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Abstract: Coherent beam combination offers the potential for surpassing the power limit of a 

single fibre laser, as well as achieving agile far-field beam-shaping. However, the spatial beam 

profile of the combined beam is significantly dependent on the phase of each fibre. Recent 

results have shown that deep learning can be used to extract phase information from a far-field 

intensity profile, hence unlocking the potential for real-time control. However, the far-field 

intensity profile is also dependent on the amplitude of each fibre, and therefore phase 

identification may also need to occur whilst the fibre amplitudes are not equal. Here, it is shown 

that a neural network trained to identify phase when all fibres have equal amplitudes can also 

identify phase values when the amplitudes are not equal, without requiring additional training 

data. 

 

1. Introduction 

Fibre lasers have transformed manufacturing, as they offer a highly efficient method of directed 

energy transfer [1-4]. However, the maximum power that can be generated by a single fibre 

laser is limited, due to ever more critical nonlinear effects as the fibre laser power is increased, 

most notably stimulated Raman scattering and transverse mode instability [5]. A well-known 

solution is through the coherent combination of multiple fibre lasers. Whilst there are many 

methods for combination [6, 7], here we focus on the tiled array approach, where a hexagonal 

close packed array of fibre lasers is combined at a single plane, and the resultant laser light is 

focussed onto a work piece. Whilst the coherent combination approach bypasses the single fibre 

power limit, this technique uncovers a different challenge, namely the requirement for precise 

control of the phase of each fibre, since the combined spatial intensity profile is hugely 

dependent on the phase of each fibre. Whilst the optimal case in such an arrangement is 

generally where all fibres have the same phase value, as this generally results in constructive 

interference with a single strong interference peak, there are also many applications for shaped 

beams [8-10]. Regardless of the final application, or the preferred spatial intensity profile, a 

fundamental challenge in this field is the identification of the phase value of each fibre. Further 

to this, this phase identification must be achieved in real-time, as the phases of each fibre can 

change continuously during practical operation. 

Deep learning is a machine learning technique that uses artificial neural networks with 

multiple layers to automatically learn and extract hierarchical representations of data [11-15]. 

These learned representations enable the network to make predictions and decisions on data 

that was not used during the training process. Deep learning models are capable of 

automatically learning complex features from data, without being explicitly programmed, 

making them highly versatile and applicable to a wide range of tasks [16-18]. Since the first 

practical demonstration of the convolutional neural network [19], neural networks have 

dominated the field of object identification. The network architecture of a convolutional neural 

network is designed to identify objects in images through incremental levels of abstraction of 

spatial information as the image data progresses through the network layers. The result is a 



powerful tool that can applied in a huge variety of identification tasks, for example the 

identification of the tens of thousands of categories of objects in the ImageNet database [20]. 

More recently, the concept of adversarial training of convolutional neural networks was 

introduced, where two networks work in parallel to enhance the image generation capability 

[21]. This network was subsequently modified to enable image-to-image transformation. 

Known as a conditional generative adversarial network (cGAN) [22], this network has an 

extraordinary capability to transform one style of image into another style, and has seen many 

applications within the field of photonics, including in holography and lensless imaging [23-

25], microscope resolution enhancement [26-28], and modelling of femtosecond laser 

machining [29-31]. 

Deep learning has also been applied to solving some of the challenges associated with 

coherent beam combination. Key breakthroughs in the field include experimental control of 

107 beams [32], and a 7kW combination [33] via stochastic gradient descent [34, 35] by 

maximising the amount of laser light transmitted through an aperture. Whilst this approach can 

achieve a high intensity in a central interference peak, random noise fluctuations are generally 

needed (i.e., stochastic) for finding an optimal solution. In addition, this approach is also limited 

to the chosen aperture size and shape, and hence is less appropriate for bespoke beam shaping 

applications. To achieve this, a camera-based observation of the combined spatial intensity is 

generally needed, along with a direct technique for identification (and then optimisation) of the 

phase of each fibre. The challenge then becomes the well-known phase-retrieval problem [36], 

where phase information is extracted from an intensity pattern. In the field of coherent beam 

combination, there have been many suggested designs to allow additional information to be 

captured to eliminate the non-uniqueness of the problem [37], such as interference with a 

reference beam [38], and use of diffractive elements [39] to assist in the phase identification 

and enable beam shaping [40]. Reinforcement learning [41], which is a technique for enabling 

a neural network to learn through exploration whilst being given rewards, has also been applied 

to this field [42-46]. 

Recently, the authors demonstrated the identification of phase information from a far-field 

intensity pattern using deep learning, directly from the focal intensity pattern [47]. This result 

presented the potential for using a neural network for the real-time identification of phases for 

bespoke beam shaping when using a 19-fibre hexagonal tiled array. The neural network was 

trained to transform a simulated far-field intensity pattern into an image corresponding to the 

phases of each fibre. In other words, the network could identify the phases of all fibres directly 

from the intensity pattern. However, in this previous work, the amplitudes of the fibres were 

equal, and hence the intensity patterns always corresponded to fibres with equal amplitudes. In 

general, such an intensity pattern is dependent on both the phases and the amplitudes of the 

fibres, and hence an assumption might be that the neural network would need additional training 

data to identify the phase values when the amplitudes values are not equal. However, as shown 

here, an important result is that a neural network trained to identify phase values from intensity 

patterns corresponding to random phases and equal amplitudes can indeed identify phase values 

from intensity patterns where the amplitudes are also randomly chosen. 

This observation could lead to several practical benefits for the application of neural 

networks for control of an experimental coherent beam combination system. Firstly, this result 

reduces the complexity of the task of training the neural network. Rather than having to train a 

neural network to identify fibre phase values for varying fibre amplitude values, the network 

need only be trained on varying phase values with constant amplitude values. In this case, 

reduction in the complexity of the task for the network to learn could allow for easier 

implementation on microcomputers [48, 49], which could further reduce the cost of industrial 

implementation. Secondly, even though the network has not encountered variation in the fibre 

amplitudes during training, on application to a physical system, if one of the fibre sources stops 

emitting light, or becomes misaligned, then the neural network could still identify the phase 

values of all other fibres. Thirdly, as the amplitude of each fibre could realistically be measured 



in real-time with a power meter and beam pickoff, then the addition of the trained network 

could potentially allow both the phase and amplitude of each fibre to be monitored in real-time. 

This combination of measurement techniques could therefore be used to support bespoke beam 

shaping where the amplitudes of each fibre are also deliberately modified to unlock additional 

beam shaping capabilities, beyond that which could be achieved with control of phase only. In 

such a case, despite the amplitudes varying, the network would still be able to identify the phase 

values of each fibre.  

In general, the outcome presented in this work is particularly important for an industrial 

perspective, as a considerable challenge in deep learning is the requirement for additional 

training data as the complexity of a challenge increases, and hence there is much interest in 

finding efficient applications, such as the approach presented here. 

2. The interrelationship of phase and amplitude in interference patterns 

The far-field intensity pattern from an array of light sources is generally dependent on the phase 

and the amplitude of each light source. In this work, this interrelationship was explored using 

a simulation of seven light sources in a hexagonal close packed arrangement, representing fibre 

lasers, which were then propagated to a focal plane, where the intensity was calculated. Each 

simulated fibre had both a phase value between -π and +π, and an amplitude value between 0 

and 1, where this amplitude value represents the maximum value (i.e., the centre) of the 

simulated Gaussian amplitude profile for each fibre. The simulated fibres were organised in a 

hexagonal close packed arrangement with a fibre radius of 500 µm, a wavelength of 1 µm, and 

where the generated light was focussed through a simulated lens and propagated towards the 

focal plane of 25 cm. The Gaussian amplitude profile had a radius of 0.8 of the fibre radius and 

had zero amplitude outside the spatial extent of each simulated fibre. Figure 1 shows three 

examples of phase values (shown on the left as a single column) and three examples of 

amplitude values (shown on the top as a single row). It is important to note that, for ease of 

viewing, the amplitude plots show the maximum value of the Gaussian amplitude profile used 

in the simulations, rather than the Gaussian spatial distribution. The figure shows the calculated 

far-field intensity profiles for each of the nine combinations of the phase values and the 

amplitude values. Of interest here, is that the intensity pattern has a clear dependence on both 

the phase and amplitude. In the case of a set of equal amplitude values, the phase strongly 

changes the pattern. However, those same phase values result in a less striking change in the 

intensity pattern for non-equal amplitude values. 

Investigating further, figure 2a) shows firstly the combination of a set of phase values with 

a set of equal amplitude values, and secondly the combination of the same set of phase values 

with 100 randomly chosen sets of amplitudes. As shown in the figure, the average of all 100 

intensity patterns is comparable to the intensity pattern from a set of equal amplitude values, 

with metrics for the intersection over union and image subtraction shown in parts b) and c) 

respectively. To calculate the intersection over union, the two images were thresholded to 

produce binary maps, and hence the value is provided for all possible threshold levels. This 

figure visually demonstrates that whilst both the phase and the amplitude affect the intensity 

pattern, their effects are distinct. 

Importantly, changes in the phase and the amplitude of an electric field affect its far-field 

diffraction pattern in different ways. In general, the phase profile determines the position of the 

interference peaks, and the amplitude modifies the fringe visibility. This effect can be 

demonstrated through a simulation of a pair of slits, as shown in Figure 3. The figure shows the 

simulated far-field diffraction pattern, for different values of amplitude and phase for the right-

hand side slit. As shown in the figure, a change in the relative phase of the two slits changes 

the position of the interference peaks, and a change in the relative amplitude changes the fringe 

visibility (but it does not change the peak position). Therefore, in the case of this simulation, 

the spatial frequencies corresponding to the relative phase of the two slits exists in the 

diffraction pattern even when the amplitude is changed. The signal-to-noise ratio (i.e., fringe 



visibility) of this spatial frequency information corresponds directly to the relative amplitudes 

of the two slits, and this ratio will drop to zero for cases where the amplitude of either slit is 

zero. Whilst the complexity of the diffraction pattern increases when the number of light 

sources is increased to seven (i.e., in the case for the simulated fibres in this work), the physical 

principle remains. It could therefore be argued that the neural network can identify the phase 

values of the fibres when the amplitudes have changed (despite never encountering this during 

training) as the position of the interference peaks does not change. Similarly, it could be argued 

that the phase prediction accuracy decreases when the amplitude of a fibre decreases, as the 

fringe visibility also decreases.  

 

Fig. 1. Simulated far-field intensity patterns corresponding to different combinations of phase 

values and amplitude values. 



 

Fig. 2. Showing a) that the intensity pattern for equal amplitude values is comparable to the mean 
of the intensity patterns for non-equal amplitude values, with quantitative metrics of b) 

intersection over union and c) image subtraction. 



 

Fig. 3. Simulated far-field diffraction patterns from two slits, for changing amplitude and phase 

values. The dotted green lines are included for assisting with visual comparison. 

3. The neural network 

Here, a cGAN was used to transform an image corresponding to the simulated intensity profile, 

into an image corresponding to the phase profile of the simulated fibres. The neural network 

had a generator and discriminator adversarial architecture, with the generator based on an 

encoder-decoder U-Net model with skip connections (as shown in Figure 4), and the 

discriminator downscaling the generated 256 × 256 resolution images down to a 32 × 32 images 

before judging them.  

 

Fig. 4. Schematic of the image-to-image network used for transforming simulated diffraction 

patterns into predictions of phase. 

The network was trained with a batch size of 2, learning rate of 0.0002 (Adam, beta=0.5), and 

with a L1-to-GANloss ratio of 100:1. The beam propagation simulation, and the neural network 

and its training parameters, were identical to those presented previously [47], except for the use 

of seven fibres in this work. As shown in figure 5a), the neural network was trained to identify 

the phase values directly from the simulated intensity profiles. The training data was formed of 



100,000 pairs of images, corresponding to seven fibres with randomly generated phase profiles 

and equal amplitudes, and their associated intensity profiles. The neural network was therefore 

trained on data where all fibres had an amplitude value of one, and then tested on data where 

all fibres had a random amplitude value between zero and one. This ensured that the testing 

data was not encountered during training (except for the single case where all amplitude values 

were one).  

 

Fig. 5. Concept for a) training and b) testing the neural network. The neural network is trained 
to identify phase values from simulated far-field intensity patterns. The training data contains 

intensity patterns corresponding to random phase values and equal amplitude values (the 

amplitudes are always set to a value of one). The testing data contains intensity patterns 
corresponding to random phase values and random amplitude values (the amplitudes are chosen 

from a uniform distribution from zero to one). 

As the diffraction patterns would, in practice, be recorded as a camera image for an 

experimental implementation, an image-to-image neural network architecture was chosen. This 

meant that the phase information would likewise need to be converted into an RGB image. Due 

to the cyclic nature of phase, a single channel of the RGB image was not sufficient for the 

neural network to learn the process of phase identification, and instead the red and blue image 

channels were used to represent the sine and cosine of the phase for each fibre. A flow chart 

describing this approach in detail is shown in figure 1 in [47]. The phase and amplitude 

information were encoded into the RGB channels of a 256 × 256-pixel resolution image with 

24-bit depth, with the phase encoded using a sin(theta) and cos(theta) approach to ensure 

continuity across the -π to +π boundary. The phase of the central fibre was always set to zero, 

to avoid the infinite number of equivalent solutions associated with a global change in phase 

value. The amplitude was encoded in the green channel of the image and was scaled accordingly 

between the values of 0 and 255. The simulated intensity pattern was encoded through the 

scaling of intensity values between the values of 0 and 255, with all RGB taking these values, 

hence giving a grayscale image. The input for the neural network was therefore a grayscale 

image corresponding to the intensity pattern, and the output (i.e., the neural network prediction) 

was an RGB image that encoded the phase and amplitude information. As indicated by the 

figure, all training data pairs corresponded to a set of equal amplitude values. As shown in 

figure 5b), after the neural network was trained, it was tasked with the identification of phase 

values from simulated intensity patterns corresponding to non-equal (i.e., randomly chosen) 



amplitude values. In other words, the neural network was trained on equal amplitude values, 

and was tested on non-equal amplitude values. 

4. Results and discussions 

One of the primary challenges associated with the application of neural networks is quantifying 

the encoding that the network has learnt during training. Typically, an image-based neural 

network will have of order millions or billions of programmable neurons, and hence a direct 

investigation of neurons is rarely effective. Despite the challenges, a wide range of approaches 

have been investigated, such as Grad-Cam [50] and Saliency maps [51]. Alternatively, the 

network can be applied to a range of tasks, and the network outputs can be analysed. This is, in 

essence, the approach taken in this work, where the neural network was trained on task A (i.e., 

phase identification when the fibre amplitudes are equal) and then tested on task B (i.e., phase 

identification when the fibre amplitudes are non-equal). The behaviour of the network on task 

B can then provide some level of qualitative understanding of the capability of the network. In 

this section, three such task B examples are presented. Firstly, when the fibre amplitudes are 

either 0 or 1 (figure 6). Secondly, when the central fibre has an amplitude of 0, and when the 

spatial positions of the fibres are changed (figure 7). Thirdly, when the fibre amplitudes can 

take any value between 0 and 1 (figure 8). 

Figure 6 shows the capability of the neural network for identification of phases values where 

fibres have an amplitude of 0 or 1 (i.e., ‘on’ or ‘off’). In a), the columns correspond to the phase, 

amplitude, and simulated intensity, along with the predicted phase, where all four columns are 

shown for cases of 2 to 7 fibres with an amplitude of 1. In all cases, the central fibre has an 

amplitude of 1. As shown in the figure (by the green ticks), the neural network accurately 

predicts the phase for all fibres that have a non-zero amplitude. Whilst the phase value for zero 

amplitude is of course meaningless, the neural network still predicts a phase value for each 

fibre. It is notable that the phase values are predicted correctly for all cases, as the intensity 

patterns for 2 to 6 fibres ‘on’ were not experienced by the network during training, as only 

intensity patterns for 7 fibres ‘on’ were used. Part b) shows that the prediction accuracy 

increases slightly for higher numbers of ‘on’ fibres. This could be since the larger number of 

‘on’ fibres corresponds more similarly to the training data, or that the interference from multiple 

fibres is required, and hence each ‘off’ fibre removes some of the information used to identify 

the phases. 

Figure 7a) shows the capability of phase prediction when the central fibre is removed. As 

noted earlier, in the training data, the phase of the central fibre was always set to zero, to remove 

the infinite number of solutions associated with the property that a global phase value change 

would produce an identical intensity pattern. Therefore, when the central fibre is removed, the 

phase predictions are significantly less accurate, with analysis showing that 93% of the 

prediction accuracy comes from interference with the central fibre and 7% from interference 

with other outer ring fibres. This provides strong evidence that the neural network uses the 

central fibre as a fixed reference when predicting the phase values of the surrounding 6 fibres. 

Figure 7b) shows the effect of translating the position of the fibres. Here, the hexagonal close 

packed arrangement is transformed into a ‘plus’ pattern. The ‘plus’ pattern was specifically 

chosen as it shares the position of three fibres with the hexagonal arrangement, but also has two 

positions that are not shared. Of course, the neural network only experienced the 7-fibre 

hexagonal arrangement during training, and hence the intensity pattern from the ‘plus’ 

arrangement would not have been experienced during training. Here, the neural network 

correctly predicts the phase values for the fibres that match the position of the hexagonal 

arrangement and fails to predict the phase values for the fibres for the un-matched positions. 

This is clear evidence that the neural network is only able to identify the phase of fibres that 

are in a position that was experienced during training. Interestingly, the neural network still 

predicts a value for the phase of the fibres in the un-matched position, and understandably they 



are incorrect, as there is no mathematical combination of phases that could allow the hexagonal 

arrangement to produce the intensity patterns that was associated with the ‘plus’ arrangement. 

 

Fig. 6. Showing a) phase, amplitude, and simulated intensity patterns, along with the phase 

values predicted by the neural network directly from the simulated intensity patterns, and b) the 

phase prediction error for different numbers of fibres with non-zero amplitude values. 



 

Fig. 7. Showing phase, amplitude, and simulated intensity patterns, along with the phase values 
predicted by the neural network for a) cases where the central fibre amplitude is set to zero (i.e., 

removed), and b) where the positions of the fibres are changed from a 7-fibre hexagonal 

arrangement to a 5-fibre ‘plus’ arrangement. 

Figure 8 shows the capability of the neural network for predicting phase values when the 

amplitude values for each fibre can take any value between 0 and 1. For each of the examples 

shown in a-c), the phase values are constant, and the amplitude values are randomly chosen. 

Firstly, 30 examples of intensity patterns (i.e., fixed phase, random amplitude) are presented. 

Secondly, the neural network phase predictions for each of these intensity patterns are graphed 

(solid green circles), along with the correct phase values (red plusses). The graphs clearly show 

that the neural network can identify the phase values in the presence of randomly chosen 

amplitude values. The intensity of the solid green circles in the figure corresponds to the 

multiplication of the amplitude of the specified fibre and the amplitude of the central fibre. As 



this multiplied value decreases below 25%, the prediction error sharply increases. This effect 

is likely due to the decreased visibility of the interference fringes when the amplitudes are 

reduced. Figure 9 shows the ability of a neural network to predict phase values of each fibre 

when a linear gradient phase profile is added to the simulated phase profile. This capability is 

also observed when the amplitudes of each fibre are randomly chosen. 

 

Fig. 8. The capability of the neural network for predicting the phase directly from intensity 

patterns that correspond to amplitude values with a uniform distribution between zero and one. 

Showing for each of a-c), thirty examples of simulated intensity patterns corresponding to a fixed 
phase and random amplitude values, along with the graph showing the phase values predicted 

by the neural network for each of these thirty intensity patterns. Showing d), the phase prediction 

error for different amplitudes. 

This work has presented analysis of a neural network trained on simulated data, and hence 

it is important to consider the approach required to apply this technique to a real-world 

experimental setup. The key challenge will likely be the collection of suitable labelled training 

data. As the phase cannot be directly identified (after all, this is the motivation for the work), 

the experimental setup will require an additional interferometric component on each single 

beam so that the phase of each fibre can be identified through direct measurement of the 



produced interference fringes. Such an approach would be costly and challenging to implement 

experimentally and would therefore not be suitable for use on a commercial coherent beam 

combination system. The expectation is that an augmented setup would be able to provide 

labelled experimental training data that would then enable other equivalent coherent beam 

combination systems to be controlled without the need for this additional interferometric 

measurement device. 

 

Fig. 9. The capability of the neural network in identification of the phase values when a phase 

gradient is present in the simulation. Showing a) the simulated phase profile, the associated 
simulated focal intensity profile, and the prediction phase profile, for a range of phase gradients, 

and b) comparison of phase values for each fibre. 

5. Conclusion 

In conclusion, a neural network trained to identify the phase information from intensity patterns 

corresponding to simulated fibres with equal amplitude profiles was shown capable of 

accurately completing this task for intensity patterns from fibres with non-equal amplitude 

profiles. This result has an important practical implication for coherent beam combination, 

namely that the identification of phase via deep learning may not require additional training 

data if the fibre amplitudes are intentionally, or unintentionally, varying to some degree. 
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