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Abstract: Coherent beam combination offers the potential for surpassing the power limit of a
single fibre laser, as well as achieving agile far-field beam-shaping. However, the spatial beam
profile of the combined beam is significantly dependent on the phase of each fibre. Recent results
have shown that deep learning can be used to extract phase information from a far-field intensity
profile, hence unlocking the potential for real-time control. However, the far-field intensity profile
is also dependent on the amplitude of each fibre, and therefore phase identification may also need
to occur whilst the fibre amplitudes are not equal. Here, it is shown that a neural network trained
to identify phase when all fibres have equal amplitudes can also identify phase values when the
amplitudes are not equal, without requiring additional training data.
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Further distribution of this work must maintain attribution to the author(s) and the published article’s title,
journal citation, and DOI.

1. Introduction

Fibre lasers have transformed manufacturing, as they offer a highly efficient method of directed
energy transfer [1–4]. However, the maximum power that can be generated by a single fibre laser
is limited, due to ever more critical nonlinear effects as the fibre laser power is increased, most
notably stimulated Raman scattering and transverse mode instability [5]. A well-known solution
is through the coherent combination of multiple fibre lasers. Whilst there are many methods for
combination [6,7], here we focus on the tiled array approach, where a hexagonal close packed
array of fibre lasers is combined at a single plane, and the resultant laser light is focussed onto a
work piece. Whilst the coherent combination approach bypasses the single fibre power limit, this
technique uncovers a different challenge, namely the requirement for precise control of the phase
of each fibre, since the combined spatial intensity profile is hugely dependent on the phase of
each fibre. Whilst the optimal case in such an arrangement is generally where all fibres have
the same phase value, as this generally results in constructive interference with a single strong
interference peak, there are also many applications for shaped beams [8–10]. Regardless of the
final application, or the preferred spatial intensity profile, a fundamental challenge in this field is
the identification of the phase value of each fibre. Further to this, this phase identification must
be achieved in real-time, as the phases of each fibre can change continuously during practical
operation.

Deep learning is a machine learning technique that uses artificial neural networks with multiple
layers to automatically learn and extract hierarchical representations of data [11–15]. These
learned representations enable the network to make predictions and decisions on data that
was not used during the training process. Deep learning models are capable of automatically
learning complex features from data, without being explicitly programmed, making them highly
versatile and applicable to a wide range of tasks [16–18]. Since the first practical demonstration
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of the convolutional neural network [19], neural networks have dominated the field of object
identification. The network architecture of a convolutional neural network is designed to identify
objects in images through incremental levels of abstraction of spatial information as the image
data progresses through the network layers. The result is a powerful tool that can applied in a
huge variety of identification tasks, for example the identification of the tens of thousands of
categories of objects in the ImageNet database [20]. More recently, the concept of adversarial
training of convolutional neural networks was introduced, where two networks work in parallel to
enhance the image generation capability [21]. This network was subsequently modified to enable
image-to-image transformation. Known as a conditional generative adversarial network (cGAN)
[22], this network has an extraordinary capability to transform one style of image into another
style, and has seen many applications within the field of photonics, including in holography
and lensless imaging [23–25], microscope resolution enhancement [26–28], and modelling of
femtosecond laser machining [29–31].

Deep learning has also been applied to solving some of the challenges associated with coherent
beam combination. Key breakthroughs in the field include experimental control of 107 beams
[32], and a 7 kW combination [33] via stochastic gradient descent [34,35] by maximising the
amount of laser light transmitted through an aperture. Whilst this approach can achieve a
high intensity in a central interference peak, random noise fluctuations are generally needed
(i.e., stochastic) for finding an optimal solution. In addition, this approach is also limited to
the chosen aperture size and shape, and hence is less appropriate for bespoke beam shaping
applications. To achieve this, a camera-based observation of the combined spatial intensity is
generally needed, along with a direct technique for identification (and then optimisation) of
the phase of each fibre. The challenge then becomes the well-known phase-retrieval problem
[36], where phase information is extracted from an intensity pattern. In the field of coherent
beam combination, there have been many suggested designs to allow additional information to
be captured to eliminate the non-uniqueness of the problem [37], such as interference with a
reference beam [38], and use of diffractive elements [39] to assist in the phase identification and
enable beam shaping [40]. Reinforcement learning [41], which is a technique for enabling a
neural network to learn through exploration whilst being given rewards, has also been applied to
this field [42–46].

Recently, the authors demonstrated the identification of phase information from a far-field
intensity pattern using deep learning, directly from the focal intensity pattern [47]. This result
presented the potential for using a neural network for the real-time identification of phases for
bespoke beam shaping when using a 19-fibre hexagonal tiled array. The neural network was
trained to transform a simulated far-field intensity pattern into an image corresponding to the
phases of each fibre. In other words, the network could identify the phases of all fibres directly
from the intensity pattern. However, in this previous work, the amplitudes of the fibres were
equal, and hence the intensity patterns always corresponded to fibres with equal amplitudes. In
general, such an intensity pattern is dependent on both the phases and the amplitudes of the fibres,
and hence an assumption might be that the neural network would need additional training data to
identify the phase values when the amplitudes values are not equal. However, as shown here, an
important result is that a neural network trained to identify phase values from intensity patterns
corresponding to random phases and equal amplitudes can indeed identify phase values from
intensity patterns where the amplitudes are also randomly chosen.

This observation could lead to several practical benefits for the application of neural networks
for control of an experimental coherent beam combination system. Firstly, this result reduces the
complexity of the task of training the neural network. Rather than having to train a neural network
to identify fibre phase values for varying fibre amplitude values, the network need only be trained
on varying phase values with constant amplitude values. In this case, reduction in the complexity
of the task for the network to learn could allow for easier implementation on microcomputers
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[48,49], which could further reduce the cost of industrial implementation. Secondly, even though
the network has not encountered variation in the fibre amplitudes during training, on application
to a physical system, if one of the fibre sources stops emitting light, or becomes misaligned,
then the neural network could still identify the phase values of all other fibres. Thirdly, as the
amplitude of each fibre could realistically be measured in real-time with a power meter and
beam pickoff, then the addition of the trained network could potentially allow both the phase
and amplitude of each fibre to be monitored in real-time. This combination of measurement
techniques could therefore be used to support bespoke beam shaping where the amplitudes of
each fibre are also deliberately modified to unlock additional beam shaping capabilities, beyond
that which could be achieved with control of phase only. In such a case, despite the amplitudes
varying, the network would still be able to identify the phase values of each fibre.

In general, the outcome presented in this work is particularly important for an industrial
perspective, as a considerable challenge in deep learning is the requirement for additional training
data as the complexity of a challenge increases, and hence there is much interest in finding
efficient applications, such as the approach presented here.

2. Interrelationship of phase and amplitude in interference patterns

The far-field intensity pattern from an array of light sources is generally dependent on the phase
and the amplitude of each light source. In this work, this interrelationship was explored using a
simulation of seven light sources in a hexagonal close packed arrangement, representing fibre
lasers, which were then propagated to a focal plane, where the intensity was calculated. Each
simulated fibre had both a phase value between -π and +π, and an amplitude value between 0 and
1, where this amplitude value represents the maximum value (i.e., the centre) of the simulated
Gaussian amplitude profile for each fibre. The simulated fibres were organised in a hexagonal
close packed arrangement with a fibre radius of 500 µm, a wavelength of 1 µm, and where the
generated light was focussed through a simulated lens and propagated towards the focal plane
of 25 cm. The Gaussian amplitude profile had a radius of 0.8 of the fibre radius and had zero
amplitude outside the spatial extent of each simulated fibre. Figure 1 shows three examples of
phase values (shown on the left as a single column) and three examples of amplitude values
(shown on the top as a single row). It is important to note that, for ease of viewing, the amplitude
plots show the maximum value of the Gaussian amplitude profile used in the simulations, rather
than the Gaussian spatial distribution. The figure shows the calculated far-field intensity profiles
for each of the nine combinations of the phase values and the amplitude values. Of interest here,
is that the intensity pattern has a clear dependence on both the phase and amplitude. In the case
of a set of equal amplitude values, the phase strongly changes the pattern. However, those same
phase values result in a less striking change in the intensity pattern for non-equal amplitude
values.

Investigating further, Fig. 2(a) shows firstly the combination of a set of phase values with a set
of equal amplitude values, and secondly the combination of the same set of phase values with
100 randomly chosen sets of amplitudes. As shown in the figure, the average of all 100 intensity
patterns is comparable to the intensity pattern from a set of equal amplitude values, with metrics
for the intersection over union and image subtraction shown in parts b) and c) respectively. To
calculate the intersection over union, the two images were thresholded to produce binary maps,
and hence the value is provided for all possible threshold levels. This figure visually demonstrates
that whilst both the phase and the amplitude affect the intensity pattern, their effects are distinct.

Importantly, changes in the phase and the amplitude of an electric field affect its far-field
diffraction pattern in different ways. In general, the phase profile determines the position of
the interference peaks, and the amplitude modifies the fringe visibility. This effect can be
demonstrated through a simulation of a pair of slits, as shown in Fig. 3. The figure shows
the simulated far-field diffraction pattern, for different values of amplitude and phase for the
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Fig. 1. Simulated far-field intensity patterns corresponding to different combinations of
phase values and amplitude values.

right-hand side slit. As shown in the figure, a change in the relative phase of the two slits changes
the position of the interference peaks, and a change in the relative amplitude changes the fringe
visibility (but it does not change the peak position). Therefore, in the case of this simulation, the
spatial frequencies corresponding to the relative phase of the two slits exists in the diffraction
pattern even when the amplitude is changed. The signal-to-noise ratio (i.e., fringe visibility) of
this spatial frequency information corresponds directly to the relative amplitudes of the two slits,
and this ratio will drop to zero for cases where the amplitude of either slit is zero. Whilst the
complexity of the diffraction pattern increases when the number of light sources is increased to
seven (i.e., in the case for the simulated fibres in this work), the physical principle remains. It
could therefore be argued that the neural network can identify the phase values of the fibres when
the amplitudes have changed (despite never encountering this during training) as the position of
the interference peaks does not change. Similarly, it could be argued that the phase prediction
accuracy decreases when the amplitude of a fibre decreases, as the fringe visibility also decreases.
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Fig. 2. Showing a) that the intensity pattern for equal amplitude values is comparable to the
mean of the intensity patterns for non-equal amplitude values, with quantitative metrics of b)
intersection over union and c) image subtraction.
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Fig. 3. Simulated far-field diffraction patterns from two slits, for changing amplitude and
phase values. The dotted green lines are included for assisting with visual comparison.

3. Neural network

Here, a cGAN was used to transform an image corresponding to the simulated intensity profile,
into an image corresponding to the phase profile of the simulated fibres. The neural network
had a generator and discriminator adversarial architecture, with the generator based on an
encoder-decoder U-Net model with skip connections (as shown in Fig. 4), and the discriminator
downscaling the generated 256× 256 resolution images down to a 32× 32 images before judging
them.

Fig. 4. Schematic of the image-to-image network used for transforming simulated diffraction
patterns into predictions of phase.
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The network was trained with a batch size of 2, learning rate of 0.0002 (Adam, beta= 0.5), and
with an L1-to-GAN loss ratio of 100:1. The beam propagation simulation, and the neural network
and its training parameters, were identical to those presented previously [47], except for the use
of seven fibres in this work. As shown in Fig. 5(a), the neural network was trained to identify
the phase values directly from the simulated intensity profiles. The training data was formed of
100,000 pairs of images, corresponding to seven fibres with randomly generated phase profiles
and equal amplitudes, and their associated intensity profiles. The neural network was therefore
trained on data where all fibres had an amplitude value of one, and then tested on data where all
fibres had a random amplitude value between zero and one. This ensured that the testing data was
not encountered during training (except for the single case where all amplitude values were one).

Fig. 5. Concept for a) training and b) testing the neural network. The neural network is
trained to identify phase values from simulated far-field intensity patterns. The training data
contains intensity patterns corresponding to random phase values and equal amplitude values
(the amplitudes are always set to a value of one). The testing data contains intensity patterns
corresponding to random phase values and random amplitude values (the amplitudes are
chosen from a uniform distribution from zero to one).

As the diffraction patterns would, in practice, be recorded as a camera image for an experimental
implementation, an image-to-image neural network architecture was chosen. This meant that the
phase information would likewise need to be converted into an RGB image. Due to the cyclic
nature of phase, a single channel of the RGB image was not sufficient for the neural network
to learn the process of phase identification, and instead the red and blue image channels were
used to represent the sine and cosine of the phase for each fibre. A flow chart describing this
approach in detail is shown in Fig. 1 in [47]. The phase and amplitude information were encoded
into the RGB channels of a 256× 256-pixel resolution image with 24-bit depth, with the phase
encoded using a sin(theta) and cos(theta) approach to ensure continuity across the -π to +π
boundary. The phase of the central fibre was always set to zero, to avoid the infinite number of
equivalent solutions associated with a global change in phase value. The amplitude was encoded
in the green channel of the image and was scaled accordingly between the values of 0 and 255.
The simulated intensity pattern was encoded through the scaling of intensity values between the
values of 0 and 255, with all RGB taking these values, hence giving a grayscale image. The input
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for the neural network was therefore a grayscale image corresponding to the intensity pattern,
and the output (i.e., the neural network prediction) was an RGB image that encoded the phase
and amplitude information. As indicated by the figure, all training data pairs corresponded to a
set of equal amplitude values. As shown in Fig. 5(b), after the neural network was trained, it was
tasked with the identification of phase values from simulated intensity patterns corresponding
to non-equal (i.e., randomly chosen) amplitude values. In other words, the neural network was
trained on equal amplitude values, and was tested on non-equal amplitude values.

4. Results and discussions

One of the primary challenges associated with the application of neural networks is quantifying
the encoding that the network has learnt during training. Typically, an image-based neural
network will have of order millions or billions of programmable neurons, and hence a direct
investigation of neurons is rarely effective. Despite the challenges, a wide range of approaches
have been investigated, such as Grad-Cam [50] and Saliency maps [51]. Alternatively, the
network can be applied to a range of tasks, and the network outputs can be analysed. This is, in
essence, the approach taken in this work, where the neural network was trained on task A (i.e.,
phase identification when the fibre amplitudes are equal) and then tested on task B (i.e., phase
identification when the fibre amplitudes are non-equal). The behaviour of the network on task B
can then provide some level of qualitative understanding of the capability of the network. In this
section, three such task B examples are presented. Firstly, when the fibre amplitudes are either
0 or 1 (Fig. 6). Secondly, when the central fibre has an amplitude of 0, and when the spatial
positions of the fibres are changed (Fig. 7). Thirdly, when the fibre amplitudes can take any value
between 0 and 1 (Fig. 8).

Figure 6 shows the capability of the neural network for identification of phases values where
fibres have an amplitude of 0 or 1 (i.e., ‘on’ or ‘off’). In a), the columns correspond to the phase,
amplitude, and simulated intensity, along with the predicted phase, where all four columns are
shown for cases of 2 to 7 fibres with an amplitude of 1. In all cases, the central fibre has an
amplitude of 1. As shown in the figure (by the green ticks), the neural network accurately predicts
the phase for all fibres that have a non-zero amplitude. Whilst the phase value for zero amplitude
is of course meaningless, the neural network still predicts a phase value for each fibre. It is
notable that the phase values are predicted correctly for all cases, as the intensity patterns for 2 to
6 fibres ‘on’ were not experienced by the network during training, as only intensity patterns for 7
fibres ‘on’ were used. Part b) shows that the prediction accuracy increases slightly for higher
numbers of ‘on’ fibres. This could be since the larger number of ‘on’ fibres corresponds more
similarly to the training data, or that the interference from multiple fibres is required, and hence
each ‘off’ fibre removes some of the information used to identify the phases.

Figure 7(a) shows the capability of phase prediction when the central fibre is removed. As
noted earlier, in the training data, the phase of the central fibre was always set to zero, to remove
the infinite number of solutions associated with the property that a global phase value change
would produce an identical intensity pattern. Therefore, when the central fibre is removed, the
phase predictions are significantly less accurate, with analysis showing that 93% of the prediction
accuracy comes from interference with the central fibre and 7% from interference with other
outer ring fibres. This provides strong evidence that the neural network uses the central fibre as a
fixed reference when predicting the phase values of the surrounding 6 fibres. Figure 7(b) shows
the effect of translating the position of the fibres. Here, the hexagonal close packed arrangement
is transformed into a ‘plus’ pattern. The ‘plus’ pattern was specifically chosen as it shares the
position of three fibres with the hexagonal arrangement, but also has two positions that are
not shared. Of course, the neural network only experienced the 7-fibre hexagonal arrangement
during training, and hence the intensity pattern from the ‘plus’ arrangement would not have been
experienced during training. Here, the neural network correctly predicts the phase values for the
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Fig. 6. Showing a) phase, amplitude, and simulated intensity patterns, along with the phase
values predicted by the neural network directly from the simulated intensity patterns, and b)
the phase prediction error for different numbers of fibres with non-zero amplitude values.
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Fig. 7. Showing phase, amplitude, and simulated intensity patterns, along with the phase
values predicted by the neural network for a) cases where the central fibre amplitude is set
to zero (i.e., removed), and b) where the positions of the fibres are changed from a 7-fibre
hexagonal arrangement to a 5-fibre ‘plus’ arrangement.

fibres that match the position of the hexagonal arrangement and fails to predict the phase values
for the fibres for the unmatched positions. This is clear evidence that the neural network is only
able to identify the phase of fibres that are in a position that was experienced during training.
Interestingly, the neural network still predicts a value for the phase of the fibres in the unmatched
position, and understandably they are incorrect, as there is no mathematical combination of
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Fig. 8. The capability of the neural network for predicting the phase directly from intensity
patterns that correspond to amplitude values with a uniform distribution between zero and
one. Showing for each of a-c), thirty examples of simulated intensity patterns corresponding
to a fixed phase and random amplitude values, along with the graph showing the phase
values predicted by the neural network for each of these thirty intensity patterns. Showing
d), the phase prediction error for different amplitudes.

phases that could allow the hexagonal arrangement to produce the intensity patterns that was
associated with the ‘plus’ arrangement.

Figure 8 shows the capability of the neural network for predicting phase values when the
amplitude values for each fibre can take any value between 0 and 1. For each of the examples
shown in a-c), the phase values are constant, and the amplitude values are randomly chosen.
Firstly, 30 examples of intensity patterns (i.e., fixed phase, random amplitude) are presented.
Secondly, the neural network phase predictions for each of these intensity patterns are graphed
(solid green circles), along with the correct phase values (red pluses). The graphs clearly show that
the neural network can identify the phase values in the presence of randomly chosen amplitude
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Fig. 9. The capability of the neural network in identification of the phase values when a
phase gradient is present in the simulation. Showing a) the simulated phase profile, the
associated simulated focal intensity profile, and the prediction phase profile, for a range of
phase gradients, and b) comparison of phase values for each fibre.

values. The intensity of the solid green circles in the figure corresponds to the multiplication of
the amplitude of the specified fibre and the amplitude of the central fibre. As this multiplied
value decreases below 25%, the prediction error sharply increases. This effect is likely due to
the decreased visibility of the interference fringes when the amplitudes are reduced. Figure 9
shows the ability of a neural network to predict phase values of each fibre when a linear gradient
phase profile is added to the simulated phase profile. This capability is also observed when the
amplitudes of each fibre are randomly chosen.

This work has presented analysis of a neural network trained on simulated data, and hence it is
important to consider the approach required to apply this technique to a real-world experimental
setup. The key challenge will likely be the collection of suitable labelled training data. As the
phase cannot be directly identified (after all, this is the motivation for the work), the experimental
setup will require an additional interferometric component on each single beam so that the
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phase of each fibre can be identified through direct measurement of the produced interference
fringes. Such an approach would be costly and challenging to implement experimentally and
would therefore not be suitable for use on a commercial coherent beam combination system. The
expectation is that an augmented setup would be able to provide labelled experimental training
data that would then enable other equivalent coherent beam combination systems to be controlled
without the need for this additional interferometric measurement device.

5. Conclusion

In conclusion, a neural network trained to identify the phase information from intensity patterns
corresponding to simulated fibres with equal amplitude profiles was shown capable of accurately
completing this task for intensity patterns from fibres with non-equal amplitude profiles. This
result has an important practical implication for coherent beam combination, namely that the
identification of phase via deep learning may not require additional training data if the fibre
amplitudes are intentionally, or unintentionally, varying to some degree.
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