This research highlights the need for 

further working on the combined optimisation of the analysis window length, recording 

parameters, and weighted averaging parameters, using a large database of subject recorded data 

in order to guide clinical practice. 

7.5.3 Automated Analysis of the Diagnostic ABR using Machine Learning 

As the research presented in Chapter 6 uses data recorded only from individuals with normal 

hearing, further research to validate the performance of the algorithm on individuals with a wide 

variety of pathologies affecting their auditory brainstem pathway, and individuals with normal 

ABR waveforms, is necessary before this algorithm may be used in clinical practice. 

7.6 End Note 

Whilst the works in Chapters 4,5, and 6 have been presented separately, they all shared the 

common aim of improving objective analysis of the ABR. Sometimes it is easier to break 

challenges down into multiple components in order to address them in turn. The ABR is a widely 

used clinical test and is used both at near-threshold levels to assess hearing thresholds objectively 

and at suprathreshold levels for objective neurological analysis. Chapter 4 focussed on improving 

objective ABR detection using machine learning algorithms and demonstrated how a stacked 

ensemble could achieve higher ABR detection performance than prominent statistical detection 
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methods. The work in Chapter 5 focussed on optimising data pre-processing in order to improve 

the performance of the Fmp objective ABR detection method. Chapter 6 focussed on improving 

wave labelling for the suprathreshold diagnostic ABR. Here the challenge lies not with detection 

of the ABR, but with the accurate interpretation and labelling of the structures of the ABR 

waveform. The work in Chapter 6 showed how machine leaning algorithms can be trained to 

perform this task and demonstrated an improvement upon the performance levels reported in 

the literature. Throughout this thesis, developments have been made in improving the objective 

analysis of the ABR. It is hoped that, through further work, these approaches may be translated 

into tools for clinical use, which will be able to assist clinicians and benefit patients. 
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Appendix A Stacked Ensemble Algorithm 

Figure A 1 shows the architecture of the stacked ensemble used in Chapter 4. 

 

Figure A 1 Stacked ensemble algorithm architecture and optimised hyperparameters. The 

outputs of two base estimators (a CNN-LSTM and a random forest) are combined by 

a meta-estimator (a logistic regression classifier) to produce a final output prediction. 

The hyperparameter names in this figure are consistent with those used by the 

Python software libraries used to construct the algorithm: Keras (Chollet and and 

others, 2015) and scikit-learn (Pedregosa et al., 2011). The hyperparameter values 

are the optimised values as obtained using the training set data (Section 4.2.4). 
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Figure reproduced with permission from Wolters Kluwer Health, Inc.: McKearney RM, 

Bell SL, Chesnaye MA, and Simpson DM. (2022) ‘Auditory Brainstem Response 

Detection Using Machine Learning: A Comparison With Statistical Detection 

Methods’, Ear & Hearing, 43(3), pp. 949–960, doi: 10.1097/AUD.0000000000001151. 
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Appendix B ABR Detection Learning Lurve 

Obtaining large quantities of clinical data in order to train machine learning algorithms can be 

challenging. A learning curve analysis was performed to help understand how much data may be 

necessary to obtain ABR detection performance above that of the best statistical ABR detection 

methods. The stacked ensemble algorithm was trained on a sample of the training set data before 

being evaluated on the test set data (Figure A 2). The test set performance was measured using 

the mean ROC AUC score, with ROC AUC scores averaged across the ten different ensemble sizes 

evaluated (100–1,000 epochs). 

 

Figure A 2 Learning curve. Plot A shows the mean test set ABR detection performance, 

measured across a range of training set sizes, up to the full training set size (90,000 

training instances). ABR detection performance is measured as the mean ROC AUC 

across all of the ensemble sizes evaluated. The performance of the best-performing 

statistical detection method (the modified q-sample uniform scores test) is shown as 

a horizontal blue line for reference. The 95% CI of this score is also shown. Plot B 

shows the mean ABR detection performance (ROC AUC) across ensemble sizes, for 

each of the statistical detection methods evaluated. 

The ABR detection performance off the stacked ensemble remained above the upper bound of 

the 95% CI for the modified q-sample unform scores test for training set sizes of 900 and above. 

Whilst ABR detection performance began to asymptote above ROC AUC scores of 0.95, 

corresponding to training set sizes of 4,500 training instances and above, detection performance 

continued to improve with increasing training set size up to the full training set size of 90,000 

training instances.
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Appendix C  Weighted Averaging using the Variance of 

the Concatenated Points in the Block 

One method explored of estimating the noise level in a block of epochs is to calculate the variance 

of all of the concatenated points in the block. This method has the limitation of the noise variance 

estimate containing a bias introduced by the presence of the evoked potential signal (ABR 

template). It is anticipated that the low SNR of the ABR will mitigate the impact of this limitation 

(Sörnmo and Laguna, 2005). A simulation was performed to investigate the potential impact of 

the SNR of the ABR on the accuracy of the noise level estimate. The ‘VAR Whole Block’ method 

was compared with the ‘VAR MP’ method. 

C.1 Simulation 

A sine wave was added to ensembles of randomly generated noise drawn from a normal 

distribution. The standard deviation of this normal distribution was chosen so that 95% of the 

distribution would fall within ±15 µV of a mean value of zero. The ensemble sizes generated were 

varied, as was the SNR of the simulated data. The experiments were repeated 100 times to allow 

confidence intervals to be calculated.  
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C.2 Results 

 

Figure A 3 A comparison of the accuracy of two noise estimation methods across ensemble 

sizes. The y-axis quantifies the mean absolute error between the estimate of the 

noise variance produced by the noise estimation method (‘VAR MP’/’VAR Whole 

Block’) and the true noise variance. The experiment was repeated 500 times to 

provide standard error bars. Figure reproduced without change, in accordance with 

the CC BY 4.0 license, from McKearney, R. M. et al. (2023) ‘Optimising Weighted 

Averaging for Auditory Brainstem Response Detection’, Biomedical Signal Processing 

and Control, 83, p. 104676. Available at: https://doi.org/10.1016/j.bspc.2023.104676. 

As shown in Figure A 3, it can be seen that for all SNRs up to approximately -12 dB, the mean 

absolute error in the estimated variance of the noise was lower using the ‘VAR Whole Block’ 

compared to the ‘VAR MP’ method. For the lowest ensemble size evaluated (2 epochs), the ‘VAR 

Whole Block’ method sizeably outperformed the ‘VAR MP’ method in terms of the accuracy of the 

noise variance estimate, potentially allowing lower numbers of epochs-per-block in weighted 

averaging to be used. Provided the SNR of the EEG is below ~-12 dB, the mean absolute error 

when using the ‘VAR Whole Block’ method was not too large. When the SNR exceeds -12 dB, as 

each recording epoch becomes relatively more dominated by the variance of the ABR signal, the 

estimate of the variance of the noise became unstable and inaccurate. For clinical applications, 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.bspc.2023.104676
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the SNR of the ABR is unlikely to exceed -12 dB and the ‘VAR Whole Block’ method should be a 

viable method to estimate the variance of the noise within blocks of epochs for weighted 

averaging. For higher SNR AEPs such as the CAEP, the ‘VAR Whole Block’ method may not be 

suitable/effective.  
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Appendix D Additional Weighted Averaging Data using 

the ‘VAR MP’ Method 

Figure A 4 shows the sensitivity achieved using the ‘VAR MP’ method of estimating the noise 

levels in the blocks used for weighted averaging. These data are available for comparison with the 

previously presented data using the ‘VAR Whole Block’ method (Section 5.3). 
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Figure A 4 The sensitivity achieved across different block sizes using the ‘VAR MP’ method. In 

order to assess the level of sensitivity fairly, the Fmp critical value was adjusted to 

that which achieved the desired false positive rate (0.01). Plot A shows the sensitivity 

level across block sizes as the proportion of all of the ABR present ensembles 
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correctly detected. For graphs A, B and C, the ABR present data were stratified into 

three evenly split groups of low- (< -32 dB), mid- (-32 to-27 dB), and high-SNR 

(> - 27 dB) ‘response present’ data. The sensitivity was then calculated for that 

portion of the ‘response present’ data. 

Compared to Figure 5-13 , where the ‘VAR Whole Block’ method was used, the data for the ‘VAR 

MP’ method showed the same main conclusion of the mid-SNR data being the sub-group to 

benefit most from the effects of weighted averaging. However, the peak sensitivity levels for all 

SNR groups were lower using the ‘VAR MP’ method compared to the ‘VAR Whole Block’ method. 

Peak performance for the ‘VAR MP’ data occurred at 20 epochs-per-block, whereas for the ‘VAR 

Whole Block method’ peak performance occurred using 10 epochs-per-block. 

Figure A 5 shows the effects of weighted averaging using the ‘VAR MP’ method on Fmp values. 

Note that just as with the ‘VAR Whole Block’ method, the Fmp values of ‘response absent’ 

ensembles became inflated with increasingly smaller block sizes used with weighted averaging. 

 

Figure A 5 Evaluation of the effects of weighted averaging using the ‘VAR MP’ method on Fmp 

values. In all four graphs, the values are presented are the absolute difference 

between the block size in question and a block size of 1,000, i.e. no weighting. 

Graphs A and C are concerned with mean values, whereas graphs B and D are 

concerned with median values. 

Compared to Figure 5-7 in the main text, which shows the data when using the ‘VAR Whole Block’ 

method, The ‘VAR MP’ method generally led to a larger increase in Fmp value for the ‘response 

present’ data, but also a larger increase in Fmp value for the ‘response absent’ data. Despite the 
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difference in the Fmp values tending to be larger using the ‘VAR MP’ method compared to the 

‘VAR Whole Block’ method, this did not lead to the ‘VAR MP’ method having a better detection 

performance or residual noise reduction (Figure 5-4, Figure 5-6, Figure A 4). This may be a result 

of the larger inflation of ‘response absent’ data Fmp values caused by the ‘VAR MP’ method, or 

less improvement in response discrimination for ensembles on the borderline of being detected 

or not. 
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Appendix E      A Simulation to Explore the Effects of Serial 

Correlation on the Fmp Statistic 

In order to investigate the reason for the low Fmp value empirically observed, a simulation was 

carried out to simulate decreased independence between samples by increasing the power of the 

low-frequency content of the simulated EEG signal. Here, 2,000 ensembles of randomly generated 

white Gaussian noise were generated. A low pass filter was then applied using a range of different 

numerator coefficients (α), with α=0 corresponding to no filter effect and α=0.99 corresponding 

to strong low-pass filtering. The filter equation used was: 

𝑎𝑎[𝑡𝑡] = 𝑙𝑙[𝑡𝑡]+ ∝∗ 𝑎𝑎[𝑡𝑡 − 1] 

where 𝑙𝑙[𝑡𝑡] is the 𝑡𝑡𝑡𝑡ℎ sample of the input sequence, and 𝑎𝑎[𝑡𝑡] is the 𝑡𝑡𝑡𝑡ℎ sample of the output 

sequence. Each of the 2,000 ensembles were structured into 1,000 recording epochs containing 

150 samples. As per the methodology used in Section 5.2, the Fmp statistic was applied to an 

analysis window containing samples 6–76 (inclusive). Figure A 6 shows the effect of the low-pass 

filter strength on the mean Fmp value. 

 

Figure A 6 The effect of serial correlation on the Fmp statistic. 

Figure A 6 shows how the mean Fmp value of the ensembles decreased as increasing serial 

correlation was introduced by increasing the strength of the low-pass filter. It is challenging to 

pick apart which characteristics of the data led to the empirically observed low mean Fmp value. 

The F-test to compare two equal variances is sensitive to non-normality (Pearson, 1931; Box, 
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1953). It could be that non-normality is the main contributor of the empirically observed low Fmp 

value or that non-normality and non-independence are causing this effect in combination. Figure 

A 7 explores the effect of low-pass filtering on the normality of the data in both the numerator 

(coherent average) and denominator (single point ensemble column) of the Fsp statistic. Note 

that the Fsp denominator was used instead of the Fmp denominator as this allows the normality 

of the samples to be evaluated more readily in isolation. 

 

Figure A 7 The effects of sequential independence introduced through filtering on non-

normality as measured using the Shapiro-Wilk test. The x-axis on all four graphs is the 

filter numerator coefficient, with zero corresponding to no filtering, and larger 

coefficient values corresponding to stronger low-pass filtering. The top two graphs 

(blue) show the effect of low-pass filtering on the p value of the Shapiro-Wilk test for 

normality, for samples from the numerator (coherent average) and denominator 
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(single point ensemble column) of the Fsp statistic. The bottom two graphs (orange) 

show the percentage of ensembles where the null hypothesis of normality was 

rejected (α set at 0.05) for both the Fsp numerator and denominator. 

Figure A 7 shows how stronger low-pass filtering and therefore increased correlation between 

samples, led to lower p values using the Shapiro-Wilk test for normality and therefore a greater 

percentage of ensembles where the null hypothesis of samples being normally distributed was 

rejected. 

N.B. Upon further investigation, as prompted by Dr Jaime Undurraga (J. Undurraga, personal 

communication, 2022), the lower-than-expected empirically obtained mean Fmp value was found 

to be due to the length of the analysis window (Figure 5-11) (Elberling and Don, 1984). 
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Appendix F  Overcoming the Limitations of a finite Fmp 

Analysis Window Length by Raising the High-Pass Filter 

Setting 

In order to avoid the underestimation of low-frequency spectral content as the result of a finite 

Fmp analysis window length, Elberling and Don (1984) suggest using an appropriate high-pass 

filter setting. In this appendix, results are provided whereby the data used in Chapter 5 were 

filtered using a raised high-pass filter setting: 100 Hz instead of the 30 Hz used previously. In 

addition to the EEG filter settings being changed, the already band-pass-filtered ABR template 

was filtered again using a high-pass filter of 100 Hz prior to being added to the no-stimulus data 

(this was done because the ABR database used contained already filtered ABR data). 

Note that the resimulation of the data using a raised high-pass filter setting of 100 Hz, led to 

fewer recording epochs being rejected, and therefore a greater number of ensembles in the 

analysis (4,688 instead of 4,602). 

Figure A 8 shows the effect of weighted averaging on the residual noise levels present in the 

coherently averaged waveform. 
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Figure A 8 Mean and median residual noise levels in the averaged waveform. The baseline 

represents the residual noise levels obtained using unweighted coherent averaging, 

i.e. 1,000 epochs-per-block. Figure reproduced without change, in accordance with 

the CC BY 4.0 license, from McKearney, R. M. et al. (2023) ‘Optimising Weighted 

Averaging for Auditory Brainstem Response Detection’, Biomedical Signal Processing 

and Control, 83, p. 104676. Available at: https://doi.org/10.1016/j.bspc.2023.104676. 
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Figure A 9 shows the ABR detection performance of the ‘VAR Whole Block’ method and 
the ‘VAR MP’ method. 

 

Figure A 9 Comparison of two methods for estimating the variance of the noise within each 

block. The evaluation metric used was the partial ROC AUC, i.e. the area under a 

partial region of the ROC curve, in this case the region corresponding to a false 

positive rate of ≤ 0.05. A higher partial ROC AUC score corresponds to a better ability 

to discriminate between ‘response present’ and ‘response absent’ data, over the 

false positive rates of interest. A double asterisk, **, indicates Bonferroni-corrected 

two-sided p value of < 0.01. Error bars represent the bootstrapped standard error of 

the partial ROC AUC. Figure reproduced without change, in accordance with the CC 

BY 4.0 license, from McKearney, R. M. et al. (2023) ‘Optimising Weighted Averaging 

for Auditory Brainstem Response Detection’, Biomedical Signal Processing and 

Control, 83, p. 104676. Available at: https://doi.org/10.1016/j.bspc.2023.104676. 
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Figure A 10 shows the effects of weighted averaging on the ‘response present’ and ‘response 

absent’ Fmp values. 

 

Figure A 10 Evaluation of the effects of weighted averaging on Fmp values. In both graphs, the 

values presented are the absolute difference between the block size in question and 

a block size of 1,000, i.e. no weighting. Figure reproduced without change, in 

accordance with the CC BY 4.0 license, from McKearney, R. M. et al. (2023) 

‘Optimising Weighted Averaging for Auditory Brainstem Response Detection’, 

Biomedical Signal Processing and Control, 83, p. 104676. Available at: 

https://doi.org/10.1016/j.bspc.2023.104676. 
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Glossary of Terms 

Coherent average ................. The term used to describe the waveform produced when multiple 

recording epochs are averaged together. As the recording epochs are 

all recorded relative to the onset of the stimulus, averaging is said to 

be ‘coherent’. 

Ensemble .............................. An ensemble comprises a collection of 𝑁𝑁 recording epochs. These all 

contain the same number of samples (𝑀𝑀). An ensemble is therefore a 

matric of 𝑁𝑁 recording epochs by 𝑀𝑀 sample points. 

Evoked potential .................. An electrical potential elicited by stimulation, e.g. acoustic stimuli. 

Hyperparameter .................. Chosen variables which influence the machine learning process e.g. 

the learning rate. 

k-fold cross-validation .......... A resampling without replacement procedure used to select and 

evaluate machine learning models. Model is performance is 

evaluated over a number of (𝑘𝑘) iterations, using different portions of 

the data each time for the evaluation (Raschka, 2020). 

Recording epoch .................. A length of EEG recorded over a specified time-window, starting after 

the onset of a stimulus. 

Training epoch ..................... This is a machine learning term which refers to when the machine 

learning model has been trained on all of the training instances in the 

dataset once. A machine learning model may be trained on the full 

training set over multiple iterations (training epochs). 

Voltage means ..................... These are the mean value of multiple adjacent samples within a 

recording epoch, essentially combining these sample into one bin. 

Compression of evoked potential data into voltage means is used to 

improve the test performance of the Hotelling’s T2 test (Golding et 

al., 2009). 
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