
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are
retained by the author and/or other copyright owners. A copy can be downloaded for personal non-
commercial research or study, without prior permission or charge. This thesis and the accompanying
data cannot be reproduced or quoted extensively from without first obtaining permission in writing from
the copyright holder/s. The content of the thesis and accompanying research data (where applicable)
must not be changed in any way or sold commercially in any format or medium without the formal
permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the
University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]





University of Southampton

Faculty of Social Sciences
School of Mathematical Sciences

Homotopy Theory of Polyhedral Products

by

George Joshua Harry Simmons
ORCiD: 0000-0002-9076-4973

A thesis for the degree of
Doctor of Philosophy

18th April 2023

http://www.southampton.ac.uk
http://orcid.org/0000-0002-9076-4973




University of Southampton

Abstract

Faculty of Social Sciences
School of Mathematical Sciences

Doctor of Philosophy

Homotopy Theory of Polyhedral Products

by George Joshua Harry Simmons

In this thesis we use homotopy-theoretic techniques to establish a range of combinatorially-
governed relations in the algebraic invariants of polyhedral product spaces.

First, for a flag simplicial complex K, we specify a necessary and sufficient combinatorial
condition for the commutator subgroup RC 1

K of a right-angled Coxeter group, which is
the fundamental group of the real moment-angle complex RK, to be a one-relator group;
and for the loop homology algebra H˚pΩZKq of the moment-angle complex ZK to be
a one-relator algebra. This moreover establishes a combinatorial link between distinct
concepts of geometric group theory and homotopy theory.

Second, we give a substantial generalisation of the Whitehead product to a construction
called the higher Whitehead map, which takes maps from homotopy sets of the form
rΣX,Y s to a new map in homotopy sets related to polyhedral products. We analyse
these maps systematically via the combinatorial structure underlying the polyhedral
products involved, and derive combinatorial conditions describing when these maps are
non-trivial. Moreover, we establish non-trivial relations between higher Whitehead maps
which are governed combinatorially. These relations greatly generalise the Jacobi identity
for Whitehead products, and results of Hardie on relations among exterior Whitehead
products.

http://www.southampton.ac.uk




v

Contents

Declaration of Authorship vii

Acknowledgements ix

1 Introduction 1

2 Background 5
2.1 Homotopy theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Homotopy limits and colimits . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Homotopy groups and exact sequences . . . . . . . . . . . . . . . . 8
2.1.3 Topological operations . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Whitehead products . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Homological algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 The Künneth theorem . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Free associative algebras . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Differential graded algebras and coalgebras . . . . . . . . . . . . . 12

2.3 The loop homology algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 The Bott–Samelson Theorem . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Adams–Hilton Models . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Simplicial complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Combinatorial operations . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Polyhedral products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.1 Homotopy type of polyhedral products . . . . . . . . . . . . . . . . 24
2.5.2 Homotopy theory of polyhedral products . . . . . . . . . . . . . . . 26

2.6 Moment-angle complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.1 Cell structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.2 Cohomology Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.3 Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6.4 Hochster’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.5 Loop homology of Davis–Januszkiewicz spaces . . . . . . . . . . . . 33
2.6.6 Loop homology of moment-angle complexes . . . . . . . . . . . . . 36

2.7 Real moment-angle complexes and right-angled Coxeter groups . . . . . . 37
2.7.1 Group actions and classifying spaces . . . . . . . . . . . . . . . . . 38
2.7.2 Graph products of groups . . . . . . . . . . . . . . . . . . . . . . . 38
2.7.3 Commutator subgroups and polyhedral products . . . . . . . . . . 40
2.7.4 Real moment-angle complexes . . . . . . . . . . . . . . . . . . . . . 42



vi CONTENTS

3 One-relator groups and algebras related to polyhedral products 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 One-relator groups and algebras for flag complexes . . . . . . . . . . . . . 47

3.2.1 One-relator groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 The commutator subgroup of the right-angled Coxeter group . . . 50
3.2.3 Connected sums of sphere products . . . . . . . . . . . . . . . . . . 52
3.2.4 The loop homology algebra of ZK . . . . . . . . . . . . . . . . . . . 55
3.2.5 Golod and minimally non-Golod flag complexes . . . . . . . . . . . 60

3.3 Loop homology in the non-flag case . . . . . . . . . . . . . . . . . . . . . . 61
3.3.1 Free and one-relator loop homology algebras . . . . . . . . . . . . . 61
3.3.2 A chain complex for ΩZK . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Moment-angle manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.1 Generalised homology spheres and simplicial operations . . . . . . 70
3.4.2 Constructing moment-angle manifolds . . . . . . . . . . . . . . . . 72

4 Relations among higher Whitehead maps in polyhedral products 79
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 The higher Whitehead map . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.2 The higher Whitehead map . . . . . . . . . . . . . . . . . . . . . . 85
4.2.3 The higher Whitehead map with substitution . . . . . . . . . . . . 91
4.2.4 The folded higher Whitehead map . . . . . . . . . . . . . . . . . . 98

4.3 Relations among higher Whitehead maps . . . . . . . . . . . . . . . . . . . 103
4.3.1 Identity complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3.2 Relations among higher Whitehead maps . . . . . . . . . . . . . . 106
4.3.3 Relations in general complexes . . . . . . . . . . . . . . . . . . . . 110
4.3.4 Propagation of relations . . . . . . . . . . . . . . . . . . . . . . . . 111

4.4 Relations among folded higher Whitehead maps . . . . . . . . . . . . . . . 113
4.4.1 Folds of identity complexes . . . . . . . . . . . . . . . . . . . . . . 114
4.4.2 Folding and substitution . . . . . . . . . . . . . . . . . . . . . . . . 118

4.5 Proof of main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.5.1 The relative higher Whitehead map . . . . . . . . . . . . . . . . . . 125
4.5.2 The inclusion map j . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.5.2.1 Decompositions of CXi . . . . . . . . . . . . . . . . . . . 127
4.5.2.2 Subspaces of CXj1 ˆ ¨ ¨ ¨ ˆ CXjri

. . . . . . . . . . . . . . 130
4.5.2.3 Subspaces of V ˚ . . . . . . . . . . . . . . . . . . . . . . . 136

4.5.3 Final proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Bibliography 143



vii

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been generated
by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree at
this University;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

3. Where I have consulted the published work of others, this is always clearly attrib-
uted;

4. Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as: J. Grbić, M. Ilyasova, T. E. Panov,
and G. Simmons, One-relator groups and algebras related to polyhedral products,
Proceedings of the Royal Society of Edinburgh: Section A Mathematics 152 (2022),
no. 1, 128––147.

Signed:.......................................................................... Date:..................





ix

Acknowledgements

First and foremost, I would like to thank Professor Jelena Grbić for her unwavering
devotion and support. Her supervision allowed me to work to my individual strengths,
and build countless other invaluable skills. Moreover, her patience and understanding
throughout the COVID-19 pandemic was unparalleled, and for this I am truly grateful.

I was joined on this journey by Dr Matthew Staniforth. It quickly transpired our skills
and mindsets were highly complementary, and a collaboration with Matthew forms part
of this thesis. Thank you for the countless conversations, challenges, and chess tuition.

I would like to mention and thank my other collaborators Professor Taras Panov and
Marina Ilyasova for deep and informative discussions to shape and widen the scope of
my results. Further mention goes to Professor Stephen Theriault, my second supervisor,
along with Professor Ian Leary and Professor Peter Kropholler for discussions, questions
and comments during talks, progression reviews and other impromptu meetings.

My thanks also goes to my thesis examiners Professor Sarah Whitehouse and Dr Nansen
Petrosyan for their helpful comments and engaging questions in my viva examination.

I am very grateful to the Fields Institute and the organisers of the Thematic Program
on Toric Topology and Polyhedral Products for the opportunity to visit Toronto in early
2020 and meet, learn from, and connect with some of the biggest names in my field.

This journey would not have been possible without all my fellow students and the memor-
ies they have made. A special mention goes to my “office bubble” Lily, Tom and Sam,
who for one day a week eased the monotony of COVID lockdowns. Thanks also go to
my academic siblings Abi, Xin and Briony; my fellow topologists Guy, Holly, Megan,
Seb and Simon; and to Geraint, Ingrid, Karl, Laura, Laurie, Matthew B., Matthew C.,
Moteijus, Naomi, Pete, Ruth, Vlad and Will, who made the office feel like a second home.

And last, but by no means least, I thank my family. Thank you to Amelia for her
encouragement and support, especially when we lived apart, and for the adventures we’ve
shared over the last four years. Thank you to my mum Deborah, my dad Gary and my
sister Rosina for the endless support and interest, and the occasional, very welcome free
meal! Finally, thank you to my grandfathers Les and Richard, my uncle Mark, and my
beloved cat Malcolm, who could not be here to see the conclusion of my Mathematical
journey. You are all deeply and dearly missed.





1

Chapter 1

Introduction

Algebraic topology is the study of topological spaces via the assignment of algebraic
invariants, which are easier to work with than the geometry of the space itself. Com-
mon examples are the fundamental group, homotopy groups, homology and cohomology
groups, the cohomology ring, and the loop homology algebra. Such invariants are used,
for example, to distinguish two spaces up to homotopy, but there are many deeper and
more varied applications.

For example, the homotopy groups of a topological space X can be endowed with an
operation called the Whitehead product, taking elements α P πppXq and β P πqpXq to an
element rα, βs P πp`q´1pXq. The Whitehead product was introduced by J. H. C. White-
head in 1941 [Whi41], who established that it is a bilinear operation which is graded
symmetric, that is, rα, βs and rβ, αs are identified up to a sign. Later it was estab-
lished by Nakaoka–Toda [NT54] and Uehara–Massey [UM57] that for a further element
γ P πrpXq and p, q, r ě 2, the iterated Whitehead products rrα, βs, γs, rrβ, γs, αs and
rrγ, αs, βs satisfy a linear dependence relation known as the Jacobi identity. This gives
the homotopy groups of X a Lie algebra structure. An understanding of this structure
leads to further understanding of X itself. For example, the Hilton–Milnor theorem
describes the homotopy groups of wedges of spheres in terms of this Lie algebra struc-
ture, identifying generators as iterated Whitehead products, and relations between them
coming from the Jacobi identity.

Finding generators and relations of algebraic objects, like those in the above Lie algebra,
is a key way to understand its structure and compare it to other objects. This is often a
difficult problem, and there is no single established method that is guaranteed to work.
Therefore there is a constant development of new and varied methods which employ not
only techniques from algebra, but from a wide range of different mathematical fields.

One approach is the following. Often, certain algebraic invariants of topological spaces
give rise to algebraic objects which are of interest in their own right. Therefore not only
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can understanding these invariants enhance our understanding of a topological space,
but the correspondence can go the other way, and features of the underlying topology
can be used to identify interesting algebraic features. A key example that we will see in
this thesis is the right-angled Coxeter group and its commutator subgroup both being
identified as the fundamental groups of topological spaces called polyhedral products. In
the case of the commutator subgroup, this description allows us to specify both generating
sets and relations between these generators in certain cases, a task that is very difficult
in a purely algebraic setting.

Polyhedral products are spaces constructed according to the combinatorial information
contained in a simplicial complex K. This combinatorial structure is invaluable in study-
ing not only the geometry of the space itself, but also its algebraic invariants. The
polyhedral product arose out of the field of toric topology, which is at its base the study
of spaces with a torus action. A key player in toric topology is the moment-angle complex
ZK. Over time, the merging of the methods and ideas of symplectic and algebraic geo-
metry with toric topology naturally led to the introduction of combinatorial objects, at
first in the form of simple polytopes, and more recently simplicial complexes, to decode
the rich and varied information involved.

The polyhedral product was introduced to unify the topological approaches coming from
the geometric, algebraic and combinatorial viewpoints of toric topology. In turn, this
provided a base for generalisation and the use of purely homotopy-theoretic techniques
to analyse polyhedral products. These spaces have strong functoriality properties, for
example the preservation of fibrations of pairs, and the study of these spaces topologically
has become a flourishing area in its own right. The polyhedral product expresses the
moment-angle complex ZK as a union of products of discs D2 and circles S1 according
to how the simplices of K intersect.

In this thesis we develop homotopy-theoretic techniques to detect novel, combinatorially-
governed relations in the algebraic invariants of polyhedral products. First, we study
the moment-angle complex ZK and its lower-dimensional counterpart, the real moment-
angle complex RK for a class of simplicial complexes known as flag complexes, which are
complexes completely determined by a graph. We study topological information which
is propagated through the homology of the loop spaces ΩZK and ΩRK. In the latter
case, the assumption of K being a flag complex implies that RK is a finite-dimensional
aspherical space, and therefore this information is captured entirely in the fundamental
group. Moreover, this fundamental group is identified as the commutator subgroup RC 1

K
of the right-angled Coxeter group RCK associated to K.

In Chapter 3 we build on existing work of Panov and Veryovkin [PV16] and also Grbić,
Panov, Theriault and Wu [GPTW12] which identifies when the group RC 1

K and the
algebra H˚pΩZKq are free. In particular, we characterise when these algebraic objects
have exactly one relation in terms of the same purely combinatorial condition as follows.
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Theorem 3.1.1. Let K be a flag simplicial complex. The following are equivalent:

(i) RC 1
K “ π1pRKq is a one-relator group;

(ii) H˚pΩZKq is a one-relator algebra;

(iii) K has the form
K “ Cp or K “ Cp ˚ ∆q for p ě 4, q ě 0

where Cp is a p-cycle, ∆q is a q-simplex and ˚ denotes the join of simplicial com-
plexes.

The equivalence of statements (i) and (iii) was established by Ilyasova and Panov, whose
work is summarised in in Sections 3.2.1 and 3.2.2. The full statement of Theorem 3.1.1
was presented in [GIPS22] as joint work with the two aforementioned authors, myself,
and Jelena Grbić. This work is presented in Section 3.2.

We extend our results by giving further equivalent algebraic and homotopy-theoretic
statements to the above one-relator properties. The first condition is that the simplicial
complex K, up to joining with a simplex, is minimally non-Golod, a notion in combin-
atorial algebra introduced by Burglund and Jöllenbeck [BJ07] in studying the algebra
TorZrmspZrKs,Zq, where Zrms is the polynomial ring on m generators and ZrKs is a
quotient of Zrms determined by K known as the face ring. Another condition is that the
spaces RK and ZK in this case are homotopy equivalent to connected sums of products
of spheres, with two spheres in each product. In the case of RK, this identifies it with a
closed orientable surface of positive genus. After establishing Theorem 3.1.1, we consider
the case that K is not assumed to be a flag complex. We construct a series of examples
to highlight the key differences between the concepts of K being minimally non-Golod,
H˚pΩZKq being a one-relator algebra, and ZK being a connected sum of sphere products,
with two spheres in each product.

In Chapter 4, we give a substantial generalisation of the Whitehead product and the Lie
algebra structure it induces on the homotopy groups of a space. We define the higher
Whitehead map, an element of a higher Whitehead product in the sense of Porter [Por65],
which associates to maps fi P rΣXi, Yis an element hwpf1, . . . , fmq of the homotopy
set rX1 ˚ ¨ ¨ ¨ ˚ Xm, FW pY1, . . . , Ymqs, where ˚ denotes the topological join of spaces
and FW pY1, . . . , Ymq is the subspace of Y1 ˆ ¨ ¨ ¨ ˆ Ym with at least one coordinate the
basepoint.

We build on existing work of Abramyan and Panov [AP19], who studied a spherical
version of the higher Whitehead map in the case that fi : S2 ÝÑ CP8 is the inclusion
of the bottom cell. In particular we develop a method of determining combinatorial
criteria identifying when the higher Whitehead map is non-trivial. Our main result then
establishes non-trivial relations between higher Whitehead maps which are controlled
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combinatorially. A partition Π “ tI1, . . . , Iku of a set of vertices rms “ t1, . . . ,mu is
called a k-partition. Given such a partition Π, we construct a simplicial complex KΠ,
called an identity complex, and show the following result which gives relations in the
homotopy groups of the polyhedral product pY , ˚qKΠ associated to KΠ.

Theorem 4.3.7. Let fi : ΣXi ÝÑ Yi be maps for i “ 1, . . . ,m. Let Π “ tI1, . . . , Iku be a
k-partition of rms for k ě 3 and denote Ii “ ti1, . . . , iliu and Ji “ rms´Ii “ tj1, . . . , jrju.
Then if Xi is a suspension for each i “ 1, . . . ,m,

k
ÿ

i“1

hKΠ
w

`

hw
`

fj1 , . . . , fjri
˘

, fi1 , . . . , fini
˘

˝ σi “ 0

in
“

Σm´2X1 ^ ¨ ¨ ¨ ^Xm, pY , ˚qKΠ
‰

, where

σi : Σ
m´2X1 ^ ¨ ¨ ¨ ^Xm ÝÑ ΣnipΣri´2Xj1 ^ ¨ ¨ ¨ ^Xjri

q ^Xi1 ^ ¨ ¨ ¨ ^Xini

is the restriction of the coordinate permutation

CX1 ˆ ¨ ¨ ¨ ˆ CXm ÝÑ CXj1 ˆ ¨ ¨ ¨ ˆ CXjri
ˆ CXi1 ˆ ¨ ¨ ¨ ˆ CXini

.

Our result generalises one of Hardie [Har61], who developed a relation between higher
Whitehead maps of the form hwphwpf1, . . . , fi´1, fi`1, . . . , fmq, fiq when the fi are spher-
ical. Moreover we generalise the work of Cohen [Coh57], who defined the Whitehead
product in the case that the fi are not assumed to be spherical and gave an appropri-
ate Jacobi identity. These relations also imply that when the maps fi are spherical,
the homotopy groups of the polyhedral product pY , ˚qKΠ have the structure of an L8 al-
gebra, also known as a homotopy Lie algebra, which extends the graded quasi-Lie algebra
structure given by the Whitehead product.

We extend our results by considering a novel approach to derive relations between White-
head products with some maps repeated. We define a folded higher Whitehead map by
composing the higher Whitehead map with a map from pY , ˚qKΠ induced by an H-space
structure on some of the Yi, which we call a fold map. We establish that such fold maps
are induced on polyhedral products by simplicial maps. Therefore composing the rela-
tions of Theorem 4.3.7 with fold maps provides relations among folded higher Whitehead
maps whose form is again governed purely combinatorially by the complex obtained by
identifying certain subsets of vertices of the complex KΠ.

The material in Chapter 4 was jointly produced by myself and Matthew Staniforth,
under the supervision of Jelena Grbić. The development of the necessary tools to prove
Theorem 4.3.7 is my own work. The techniques used to define and analyse the triviality of
higher Whitehead maps and their folded versions were developed by Matthew Staniforth.
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Chapter 2

Background

The aim of this thesis is to decode algebraic relations in the invariants of topological
spaces in terms of combinatorial properties of a simplicial complex via a functorial con-
struction called the polyhedral product. In this Chapter, we build up to the definition
of the polyhedral product and summarise necessary constructions and existing results in
homotopy theory, algebra, geometric group theory and combinatorics, on which we will
build.

2.1 Homotopy theory

Throughout this thesis, we assume that all topological spaces are based CW -complexes
and that all maps are continuous and basepoint-preserving. The category of all such
spaces and maps is denoted top. For a space X we denote its basepoint by ˚X , or
simply ˚ if the context is clear.

Let I Ď R be the unit interval. The cone on a space X, denoted CX, is the quotient of
the product X ˆ I identifying px, 1q with p˚, tq for all x P X and t P I. The path space
of X, denoted PX, is the space of all maps ω : I ÝÑ X such that ωp0q “ ˚.

For a space X, its suspension ΣX is the pushout of the diagram

CX X ˚

where the left map is the inclusion x ÞÝÑ px, 0q. Similarly, its loop space ΩX is the
pullback of the diagram

PX X ˚

where the left map is the evaluation ω ÞÝÑ ωp1q. For a map f : X ÝÑ Y , there are
induced maps Σf : ΣX ÝÑ ΣY and Ωf : ΩX ÝÑ ΩY which give rise to covariant
functors Σ: top ÝÑ top and Ω: top ÝÑ top.
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2.1.1 Homotopy limits and colimits

Fibrations and cofibrations are maps which satisfy the homotopy lifting and extension
properties, respectively, with respect to all CW -complexes. See [Ark11, Sections 3.2 & 3.3]
for definitions. Typical examples of fibrations include the projection map X ˆ Y ÝÑ X

and the evaluation map PX ÝÑ X. On the other hand, any inclusion of a cellular
subcomplex A of a space X is a cofibration. These fibrations and cofibrations, along
with homotopy equivalences, provide a model category structure on top.

Unless otherwise stated, we work in the homotopy category htop, whose objects are
spaces, morphisms are homotopy classes of maps between them, and homotopy equival-
ences are viewed as categorical isomorphisms. We review necessary constructions which
allow us to view fibrations, cofibrations and other categorical constructions in htop.

Given two categories I and C, a diagram is a covariant functor F : I ÝÑ C. The limit
limF and colimit colimF of the diagram F do not translate to htop since they do not
preserve homotopy equivalences. More precisely, if C “ top, then if F 1 : I ÝÑ C is
another diagram with homotopy equivalences F piq ÝÑ F 1piq for each i P I, the induced
maps limF ÝÑ limF 1 and colimF ÝÑ colimF 1 need not be homotopy equivalences.

Homotopy limits and colimits are variants of the constructions of limits and colimits,
respectively, which preserve homotopy equivalences. Often, this property comes at the
expense of the relevant universal property, since their construction depends on making
choices of homotopies. The study of homotopy limits and colimits was initiated by
Bousfield–Kan [BK72] and Vogt [Vog73]. In this thesis, we will only need to recognise
when a certain limit or colimit is a homotopy limit or colimit, respectively. The following
can be found in [DHKS04], see also [BP15, Corollary C.3.3].

Proposition 2.1.1. Let I be a category with an initial object, that is, there is a P I such
that there is a unique morphism a ÝÑ i for each i P I. Let F : I ÝÑ top be a functor
sending i P I to a space Xi and a morphism i ÝÑ j to a map fij : Xi ÝÑ Xj. Then if
the map fai : Xa ÝÑ Xi is a cofibration, the map

colimF ÝÑ hocolimF

is a homotopy equivalence.

A dual result holds for the homotopy limit, replacing initial objects with terminal objects,
that is objects b P I such that there is a unique morphism i ÝÑ b for each i P I, and
replacing cofibrations with fibrations. The most common examples of homotopy limits
and colimits are homotopy pullbacks and pushouts, respectively, defined as follows.

Example 2.1.2. The homotopy pullback of the diagram

B A C
f g
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is the pullback of the diagram

Ef A Eg
f 1 g1

where f 1 and g1 are fibrant replacements for f and g. Concretely, for a map f : B ÝÑ A,
the mapping path Ef given by

Ef “ tpb, lq P B ˆAI | fpbq “ lp0qu

is homotopy equivalent to B, and the projection f 1 : Ef ÝÑ A sending pb, lq ÞÝÑ lp1q is
a fibration. For more details, and also for the dual notion of cofibrant replacements used
in the following, see [Ark11, Section 3.5].

Dually, the homotopy pushout of the diagram

B A C
gf

is the pushout of the diagram

Mf A Mg
g1f 1

where f 1 and g1 are cofibrant replacements for f and g, respectively. Here, the mapping
cylinder Mf is the quotient space pAˆ I \Bq{ „, where pa, 0q „ fpaq, and is homotopy
equivalent to B. The inclusion f 1 : A ÝÑ Mf sending a ÞÝÑ pa, 1q is a cofibration.

By [Ark11, Propositions 6.2.6 & 6.2.14], we only need to replace one of the maps f or g
in the above to ensure the resulting pullbacks and pushouts are homotopy pullbacks and
pushouts, respectively.

The homotopy fibre If of a map f : X ÝÑ Y is the homotopy pullback of the diagram

X Y ˚.
f

The sequence of maps

If X Y
f

is called a homotopy fibration sequence.

Dually, the homotopy cofibre Cf of a map f : X ÝÑ Y is the homotopy pushout of the
diagram

Y X ˚.
f

The sequence of maps

X Y Cf
f

is a called a homotopy cofibration sequence.
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2.1.2 Homotopy groups and exact sequences

For two spaces A and B we denote by rA,Bs the set of homotopy classes of maps A ÝÑ B.
If either A is a co-H space or B is an H space then there is an induced group structure
on rA,Bs. If both A is a co-H space and B is an H space then these group structures
coincide, and moreover rA,Bs is abelian. The homotopy groups of a space are given by
πnpBq “ rSn, Bs for n ě 1.

Proposition 2.1.3 ([Ark11]). Let f : X ÝÑ Y be a map with homotopy fibre If and
homotopy cofibre Cf .

(i) There is a sequence

¨ ¨ ¨ Ω2Y ΩIf ΩX ΩY If X Y

where each triple of consecutive spaces is a homotopy fibration sequence. Moreover,
for any space W there is a long exact sequence

¨ ¨ ¨ rW,ΩnIf s rW,ΩnXs rW,ΩnY s
“

W,Ωn´1If
‰

¨ ¨ ¨ .

(ii) There is a sequence

X Y Cf ΣX ΣY ΣCf Σ2X ¨ ¨ ¨

where each triple of consecutive spaces is a homotopy cofibration sequence. Moreover,
for any space Z there is a long exact sequence

¨ ¨ ¨ rΣnCf , Zs rΣnY, Zs rΣnX,Zs
“

Σn´1Cf , Z
‰

¨ ¨ ¨ .

2.1.3 Topological operations

The fat wedge of spaces X1, . . . , Xm, denoted FW pX1, . . . , Xmq, is the subspace of
śm
i“1Xi given by

FW pX1, . . . , Xmq “ tpx1, . . . , xmq P X1 ˆ ¨ ¨ ¨ ˆXm | xi “ ˚Xi for some i “ 1, . . . ,mu.

In the case that m “ 2, the space FW pX1, X2q is called the wedge of X1 and X2 and is
denoted X1 _X2.

The smash product of X and Y , denoted X ^ Y , is the quotient space

pX ˆ Y q{pX _ Y q.
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The m-fold smash product X1 ^ ¨ ¨ ¨ ^ Xm is defined inductively. Equivalently, it is the
quotient space

pX1 ˆ ¨ ¨ ¨ ˆXmq{FW pX1, . . . , Xmq.

The left half-smash X ̇ Y and right half-smash X ¸ Y are the quotient spaces pX ˆ

Y q{pX ˆ ˚Y q and pX ˆY q{p˚X ˆY q, respectively. Taking the further quotient of X ̇Y

by p˚X ˆ Y q gives the smash X ^ Y , and similarly for X ¸ Y .

The join of two spaces X and Y is denoted X ˚ Y and is defined by

X ˚ Y “ CX ˆ Y YX ˆ CY

where the union is taken over X ˆ Y . Equivalently, X ˚ Y is the homotopy pushout of
the diagram

X X ˆ Y Y.

We recall the following well-known homotopy equivalences, see for example [Sel97].

Proposition 2.1.4. There are homotopy equivalences

(i) ΣpX ˆ Y q » ΣX _ ΣY _ ΣpX ^ Y q;

(ii) ΣpX ̇ Y q » X ̇ pΣY q;

(iii) if Y is co-H then X ̇ Y » Y _X ^ Y ;

(iv) X ˚ Y » ΣX ^ Y .

Combining Proposition 2.1.4(iv) with the definition of the join there are homotopy equi-
valences

m
ď

i“1

CX1 ˆ ¨ ¨ ¨ ˆXi ˆ ¨ ¨ ¨ ˆ CXm » X1 ˚ ¨ ¨ ¨ ˚Xm » Σm´1X1 ^ ¨ ¨ ¨ ^Xm.

Finally, let M and N be two n-manifolds. Let M and N be obtained from M and N ,
respectively, by removing an open n-ball from each. The connected sum M#N of M
and N is given by M YN , with the union taken by identifying the boundary spheres of
the removed n-balls via a homeomorphism. For any n-manifold M the connected sum
M#Sn is homeomorphic to M .

2.1.4 Whitehead products

The Whitehead product is an operation on homotopy groups introduced by J.H.C. White-
head [Whi41]. Originally given as an operation πppXq ˆ πqpXq ÝÑ πp`q´1pXq for
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p, q ě 1, the Whitehead product has undergone multiple generalisations and extensions.
We study the generalised Whitehead product, first introduced by Cohen [Coh57] and
studied in detail by Arkowitz [Ark62].

Definition 2.1.5. Let f : ΣA ÝÑ X and g : ΣB ÝÑ Y be maps. The Whitehead product
of f and g, denoted rf, gs is the homotopy class of the map

rf, gs : A ˚B “ CAˆB YAˆ CB ÝÑ ΣA_ ΣB ÝÑ X _ Y

where the first map is the restriction of the map CAˆCB ÝÑ ΣAˆ ΣB to A ˚B, and
the second map is f _ g.

The Whitehead product is uniquely determined up to homotopy by the homotopy classes
of f and g, and therefore defines an operation of homotopy groups

rΣA,Xs ˆ rΣB, Y s ÝÑ rA ˚B,X _ Y s.

In the specific case that A “ Sp´1, B “ Sq´1 and X “ Y , composing the Whitehead
product rf, gs with the fold map X_X ÝÑ X, which sends px, ˚q ÞÝÑ x and p˚, xq ÞÝÑ x,
gives a map Sp`q´1 “ Sp´1 ˚ Sq´1 ÝÑ X, which we also call the Whitehead product of
f and g. In this case the Whitehead product defines a map

πppXq ˆ πqpXq ÝÑ πp`q´1pXq

which moreover is a bilinear map satisfying graded symmetry, that is rβ, αs “ p´1qpqrα, βs

for all α P πppXq, β P πqpXq with p, q ě 2, and the graded Jacobi identity, that is

rrα, βs, γs ` p´1qpqrrβ, γs, αs ` p´1qqrrrγ, αs, βs “ 0

for all α P πppXq, β P πqpXq and γ P πrpXq with p, q, r ě 2. These properties equip
the homotopy groups π˚pXq “

À

ně1 πnpXq of a space with a graded quasi-Lie algebra
structure, if πnpXq is given a degree of n´ 1.

While the properties of bilinearity and graded symmetry were given by Whitehead with
the original definition [Whi41], the Jacobi identity is a non-trivial result which attracted
many classical and varied proofs in the early 1950s such as [Whi54, Hil55, Suz54]. Of
particular interest are the proofs due to Uehara–Massey [UM57], which was one of the
first applications of the triple Massey product, and of Nakaoka–Toda [NT54]. One of
the main results of this thesis, Theorem 4.3.7, is a large generalisation of the Jacobi
identity to a combinatorially-controlled class of maps called higher Whitehead maps,
which generalise the Whitehead product. Our proof employs the core techniques of
Nakaoka–Toda.

Aside from the algebraic operation on homotopy groups, the Whitehead product has
deep geometric properties.
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Proposition 2.1.6. Let f : ΣX ÝÑ ΣX and g : ΣY ÝÑ ΣY be identity mappings. Then
the cofibre of the Whitehead product rf, gs : X ˚ Y ÝÑ ΣX _ ΣY is ΣX ˆ ΣY .

Proof. The square
X ˚ Y ΣX _ ΣY

CpX ˚ Y q ΣX ˆ ΣY

is homotopy commutative by definition of the Whitehead product. Since the vertical
cofibres are both ΣX ˚ Y , this a homotopy pushout square.

Therefore the Whitehead product rf, gs is precisely the map required to attach X ˚Y to
ΣX _ΣY to form ΣX ˆΣY . In particular, if X “ Sp and Y “ Sq are spheres, then the
Whitehead product is the cellular attaching map for the top cell Dp`q of the product
Sp ˆ Sq.

Whitehead products also appear in homotopy fibration sequences. The following result
is due to Ganea [Gan67].

Theorem 2.1.7. There is a homotopy fibration sequence

ΩX ˚ ΩY X _ Y X ˆ Y.

Moreover, the map ΩX ˚ ΩY ÝÑ X _ Y is the Whitehead product revX , evY s, where
evA : ΣΩA ÝÑ A is the adjoint to the identity ΩA ÝÑ ΩA.

2.2 Homological algebra

We assume the definitions of graded algebras and coalgebras are known, as well as defin-
itions and basic properties of homology and cohomology. All homology and cohomology
groups are assumed to have coefficients in Z, unless otherwise stated.

2.2.1 The Künneth theorem

For A-modules M and N the group ToriApM,Nq is the ith homology of the sequence

¨ ¨ ¨ Ri bA N ¨ ¨ ¨ R1 bA N R0 bA N 0

where
¨ ¨ ¨ Ri ¨ ¨ ¨ R1 R0 M 0

is a projective resolution of M .
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The Künneth theorem describes the homology groups of a Cartesian product space in
terms of Tor groups as follows. Suppose that X and Y are spaces. Then there is a short
exact sequence

0
À

i`j“n
HipXq bHjpY q HnpX ˆ Y q

À

i`j“n´1
Tor1ZpHipXq, HjpY qq 0

(2.1)
which splits, but not naturally. When both X and Y have torsion-free homology, the
group Tor1ZpHipXq, HjpY qq vanishes, giving an isomorphism

H˚pX ˆ Y q – H˚pXq bH˚pY q. (2.2)

A reduced version of the Künneth theorem, replacing all homology groups in the second
and fourth terms of (2.1) with their reduced versions, describes the reduced homology
groups of the smash product X ^ Y . When X and Y have torsion-free homology, this
reduces to

Hr ˚pX ^ Y q – Hr ˚pXq bHr ˚pY q. (2.3)

2.2.2 Free associative algebras

The free associative algebra on a graded Z-module M is given by

T pMq “
à

ně0

Mbn.

where Mbn is the n-fold tensor product over Z of M with itself. We denote by TkpMq “

Mbk.

The multiplicative structure in T pMq given by concatenation is associative but not com-
mutative in general. The graded commutator of a and b, denoted ra, bs, is given by

ra, bs “ a ¨ b´ p´1qdeg adeg bb ¨ a. (2.4)

If ta1, . . . , aku is a finite generating set for M then we use T pa1, . . . , akq to denote the
algebra T pMq.

2.2.3 Differential graded algebras and coalgebras

A differential graded algebra, or dg-algebra for short, is a pair pA, dq consisting of a graded
algebra A together with a map d : A ÝÑ A of degree 1 or ´1 which satisfies d2 “ 0 and
the graded Leibniz rule

dpabq “ dpaqb` p´1qdeg aadpbq (2.5)
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for each a, b P A. The condition d2 “ 0 makes a dg-algebra a chain complex and
we can define the homology HpAq. A morphism of dg-algebras is is a graded algebra
homomorphism which respects the map d. The category of dg-algebras is denoted dga.

Example 2.2.1. The free associative algebra T pMq is given the structure of a dg-algebra
by specifying a differential d : TkpMq ÝÑ Tk´1pMq as follows. If ta1, . . . , anu is a basis
of M , set dpaiq “ 1. Using the graded Leibniz rule (2.5), this extends to a differential

dpai1 b ¨ ¨ ¨ b aikq “

k
ÿ

j“1

p´1qj´1ai1 b ¨ ¨ ¨ b aij´1 b aij`1 b ¨ ¨ ¨ b aik .

A differential graded coalgebra, or dg-coalgebra is a triple pC, B,∆q consisting of a graded
coalgebra pC,∆q together with a map B : C ÝÑ C of degree 1 or ´1 which satisfies
B2 “ 0 and

∆Bpcq “ p1 b B ` τp1 b Bqτq∆pcq

where τpab bq “ p´1qdeg adeg bbb a. The category of dg-coalgebras is denoted dgc.

Example 2.2.2. Any singular chain complex C˚pXq of a spaceX is a dg-coalgebra where
the diagonal map ∆: C˚pXq ÝÑ C˚pXq bC˚pXq is induced by the map X ÝÑ X ˆX,
x ÞÝÑ px, xq.

For a cellular chain complex C˚pXq, the diagonal map X ÝÑ X ˆX does not in general
induce a map C˚pXq ÝÑ C˚pXq b C˚pXq. The diagonal map, however, is always ho-
motopic to a cellular map ∆r which does induce a map ∆r : C˚pXq ÝÑ C˚pXq b C˚pXq.
Therefore a cellular chain complex is a dg-coalgebra with diagonal map induced by a
cellular approximation to X ÝÑ X ˆX.

A differential graded Hopf algebra H is a Z-module which is simultaneously a dg-algebra
pH, dq and dg-coalgebra pH, d,∆q such that ∆: A ÝÑ AbA is an algebra homomorphism,
that is,

∆pab bq “ ∆ab ∆b. (2.6)

Algebraically, a Hopf algebra requires the further definition of an antipode map. This
condition is automatically satisfied when considering graded connected Hopf algebras.
Graded Hopf algebras appear topologically as the homology of certain loop spaces ΩX,
for example when X is a suspension with torsion-free homology. The algebra structure
is induced by the multiplication on loop spaces. We study such algebras in detail in
Section 2.3.

The quotient of a graded Hopf algebra H by an ideal invariant under both the algebraic
and coalgebraic structures remains a Hopf algebra, with grading induced by that of H.

Example 2.2.3. The free associative algebra has two coalgebra structures, one compat-
ible with the multiplication defining a Hopf algebra, and one not.



14 Chapter 2. Background

Given a1 ¨ ¨ ¨ ak P TkpMq, we define

∆pa1 ¨ ¨ ¨ akq “

k
ÿ

i“0

pa0 ¨ ¨ ¨ aiq b pai`1 ¨ ¨ ¨ ak`1q

where a0 “ ak`1 “ 1. This extends to a coalgebra structure on T pMq, but is not com-
patible with the algebra structure since the compatibility condition (2.6) is not satisfied.
For example, consider ab P T2pMq. Then ∆pabq “ 1 b ab` ab b` abb 1 whereas

∆paq b ∆pbq “ p1 b a` ab 1q b p1 b b` bb 1q

“ 1 b ab` ab b` p´1qdeg adeg bbb a` abb 1.

Instead, to define a Hopf algebra structure on T pMq we start with condition (2.6) and
define

∆pa1 ¨ ¨ ¨ akq “ ∆pa1q b ¨ ¨ ¨ b ∆pakq

which can be written in the following form which we will utilise later on. We have

∆pa1 ¨ ¨ ¨ akq “
ÿ

σ

ϵpσqpaj1 ¨ ¨ ¨ ajiq b paji`1 ¨ ¨ ¨ ajkq (2.7)

where σ is the permutation such that σpiq “ ji, ϵpσq has a factor p´1qdeg ai deg aj for
every transposition pi, jq of σ, and the sum is taken over all pi, k ´ iq shuffles σ, or more
concretely over all disjoint partitions tj1, . . . , jiu \ tji`1, . . . , jku of t1, . . . , ku, with one
side potentially empty, with j1 ă ¨ ¨ ¨ ă ji and ji`1 ă ¨ ¨ ¨ ă jk.

2.3 The loop homology algebra

Given a space X, recall that the loop space ΩX is an H space equipped with a multi-
plication µ : ΩX ˆ ΩX ÝÑ ΩX given by concatenation of loops. There is an induced
map µ˚ : H˚pΩX ˆ ΩXq ÝÑ H˚pΩXq and therefore a product

H˚pΩXq bH˚pΩXq H˚pΩX ˆ ΩXq H˚pΩXq
ˆ µ˚

where the first map is the cross product in homology. This is known as the Pontryagin
product and equips the homology groups of a loop space with the structure of an algebra.
We call the algebra H˚pΩXq the loop homology algebra of X.

The loop homology algebra captures homotopy-theoretic structure of X which is not seen
by homology or cohomology. For example all Whitehead products are trivial in homology
since their suspension is nullhomotopic [Por65]. On the other hand, let α P πppXq

and β P πqpXq and define the map θ as the composite of the adjunction isomorphism
π˚pXq ÝÑ π˚´1pΩXq with the Hurewicz map π˚´1pΩXq ÝÑ H˚´1pΩXq. Then it was
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shown by Samelson [Sam53] that

θprα, βsq “ p´1qp pθα ¨ θβ ´ p´1qpqθβ ¨ θαq “ p´1qprθα, θβs (2.8)

where rx, ys is the commutator (2.4) in the algebra H˚pΩXq.

Relation (2.8) is helpful in determining some structure of H˚pΩXq, for example if a space
is formed by attaching a cell via a Whitehead product, then the corresponding commut-
ator under (2.8) becomes trivial. We elaborate on this method further in Section 3.2.3.

In general the full computation of the algebra H˚pΩXq is difficult for an arbitrary space
X. We review some methods of computation. The first, the Bott–Samelson theorem,
identifies H˚pΩXq as a free associative algebra when X is a suspension with torsion-free
homology. For simply-connected spaces, the Cobar construction gives a chain complex
for ΩX from a simply-connected chain coalgebra for X.

2.3.1 The Bott–Samelson Theorem

Let X be a connected space. Then there is a homotopy equivalence

ΣΩΣX »
ł

ně1

ΣX^n (2.9)

known as the James splitting [Jam55], where X^n is the n-fold smash product of X with
itself. In particular, there is a homology isomorphism

HkpΩΣXq – Hk`1pΣΩΣXq – Hk`1

˜

ł

ně1

ΣX^n

¸

–
à

ně1

HkpX^nq (2.10)

for all k ě 0.

Suppose that X has torsion-free homology. The Künneth formula (2.3) gives an iso-
morphism Hr ˚pX^nq –

Ân
i“1H

r

˚pXq. Therefore there is an isomorphism of graded
groups

H˚pΩΣXq – T pHr ˚pXqq.

The Bott–Samelson Theorem establishes that this isomorphism is one of algebras.

Theorem 2.3.1 ([BS53]). Suppose that X is a connected space such that H˚pXq is
torsion-free. Then there is an algebra isomorphism

H˚pΩΣXq – T pHr ˚pXqq

induced by the map X ÝÑ ΩΣX adjoint to the identity ΣX ÝÑ ΣX.
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Example 2.3.2. (i) Let X “ Sn´1 for n ě 2. Then since H˚pSn´1q is torsion-free
there is an algebra isomorphism

H˚pΩSnq “ H˚pΩΣSn´1q – T pxq

where x P Hn´1pSn´1q is a generator. Therefore Hkpn´1qpΩS
nq “ Z is generated

by xk for k ě 1 and HjpΩS
nq “ 0 otherwise.

(ii) LetX “
Žm
i“1 S

ni´1 where ni ě 2 for i “ 1, . . . ,m. ThenH˚pXq is freely generated
by elements x1, . . . , xm with deg xi “ ni ´ 1 for each i “ 1, . . . ,m. Therefore there
is an algebra isomorphism

H˚

˜

Ω
m

ł

i“1

Sni

¸

“ H˚

˜

ΩΣ
m

ł

i“1

Sni´1

¸

“ T px1, . . . , xmq.

(iii) Let X “ RP 2. Theorem 2.3.1 applies when H˚pX; kq is torsion-free over some
coefficient ring k. If k “ Z2 we obtain that H˚pΩΣX;Z2q – TZ2pxq where x

generates H1pRP 2q. When k “ Z, H˚pXq is not torsion-free, so we cannot apply
Theorem 2.3.1. In this case, homology isomorphism (2.10) can be used to show
that

HkpΩΣRP 2q “

F pk`1q
à

i“1

Z2

for all k ě 0, where F pkq is the kth Fibonacci number such that F p0q “ 0

and F p1q “ 1. In particular, the number of summands in HkpΩΣRP 2q grows
much faster than for HkpΩΣSnq. In Example 2.3.4(iii) we will establish that
T pHr ˚pRP 2qq – T pxq{x2xy appears only as a subalgebra of H˚pΩΣRP 2q, which
has countably many other generators.

2.3.2 Adams–Hilton Models

Adams and Hilton [AH56] developed a method of deriving a chain complex for the loop
space ΩX of a simply-connected spaceX from the singular chain complex ofX itself. The
chain complex for ΩX naturally has the structure of a dg-algebra, which in turn derives
the algebra structure of H˚pΩXq. Subsequently, Adams [Ada56] refined the construction
to give a functor

Cobar: dgc1 ÝÑ dga

from the category dgc1 of simply-connected dg-coalgebras to dg-algebras, known as the
Cobar construction. If C “ pC, B,∆q is a chain complex for X with C0 “ Z which is
simply-connected, that is, C1 “ 0, with diagonal ∆, the Cobar construction assigns to
C the dg-algebra

Cobar˚ C “ pF pCq, dq
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which is a chain complex for ΩX. Here, F pCq “ T ps´1Cq is the free associative algebra
on the desuspended module C “ C{C0, and the differential d is given by

dc “ ´Bc`

p´2
ÿ

i“1

p´1qi∆i,p´ic (2.11)

where c P s´1Cp has comultiplication ∆c “ 1 b c` cb 1 `
řp´2
i“1 ∆i,p´ic. We summarise

the main properties of the Cobar construction in the following.

Theorem 2.3.3 ([AH56, Ada56]). Let C “ pC, B,∆q be a simply-connected chain com-
plex for a simply-connected space X. Then:

(i) there is a natural isomorphism of algebras H˚pΩXq – HpCobar˚ Cq;

(ii) if C 1 is a simply-connected quasi-isomorphic chain complex for X then Cobar˚ C

and Cobar˚ C
1 are also quasi-isomorphic chain complexes for ΩX.

A special case of statement (ii) above is when C 1 is chosen to be a cellular chain complex
for X with the diagonal ∆ a cellular approximation to the diagonal ∆: X ÝÑ XˆX. In
this case the Cobar construction Cobar˚ C

1 is known as the Adams–Hilton model, denoted
AH˚pXq. Adams–Hilton models are highly effective for the computation of H˚pΩXq in
specific examples.

Example 2.3.4. (i) Let X “ Sp ˆ Sq for p, q ě 2. Then the reduced cellular chain
complex C˚pXq is generated by cells ep, eq and ep`q of degrees p, q and p ` q,
respectively. The differential B is trivial and the comultiplication is given by ∆ep “

∆eq “ 0 and

∆ep`q “ 1 b ep`q ` ep`q b 1 ` ep b eq ` p´1qpqeq b ep.

Therefore AH˚pXq is the free associative algebra T px, y, zq with deg x “ p ´ 1,
deg y “ q ´ 1 and deg z “ p` q ´ 1 with differential given by dx “ dy “ 0 and

dz “ p´1qpxy ` p´1qpq`qyx “ p´1qppxy ´ p´1qpp´1qpq´1qyxq “ p´1qprx, ys

where rx, ys is the commutator (2.4). It follows that

H˚pΩXq – T px, yq{xrx, ysy

is the free commutative algebra on two generators. In Proposition 3.2.6 we give a
generalisation to the case that X is a simply-connected connected sum of sphere
products of the form

X “ #k
i“1

´

Sdi ˆ Sd´di
¯

and establish that the above algebra isomorphism is one of Hopf algebras.
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(ii) Let X “ CPn for n ě 1. Then X has a cell structure consisting of a single cell e2k

for each 1 ď k ď n of dimension 2k. The differential is trivial and the diagonal is
given by

∆e2k “ 1 b e2k ` e2k b 1 `
ÿ

i`j“k

e2i b e2j .

Therefore AH˚pCPnq is the differential graded algebra pT pa1, . . . , anq, dq where
ak “ s´1e2k and dak “

ř

i`j“k aiaj . In the case that n “ 1 the Adams–Hilton
model agrees with that of S2, while for n “ 2,

H˚pΩCP 2q “ HpAH˚pCP 2qq “
T pa1, xq

xa21, ra1, xsy

where x “ ra1, a2s.

(iii) Let X “ ΣRP 2. We return to Example 2.3.2(iv) to conclude the computation of
H˚pΩXq “ H˚pΩΣRP 2q. A reduced cellular complex C˚pXq is generated by cells
e2 and e3 of dimensions 2 and 3, respectively. The differential B is given by Be2 “ 0

and Be3 “ 2e2. The reduced diagonal is trivial. Therefore AH˚pXq is the free
associative algebra T px, yq with deg x “ 1 and deg y “ 2 and differential given by
dx “ 0 and dy “ ´2x. We see that dpxy ` yxq “ 2x´ 2x “ 0 is a cycle, and that
dy2 “ ´2pxy ` yxq. Therefore z3 “ xy ` yx generates a Z2 summand H3pΩXq.
More generally,

z2j`1 “ xyj ` yxyj´1 ` ¨ ¨ ¨ ` yj´1xy ` yjx

generates a Z2 summand in H2j`1pΩXq for j ě 1. Note that, for example,
while x2y ` yx2 also generates a homology class, this can be constructed algeb-
raically as the commutator rz3, xs. Relabelling x to z1, we consider the algebra
T pz1, z3, z5, . . . q{x2z1, 2z3, 2z5, . . . y. A counting argument shows that the number
of degree k summands on the right-hand side is the same as that for H˚pΩXq

described in Example 2.3.2(iv). We therefore obtain an isomorphism of algebras

H˚pΩXq – T pz1, z3, z5, . . . q{x2z1, 2z3, 2z5, . . . y

with deg zi “ i.

2.4 Simplicial complexes

We begin by defining simplicial complexes and giving associated constructions. A vertex
set rms is a finite ordered set consisting ofm elements. Where it does not create confusion,
we denote the elements of rms by t1, . . . ,mu.

Definition 2.4.1. A simplicial complex K on vertex set rms is a collection of subsets
σ Ď rms such that if σ P K and τ Ď σ then τ P K. We always assume that H P K.
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An element σ P K is called a simplex. A map K ÝÑ L of simplicial complexes is a map
ψ between their vertex sets such that whenever ti1, . . . , iku is a simplex of K, the image
tψpi1q, . . . , ψpikqu is a simplex of L. The category of simplicial complexes and maps
between them is denoted sc.

The dimension of a simplex dimσ is given by |σ| ´ 1. A simplex of dimension k is called
a k-simplex. The dimension of K is given by

dimK “ max
σPK

dimσ.

A simplex σ P K is maximal if dimσ “ dimK. A simplicial complex on a given vertex
set is completely determined by its set of maximal simplices.

Elements of rms which are not vertices of K are called ghost vertices. Unless otherwise
stated, we assume that all simplicial complexes have no ghost vertices.

A subcomplex of K is collection of simplices of K which is itself a simplicial complex.

We introduce some common simplicial complexes and fix some notation.

Example 2.4.2. (i) We refer to the simplicial complex K with maximal simplices
tt1u, . . . , tmuu as the complex consisting of m disjoint points or vertices. We write
K “ ‚rms. The complex consisting of a single point is denoted ‚.

(ii) The simplex ∆m is the simplicial complex on rms with maximal face t1, . . . ,mu.

(iii) The boundary of a simplex B∆m´1 is the simplicial complex with maximal faces

tt1, . . . , î, . . . ,mu | i “ 1, . . . ,mu

where î denotes the omission of the element i from the given set. The complex
B∆2 is shown in Figure 2.1(a).

(iv) The k-skeleton of a simplex skk∆m´1 is the subcomplex of ∆m´1 consisting of all
simplices of dimension at most k. As a special case, B∆m´1 “ skm´2∆m´1. The
complex sk1∆3 is shown in Figure 2.1(b).

(v) For p ě 4 the simplicial complex with maximal simplices

tt1, 2u, t2, 3u, . . . , tp´ 1, pu, tp, 1uu

is called a p-gon or p-cycle and is denoted Cp. The complex C5 is shown in Fig-
ure 2.1(c).

(vi) To specify certain subcomplexes more easily we list their vertex sets. For example
if K is the complex sk1∆3 shown in Figure 2.1(b), then B∆r1, 2, 3s and B∆r1, 2, 4s

denote the subcomplexes B∆2 on vertex sets t1, 2, 3u and t1, 2, 4u, respectively. We
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use ‚i instead of ‚ris to denote ith vertex of K, to avoid confusion with the notation
‚rms for m disjoint points.

3 1

2

(a) B∆2

3 1

2

4

(b) sk1 ∆3

4

5 1

2

3

(c) C5

Figure 2.1: Some common simplicial complexes.

Definition 2.4.3. Given a subset J Ď rms, the full subcomplex of K corresponding to
J is denoted KJ and is given by

KJ “ tσ X J | σ P Ku.

Any full subcomplex of K is a subcomplex.

Example 2.4.4. The full subcomplex of ∆m´1 for any J Ď rms is the simplex ∆rJs.
The full subcomplex of skm´3∆m´1 for |J | “ m´ 2 is the complex B∆rJs.

Definition 2.4.5. The set of minimal missing faces of K, denoted MF pKq is the set of
all σ such that σ R K, but τ P K for every τ Ď σ.

Given a simplicial complex K on rms, the face ring, also called the Stanley-Reisner ring, is
the quotient of the polynomial ring Zrv1, . . . , vms by the ideal IK generated by monomials
vi1 ¨ ¨ ¨ vik such that pi1, . . . , ikq is a minimal missing face of K. We denote the face ring
of K by ZrKs.

Example 2.4.6. Let K “ C5 be the 5-gon shown in Figure 2.1(c). Then

MF pKq “ tt1, 3u, t1, 4u, t2, 4u, t2, 5u, t3, 5uu.

The face ring for K is

ZrKs “ Zrv1, v2, v3, v4, v5s{xv1v3, v1v4, v2v4, v2v5, v3v5y.

In this case, the face ring is identified with the group ring ZrZ2s “ Zrv1s{xv21y. To see
this, we use the relations in ZrKs to rewrite

v1 “ v´1
3 “ v5 “ v´1

2 “ v4 “ v´1
1 .

Therefore v21 “ 1, and each vj for j “ 2, 3, 4, 5 is identified with v1.
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The study of face ring ZrKs originated in combinatorial algebra, but has become a key
tool in the study of polyhedral products as it appears as the cohomology ring of the Davis–
Januszkiewicz space, and in turn plays an important part in computing the cohomology
of moment-angle complexes. We will return to such applications in Section 2.6.

Definition 2.4.7. The face category catpKq is the category with objects σ P K and
morphisms τ ÝÑ σ whenever τ Ď σ.

2.4.1 Combinatorial operations

The pushout, or amalgamated union, of two simplicial complexes K and L on rms over
a common subcomplex M is denoted by K YM L is computed as the standard set-wise
union and is always a simplicial complex. When M “ H, the resulting pushout is the
coproduct in the category sc. On the other hand, the product in sc is not the Cartesian
product, since this does not preserve simplicial complexes. Instead, the product in sc is
the join, defined as follows.

Definition 2.4.8. Given simplicial complexes K and L on rms and rns, respectively, the
join of K and L, denoted K ˚ L is the simplicial complex on rms \ rns given by

K ˚ L “ tσ \ τ | σ P K, τ P Lu.

Here, rms \ rns denotes the vertex set rm`ns with ordering inherited from the orderings
on rms and rns, and all elements of rns ordered after those of rms.

Example 2.4.9. Let K “ tH, t1u, t3uu and L “ tH, t2u, t4uu each consist of two disjoint
points. Then K ˚ L has maximal simplices p1, 2q, p2, 3q, p3, 4q and p1, 4q. Geometrically,
K ˚ L is a square, as Figure 2.2 shows.

3

1

(a) K

2

4

(b) L

3

12

4

(c) K ˚ L

Figure 2.2: The join of simplicial complexes.

For a simplicial complex K, the link lkKpσq of a simplex σ P K is given by

lkKpσq “ tτ P K | σ Y τ P K, σ X τ “ Hu

while the star stKpσq of σ is given by

stKpσq “ tτ P K | σ Y τ P Ku.
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Define also the boundary of the star to be the subcomplex

B stKpσq “ tτ P K | σ Y τ P K, σ Ć τu.

For any simplicial complex K and vertex j P K there is a decomposition

K “ stKpjq YlkKpjq Krms´tju. (2.12)

which we call the link-star decomposition of K at vertex j, see [GT07].

Example 2.4.10. Let K be the complex shown in Figure 2.2(c). Then lkKp1q consists
of the two disjoint points t2, 4u while stKp1q has simplices p1, 2q and p1, 4q and B stKp1q

again consists of the disjoint points t2, 4u. Since K2,3,4 has maximal simplices p2, 3q and
p3, 4q then we obtain the decomposition (2.12) in this case.

Definition 2.4.11. The stellar subdivision stsKpσq of K at a simplex σ is the simplicial
complex on rms \ tju given by

stsKpσq “ pK ´ stKpσqq Y pB stKpσq ˚ jq

where j is a new vertex not in K.

Example 2.4.12. Let K be the complex shown in Figure 2.2(c) and let σ “ p1, 4q. Then
lkKpσq “ H, while stKpσq “ σ and B stKpσq “ t1, 4u. Then L “ stsKpσq has maximal
simplices p1, 2q, p2, 3q, p3, 4q, p4, 5q and p1, 5q. Therefore L “ C5, a 5-gon. Figure 2.3
shows the process of stellar subdivision.

3

12

4

(a) σ “ p1, 4q, coloured red

3

12

4

(b) Remove stKpσq

3

12

4

5

(c) Attach B stKpσq ˚ 5

Figure 2.3: Stellar subdivision of a square at σ “ p1, 4q.

2.5 Polyhedral products

In this section we define the polyhedral product, the main object of study in this thesis.
We give examples of the computation of the homotopy type of polyhedral products, before
establishing the functoriality properties that allow us to study polyhedral products using
homotopy-theoretic techniques.
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A topological pair of spaces pX,Aq, hereon called a pair, is a space X and a subspace A
together with an inclusion A ÝÑ X. A map of pairs f : pX,Aq ÝÑ pY,Bq consists of a
map f : X ÝÑ Y such that fpAq Ď B.

Definition 2.5.1. Let K be a simplicial complex on rms and let

pX,Aq “ tpX1, A1q, . . . , pXm, Amqu

be an m-tuple of pairs. The polyhedral product pX,AqK is the subspace of the Cartesian
product X1 ˆ ¨ ¨ ¨ ˆXm defined as

pX,AqK “
ď

σPK

m
ź

i“1

Yi, where Yi “

$

&

%

Xi if i P σ,

Ai if i R σ.
(2.13)

If pXi, Aiq “ pX,Aq for each i “ 1, . . . ,m then the polyhedral product pX,AqK is denoted
pX,AqK.

The polyhedral product in this general form appeared in [GT07] as a generalisation
of functorial constructions of the moment-angle complex in [BP00] and the Davis–
Januszkiewicz space [DJ91].

Example 2.5.2. 1. Let pXi, Aiq “ pD2, S1q for i “ 1, . . . ,m. The polyhedral product
pD2, S1qK is the moment-angle complex, and is denoted ZK. Moment-angle com-
plexes have emerged as a key tool in linking combinatorics with many areas such as
algebra, homotopy theory and symplectic geometry. As such there are many equi-
valent formulations and methods to study them. In this thesis we will be mainly
concerned with the homotopy–theoretic features of moment-angle complexes, which
are readily studied from its definition as a polyhedral product.

2. Let pXi, Aiq “ pCP8, ˚q for i “ 1, . . . ,m. Then the polyhedral product pCP8, ˚qK

is the Davis–Januszkiewicz space, and is denoted DJK. The Davis–Januszkiewicz
space is an important intermediary in the study of moment-angle complexes since
both appear in a single homotopy fibration sequence. In Section 2.6 we study the
moment-angle complex and Davis–Januszkiewicz spaces in detail.

3. Let pXi, Aiq “ pD1, S0q for i “ 1, . . . ,m. The polyhedral product pD1, S0qK is the
real moment-angle complex, and is denoted RK. If we take D1 to be the closed
interval r´1, 1s Ď R and S0 its boundary t´1, 1u, then RK is a cubical subcomplex
of the cube r´1, 1sm Ď Rm. In Section 2.7 we study the real moment-angle complex
and its links to geometric group theory in more detail.

Let pY ,Bq “ tpY1, B1q, . . . , pYm, Bmqu be another m-tuple of pairs. A map of m-tuples
of pairs f : pX,Aq ÝÑ pY ,Bq is a collection of maps of pairs fi : pXi, Aiq ÝÑ pYi, Biq for
i “ 1, . . . ,m.
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The polyhedral product is functorial with respect to both maps of m-tuples of pairs
and inclusions of simplicial complexes. The following properties are immediate from the
definition of polyhedral products.

Proposition 2.5.3. Let pX,Aq and pY ,Bq be m-tuples of pairs and let K be a simplicial
complex on rms. Then

(i) a map f : pX,Aq ÝÑ pY ,Bq induces a map of polyhedral products pX,AqK ÝÑ

pY ,BqK;

(ii) if L is a simplicial complex such that K Ď L then the inclusion K ÝÑ L induces a
map of polyhedral products pX,AqK ÝÑ pX,AqL.

Slightly less immediate is the following. Let KJ be a full subcomplex of K. Then the
restriction

śm
i“1Xi ÝÑ

ś

iPJ Xi induces a map pX,AqK ÝÑ pX,AqKJ . Furthermore,
since

ś

iPJ Xi is a retract of
śm
i“1Xi, we have the following very useful properties.

Proposition 2.5.4. (i) Suppose that the pair pXi, Aiq is a retract of pYi, Biq for i “

1, . . . ,m. Then the polyhedral product pX,AqK is a retract of pY ,BqK.

(ii) Suppose that KJ is a full subcomplex of K. Then the polyhedral product pX,AqKJ

is a retract of pX,AqK.

2.5.1 Homotopy type of polyhedral products

Let K be a simplicial complex on rms. In general, the homotopy type of the polyhedral
product pX,AqK is highly non-trivial. We summarise some common methods of compu-
tation and families of polyhedral products whose homotopy type is known.

Example 2.5.5. Suppose that Ai “ ˚ for each i “ 1, . . . ,m. Then:

(i) if K consists of m disjoint points then pX, ˚qK “ X1 _ ¨ ¨ ¨ _Xm;

(ii) if K “ B∆m´1 then pX, ˚qK “ FW pX1, . . . , Xmq;

(iii) if K “ ∆m´1 then pX, ˚qK “ X1 ˆ ¨ ¨ ¨ ˆXm.

In particular, the polyhedral product pX, ˚qK interpolates between the wedge X1 _ ¨ ¨ ¨ _

Xm and the product X1 ˆ ¨ ¨ ¨ ˆXm.

Example 2.5.6. Suppose that Xi “ CAi for each i “ 1, . . . ,m. If K “ ∆m´1, then
pCA,AqK “ CA1 ˆ ¨ ¨ ¨ ˆ CAm. If K “ B∆m´1 then

pCA,AqK “

m
ď

i“1

CA1 ˆ ¨ ¨ ¨ ˆ CAi´1 ˆAi ˆ CAi`1 ˆ ¨ ¨ ¨ ˆ CAm

“ A1 ˚ ¨ ¨ ¨ ˚Am.
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As a special case, when K “ B∆m´1 we have ZK “ pD2, S1qK “ S1 ˚ ¨ ¨ ¨ ˚ S1 “ S2m´1.

The above building blocks can be propagated to compute more complex polyhedral
products via the following result.

Proposition 2.5.7 ([BP15, Proposition 4.2.5]). Let K and L be simplicial complexes.
Then pX,AqK˚L “ pX,AqK ˆ pX,AqL.

Example 2.5.8. Let K and L be the simplicial complexes from Example 2.4.9, so that
K ˚ L is a square. Then

pX,AqK˚L “ pX,AqK ˆ pX,AqL “ pA1 ˚A3q ˆ pA2 ˚A4q.

In particular, if K is a square then ZK “ S3 ˆ S3.

Let K consist of rms disjoint points for m ě 3. The homotopy type of the polyhedral
product pCA,AqK is not easily computable directly from the definition. Instead, the
combinatorial structure of K can be combined with homotopy-theoretic techniques to
determine homotopy type. We will require the following.

Lemma 2.5.9 ([GT16, Lemma 6.11]). Suppose that A ÝÑ C is a nullhomotopic map.
Then for any space A the homotopy pushout of the diagram

A AˆB C ˆB

is A ˚B _ pC ¸Bq.

Let K be a simplicial complex on rms and let j P K be a vertex. Then the link-star
decomposition (2.12) of K gives a pushout of simplicial complexes

lkKpjq lkKpjq ˚ tju

K ´ tju K

and therefore a homotopy pushout of polyhedral products

pX,AqlkKpjq ˆAj pX,AqlkKpjq ˆXj

pX,AqK´tju ˆAj pX,AqK.

Therefore if the map pX,AqlkKpjq ÝÑ pX,AqK´tju is nullhomotopic andXj is contractible
then by Lemma 2.5.9 there is a homotopy equivalence

pX,AqK » pX,AqlkKpjq ˚Aj _ pX,AqK´tju ¸Ajq. (2.14)
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Example 2.5.10. Let K consist of m disjoint points. Then applying (2.14) inductively
one obtains that

ZK »

n
ł

k“2

´

Sk`1
¯_pk´1qpnkq

where A_m denotes the m-fold wedge of A with itself. For example, for m “ 3, using
parts (i), (iii) and (iv) of Proposition 2.1.4 we obtain that

ZK » pS1 ˆ S1q ˚ S1 _ S3 ¸ S1 » pS3 _ S3 _ S4q _ pS3 _ S4q.

The study of those simplicial complexes for which ZK has the homotopy type of a wedge
of spheres is very well established. By [BBCG10, Corollary 2.23] there is a homotopy
equivalence

ΣZK »
ł

JRK
Σ2`|J ||KJ |

so an equivalent question is to determine for which K the left-hand side is a wedge of
spheres, and moreover the homotopy equivalence desuspends. One of the most general
classes for which this is the case come from homology fillable complexes, see [IK19]. This
is a homological generalisation of a fillable complex, a complex for which adding some
subset of its minimal missing faces makes it contractible. Iriye and Kishimoto [IK19,
Corollary 7.12] show that if every full subcomplex KJ of K for J ‰ H is homology
fillable, then ZK is homotopy equivalent to a wedge of spheres.

2.5.2 Homotopy theory of polyhedral products

Let K be a simplicial complex on rms and let pX,Aq be an m-tuple of pairs. Recall
the definition of the face category catpKq of K from Definition 2.4.7. The polyhedral
product pX,AqK is a colimit of a diagram over catpKq given as follows. Define a diagram

DK : catpKq ÝÑ top

which sends σ ÞÝÑ pX,Aqσ, where

pX,Aqσ “

m
ź

i“1

Yi where Yi “

$

&

%

Xi if i P σ,

Ai if i R σ

and sends the morphism σ ÝÑ τ to the inclusion of spaces pX,Aqσ ÝÑ pX,Aqτ . Then

pX,AqK “ colimDKpX,Aq “ colimσPKpX,Aqσ.

Observe that since H P catpKq and H Ď σ for any σ P catpKq, then H is an initial
object in catpKq. Moreover, since Ai ÝÑ Xi is an inclusion for each i “ 1, . . . ,m, the
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map
pX,AqH ÝÑ pX,Aqσ

is also an inclusion. Therefore

hocolimσPKpX,Aqσ » colimσPKpX,Aqσ

by Proposition 2.1.1. In particular, we obtain that the polyhedral product pX,AqK is
unchanged, up to homotopy, by replacing a pair pXi, Aiq with a homotopy equivalent
pair pX 1

i, A
1
iq for some i “ 1, . . . ,m. We refer to this property as homotopy invariance of

the polyhedral product.

Example 2.5.11. The infinite-dimensional complex sphere S8 is the colimit of the
sequence of cellular inclusions Sn ÝÑ Sn`1 as n ÝÑ 8. Since Sn`1 is n-connected,
the sphere S8 is 8-connected, and therefore contractible. Moreover, there is a natural
cellular inclusion S1 ÝÑ S8. Therefore the pair pS8, S1q is homotopy equivalent to
pD2, S1q. The form ZK “ pS8, S1qK arises naturally when viewing ZK as having a torus
action, since S8 admits a free action of S1.

An important feature of polyhedral products is that they preserve fibrations. Precisely,
let pE,E1q ÝÑ pB,B1q be a map of m-tuples of pairs such that pEi, E

1
iq ÝÑ pBi, B

1
iq is a

fibration of pairs for i “ 1, . . . ,m, and let pF , F 1q be the m-tuple of pairs where for each
i “ 1, . . . ,m the fibre of Ei ÝÑ Bi is Fi and the fibre of E1

i ÝÑ B1
i is F 1

i . Then for any
simplicial complex K on rms there is a fibration

pF , F 1qK pE,E1qK pB,B1qK

which was established by Denham and Siciu [DS07, Lemma 2.3.1]. In particular, for any
spaces X1, . . . , Xm and simplicial complex K on rms there is a homotopy fibration

pCΩX,ΩXqK pX, ˚qK
śm
i“1Xi

i (2.15)

where i : pX, ˚qK ÝÑ
śm
i“1Xi is the coordinate-wise inclusion, obtained by considering

the fibrations pX, ˚q » pX ˆ PX,PXq ÝÑ pX,Xq and using homotopy invariance of
the polyhedral product. When K consists of two disjoint points, we recover the Theorem
of Ganea recovering the homotopy fibre of the inclusion X1 _ X2 ÝÑ X1 ˆ X2, see
Theorem 2.1.7.

The inclusion
śm
i“1ΩXi ÝÑ pCΩX,ΩXqK is null-homotopic since it factors successively

through the spaces ΩX1 ˆ ¨ ¨ ¨ ˆ CΩXi ˆ ¨ ¨ ¨ ˆ ΩXm for i “ 1, . . . ,m. Therefore the
homotopy fibration sequence induced by (2.15) splits after looping, giving a homotopy
equivalence

ΩpX, ˚qK » ΩpCΩX,ΩXqK ˆ

m
ź

i“1

ΩXi. (2.16)
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In general, this splitting is not one of H spaces, as the following example shows.

Example 2.5.12. The moment-angle complex ZK “ pD2, S1qK and the Davis–Januszkiewicz
spaceDJK “ pCP8, ˚qK are related using fibration (2.15) as follows. First, the homotopy
fibre of the inclusion

DJK ÝÑ

m
ź

i“1

CP8

is the polyhedral product pCΩCP8,ΩCP8qK. Then since there is a homotopy equival-
ence ΩCP8 » S1 there is a homotopy equivalence of pairs

pCΩCP8,ΩCP8q » pCS1, S1q » pD2, S1q.

Therefore by homotopy invariance of the polyhedral product, there is a homotopy fibra-
tion

ZK DJK
śm
i“1CP8 (2.17)

for any simplicial complex K. Furthermore, after looping there is a homotopy equivalence

ΩDJK » ΩZK ˆ Tm (2.18)

where Tm is the m-fold torus
śm
i“1 S

1.

Now let K be the simplicial complex consisting of 2 disjoint points. Then splitting (2.18)
gives

ΩpCP8 _ CP8q » ΩS3 ˆ T 2.

The right-hand side is homotopy commutative since S3 is an H-space, while the left-
hand side is not homotopy commutative. Therefore in general splitting (2.16) is not
a splitting of H-spaces. We return to this observation when computing the algebra
structure in H˚pΩZKq.

2.6 Moment-angle complexes

Moment-angle complexes are central objects in toric topology, a field which interfaces
between topology, algebraic and symplectic geometry and combinatorics. At its base,
toric topology is the study of spaces with a torus action, and a moment-angle complex
ZK can be viewed as a space whose orbit under a torus action is K. Moment-angle
complexes in the form of polyhedral products first appeared in the work of Davis–
Januszkiewicz [DJ91], who also defined the space DJK as the homotopy orbit space
of ZK under the same torus action.

More recently, the moment-angle complex has been studied as a purely topological object
with many interesting geometric and algebraic features. These features can moreover be
decoded as combinatorial properties of the underlying simplicial complex K, and this
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is the viewpoint we take in this thesis. Introducing the moment-angle complex as a
polyhedral product gives us many tools to study these spaces topologically, such as
functoriality and homotopy invariance. It also makes some key aspects of the homotopy
theory of ZK more accessible. Firstly, the decomposition of ZK as a polyhedral product
gives rise to a coordinate-wise cell structure controlled by the information in K. In turn,
the cohomology ring H˚pZKq decomposes as a direct sum of cohomology groups of full
subcomplexes of K, with the cup product being induced by simplicial maps.

Secondly, the link with the Davis–Januszkiewicz space remains even without the know-
ledge of torus actions. In particular, homotopy fibration (2.17) provides a homotopy-
theoretic link to the Davis–Januszkiewicz space DJK. As such, many homotopical con-
structions on ZK can be understood by first analysing equivalent properties in DJK,
which are often more accessible.

2.6.1 Cell structure

Viewing the moment-angle complex as a coordinate-wise subcomplex of the product
pD2qm gives a cellular structure for ZK as follows.

Construction 2.6.1 ([BP15, Section 4.4]). We equip the disc D2 with a cellular struc-
ture consisting of one 0-cell ‚, a 1-cell S with its boundary collapsed to ‚, and a 2-cell
D attached to S via a homeomorphism of its boundary.

Given subsets I, J Ď rms such that I X J “ H, define the product cell χpI, Jq by

χpI, Jq “ E1 ˆ ¨ ¨ ¨ ˆ Em, where Ei “

$

’

’

’

&

’

’

’

%

D if i P I

S if i P J

‚ otherwise.

Then, viewing the moment-angle complex as a polyhedral product, we equip it with a
cellular structure consisting of cells χpI, Jq such that I P K. The cell χpI, Jq has degree
2|I| ` |J |, and also has a naturally defined bidegree given by p´|J |, 2|I| ` 2|J |q.

We obtain a cellular chain complex C˚pZKq generated by cells χpI, Jq for I P K with
differential d induced by dpSq “ dp‚q “ 0, dpDq “ S and the Leibniz rule

dpaˆ bq “ daˆ b` p´1qdeg aaˆ db.

Example 2.6.2. Let K be the simplicial complex consisting of two disjoint points. Then
C˚pZKq is generated by cells

χpH,Hq “ ‚ χpH, t1uq “ S1 χpH, t2uq “ S2 χpH, t1, 2uq “ S1S2

χpt1u,Hq “ D1 χpt2u,Hq “ D2 χpt1u, t2uq “ D1S2 χpt2u, t1uq “ S1D2
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where we drop the product symbol ˆ when referring to product cells, and the subscript
notation is used to keep track of the coordinates of the cells within pD2qm. The differential
d is given by dpDiq “ Si, dpD1S2q “ S1S2 “ ´dpS1D2q and is zero otherwise. Therefore
H3pZKq “ Z, generated by D1S2 ` S1D2 and HnpZKq “ 0 for all other n ą 0.

2.6.2 Cohomology Ring

The cellular structure of ZK also defines a cochain complex C˚pZKq generated by cochains
χpI, Jq˚ for I P K dual to the cells χpI, Jq. The complex C˚pZKq is given a bigrading
by setting bidegχpI, Jq˚ “ p´|J |, 2|I| ` 2|J |q. The differential is induced by dS˚ “ D˚,
dD˚ “ 0 and the Leibniz rule. The cohomology groups H˚pZKq therefore have a natural
bigrading arising from the bigrading in the CW-structure of ZK , that is

HkpZKq –
à

´i`2j“k

H´i,2jpZKq. (2.19)

Algebraic models for C˚pZKq are obtained from the following setting.

The Eilenberg–Moore spectral sequence for the homotopy fibration (2.17) collapses on
the second page giving an isomorphism of graded modules

H˚pZKq – TorH˚ppCP8qmqpH
˚pDJKq,Zq (2.20)

where the Tor groups on the right-hand side are defined in Section 2.2.1. By the Künneth
formula (2.2) we have H˚ppCP8qmq “ Zrv1, . . . , vms with deg vi “ 2, which we denote
by Zrms. Moreover, we have the following. Recall that for a simplicial complex K on
rms, the face ring ZrKs is the quotient of Zrms by the ideal generated by monomials
vi1 ¨ ¨ ¨ vik such that pi1, . . . , ikq P MF pKq.

Proposition 2.6.3 ([BP15, Proposition 4.3.1]). Let K be a simplicial complex on rms.
Then H˚pDJKq – ZrKs.

Therefore the isomorphism (2.20) becomes

H˚pZKq – TorZrmspZrKs,Zq. (2.21)

There are two main projective resolutions associated to ZK, one of Z as a Zrms-module,
known as the Koszul resolution, and the second of ZrKs as a Zrms-module, known as the
Taylor resolution. These both define dg-algebras with homology TorZrmspZrKs,Zq known
as the Koszul and Taylor complexes, respectively. In this thesis, we will only make use of
the Taylor complex, which was developed in the Ph.D. thesis of Taylor [Tay66]. Details
of the Koszul resolution are covered extensively in [BP15, Chapter 4].
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The advantage of the Taylor complex is that resolving ZrKs gives a closer connection to
the combinatorial data in K, since the resolution is defined in terms of minimal missing
faces of K. Therefore the Taylor complex is very useful for detecting topological data
encoded in missing faces, for example Whitehead products, see [AP19] for a detailed
analysis, including details of the following construction.

Construction 2.6.4 (Taylor Complex). Let M “ tσJ | J P MF pKqu and consider
the exterior algebra ΛpMq. The Taylor complex is the dg-algebra with ith graded com-
ponent ΛipMq, which is generated as Z-module by finite formal products σJ1 ¨ ¨ ¨σJi for
σJ1 , . . . , σJi P M. The differential is given by

dpσJ1 ¨ ¨ ¨σJiq “
ÿ

k

p´1qk´1σJ1 ¨ ¨ ¨σJk´1
σJk`1

¨ ¨ ¨σJi

where the summation is taken over all 1 ď k ď i such that J1 Y ¨ ¨ ¨ Y Ji “ J1 Y ¨ ¨ ¨ Y

Jk´1 Y Jk`1 Y ¨ ¨ ¨ Y Ji and the algebra product is given by

pσJ1 ¨ ¨ ¨σJiq ¨ pσJ 1
1

¨ ¨ ¨σJ 1
i
q “ σJ1 ¨ ¨ ¨σJiσJ 1

1
¨ ¨ ¨σJ 1

i

if pJ1Y¨ ¨ ¨YJiqXpJ 1
1Y¨ ¨ ¨YJ 1

iq “ H and is zero otherwise. The Taylor complex is enhanced
to have the structure of a bigraded differential algebra by setting bidegpσJ1 ¨ ¨ ¨σJiq “

p´i, 2|J1 Y ¨ ¨ ¨ Y Ji|q.

Example 2.6.5. Let K “ C4 be a square with M “ MF pKq “ tp1, 3q, p2, 4qu. Then
Λ1pMq is generated by σ13 and σ24, each with bidegree p´1, 4q and total degree 3, while
Λ2pMq is generated by σ13σ24 “ σ13 ¨ σ24 with bidegree p´2, 8q and total degree 6. The
differential is trivial. This agrees with the topological observation of Proposition 2.5.7
that ZK “ S3 ˆ S3.

2.6.3 Homology

There are dual versions of the Koszul and Taylor complexes which compute the homology
H˚pZKq as bigraded groups. A full treatment is given in [AP19], and we give only the
main construction of the homological Taylor complex.

The dual to the polynomial ring Zrv1, . . . , vms is the cocommutative coalgebra Zxv1, . . . , vmy,
denoted Zxmy, which is generated by all monomials vσ corresponding to multisets

σ “ t1, . . . , 1
loomoon

k1

, 2, . . . , 2
loomoon

k2

, . . . ,m, . . . ,m
loooomoooon

km

u.

The face coalgebra of a simplicial complex K is the subcoalgebra of Zxmy generated by
all monomials vσ such that ti P rms | ki ‰ 0u is a simplex of K.
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Dual to the cohomology case, there is an isomorphism of bigraded modules

H˚,˚pZKq – CotorZxmypZxKy,Zq.

The homological Taylor complex is a chain complex for CotorZxmypZxKy,Zq which is
derived from an injective resolution of ZxKy as a Zxmy-comodule in a way dual to the
Taylor resolution.

Construction 2.6.6 (Homological Taylor Complex). For s ą 0, the graded component
I´s is the free Z-module with basis exterior monomials wJ1 ^ ¨ ¨ ¨ ^wJs , where J1, . . . , Js
are distinct minimal missing faces of K. The differential is given by

BpwJ1 ^ ¨ ¨ ¨ ^ wJsq “
ÿ

JĂJ1Y¨¨¨YJs

wJ ^ wJ1 ^ ¨ ¨ ¨ ^ wJs

where the summation is taken over missing faces J Ă J1 Y ¨ ¨ ¨ Y Js different from any
of the J1, . . . , Js. The Taylor complex is bigraded by setting bidegpωJ1 ^ ¨ ¨ ¨ ^ ωJsq “

p´s, 2|J1 Y ¨ ¨ ¨ Y Js|q.

Example 2.6.7. Let K “ C4 be a square. Then I´1 is generated by ω13 and ω24, and I´2

is generated by ω13ω24 “ ´ω24ω13. The differential is trivial, recovering the homology
groups of ZK “ S3 ˆ S3.

In Section 3.3.2 we will give the homological Taylor complex the structure of a bigraded
differential coalgebra by specifying a comultiplication dual to the multiplication in the
Taylor complex described in Construction 2.6.4.

2.6.4 Hochster’s Theorem

Hochster [Hoc77] showed the bigraded components Tor
´i,2|J |

Zrms
pZrKs,Zq decompose into

reduced simplicial homology groups of full subcomplexes KJ of K as

Tor´i,2j
Zrms

pZrKs,Zq –
à

|J |“j

Hr
j´i´1

pKJq. (2.22)

Hochster’s result significantly predates the appearance of the Tor algebra in moment-
angle complexes, and is itself an important tool transitioning between algebraic and
combinatorial problems. Combining (2.22) with (2.19) and (2.21) we obtain isomorph-
isms

HkpZKq –
à

´i`2j“k

à

|J |“j

Hr
j´i´1

pKJq “
à

JĎrms

Hr
i´|J |´1

pKJq. (2.23)

Baskakov [Bas02] showed that the right-hand side has a multiplicative structure given
by canonical maps

Hk´|I|´1pKIq bH l´|J |´1pKJq Ñ Hk`l´|I|´|J |´1pKIYJq (2.24)
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which are induced by simplicial maps KIYJ Ñ KI ˚ KJ if I X J “ H and are zero oth-
erwise. This product structure agrees with the product structure on Tor

´i,2|J |

Zrms
pZrKs,Zq.

Therefore the group isomorphisms (2.22) combine to give a ring isomorphism

H˚pZKq –
à

JĎrms

Hr
˚
pKJq, HkpZKq –

à

JĎrms

Hr
k´|J |´1

pKJq. (2.25)

Equivalent decompositions for H˚pZKq hold replacing cohomology for homology in the
group isomorphisms (2.22) and (2.23).

Decompositions of the homology and cohomology groups of general polyhedral products
pX,AqK follow from the work of Bahri, Bendersky, Cohen and Gitler. For example, if
each Xi is contractible, by [BBCG10, Theorem 2.21] there is a homotopy equivalence

ΣpX,AqK » Σ

˜

ł

JRK
|KJ | ˚

ľ

iPJ

Ai

¸

. (2.26)

When pXi, Aiq “ pD2, S1q for i “ 1, . . . ,m, taking cohomology on each side of (2.26)
recovers decomposition (2.23) since KJ is contractible whenever J P K.

Example 2.6.8. Let K be a square. Then the full subcomplexes K13 and K24 have
Hr

0
pK13q “ Hr

0
pK24q “ Z while Hr

1
pK1234q “ Z. All other full subcomplexes are con-

tractible. Therefore we have

H3pZKq –
à

JĎrms

Hr
0
pKJq “ Hr

0
pK13q ‘Hr

0
pK24q “ Z2

H6pZKq –
à

JĎrms

Hr
1
pKJq “ Hr

1
pK1234q “ Z

and all other cohomology groups are trivial. Moreover, the simplicial map K1234 ÝÑ

K13 ˚ K24 is the identity, giving a non-trivial map

Hr
0
pK13q bHr

0
pK24q ÝÑ Hr

1
pK1234q

and therefore the non-trivial cup product H3pZKq bH3pZKq ÝÑ H6pZKq.

2.6.5 Loop homology of Davis–Januszkiewicz spaces

Let K be a simplicial complex on rms and for i “ 1, . . . ,m let µi be the inclusion

µi : S
2 ÝÑ CP8 ÝÑ DJK

where the second map is induced by the inclusion tiu ÝÑ K. We consider the White-
head product rµi, µjs P π3pDJKq. By (2.8), if θ is the composite of the adjoint map



34 Chapter 2. Background

πnpDJKq ÝÑ πn´1pΩDJKq with the Hurewicz map πn´1pΩDJKq ÝÑ Hn´1pΩDJKq

then
θprµi, µjsq “ ´puiuj ` ujuiq “ ´rui, ujs

where uk “ θpµkq and rx, ys “ xy ´ p´1qdeg xdeg yyx is the algebraic commutator (2.4).
The following result therefore identifies some relations in H˚pΩDJKq.

Lemma 2.6.9. For i ‰ j, the Whitehead product rµi, µjs P π3pDJKq is trivial if and
only if pi, jq P K.

Proof. By Proposition 2.1.6, the product S2 ˆ S2 is the homotopy cofibre of the map
S3 ÝÑ S2 _ S2. Therefore rµi, µjs is trivial if and only if the map µi _ µj : S

2 _ S2 ÝÑ

DJK extends to a map S2 ˆ S2 ÝÑ DJK. If pi, jq P K, then DJK contains the subspace
CP8

i ˆ CP8
j and such an extension is given by µi ˆ µj . Conversely, any extension of

µi _ µj to S2 ˆ S2 is given by µi ˆ µj , which implies that CP8
i ˆ CP8

j is a coordinate
subspace of DJK, and hence that pi, jq P K.

Proposition 2.6.10 ([BP15, Corollary 8.4.3]). If k is a field with characteristic different
from 2, the loop homology algebra H˚pΩDJK; kq contains the subalgebra

T pu1, . . . , umq

xu2i , rui, ujs if pi, jq P Ky
. (2.27)

Proof. It remains to show that u2i “ 0 for each i “ 1, . . . ,m. The Whitehead square
rµi, µis P π3pDJKq is trivial since it factors through a map S3 ÝÑ CP8 “ KpZ, 2q.
Therefore 2u2i “ 0 in H˚pΩDJK; kq and the result follows.

The result of Proposition 2.6.10 remains true when k “ Z. The difficulty is finding an
alternative way to show that u2i “ 0, rather than a 2-torsion element.

We use the Cobar construction to create an algebraic model for H˚pΩDJKq. Recall from
Section 2.6.3 that the face coalgebra ZxKy of a simplicial complex K is the subcoalgebra
of Zxmy generated by all monomials vσ corresponding to multisets

σ “ t1, . . . , 1
loomoon

k1

, 2, . . . , 2
loomoon

k2

, . . . ,m, . . . ,m
loooomoooon

km

u.

such that ti P rms | ki ‰ 0u is a simplex of K.

Dual to Proposition 2.6.3, the face coalgebra ZxKy is a model for the cellular chain
complex of DJK. Since ZxKy is a simply-connected dg-coalgebra in which the differential
is zero, we apply the Adams–Hilton model, Theorem 2.3.3, to obtain an isomorphism of
algebras

H˚pΩDJKq – HpAH˚pZxKyqq
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where AH˚pZxKyq is the free associative algebra T ps´1pZxKyq on the desuspended mod-
ule pZxKyq “ ZxKy{ppZxKyq0 and the differential is given by

dps´1vσq “
ÿ

σ“τ\τ 1

s´1vτ b s´1vτ 1

where the sum is taken over all proper partitions of σ into submultisets τ and τ 1 with
τ, τ 1 ‰ H. For an element vσ P ZxKy we denote by χσ “ s´1vσ.

Example 2.6.11. As a first example, we establish Proposition 2.6.10 for integral coef-
ficients. Let ui denote the homology class of χi. Then dχi “ 0 and dχii “ χ2

i , which
establishes the relation u2i “ 1.

Example 2.6.12. Let K “ B∆m´1. Let ui be the homology class of χi for i “ 1, . . . ,m.
If m ě 3 then since dχii “ χ2

i and dχij “ χiχj ` χjχi, we deduce that u1, . . . , um
generate a subalgebra of H˚pΩDJKq subject to the exterior relations u2i “ rui, ujs “

1. For m “ 2, the element χ12 is not in AH˚pZxKyq. In this case we obtain that
H˚pΩDJKq – T pu1, u2q{xu21, u

2
2y.

Returning to the case m ě 3, consider the element χ12¨¨¨m P AH˚pZx∆m´1yq. Then
ψ “ dpχ12¨¨¨mq P AH˚pZxKyq is a cycle since dψ “ d2pχ12¨¨¨mq “ 0 which is not a
boundary since p1, . . . ,mq is not a simplex of K. Therefore w, the homology class of ψ
also generates a class of H˚pΩDJKq. Moreover, w commutes with each ui. To see this,
in AH˚pZx∆m´1yq consider

0 “ d2pχ1¨¨¨ii¨¨¨mq “ dpχiχ1¨¨¨m ` χ1¨¨¨mχi ` βq “ ´χiψ ` ψχi ` dβ

where β P AH˚pZxKyq. Therefore we obtain that rχi, ψs “ dβ, that is, rui, ws “ 0 in
homology for each i “ 1, . . . ,m. Therefore there is an algebra isomorphism

H˚pΩDJKq – Zrws b Λru1, . . . , ums.

The element w can be viewed as a ‘higher commutator’ of u1, . . . , um. Concretely, w
is the image under θ : π˚pDJKq ÝÑ H˚´1pΩDJKq of a certain element of a higher
Whitehead product, studied by Abramyan–Panov [AP19]. Further example computa-
tions of H˚pΩZKq are studied in [BP15, Example 8.4.15]. In particular, for the complex
K “ sk1∆3 there is a relation

ru1, w234s ` ru2, w134s ` ru3, w124s ` ru4, w123s “ 0

between higher commutators wijk coming from the previous example via the inclusions
B∆ri, j, ks ÝÑ K. Such a relation is a higher version of the algebraic Jacobi identity. In
Chapter 4 we study a generalisation of the maps of [AP19] and prove that relations such
as above are true on a geometric level, and not just on passing to loop homology. This
significantly expands the work of Hardie [Har61].
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2.6.6 Loop homology of moment-angle complexes

Recall the homotopy fibration (2.17)

ZK DJK
śm
i“1CP8

which splits after looping to give a homotopy equivalence ΩDJK » ΩZK ˆ Tm. There is
therefore an isomorphism of Z-modules

H˚pΩDJKq – H˚pΩZKq b Λru1, . . . , ums

which is not an isomorphism of algebras since the splitting ΩDJK » ΩZK ˆ Tm is
not an H-splitting, see Example 2.5.12. We see this explicitly when K consists of
two disjoint points. In this case, in Example 2.6.12, we computed that H˚pΩDJKq “

T pu1, u2q{xu21, u
2
2y, while since ZK » S3, we haveH˚pΩZKqbΛru1, u2s “ ZrwsbΛpu1, u2q,

where degw “ 2. Despite this, there is always a short exact sequence of algebras

1 H˚pΩZKq H˚pΩDJKq Λru1, . . . , ums 1.

Recall that a simplicial complex is flag if its minimal missing faces are 1-dimensional. In
the case that K is flag, by [BP15, Theorem 8.5.2] the algebra (2.27) is the whole loop
homology algebra H˚pΩDJKq. Therefore the map H˚pΩDJKq ÝÑ Λru1, . . . , ums can be
viewed as the algebraic abelianisation map, and so the algebra H˚pΩZKq can be viewed
as the commutator subalgebra of H˚pΩDJKq.

It follows that H˚pΩZKq has a generating set consisting of commutators and iterated
commutators of the elements ui. Concretely, the following result was established by
Grbić, Panov, Theriault and Wu [GPTW12].

Theorem 2.6.13 ([GPTW12, Theorem 4.2]). Let K be a flag simplicial complex on rms.
Then H˚pΩZKq has a minimal generating set of iterated commutators given by

ruj , uis, ruk1 , ruj , uiss, ¨ ¨ ¨ ruk1 , ruk2 , . . . , rukm´2 , ruj , uiss ¨ ¨ ¨ ss (2.28)

where k1 ă k2 ă ¨ ¨ ¨ ă km´2 ă j ą i are distinct and i is the smallest vertex in a
connected component of Ktk1,k2,...,km´2,j,iu not containing j.

Example 2.6.14. Let K have maximal simplices tt1, 2u, t3uu. Then the full subcom-
plexes Kt1,3u and Kt2,3u consist of two disjoint points, and therefore ru3, u1s and ru3, u2s

are multiplicative generators of H˚pΩZKq. On the other hand the full subcomplex Kt1,2u

is a 1-simplex. Therefore the vertices 1 and 2 are in the same connected component
of Kt1,2u, and so ru2, u1s is not a generator. This can be seen since ru2, u1s “ 0 in
H˚pΩDJKq by Proposition 2.6.10. Finally, considering K “ Kt1,2,3u, we obtain a gener-
ator rru2, ru3, u1ss.



2.7. Real moment-angle complexes and right-angled Coxeter groups 37

In this case it can be shown that there are no relations between the generators ru3, u1s,
ru3, u2s and ru2, ru3, u1ss, that is, H˚pΩZKq is the free associative algebra on this gener-
ating set. This agrees with the observation that ZK » S3 _ pS3 ¸ S1q » S3 _ S3 _ S4

obtained from formula (2.14).

The observation that H˚pΩZKq is free when ZK has the homotopy type of a wedge
of spheres turns out to be an equivalence in the case that K is flag. Moreover, these
properties are related to the following cohomological condition.

Definition 2.6.15. A simplicial complex K is Golod over a ring k if the multiplication
and all higher Massey products are trivial in H˚pZK; kq.

The following was proved in [GPTW12] in the case that coefficients are taken in a field.

Theorem 2.6.16 ([GPTW12, Theorem 4.6]). Let K be a flag simplicial complex on rms

and let k be a field. Then the following are equivalent:

(i) the simplicial complex K is Golod;

(ii) the multiplication in H˚pZKq is trivial;

(iii) the 1-skeleton of K is a chordal graph, that is, every set of 4 or more vertices which
form a cycle has a chord, that is, an edge between two non-adjacent vertices in a
cycle;

(iv) ZK has the homotopy type of a wedge of spheres;

(v) H˚pΩZKq is a free associative algebra.

In Theorem 3.2.13 we will establish this result when k “ Z.

2.7 Real moment-angle complexes and right-angled Coxeter
groups

Right-angled Coxeter groups are classical objects in geometric group theory coming from
the study of reflectional symmetries across orthogonal planes. In this section we study
these groups topologically. In particular, we show that the right-angled Coxeter group
associated to a simplicial complex K is the fundamental group of the polyhedral product
pRP8, ˚qK, a real analogue of the Davis–Januszkiewicz space.

Of particular interest are the commutator subgroups of right-angled Coxeter groups.
Aside from purely algebraic interest, our topological approach reveals that such commut-
ator subgroups are the fundamental groups of the real moment-angle complex. This cor-
respondence between geometric group theory and homotopy theory goes both ways, and
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we present equivalent statements about algebraic properties of the right-angled Coxeter
group, and homotopy-theoretic properties of the real moment-angle complex. We extend
these results during the course of this thesis.

While our main focus is on the right-angled Coxeter group, we present the more general
class of groups called graph product groups, of which the equally important right-angled
Artin groups are also an example. We build up the theory of the classifying spaces of
graph products, before relating them and their commutator subgroups to polyhedral
products. We finally specialise to the real moment-angle complex and results on the
commutator subgroup of the right-angled Coxeter group.

2.7.1 Group actions and classifying spaces

Given a group G, there exists a contractible space EG on which G has a free action.
Define BG to be the orbit space EG{G. Then there is a fibration

G EG BG. (2.29)

Both EG and BG are determined uniquely up to homotopy by G. We call EG the total
space of G, and BG the classifying space of G.

Example 2.7.1. (i) Let G “ Z. Then there is a free action of Z on R given by
translation, that is, pn, xq ÞÝÑ x ` n. This is a free action whose orbit space is
homotopy equivalent to S1. Therefore EZ “ R and BZ “ S1.

(ii) Let G “ Z2. Then Z2 acts freely on the sphere Sk for every k ě 0 by the antipodal
action. In the limit, there is a free action on the contractible space S8, the infinite
sphere. The orbit space is the infinite real projective space RP8.

Looping fibration (2.29) gives a homotopy equivalence ΩBG » G, since EG is contract-
ible. Therefore there is an isomorphism of homotopy groups

πnpGq – πnpΩBGq – πn`1pBGq.

In particular if G is discrete, then π0pGq consists of the path components of G, and is
therefore homotopy equivalent to G, while πnpGq “ 0 for n ą 0. Therefore the space
BG encodes all of the information of G within its fundamental group. Equivalently, BG
is the Eilenberg–MacLane space KpG, 1q.

2.7.2 Graph products of groups

Let K be a simplicial complex on rms and let G “ pG1, . . . , Gmq be an m-tuple of
groups. The graph product GK of G1, . . . , Gm over K is the quotient of the free product
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G1 ˚ ¨ ¨ ¨ ˚Gk by the relations pgi, gjq “ 1 for all gi P Gi and gj P Gj whenever pi, jq P K,
where pa, bq “ aba´1b´1.

The graph product GK is fully determined by the 1-skeleton K1 of K, a graph. In
what follows, however, it simplifies matters to refer to a graph product associated to a
simplicial complex, rather than a graph.

The graph product interpolates between the free product G1 ˚ ¨ ¨ ¨ ˚ Gm when K has no
edges, and the Cartesian product G1 ˆ ¨ ¨ ¨ ˆ Gm when K has a full 1-skeleton. Graph
products play a key role in combinatorial group theory since they construct a wide
variety of groups whose group–theoretic properties are encoded by the underlying graph
or simplicial complex. Of particular classical importance are the following.

Example 2.7.2. (i) Suppose that Gi “ Z for i “ 1, . . . ,m. Then the corresponding
graph product GK is called the right-angled Artin group corresponding to K and is
denoted RAK. Right-angled Artin groups have attracted much recent interest in
geometric group theory due to their actions on CATp0q cube complexes.

(ii) Suppose instead that Gi “ Z2 for i “ 1, . . . ,m. Then the graph product GK is
called the right-angled Coxeter group corresponding to K and is denoted RCK.

Suppose that each G1, . . . , Gm is a discrete group, so that π1pBGiq “ Gi for each i “

1, . . . ,m. Let K be the simplicial complex consisting of rms disjoint points. Then by
definition GK is the free product G1 ˚ ¨ ¨ ¨ ˚ Gm. On the other hand, G1 ˚ ¨ ¨ ¨ ˚ Gm is
the fundamental group of the wedge BG1 _ ¨ ¨ ¨ _BGm, which is the polyhedral product
pBG, ˚qK.

Now form a new complex K1 from K by adding the edge pi, jq. On the one hand, by
definition of the polyhedral product

pBG, ˚qK
1

“ pBG, ˚qK Y pBGi ˆBGjq

where the union is taken over BGi_BGj . On the other hand, by van Kampen’s Theorem
π1

´

pBG, ˚qK
1
¯

is obtained from π1
`

pBG, ˚qK
˘

by adding relations gigj “ gjgi for all
gi P Gi and gj P Gj . Continuing inductively obtains the following.

Proposition 2.7.3 ([PV16, Theorem 3.2]). Let K be a simplicial complex on rms and
let G1, . . . , Gm be discrete groups. Then π1

`

pBG, ˚qK
˘

“ GK.

We therefore obtain our first result linking the group-theoretical object GK with the
purely topological object pBG, ˚qK, with the link established via the combinatorial in-
formation in K.

Example 2.7.4. (i) The right-angled Artin group RAK is the fundamental group of
the polyhedral product pS1, ˚qK, which is known as the Salvetti complex.
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(ii) The right-angled Coxeter group RCK is the fundamental group of the polyhedral
product pRP8, ˚qK.

2.7.3 Commutator subgroups and polyhedral products

Commutator subgroups of right-angled Coxeter groups are of important interest in geo-
metric group theory, and from a topological perspective in low-dimensional topology
where examples include surface groups and 3-manifold groups. We begin with some
examples of these subgroups.

Example 2.7.5. (i) Let K have maximal simplices t1, 2u and t3u. Then the right-
angled Coxeter group RCK is given by

RCK “
xg1, g2, g3y

xg21, g
2
2, g

2
3, pg1, g2qy

.

Therefore the commutator subgroup RC 1
K is generated by the commutators pg1, g3q,

pg2, g3q and ppg1, g3q, g2q, and furthermore there are no relations between these
generators.

(ii) Let K “ C4. Then

RCK “
xg1, g2, g3, g4y

xg21, g
2
2, g

2
3, g

2
4, pg1, g2q, pg2, g3q, pg3, g4q, pg4, g1qy

.

Therefore the commutator subgroup RC 1
K is generated by the two commutators

pg1, g3q and pg2, g4q, and moreover a direct calculation using the relations in RC 1
K

shows that ppg1, g3q, pg2, g4qq “ 1. Therefore RC 1
K is isomorphic to a free abelian

group on two generators.

The above examples demonstrate that even for small simplicial complexes, the compu-
tation of RC 1

K is complex, requiring both the calculation of a generating set and any
relations between those generators. Polyhedral products provide a unifying framework
for the study of these commutator subgroups.

Using fibration (2.29), the homotopy fibration sequence (2.15) for Xi “ BGi gives a
homotopy fibration

pEG,GqK pBG, ˚qK
śm
i“1BGi (2.30)

since EG is a contractible space containing G. This fibration was studied by Panov and
Veryovkin [PV16] who obtained the following. Recall that a simplicial complex K is flag
if K has no minimal missing n-faces for n ě 2.

Theorem 2.7.6 ([PV16, Theorem 3.2]). Let K be a simplicial complex on rms and let
G1, . . . , Gm be discrete groups. Then
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(i) both pEG,GqK and pBG, ˚qK are aspherical if and only if K is flag;

(ii) there are isomorphisms πi
`

pEG,GqK
˘

– πi
`

pBG, ˚qK
˘

for i ě 2;

(iii) the fundamental group π1
`

pEG,GqK
˘

is isomorphic to the kernel of the projection
GK ÝÑ

śm
i“1Gi.

Combining (i) with Proposition 2.7.3 we see that B
`

GK˘

“ pBG, ˚qK. While the proof
of (i) is technically involved, statements (ii) and (iii) follow quickly from (i) and the long
exact sequence in homotopy of the homotopy fibration (2.30).

When each Gi is abelian for i “ 1, . . . ,m, the projection GK ÝÑ
śm
i“1Gi coincides

with the abelianisation map. Therefore in this case π1
`

pEG,GqK
˘

is the commutator
subgroup

`

GK˘1 of GK.

Example 2.7.7. (i) Suppose that Gi “ Z for i “ 1, . . . ,m. Then since Z is discrete
and abelian, combining Theorem 2.7.6(i) with Examples 2.7.1(i) and 2.7.2(i) gives

π1
`

pR,ZqK
˘

– RA1
K

and that pR,ZqK is a classifying space for RA1
K if and only if K is flag.

(ii) Similarly if Gi “ Z2 for i “ 1, . . . ,m and using the homotopy equivalence of pairs
pCZ2,Z2q » pD1, S0q we obtain that

π1
`

pD1, S0qK
˘

– RC 1
K

and that pD1, S0qK is a classifying space for RC 1
K if and only if K is flag.

Before focusing on the commutator subgroup RC 1
K, we end our discussion of commutator

subgroups of graph products with the following result, which demonstrates the powerful
role that the polyhedral product plays in unifying group theory, homotopy theory and
combinatorics. We recall the definition of a chordal graph from Theorem 2.6.16.

Theorem 2.7.8 ([PV16, Theorem 4.3]). Let K be a flag simplicial complex on rms and
let G1, . . . , Gm be discrete groups. Then the following are equivalent:

(i) the kernel of the projection

GK ÝÑ

m
ź

i“1

Gi

is a free group;

(ii) the polyhedral product pEG,GqK is homotopy equivalent to a wedge of circles;

(iii) the 1-skeleton of K is a chordal graph.
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We state the specific case of Theorems 2.7.6 and 2.7.8 when Gi “ Z2 for i “ 1, . . . ,m.

Theorem 2.7.9. Let K be a flag simplicial complex on rms. Then the group π1pRKq “

RC 1
K is free if and only if the 1-skeleton of K is a chordal graph.

We compare this to the statement of Theorem 2.6.16. In particular we see that in the flag
case, the polyhedral product RK being a wedge of circles and the moment-angle complex
ZK being a wedge of spheres, and moreover both RC 1

K “ π1pRKq and H˚pΩZKq being
free, are all classified in the same, completely combinatorial way, namely by K1 being
chordal. One of the main results of this thesis, Theorem 3.1.1, studies the related case
where RC 1

K “ π1pRKq and H˚pΩZKq are one-relator as groups and algebras, respectively,
and we give equivalent topological and combinatorial statements.

2.7.4 Real moment-angle complexes

Similar to the case for the moment-angle complex ZK, there has been significant study
into determining the homotopy type of RK for various simplicial complexes. As a result,
the fundamental group π1pRKq, and therefore the commutator subgroup RCK can be
computed in a wide variety of cases.

Example 2.7.10. (i) Let K “ C4 be a square. Then RK “ S1 ˆ S1 by Proposi-
tion 2.5.7. It follows that RC 1

K “ π1pRKq is the one-relator surface group Z2.

(ii) More generally, let K “ Cp be a p-cycle for p ě 4. Then it is known that RK is
homeomorphic to a surface of genus pp ´ 4q2p´3 ` 1, see [PV16, Example 3.5]. In
particular, RC 1

K “ π1pRKq is again a one-relator surface group, a calculation which
is very difficult in a purely algebraic setting.

(iii) Let K be obtained from B∆r1, 2, 3s ˚ B∆r4, 5s by performing a stellar subdivision
at the simplex p2, 3, 5q. Equivalently, K is the simplicial complex on vertex set r6s

with minimal missing faces

MF pKq “ tp1, 2, 3q, p1, 6q, p2, 3, 5q, p4, 5q, p4, 6qu.

By a result of McGavran [McG79], see [GdM13, Theorem 2.1],

RK “ pS1 ˆ S2q#pS1 ˆ S2q#pS1 ˆ S2q#pS1 ˆ S2q#pS1 ˆ S2q

from which it follows that RC 1
K “ π1pRKq “ ˚5

i“1 Z. Since RK is a 3-manifold,
this is an example of a 3-manifold group.

In general, the group π1
`

pEG,GqK
˘

is not finitely generated. In fact, it is known that
the commutator subgroup RA1

K of the right-angled Artin group is finitely generated if
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and only if K contains a full graph as its 1-skeleton. A special feature of the real moment-
angle complex is that its fundamental group is always finitely generated. Moreover, a
minimal generating set can be written down for any simplicial complex K, as follows.

Theorem 2.7.11 ([PV16, Theorem 4.5]). Let K be a simplicial complex on rms and let
RC 1

K be the commutator subgroup of the right-angled Coxeter group on K. Then RC 1
K is

finitely generated, with a minimal generating set given by

pgj , giq, pgk1 , pgj , giqq, ¨ ¨ ¨ pgk1 , pgk2 , . . . , pgkm´2 , pgj , giqq ¨ ¨ ¨ qq (2.31)

where k1 ă k2 ă ¨ ¨ ¨ ă km´2 ă j ą i are all distinct and i is the smallest vertex in a
connected component not containing j of Ktk1,k2,...,km´2,j,iu.

We compare this to the statement of Theorem 2.6.13. In particular we observe that in
the flag case, the minimal generating sets of π1pRKq “ RC 1

K as a group, and H˚pΩZKq

as an algebra, are both given by iterated commutators of the same form.

Example 2.7.12. Let K “ C5 be a 5-gon. Then π1pRKq “ RC 1
K has a minimal gener-

ating set consisting of 10 generators

pg3, g1q, pg4, g1q, pg4, g2q, pg5, g2q, pg5, g3q,

pg2, pg4, g1qq, pg3, pg5, g2qq, pg3, pg4, g1qq, pg4, pg5, g2qq, pg1, pg5, g3qq.

By Example 2.7.10(ii), this is not a free generating set since RC 1
K is a one-relator group.

If we number those generators on the first row above by a1, . . . , a5 and those on the
second row by b1, . . . , b5, it can be shown that the relation is given by

pa1, b4qpa2, b2qpa3, b5qpa4, b3qpa5, b1q “ 1.

On the other hand, H˚pΩZKq has a minimal generating set

ru3, u1s, ru4, u1s, ru4, u2s, ru5, u2s, ru5, u3s,

ru2, ru4, u1ss, ru3, ru5, u2ss, ru3, ru4, u1ss, ru4, ru5, u2ss, ru1, ru5, u3ss.

In [GPTW12] a relation was established between the above commutators. Again naming
the generators on the first row a1, . . . , a5 and those on the second row b1, . . . , b5, the
relation is given by

ra1, b4s ` ra2, b2s ` ra3, b5s ` ra4, b3s ` ra5, b1s “ 0.
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Chapter 3

One-relator groups and algebras
related to polyhedral products

3.1 Introduction

Let K be a flag simplicial complex on rms and let RCK be the corresponding right-angled
Coxeter group. By Theorem 2.7.6, the commutator subgroup RC 1

K of a right-angled
Coxeter group RCK is the fundamental group of the real moment-angle complex RK “

pD1, S0qK, which is a finite-dimensional aspherical space. Moreover, by Theorem 2.7.9,
the group RC 1

K “ π1 pRKq is free if and only if K1, the 1-skeleton of K, is a chordal
graph.

Similarly, by Theorem 2.6.16, when coefficients are in a field H˚pΩZKq is a graded free
associative algebra if and only if the 1-skeleton K1 is a chordal graph. Therefore, for both
RK and ZK the algebraic freeness property, that is, that π1pRKq and H˚pΩZKq are free
as groups and algebras, respectively, is described in the same, completely combinatorial
way. Precisely, they are free if and only if the 1-skeleton K1 of the simplicial complex K
is a chordal graph.

We study other properties of objects naturally arising in geometric group theory and
homotopy theory that have the same combinatorial characterisation. In particular, we
describe a combinatorial condition on a flag complex K under which π1pRKq “ RC 1

K is
a one-relator group, and H˚pΩZKq is a one-relator algebra. For p ě 4 recall that the
simplicial complex Cp is a p-cycle. In [GPTW12] it was shown that when K “ C5 then
there is only one relation between the 10 multiplicative generators of H˚pΩZKq; while
in [Ver16], a single relation was again found between the 34 multiplicative generators of
H˚pΩZKq when K “ C6. Similarly, in [PV16], it was shown that if K “ Cp for p ě 4,
then π1pRKq is a one-relator group, see Example 2.7.10(ii). The one-relator condition
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places strong restrictions on the form of K, and our main combinatorial characterisation
is the following.

Theorem 3.1.1. Let K be a flag simplicial complex. The following are equivalent:

(i) RC 1
K “ π1pRKq is a one-relator group;

(ii) H˚pΩZKq is a one-relator algebra;

(iii) K has the form
K “ Cp or K “ Cp ˚ ∆q for p ě 4, q ě 0 (3.1)

where Cp is a p-cycle, ∆q is a q-simplex and ˚ denotes the join of simplicial com-
plexes.

These results hold integrally. In particular, a consequence of our result shows that
H˚pΩZKq is free with integral coefficients if and only if K1 is chordal. This is proved in
Theorem 3.2.13.

We move on to consider algebraic one-relator conditions in the case that K is not assumed
to be flag. In this case, the real moment-angle complex RK is not aspherical, so its
topology is not determined by its fundamental group. In particular, any further study
of RK does not lie entirely within geometric group theory. Therefore we focus on the
moment-angle complex ZK.

When the combinatorial condition (3.1) is satisfied, the moment-angle complex is a
connected sum of sphere products, with two spheres in each product. More generally,
infinite families of simplicial complexes for which ZK is homeomorphic to a connected
sum of sphere products have been studied by Bosio and Meersseman [BM04], and in
more detail by Gitler and López de Medrano [GdM13]. In proving Theorem 3.1.1, we
show that for all such ZK, the algebra H˚pΩZKq is one-relator. Moreover, by a result
of Amelotte [Ame20], for every such ZK, the complex K satisfies the property of being
minimally non-Golod, see [Lim15]. In fact, our main results show that, when K is flag,
the properties that K is minimally non-Golod, or such a complex joined with a simplex,
and H˚pΩZKq being a one-relator algebra coincide.

In general, the concepts of minimally non-Golod complexes and one-relator algebras
differ fundamentally, and should be analysed using different techniques. In Section 3.3
we demonstrate the differences by presenting a simplicial complex K for which H˚pΩZKq

is a one-relator algebra, but K is not minimally non-Golod, or such a complex joined with
a simplex. Moreover, we give a minimally non-Golod complex K for which H˚pΩZKq has
at least two relations. To provide these examples we develop a new way of computing
H˚pΩZKq using an Adams–Hilton model applied the chain complex of ZK given by the
homological Taylor complex, see Construction 2.6.6.
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In the case that ZK is a manifold, or equivalently by a result of Cai [Cai17] that K is
a generalised homology sphere, a homological generalisation of a simplicial sphere, the
minimally non-Golod condition on K can be viewed as an algebraic approximation to ZK

being a connected sum of sphere products, since it implies there is a single cup product
class in the cohomology of ZK. When K is a 2-dimensional simplicial sphere, Bosio and
Meersseman [BM04] show that K being minimally non-Golod is equivalent to ZK being
a connected sum of sphere products. For K a simplicial sphere of dimension above 3, the
relationship between these two concepts is not known. We make some initial progress on
this front. First, we construct a simplicial sphere K for which H˚pZKq is isomorphic to
the cohomology ring of a connected sum of sphere products, while this isomorphism is not
due to a homotopy equivalence. This answers negatively questions of [BM04, GdM13]
about whether ZK being a connected sum of sphere products can be identified by looking
at the cohomology ring. Moreover, we construct a minimally non-Golod simplicial sphere
L for which ZL is not a connected sum of sphere products due to the existence of torsion
in its homology. This answers negatively another question of [GdM13] about whether
connected sums can be identified solely from a combinatorial connectedness assumption.
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3.2 One-relator groups and algebras for flag complexes

We split the proof of Theorem 3.1.1 into two separate results: for RK this is Theorem 3.2.4
and for ZK this is Theorem 3.2.8.

The proofs of Theorem 3.2.4 and Theorem 3.2.8 are completely different in character.
For Theorem 3.2.4, the key argument comes from geometric group theory. When K “ Cp

or K “ Cp ˚ ∆q for q ě 0, the space RK is homeomorphic to the product Sg ˆ Dq`1,
where Sg is a closed orientable surface of genus g “ pp ´ 4q2p´3 ` 1 and Dq`1 is a
pq ` 1q-dimensional disc, and therefore its fundamental group is a one-relator surface
group. The converse statement is proved using the Lyndon Identity Theorem [Lyn50],
since the group π1pRKq “ RC 1

K is torsion-free.
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To prove Theorem 3.2.8, we study the simply-connected space ΩZK using homotopy-
theoretic methods. When K “ Cp or K “ Cp ˚ ∆q for q ě 0, by a result of McGav-
ran [McG79], there is a homotopy equivalence

ZK » #p´1
k“3pSk ˆ Sp`2´kq

#pk´2q

`

p´2
k´1

˘

(3.2)

where M#n denotes the n-fold connected sum of a manifold M with itself. Beben and
Wu [BW15] computed the algebra H˚pΩX;Zpq, p prime, where X is a highly-connected
manifold obtained by attaching a single cell to a space Y which has the homotopy type
of a double suspension. This implies that H˚pY q has no non-trivial cup products, which
places sufficient restrictions on H˚pXq so that H˚pΩXq can be studied via a homology
Serre spectral sequence. We adapt the Beben–Wu method to study the Pontryagin
algebra of an arbitrary connected sum of sphere products

M “ #k
i“1pSdi ˆ Sd´diq (3.3)

where di ě 2 and d ě 4. In this case, the Beben–Wu method reduces to the Adams–
Hilton model and the highly-connectedness assumption can be dropped. In Proposi-
tion 3.2.6, we prove that H˚pΩMq is isomorphic as a Hopf algebra to the quotient of
a graded free associative algebra by a single relation. Proposition 3.2.6 implies that
when condition (3.1) holds, H˚pΩZKq is a one-relator algebra. We also compute the
Poincaré series P pH˚pΩZKq; tq explicitly in Proposition 3.2.7, mirroring a result given
in [GPTW12] in the case that H˚pΩZKq is free.

We extend the equivalences of Theorem 3.1.1 by determining equivalent homological
criteria on RK and ZK. For RK, the combinatorial condition (3.1) is equivalent to the
homological condition H2pRKq “ Z, and this is proved in Theorem 3.2.4. The homology
groups of ZK have a natural bigrading, obtained in the same way as the cohomological
bigrading (2.19). The combinatorial condition (3.1) is also equivalent to the homological
condition

H2´j,2jpZKq “

$

&

%

Z if j “ p

0 otherwise.

This is proved in Theorem 3.2.8.

3.2.1 One-relator groups

A group G is called a one-relator group if G is not a free group and can be written
G “ F {R, where F is a free group and R is the smallest normal subgroup in F generated
by a single element r P F .
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Let G “ F {R be a one-relator group and consider the space

Y pGq “

˜

l
ł

i“1

S1
i

¸

Yr e
2 (3.4)

obtained by attaching a 2-cell to a wedge of circles via the map r̄ : S1 Ñ
Ž

S1
i described

by the element r P F . The homology groups of Y pGq are given as follows.

Proposition 3.2.1. HkpY pGqq “ 0 for k ě 3, H1pY pGqq “ Zl and

H2pY pGqq “

$

&

%

Z if r P F 1,

0 otherwise

where F 1 is the commutator subgroup of F .

Proof. The claims for HkpY pGqq when k ‰ 2 follow immediately from the cellular struc-
ture of Y pGq. When k “ 2, the map induced by r in the cellular chain complex of Y pGq

is trivial if and only if its image under the abelianisation map is trivial, that is, if and
only if r P F 1. Therefore if r P F 1 then dpe2q “ 0 and H2pY pGqq “ Z, and otherwise
H2pY pGqq “ 0.

Lyndon [Lyn50] studied the cohomology theory of one-relator groups by considering the
corresponding space Y pGq defined in (3.4). Dyer and Vasquez [DV73] gave the following
formulation of a result known as the Lyndon Identity Theorem.

Theorem 3.2.2 ([DV73, Theorem 2.1]). Let G “ F {R be a one-relator group where
R “ xry for some r P F . Suppose that r is not a proper power, that is, r ‰ un for any
u P F or n ą 1. Then Y pGq is a KpG, 1q space.

We give some examples of Proposition 3.2.1 and Theorem 3.2.2.

Example 3.2.3. Let G “ F {R be a one-relator group, where F “ xa, by and R “ xry

for some r P F . We consider the space Y pGq for different r P xa, by.

(i) Let r “ aba´1b´1. Then G is the abelian group Z2, and Y pGq defines the torus
T 2 “ S1 ˆS1. Since r is the commutator of a and b then r P F 1, and it follows that
H2pY pGqq “ Z. Furthermore, we verify directly that π1pY pGqq “ π1pS1 ˆ S1q “

Z2 “ G, and that πkpY pGqq “ 0 if k ą 1.

(ii) Let r “ a2. Then G is the free product Z2 ˚ Z, and the space Y pGq is the wedge
RP 2 _ S1. Then while π1pY pGqq “ G, the inclusion RP 2 ÝÑ Y pGq induces
retractions πkpS2q – πkpRP 2q ÝÑ πkpY pGqq for k ą 1, since the universal cover of
RP 2 is S2. Therefore Y pGq is not a KpG, 1q-space.
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(iii) Let r “ aba´1b. Then G is the abelian group Z2 ˆZ, and Y pGq is the Klein bottle.
Then π1pY pGqq “ G, while πkpY pGqq “ 0 for k ą 1 since the universal cover of
the Klein bottle is R2. Furthermore, since r R F 1, we have that H2pY pGqq “ 0.

Under the conditions of the Lyndon Identity Theorem, we haveHkpG;Zq “ HkpY pGq;Zq,
that is, the homological dimension of G is at most 2.

3.2.2 The commutator subgroup of the right-angled Coxeter group

We now return to the real moment-angle complex and the commutator subgroup RC 1
K

of the right-angled Coxeter group. We aim to give a combinatorial condition on K which
is equivalent to RC 1

K being a one-relator group.

Let K “ Cp be a p-cycle for p ě 4. Then the real moment-angle complex RK is homeo-
morphic to the closed orientable surface of genus pp´4q2p´3`1, see [PV16, Example 3.5].
Therefore RC 1

K “ π1pRKq is a one-relator surface group. Similar to Theorem 2.7.9 that
says RC 1

K is free if and only if the graph K1 is chordal, the algebraic property that RC 1
K

is a one-relator group also has the following combinatorial classification.

Theorem 3.2.4. Let K be a flag simplicial complex on rms. Then the following are
equivalent:

(i) π1pRKq “ RC 1
K is a one-relator group;

(ii) H2pRKq “ Z;

(iii) K “ Cp or K “ Cp ˚ ∆q for p ě 4 and q ě 0, where Cp is a p-cycle, ∆q is a
q-simplex, and ˚ denotes the join of simplicial complexes.

If any one of these conditions is met, we have HkpRKq “ 0 for k ě 3.

Condition (ii) in the statement of Theorem 3.2.4 is not only a convenient technical tool
to pass from the algebraic condition (i) to combinatorial condition (iii), but also says
that the homological dimension of the group RC 1

K is 2.

The homology groups H˚pRKq decompose via a Hochster decomposition obtained by
applying decomposition (2.26) to RK, that is, for every k ě 1,

HkpRKq –
à

JĎrms

Hr k´1pKJq. (3.5)

Proof of Theorem 3.2.4. (i) ùñ (ii). Since RK is an aspherical finite cell complex, the
group π1pRKq is torsion-free, see, for example [Hat02, Proposition 2.45]. Therefore if
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π1pRKq “ F {R is a one-relator group with a relation R “ xry, then r is not a proper
power un for n ą 1. In particular, if RC 1

K is a one-relator group, then it is torsion-free.

Consider the space Y pRC 1
Kq, as constructed in (3.4). By Theorem 3.2.2, the space

Y pRC 1
Kq is homotopy equivalent to KpRC 1

K, 1q. Additionally, since K is flag, then RK is
also homotopy equivalent to KpRC 1

K, 1q by Theorem 2.7.6. In particular, the homology
groups of Y pRC 1

Kq coincide with those of RK.

Proposition 3.2.1 then implies that H2pRKq is either Z or trivial. By Theorem 2.7.9,
since the group RC 1

K is not free, the graph K1 is not chordal, that is, there exists a
chordless cycle on I of length p ě 4. Therefore, one of the summands on the right hand
side of (3.5) is equal to Z “ Hr 1pKIq. It follows that H2pRKq “ Z.

(ii) ùñ (iii). Suppose H2pRKq “ Z. Then only one summand on the right of (3.5)
is Z, and all other summands are zero. Since K is a flag complex, this implies that
there exists a set of vertices I “ ti1, . . . , ipu such that KI is a p-cycle with p ě 4. Since
Hr 1pKJq “ 0 for any proper subset J Ď I, any two vertices which are not adjacent in
the p-cycle are not connected by an edge. If there exists a vertex j R I in the complex
K, then Hr 1pKIYtjuq “ 0 implies that the vertex j is connected to each vertex in the
p-cycle I. If K has two vertices j1, j2 R I which are not connected by an edge, then the
subcomplex Kti1,i3uYtj1,j2u is a 4-cycle and Hr 1pKti1,i3uYtj1,j2uq “ Z, which contradicts the
assumption. Hence, all vertices of K which are not in the set I are connected to each
other and to all vertices of I. Since K is a flag complex, we obtain K “ Cp ˚∆q for some
p ě 4 and q ě 0.

(iii) ùñ (i). If K is a p-cycle then RC 1
K “ π1pRKq is a one-relator group by the remarks

before the statement of Theorem 3.2.4. It remains to deal with the case that K is of the
form Cp ˚ ∆q for p ě 4 and q ě 0. In this case RK “ RCp ˆ Dq`1 by Proposition 2.5.7
and so

RC 1
K “ π1pRKq “ π1pRCpq “ RC 1

Cp

is a one-relator group.

It remains to prove that (iii) implies that HkpRKq “ 0 for k ě 3. Considering the
Hochster decomposition (3.5), we claim that all summands with k ě 3 on the right hand
side are trivial. Indeed, let I “ ti1, . . . , ipu be the set of vertices of K forming a p-cycle.
Then Hr k´1pKIq “ 0 for k ě 3. Since any full subcomplex KJ with J ‰ I is contractible,
we get Hr k´1pKJq “ 0. Hence, HkpRKq “ 0 for k ě 3.

Example 3.2.5. Consider the following simplicial complexes on vertex set r5s.

(i) Let K be the flag complex in Figure 3.1(a), which is not of the form Cp or Cp ˚∆q

for p ě 4 and q ě 0. Generator set (2.31) for the commutator subgroup RC 1
K is

pg3, g1q, pg4, g2q, pg5, g4q, pg2, pg5, g4qq.
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1 2

34
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(a)

1 2

34

55

(b)

Figure 3.1: Similar simplicial complexes can give rise to different algebraic structures.

These satisfy the relations

pg3, g1q´1pg4, g2q´1pg3, g1qpg4, g2q “ 1, pg3, g1q´1pg5, g4q´1pg3, g1qpg5, g4q “ 1

and
pg3, g1q´1pg2, pg5, g4qq´1pg3, g1qpg2, pg5, g4qq “ 1.

Indeed, since each of g1 and g3 commutes with each of g2 and g4, the commutators
pg4, g2q´1 and pg3, g1q commute too. We therefore obtain

pg3, g1q´1pg4, g2q´1pg3, g1qpg4, g2q “ pg3, g1q´1pg3, g1qpg4, g2q´1pg4, g2q “ 1.

The other two relations are proved similarly. In particular, RC 1
K is not a one-

relator group. Using homology decomposition (3.5), we see that H2pRKq “ Z3,
and therefore condition (ii) of Theorem 3.2.4 is not satisfied.

(ii) Let K be the flag complex in Figure 3.1(b). Generator set (2.31) for RC 1
K is

pg3, g1q, pg4, g2q

which satisfy a single relation pg3, g1q´1pg4, g2q´1pg3, g1qpg4, g2q “ 1. Therefore
RC 1

K is a one-relator group and moreover by homology decomposition (3.5) we get
that H2pRKq “ Z.

3.2.3 Connected sums of sphere products

Let M “ #k
i“1

`

Sdi ˆ Sd´di
˘

, where di ě 2, d ě 4 and # denotes the connected sum
operation on manifolds. Topologically, such connected sums are obtained by attaching a
single cell to a wedge of spheres, that is, there is a cofibration sequence

Sd´1
Žk
i“1 S

di _ Sd´di #k
i“1pSdi ˆ Sd´diq

w i (3.6)

where w is the sum of Whitehead products wi “ rιdi , ιd´dis : S
d´1 Ñ Sdi _ Sd´di of

identity maps ιk : Sk ÝÑ Sk. Denote by M the wedge
Žd
i“1 S

di _ Sd´di . Then by
the Bott–Samelson Theorem (Theorem 2.3.1), H˚pΩMq – T pa1, b1, . . . , ak, bkq, where
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degpaiq “ di ´ 1 and degpbiq “ d´ di ´ 1. The looped inclusion Ωi : ΩM Ñ ΩM induces
a map of algebras

pΩiq˚ : T pa1, b1, . . . , ak, bkq ÝÑ H˚pΩMq.

The adjoint w : Sd´2 Ñ Ω
`

M
˘

of the sum of Whitehead products w induces a map
w˚ : Hd´2pSd´2q Ñ Hd´2pΩMq, which by a result of Samelson [Sam53] (see relation (2.8))
sends the canonical generator to the element χ “ p´1qd1ra1, b1s ` ¨ ¨ ¨ ` p´1qdkrak, bks.
In particular, χ is primitive and pΩiq˚pχq “ 0 in H˚pΩMq. Then the algebra

T pa1, b1, . . . , ak, bkq

xp´1qd1ra1, b1s ` ¨ ¨ ¨ ` p´1qdkrak, bksy
(3.7)

is a primitively generated Hopf algebra, where the quotient ideal is two-sided, and the
algebra map pΩiq˚ factors as a map of Hopf algebras

T pa1, b1, . . . , ak, bkq H˚pΩMq

T pa1, b1, . . . , ak, bkq

xp´1qd1ra1, b1s ` ¨ ¨ ¨ ` p´1qdkrak, bksy

pΩiq˚

θ (3.8)

defining the map θ.

We recall the Cobar construction and Adams–Hilton models from Section 2.3.2. The
following statement generalises [AH56, Corollary 2.4] and Example 2.3.4(i).

Proposition 3.2.6. For di ě 2 and d ě 4, there is an isomorphism of Hopf algebras

H˚

´

Ω
´

#k
i“1S

di ˆ Sd´di
¯¯

–
T pa1, b1, . . . , ak, bkq

xp´1qd1ra1, b1s ` ¨ ¨ ¨ ` p´1qdkrak, bksy

where deg ai “ di ´ 1, deg bi “ d ´ di ´ 1, and rai, bis “ aibi ´ p´1qdeg ai deg bibiai is the
graded commutator.

Proof. We consider the Adams–Hilton model of M “ #k
i“1S

di ˆ Sd´di . The cofibration
sequence (3.6) gives a CW-structure on M consisting of cells e0, edii , e

d´di
i for i “ 1, . . . , k,

each attached trivially, and a single cell ed attached by the sum of Whitehead products
wi : S

d´1 Ñ Sdi _ Sd´di . The cellular chain complex has a coalgebra structure in which
edii and ed´di

i are primitives, and

∆ed “ ed b 1 ` 1 b ed `

k
ÿ

i“1

`

edii b ed´di
i ` p´1qdipd´diqed´di

i b edii
˘

. (3.9)
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The Adams–Hilton model is therefore

AH˚pMq “
`

T pa1, b1, . . . , ak, bk, zq, d
˘

where ai “ s´1edii , bi “ s´1ed´di
i , z “ s´1ed and deg ai “ di ´ 1, deg bi “ d´ di ´ 1 and

deg z “ d´ 1.

The differential is given by dpaiq “ dpbiq “ 0 and

dpzq “

k
ÿ

i“1

´

p´1qdiaibi ` p´1qd´dip´1qdipd´diqbiai

¯

“

k
ÿ

i“1

p´1qdi
´

aibi ´ p´1qpdi´1qpd´di´1qbiai

¯

“

k
ÿ

i“1

p´1qdirai, bis.

A nonzero x P AH˚pMq is a cycle if and only if x is not in the two-sided ideal xzy, and
x is a boundary if and only if x P xdpzqy. Therefore, homology of ΩM is as stated.

For a graded vector space V , denote by P pV ; tq the Poincaré series of V . The following
result mirrors [GPTW12, Theorem 3.2].

Proposition 3.2.7. There is the following identity for the Poincaré series

P
´

H˚

´

Ω
´

#k
i“1S

di ˆ Sd´di
¯

; t
¯¯

“
1

1 ´
řk
i“1ptdi´1 ` td´di´1q ` td´2

.

Proof. Let A “ H˚

`

Ω
`

#k
i“1S

di ˆ Sd´di
˘˘

. By Proposition 3.2.6, A is the quotient of the
free associative algebra on the graded set S “ ta1, b1, . . . , ak, bku, where deg ai “ di ´ 1

and deg bi “ d´ di ´ 1, by the two-sided ideal generated by the element

χ “

k
ÿ

i“1

p´1qdirai, bis “ p´1qd1pa1b1 ´ p´1qpdi´1qpd´di´1qb1a1q `

k
ÿ

i“2

p´1qdirai, bis.

Let B be the graded free monoid on S. Then Bn, the nth graded component of B, is a
generating set for An, the nth graded component of A. For any monomial x P A ´ t1u,
write x “ sy for some unique s P S and y P Bn´deg s. If x “ a1b1y

1 then using relation χ
we rewrite

x “

˜

p´1qpd1´1qpd´d1´1qb1a1 ´

k
ÿ

i“2

p´1qdi´d1rai, bis

¸

y1.

Let B1
n be the set of all elements in Bn which do not start with a1b1. By induction, B1

n

is a minimal generating set for An. Define cn “ |B1
n| “ rankAn for n ě 1, cn “ 0 for

n ă 0, and c0 “ 1. From the above description, cn satisfies the recurrence formula

cn “

k
ÿ

i“1

pcn´di`1 ` cn´d`di`1q ´ cn´d`2
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for n ě 1.

Multiplying by tn and summing over n ą 0 gives

P pA; tq ´ 1 “

8
ÿ

n“1

cnt
n

“

8
ÿ

n“1

˜

k
ÿ

i“1

pcn´di`1 ` cn´d`di`1q ´ cn´d`2

¸

tn

“

k
ÿ

i“1

8
ÿ

n“2´di

cnt
n`di´1 `

k
ÿ

i“1

8
ÿ

n“2´d`di

cnt
n`d´di´1 ´

8
ÿ

n“3´d

cnt
n`d´2

“

˜

k
ÿ

i“1

ptdi´1 ` td´di´1q ´ td´2

¸

8
ÿ

n“0

cnt
n

“

˜

k
ÿ

i“1

ptdi´1 ` td´di´1q ´ td´2

¸

P pA; tq

which is rearranged to give the claimed identity.

3.2.4 The loop homology algebra of ZK

An algebra is a one-relator algebra if it is not free and can be written as the quotient of
a free associative algebra by a two-sided ideal generated by a single element.

We recall the homology of the moment-angle complex ZK has a natural bigrading coming
from the bigrading of its cellular structure, see Construction 2.6.1. Moreover, the Hoch-
ster decomposition describes the bigraded homology groups in terms of the homology of
full subcomplexes of K as

H´i,2jpZKq –
à

JĎrms, |J |“j

Hr j´i´1pKJq (3.10)

which is dual to the cohomology decomposition (2.22).

Theorem 3.2.8. Let K be a flag simplicial complex on rms. The following conditions
are equivalent:

(i) H˚pΩZKq is a one-relator algebra;

(ii) H2´j,2jpZKq “

$

&

%

Z if j “ p for some p, 4 ď p ď m

0 otherwise;

(iii) K “ Cp or K “ Cp ˚ ∆q for p ě 4 and q ě 0, where Cp is a p-cycle and ∆q is a
q-simplex.

If any one of these conditions is met, we have H´i,2jpZKq “ 0 for j ´ i ě 3.
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We start by showing that if K is a flag complex which is not of the form given in (iii),
then either H˚pΩZKq is free, or it has at least two relations. The following result gives
a condition for H˚pΩZKq to have at least two relations.

Lemma 3.2.9. Let K be a simplicial complex and suppose that KI and KJ are distinct
full subcomplexes of K such that both H˚pΩZKI q and H˚pΩZKJ q have at least one relation.
Then H˚pΩZKq is not a one-relator algebra.

Proof. By Proposition 2.5.4, both of ZKI and ZKJ retract off ZK since KI and KJ are
full subcomplexes of K. Therefore each of ΩZKI and ΩZKJ retracts off ΩZK and we
obtain a commutative diagram of algebras

H˚pΩZKI q H˚pΩZKq

H˚pΩZKI q

and similarly for KJ . In particular, each relation of H˚pΩZKI q and H˚pΩZKJ q appears
as a relation of H˚pΩZKq under the induced inclusion map, and the induced relations
are distinct since KI and KJ are.

Let K be a simplicial complex on rms. The following is a consequence of decomposi-
tion (2.14), see also of [GT07, Lemma 3.3].

Lemma 3.2.10. Let j P K be a vertex and suppose that the map i : ZlkKpjq Ñ ZKrms´tju

is nullhomotopic, where lkKpjq is viewed as a simplicial complex on vertex set rms ´ tju.
Then there is a homotopy equivalence ZK » Σ2ZlkKpjq _ pZKrms´tju

¸ S1q.

The following result shows that if ZKrms´tju
has the homotopy type of a connected sum

of sphere products then H˚pΩZKq is not a one-relator algebra.

Lemma 3.2.11. Suppose that M “ #k
i“1

`

Sdi ˆ Sd´di
˘

where di ě 2 and d ě 4. Then
H˚pΩpM ¸ S1qq is not a one-relator algebra.

Proof. As in Proposition 3.2.6, we apply the Adams–Hilton model. A cell structure on
M ¸S1 is given by the image under the quotient map M ˆS1 Ñ M ¸S1, and therefore
consists of cells e0, edii , e

d´di
i , edi`1

i , ed´di`1
i for i “ 1, . . . , k, along with two cells ed and

ed`1. The cellular chain complex has trivial differential and a coalgebra structure in
which edii , e

d´di
i , edi`1

i , ed´di`1
i are primitives, ∆ed is given by (3.9) and

∆ed`1 “ ed`1 b 1 ` 1 b ed`1 `

k
ÿ

i“1

´

edii b ed´di`1
i ` p´1qdipd´di`1qed´di`1

i b edii

`edi`1
i b ed´di

i ` p´1qpdi`1qpd´diqed´di
i b edi`1

i

¯

.
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The Adams–Hilton model is therefore given by

AH˚pM ¸ S1q “ pT pa1, b1, x1, y1, . . . , ak, bk, xk, yk, z, wq, dq

where ai “ s´1edii , bi “ s´1ed´di
i , xi “ s´1edi`1

i , yi “ s´1ed´di`1
i , z “ s´1ed and w “

s´1ed`1, with deg ai “ di´1, deg bi “ d´di´1, deg xi “ di, deg yi “ d´di, deg z “ d´1

and degw “ d. The differential is given by dpaiq “ dpbiq “ dpxiq “ dpyiq “ 0,

dpzq “

k
ÿ

i“1

p´1qdirai, bis

as in Proposition 3.2.6, and

dpwq “

k
ÿ

i“1

´

p´1qdiaiyi ` p´1qd´di`1p´1qdipd´di`1qyiai

`p´1qdi`1xibi ` p´1qd´dip´1qpdi`1qpd´diqbixi

¯

“

k
ÿ

i“1

´

p´1qdi
´

aiyi ´ p´1qpdi´1qpd´diqyiai

¯

` p´1qdi`1
´

xibi ´ p´1qdipd´di´1qbiyi

¯¯

“

k
ÿ

i“1

p´1qdi prai, yis ´ rxi, bisq .

Therefore any element in xdpzqy or xdpwqy is trivial in homology since it is a boundary.
This induces two independent relations in H˚pΩpM ¸ S1qq, as claimed.

We now have all the tools required to prove Theorem 3.2.8.

Proof of Theorem 3.2.8. (iii) ùñ (i). Suppose that K “ Cp or K “ Cp ˚ ∆q for p ě 4,
q ě 0. Since ZK is homotopy equivalent to the connected sum of sphere products (3.2),
the implication follows from Proposition 3.2.6.

(i) ùñ (iii). Suppose that K is a flag complex on rms such that H˚pΩZKq is a one-relator
algebra. If K1 is a chordal graph, then ZK has the homotopy type of a wedge of spheres
[GPTW12, Theorem 4.6], and thus H˚pΩZKq is a graded free associative algebra, which
is a contradiction.

Therefore assume that K1 is not chordal. In particular, there exists a set of vertices I Ď

rms such that the full subcomplex KI is a p-cycle, and we enumerate I “ tb1, b2, . . . , bpu.
If I “ rms, that is K “ Cp, then H˚pΩZKq is a one-relator algebra by Proposition 3.2.6.

Assume that rms ´ I ‰ H. First, we show that each j P rms ´ I is connected to each
vertex in I. Consider the full subcomplex KIYj of K, and observe that by the link-star
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decomposition (2.12) we have

KIYj “ KI YlkIYjpjq stIYjpjq.

Suppose that KIYj ‰ KI ˚ j. Since K is flag, there exists bl P I such that there is no
edge from j to bl. Form the sequence of adjacent vertices bl`1, bl`2, . . . , bl`n1 , with the
convention that bp`1 “ b1, where n1 ě 1 is the smallest index such that there is an edge
from j to bl`n1 . Similarly, form the sequence of adjacent vertices bl´1, bl´2, . . . , bl´n2 ,
where n2 ě 1 is again the smallest index such that there is an edge from j to bl´n2 . We
consider four cases.

(1) Assume that there are no indices n1 and n2 as described above. In this case, there
are no edges between j and any vertex in I, and so lkIYjpjq “ H. Then the map
ZlkIYjpjq “ T p ÝÑ ZKI is nullhomotopic and therefore ZKIYj

» Σ2T p _ pZKI ¸ S1q

by Lemma 3.2.10. Since ZKI is homeomorphic to a connected sum of sphere products,
Lemma 3.2.11 gives that H˚pΩpZKI ¸S1qq is not a one-relator algebra, and hence neither
is H˚

`

ΩZKIYj

˘

.

(2) If bl`n1 “ bl´n2 , then lkIYjpjq “ bl`n1 , and ZKIYj
» Σ2T p´1 _ pZKI ¸ S1q by

Lemma 3.2.10. Thus H˚

`

ΩZKIYj

˘

is not a one-relator algebra.

(3) When bl`n1 and bl´n2 are adjacent in KI , the link lkIYjpjq “ tpbl`n1 , bl´n2qu, and so
ZKIYj

» Σ2T p´2 _ pZKI ¸S1q by Lemma 3.2.10. Thus H˚

`

ΩZKIYj

˘

is not a one-relator
algebra.

(4) Finally, let bl`n1 and bl´n2 be distinct and not adjacent in KI . Then by construction
the full subcomplex Ktj,bl´n2 ,...,bl´1,bl,bl`1,...,bl`n1u of K is a pn1 ` n2 ` 2q-cycle, which is
distinct from KI . Therefore by Lemma 3.2.9, H˚

`

ΩZKIYj

˘

is not a one-relator algebra.

In all of the above cases, since the full subcomplex KIYj retracts off K and H˚

`

ΩZKIYj

˘

is not a one-relator algebra, then neither is H˚pΩZKq. This is a contradiction. We
therefore conclude that j is connected to each vertex in KI and therefore KIYj “ KI ˚ j.

Second, we show that if j1, j2 P rms ´ I, then j1 and j2 are connected by an edge. If
not, since both j1 and j2 are connected to each vertex in I, then the full subcomplex
Ktj1,bi1 ,j2,bi3u is a 4-cycle distinct from the p-cycle KI . Therefore, Lemma 3.2.9 implies
that since H˚

`

ΩZIYtj1,j2u

˘

is not a one-relator algebra, neither is H˚pΩZKq, which is a
contradiction.

Therefore any vertex in rms ´ I is connected to every vertex in I and to every other
vertex in rms ´ I. Since K is flag, K “ KI ˚ ∆q for some q ě 0.

(iii) ùñ (ii). Suppose that K “ Cp or K “ Cp ˚ ∆q for p ě 4 and q ě 0. Let the
p-cycle Cp of K be supported on the set of vertices I “ tb1, . . . , bpu. By the Hochster
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decomposition (3.10) we have

H2´j,2jpZKq –
à

JĎrms, |J |“j

Hr 1pKJq. (3.11)

Since KI is a p-cycle, we have Hr 1pKIq “ Z. Because any subcomplex KJ with J ‰ I is
contractible, Hr 1pKJq “ 0 for J ‰ I. It follows that H2´p,2ppZKq “ Z and H2´j,2jpZKq “

0 for j ‰ p.

(ii) ùñ (iii). Suppose that H2´j,2jpZKq is as described in (ii). Then only one summand
on the right hand side of (3.11) is Z, and all other summands are zero. The same
argument as in the proof of implication (ii) ñ (iii) of Theorem 3.2.4 shows that K “

Cp ˚ ∆q for some p ě 4 and q ě 0.

It remains to prove that if K “ Cp or K “ Cp ˚ ∆q for q ě 0 then H´i,2jpZKq “ 0 for
j ´ i ě 3. Considering the bigraded Hochster decomposition (3.10), we claim that all
summands on the right hand side with j ´ i ě 3 disappear. Indeed, let I “ tb1, . . . , bpu

be the set of vertices of K forming a p-cycle, p ě 4. Then Hr j´i´1pKIq “ 0 for j ´ i ě 3.
Since any full subcomplex KJ with J ‰ I is contractible, we get Hr j´i´1pKJq “ 0. Hence,
H´i,2jpZKq “ 0 for j ´ i ě 3.

Example 3.2.12. We consider the same examples as in Example 3.2.5.

(i) Let K be the flag complex in Figure 3.1(a). Generator set (2.28) for H˚pΩZKq is

ru3, u1s, ru4, u2s, ru5, u4s, ru2, ru5, u4ss.

These satisfy the relations

ru3, u1sru4, u2s ´ ru4, u2sru3, u1s “ 0, ru3, u1sru5, u4s ´ ru5, u4sru3, u1s “ 0

and
ru3, u1sru2, ru5, u4ss ´ ru2, ru5, u4ssru3, u1s “ 0

which are derived by using the commutativity relations given in (2.27). By for-
mula (3.10) we obtain H´2,8pZKq “ Z2 and H´3,10pZKq “ Z. Hence, the homolo-
gical condition of Theorem 3.2.8(ii) is not satisfied.

(ii) Let K be the flag complex in Figure 3.1(b). Generator set (2.28) for H˚pΩZKq is

ru3, u1s, ru4, u2s

with a single relation ru3, u1sru4, u2s ´ ru3, u1sru4, u2s “ 0. Here H˚pΩZKq is a
one-relator algebra, and formula (3.10) gives H´2,8pZKq “ Z.
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3.2.5 Golod and minimally non-Golod flag complexes

We conclude this section by giving further topological and combinatorial equivalences to
H˚pΩZKq being a free associative algebra or a one-relator algebra. In the next section
we will investigate the algebra H˚pΩZKq in more detail, using these results as a starting
point.

In the case that K is flag and k is a field, it was shown in [GPTW12] that H˚pΩZK; kq

is a free associative algebra if and only if K is Golod over k, that is, the multiplication
and all higher Massey products are trivial in H˚pZK; kq, see Theorem 2.6.16. We first
establish this equivalence when k “ Z.

Theorem 3.2.13. Let K be a flag simplicial complex on rms. Then the following are
equivalent:

(i) H˚pΩZKq is a free associative algebra;

(ii) ZK is homotopy equivalent to a wedge of spheres;

(iii) K is Golod.

Proof. Since K is flag, by Theorem 2.6.16 it is Golod if and only if the 1-skeleton K1 of
K is a chordal graph. Therefore if K is not Golod, then there is a p-cycle Cp contained
in K1 for some p ě 4. Then the inclusion of the full subcomplex Cp into K induces
an inclusion of algebras H˚pΩZCpq ÝÑ H˚pΩZKq. Therefore H˚pΩZKq is not free by
Theorem 3.2.8.

It follows that when K is flag, the property of H˚pΩZKq being free can be analysed by
looking at the cohomology ring and Massey products in ZK.

An analogous result is true for identifying when H˚pΩZKq is a one-relator algebra. A
simplicial complex is minimally non-Golod if it is not Golod, but K ´ v is Golod for any
vertex v P K. For example, if K “ Cp for p ě 4, then K is not Golod because ZK is a
connected sum of sphere products, which has a non-trivial cup product, but removing
any vertex gives a Golod complex since K´v is flag and chordal. The property of K being
minimally non-Golod was introduced by Berglund and Jöllenbeck [BJ07] as a property
of the algebra TorZrmspZrKs,Zq, and studied by Limonchenko [Lim15] in the context of
moment-angle complexes.

Theorem 3.2.14. Let K be a flag simplicial complex on rms. Then the following are
equivalent:

(i) H˚pΩZKq is a one-relator algebra;
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(ii) ZK is homotopy equivalent to a connected sum of sphere products, with two spheres
in each product;

(iii) Either K is minimally non-Golod, or K is the join of a minimally non-Golod com-
plex and a simplex.

Proof. (ii) ùñ (i). This is Proposition 3.2.6.

(i) ùñ (iii). By Theorem 3.2.8, if H˚pΩZKq is a one-relator algebra, then either K “ Cp

or K “ Cp ˚∆q for some p ě 4 and q ě 0. Since the complex Cp is minimally non-Golod,
the implication follows.

(iii) ùñ (ii). By [GPTW12, Theorem 4.8], any flag simplicial complex K which is
minimally non-Golod is equal to Cp for some p ě 4. Therefore ZK is homotopy equivalent
to the connected sum of sphere products (3.2).

3.3 Loop homology in the non-flag case

Theorems 3.2.13 and 3.2.14 establish combinatorial and topological equivalences for the
conditions for the algebra H˚pΩZKq to be a free associative algebra or a one-relator
algebra in the case that K is a flag complex. For general simplicial complexes, the
corresponding moment-angle complexes have considerably deeper and more complex ho-
motopy theory. Little is known about what information the algebra H˚pΩZKq sees in
general. This section is a preliminary investigation into this question, with a focus on
examples. We begin by summarising some known results.

3.3.1 Free and one-relator loop homology algebras

For a general simplicial complex K, if ZK has the homotopy type of a wedge of spheres
then both H˚pΩZKq is a free algebra, by the Bott–Samelson Theorem, and K is Golod.
In general, however, these properties are no longer equivalent. The following example
was presented in [GPTW12].

Example 3.3.1. Let K be the 6-vertex triangulation of RP 2 shown in Figure 3.2. It
was shown in [GPTW12] that there is a homotopy equivalence

ZK » pS5q_10 _ pS6q_15 _ pS7q_6 _ Σ7RP 2.

In particular, ZK is not homotopy equivalent to a wedge of spheres. On the other hand,
all multiplication and higher Massey products vanish in H˚pZKq for dimensional reasons,
so K is Golod. Therefore in general, the class of Golod complexes K is larger than the
class for which ZK is a wedge of spheres.
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Figure 3.2: A 6-vertex Golod triangulation of RP 2.

Likewise, there are complexes K for which ZK is not a wedge of spheres, but H˚pΩZKq

is free. An example simplicial complex K was given by Limonchenko [Lim15] who gave
a 9-vertex triangulation of CP 2 for which

ZK » pS7q_36 _ pS8q_90 _ pS9q_84 _ pS10q_36 _ pS11q_9 _ Σ10CP 2.

Since ZK is a suspension space and H˚pZKq is torsion-free, it follows that H˚pΩZKq is a
free associative algebra by the Bott–Samelson Theorem.

On the other hand, the relationship between K being Golod and H˚pΩZKq being free is
much closer.

Theorem 3.3.2 ([LP22]). When k is a field, the algebra H˚pΩZK; kq is free if and only
if K is Golod over k.

When k “ Z, this equivalence is not true due to the presence of torsion in H˚pΩZKq.
Using an argument similar to Example 2.3.4(iii), the algebra H˚pΩZKq for K the trian-
gulation of RP 2 in Example 3.3.1 is not free over Z.

While Theorem 3.3.2 implies that when K is not Golod, the algebra H˚pΩZKq is not
free, little is known about what algebraic relations appear beyond those specified in
Proposition 3.2.6 and Lemma 3.2.11. In Example 3.3.6 we give a modification of an
example in [LP22] which gives a simplicial complex K such that H˚pZKq has trivial
multiplication, but contains a non-trivial triple Massey product. We show that the
algebra H˚pΩZKq has at least two algebraic relations.

We perform the equivalent analysis of the properties of K being minimally non-Golod, ZK

being a connected sum of sphere products andH˚pΩZKq being a one-relator algebra in the
non-flag case. For any moment-angle complex homotopy equivalent to a connected sum
of sphere products, the algebra H˚pΩZKq is one-relator by Proposition 3.2.6. Moreover,
Amelotte [Ame20], showed that K is a minimally non-Golod complex, or such a complex
joined with a simplex, affirmatively answering a question in [GPTW12, Question 3.5].
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On the other hand, Limonchenko [Lim15] constructs minimally non-Golod complexes
which do not have the homotopy type of a connected sum of sphere products. Moreover,
in Example 3.3.5 we construct a simplicial complex K for which H˚pΩZKq is a one-relator
algebra, but ZK is not a connected sum of sphere products.

The relationship between K being minimally non-Golod and H˚pΩZKq being one-relator
is further from the relationship between K being Golod and H˚pΩZKq being free. The
example constructed in Example 3.3.5 is a complex that is not of the form a minimally
non-Golod complex joined with a simplex. Nevertheless it does contain a minimally
non-Golod complex as a full subcomplex. The complex K constructed in Example 3.3.6
is minimally non-Golod, but H˚pΩZKq has at least two relations.

3.3.2 A chain complex for ΩZK

Known examples of loop homology algebras H˚pΩZKq have mainly been calculated in
two ways, either by knowing the homotopy type and applying results such as the Bott–
Samelson Theorem or the Cobar construction, as we did in Proposition 3.2.6; or in the
case of [GPTW12] by algebraically identifying H˚pΩZKq as the subalgebra of H˚pΩDJKq

generated by iterated commutators. In general, however, the algebraic structure of
H˚pΩDJKq does not determine the algebraic structure of H˚pΩZKq, see Section 2.6.6, so
this second method does not readily generalise.

Since determining the homotopy type of ZK is a hard question, we seek a more dir-
ect approach. We recall the homological Taylor complex for the face coalgebra from
Construction 2.6.6 computing

H˚pZKq – CotorZxmypZxKy,Zq

which we state again for completeness.

For s ą 0, the graded component I´s is the free Z-module with basis exterior monomials
wJ1 ^¨ ¨ ¨^wJs , where J1, . . . , Js are distinct minimal missing faces of K. The differential
is given by

BpwJ1 ^ ¨ ¨ ¨ ^ wJsq “
ÿ

JĂJ1Y¨¨¨YJs

wJ ^ wJ1 ^ ¨ ¨ ¨ ^ wJs

where the summation is taken over missing faces J Ă J1 Y ¨ ¨ ¨ Y Js different from any of
the J1, . . . , Js.

We give the resolution pI˚, dq the structure of a differential bigraded coalgebra by set-
ting bidegpwJ1 ^ ¨ ¨ ¨ ^ wJsq “ p´s, 2|J1 Y ¨ ¨ ¨ Y Js|q and defining comultiplication using
formula (2.7). Specifically, we set

∆pwJ1 ^ ¨ ¨ ¨ ^ wJsq “
ÿ

p´1qsignσ
´

wJi1 ^ ¨ ¨ ¨ ^ wJik

¯

b

´

wJik`1
^ ¨ ¨ ¨ ^ wJis

¯
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where the summation is taken over all partitions tJ1, . . . , Jsu “ tJi1 , . . . , Jiku\tJik`1
, . . . , Jisu,

with one side potentially empty, such that pJi1 Y ¨ ¨ ¨ Y Jikq X pJik`1
Y ¨ ¨ ¨ Y Jisq “ H and

both i1 ă ¨ ¨ ¨ ă ik and ik`1 ă ¨ ¨ ¨ ă is. The permutation σ is given by sending j to ij for
each j “ 1, . . . , s. The reduced comultiplication ∆ is given by partitions with 0 ă k ď s.

Example 3.3.3. Let K “ C4 be a square. Then I´1 is generated by ω13 and ω24, and
I´2 is generated by ω13ω24. The reduced comultiplication is given by ∆ω13 “ ∆ω24 “ 0

and
∆pω13ω24q “ ω13 b ω24 ´ ω24 b ω13.

We apply the Cobar construction of Section 2.3.2 to the Taylor complex to obtain a chain
complex for the space ΩZK.

Proposition 3.3.4. Let K be a simplicial complex on rms and let pI˚, B,∆q be the homo-
logical Taylor complex associated to K. Then there is an isomorphism of graded algebras

H˚pΩZKq – HpCobar˚pIqq

where pCobar˚pIq, dq is a dg-algebra with Cobar˚pIq the free associative algebra on the
desuspended module I and d is given by formula (2.11).

Proof. Since I˚ is a simply-connected dg-coalgebra quasi-isomorphic to a cellular chain
complex for ZK, this follows from Theorem 2.3.3(ii).

We demonstrate this construction on a series of examples. We first construct a simplicial
complex K which is not of the form of a minimally non-Golod complex joined with a
simplex, but for which H˚pΩZKq is a one-relator algebra.

Example 3.3.5. Let K be the simplicial complex formed by taking the cone over the
square C4 with cone vertex p5q, and then removing the face p2, 4, 5q. The complex K is
shown in Figure 3.3.

2
1

3

4

5

Figure 3.3: A simplicial complex K for which H˚pΩZKq is a one-relator algebra.
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The minimal missing faces are p1, 2q, p3, 4q and p2, 4, 5q. We label the corresponding
generators of the Taylor resolution by w12, w34 and w245, respectively. We have

I´1 “ xw12, w34, w245y

I´2 “ xw12w34, w12w245, w34w245y

I´3 “ xw12w34w245y.

All differentials are trivial and reduced comultiplication is trivial except

∆pw12w34q “ w12 b w34 ´ w34 b w12.

Define generators with deg ui “ 2, deg v “ 4, deg x “ 5, deg yi “ 5, degw “ 6 as

u1 “ s´1w12, u2 “ s´1w34,

v “ s´1w245, x “ s´1w12w34,

y1 “ s´1w12w245, y2 “ s´1w34w245,

w “ s´1w12w34w245.

All differentials in the Cobar construction are zero except dpxq “ ´u1u2 ` u2u1. It
follows that

H˚pΩZKq – HpCobar˚pIqq “
T pu1, u2q

xru1, u2sy
b T pv, y1, y2, wq

is a one-relator algebra. Using the Hochster decomposition (2.25) we observe that the
cohomology ring H˚pZKq is isomorphic to that of

H˚
`

pS3 ˆ S3q _ S5 _ S6 _ S6 _ S7
˘

and therefore ZK does not have the homotopy type of a connected sum of sphere products.
In this case, the fat wedge filtration of Iriye and Kishimoto [IK19] can be used to show
the above cohomology isomorphism is due to a homotopy equivalence.

We now analyse a simplicial complex which is minimally non-Golod, and prove that
H˚pΩZKq is neither free nor one-relator. This complex is a modification of one presented
in [LP22], adjusted to make it easier to analyse using the Taylor resolution. These ex-
amples are realisations in moment-angle complexes of one presented by Katthän [Kat17]
as a counterexample to the long-standing assertion of Berglund and Jöllenbeck [BJ07]
that the triviality of the multiplication in TorZrmspZrKs,Zq implied that all higher Massey
products are trivial.

Example 3.3.6. Let K be the simplicial complex formed from the join B∆r1, 2, 3s ˚

B∆r4, 5, 6s˚B∆r7, 8, 9s by removing the simplices p1, 4, 7q, p2, 3, 5, 6q, p1, 2, 7, 8q, p4, 5, 8, 9q

and p2, 3, 5, 8, 9q.
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The reduced cohomology groups and Hochster decomposition (2.25) of ZK are given as
follows.

n Hr
n

pZKq J for which Hr pKJq is a summand of Hr pZKq

ď 4 0

5 Z4 t1, 2, 3u, t4, 5, 6u, t7, 8, 9u, t1, 4, 7u

6 0

7 Z3 t2, 3, 5, 6u, t1, 2, 7, 8u, t4, 5, 8, 9u

8 Z10

9 Z3 t2, 3, 5, 8, 9u, t1, 2, 4, 7, 8, 9u, t1, 2, 3, 4, 7, 8u

10 Z4 t2, 3, 5, 7, 8, 9u, t2, 3, 4, 5, 8, 9u, t1, 2, 3, 5, 8, 9u, t2, 3, 5, 6, 8, 9u

11 Z6

12 0

13 0

14 Z t1, 2, 3, 4, 5, 6, 7, 8, 9u

ě 15 0

The entries left blank for n “ 8, 11 are not relevant for what follows. We first show
that all cup products in H˚pZKq vanish. For dimensional reasons, the only potential
non-trivial cup products are of degree m and n classes for pm,nq P tp5, 5q, p5, 9q, p7, 7qu.
Using the vertex supports in the third column, we calculate that all these cup products
vanish too. For example the product of the degree 5 class with support t1, 4, 7u and the
degree 9 class with support t2, 3, 5, 8, 9u is trivial since the vertex 6 does not appear,
whereas it does in the support of the degree 14 class. A similar calculation works for all
other permutations of potential cup products.

We now show that there is a non-trivial triple Massey product in H˚pZKq. Follow-
ing [May69], if αi P HpipXq are the cohomology classes of ai P CpipXq such that the
cup products α1α2 and α2α3 are trivial, then there are cochains a12 P Cp1`p2´1pXq and
a23 P Cp2`p3´1pXq such that da12 “ a1a2 and da23 “ a2a3. The triple Massey product
xα1, α2, α3y is the set of cohomology classes of the cocycles a1a23 ´ a12a3 for all such
choices of a12 and a23. The triple Massey product is non-trivial if it does not contain 0.

We now show that the triple Massey product xα1, α2, α3y, where α1, α2, α3 correspond to
the degree 5 classes with supports t4, 5, 6u, t1, 2, 3u, t7, 8, 9u, respectively, is defined and
non-trivial. It is defined since the cup products α1α2 and α2α3 are trivial by the above.

To see it is non-trivial, we use the Taylor complex, see Construction 2.6.4. The generators
of the Taylor complex correspond to the minimal missing faces of K and are given by
σ123, σ456, σ789, σ2356, σ1278, σ4589, σ147 and σ23589.

The Massey product xσ456, σ123, σ789y is computed as follows. Let a1 “ σ456, a2 “ σ123

and a3 “ σ789. Let a12 “ ´σ123σ456σ2356 and a23 “ σ123σ789σ1278. Then dpa12q “
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´σ123σ456 “ a1a2 and dpa23q “ σ123σ789 “ a2a3. Note that a12 and a23 are the only
cochains whose differential satisfies this property, since the 9th total degree of the Taylor
resolution is generated by

tσ123σ456σ2356, σ123σ789σ1278, σ456σ789σ4589,σ123σ1278σ147,

σ789σ1278σ147, σ789σ4589σ147, σ23589u.

Then xσ456, σ123, σ789y is the singleton set containing

σ456 ¨ σ123σ789σ1278 ´ σ123σ456σ2356 ¨ σ789 “ ´σ123σ456σ789σ1278 ` σ123σ456σ789σ2356.

Subtracting from the boundary

dpσ123σ456σ789σ2356σ1278q “ σ456σ789σ2356σ1278 ´ σ123σ456σ789σ1278 ` σ123σ456σ789σ2356

gives the cochain χ “ σ456σ789σ2356σ1278. Since dχ “ 0, it remains to show it is not a
coboundary. Suppose it were, then there are coefficients such that

χ “ dpσ456σ789σ2356σ1278 ^ pc1σ123 ` c2σ147 ` c3σ4589 ` c4σ23589qq

“ c1pσ456σ789σ1278σ123 ´ σ456σ789σ2356σ123 ` χq

` c2pσ789σ2356σ1278σ147 ´ σ456σ789σ2356σ147 ` χq

` c3pσ789σ2356σ1278σ4589 ´ σ456σ2356σ1278σ4589 ` χq

` c4pσ456σ2356σ1278σ23589 ´ σ456σ789σ1278σ23589 ` χq

for which there are no solutions. Therefore χ is a generator of H14pZKq. Therefore the
Massey product xσ456, σ123, σ789y is non-trivial.

It therefore follows that K fails to be Golod due to the existence of a non-trivial triple
Massey product in H˚pZKq, and is therefore minimally non-Golod. We now show there
are at least two relations in the loop homology algebra H˚pΩZKq.

Applying Proposition 3.3.4 for the homological Taylor complex gives a chain complex
for ΩZK consisting of a free dg-algebra on 255 generators. It is therefore difficult to
give a full computation, but nonetheless we are able to deduce some relations. For
missing faces I1, . . . , Ik of K we denote by τI1 ¨ ¨ ¨ τIk “ s´1ωI1 ¨ ¨ ¨ωIk , which has degree
2|I1 Y ¨ ¨ ¨ Y Ik| ´ s´ 1.

Consider the chain τ123τ456τ789τ2356 of degree 13. We have

dpτ123τ456τ789τ2356q “ ´pτ123τ456τ789τ2356τ1278 ` τ123τ456τ789τ2356τ4589

` τ123τ456τ789τ2356τ147 ` τ123τ456τ789τ2356τ23589q

´ pτ789 b τ123τ456τ2356 ´ τ123τ456τ2356 b τ789q.
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We first observe that the sum of the first four terms is trivial in homology. Indeed, a
direct calculation shows that this sum is given by the boundary

dpτ456τ789τ1278τ2356 ` τ123τ789τ2356τ4589 ` τ123τ456τ789τ147 ` τ123τ456τ789τ23589

´ τ123τ789τ4589τ23589 ´ τ456τ789τ1278τ23589 ` τ123τ789τ147τ4589 ` τ456τ789τ147τ1278

´ τ789τ1278τ2356τ4589 ` τ789τ1278τ4589τ23589 ´ τ789τ147τ1278τ4589q.

Therefore in homology we have that rτ789, τ123τ456τ2356s “ 0. Next, we calculate that

dpτ123τ456q “ ´τ123τ456τ2356 ´ pτ123 b τ456 ´ τ456 b τ123q.

so that in homology we have τ123τ456τ2356 “ ´rτ123, τ456s. Since abc is a generator of
H12pΩZKq for a, b, c P tτ123, τ456, τ789u, the ideal generated by the iterated commutator

rτ789, rτ123, τ456ss “ ´rτ789, τ123τ456τ2356s

is trivial in H˚pΩZKq. Similarly there is a relation rτ123, rτ456, τ789ss “ 0. The symmetric
relation rτ456, rτ123, τ789ss “ 0 is also true, but is accounted for algebraically by the Jacobi
identity.

Example 3.3.6 demonstrates that in the non-flag case, the class of those complexes K
which are minimally non-Golod is bigger than those for which H˚pΩZKq is a one-relator
algebra. Examples providing minimally non-Golod complexes K for which ZK is not a
connected sum of sphere products have already been provided by Limonchenko [Lim15].
This can also be seen from Example 3.3.6 since the cohomology groups of ZK do not have
Poincaré duality, and so ZK does not have the homotopy type of a manifold. Therefore
the equivalences of Theorem 3.2.14 do not hold in general.

Remark 3.3.7. The appearance of iterated commutators as relations in loop homology
is reflective of topological structure that is seen by a triple Massey product. Let X “

Sp _ Sq _ Sr be a wedge of simply-connected spheres and let M be the space obtained
by attaching a pp ` q ` r ´ 1q-cell to X via the Whitehead product rα, rβ, γss, where
α P πppS

pq, β P πqpS
qq and γ P πrpS

rq are identity maps. Let u, v and w be the
cocycles corresponding to the cells Sp, Sq and Sr of M , respectively. Then by [UM57,
Lemma 7] the triple Massey products xu, v, wy and xv, w, uy in H˚pMq are singleton
sets containing non-trivial elements, identifying, up to sign, the cocycle of the attached
cell. On the other hand, the image in H˚pΩXq of rα, rβ, γss under the composite θ of
the isomorphism π˚`1pXq ÝÑ π˚pΩXq and the Hurewicz map π˚pΩXq ÝÑ H˚pΩXq is,
up to sign, the iterated commutator rθα, rθβ, θγss, which is trivialised under the map
H˚pΩXq ÝÑ H˚pΩMq. Therefore in this case the non-triviality of a triple Massey
product in H˚pMq corresponds to the triviality of an iterated commutator in H˚pΩMq.
It is not known if the relations in H˚pΩZKq obtained in Example 3.3.6 are induced
topologically in this way.
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3.4 Moment-angle manifolds

A moment-angle complex which is also a manifold is called a moment-angle manifold.
The study of moment-angle manifolds originated from the perspective of symplectic
geometry and is one of the oldest forms of toric topology. By [BP15, Theorem 4.1.4], if
K is a simplicial sphere, then ZK is a manifold. More generally, moment-angle complexes
which are manifolds have a complete combinatorial characterisation, as follows.

Let K be a simplicial complex on rms. We call K a generalised homology pn´ 1q-sphere,
or a GHSn´1, if K has the same homology as Sn´1, and for every non-empty σ P K,
the complex K ´ σ is acyclic. By a result of Cai [Cai17], the moment-angle complex ZK

is an pm ` nq-manifold if and only if K is a GHSn´1. In general, generalised homology
spheres need not be simplicial spheres. In Example 3.4.10 we analyse a triangulation
of the Poincaré sphere, which is a GHS3 but not a simplicial sphere and determine the
associated moment-angle manifold.

We study moment-angle manifolds which are connected sums of sphere products, of which
there are numerous infinite families. McGavran [McG79] showed that if K is obtained
from the boundary of a simplex by a positive number of iterated stellar subdivisions at
maximal faces, then ZK is homeomorphic to a connected sum of sphere products. Gitler
and López de Medrano [GdM13] improve this result by showing that iterated stellar
subdivisions at both maximal and codimension 1 simplices on a complex K preserves ZK

being a connected sum of sphere products, see [GdM13, Theorem 2.4].

A simplicial complex K on rms of dimension 2d is neighbourly if the pd´1q-skeleton of K
is complete. In [GdM13, Theorem 1.3], Gitler and López de Medrano prove a conjecture
of Bosio and Meersseman [BM04] that every even-dimensional neighbourly simplicial
sphere has ZK homeomorphic to a connected sum of sphere products. They also prove a
result for simplicial spheres of odd dimension, which we summarise as follows. For x P R
let rxs be the unique integer n such that x ď n ă x` 1.

Theorem 3.4.1. Let K be a generalised homology pn´1q-sphere on rms for n ě 4 which
is not the boundary of a simplex. Suppose that the c-skeleton of K is a complete graph,
where c “ rn´3

2 s. Then if n is even, or if n is odd and ZK has torsion-free homology,
then ZK is homeomorphic to a connected sum of sphere products.

Proof. Since the real moment-angle complex RK being c-connected is equivalent to K
having full c-skeleton this follows from [GdM13, Theorem 1.3] for n even, and from [GdM13,
Theorem 1.4] for n odd.

By a result of Amelotte [Ame20], all of the above families give K to be minimally non-
Golod. It is a natural question to ask whether there are minimally non-Golod simplicial
spheres for which ZK is not a connected sum of sphere products. The aim of this section
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is to develop two examples of moment-angle manifolds which demonstrate the complex
behaviour of minimally non-Golod simplicial spheres. In Proposition 3.4.4 we establish
a condition on the skeleton of K which ensures it is minimally non-Golod, which is less
strict than the condition of Theorem 3.4.1. Moreover, in Example 3.4.11 we construct
a minimally non-Golod simplicial 4-sphere with full 1-skeleton which is not a minimally
non-Golod complex. This example also answers negatively a question of [BM04] as to
whether the torsion-free assumption is necessary when n is odd in Theorem 3.4.1.

A stronger question is asking if ZK being a connected sum of sphere products can be
identified by its cohomology ring. Bosio and Meersseman [BM04, Proposition 11.6]
showed that for simplicial spheres of dimension 2, every K for which ZK is homeomorphic
to a connected sum of sphere products is obtained from B∆2 by a positive number of
iterated stellar subdivisions at maximal faces. This is proved by showing these conditions
are equivalent to ZK having the same cohomology ring as a connected sum of sphere
products. For dimensions above 2, an example of Allen and La Luz [ALL07] answering
this question to the negative was shown to be incorrect in [GdM13]. In Example 3.4.14
we give a different example, again answering this question negatively.

3.4.1 Generalised homology spheres and simplicial operations

Let K be a generalised homology sphere, so that ZK is a manifold. One of the advantages
to restricting our attention to moment-angle manifolds is that the structure of Poincaré
duality on ZK places strong conditions on K itself.

Lemma 3.4.2. Let K be a GHSn´1 on rms. Then K is Golod if and only if K “ B∆m´1.

Proof. If K “ B∆m´1, then ZK “ S2m´1. Therefore K is Golod since all cup products
and higher Massey products vanish for dimensional reasons.

Alternatively, if K is not the boundary of a simplex, there is a minimal missing face J
of K such that |J | ă m. Therefore H2|J |´1pZKq contains a Z summand generated by
α, say. Since K is a GHSn´1, then ZK is a pm ` nq-manifold. Therefore by Poincaré
duality there is β P Hm`n´2|J |`1pZKq generating a Z summand such that αβ generates
Hm`npZKq “ Z. ThereforeH˚pZKq has non-trivial multiplication, so K is not Golod.

Along with Poincaré duality of the manifold ZK itself, the full subcomplexes of K itself
also satisfy a form of duality which is sometimes called combinatorial Alexander duality.

Theorem 3.4.3 ([FW15, Theorem 3.4]). A simplicial complex K on rms is a GHSn´1

if and only if
Hr
l
pKJq – Hr n´l´2pKrms´Jq. (3.12)

for every J Ď rms and 0 ď l ď n´ 2.
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This form of duality is useful since it explicitly encodes vertex supports of homology
classes. The following application identifies when a generalised homology sphere K is
minimally non-Golod with a condition on the skeleton in the same style as Theorem 3.4.1.

Proposition 3.4.4. Let K be a generalised homology pn ´ 1q-sphere on rms for n ě 4

which is not the boundary of a simplex. Suppose that the c-skeleton of K is complete,
where c “ rn´2

3 s. Then K is minimally non-Golod.

Proof. By Lemma 3.4.2, the complex K is not Golod. We show that pK ´ vq is Golod
for every v P rms, or equivalently, that KJ is Golod for any full subcomplex KJ with
|J | ă m.

We first check that all cup products are trivial. For i ě n´ 1 and J Ĺ rms we have

H ipKJq – Hr n´2´ipKrms´Jq “ 0

since rms ´J is non-empty. Therefore by the Hochster decomposition (2.24), for I\J Ĺ

rms, non-trivial cup products are described by non-trivial maps

HkpKIq bH lpKJq ÝÑ Hk`l`1pKI\Jq (3.13)

for 1 ď k ` l ` 1 ď n ´ 2. Since the c-skeleton of K is complete, for any 0 ď j ď c ´ 1

and J Ĺ rms we have Hr
j
pKJq “ 0, with the same true for Hr jpKJq. Therefore we must

have k, l ě c in (3.13). But then Hk`l`1pKI\Jq “ 0 since

Hk`l`1pKI\Jq – Hr n´3´k´lpKrms´pI\Jqq “ 0

and n´3´k´ l ď n´3´2c ď n´3´2
`

n´2
3

˘

“ n´5
3 ď c´1, with the second inequality

following since c “ rn´2
3 s if and only if n´2

3 ď c ă n`1
3 . Therefore this product is trivial

too for any I, J Ĺ rms.

Next, we check all higher Massey products are also trivial. By [GL21], higher Massey
products in moment-angle complexes are associated to non-trivial maps

Hp1pKJ1q b ¨ ¨ ¨ bHpkpKJkq ÝÑ Hp1`¨¨¨`pk`1 pKJ1\¨¨¨\Jkq (3.14)

for J1 \ ¨ ¨ ¨ \ Jk Ĺ rms. We show all such maps are trivial by showing that for k ě 3

that Hp1`¨¨¨`pk`1pKJq “ 0 for any J Ĺ rms. As for the cup product case we require
p1, . . . , pk ě c. Then

p1 ` ¨ ¨ ¨ ` pk ` 1 ě kc` 1 ě k

ˆ

n´ 2

3

̇

` 1 “
kn´ 2k ` 3

3
ě n´ 1

for all k ě 3. Therefore all higher Massey products are trivial for dimensional reasons.
Therefore KJ is Golod for every full subcomplex KJ of K with J Ĺ rms. Therefore K is
minimally non-Golod.
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Comparing the statement of Proposition 3.4.4 with that of Theorem 3.4.1, we see that
any generalised homology 3-sphere K which has full 1-skeleton is both minimally non-
Golod and has ZK a connected sum of sphere products. In Example 3.4.10 we construct
a generalised homology 3-sphere with complete 1-skeleton, which is not a triangulation of
a sphere. For generalised homology 4-spheres, the conditions on the skeleta are the same,
but we do not require torsion-free homology of ZK to conclude that K is minimally non-
Golod. In Example 3.4.11 we construct a minimally non-Golod simplicial 4-sphere with
complete 1-skeleton for which the associated moment-angle manifold is not a connected
sum of sphere products.

3.4.2 Constructing moment-angle manifolds

Let K be a simplicial complex on rms. The following construction of Bosio and Meersse-
man [BM04], later generalised by Li and Wang [LW19] constructs a simplicial sphere
which has K as a full subcomplex.

Construction 3.4.5. Let S be a simplicial sphere with K as a subcomplex. Let M “

MF pKq be the set of minimal missing faces and write M “ tJ1, . . . , Jku.

Iteratively form the complexes Si “ stsSi´1pJiq for i “ 1, . . . , k, where S0 “ S. Then
L “ Sk is a simplicial complex which contains K as a full subcomplex. Since stellar
subdivision preserves the PL-homeomorphism type of a simplicial complex, then L is
PL-homeomorphic to S, that is, L is a simplicial sphere.

Bosio and Meersseman use this construction to provide the first example of a moment-
angle manifold whose cohomology contains torsion by choosing K to be the triangulation
of RP 2 from Example 3.3.1. That the resulting manifold has torsion in its cohomology
follows from the Hochster decomposition (2.25).

To apply Theorem 3.4.1 and Proposition 3.4.4 we require simplicial operations which
alter the skeleta of a simplicial complex without changing its PL-homeomorphism type.
Bistellar moves are a modification of stellar subdivision introduced by Pachner [Pac87]
defined as follows.

Definition 3.4.6. Let K be a simplicial complex on rms of dimension pn ´ 1q and let
σ P K be a pn ´ 1 ´ kq-simplex such that lkKpσq is the boundary Bτ of a k-simplex τ

which is not a simplex of K. A bistellar k-move on K at σ is the assignment

χσ : K ÞÝÑ pK ´ σ ˚ Bτq Y pBσ ˚ τq.

Since the link of any maximal simplex is empty, a bistellar 0-move is always defined and
coincides with stellar subdivision at a maximal simplex. In general, a bistellar move at
a simplex σ is not the same as stellar subdivision at σ since the latter will always add
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a new vertex to K. We apply bistellar moves by identifying minimal missing k-faces
τ which are the link in K of some pn ´ 1 ´ kq-simplex σ. As long as k ă n ´ 1 ´ k,
the bistellar move at σ fills in the missing face τ while creating missing faces of strictly
bigger dimension. Applying this iteratively allows us to fill in skeleta of a given complex.
Moreover, the following means we do not change the PL-homeomorphism type of our
complex.

Theorem 3.4.7 ([Pac87, Theorem 1]). Two simplicial manifolds are PL-homeomorphic
if and only if one can be obtained from the other by a sequence of bistellar moves.

Since the complexes we will encounter are typically very large, another very useful op-
eration is edge contraction, which if applied appropriately, reduces the vertex set of a
simplicial complex without altering its PL-homeomorphism type.

Definition 3.4.8. Let K be a simplicial complex on rms and let i, j P rms be vertices such
that the edge pi, jq P K. Let k be a vertex not in rms and let rm1s “ prms ´ ti, juq \ tku.
Define a map f : rms ÝÑ rm1s by

fpvq “

$

&

%

k if v P ti, ju

v if v R ti, ju.

The edge contraction K1 of K at pi, jq is the simplicial complex

K1 “ tpfpv1q, . . . , fpvkqq | pv1, . . . , vkq P Ku .

Often, the new vertex k is relabeled to j after performing the edge contraction. We use
the notation i ÞÝÑ j to denote when this is the case.

Edge contractions in simplicial complexes were studied by Attali, Lieutier and Salinas
in [ALS11]. The following result of the authors gives a condition which ensures perform-
ing an edge contraction to K does not change its homotopy type.

Theorem 3.4.9 ([ALS11, Theorem 2]). For any simplicial complex K, if an edge pi, jq

satisfies
lkKpiq X lkKpjq “ lkKppi, jqq (3.15)

then the edge contraction of pi, jq preserves the homotopy type of K.

Despite using edge contractions, the simplicial complexes involved in the following ex-
amples are very large, and computations are computer-assisted using Sage [S`22].

Example 3.4.10. Theorem 3.4.1 applies even when K is not a triangulation of a 3-
sphere. The Poincaré homology sphere is a 3-manifold whose homology coincides with
that of S3, but is not simply-connected. We construct a triangulation of the Poincaré
sphere which has a full 1-skeleton.
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There is a 16-vertex triangulation of the Poincaré 3-sphere constructed by Björner and
Lutz [BL00, Theorem 5]. This triangulation does not have a full 1-skeleton. The set of
minimal missing 1-faces is given by

p12, 16q, p3, 8q, p5, 16q, p7, 16q, p3, 16q, p3, 9q, p1, 16q, p2, 16q, p3, 6q, p6, 8q, p4, 16q,

p8, 16q, p6, 16q, p6, 9q

Performing a series of bistellar moves at

p9, 10, 11q, p1, 7, 10q, p9, 10, 15q, p9, 5, 15q, p11, 13, 14q, p11, 14, 16q, p9, 11, 12q, p3, 11, 13q,

p7, 12, 13q, p2, 12, 15q, p1, 9, 12q, p4, 9, 12q, p10, 11, 12q, p1, 2, 14q

in the order given fills in all the missing 1-faces, again in the order given. Since bistellar
moves preserve PL-homeomorphism type, the resulting simplicial complex L is still a
triangulation of the Poincaré sphere and has full 1-skeleton. Therefore by Theorem 3.4.1
the manifold ZL is a connected sum of sphere products. To demonstrate the size of this
example, by computing the Betti numbers of ZL we obtain

ZL – pS5 ˆ S15q#340#pS6 ˆ S14q#2,794#pS7 ˆ S13q#11,012#pS8 ˆ S12q#26,961

#pS9 ˆ S11q#44,968#pS10 ˆ S10q#26,565.

This shows that those simplicial complexes which give rise to connected sums of sphere
products do not have to be simplicial spheres.

Next, we give a reduction of the manifold of [BM04] to give a moment-angle manifold
ZL with 2-torsion in its cohomology for which L is minimally non-Golod.

Example 3.4.11. Let K be the minimal 6-vertex triangulation of RP 2 from Example 3.3.1,
see Figure 3.2. Its minimal missing faces are

MF pKq “ tp1, 2, 3q, p1, 2, 4q, p1, 3, 5q, p1, 4, 6q, p1, 5, 6q, p2, 3, 6q, p2, 4, 5q, p2, 5, 6q,

p3, 4, 5q, p3, 4, 6qu.

Let S “ B∆5 and form the complex S10 as per Construction 3.4.5. We then apply the
series of edge contractions 15 ÞÝÑ 11, 13 ÞÝÑ 11, 12 ÞÝÑ 7 and 9 ÞÝÑ 8 to reduce the
vertex set from 16 to 12 vertices. The resulting simplicial complex K is a simplicial
4-sphere with 12 vertices. Moreover its minimal missing faces are

tp4, 10q, p2, 8q, p1, 3, 5q, p9, 5, 11q, p0, 7, 10q, p6, 7, 8q, p3, 5, 9q, p2, 9q, p1, 4, 6q, p1, 3, 7q,

p0, 4, 5, 6q, p8, 10, 11q, p3, 4, 6q, p2, 5, 6q, p3, 4, 5q, p1, 2, 3q, p0, 7, 11q, p0, 5, 6, 7q, p0, 5, 9q,

p7, 8, 9q, p0, 4, 5, 11q, p0, 4, 6, 8q, p0, 8, 11q, p0, 9, 10q, p0, 8, 9q, p9, 10, 11q, p2, 3, 6q, p3, 6, 7q,

p3, 7, 9q, p1, 2, 4q, p1, 11q, p2, 4, 5q, p3, 10q, p1, 7, 8q, p7, 9, 11q, p7, 8, 10q, p1, 5, 6qu.
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As well as not having a full 1-skeleton, we can explicitly check that the complex K is not
minimally non-Golod. For example, the map

H0
`

Kt4,10u

˘

bH0
`

Kt2,9u

˘

Ñ H1
`

Kt2,4,9,10u

˘

is non-trivial, inducing a non-trivial cup product in ZKt2,4,9,10u
by formula (2.24).

We use bistellar moves to fill in the 1-skeleton while keeping K as a full subcomplex. The
bistellar 1-moves at simplices p5, 9, 7, 6q, p0, 3, 4, 7q, p0, 4, 6, 11q, p0, 3, 4, 9q and p0, 5, 6, 11q

fill in the five remaining missing 1-simplices p4, 10q, p2, 8q, p2, 9q, p1, 11q, p3, 10q, respect-
ively. Denote the new simplicial complex L. Then by Proposition 3.4.4, the simplicial
4-sphere L is minimally non-Golod. Additionally, L contains the triangulation K of RP 2

as a full subcomplex. In particular, L is a minimally non-Golod complex such that
the moment-angle manifold ZL contains torsion in its cohomology. Therefore ZL is not
homotopy equivalent to a connected sum of sphere products.

The complex ZL is a minimal example, in the sense that both its dimension and number
of vertices are minimal, as the following result justifies.

Lemma 3.4.12. Let L be a GHSn´1 on rms, so that ZL is an pm`nq-manifold. Suppose
that H˚pZLq contains torsion, then m ě 12 and n ě 5.

Proof. Since L is a GHSn´1, the full subcomplexes LJ of L satisfy the duality formula
(3.12),

Hr
l
pLJq – Hr n´l´2pLrms´Jq.

It is known that the 6-vertex triangulation K of RP 2 is the smallest simplicial complex
containing torsion, both in the sense of number of vertices and homological dimension of
the torsion. The above isomorphism therefore implies that if LJ contains torsion, then
both |J | ě 6 and |rms ´ J | ě 6, and so m ě 12. Additionally, since n´ l´ 2 ě 1 in this
case, the bound l ě 2 implies that n ě 5, as stated.

This example demonstrates that moment-angle manifolds associated to a minimally non-
Golod complex need not be connected sums of sphere products. Moreover, this example
shows the torsion-free assumption in Theorem 3.4.1 is necessary.

Remark 3.4.13. Comparing the statements of Theorem 3.4.1 and Proposition 3.4.4, Ex-
ample 3.4.11 for n “ 5 is the lowest n for which the two statements differ, the former
statement requiring a torsion-free assumption on cohomology. The smallest n for which
there is dimensional difference in the conditions on the skeleta occurs at n “ 8. Con-
cretely, any generalised homology 7-sphere with full 2-skeleton is minimally non-Golod,
but we require a full 3-skeleton to conclude the corresponding moment-angle manifold
is a connected sum of sphere products. We can only speculate that this is a strict gap,
and a construction similar to Example 3.4.11 using the 9-vertex triangulation of CP 2 in
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place of RP 2 would be a candidate. So far, attempts to construct such a complex have
been too computationally intensive.

Our final example constructs a moment-angle manifold whose cohomology is that of a
connected sum of sphere products, but this correspondence is not due to a homotopy
equivalence.

Example 3.4.14. Let K be the simplicial complex from Example 3.3.5. Then

MF pKq “ tp1, 2, 3q, p4, 5, 6q, p7, 8, 9q, p1, 4, 7q, p1, 2, 7, 8q, p2, 3, 5, 6q, p4, 5, 8, 9q, p2, 3, 5, 8, 9qu.

Let S “ B∆8 and form the complex S8 as per Construction 3.4.5. Then S8 is a simplicial
complex with 17 vertices with K as a full subcomplex.

We perform edge contractions 14 ÞÝÑ 0, 10 ÞÝÑ 16, 15 ÞÝÑ 0 and 13 ÞÝÑ 12 so S8. The
resulting simplicial L complex has 13 vertices, so that ZL is a 21-manifold, and moreover
L has K as a full subcomplex by construction. Its minimal missing faces are

tp2, 3, 5, 6q, p2, 3, 5, 8, 9q, p0, 1, 6, 11, 16q, p8, 9, 12q, p8, 9, 4, 5q, p0, 16, 11, 12q, p4, 5, 6q,

p8, 1, 2, 7q, p0, 1, 7, 11, 16q, p1, 4, 7q, p0, 4, 6, 11, 16q, p0, 4, 7, 11, 16q, p3, 12, 5, 6q, p2, 3, 12q,

p1, 2, 3q, p9, 12, 5, 6q, p8, 9, 7qu.

We eliminate the missing 2-faces not inMF pKq by performing bistellar moves at p0, 3, 4, 6, 11, 1q,
filling in p8, 9, 12q, and p0, 4, 5, 7, 8, 11q, filling in p2, 3, 12q. Let L be the resulting simpli-
cial complex. Then ZL is a 21-manifold.

Moreover, ZL has the cohomology of a connected sum of sphere products. To see this, by
construction of K in Example 3.3.6, all cup products of the classes supported by t1, 2, 3u,
t4, 5, 6u, t7, 8, 9u or t1, 4, 7u are trivial. Therefore using the proof of Proposition 3.4.11,
it is sufficient to check that there are no non-trivial maps

HkpLIq bH lpLJq ÝÑ Hk`l`1pLI\Jq “ Hr 5´k´lpLrms´pI\Jqq (3.16)

for k “ 1 and l “ 2, 3, or k “ l “ 2. We take cases to show that all such maps are trivial.
First, let Mk be the set of all missing k-faces of L. Then by construction of L,

M2 “ tp1, 2, 3q, p4, 5, 6q, p7, 8, 9q, p1, 4, 7qu

and we further compute M3 and M4 as

M3 “ tp8, 9, 12, 5q, p2, 3, 5, 6q, p8, 9, 12, 16q, p2, 3, 12, 6q, p8, 9, 4, 5q, p0, 16, 11, 12q,

p8, 1, 2, 7q, p9, 2, 3, 12q, p16, 2, 3, 12q, p3, 12, 5, 6q, p8, 9, 2, 12q, p9, 12, 5, 6qu,

M4 “ tp2, 3, 4, 8, 9q, p0, 1, 6, 11, 16q, p0, 1, 7, 11, 16q, p0, 4, 6, 11, 16q, p0, 4, 7, 11, 16qu.
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First consider k “ 1 and l “ 3. Then since 5´k´ l “ 1, it follows from (3.16) that I and
rms´pI\Jq must be distinct elements of tt1, 2, 3u, t4, 5, 6u, t7, 8, 9uu. Therefore rms´J

must be contained in one of tt1, 2, 3, 4, 5, 6u, t1, 2, 3, 7, 8, 9u, t4, 5, 6, 7, 8, 9uu. From the
table in Example 3.3.6 we conclude that

H lpLJq “ H3pLJq – H3

`

Lrms´J

˘

“ 0.

for any choice of J .

Now we turn to the cases k “ 1, l “ 2 and k “ l “ 2. We begin with the following claim.
Suppose that J is a subset of the vertex set of L. Then if |J | “ 5 and J contains either
0 or 11, or if |J | “ 6 and J contains both 0 and 11, then H2pLJq “ 0.

To see this, suppose that |J | “ 5 and contains the vertex 0, and suppose that LJ has
some minimal missing face, so that it is not contractible. Then by inspection the missing
faces of J are either one of the last four elements in M4, in which case H2pLJq “ 0, or
exactly one of the elements in M2 or M3, in which case LJ has a cone vertex and is
contractible. The case that J contains 11 instead is identical.

If instead |J | “ 6 and contains both 0 and 11, then the minimal missing faces of LJ are
either

• J itself;

• t0, 11, 12, 16u along with exactly one of the last four elements in M4;

• exactly two of the last four elements in M4;

• t0, 11, 12, 16u and either t8, 9, 12, 16u or t2, 3, 12, 16u;

• t1, 4, 7u, t0, 4, 7, 11, 16u and t0, 1, 7, 11, 16u;

• t4, 5, 6u and t0, 4, 6, 11, 16u;

• exactly one of those listed in M2,M3 or M4.

In all cases, a direct check gives that H2pLq “ 0. This establishes the claim.

Returning to the main claim, first suppose that k “ 1 and l “ 2, so that 5 ´ k ´ l “ 2.
Then since I is one of t1, 2, 3u, t4, 5, 6u, t7, 8, 9u, t1, 4, 7u, by the claim we must have that
either J “ t0, 11, 12, 16u or rms ´ pIYJq “ t0, 11, 12, 16u. In the first case, rms ´ pIYJq

is one of t4, 5, 6, 7, 8, 9u, t1, 2, 3, 7, 8, 9u, t1, 2, 3, 4, 5, 6u or t2, 3, 5, 6, 8, 9u, in which case
H2pLrms´pIYJqq “ 0 by the table in Example 3.3.6. In the second case, we similarly
obtain H2pLJq “ 0. Therefore all maps (3.16) are trivial.

The case k “ l “ 2 is dealt similarly, interchanging the roles of I and rms ´ pI Y Jq.
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Therefore since ZL is a manifold and all cohomology classes are torsion-free, the cohomo-
logy ring of ZL is that of a connected sum of sphere products. Specifically H˚pZLq is
isomorphic to

H˚
´

pS5 ˆ S16q#4#pS7 ˆ S14q#12#pS8 ˆ S13q#30#pS9 ˆ S12q#20#pS10 ˆ S11q#19
¯

.

On the other hand, ZL is not a connected sum of sphere products since the inclusion
K ÝÑ L implies the existence of a non-trivial triple Massey product in H˚pZLq. This
is the first known example of such a manifold in which the cohomology isomorphism is
not due to a homotopy equivalence. A previous claim for such an example was made
in [ALL07], but this was shown to be incorrect in [GdM13]. We conclude that the
cohomology ring is not a strong enough invariant to identify moment-angle manifolds as
connected sums of sphere products.
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Chapter 4

Relations among higher Whitehead
maps in polyhedral products

4.1 Introduction

The graded commutator
ra, bs “ ab´ p´1qdeg adeg bba

equips a graded algebra A with the structure of a graded quasi-Lie algebra, that is, the
commutator is a bilinear map satisfying graded skew symmetry

ra, bs “ ´p´1qdeg adeg brb, as (4.1)

and the graded Jacobi identity

p´1qdeg adeg cra, rb, css ` p´1qdeg adeg brb, rc, ass ` p´1qdeg b deg crc, ra, bss “ 0 (4.2)

for all a, b, c P A. A quasi-Lie algebra differs from a Lie algebra by demanding skew
symmetry (4.1) in place of the alternativity assumption ra, as “ 0. Therefore in a quasi-
Lie algebra the element ra, as is 2-torsion, if it does not vanish.

The question of whether an analogous structure exist in homotopy theory has existed
since the early 20th century. Let α P πppXq, β P πqpXq and γ P πrpXq for p, q, r ě 1.
The Whitehead product of α and β is an element of πp`q´1pXq defined by J. H. C.
Whitehead [Whi41], see Section 2.1.4. Whitehead showed that the operation

r¨, ¨s : πppXq ˆ πqpXq ÝÑ πp`q´1pXq

on homotopy groups is a bilinear operation which satisfies graded symmetry, that is,
rα, βs “ p´1qpqrβ, αs. The question of whether the Whitehead product satisfies the
Jacobi identity is non-trivial.
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Let θ : π˚pXq ÝÑ H˚´1pΩXq be the composite of the adjunction isomorphism π˚pXq ÝÑ

π˚´1pΩXq with the Hurewicz map, and let a, b, c be the images of α, β, γ under θ, respect-
ively. Using graded symmetry of the Whitehead product and the identity θprα, βsq “

p´1qp´1ra, bs of Samelson [Sam53], we compute that

p´1qp`q`r`1θpp´1qprrrα, βs, γs ` p´1qpqrrβ, γs, αs ` p´1qqrrrγ, αs, βsq “ 0

in H˚pΩXq. For p, q, r ě 2, proofs that this relation occurs on the level of homotopy
groups, that is that

p´1qprrrα, βs, γs ` p´1qpqrrβ, γs, αs ` p´1qqrrrγ, αs, βs “ 0 (4.3)

were initially given independently by Nakaoka–Toda [NT54] and Massey–Uehara [UM57],
almost 15 years after the definition of the Whitehead product.

It follows that the Whitehead product endows the direct sum
À

ně1 πnpXq with the
structure of a graded quasi-Lie algebra, when the grading is given by setting the degree
of πnpXq to be n ´ 1. Such structure is used, for example, by Hilton [Hil55] in giving a
decomposition of the loops on a wedge of spheres, and more generally by Milnor [Mil72]
of the loops on a wedge of suspension spaces, see also [Sel97, Theorem 7.9.4].

The study of Whitehead products in polyhedral product spaces was initiated by Grbić
and Theriault [GT16] to study the map ZK ÝÑ DJK in the homotopy fibration

ZK DJK
śm
i“1CP8.

Abramyan and Panov [AP19] give a systematic combinatorial analysis of these maps as
follows. Let K be a simplicial complex on rms for m ě 2 and recall that the Davis–
Januszkiewicz space DJK is the polyhedral product pCP8, ˚qK. For i “ 1, . . . ,m, let
µi : S

2
i ÝÑ CP8

i ÝÑ DJK be the inclusion of the bottom cell followed by the inclusion
of the ith coordinate of DJK. The Whitehead product of µi and µj , is the map

rµi, µjs : S
3 “ S1 ˚ S1 ÝÑ S2

i _ S2
j ÝÑ CP8

i _ CP8
j ÝÑ DJK _DJK

∇
ÝÝÑ DJK.

The structure of the polyhedral product allows for a generalisation of the Whitehead
product given by [AP19] as follows. Suppose that K contains B∆k´1 on vertex set
t1, . . . , ku Ď rms. The higher Whitehead map

hwpµ1, . . . , µkq : S2k´1 ÝÑ DJK

is the homotopy class of the composite

S2k´1 “

k

˚
i“1

S1 ÝÑ FW pS2
1 , . . . , S

2
kq ÝÑ FW pCP8

1 , . . . ,CP8
k q ÝÑ DJK
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where the first map is the restriction of the quotient map

D2 ˆ ¨ ¨ ¨ ˆD2 ÝÑ S2 ˆ ¨ ¨ ¨ ˆ S2

to
k

˚
i“1
S1 “

Ťk
i“1D

2
1 ˆ ¨ ¨ ¨ ˆ S1

i ˆ ¨ ¨ ¨ ˆ D2
k, and the last map is the map of polyhedral

products induced by the inclusion B∆k´1 ÝÑ K, see Proposition 2.5.3(ii). The authors
of [AP19] use the term higher Whitehead product for the above. We use the term higher
Whitehead map to avoid any confusion with the higher Whitehead product in the sense of
Porter [Por65], which is a higher topological operation with indeterminacy. In general,
the higher Whitehead map is an element of a higher Whitehead product, which can
contain multiple other non-homotopic elements.

Abramyan and Panov [AP19] also gave combinatorial conditions for the triviality of
higher Whitehead maps. By [AP19, Proposition 3.3] the map hwpµ1, . . . , µkq P π2k´1pDJKq

is trivial if and only if K contains the simplex ∆k´1.

The definition of the higher Whitehead map is readily iterated to give higher White-
head maps whose factors are higher Whitehead maps using the method of simplicial
substitution. Moreover the triviality of substituted higher Whitehead maps can again
be expressed combinatorially [AP19, Theorem 5.2]. As a particular case we have the
following. The Jacobi identity (4.3) gives a relation

hwphwpµ1, µ2q, µ3q ` hwphwpµ2, µ3q, µ1q ` hwphwpµ3, µ1q, µ2q “ 0

in which all terms are non-trivial if K does not contain any of the simplices p1, 2q, p2, 3q

or p1, 3q, or equivalently if K contains three disjoint points on vertices t1, 2, 3u as a full
subcomplex. Similarly, a result of Hardie [Har61, Theorem 2.3] gives a relation

k
ÿ

i“1

hwphwpµ1, . . . , µi´1, µi`1, . . . , µkq, µiq “ 0 (4.4)

in π2m´2pDJKq. We recognise that if K contains skk´3∆k´1 as a full subcomplex, then
every term is non-trivial.

We give a generalisation of the above on two fronts. First, we consider non-spherical
maps and define the higher Whitehead map hwpf1, . . . , fmq for any maps fi : ΣXi ÝÑ Yi

as a map

hwpf1, . . . , fmq :
m

˚
i“1

Xi ÝÑ FW pY1, . . . , Ymq.

In Corollary 4.2.11, for certain sets of maps tf1, . . . , fmu satisfying a modest homological
compatibility condition, we give a triviality result extending [AP19, Proposition 3.3].
We expand these results to consider higher Whitehead maps where each map fi is itself
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a higher Whitehead map, and in Theorem 4.2.20 give a full characterisation of trivi-
ality extending [AP19, Theorem 5.2], again for maps satisfying a certain compatibility
condition.

Second, we consider non-trivial relations between higher Whitehead maps. A k-partition
of the vertex set rms is a collection of disjoint subsets Π “ tI1, . . . , Iku whose union is
rms. Given such a partition for k ě 3, we define the identity complex KΠ on rms to
have minimal missing faces rms ´ Ij for j “ 1, . . . , k. We show that identity complexes
can also be obtained from skk´3∆k´1, which governed the form of relation (4.4), via
the method of simplicial composition. As a consequence, we show that the substituted
higher Whitehead maps

hw
`

hw
`

fj1 , . . . , fjri
˘

, fi1 , . . . , fini
˘

: Σm´2X1 ^ ¨ ¨ ¨ ^Xm ÝÑ pY , ˚qKΠ

are defined, where Ii “ ti1, . . . , iniu and rms ´ Ii “ tj1, . . . , jriu. In Theorem 4.3.7 we
give our main result generalising (4.4), which is that if each Xi is a suspension then there
is a relation

k
ÿ

i“1

hw
`

hw
`

fj1 , . . . , fjri
˘

, fi1 , . . . , fini
˘

˝ σi “ 0 (4.5)

in
“

Σm´2X1 ^ ¨ ¨ ¨ ^Xm, pY , ˚qKΠ
‰

, where

σi : Σ
m´2X1 ^ ¨ ¨ ¨ ^Xm ÝÑ Σri´2pXj1 ^ ¨ ¨ ¨ ^Xjri

q ˚Xi1 ˚ ¨ ¨ ¨ ˚Xini

is induced by a permutation of coordinates. Relation (4.5) also generalises the work
of Cohen [Coh57], who defined the Whitehead product in the case that the fi are not
assumed to be spherical and gave an appropriate Jacobi identity.

We extend our results by considering a novel approach to derive relations between White-
head products with some maps repeated. We define a folded higher Whitehead map by
composing the higher Whitehead map with a map from pY , ˚qKΠ into another polyhedral
product pY , ˚qK induced by an associative H-space structure on some of the Yi, which
we call a fold map. We establish that such fold maps are induced on polyhedral products
by simplicial maps KΠ ÝÑ K. Therefore composing the relations of Theorem 4.3.7 with
fold maps provides relations among folded higher Whitehead maps whose form is again
governed purely combinatorially. In particular, we give three families for which the com-
plex K is identified explicitly, and give the associated relations between folded higher
Whitehead maps.

To prove relation (4.5) we examine the original proofs of the Jacobi identity (4.3) of
Massey–Uehara [UM57] and Nakaoka–Toda [NT54]. The two proofs are very different
in character. Massey–Uehara analyse the homotopy groups of a wedge sum to deduce
that the three iterated Whitehead products in (4.3) are linearly dependent. Deciding the
coefficients is considerably more involved, requiring the use of the triple Massey product.
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Indeed, this problem was one of the motivating examples for the definition of the triple
Massey product. In general, higher Massey products can only be used to distinguish
iterated 2-fold Whitehead products. Therefore this method does not readily generalise
for our purposes.

Nakaoka–Toda approach the problem geometrically using techniques of relative homo-
topy theory and the relative Whitehead product of Blakers–Massey [BM53]. This ap-
proach is better suited to our geometric definition of the higher Whitehead map, and
we adapt this method, along with a similar one of Hardie [Har64], to cover the more
general form of higher Whitehead maps that we consider. In particular, we define the
relative higher Whitehead product and examine it through a long exact sequence of rel-
ative homotopy sets. The main difficulty of the generalisation is establishing the result
for non-spherical maps fi from an arbitrary suspension space, which we accomplish by
constructing decompositions of the join X1 ˚ ¨ ¨ ¨ ˚Xm.

For spherical maps fi : Sri ÝÑ Yi, relation (4.5) implies that the higher Whitehead map
endows the group

À

ně1 πn
`

pY , ˚qKΠ
˘

with the structure of an L8-algebra, also known
as a homotopy Lie algebra, extending the graded quasi-Lie algebra structure given by
the Whitehead product.

Acknowledgement and declaration

The material in this chapter was jointly produced with Matthew Staniforth, under the
supervision of Jelena Grbić. The development of the necessary tools to prove the main
Theorem 4.3.7, as well as its corollaries to folded maps, Theorems 4.4.5, 4.4.10 and 4.4.13
is my own work. The techniques used to define and analyse the triviality of higher
Whitehead maps and their folded versions were developed by Matthew Staniforth. The
presentation and contextualisation of all results given is my own.

4.2 The higher Whitehead map

In this section we define the higher Whitehead map and give some elementary properties.
We then define the substituted higher Whitehead map, a combinatorial generalisation of
the higher Whitehead map, for which each component map is itself a higher Whitehead
map. We build up to results giving classes of maps for which the triviality of the higher
and substituted higher Whitehead maps are determined purely combinatorially. Finally,
we define folded higher Whitehead maps, which are higher Whitehead maps composed
with a fold map induced by H-space structure in the codomain.
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4.2.1 Preliminaries

We begin by giving the definition of exterior Whitehead products due to Hardie [Har61],
on which our generalisation is based.

Let fi : Sri ÝÑ Yi be maps with ri ě 1 for i “ 1, . . . , k. Hardie [Har61] defined the
exterior Whitehead product, hereon called the higher Whitehead map, as follows. Let
r “ r1 ` ¨ ¨ ¨ ` rk and define the map

ρ : Sr´1 “

k

˚
i“1

Sri´1 “

m
ď

i“1

Dr1 ˆ ¨ ¨ ¨ ˆ Sri´1 ˆ ¨ ¨ ¨ ˆDrk ÝÑ FW pSr1 , . . . , Srkq

to be the restriction to the join of the product of quotient maps Dri ÝÑ Sri identify-
ing BDri “ Sri´1 to the basepoint. The higher Whitehead map of f1, . . . , fk, denoted
hwpf1, . . . , fkq, is the homotopy class of the composite

FW pf1, . . . , fkq ˝ ρ :
k

˚
i“1

Sri´1 ÝÑ FW pY1, . . . , Ykq. (4.6)

By [Har61], the map (4.6) depends only on the homotopy classes of the maps fi. There-
fore hwpf1, . . . , fkq is a well-defined element of πr´1pFW pY1, . . . , Ykqq.

The higher Whitehead map hwpf1, . . . , fkq is an element of a set of homotopy classes
of maps called the higher Whitehead product, a higher operation of homotopy groups
introduced by Porter in [Por65] given as follows.

Consider spaces X1, . . . , Xk, Y . Given maps fi : ΣXi ÝÑ Y for i “ 1, . . . , k, denote by

ωpf1, . . . , fkq “ tϕ : FW pΣX1, . . . ,ΣXkq ÝÑ Y | ϕ
ˇ

ˇ

ΣXi
» fi for i “ 1, . . . , ku

the set of extensions up to homotopy of
Žk
i“1 fi :

Žk
i“1ΣXi ÝÑ Y to FW pΣX1, . . . ,ΣXkq.

When k “ 2 an extension is uniquely given by the composite of f1 _ f2 with the fold
map ∇ : Y _ Y ÝÑ Y . When k ě 3 the cardinality of the set of extensions can be 0, 1,
finite, or even infinite.

The k-fold higher Whitehead product of the maps fi is the set of homotopy classes

rf1, ..., fks “ tϕ ˝ ρ | ϕ P ωpf1, . . . , fkqu Ď rX1 ˚ ¨ ¨ ¨ ˚Xk, Y s (4.7)

where

ρ : X1 ˚ ¨ ¨ ¨ ˚Xm “

k
ď

i“1

CX1 ˆ ¨ ¨ ¨ ˆXi ˆ ¨ ¨ ¨ ˆ CXk Ñ FW pΣX1, . . . ,ΣXkq (4.8)

is the restriction of the product of quotient maps CXi Ñ ΣXi.
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Returning to the map of Hardie (4.6), let Y “ FW pY1, . . . , Ykq and for fi : Sri ÝÑ Yi

denote by fip the composite of fi with the inclusion Yi ÝÑ FW pY1, . . . , Ykq. Then
FW pf1, . . . , fkq P ωpf̂1, . . . , f̂kq and therefore

hwpf1, . . . , fkq P rf1p , . . . , fkp s.

4.2.2 The higher Whitehead map

The higher Whitehead product (4.7) allows for the maps fi : ΣXi ÝÑ Yi to be non-
spherical, that is, the spaces Xi need not be spheres. This extends the generalised
Whitehead product of [Coh57, Ark62], which we studied in Section 2.1.4. In a similar
way, the higher Whitehead map of Hardie (4.6) also admits a generalisation to non-
spherical maps, as follows.

Definition 4.2.1. Let m ě 2. For i “ 1, . . . ,m, let fi : ΣXi ÝÑ Yi be maps and let

ρ :
m

˚
i“1

Xi ÝÑ FW pΣX1, . . . ,ΣXmq

be the map (4.8). The higher Whitehead map is the composite

hwpf1, . . . , fmq :
m

˚
i“1

Xi
ρ

ÝÝÑ FW pΣX1, . . . ,ΣXmq ÝÑ FW pY1, . . . , Ymq (4.9)

where the second map is induced by the maps fi : ΣXi ÝÑ Yi. The higher Whitehead
map of Hardie (4.6) is the special case that Xi is a sphere for all i.

The polyhedral product is a natural setting to study the higher Whitehead map. Let
pCX,Xq, and pY , ˚q denote the m-tuples of pairs tpCXi, Xiqumi“1 and tYi, ˚umi“1, respect-
ively. We first recall that

pCX,XqB∆m´1
“

m
ď

i“1

CX1 ˆ ¨ ¨ ¨ ˆ CXi´1 ˆXi ˆ CXi`1 ˆ ¨ ¨ ¨ ˆ CXm “

m

˚
i“1

Xi

and

pY , ˚qB∆m´1
“

m
ď

i“1

pY1 ˆ ¨ ¨ ¨ ˆ Yi´1 ˆ ˚ ˆ Yi`1 ˆ ¨ ¨ ¨ ˆ Ymq “ FW pY1, . . . , Ymq.

We freely interchange between the polyhedral product notation, on the left, and the
notation on the right, where which we use will depend on context. It is immediate
from the definition and Proposition 2.5.3(i) that hwpf1, . . . , fkq is the map of polyhedral
products

hwpf1, . . . , fmq : pCX,XqB∆m´1
ÝÑ pY , ˚qB∆m´1

(4.10)
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induced by maps of pairs pCXi, Xiq ÝÑ pYi, ˚q representing fi P rΣXi, Yis.

By homotopy invariance of the polyhedral product, the homotopy class of the second
map in (4.9), and thus the homotopy class of the higher Whitehead map, depends only
on the homotopy classes of the maps f1, . . . , fm.

The higher Whitehead map satisfies familiar properties of the Whitehead product. The
following three results establish that it is a multilinear map, which satisfies a generalisa-
tion of graded symmetry and naturality properties.

Proposition 4.2.2. Let fi : ΣXi ÝÑ Yi be maps for i “ 1, . . . ,m and for some j P

t1, . . . ,mu let f 1
j : ΣXj ÝÑ Yj. Then if Xj is a suspension,

hwpf1, . . . , fj ` f 1
j , . . . , fmq “ hwpf1, . . . , fj , . . . , fmq ` hwpf1, . . . , f

1
j , . . . , fmq. (4.11)

Proof. For i “ 1, . . . ,m write fi as a map fi : pCXi, Xiq ÝÑ pYi, ˚q and f 1
j as a map

f 1
j : pCXj , Xjq ÝÑ pYj , ˚q. Since Xj is a suspension we write

Xj “ ΣXr j “ C`Xr j Y C´Xr j .

Consider the composite

f : pCXj , Xjq ÝÑ pCXj Y
C`Xr j

CXj , C´Xr j Y
Xr j

C´Xr jq ÝÑ pYj , ˚q

where the first map is the aforementioned homotopy equivalence of pairs, and the second
is the map from the colimit Z determined by fj and f 1

j . Then f is homotopic to the sum
fj ` f 1

j .

Therefore hwpf1, . . . , fj ` f 1
j , . . . , fmq is the map of polyhedral products

pCX,XqB∆ » pCX 1, X 1qB∆ ÝÑ pY , ˚qB∆

induced by fi for i ‰ j and f , where pCX 1
i, X

1
iq “ pCXi, Xiq for i ‰ j and pCX 1

j , X
1
jq “

pCXj Y
C`Xr j

CXj , C´Xr j Y
Xr j

C´Xr jq.

On the other hand X1 ˚ ¨ ¨ ¨Xj´1 ˚X 1
j ˚Xj`1 ˚ ¨ ¨ ¨ ˚Xm decomposes as the union of two

copies of X1 ˚ ¨ ¨ ¨ ˚Xm which intersect in Z 1 “ CX1 ˆ¨ ¨ ¨ˆC`Xr j ˆ¨ ¨ ¨ˆCXm. Applying
the contraction Z 1 ÝÑ ˚ produces a homotopy from g to a map g1 such that g1pZ 1q “ ˚,
which represents the sum

hwpf1, . . . , fj , . . . , fmq ` hwpf1, . . . , f
1
j , . . . , fmq

and the result follows.

Proposition 4.2.3. Let fi : ΣXi ÝÑ Yi for i “ 1, . . . ,m, and let ρ : pi1, . . . , imq ÞÝÑ

p1, . . . ,mq be a permutation. Let Z be a space with maps ι : FW pY1, . . . , Ymq ÝÑ Z and
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ι1 : FW pYi1 , . . . , Yimq ÝÑ Z such that ι1pYij q “ ιpYρpijqq for j “ 1, . . . ,m. Define

hZwpf1, . . . , fmq “ ι ˝ hwpf1, . . . , fmq, hZwpfi1 , . . . , fimq “ ι1 ˝ hwpfi1 , . . . , fimq

and define a map σ : Xi1 ˚ ¨ ¨ ¨ ˚ Xim ÝÑ X1 ˚ ¨ ¨ ¨ ˚ Xm permuting coordinates as the
restriction of the product of maps CXij ÝÑ CXρpijq to the join. Then

hZwpfi1 , . . . , fimq “ hZwpf1, . . . , fmq ˝ σ (4.12)

and furthermore if Xi “ Spi´1 for i “ 1, . . . ,m then

hZwpfi1 , . . . , fimq “ ϵpρqhZwpf1, . . . , fmq (4.13)

where ϵpρq is the Koszul sign of ρ, that is, ϵpρq has a factor p´1qpipj for every transpos-
ition pi, jq of ρ.

Proof. Relation (4.12) follows from the definition of the higher Whitehead map. Rela-
tion (4.13) then follows since σ is then a map Sp1`¨¨¨`pm´1 ÝÑ Sp1`¨¨¨`pm´1 of degree
ϵpρq.

Example 4.2.4. If X1 “ Sp1´1 and X2 “ Sp2´1 are spheres and ρ is the permutation
p2, 1q ÝÑ p1, 2q then we recover the graded symmetry of the Whitehead product [Whi41],
namely

hZwpf2, f1q “ p´1qp1p2hZwpf1, f2q.

Proposition 4.2.5. Let fi : ΣXi ÝÑ Yi, gi : Yi ÝÑ Zi, and hi : Wi ÝÑ Xi for all
i “ 1, . . . ,m. Denote by g : pY , ˚qB∆m´1

ÝÑ pZ, ˚qB∆m´1 the induced map of polyhedral
products. Then

hwpg1 ˝ f1, . . . , gm ˝ fmq “ g ˝ hwpf1, . . . , fmq (4.14)

and

hwpf1 ˝ Σh1, . . . , fm ˝ Σhmq “ hwpf1, . . . , fmq ˝

m

˚
i“1

hi. (4.15)

Proof. Both statements follow immediately from functoriality of the polyhedral product
by viewing hwpf1, . . . , fmq as the map of polyhedral products (4.10).

We now consider when the map hwpf1, . . . , fmq is trivial. There is a homotopy cofibration

X1 ˚ ¨ ¨ ¨ ˚Xm FW pΣX1, . . . ,ΣXmq ΣX1 ˆ ¨ ¨ ¨ ˆ ΣXm
ρ

which is derived analogously to Proposition 2.1.6, see [Por65, Theorem 2.3]. Therefore
hwpf1, . . . , fmq “ FW pf1, . . . , fmq ˝ ρ is trivial if and only if there is a map ϕ : ΣX1 ˆ



88 Chapter 4. Relations among higher Whitehead maps in polyhedral products

¨ ¨ ¨ ˆΣXm ÝÑ FW pY1, . . . , Ymq extending FW pf1, . . . , fmq. In particular, if fi is trivial
for some i “ 1, . . . ,m, then ϕ can be chosen to be

f1 ˆ ¨ ¨ ¨ ˆ fm » f1 ˆ ¨ ¨ ¨ ˆ fi´1 ˆ ˚ ˆ fi`1 ˆ ¨ ¨ ¨ ˆ fm

and so hwpf1, . . . , fmq is trivial.

On the other hand, the higher Whitehead map hwpf1, . . . , fmq can be trivial even when
the maps fi are not. For example, let f1 : ΣMpZ2, 1q ÝÑ Y1 and f2 : ΣMpZ3, 1q ÝÑ Y2 be
non-trivial, where MpG,nq is the Moore space with reduced homology G concentrated in
degree n. Then MpZ2, 1q ^MpZ3, 1q is simply-connected and moreover, by the Künneth
formula (2.3), has trivial homology in all positive degrees. Therefore it is contractible by
Whitehead’s theorem. In particular, the domain of the higher Whitehead map

hwpf1, f2q : ΣMpZ2, 1q ^MpZ3, 1q ÝÑ Y1 _ Y2

is contractible, so hwpf1, f2q is trivial.

We give conditions on the maps fi : ΣXi ÝÑ Yi which ensure that hwpf1, . . . , fmq is
non-trivial. Let f̂ i : Xi ÝÑ ΩYi be the adjoint to fi for i “ 1, . . . ,m.

Lemma 4.2.6. The higher Whitehead map hwpf1, . . . , fmq is trivial if and only if the
map

f̂1 ˚ ¨ ¨ ¨ ˚ f̂m : X1 ˚ ¨ ¨ ¨ ˚Xm ÝÑ ΩY1 ˚ ¨ ¨ ¨ ˚ ΩYm

is trivial.

Proof. Consider the following diagram

śm
i“1ΩYi ΩY1 ˚ ¨ ¨ ¨ ˚ ΩYm FW pY1, . . . , Ymq

śm
i“1 Yi

X1 ˚ ¨ ¨ ¨ ˚Xm
śm
i“1CXi

˚ ι

hwpf1,...,fmq
f̂1˚¨¨¨˚f̂m

θ (4.16)

where the top row is homotopy fibration sequence (2.15) for K “ B∆m´1. By definition,
the map hwpf1, . . . , fmq factors through the restriction of the map

ρ : CX1 ˆ ¨ ¨ ¨ ˆ CXm ÝÑ ΣX1 ˆ ¨ ¨ ¨ ˆ ΣXm

to the join X1 ˚ ¨ ¨ ¨ ˚ Xm. Therefore the square in the diagram commutes, where θ “

f1 ˆ ¨ ¨ ¨ ˆ fm ˝ ρ, so the composite ι ˝hwpf1, . . . , fmq is trivial. Hence there is the dashed
lift to the homotopy fibre of ι given by f̂1 ˚ ¨ ¨ ¨ ˚ f̂m. Therefore if f̂1 ˚ ¨ ¨ ¨ ˚ f̂m is trivial,
so is hwpf1, . . . , fmq.
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On the other hand, if hwpf1, . . . , fmq is trivial there is a further lift X1 ˚ ¨ ¨ ¨ ˚ Xm ÝÑ

ΩY1 ˆ ¨ ¨ ¨ ˆΩYm. Then f̂1 ˚ ¨ ¨ ¨ ˚ f̂m factors through the trivial map ΩY1 ˆ ¨ ¨ ¨ ˆΩYm ÝÑ

ΩY1 ˚ ¨ ¨ ¨ ˚ ΩYm, so is itself trivial.

A homological condition which gives f̂1 ˚ ¨ ¨ ¨ ˚ f̂m non-trivial is the following.

Definition 4.2.7. Let fi : ΣXi ÝÑ Yi be maps for i “ 1, . . . ,m. Let f̂ i : Xi ÝÑ ΩYi be
the adjoint to fi for i “ 1, . . . ,m. We say that the maps fi are compatible if for each
i “ 1, . . . ,m the induced map

pf̂ iq˚ : HnipXiq ÝÑ HnipΩYiq

is non-trivial for some ni ą 0, and moreover the tensor productsHn1pX1qb¨ ¨ ¨bHnmpXmq

and Hn1pΩY1q b ¨ ¨ ¨ bHnmpΩYmq are non-trivial.

The conditions on the tensor products are automatically satisfied if, for example, the
groups HnipXiq and HnipΩYiq contain a Z summand for each i “ 1, . . . ,m.

Example 4.2.8. (i) The maps f1 : ΣMpZ2, 1q ÝÑ Y1 and f2 : ΣMpZ3, 1q ÝÑ Y2 are
not compatible since H1pMpZ2, 1qq “ Z2, while H1pMpZ3, 1qq “ Z3 and Z2 bZ3 “

0.

(ii) The maps µi : S2 ÝÑ CP8 are compatible since µ̂i : S1 ÝÑ ΩCP8 “ S1 induces
a non-trivial map on H1 between Z summands.

(iii) For ni ě 2, the identity maps fi : MpZpi , niq ÝÑ MpZpi , niq are compatible if
gcdpp1, . . . , pmq ą 1.

Lemma 4.2.9. Suppose that f1, . . . , fm are compatible. Then the map

f̂1 ˚ ¨ ¨ ¨ ˚ f̂m : X1 ˚ ¨ ¨ ¨ ˚Xm ÝÑ ΩY1 ˚ ¨ ¨ ¨ ˚ ΩYm

is non-trivial.

Proof. Let N “ n1 ` ¨ ¨ ¨ ` nm. Then by the Künneth Theorem (2.1) and the conditions
on HnipXiq, the group HN pX1 ^ ¨ ¨ ¨ ^Xmq contains

Hn1pX1q b ¨ ¨ ¨ bHnmpXmq

as a non-trivial summand, and similarly for HN pΩY1 ^ ¨ ¨ ¨ ^ ΩYmq. Moreover the map

pf̂1q˚ b ¨ ¨ ¨ b pf̂mq˚ : Hn1pX1q b ¨ ¨ ¨ bHnmpXmq ÝÑ Hn1pΩY1q b ¨ ¨ ¨ bHnmpΩYmq

is non-trivial by assumption. Therefore by naturality of the sequence (2.1), the map

HN pX1 ^ ¨ ¨ ¨ ^Xmq ÝÑ HN pΩY1 ^ ¨ ¨ ¨ ^ ΩYmq



90 Chapter 4. Relations among higher Whitehead maps in polyhedral products

is non-trivial. Therefore the map

HN`m´1pX1 ˚ ¨ ¨ ¨ ˚Xmq
–

ÝÝÑ HN`m´1pΣm´1X1 ^ ¨ ¨ ¨ ^Xmq

–
ÝÝÑ HN pX1 ^ ¨ ¨ ¨ ^Xmq

ÝÑ HN pΩY1 ^ ¨ ¨ ¨ ^ ΩYmq

–
ÝÝÑ HN`m´1pΣm´1ΩY1 ^ ¨ ¨ ¨ ^ ΩYmq

–
ÝÝÑ HN`m´1pΩY1 ˚ ¨ ¨ ¨ ˚ ΩYmq

is also non-trivial. The claim follows.

Putting the above together we have established the following.

Theorem 4.2.10. Let fi : ΣXi ÝÑ Yi be maps for i “ 1, . . . ,m. Then the higher
Whitehead map

hwpf1, . . . , fmq :
m

˚
i“1

Xi ÝÑ FW pY1, . . . , Ymq

is trivial if fi is trivial for some i “ 1, . . . ,m, and non-trivial if the maps f1, . . . , fm are
compatible.

We rephrase the previous result in the following combinatorial way, which will be useful
when considering generalisations of the higher Whitehead map.

Corollary 4.2.11. Let K be a simplicial complex which contains B∆m´1. Let hKwpf1, . . . , fmq

denote the composite of hwpf1, . . . , fmq with the map ι : pY , ˚qB∆ ÝÑ pY , ˚qK induced by
the inclusion B∆m´1 ÝÑ K. Then if f1, . . . , fm are compatible, the map hKwpf1, . . . , fmq

is trivial if and only if K contains ∆m´1.

Proof. Suppose that K contains ∆m´1. Then hKwpf1, . . . , fmq “ ι ˝ hwpf1, . . . , fmq is
trivial by the right-hand square of diagram (4.16) since pY , ˚qK contains Y1 ˆ ¨ ¨ ¨ ˆ Ym.
Conversely, if K does not contain ∆m´1, then the full subcomplex of K on rms is B∆m´1,
and the result follows by Theorem 4.2.10.

Before exemplifying our results, we relate the higher Whitehead map to the higher White-
head product of Porter [Por65].

Proposition 4.2.12. Denote by ιi : Yi ÝÑ FW pY1, . . . , Ymq the inclusion of Yi into the
ith coordinate. Then the higher Whitehead map is an element of the higher Whitehead
product

hwpf1, . . . , fmq P rι1 ˝ f1, . . . , ιm ˝ fms.

Proof. This is immediate from the definitions of the higher Whitehead map and higher
Whitehead product since the map FW pf1, . . . , fkq is an extension of the wedge of maps
f1, . . . , fk.
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Example 4.2.13. For m ě 2, let µi : S2 ÝÑ CP8 be cellular inclusions for i “ 1, . . . ,m.
Then since the µi are compatible, the map

hwpµ1, . . . , µmq : S2m´1 ÝÑ FW pCP8, . . . ,CP8q

is non-trivial by Theorem 4.2.10. Furthermore, the map hwpµ1, . . . , µmq is an element of
the higher Whitehead product rι1 ˝ µ1, . . . , ιm ˝ µms by Proposition 4.2.12.

In this case, this higher Whitehead product contains only hwpµ1, . . . , µmq. To see this, by
a result of Porter [Por65, Theorem 2.7], the higher Whitehead product rι1˝µ1, . . . , ιm˝µms

is non-empty if and only if all subproducts rιi1 ˝µi1 , . . . , ιim´1 ˝µim´1s, for ti1, . . . , im´1u

an ordered subset of t1, . . . ,mu, contain the trivial map; and moreover any element
of rι1 ˝ µ1, . . . , ιm ˝ µms is determined by choices of null-homotopy of the trivial maps
in the length pm ´ 1q subproducts. Working inductively, suppose each length pm ´ 1q

subproduct rιi1 ˝ µi1 , . . . , ιim´1 ˝ µim´1s contains only hwpµi1 , . . . , µim´1q, which is trivial
by Corollary 4.2.11 since K “ B∆m´1 contains the simplex pi1, . . . , im´1q. Then any
choice of null-homotopy of hwpµi1 , . . . , µim´1q P π2m´1pFW pCP8

i1
, . . . ,CP8

im´1
qq is an

element of the relative homotopy group

π2m

´

CP8
i1 ˆ ¨ ¨ ¨ ˆ CP8

im´1
, FW

´

CP8
i1 , . . . ,CP

8
im´1

¯¯

.

Then since CP8
i1

ˆ¨ ¨ ¨ˆCP8
im´1

has trivial homotopy groups above dimension 2, the long
exact sequence of Proposition 2.1.3(i) implies that the above relative homotopy group
is isomorphic to π2m´1pFW pCP8

i1
, . . . ,CP8

im´1
qq. Therefore there is a unique choice of

null-homotopy for the trivial map hwpµi1 , . . . , µim´1q and the claim follows.

In Example 4.2.23, we use the higher Whitehead map to construct higher Whitehead
products with non-trivial indeterminacy, that is, higher Whitehead products which con-
tain more than one homotopy class of maps.

4.2.3 The higher Whitehead map with substitution

Viewing the higher Whitehead map as the map of polyhedral products (4.10) readily
leads to a much wider class of higher Whitehead maps whose triviality can be controlled
combinatorially. We begin with a motivating example.

Example 4.2.14. Let Y1 and Y2 be spaces and suppose that Y3 “ Y31 _ Y32 for
spaces Y31 and Y32 . Consider maps fi : ΣXi ÝÑ Yi for i P t1, 2, 31, 32u and define
f3 “ hwpf31 , f32q : ΣX3 ÝÑ Y3 where X3 “ X31 ^X32 .

Consider the higher Whitehead map

hwpf1, f2, f3q : X1 ˚X2 ˚X3 ÝÑ FW pY1, Y2, Y3q.
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We rewrite the fat wedge FW pY1, Y2, Y3q as a different polyhedral product which expli-
citly sees the codomain Y31 _ Y32 of f3 as follows. Using the definition of the fat wedge
we decompose

FW pY1, Y2, Y3q “ FW pY1, Y2, Y31 _ Y32q

“ pY1 ˆ Y2 ˆ ˚q Y p˚ ˆ Y2 ˆ pY31 _ Y32qq Y pY1 ˆ ˚ ˆ pY31 _ Y32qq.

Writing Y31 _ Y32 “ pY31 ˆ ˚q Y p˚ ˆ Y32q and viewing its basepoint as the product of
basepoints of Y31 and Y32 we obtain

pY1 ˆ Y2 ˆ ˚ ˆ ˚q Y p˚ ˆ Y2 ˆ Y31 ˆ ˚q Y p˚ ˆ Y2 ˆ ˚ ˆ Y32q

Y pY1 ˆ ˚ ˆ Y31 ˆ ˚q Y pY1 ˆ ˚ ˆ ˚ ˆ Y32q

which is the polyhedral product pY , ˚qK where pY , ˚q “ tpYi, ˚iqui for i P t1, 2, 31, 32u

and K is the following simplicial complex

31

2

1

32

The complex K is an example of a substitution complex, which are studied extensively
in [AP19]. It carries not only the structure of the boundary simplex B∆r1, 2, 3s required
to define hwpf1, f2, f3q, as seen by the missing faces p1, 2, 31q and p1, 2, 32q, but also carries
as a full subcomplex the boundary B∆r31, 32s defining f3 “ hwpf31 , f32q. Our subsequent
analysis will show how the combinatorial conditions of Theorem 4.2.10 controlling the
triviality of hwpf1, f2, f3q and hwpf31 , f32q amalgamate to give combinatorial conditions
controlling the triviality of the nested higher Whitehead map hwpf1, f2, hwpf31 , f32qq.

We first define substitution complexes as a special case of the more general polyhedral
join product. A simplicial pair pS, T q consists of simplicial complexes S and T both with
vertex set rls such that T is a subcomplex of S.

Definition 4.2.15. Let K be a simplicial complex on rms, and let pSi, Tiq be a simplicial
pair on rlis for i “ 1, . . . ,m. Let pS, T q “ tpSi, Tiqumi“1 be an m-tuple of simplicial pairs.
The polyhedral join product is the simplicial complex on vertex set rl1s\¨ ¨ ¨\rlms defined
by

pS, T q˚K “
ď

σPK
pS, T q˚σ Ď

m

˚
i“1

Si, where pS, T q˚σ “

m

˚
i“1

Yi, Yi “

$

&

%

Si for i P σ

Ti for i R σ.



4.2. The higher Whitehead map 93

If Ti “ tHu for all i, then the polyhedral join pS, tHuq˚K is called the substitution of
S1, ...,Sm into K, and denoted by KxS1, ...,Smy, see [AP19]. If Si “ ∆li´1 for all i, then
p∆li´1, T q˚K is called the composition of K with T1, ..., Tm, and denoted by KpT1, ..., Tmq,
see [Ayz13]. In the case that K “ ∆m´1 or K “ B∆m´1, we suppress notation by de-
noting the corresponding substitution complexes by ∆xS1, . . . ,Smy and B∆xS1, . . . ,Smy,
respectively, and adopt the similar abbreviation for composition complexes. We observe
that for any simplicial complex K, Kx‚, . . . , ‚y “ K “ Kp˝, . . . , ˝q, where ˝ denotes the
empty complex on a single vertex.

The polyhedral join product is functorial with respect to simplicial inclusions K ÝÑ L,
up to how K sits inside L, and maps of pairs of simplicial complexes.

It was proven by Vidaurre [Vid17, Theorem 2.9] that the polyhedral join product and
the polyhedral product are related in the following way

pX,AqpS,T q˚K
“

´

pX,Aq
Si , pX,Aq

Ti
¯K

. (4.17)

where on the right hand side of the equality, we abbreviate notation by using X to denote
the tuple corresponding to the vertex set of Ki and Li, for each i. This formalises the
calculation of Example 4.2.14.

We will return to composition complexes when we consider relations among higher White-
head maps. For now, we continue to build towards the definition of substituted White-
head maps.

Example 4.2.16. Continuing Example 4.2.14, the simplicial complex K is the substitu-
tion complex

K “ B∆x‚1, ‚2, B∆x‚31 , ‚32yy.

Therefore the higher Whitehead map hwpf1, f2, f3q : X1 ˚X2 ˚X3 ÝÑ FW pY1, Y2, Y3q is
the same as the higher Whitehead map

hwpµ1, µ2, hwpµ31 , µ32qq : X1 ˚X2 ˚ pX31 ^X32q ÝÑ pY , ˚qK.

We are therefore led to define substituted higher Whitehead maps as follows.

Definition 4.2.17. Let K1, . . . ,Km be simplicial complexes on rl1s, . . . , rlms, respect-
ively, and let fi : ΣXi ÝÑ pY , ˚qKi be maps for i “ 1, . . . ,m. Then the substituted higher
Whitehead map hwpf1, . . . , fmq is given by the composite

hwpf1, . . . , fmq : pCX,XqB∆ ÝÑ ppY , ˚qKi , ˚qB∆ “ pY , ˚qB∆xK1,...,Kmy.
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If K is a simplicial complex such that B∆xK1, . . . ,Kmy Ď K, we define hKwpf1, . . . , fmq to
be the composite

hKwpf1, . . . , fmq : pCX,XqB∆m´1
ÝÑ pY , ˚qB∆xK1,...,Kmy ÝÑ pY , ˚qK (4.18)

where the first map is hwpf1, . . . , fmq and the second map is induced by the inclusion
B∆xK1, . . . ,Kmy ÝÑ K.

Example 4.2.18. A special case of substituted higher Whitehead maps that we consider
are nested higher Whitehead map, defined as follows.

A nested higher Whitehead map of depth 0 is any map f : ΣX ÝÑ Y . A nested higher
Whitehead map of depth n ě 1 is a higher Whitehead map of maps f1, . . . , fm, where
each fi is a nested higher Whitehead map of depth at most n´1, with the depth of some
fi equal to n´ 1.

Moreover, to a nested higher Whitehead map we associate a defining complex K as
follows. For a higher Whitehead map of depth 0 we set K “ ‚. Then to a nested higher
Whitehead map hwpf1, . . . , fmq of depth n ě 1 we set K “ B∆xL1, . . . ,Lmy, where Li is
the defining complex of fi for each i “ 1, . . . ,m.

We consider when substituted higher Whitehead maps are trivial, before specialising
to nested higher Whitehead maps. It follows from (4.17) that if there exists i “

1, . . . ,m such that Ki has at least two vertices, there exist complexes K such that
B∆xK1, . . . ,Kmy Ĺ K Ĺ ∆xK1, . . . ,Kmy. We characterise when the composite

hKwpf1, . . . , fmq :
m

˚
i“1

Xi
hw

ÝÝÑ pY , ˚qB∆xK1,...,Kmy ÝÑ pY , ˚qK (4.19)

is trivial in terms of the combinatorics of K.

We introduce the following terminology. Given a map f : ΣX ÝÑ pY , ˚qK which is non-
trivial, then for a simplicial complex K1 on rms such that K Ď K1, if the composite
f 1 : ΣX ÝÑ pY , ˚qK ÝÑ pY , ˚qK

1 is trivial, we say that K1 is a trivialising complex for f .

Proposition 4.2.19. Let K be a complex on rl1s\¨ ¨ ¨\rlms such that B∆xK1, . . . ,Kmy Ď

K. For all i “ 1, . . . ,m, suppose that fi : ΣXi ÝÑ pY i, ˚qKi . Then hKwpf1, . . . , fmq is
trivial if at least one of the following is satisfied:

(i) the map fi : ΣXi ÝÑ pY i, ˚qKi is trivial for some i “ 1, . . . ,m;

(ii) ∆xK1, . . . ,Kmy Ď K;

(iii) K contains B∆xK1, . . . ,K1
i, . . . ,Kmy, where K1

i is a trivialising complex for fi for
some i “ 1, . . . ,m.
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Moreover, if (i) and (iii) are not satisfied and the fi are compatible, the map hKwpf1, . . . , fmq

is trivial if and only if K contains ∆xK1, . . . ,Kmy.

Proof. First we show that if any of (i) – (iii) hold, then hKwpf1, . . . , fmq is trivial. If either
(i) or (ii) hold, then this is immediate from Theorem 4.2.10.

Alternatively, if (iii) holds, then there is a map fi : ΣXi ÝÑ pY , ˚qKi such that the com-
posite f 1

i : ΣXi ÝÑ pY , ˚qKi ÝÑ pY , ˚qK
1
i is trivial. Then by naturality of the polyhedral

product we have
hKwpf1, . . . , fmq “ hKwpf1, . . . , f

1
i , . . . , fmq

where the latter is trivial by Theorem 4.2.10.

For the second claim, if neither (i) nor (iii) hold and the fi are compatible, then by
Corollary 4.2.11 we conclude that since

hwpf1, . . . , fmq :
m

˚
i“1

Xi ÝÑ ppY , ˚qKi , ˚qB∆ “ pY , ˚qB∆xK1,...,Kmy

is non-trivial, then ∆xK1, . . . ,Kmy Ď K, as claimed.

We now specialise to the case that the maps fi are nested higher Whitehead maps. In
this case the triviality of hwpf1, . . . , fmq can be determined combinatorially provided that
all the maps used to build f1, . . . , fm are compatible.

Theorem 4.2.20. Suppose that gij : ΣXi ÝÑ Yi are compatible maps for i “ 1, . . . ,m

and j “ 1, . . . , ki. Let fi “ hwpgi1 , . . . , giki q and let Ki be the defining complex for fi.
Then if K is a simplicial complex on rl1s \ ¨ ¨ ¨ \ rlms containing B∆xK1, . . . ,Kmy which
does not contain B∆xK1, . . . ,K1

i, . . . ,Kmy for any trivialising complex K1
i of fi, then

hKwpf1, . . . , fmq :
m

˚
i“1

pΣki´2Xi1 ^ ¨ ¨ ¨ ^Xiki
q ÝÑ pY , ˚qK

is trivial if and only if K contains ∆xK1, . . . ,Kmy.

Proof. This will follow immediately from Proposition 4.2.19 once we show that the maps
fi are compatible. More generally, let gi : ΣXi ÝÑ Yi for i “ 1, . . . ,m be compatible
maps, where ĝi : Xi ÝÑ ΩYi induces a non-trivial map HnipXiq ÝÑ HnipΩYiq for ni ą 0.
Then there is a commutative diagram

HN`m´2pΣm´2X1 ^ ¨ ¨ ¨ ^Xmq HN`m´2pΩpΩY1 ˚ ¨ ¨ ¨ ˚ ΩYmqq

HN`m´1pΣm´1X1 ^ ¨ ¨ ¨ ^Xmq HN`m´1pΩY1 ˚ ¨ ¨ ¨ ˚ ΩYmq
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where N “ n1 ` ¨ ¨ ¨ ` nm, the left map is an isomorphism, the bottom map is induced
by ĝ1 ˚ ¨ ¨ ¨ ˚ ĝm, the top map induced by its adjoint and the right map is the homology
suspension, see [Whi55]. By the proof of Lemma 4.2.9, since the gi are compatible,
the composite around the bottom of the square is non-trivial. Therefore the composite
around the top of the square is non-trivial, and in particular the map

HN`m´2pΣm´2X1 ^ ¨ ¨ ¨ ^Xmq ÝÑ HN`m´2pΩpΩY1 ˚ ¨ ¨ ¨ ˚ ΩYmq

is non-trivial.

Therefore using decomposition (2.16)

ΩFW pY1, . . . , Ymq » ΩpΩY1 ˚ ¨ ¨ ¨ ˚ ΩYmq ˆ

m
ź

i“1

ΩYi

we conclude that

ĥ˚ : HN`m´2pΣm´2X1 ^ ¨ ¨ ¨ ^Xmq ÝÑ HN`m´2pΩpΩY1 ˚ ¨ ¨ ¨ ˚ ΩYmq

ÝÑ HN`m´2pΩFW pY1, . . . , Ymqq

is non-trivial. Therefore the adjoint of hwpg1, . . . , gmq induces a non-trivial map in homo-
logy. Moreover, the Künneth Theorem (2.1) and the conditions onHnipXiq andHnipΩYiq

ensure that the domain and codomain of ĥ˚ also satisfy the non-vanishing conditions of
compatibility.

Before giving some examples of Theorem 4.2.20, we observe that the higher Whitehead
map hKwpf1, . . . , fmq is an element of a certain higher Whitehead product. We exploit
this fact firstly in constructing non-trivial elements of certain higher Whitehead products,
and secondly in constructing an infinite family of trivial higher Whitehead products with
non-trivial indeterminacy.

Proposition 4.2.21. Let K be a complex on rl1s\¨ ¨ ¨\rlms such that B∆xK1, . . . ,Kmy Ď K.
Then

hKwpf1, . . . , fmq P rfK1 , . . . , f
K
ms

where fKi : ΣXi ÝÑ pY , ˚qK denotes the composite of fi with the map of polyhedral
products pY , ˚qKi ÝÑ pY , ˚qK induced by the simplicial inclusion Ki ÝÑ K.

Proof. The following diagram commutes

Žm
i“1ΣXi pΣX, ˚q‚m´1

pY , ˚q‚m´1
pY , ˚qK

FW pΣX1, . . . ,ΣXmq pΣX, ˚qB∆m´1
pY , ˚qB∆m´1

pY , ˚qK
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by naturality of the polyhedral product with respect to simplicial inclusions and con-
tinuous maps of pairs. The map hKwpf1, . . . , fmq is the composite of ρ : X1 ˚ ¨ ¨ ¨ ˚Xm ÝÑ

FW pΣX1, . . . ,ΣXmq with the bottom row of the diagram, while the composite along
the top row is the map

Žm
i“1 f

K
i . Therefore hKwpf1, . . . , fmq is the composite of ρ with an

extension of the map
Žm
i“1 f

K
i to FW pΣX1, . . . ,ΣXmq.

Example 4.2.22. Let K1 “ K2 “ ‚ and let K3 “ ‚r31,32s. Let fi : ΣXi ÝÑ Yi be com-
patible maps for i P t1, 2, 31, 32u. Let Y3 “ Y31 _ Y32 and define f3 “ hwpf31 , f32q : X31 ˚

X32 ÝÑ Y3. Let K “ B∆xK1,K2,K3y and consider the complexes L1 “ K Y ∆r31, 32s,
L2 “ K Y ∆r1, 2, 31s Y ∆r1, 2, 32s and L3 “ K Y ∆r1, 31, 32s Y ∆r2, 31, 32s.

Consider the map

hLiw pf1, f2, hwpf31 , f32qq : X1 ˚X2 ˚X3 ÝÑ pY , ˚qB∆xK1,K2,K3y ÝÑ pY , ˚qLi

for i “ 1, 2, 3. By Theorem 4.2.20, this map is trivial for i “ 2 since L2 “ ∆xK1,K2,K3y,
and also trivial for i “ 3 since ∆r31, 32s is a trivialising complex for f3 “ hwp31, 32q and
L3 “ B∆xK1,K2,∆r31, 32sy. For i “ 1, on the other hand, notice that ∆r31, 32s is the
only trivialising complex for hwpf31 , f32q on the vertex set t31, 32u by Corollary 4.2.11.
Therefore since the substitution complex B∆xK1,K2,∆r31, 32sy is not contained in L1,
condition (iii) of Theorem 4.2.20 is not satisfied. Therefore since the fi are compatible
and L1 does not contain ∆xK1,K2,K3y, then hL1

w pf1, f2, hwpf31 , f32qq is non-trivial.

Moreover, using Proposition 4.2.21 we have that hLiw pf1, f2, hwpf31 , f32qq is a non-trivial
element of the higher Whitehead product

”

fLi1 , fLi2 , hLiw pf31 , f32q

ı

for i “ 1, while it is a trivial element for i “ 2, 3.

In general, the higher Whitehead product rfK1 , . . . , f
K
ms can contain many more elements

than just hKwpf1, . . . , fmq. If this is the case, the higher Whitehead product is said to
have non-trivial indeterminacy. In the following example, we construct an infinite family
of higher Whitehead products with non-trivial indeterminacy.

Example 4.2.23. Let p ě 2 and q ě 3, K1 “ B∆p´1 and for all 2 ď i ď q, let Ki “ ‚.
Define a complex K on rp` q ´ 1s by

K “ B∆q´1xK1, . . . ,Kqy Y ∆r1, . . . , ps

“ B∆q´1xB∆r1, . . . , ps, p` 1, . . . , p` q ´ 1y Y ∆r1, . . . , ps.

For i “ 1, . . . , p, let f1i : ΣX1i ÝÑ pY 1i , ˚qK1i be non-trivial, and let f1 “ hB∆
w pf11 , . . . , f1pq.

For i “ 2, . . . , q, let fi : ΣXi ÝÑ pY i, ˚qKi be non-trivial. By Proposition 4.2.21, the map
hKwpf1, . . . , fqq is an element of the higher Whitehead product rfK1 , . . . , f

K
q s.
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Since K contains ∆r1, . . . , ps, the map fK1 is trivial. Therefore rfK1 , . . . , f
K
q s contains a

trivial element by [Por65, Theorem 2.4]. On the other hand, if all the fi are compatible,
then by Theorem 4.2.20, the map hKwpf1, . . . , fqq is non-trivial since K contains neither
∆q´1xB∆r1, . . . , ps, p ` 1, . . . , p ` q ´ 1y nor B∆q´1x∆r1, . . . , ps, p ` 1, . . . , p ` q ´ 1y.
We therefore obtain that the higher Whitehead product rfK1 , . . . , f

K
q s has non-trivial

indeterminacy.

The case where p “ q “ 3 was considered in [AP19] in the case that fi “ µi : S
2 ÝÑ CP8

for each i. In particular it was observed that there is a map S10 ÝÑ pCP8, ˚qK “ DJK

which is not an element of a non-trivial higher Whitehead product. Our results show
that this composite is the higher Whitehead map hKwpf1, . . . , fqq, which is a non-trivial
element of the trivial higher Whitehead product rfK1 , . . . , f

K
q s.

4.2.4 The folded higher Whitehead map

Let fi : ΣXi ÝÑ Y for i “ 1, 2. The composite of the higher Whitehead map

hwpf1, f2q : X1 ˚X2 ÝÑ ΣX1 _ ΣX2 ÝÑ Y _ Y.

with the fold map ∇ : Y _ Y ÝÑ Y is the Whitehead product rf1, f2s P rX1 ˚ X2, Y s.
Determining whether such a Whitehead product is trivial or not is a classical problem,
whose solution depends upon internal properties of the spaces in question, see [Mah65],
for example.

In the case that Y is an H-space, the Whitehead product rf1, f2s factors through the
map

ΣX1 ˆ ΣX2
f1ˆf2

ÝÝÝÝÑ Y ˆ Y
µ

ÝÝÑ Y

where µ : Y ˆ Y ÝÑ Y is the H-multiplication map on Y . Therefore rf1, f2s is trivial,
since it factors through ΣX1ˆΣX2, which is the homotopy cofibre of the mapX1˚X2 ÝÑ

ΣX1 _ ΣX2 by Proposition 2.1.6.

Let K be a simplicial complex on the vertex set rls “ rl1s \ ¨ ¨ ¨ \ rlms and consider a
substituted higher Whitehead map of the form

hKwpf1, . . . , fmq :
m

˚
i“1

Xi ÝÑ pY , ˚qK

as defined in (4.19). Suppose that there is an associative H-space Y and I Ď rls such
that Y “ Yi for all i P I. Then we use the H-space structure to construct a map of
polyhedral products

∇ : pY , ˚qK ÝÑ pY , ˚qK (4.20)

which generalises the H-multiplication map Y ˆ Y ÝÑ Y above, where K is a simplicial
complex on rls ´ I. We call such a map a fold map of polyhedral products. In this setup,
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the Whitehead product rf1, f2s is then the composite ∇˝hwpf1, f2q, with K a 1-simplex,
K a single vertex, and Y1 “ Y2 “ Y an H-space.

The main result of this section is specifying combinatorial conditions on K for the trivi-
ality of ∇ ˝ hKwpf1, . . . , fmq

We begin by defining a fold of a simplicial complex.

Definition 4.2.24. A fold of a vertex set rms consists of disjoint subsets I, J Ď rms and
a surjective map ψ : I ÝÑ J . Given a fold ψ : I ÝÑ J of rms we denote Ij “ ψ´1pjq for
each j P J , so that I “

Ů

jPJ Ij .

Let K be a simplicial complex on rms. A fold ψ : I ÝÑ J of rms extends to a map on
K by sending a simplex pi1, . . . , ikq P K to pψpi1q, . . . , ψpikqq, where ψpiq “ ψpiq if i P I,
and ψpiq “ i, otherwise. We interchange freely between referring to ψ : I ÝÑ J as a fold
of K and of its vertex set rms.

We define the fold of K under ψ : I ÝÑ J to be the image ψpKq, denoted by K∇pI,Jq.

It follows from the definition that

K∇pI,Jq “ tσ Ď rms ´ I | σ P K or pσ ´ jq \ i P K for some j P J, i P Iju. (4.21)

When J “ tju consists of one element we abbreviate K∇pI,tjuq to K∇pI,jq. If further
I “ tiu, then we abbreviate K∇ptiu,jq “ K∇pi,jq.

We observe the following properties which follow immediately from Definition 4.2.24.

Proposition 4.2.25. Let K be a simplicial complex on rms. Then:

(i) if i, j P rms with i ‰ j, then K∇pi,jq – K∇pj,iq;

(ii) if I “ ti1, . . . , inu Ď rms, and j P rms with j R I, then

K∇pI,jq “ K∇pi1,jq∇pi2,jq¨¨¨∇pin,jq
;

(iii) if I1, I2 Ď rms are such that I1 X I2 “ H, and j R I1 \ I2, then

K∇pI1,jq∇pI2,jq
“ K∇pI2,jq∇pI1,jq

.

We now describe the map of polyhedral products induced by a fold of simplicial com-
plexes. Let K1, . . . ,Km be simplicial complexes on rl1s, . . . , rlms, respectively. Let
fi : ΣXi ÝÑ pY , ˚qKi be maps for i “ 1, . . . ,m and let K be a simplicial complex on
rls “ rl1s \ ¨ ¨ ¨ \ rlms containing B∆xK1, . . . ,Kmy.
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Let ψ : I ÝÑ J be a fold of K. Suppose that for each j P J that Yj is an associative
H-space, and that Yi “ Yj for each i P Ij . For j P J , the H-multiplication map
µj : Yj ˆ Yj ÝÑ Yj extends up to homotopy to a map

ź

iPIj

Yi ˆ Yj ÝÑ Yj .

Therefore the fold ψ : I ÝÑ J induces a map
ś

iPrms Yi ÝÑ
ś

iPprms´Iq Yi given by

ź

jPJ

ź

iPIj

pYi ˆ Yjq ˆ
ź

iPprms´pI\Jqq

Yi ÝÑ
ź

jPJ

Yj ˆ
ź

iPprms´pI\Jqq

Yi

which restricts to a map

∇pI,Jq : pY , ˚qK “
ď

σPK

ź

iPσ

Yi ÝÑ
ď

σPK

ź

iPψpσq

Yi “ pY , ˚qK∇pI,Jq . (4.22)

We call pY , ˚qK∇pI,Jq the fold of pY , ˚qK under the map ψ : I ÝÑ J . We call the map
∇pI, Jq the fold map on polyhedral products induced by the map ψ : I ÝÑ J .

Let

hKwpf1, . . . , fmq :
m

˚
i“1

Xi ÝÑ pY , ˚qK

be the substituted higher Whitehead map (4.19). The folded higher Whitehead map is
the composite

∇pI,Jq ˝ hKwpf1, . . . , fmq :
m

˚
i“1

Xi ÝÑ pY , ˚qK ÝÑ pY , ˚qK∇pI,Jq .

We often drop the composition symbol ˝ for folded higher Whitehead maps from hereon.
In analogy with the substituted higher Whitehead map, the folded higher Whitehead
map is an element of a particular higher Whitehead product.

Proposition 4.2.26. The folded higher Whitehead map is an element of the higher
Whitehead product

∇pI,Jqh
K
wpf1, . . . , fmq P r∇pI,Jq ˝ fK1 , . . . ,∇pI,Jq ˝ fKms Ď

“

X1 ˚ ¨ ¨ ¨ ˚Xm, pY , ˚qK∇pI,Jq
‰

Proof. This follows from Proposition 4.2.21 together with the observation that the map
∇pI,Jq : pY , ˚qK ÝÑ pY , ˚qK∇pI,Jq is by definition an extension of the partial fold

Ž

iPrms Yi ÝÑ
Ž

iPprms´Iq Yi.
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In general, determining necessary and sufficient conditions for the triviality of a folded
higher Whitehead map is hard. Using homology to detect non-triviality as for the sub-
stituted higher Whitehead map is no longer adequate. Nevertheless, the main result of
this section gives sufficient combinatorial conditions for the triviality of folded higher
Whitehead maps. We begin with some preparatory results.

Lemma 4.2.27. Let K1, . . . ,Km be simplicial complexes on rl1s, . . . , rlms, respectively.
Let fi : ΣXi ÝÑ pY , ˚qKi be maps for i “ 1, . . . ,m.

Let K,K1 be simplicial complexes on rls “ rl1s \ ¨ ¨ ¨ \ rlms containing B∆xK1, . . . ,Kmy

and let ψ : I ÝÑ J be a fold of both K and K1 such that K∇pI,Jq “ K1
∇pI,Jq

. If for each
j P J we have that Yj is an associative H-space and that Yi “ Yj for each i P Ij, then

∇pI,Jqh
K
wpf1, . . . , fmq “ ∇pI,Jqh

K1

w pf1, . . . , fmq.

Proof. Since K∇pI,Jq “ K1
∇pI,Jq

, there is a commutative diagram

B∆xK1, . . . ,Kmy K

K1 K∇pI,Jq.

ψ

ψ

Therefore by functoriality of the polyhedral product with respect to simplicial inclusions,
the following diagram commutes

X1 ˚ ¨ ¨ ¨ ˚Xm pY , ˚qB∆m´1xK1,...,Kmy pY , ˚qK

pY , ˚qK
1

pY , ˚qK∇pI,Jq

where the composite around the top of the square is ∇pI,Jqh
K
wpf1, . . . , fmq and the com-

posite around the bottom of the square is ∇pI,Jqh
K1

w pf1, . . . , fmq. The result follows.

Definition 4.2.28. Let K be a simplicial complex on rls and let ψ : I ÝÑ J be a fold of
K. Let Lψ be the substitution complex on rls obtained from K∇pI,Jq by substituting the
simplex ∆rIjs at vertex j for each j P J .

The complex Lψ is the largest simplicial complex which folds to K∇pI,Jq under ψ : I ÝÑ J ,
in the sense of the following.

Lemma 4.2.29. Suppose that L1 is such that L1
∇pI,Jq

Ď K∇pI,Jq. Then L1 Ď Lψ.

Proof. Let J “ tj1, . . . , jru. Then for any σ P L1 write σ “ σj1 \ ¨ ¨ ¨ \ σjr \ σ1, where
σjk Ď Ijk and σ1 P rms ´ I. Since L1

∇pI,Jq
Ď K∇pI,Jq, then ψpσq “ pj1 \ ¨ ¨ ¨ \ jrq Y σ1 P
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K∇pI,Jq. Then by construction pIj1 \ ¨ ¨ ¨ \ Ijrq Y pj1 \ ¨ ¨ ¨ \ jrq Y σ1 P Lψ. Then since
σjk Ď Ijk , it follows that σ P Lψ.

Example 4.2.30. Let K consist of 4 disjoint points tt1u, t2u, t3u, t4uu and suppose that
Y2 “ Y3 “ Y4 is an associative H-space. Define a fold of K by ψ : t3, 4u ÝÑ t2u. Then
K∇pI,Jq consists of 2 disjoint points, and Lψ has maximal simplices tt1u, t2, 3, 4uu. This
example is shown in Figure 4.1.

3

12

4

(a) K

12

(b) K∇pI,Jq

3

12

4

(c) Lψ

Figure 4.1: The construction of the complex Lψ.

We now give our main result.

Proposition 4.2.31. Let K1, . . . ,Km be simplicial complexes on rl1s, . . . , rlms, respect-
ively. Let fi : ΣXi ÝÑ pY , ˚qKi be maps for i “ 1, . . . ,m. Let K be a simplicial complex
on rl1s \ ¨ ¨ ¨ \ rlms containing B∆xK1, . . . ,Kmy and let ψ : I ÝÑ J be a fold of K.

Then the folded higher Whitehead map

∇pI,Jqh
K
wpf1, . . . , fmq : X1 ˚ ¨ ¨ ¨ ˚Xm ÝÑ pY , ˚qK∇pI,Jq

is trivial if either

(i) K∇pI,Jq contains K1
∇pI,Jq

where either K1 “ B∆xK1, . . . ,K1
i, . . . ,Kmy, where K1

i is a
trivialising complex for fi, or K1 “ ∆xK1, . . . ,Kmy;

(ii) the map
h
Lψ
w pf1, . . . , fmq : X1 ˚ ¨ ¨ ¨ ˚Xm ÝÑ pY , ˚qLψ

is trivial, where Lψ is the complex defined in Definition 4.2.28.

Proof. Suppose that (i) holds. Then hK1

w pf1, . . . , fmq is trivial by Theorem 4.2.20. Then
by Lemma 4.2.27 we have ∇pI,Jqh

K
wpf1, . . . , fmq “ ∇pI,Jqh

K1

w pf1, . . . , fmq, and so the map
∇pI,Jqh

K
wpf1, . . . , fmq is trivial. The same argument words if instead (ii) holds, since Lψ

folds to K∇pI,Jq by Lemma 4.2.29.

Example 4.2.32. Let K and ψ : t3, 4u ÝÑ t2u be the complex and the fold map from Ex-
ample 4.2.30. Then the folded higher Whitehead map ∇pt3,4u,2qhwphwphwpf2, f3q, f4q, f1q

is trivial since hLψw phwphwpf2, f3q, f4q, f1q is trivial as ∆r2, 3, 4s is a trivialising complex
for hwphwphwpf2, f3q, f4q.
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4.3 Relations among higher Whitehead maps

In this section we study relations among higher Whitehead maps which generalise the
Jacobi identity (4.3). The study of relations among higher Whitehead maps was estab-
lished by Hardie [Har61, Har64]. Let fi : Sri ÝÑ Yi for i “ 1, . . . ,m. Define

Z “ tpy1, . . . , ymq P Y1 ˆ ¨ ¨ ¨ ˆ Ym | there is i ‰ j such that yi “ ˚ “ yju (4.23)

and for i “ 1, . . . ,m let

hZwpfi, hwpf1, . . . , fi´1, fi`1, . . . , fmqq : Sr1`¨¨¨`rm´2 ÝÑ Z

denote the composite of hwpfi, hwpf1, . . . , fi´1, fi`1, . . . , fmqq with the inclusion Yi _

FW pY1, . . . , Yi´1, Yi`1, . . . , Ymq ÝÑ Z.

Theorem 4.3.1 ([Har61, Theorem 2.3]). Suppose m ě 3 and that ri ě 2 for i “

1, . . . ,m. Then

m
ÿ

i“1

p´1qηpiqhZw pfi, hwpf1, . . . , fi´1, fi`1, . . . , fmqq “ 0 (4.24)

where ηpiq “ ripr1 ` ¨ ¨ ¨ ` riq ` 1.

In the case that k “ 3 identity (4.24) recovers the graded Jacobi identity (4.3).

For maps fi : ΣXi ÝÑ Yi where Xi is not necessarily a sphere, there is a Jacobi identity
among generalised Whitehead products of the form

hwpf1, hwpf2, f3qq ` hwpf2, hwpf3, f1qq ˝ σ ` hwpf3, hwpf1, f2qq ˝ τ (4.25)

where σ and τ are respectively the maps ΣX2 ^X3 ^X1 ÝÑ ΣX1 ^X2 ^X3 and ΣX3 ^

X1 ^ X2 ÝÑ ΣX1 ^ X2 ^ X3 obtained by permuting coordinates, see [Coh57, Ark62].
This relation is obtained by a method of G. Whitehead [Whi54], deriving an equivalent
relation between the adjoints of the maps in (4.25) and using the group-like structure of
loop spaces.

We use the polyhedral product to give a combinatorial method of constructing relations
between higher Whitehead maps which generalises (4.24) to relations among more general
forms of higher Whitehead maps, while also generalising (4.25) by showing such relations
hold for non-spherical maps. Moreover, we use the underlying combinatorics together
with the results of the previous section to determine spaces and maps for which our
relations contain non-trivial summands.
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4.3.1 Identity complexes

The space Z (4.23) is the polyhedral product pY , ˚qK, where K “ skm´3∆m´1. The
minimal missing faces of K are t1, . . . , i ´ 1, i ` 1, . . . ,m | i “ 1, . . . ,mu, and each
missing face t1, . . . , i´ 1, i` 1, . . . ,mu corresponds to the higher Whitehead map

hKwpfi, hwpf1, . . . , fi´1, fi`1, . . . , fmqq

being defined in pY , ˚qK. We therefore view relation (4.24) as being governed by the
missing faces of the complex skm´3∆m´1.

We construct a more general family of relations among higher Whitehead maps by
using the simplicial composition operation to propagate the missing face structure of
skm´3∆m´1 as follows. Recall that given a simplicial K on rms and simplicial complexes
K1, . . . ,Km on rl1s, . . . , rlms, respectively, the composition complex KpK1, . . . ,Kmq is the
polyhedral join

KpK1, . . . ,Kmq “ p∆li´1,Kiq
˚K.

Given a vertex set rms, a k-partition Π of rms is a collection of pairwise disjoint subsets
tI1, . . . , Iku of rms such that

Ťk
i“1 Ii “ rms.

Definition 4.3.2. Let Π “ tI1, . . . , Iku be a k-partition of of rms. For i “ 1, . . . , k write
Ii “ ti1, . . . , iniu and let B∆rIis be the complex B∆ni´1 on vertex set Ii. We define the
simplicial complex KΠ to be

KΠ “ skk´3∆k´1pB∆rI1s, . . . , B∆rIksq.

We call KΠ the identity complex associated to the partition Π of rms.

Example 4.3.3. (i) Let Π “ tt1u, . . . , tmuu be the partition of rms into singletons.
Then nj “ 1 for j “ 1, . . . ,m and KΠ “ skm´3∆m´1.

(ii) Let Π “ tt1u, t2, 3u, t4uu be a 3-partition of r4s. Then

KΠ “ ‚1 ˚ B∆r2, 3s ˚ ˝4 Y ˝1 ˚ ∆r2, 3s ˚ ˝4 Y ˝1 ˚ B∆r2, 3s ˚ ‚4

which is the simplicial complex shown below.

1

3

2

4

The minimal missing faces of KΠ are tp1, 2, 3q, p2, 3, 4q, p1, 4qu. We observe that
these have the form rms ´ Ij , where I1 “ t1u, I2 “ t2, 3u and I3 “ t4u are the
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elements of the partition Π. This leads to the following alternate description of
identity complexes.

Proposition 4.3.4. Let Π “ tI1, . . . , Iku be a k-partition of rms. Then

MF pKΠq “ trms ´ Ij | j “ 1, . . . , ku.

To prove Proposition 4.3.4, we begin with the following result describing the minimal
missing faces of the polyhedral join product, which is of independent interest.

Proposition 4.3.5. Let K be a simplicial complex on rms, and let pS1, T1q, ..., pSm, Tmq

be simplicial pairs on vertex sets rl1s, ..., rlms respectively. Then,

MF
`

pS, T q˚K˘

“ tJ P MF pSiq | i P Ku \

#

ğ

iPL

Ji | L P MF pKq, Ji P MF pTiq, Ji P Si

+

.

Proof. We first show that

tJ P MF pSiq | i P Ku \

#

ğ

iPL

Ji | L P MF pKq, Ji P MF pTiq, Ji P Si

+

Ď MF
`

pS, T q˚K˘

.

For any tiu P K, J P MF pSiq implies that J P MF
`

pS, T q˚K˘

. Now consider
Ů

iPL Ji,
where L P MF pKq, Ji P MF pTiq and Ji P Si for all i P L. This is a missing face of
pS, T q˚K by definition of the polyhedral join. Moreover, it is minimal since for any i P L

and s P Ji,
ğ

i‰kPL

Jk \ pJi ´ tsuq “
ğ

kPτ

Jk \ σi P pS, T q˚τ

where τ P K, since L is a minimal missing face; and σi P Ti, since Ji is a minimal missing
face.

Now we show that

MF
`

pS, T q˚K˘

Ď tJ P MF pSiq | i P Ku

\

#

ğ

iPL

Ji | L P MF pKq, Ji P MF pTiq, Ji P Si

+

.

Let F P MF ppK,Lq˚Kq. We show that either F P tJ P MF pKiq | i P Ku or F P

t
Ů

iPL Fi | L P MF pKq, Fi P MF pLiq, Fi P Kiu.

For any i “ 1, . . . ,m define the restriction Fi “ F |rlis. Then if Fi P MF pSiq then
F “ Fi P MF pKq. Otherwise F would not be minimal, since Fi Ď F is a missing face.
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On the other hand, suppose that Fi P Si for all i. Denote by σ “ ti P rms | F |i ‰ Hu.
Firstly, σ R K, as otherwise F P K, since F “

Ů

iPσ Fi where Fi P Si for all i. For all
i P σ, Fi is a non-face of Ti. Otherwise, by removing vertices from Fi we obtain a smaller
non-face of pS, T q˚K. For such i, Fi P MF pTiq. It follows that σ P MF pKq, as otherwise
we restrict to a minimal missing face τ P MF pKq with τ Ď σ, and

Ů

iPτ Fi is a missing
face of pS, T q˚K. Finally, for all i, Fi is a minimal missing face of Ti, since otherwise, for
Fip Ĺ Fi with Fip P MF pSiq, pF ´ Fiq \ Fip P pS, T q˚K.

Proof of Proposition 4.3.4. By Proposition 4.3.5, the minimal missing faces of the com-
position complex KpT1, . . . , Tmq are

MF pKpT1, . . . , Tmqq “

#

ğ

iPL

Ji | L P MF pKq, Ji P MF pTiq

+

so that

MF pskk´3∆k´1pB∆rI1s, . . . , B∆rIksqq “ ttrms ´ ti1, . . . , iniuu | i “ 1, . . . , ku

and the claim follows.

Since a simplicial complex is determined by its set of minimal missing faces, an equivalent
definition of KΠ is to specify its minimal missing faces to be trms ´ Ij | j “ 1, . . . , ku.

4.3.2 Relations among higher Whitehead maps

Let Π be a k-partition of rms. To identify higher Whitehead maps which are defined in
pY , ˚qKΠ , we decompose KΠ as a union of substitution complexes which each define a
certain higher Whitehead map.

Proposition 4.3.6. Let Π “ tI1, . . . , Iku be a k-partition of rms and write Ii “ ti1, . . . , iniu

for i “ 1, . . . , k. Then

KΠ “

k
ď

i“1

B∆xB∆rj1, . . . , jris, i1, . . . , iniy

where tj1, . . . , jriu “ rms ´ ti1, . . . , iniu.

Proof. The Alexander dual K̂ of a simplicial complex K on rms is the simplicial com-
plex with simplices tσ | rms ´ σ R Ku. In particular, the maximal faces of K̂ are the
complements in rms of the minimal missing faces of K. Moreover, two finite simplicial
complexes are equal if and only if their Alexander duals are equal.
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By Proposition 4.3.4, the Alexander dual of KΠ has maximal faces
Ůk
i“1∆ri1, . . . , inis.

On the other hand, let Ki “ B∆xB∆rj1, . . . , jris, i1, . . . , iniy. Then by Proposition 4.3.5
the maximal faces K̂i

max of Kiˆ are given by

trms ´ tj1, . . . , jriu \ trms ´ tj, i1, . . . , iniu | j P Jiu “ ti1, . . . , iniu \ tJi ´ j | j P Jiu.

Then
k

ď

i“1

Ki

{

“

k
č

i“1

Kix

“

k
č

i“1

´

Kix

max

¯

“

k
ğ

i“1

∆ri1, . . . , inis

and the result follows.

Let fi : ΣXi ÝÑ Yi be maps for i “ 1, . . . ,m. It follows from Definition 4.2.1 and
Proposition 4.3.6 that the space pY , ˚qKΠ contains the codomains of the higher Whitehead
maps

hw
`

hw
`

fj1 , . . . , fjri
˘

, fi1 , . . . , fini
˘

: (4.26)

Σni
`

Σri´2Xj1 ^ ¨ ¨ ¨ ^Xjri

˘

^Xi1 ^ ¨ ¨ ¨ ^Xini
ÝÑ pY , ˚qK

i

for i “ 1, . . . , k. Our main result is that there is a relation between the maps (4.26) for
i “ 1, . . . , k.

Theorem 4.3.7. Let fi : ΣXi ÝÑ Yi be maps for i “ 1, . . . ,m. Let Π “ tI1, . . . , Iku be a
k-partition of rms for k ě 3 and denote Ii “ ti1, . . . , iliu and Ji “ rms´Ii “ tj1, . . . , jriu

for i “ 1, . . . , k. Then if Xi is a suspension for each i “ 1, . . . ,m,

k
ÿ

i“1

hKΠ
w

`

hw
`

fj1 , . . . , fjri
˘

, fi1 , . . . , fini
˘

˝ σi “ 0 (4.27)

in
“

Σm´2X1 ^ ¨ ¨ ¨ ^Xm, pY , ˚qKΠ
‰

, where

σi : Σ
m´2X1 ^ ¨ ¨ ¨ ^Xm ÝÑ ΣnipΣri´2Xj1 ^ ¨ ¨ ¨ ^Xjri

q ^Xi1 ^ ¨ ¨ ¨ ^Xini

is the restriction of the coordinate permutation

CX1 ˆ ¨ ¨ ¨ ˆ CXm ÝÑ CXj1 ˆ ¨ ¨ ¨ ˆ CXjri
ˆ CXi1 ˆ ¨ ¨ ¨ ˆ CXini

.

The proof of Theorem 4.3.7 is delayed to Section 4.5. We first discuss the triviality of
the terms in relation (4.27), before giving examples and applications.

Proposition 4.3.8. Suppose that f1, . . . , fm are compatible. Then for each i “ 1, . . . , k,
the map

hKΠ
w

´

hw
`

fj1 , . . . , fjri
˘

, fi1 , . . . , fili

¯

is non-trivial.
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Proof. Observe that by Corollary 4.2.11, the only trivialising complex of hw
`

fj1 , . . . , fjri
˘

is ∆rj1, . . . , jris. By Proposition 4.3.4 the complex B∆x∆rj1, . . . , jris, i1, . . . , iniy is not
a subcomplex KΠ since pj1, . . . , jriq is a minimal missing face of KΠ. Therefore by
Theorem 4.2.20, the map hKΠ

w

`

hw
`

fj1 , . . . , fjri
˘

, fi1 , . . . , fini
˘

is trivial if and only if
∆xB∆rj1, . . . , jris, i1, . . . , iniy Ď KΠ. But by definition of the partition Π there exists
Ik P Ji such that Ik X Ii “ H. Then Jk “ rms ´ Ik is a missing face of KΠ containing
the vertices ti1, . . . , iniu. Therefore ∆xB∆rj1, . . . , jris, i1, . . . , iniy is not a subcomplex of
KΠ.

In particular, by Proposition 4.3.8, each term in (4.27) is non-trivial if all the fi are
compatible. We now give examples of Theorem 4.3.7.

Example 4.3.9. Let fi : ΣXi ÝÑ Yi be compatible maps such that Xi is a suspension
for i “ 1, . . . ,m.

(i) Let Π “ tt1u, t2u, t3uu. Then J1 “ t2, 3u, J2 “ t1, 3u and J3 “ t1, 2u, and
KΠ “ ‚r3s. Then

hKΠ
w phwpf2, f3q, f1q ˝ σ1 ` hKΠ

w phwpf1, f3q, f2q ˝ σ2 ` hKΠ
w phwpf1, f2q, f3q ˝ σ3 “ 0

in the group rΣX1 ^X2 ^X3, Y1 _ Y2 _ Y3s. Moreover, each term is non-trivial.
This recovers the generalised Jacobi identity (4.25).

(ii) Generalising the previous example, let Π “ tt1u, . . . , tmuu. Then Ji “ t1, . . . , î, . . . ,mu

for i “ 1, . . . ,m and KΠ “ skm´3∆m´1. Then

hKΠ
w phw pf2, . . . , fmq , f1q ˝ σ1 ` ¨ ¨ ¨ ` hKΠ

w phw pf1, . . . , fm´1q , fmq ˝ σm “ 0

in the group
”

Σm´2X1 ^ ¨ ¨ ¨ ^Xm, pY , ˚qsk
m´3 ∆m´1

ı

. Moreover, each term is non-
trivial. This establishes Hardie’s identity, Theorem 4.3.1, for non-spherical maps.

(iii) Define a 3-partition Π “ tt1u, t2, 3u, t4uu of r4s. Then J1 “ t2, 3, 4u, J2 “ t1, 4u

and J3 “ t1, 2, 3u and KΠ is the simplicial complex shown in Example 4.3.3(ii).
Then

hKΠ
w phwpf2, f3, f4q, f1q ˝ σ1 ` hKΠ

w phwpf1, f4q, f2, f3q ˝ σ2

` hKΠ
w phwpf1, f2, f3q, f4q ˝ σ3 “ 0

in the group
“

Σ2X1 ^X2 ^X3 ^X4, pY , ˚qKΠ
‰

, and moreover each term is non-
trivial. Observe that this is a relation among elements of not only 2-fold Whitehead
products but also a higher Whitehead product. That is, by Lemma 4.2.21, the
summand hKΠ

w phwpf1, f4q, f2, f3q is an element of the higher Whitehead product
rhKΠ
w pf1, f4q, fKΠ

2 , fKΠ
3 s.
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In the special case that the maps fi are spherical, then we obtain the following, which
is a generalisation of Theorem 4.3.1. Recall the definiton of the Koszul sign ϵpρq of a
permutation ρ, given in Proposition 4.2.3.

Corollary 4.3.10. Let fi P πpipYiq for i “ 1, . . . ,m. Let Π “ tI1, . . . , Iku be a k-
partition of rms for k ě 3 and denote Ii “ ti1, . . . , iniu and Ji “ rms ´ Ii “ tj1, . . . , jriu.
Then if pi ě 2 for each i “ 1, . . . ,m there is a relation

k
ÿ

i“1

ϵpρqhKΠ
w

`

hw
`

fj1 , . . . , fjri
˘

, fi1 , . . . , fini
˘

“ 0

in πp1`¨¨¨`pm´2

`

pY , ˚qKΠ
˘

where ϵpρq is the Koszul sign of the permutation ρ : p1, . . . ,mq ÞÝÑ

pj1, . . . , jri , i1, . . . , iniq.

Proof. The map σi : Sp1`¨¨¨`pm´2 ÝÑ Sp1`¨¨¨`pm´2 from the statement of Theorem 4.3.7
has degree ϵpρq and the result follows.

Example 4.3.11. In some cases, ϵpρq can be calculated explicitly. We revisit the rela-
tions from Example 4.3.9 in the case that fi : Spi ÝÑ Yi, with pi ě 2 for i “ 1, . . . ,m.

(i) Let Π “ tt1u, t2u, t3uu. There is a relation

p´1qp1pp2`p3qhKPiw phwpf2, f3q, f1q`p´1qp2p3hKPiw phwpf1, f3q, f2q`hKPiw phwpf1, f2q, f3q “ 0

in πp1`p2`p3´2pY1_Y2_Y3q. Let ιj denote the inclusion Yj ÝÑ Y1_Y2_Y3 and let
gj “ ιj ˝ fj for j “ 1, 2, 3. Then multiplying by p´1qp1p3 and applying (4.13) and
Proposition 4.2.21, we recover the graded Jacobi identity for Whitehead products

p´1qp1p2rrg2, g3s, g1s ` p´1qp2p3rrg1, g3s, g2s ` p´1qp1p3rrg1, g2s, g3s “ 0.

(ii) Let Π “ tt1u, . . . , tmuu. Similar to above, if ιi denotes the inclusion Yi ÝÑ

pY , ˚qKΠ and κi the inclusion FW pY1, . . . , Yi´1, Yi`1, . . . , Ymq ÝÑ pY , ˚qKΠ , we
recover the relation of Hardie

m
ÿ

i“1

p´1qpippi`1`¨¨¨`pmqrκi ˝ hwpf1, . . . , fi´1, fi`1, . . . , fmq, ιi ˝ fis “ 0

in πp1`¨¨¨`pm´2

`

pY , ˚qKΠ
˘

, see Theorem 4.3.1.

(iii) Let Π “ tt1u, t2, 3u, t4uu. Then there is a relation

p´1qp1pp2`p3qhKΠ
w phwpf2, f3, f4q, f1q`p´1qpp2`p3qp4hKΠ

w phwpf4, f1q, f2, f3q

` p´1qp1p4hKΠ
w phwpf1, f2, f3q, f4q “ 0

in πp1`¨¨¨`p4´2

`

pY , ˚qKΠ
˘

.
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4.3.3 Relations in general complexes

Let Π be a k-partition of rms and suppose that L is a simplicial complex containing KΠ.
Then composing each summand of (4.27) with the inclusion pY , ˚qKΠ ÝÑ pY , ˚qL we
obtain the following Corollary of Theorem 4.3.7.

Corollary 4.3.12. Let fi : ΣXi ÝÑ Yi be maps for i “ 1, . . . ,m. Let Π “ tI1, . . . , Iku

be a k-partition of rms for k ě 3 and denote Ii “ ti1, . . . , iliu and Ji “ rms ´ Ii “

tj1, . . . , jrju. Then if Xi is a suspension for each i “ 1, . . . ,m there is a relation

k
ÿ

i“1

hLwphwpfj1 , . . . , fjri q, fi1 , . . . , fini q ˝ σi “ 0 (4.28)

in
“

Σm´2X1 ^ ¨ ¨ ¨ ^Xm, pY , ˚qL
‰

.

Contrary to Theorem 4.3.7, it is no longer in general true that every term in the rela-
tion (4.28) is non-trivial, as the following example shows.

Example 4.3.13. Let L be the following simplicial complex.

1

3

2

4

The identity complex KΠ for Π “ tt1u, t2, 3u, t4uu considered in Example 4.3.9(iii) is a
subcomplex of L. Therefore by Corollary 4.3.12 there is a relation

hLwphwpf2, f3, f4q, f1q ˝ σ1 ` hLwphwpf1, f4q, f2, f3q ˝ σ2

` hLwphwpf1, f2, f3q, f4q ˝ σ3 “ 0

in the group
“

Σ2X1 ^X2 ^X3 ^X4, pY , ˚qL
‰

. On the other hand by Theorem 4.2.20,
the higher Whitehead map hLwphwpf2, f3, f4q, f1q is trivial since L contains the simplex
p2, 3, 4q, while the remaining terms in the relation are non-trivial if the fi are compatible.
Therefore the relation reduces to

hLwphwpf1, f4q, f2, f3q ˝ σ2 ` hLwphwpf1, f2, f3q, f4q ˝ σ3 “ 0

where each term is non-trivial.

By combining different identity complexes, Corollary 4.3.12 produces more exotic rela-
tions.
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Example 4.3.14. Define two 3-partitions of r5s as

Π1 “ tt1u, t2, 3u, t4, 5uu

Π2 “ tt1u, t2, 3, 4u, t5uu

and let KΠ1 and KΠ2 be the corresponding identity complexes. Define L “ KΠ1 Y KΠ2 ,
where the union is taken over all common faces. By Corollary 4.3.12, from the inclusion
KΠ1 ÝÑ L we deduce the relation

hLw phw pf2, f3, f4, f5q , f1q ˝ σ1`hLw phw pf1, f4, f5q , f2, f3q ˝ σ2

` hLw phw pf1, f2, f3q , f4, f5q “ 0

and similarly from the inclusion KΠ2 ÝÑ L we get the relation

hLw phw pf2, f3, f4, f5q , f1q ˝ σ1`hLw phw pf1, f5q , f2, f3, f4q ˝ σ2

` hLw phw pf1, f2, f3, f4q , f5q “ 0

where σj and τj are the appropriate permutation maps. Then since

MF pLq “ tt1, 2, 3, 4u, t1, 2, 3, 5u, t2, 3, 4, 5u, t1, 4, 5uu

we deduce from Theorem 4.2.20 that if the fi are compatible then each summand in both
relations is non-trivial. Moreover, since the term hLw phw pf2, f3, f4, f5q , f1q is shared and
σ1 “ τ1, it follows that

hLw phw pf1, f4, f5q , f2, f3q ˝ σ2 ` hLw phw pf1, f2, f3q , f4, f5q

“ hLw phw pf1, f5q , f2, f3, f4q ˝ τ2 ` hLw phw pf1, f2, f3, f4q , f5q

in
“

Σ3X1 ^X2 ^X3 ^X4 ^X5, pY , ˚qL
‰

.

4.3.4 Propagation of relations

The relations of Theorem 4.3.7 are between higher Whitehead maps

hwphwpfj1 , . . . , fjri q, fi1 , . . . , fini q

such that the sets Ii “ ti1, . . . , iniu are pairwise disjoint for i “ 1, . . . , k. We present a
method of constructing a space in which there are relations where the sets Ii are allowed
to intersect non-trivially.

Proposition 4.3.15. Let fi : ΣXi ÝÑ Yi be maps for i “ 1, . . . ,m. Let l ď m ´ 3

and let Π “ tI1, . . . , Iku be a k-partition of rns “ rms ´ rls for k ě 3. Let KΠ be the
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corresponding identity complex. Let L “ B∆lpKΠ, ˝1, . . . , ˝lq. Then there are relations

k
ÿ

i“1

hLwphwpfj1 , . . . , fjri , f1, . . . , flq, fi1 , . . . , fini q ˝ σi “ 0

and
k

ÿ

i“1

hLwphwpfj1 , . . . , fjri q, fi1 , . . . , fini , f1, . . . , flq ˝ τi “ 0

in
“

Σm´2X1 ^ ¨ ¨ ¨ ^Xm, pY , ˚qL
‰

, where σi and τi are appropriate permutation maps.

Proof. Let Π1 “ tI1, . . . , Ik, t1, . . . , luu be a pk ` 1q-partition of rms and let KΠ1 be the
corresponding identity complex. Then there is a relation

k
ÿ

i“1

hLwphwpfj1 , . . . , fjri , f1, . . . , flq, fi1 , . . . , fini q ˝ σi

` hwphwpfl`1, . . . , fmq, f1, . . . , flq ˝ σ “ 0

in rΣm´2X1 ^ ¨ ¨ ¨ ^Xm, pY , ˚qKΠ1 s. We claim that KΠ1 Ď L. Since

KΠ1 “ skk´2∆kpB∆r1, . . . , ls, B∆rI1s, . . . , B∆rIksq

we have

KΠ1 “ B∆r1, . . . , ls ˚

˜

k
ď

j“1

∆rrns ´ Ijs

¸

Y ∆r1, . . . , ls ˚

¨

˝

ď

1ďiăjďk

∆rrns ´ pIi Y Ijqs

˛

‚

“ B∆r1, . . . , ls ˚ p∆rrms ´ I1s Y ¨ ¨ ¨ Y ∆rrms ´ Iksq Y ∆r1, . . . , ls ˚ KΠ

while the complex L decomposes as

L “ B∆lpKΠ, ˝1, . . . , ˝lq “

l
ď

k“1

∆r1, . . . , k ´ 1, k ` 1, . . . ,ms Y KΠ ˚ ∆r1, . . . , ls.

Therefore KΠ1 Ď L. From this decomposition of L we further see that it contains the
subcomplex

B∆x∆rl ` 1, . . . ,ms, ‚1, . . . , ‚ly

and therefore hLwphwpfl`1, . . . , fmq, f1, . . . , flq is trivial in rΣm´2X1 ^ ¨ ¨ ¨ ^Xm, pY , ˚qLs

while the remaining terms are non-trivial and the first relation follows.

For the second relation, the same method as above shows that L also contains the identity
complex corresponding to the partition tt1, . . . , lu \ Ii, I1, . . . , Ii´1, Ii`1, . . . , Iku of rms

for each i “ 1, . . . , k. Therefore the term

hLwphwpfj1 , . . . , fjri q, fi1 , . . . , fini , f1, . . . , flq ˝ τi
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can be rewritten as

´
ÿ

i1‰i

hLwphwpfj1
1
, . . . , fj1

r
i1
, f1, . . . , flq, fi11 , . . . , fi1ni1

q ˝ τi1

and therefore

k
ÿ

i“1

hLwphwpfj1 , . . . , fjri q, fi1 , . . . , fini , f1, . . . , flq ˝ τi

“ ´

k
ÿ

i“1

ÿ

i1‰i

hLwphwpfj1
1
, . . . , fj1

r
i1
, f1, . . . , flq, fi11 , . . . , fi1ni1

q ˝ τi1

“ ´k
k

ÿ

i“1

hLwphwpfj1 , . . . , fjri , f1, . . . , flq, fi1 , . . . , fini q ˝ σi

“ 0

with the final equality following from the first relation.

4.4 Relations among folded higher Whitehead maps

We combine the relations among higher Whitehead maps given in Theorem 4.3.7 with
the fold maps of polyhedral products introduced in Section 4.2.4 to produce relations
among folded higher Whitehead maps. By analysing certain fold maps, we produce
several families of relations for which trivial summands can be identified.

Let K1, . . . ,Km be simplicial complexes on rl1s, . . . , rlms, respectively. Suppose that
fij : ΣXi ÝÑ Yi are maps for i “ 1, . . . ,m and j “ 1, . . . , ki and let

gi “ hKiw pfi1 , . . . , fiki q : ΣXi ÝÑ pY , ˚qKi (4.29)

be nested higher Whitehead maps for i “ 1, . . . ,m, where Xi “ Σki´2Xi1 ^ ¨ ¨ ¨ ^ Xiki
.

Let Π “ tP1, . . . , Pku be a k-partition of rms and write Pi “ ti1, . . . , iniu and rms ´Pi “

tj1, . . . , jriu. Let K “ KΠxK1, . . . ,Kmy, where KΠ is the identity complex corresponding
to Π. Recall that by Theorem 4.3.7,

k
ÿ

i“1

hKw
`

hw
`

gj1 , . . . , gjri
˘

, gi1 , . . . , gini
˘

˝ σi “ 0 (4.30)

in
“

Σm´2X1 ^ ¨ ¨ ¨ ^Xm, pY , ˚qK
‰

. Let ψ : I ÝÑ J be a fold of K and suppose that for
each j P J that Yj is an associative H-space, and that Yi “ Yj for every i P Ij “ ψ´1pjq.

By composing each term in (4.30) with the fold map

∇pI,Jq : pY , ˚qK ÝÑ pY , ˚qK∇pI,Jq
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we obtain a relation among folded higher Whitehead maps

k
ÿ

i“1

∇pI,Jqh
K
w

`

hw
`

gj1 , . . . , gjri
˘

, gi1 , . . . , gini
˘

˝ σi “ 0 (4.31)

in
“

Σm´2X1 ^ ¨ ¨ ¨ ^Xm, pY , ˚qK∇pI,Jq
‰

. We are interested in cases where the complex
K∇pI,Jq can be determined, and therefore trivial summands in (4.31) can be identified
by applying Proposition 4.2.31.

4.4.1 Folds of identity complexes

The first family comes from considering the case that Ki “ ‚ for each i “ 1, . . . ,m.
We give a full characterisation of fold maps ψ : I ÝÑ J which produce relations among
folded higher Whitehead maps.

We first determine the dependence of K∇pI,Jq on the partition Π and the fold ψ : I ÝÑ J

of K “ KΠ. For A Ď rms, let ∆rAs denote the p|A| ´ 1q-simplex on vertex set A.

Lemma 4.4.1. We have

(i) if I Y J Ď Pl for some l “ 1, . . . , k then

K∇pI,Jq “ B∆rrms ´ Pls ˚ ∆rPl ´ Is;

(ii) if |I| “ |J | “ 1 and I Ď Pi and J Ď Pj for i ‰ j, then

K∇pI,Jq “ B∆rrms ´ Is;

(iii) otherwise, K∇pI,Jq “ ∆rrms ´ Is.

Proof. By definition K “ KΠ decomposes as the polyhedral join

K “ pp∆rP1s, B∆rP1sq, . . . , p∆rPks, B∆rPksqq˚skk´3∆r1,...,ks

“ p∆rPis ˚ ∆rPjs ˚ ¨ ¨ ¨ q Y pp∆rPis ˚ B∆rPjs Y B∆rPis ˚ ∆rPjsq ˚ ¨ ¨ ¨ q Y pB∆rPis ˚ B∆rPjs ˚ ¨ ¨ ¨ q

for i ‰ j. We first consider the case that I “ tuu and J “ tvu. Suppose that u P Pi and
v P Pj . Then,

∇pu,vqp∆rPis ˚ ∆rPjsq “ ∆rPi \ Pj ´ tuus

∇pu,vqp∆rPis ˚ B∆rPjsq “ ∆rPi \ Pj ´ tuus

∇pu,vqpB∆rPis ˚ ∆rPjsq “ ∆rPi \ Pj ´ tuus

∇pu,vqpB∆rPis ˚ B∆rPjsq “ B∆rPi \ Pj ´ tuus.
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Therefore,

K∇pI,Jq “ p∆rPi \ Pj ´ tuus ˚ ¨ ¨ ¨ q Y pB∆rPi \ Pj ´ tuus ˚ ¨ ¨ ¨ q

“ pp∆rP1s, B∆rP1sq, . . . , p∆rPi \ Pj ´ tuus, B∆rPi \ Pj ´ tuusq, . . .

. . . , p∆rPks, B∆rPksqq˚B∆rrks´is

“ B∆rrms ´ tuus

proving (ii).

If instead u, v P Pl, the folding ∇pI,Jq sends ∆rPls ÞÝÑ ∆rPl ´ tuus and B∆rPls ÞÝÑ

∆rPl ´ tuus. Therefore

K∇pI,Jq “ ∆rPl ´ tuus ˚ pp∆rP1s, B∆rP1sq, . . . , p∆rPks, B∆rPksqq˚B∆rrks´tlus

“ ∆rPl ´ tuus ˚ B∆rrms ´ Pls.

Claims (i) and (iii) then follow from the above and claim (ii), using Proposition 4.2.25.

Example 4.4.2. Let Π “ tt1, 2, 3u, t4u, t5uu and let K “ KΠ. Then:

(i) if I “ t1, 2u and J “ t3u then K∇pI,Jq “ B∆r4, 5s ˚ t3u;

(ii) if I “ t1, 2u and J “ t4u then K∇pI,Jq “ ∆r3, 4, 5s;

(iii) if I “ t1u and J “ t2u then K∇pI,Jq “ B∆r4, 5s ˚ ∆r2, 3s;

(iv) if I “ t1u and J “ t4u then K∇pI,Jq “ B∆r2, 3, 4, 5s.

We use Proposition 4.2.31 to determine which terms of relation (4.31) are trivial. Specific-
ally we use the characterisation that ∇pI,Jqh

K
w

`

hw
`

gj1 , . . . , gjri
˘

, gi1 , . . . , gini
˘

is trivial
if hLw

`

hw
`

gj1 , . . . , gjri
˘

, gi1 , . . . , gini
˘

is trivial, where L “ Lψ is the simplicial complex
obtained from K∇pI,Jq by substituting the simplex ∆|Ij |´1 at vertex j for each j P J , see
Definition 4.2.28.

Lemma 4.4.3. Let L “ Lψ be as above. Then

(i) if I Y J Ď Pl for some l “ 1, . . . , k, then

L “ B∆rrms ´ Pls ˚ ∆rPls;

(ii) if |I| “ |J | “ 1 and I Ď Pi and J Ď Pj for i ‰ j then L has minimal missing faces
∆rrms ´ tuus and ∆rrms ´ tvus;

(iii) otherwise, L “ ∆rrmss.
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Proof. By Proposition 4.3.5 we have

MF pLq “

#

ğ

iPL

Ji | L P MF
`

K∇pI,Jq

˘

, Ji P ∆|Ij |´1

+

.

Statement (i) then follows from Lemma 4.4.1 since the missing face of B∆rrms ´ Pls ˚

∆rPl ´ Is is not supported by any vertex in J . Statements (ii) and (iii) also follow
similarly from Lemma 4.4.1.

Proposition 4.4.4. Suppose that I and J are not single elements, one from tj1, . . . , jriu

and the other from ti1, . . . , iniu. Then

Hi “ ∇pI,Jqh
K
w

`

hw
`

gj1 , . . . , gjri
˘

, gi1 , . . . , gini
˘

is trivial.

Proof. First, suppose that I \ J is not contained in some Pr for r “ 1, . . . , k, and that
at least one of I and J contains more than one element. Then by Lemma 4.4.3(iii),
L “ ∆rrmss, and so by Proposition 4.2.31, the map Hi is trivial for each i “ 1, . . . , k.

Next, suppose that I \ J Ď Pr for some r “ 1, . . . , k. Then by Lemma 4.4.3(i), L “

B∆rrms ´ Prs ˚ ∆rPrs. Then certainly Hr is trivial, and furthermore for i ‰ r, observe
that B∆x∆rj1, . . . , jris, i1, . . . , iniy Ď L, and therefore Hi is also trivial for i ‰ r.

Finally, suppose that |I| “ |J | “ 1 and that I “ tuu P Ps and J “ tvu P Pt for s ‰ t. By
Lemma 4.4.3(ii), L has minimal missing faces ∆rrms ´ tuus and ∆rrms ´ tvus. Therefore
if u “ jl and v “ jk, then B∆x∆rj1, . . . , jris, i1, . . . , iniy Ď L, and so Hi is trivial. Observe
that since s ‰ t, it is not possible for u “ il and v “ ik in this case.

We therefore consider folds ψ : I ÝÑ J of KΠ for which I and J are both singletons not
contained in the same Pl. Our main result is then the following.

Theorem 4.4.5. Let Π “ tP1, . . . , Pku be a k-partition of rms and let fi : ΣXi ÝÑ Yi

be maps for i “ 1, . . . ,m. Let i, j P rms be such that i P Pu and j P Pv for u ‰ v and let
ψ : tiu ÝÑ tju be a fold of K “ KΠ. Then if each Xi is a suspension and Yi “ Yj is an
H-space,

∇pi,jqh
K
wphwpfi11 , . . . , fi1ri

q, fi1 , . . . , fini q ˝ σi

` ∇pi,jqh
K
wphwpfj1

1
, . . . , fj1

rj
q, fj1 , . . . , fjnj q ˝ σj “ 0

in
“

Σm´2X1 ^ ¨ ¨ ¨ ^Xm, FW pY1, . . . , Yi´1, Yi`1, . . . , Ymq
‰

, where Pu “ ti1, . . . , iniu, rms´

Pu “ ti11, . . . , i
1
riu, Pv “ tj1, . . . , jnju and rms ´ Pv “ tj1

1, . . . , j
1
rju.
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Moreover, if i, j P rms with i ‰ j, let ti1, . . . , iku Ď rms ´ ti, ju be any non-empty proper
subset. Then if each Xi is a suspension and Yi “ Yj is an H-space,

∇pi,jqh
K
wphwpfj1 , . . . , fjr , fiq, fi1 , . . . , fik , fjq ˝ σ

` ∇pi,jqh
K
wphwpf1, . . . , fi´1, fi`1, . . . , fmq, fiq ˝ τ “ 0

in
“

Σm´2X1 ^ ¨ ¨ ¨ ^Xm, FW pY1, . . . , Yi´1, Yi`1, . . . , Ymq
‰

, where σ and τ are appropri-
ate permutation maps.

Proof. The first part follows immediately by applying Proposition 4.4.4 to relation (4.31).
The second part then follows by applying the first part to the partition

Π “ ttiu, tj, i1, . . . , iku, tj1, . . . , jruu

of rms.

Example 4.4.6. Certain folded higher Whitehead maps coincide with 2-fold White-
head products. For example, let m “ 5. Then combining Theorem 4.4.5 with Pro-
position 4.2.26, the folded higher Whitehead maps ∇p5,1qhwphwpf1, f2, f3q, f4, f5q and
∇p5,1qhwphwpf1, f2q, f3, f4, f5q are both identified, up to sign, with the Whitehead product

rhwpf1, f2, f3, f4q, ι ˝ f1s

for the inclusion map ι : Y1 ÝÑ FW pY1, Y2, Y3, Y4q.

Of particular interest, Theorem 4.4.5 allows us to detect new instances of 2-torsion in
homotopy groups.

Example 4.4.7. Let Π “ tt1u, t2, . . . ,m ´ 1u, tmuu and consider the higher White-
head maps hKΠ

w phwpf1, . . . , fm´1q, fmq and hKΠ
w phwpf2, . . . , fmq, f1q. Applying the fold

ψ : tmu ÝÑ t1u of KΠ, we obtain that

∇pm,1qh
KΠ
w phwpf1, . . . , fm´1q, fmq “ ∇pm,1qh

KΠ
w phwpf2, . . . , fmq, f1q ˝ σ.

Suppose that Xi “ Spi´1 with pi ě 2 for i “ 1, . . . ,m. Then applying Theorem 4.4.5 for
any maps fi : Spi ÝÑ Yi with p1pm even and Yi “ Yj an H-space, we obtain that

2∇pm,1qh
KΠ
w phwpf1, . . . , fm´1q, fmq “ 0

in πp1`¨¨¨`pm´2ppY , ˚qB∆q. Therefore our methods allow us to study, via the higher White-
head map, elements of homotopy groups which cannot be seen with rational methods.

In general, the triviality of the map ∇pm,1qh
KΠ
w phwpf1, . . . , fm´1q, fmq depends on the

internal properties of the space Yi. To demonstrate this, let pi “ 2 for i “ 1, . . . ,m, so
that fi : S2 ÝÑ Yi. First, suppose that Yi “ S2 for i “ 1, . . . ,m and that each fi is an
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identity map. In this case, the fold ∇pI,Jq can be defined without requiring Yi to be an
H-space, since there is no edge between t1u and tmu in KΠ. In this case, relation (4.31)
has the form

2∇pm,1qh
KΠ
w phwpf1, . . . , fm´1q, fmq ` ∇pm,1qh

KΠ
w phwpf1, fmq, f2, . . . , fm´1q “ 0

in π2m´2ppS2, ˚qB∆q. By naturality of the higher Whitehead map and Proposition 4.2.26,
we have

∇pm,1qhwphwpf1, fmq, f2, . . . , fm´1q “ hwprf1, f1s, f2, . . . , fm´1q.

Since rf1, f1s “ 2η, where η P π3pS2q is the Hopf map, we therefore obtain from linearity
of the higher Whitehead map that

∇pm,1qhwphwpf1, . . . , fm´1q, fmq “ hwpη, f2, . . . , fm´1q

which is moreover non-trivial since η, f2, . . . , fm´1 are compatible.

Applying the map pS2, ˚qB∆ ÝÑ pCP8, ˚qB∆ trivialises the map hwpη, f2, . . . , fm´1q,
since η “ 0 in π3pCP8q. Therefore by naturality of the higher Whitehead map, the
folded map

∇pm,1qhwphwpg1, . . . , gm´1q, gmq

is trivial in π2m´2ppCP8, ˚qB∆q, where gi : S2 ÝÑ CP8 is the inclusion of the bottom
cell.

Alternatively, applying the map pS2, ˚qB∆ ÝÑ pΩS3, ˚qB∆ induced by the suspension
S2 ÝÑ ΩΣS2 does not trivialise the map hwpη, f2, . . . , fm´1q, since the composite S3 η

ÝÝÑ

S2 ÝÑ ΩΣS2 is adjoint to Ση, which generates π4pS3q. Therefore the folded map

∇pm,1qhwphwpg1, . . . , gm´1q, gmq

is non-trivial in π2m´2ppΩS3, ˚qB∆q, where gi : S2 ÝÑ ΩS3 is the suspension homomorph-
ism. Moreover, since ΩS3 is an H-space, the map hwprg1, g1s, g2, . . . , gm´1q is trivial. It
follows that ∇pm,1qhwphwpg1, . . . , gm´1q, gmq is a 2-torsion element in π2m´2ppΩS3, ˚qB∆q.

4.4.2 Folding and substitution

We return to the case that K1, . . . ,Km are general simplicial complexes. Let K “

KΠxK1, . . . ,Kmy with vertex set rls “ rl1s \ ¨ ¨ ¨ \ rlms. Unlike the case with Ki “ ‚

for each i, for an arbitrary fold ψ : I ÝÑ J of K the folded complex K∇pI,Jq cannot be
determined in general. The main difficulty is that the simplicial folding operation does
not commute with substitution.
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Example 4.4.8. Let Π “ tt1u, t2, 3u, t4uu from Example 4.3.9(iii) and let KΠ be the
corresponding identity complex. Let K “ KΠxB∆r11, 12s, 2, 3, 4y. Let ψ be the map
sending I “ t2u to J “ t11u. Then the complex K∇pI,Jq is shown in Figure 4.2.

11 4

3

12

Figure 4.2: A folded substitution complex.

In particular, it is not a substitution complex.

We analyse folds ψ : I ÝÑ J of K for which the folded complex K∇pI,Jq is a substitution
complex. A simple scenario is the case that the fold takes the vertex set rlis of Ki to
itself for i “ 1, . . . ,m. Concretely, suppose that ψ : I ÝÑ J satisfies ψprlis X Iq Ď rlis for
each i “ 1, . . . ,m.

Lemma 4.4.9. Let L be a simplicial complex on rms and let K1, . . . ,Km be simplicial
complexes on rl1s, . . . , rlms, respectively. Let rls “ rl1s \ ¨ ¨ ¨ \ rlms and suppose that
ψ : I ÝÑ J is a fold of LxK1, . . . ,Kmy such that ψprlis X Iq Ď rlis for each i “ 1, . . . ,m.
Then

LxK1, . . . ,Kmy∇pI,Jq “ LxpK1q∇pI,Jq , . . . , pKmq∇pI,Jqy

where if rlis X I “ H we set pKiq∇pI,Jq “ Ki.

Proof. First, define a map ψ : rls ÝÑ rls by ψpiq “ ψpiq if i P I and ψpiq “ i otherwise.
Then ψ and ψ induce the same fold of simplicial complexes. By definition,

LxK1, . . . ,Kmy “

#

ğ

jPτ

σj | σj P Kj , τ P L

+

and therefore

LxK1, . . . ,Kmy∇pI,Jq “

#

ğ

jPτ

ψpσjq | σj P Kj , τ P L

+

.

Now any simplex of pKiq∇pI,Jq is either a simplex of Ki, or is of the form ψpσiq for some
σi P Ki. Either way, every simplex pKiq∇pI,Jq can be written ψpσiq for some σi P Ki, and
so the right-hand side above defines LxpK1q∇pI,Jq , . . . , pKmq∇pI,Jqy.

Theorem 4.4.10. Let K1, . . . ,Km be simplicial complexes on rl1s, . . . , rlms, respectively
and let rls “ rl1s \ ¨ ¨ ¨ \ rlms. Let Π “ tP1, . . . , Pku be a k-partition of rms and denote
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Ii “ ti1, . . . , iniu and rms ´Pi “ tj1, . . . , jriu. Let K “ KΠxK1, . . . ,Kmy. Let ψ : I ÝÑ J

be a fold of K such that ψprlis X Iq Ď rlis for each i “ 1, . . . ,m.

Let gi : ΣXi ÝÑ pY , ˚qKi be nested higher Whitehead maps (4.29) for i “ 1, . . . ,m. Then
if each Xi is a suspension,

k
ÿ

i“1

hKw

´

hw

´

∇pI,Jq ˝ gj1 , . . .∇pI,Jq ˝ gjrj

¯

,∇pI,Jq ˝ gi1 , . . . ,∇pI,Jq ˝ gini

¯

“ 0 (4.32)

in
“

Σm´2X1 ^ ¨ ¨ ¨ ^Xm, pY , ˚qK∇pI,Jq
‰

. Furthermore, all summands are trivial if

∇pI,Jq ˝ gj : ΣXj ÝÑ pY , ˚q
pKjq∇pI,Jq

is trivial for some j “ 1, . . . ,m.

Proof. By Lemma 4.4.9, K∇pI,Jq “ KΠxpK1q∇pI,Jq , . . . , pKmq∇pI,Jqy. Therefore by natur-
ality of the higher Whitehead map

∇pI,Jqh
K
w

`

hw
`

gj1 , . . . , gjri
˘

, gi1 , . . . , gini
˘

“ hKw

´

hw

´

∇pI,Jq ˝ gj1 , . . .∇pI,Jq ˝ gjrj

¯

,∇pI,Jq ˝ gi1 , . . . ,∇pI,Jq ˝ gini

¯

establishing the claimed relation. Moreover, if ∇pI,Jq ˝ gj “ 0 for some j “ 1, . . . ,m,
every term in relation (4.32) is trivial by Theorem 4.2.20.

For the second family, we consider the case that Π “ tt1u, t2, . . . ,m´ 1u, tmuu and that
Km is isomorphic to a full subcomplex of K1. Let I “ rlms and J be the vertex set of
the isomorphic copy of Km inside K1, with the isomorphism given by ψ : I ÝÑ J .

Lemma 4.4.11. We have that

K∇pI,Jq “ B∆xK1, . . . ,Km´1y.

Proof. Since ψpKmq “ pK1qJ , then pK1 \ Kmq∇pI,Jq “ K1. Then since

K “ KΠxK1, . . . ,Kmy “ B∆xK1 \ Km,K2, . . . ,Km´1y

the result follows by Lemma 4.4.9.

If each Xi is a suspension then there is a relation

∇pI,Jqh
K
w phwpg2, . . . , gmq, g1q ˝ σ1 ` ∇pI,Jqh

K
w phwpg1, gmq, g2, . . . , gm´1q ˝ σ2 (4.33)

` ∇pI,Jqh
K
w phwpg1, . . . , gm´1q, gmq “ 0



4.4. Relations among folded higher Whitehead maps 121

in
“

Σm´2X1 ^ ¨ ¨ ¨ ^Xm, pY , ˚qK∇pI,Jq
‰

. We analyse the triviality of each term using
Proposition 4.2.31. Of particular interest is the second term, which is trivial if

pB∆xK1 ˚ Km,K2, . . . ,Km´1yq∇pI,Jq “ B∆xpK1 ˚ Kmq∇pI,Jq,K2, . . . ,Km´1y

is a subcomplex of K∇pI,Jq “ B∆xK1, . . . ,Km´1y. While K1 Ď pK1 ˚ Kmq∇pI,Jq, it is not
true that the converse containment holds, even though pKmq∇pI,Jq Ď K1. For example,
if K1 consists of two disjoint points and Km is a single point, then pK1 ˚ Kmq∇pI,Jq is a
1-simplex. The following gives an easy combinatorial condition for when the converse
containment holds.

Lemma 4.4.12. The containment K1 Ď pK1 ˚ Kmq∇pI,Jq is strict if and only if there is
j P J and L P MF pK1q such that j P L.

Proof. Suppose there exists j P J and L P MF pK1q with j P L. Write L “ tl1, . . . , lk, ju

and let i P I be such that ψpiq “ j. Then since ∆rl1, . . . , lks P K1 and i P Km, the simplex
∆rl1, . . . , lk, is is in K1 ˚ Km. Therefore ∆rl1, . . . , lk, js is a simplex of pK1 ˚ Kmq∇pI,Jq,
but not of K1.

Conversely suppose that the claimed containment is strict. Then there is σ P pK1 ˚

Kmq∇pI,Jq such that σ R K1. Furthermore, σ can always be chosen to be a minimal
missing face of K1. Since σ R K1, then σ “ ψpτq for some τ P K1 ˚ Km. In particular,
σ X J is non-empty. Therefore any j P σ X J gives a j P J such that j P σ.

Our main result is that the first and third terms in relation (4.33) are not trivialised by
Proposition 4.2.31, while the triviality of the second term can be expressed in terms of
the minimal missing faces of K1.

Theorem 4.4.13. Let gi : ΣXi ÝÑ pY , ˚qKi be nested higher Whitehead maps for i “

1, . . . ,m.

Suppose that Km is isomorphic to a full subcomplex pK1qJ , where the isomorphism is
given by ψ : I ÝÑ J . Then if each Xi is a suspension, there is a relation

∇pI,Jqh
K
w phwpg2, . . . , gmq, g1q ˝ σ1 ` ∇pI,Jqh

K
w phwpg1, gmq, g2, . . . , gm´1q ˝ σ2

` ∇pI,Jqh
K
w phwpg1, . . . , gm´1q, gmq “ 0

in
“

Σm´2X1 ^ ¨ ¨ ¨ ^Xm, pY , ˚qK∇pI,Jq
‰

, where the second term is trivial if there is no
j P J and L P MF pK1q such that j P L.

Proof. We prove a slightly stronger statement, showing that the first and third terms
of (4.33) are not immediately trivialised by Proposition 4.2.31, and that the second term
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is not trivialised if there is j P J and L P MF pK1q such that j P L. Let L “ K∇pI,Jq “

B∆xK1, . . . ,Km´1y and define simplicial complexes

L1 “ p∆xK1, . . . ,Km´1yq∇pI,Jq L2 “ pB∆xK1, . . . ,Km´1y ˚ Kmq∇pI,Jq

L3 “ p∆xK2, . . . ,Kmyq∇pI,Jq L4 “ pB∆xK2, . . . ,Kmy ˚ K1q∇pI,Jq

L5 “ p∆xK1 \ Km,K2, . . . ,Km´1yq∇pI,Jq L6 “ pB∆xK1 ˚ Km,K2, . . . ,Km´1q∇pI,Jq .

By Proposition 4.2.31, the map ∇pI,Jqhwphwpf1, . . . , fm´1q, fmq trivial if either L1 or L2

is contained in L; the map ∇pI,Jqhw phwpg1, . . . , gm´1q, gmq is trivial if either L3 or L4 is
contained in L; and the map ∇pI,Jqhw phwpg1, gmq, g2, . . . , gm´1q is trivial if either L5 or
L6 is contained in L.

First observe that L1 “ L5 “ ∆xK1, . . . ,Km´1y, so neither L1 nor L5 is contained in
L. For L3, take a simplex ∆rk2, . . . , km´1, kms P ∆xK2, . . . ,Kmy, where kj P Kj . Then
∆rk2, . . . , km´1, ψpkmqs is a simplex of L3, but not a simplex of L since ψpkmq P K1.
Therefore L3 is also not contained in L.

Next, observe that

L6 “ pB∆xK1 ˚ Km,K2, . . . ,Km´1yq∇pI,Jq “ B∆xpK1 ˚ Kmq∇pI,Jq ,K2, . . . ,Km´1y

is contained in L if and only if pK1 ˚ Kmq∇pI,Jq “ K1. Therefore if there is no j P J

and L P MF pK1q with j P L, then by Lemma 4.4.12 pK1 ˚ Kmq∇pI,Jq “ K1, and so
∇pI,Jqhw phwpg1, gmq, g2, . . . , gm´1q is trivial.

Furthermore, observe that since B∆xK1 ˚ Km,K2, . . . ,Km´1y Ď B∆xK1, . . . ,Km´1y ˚ Km

and B∆xK1 ˚ Km,K2, . . . ,Km´1y Ď B∆xK2, . . . ,Kmy ˚ K1, then L6 Ď L2 and L6 Ď

L4. Therefore it remains to show that the remaining two terms are not trivialised
in this case, or equivalently that the containments L6 Ď L2 and L6 Ď L4 are strict.
Take a simplex ∆rk2, . . . , km´1, kms P B∆xK1, . . . ,Km´1y ˚ Km, where kj P Kj . Then
∆rk2, . . . , km´1, ψpkmqs is a simplex of L2, but not of L6 since ψpkmq P K1. Therefore
the containment L6 Ď L2 is strict. A similar argument shows that L6 Ď L4 is strict, and
the result follows.

Example 4.4.14. Let Π “ tt1u, t2, 3u, t4uu and let K1 “ B∆r11, 12, 13s. Let

g1 “ hwpg11 , g12 , g13q : Σ2X11 ^X12 ^X13 ÝÑ pY , ˚qK1

and let gi : ΣXi ÝÑ Yi be maps for i “ 2, 3, 4. Let I “ t4u, J “ t11, 12, 13u and
ψ : I ÝÑ J be defined by ψp4q “ 11. Suppose that Y4 “ Y11 is an H-space and Xi is a
suspension for i “ 2, 3, 4. Since 11 P J is contained in the missing face t11, 12, 13u of K1,
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by Theorem 4.4.13 there is a relation

∇p4,11qhwphwpg2, g3, g4q, hwpg11 , g12 , g13q ˝ σ1 (4.34)

` ∇p4,11qhwphwphwpg11 , g12 , g13q, g4q, g2, g3q ˝ σ2

` ∇p4,11qhwphwphwpg11 , g12 , g13q, g2, g3q, g4q “ 0

in
“

Σ2X1 ^X2 ^X3 ^X4, pY , ˚qL
‰

, where L “ B∆xB∆r11, 12, 13s, 2, 3y.

This integrally recovers relations detected in the rational homotopy groups of the Davis–
Jaunszkiewicz space DJL by Zhuravleva [Zhu21]. Let each gj be the cellular inclusion
S2 ÝÑ CP8 and let µj be the composite of gj with the inclusion CP8 ÝÑ DJL. Then
the methods of Zhuravleva show that

rrµ2, µ3, µ11sQ, rµ11 , µ12 , µ13sQs ` rrrµ11 , µ12 , µ13sQ, µ2, µ3sQ, µ11s “ 0 (4.35)

where r¨, ¨, ¨sQ is the rational triple Whitehead bracket obtained by rationalising the
higher Whitehead map.

Our results show that integrally the Whitehead products rhLwpg2, g3, g11q, hLwpg11 , g12 , g13qs

and rhLwphwpg11 , g12 , g13q, g2, g3q, µ11s differ up to sign by

∇p4,11qhwphwphwpg11 , g12 , g13q, g4q, g2, g3q P rrhLwpg11 , g12 , g13q, µ11s, µ2, µ3s (4.36)

which is null-homotopic by Example 4.4.7, since the folded map ∇p4,11qhwphwpg11 , g12 , g13q, g4q

is null-homotopic.

More generally, however, each term in relation (4.34) can be non-trivial. In this case, the
term (4.36) a 2-torsion element since ∇p4,11qhwphwpg11 , g12 , g13q, g4q is itself 2-torsion by
Example 4.4.7. For example, this occurs if Yi “ ΩS3 and gi : S2 ÝÑ ΩΣS2 is the adjoint
to the suspension map on S2 for i “ 1, . . . ,m. We therefore recover further integral
relations which cannot be detected rationally.

4.5 Proof of main theorem

In this section we prove Theorem 4.3.7, which we state again.

Theorem 4.3.7. Let fi : ΣXi ÝÑ Yi be maps for i “ 1, . . . ,m. Let Π “ tI1, . . . , Iku be a
k-partition of rms for k ě 3 and denote Ii “ ti1, . . . , iliu and Ji “ rms´Ii “ tj1, . . . , jrju.
Then if Xi is a suspension for each i “ 1, . . . ,m,

k
ÿ

i“1

hKΠ
w

`

hw
`

fj1 , . . . , fjri
˘

, fi1 , . . . , fini
˘

˝ σi “ 0
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in
“

Σm´2X1 ^ ¨ ¨ ¨ ^Xm, pY , ˚qKΠ
‰

, where

σi : Σ
m´2X1 ^ ¨ ¨ ¨ ^Xm ÝÑ ΣnipΣri´2Xj1 ^ ¨ ¨ ¨ ^Xjri

q ^Xi1 ^ ¨ ¨ ¨ ^Xini

is the restriction of the coordinate permutation

CX1 ˆ ¨ ¨ ¨ ˆ CXm ÝÑ CXj1 ˆ ¨ ¨ ¨ ˆ CXjri
ˆ CXi1 ˆ ¨ ¨ ¨ ˆ CXini

.

We adapt the methods used by Nakaoka–Toda [NT54] and Hardie [Har64] in proving the
Jacobi identity and Theorem 4.3.1, respectively. We extend these methods in two main
ways, first by using the combinatorial structure of KΠ to detect the form of the nested
higher Whitehead maps appearing in Theorem 4.3.7, and second deriving the claimed
relations for maps fi : ΣXi ÝÑ Yi where Xi is not necessarily a sphere. The central
object of the proof is a long exact sequence constructed by generalising the method
given by Arkowitz [Ark11, pp. 138–139].

Let X be a space and A a subspace. Denote by XA be the homotopy fibre of the inclusion
A ÝÑ X. Then by Proposition 2.1.3(i) for any space W there is long exact sequence

¨ ¨ ¨ rΣW,Xs rW,XAs rW,As rW,Xs ¨ ¨ ¨ .
j B i (4.37)

If pX,Aq and pY,Bq are pairs, we denote by rpY,Bq, pX,Aqs the set of homotopy classes of
maps of pairs pY,Bq ÝÑ pX,Aq. There is a bijection between rW,XAs and rpCW,W q, pX,Aqs

constructed as follows. We model the homotopy fibre XA as the space

tpγ, aq P PX ˆA | γp1q “ au.

Let f : W ÝÑ XA be a map. We define a map CW ÝÑ X by sending pw, tq ÞÝÑ γwptq

where fpwq “ pγw, awq. Moreover, this is a map of pairs pCW,W q ÝÑ pX,Aq since
γwp1q “ aw P A. This constructs a map rW,XAs ÝÑ rpCW,W q, pX,Aqs. Conversely any
map g P pCW,W q ÝÑ pX,Aq defines a map W ÝÑ XA by sending w ÞÝÑ pγ, aq where
γptq “ gpw, tq and a “ gpw, 1q P A. This gives a map rpCW,W q, pX,Aqs ÝÑ rW,XAs

and the claimed bijection follows. Combining this with long exact sequence (4.37), we
obtain a long exact sequence

¨ ¨ ¨ rΣW,Xs rpCW,W q, pX,Aqs rW,As ¨ ¨ ¨
j B (4.38)

where moreover the maps j and B can be specified explicitly. In particular, the map j is
the composite of the isomorphism rΣW,Xs ÝÑ rpCW,W q, pX, ˚qs with the map induced
by the inclusion pX, ˚q ÝÑ pX,Aq, and B is the restriction sending f P rpCW,W q, pX,Aqs

to f |W P rW,As.



4.5. Proof of main theorem 125

Let K “ KΠ and fix W “ Σm´2X1 ^ ¨ ¨ ¨ ^Xm, X “ FW pY1, . . . , Ymq and A “ pY , ˚qK.
Since W is a suspension, the terms appearing in (4.38) are groups. The proof proceeds
in two main stages.

In Section 4.5.1 we construct maps φi : pCW,W q ÝÑ pX,Aq called relative higher White-
head maps with the property that

Bφi “ hKw
`

hw
`

fj1 , . . . , fjri
˘

, fi1 , . . . , fini
˘

. (4.39)

These maps generalise the construction of relative Whitehead products given by Blakers–
Massey [BM53].

The remainder of the proof is an analysis of the map j : rΣW,Xs ÝÑ rpCW,W q, pX,Aqs.
In particular we show that

j ˝ hwpf1, . . . , fmq »

k
ÿ

i“1

φi ˝ σi (4.40)

from which Theorem 4.3.7 follows by applying B to both sides, using relation (4.39), and
exactness of sequence (4.38).

4.5.1 The relative higher Whitehead map

The relative Whitehead product was introduced by Blakers and Massey [BM53] as an
operation on relative homotopy groups defined as follows. For a sphere Sr, let Dr

` and
Dr

´ denote the upper and lower hemispheres, respectively. Let α P πppX,Aq and β P

πqpAq be represented by f : pDp, Sp´1, Dp´1
` q ÝÑ pX,A, ˚q and g : pDq, Sq´1q ÝÑ pA, ˚q,

respectively. The relative Whitehead product rα, βs P πp`q´1pX,Aq is the homotopy
class of the map of pairs

pDp`q´1, Sp`q´2q “ pDp ˆ Sq´1 YDp´1
` ˆDq, Dp´1

´ ˆ Sq´1 Y Sp´2 YDqq

ÝÑ pX _A,A_Aq ÝÑ pX,Aq

where the first map is induced by the product f ˆ g and the second map is induced by
the fold ∇ : X _X ÝÑ X.

The relative Whitehead product shares many of the same properties as the Whitehead
product, including naturality and bilinearity, see [BM53] for details. Furthermore it
satisfies the following. Let Bn : πnpX,Aq ÝÑ πn´1pAq be the boundary operator from
long exact sequence

¨ ¨ ¨ πnpXq πnpX,Aq πn´1pAq ¨ ¨ ¨ .
Bn
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Then
Bp`q´1rα, βs “ ´rBpα, βs. (4.41)

This is a key property used by Nakaoka–Toda [NT54] in deriving the Jacobi identity (4.2).
To analyse relations between higher Whitehead maps, we introduce a generalisation of the
relative Whitehead product analogous to the way the higher Whitehead map generalises
the Whitehead product.

Let f : pCΣX,ΣXq ÝÑ pZ,Bq be a map of pairs and let fi : ΣXi ÝÑ Yi be maps for
i “ 1, . . . ,m.

Definition 4.5.1. Let W “ X ˚ X1 ˚ ¨ ¨ ¨ ˚ Xm. The relative higher Whitehead map of
f, f1, . . . , fm is the homotopy class of the composite

hwpf, f1, . . . , fmq : CW » CX ˚X1 ˚ ¨ ¨ ¨ ˚Xm

ρ
ÝÝÑ FW pΣCX,ΣX1, . . . ,ΣXmq

»
ÝÝÑ FW pCΣX,ΣX1, . . . ,ΣXmq

ÝÑ FW pZ, Y1, . . . , Ymq.

The restriction of hwpf, f1, . . . , fmq to W is the composite

W “ X ˚X1 ˚ ¨ ¨ ¨ ˚Xm

ρ
ÝÝÑ FW pΣX,ΣX1, . . . ,ΣXmq

ÝÑ FW pB, Y1, . . . , Ymq

which is the higher Whitehead map hwpf |ΣX , f1, . . . , fmq. It follows that the relative
higher Whitehead map hwpf, f1, . . . , fmq is an element of the relative homotopy group

rpCW,W q, pFW pZ, Y1, . . . , Ymq, FW pB, Y1, . . . , Ymqqs .

The higher and relative higher Whitehead maps satisfy a relation analogous to (4.41) as
follows.

Proposition 4.5.2. The map hwpf, f1, . . . , fmq satisfies

Bhwpf, f1, . . . , fmq “ hwpf |ΣX , f1, . . . , fmq

where

B : rpCW,W q, pFW pZ, Y1, . . . , Ymq, FW pB, Y1, . . . , Ymqqs ÝÑ rW,FW pB, Y1, . . . , Ymqs

is the map from exact sequence (4.37).
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Proof. Since
Bhwpf, f1, . . . , fmq “ hwpf, f1, . . . , fmq|W

the result follows immediately from the definition of hwpf, f1, . . . , fmq.

It should be noted that in the spherical case this only recovers (4.41) up to sign, due to
the choices of orientation made in [BM53].

4.5.2 The inclusion map j

We now turn to proving formula (4.40). For the partition Π “ tI1, . . . , Iku of rms with
Ii “ ti1, . . . , iniu and rms´Ii “ tj1, . . . , jriu, let ψ “ f1ˆ¨ ¨ ¨ˆfm and ψi “ fj1 ˆ¨ ¨ ¨ˆfjri
for i “ 1, . . . , k. Then ψ is a map whose restriction to X1 ˚ ¨ ¨ ¨ ˚ Xm is hwpf1, . . . , fmq

and ψi is a map whose restriction to Xj1 ˚ ¨ ¨ ¨ ˚Xjri
is hw

`

fj1 , . . . , fjri
˘

.

Let W “ Σm´2X1 ^ ¨ ¨ ¨ ^ Xm. We construct subspaces Zi and Fi of ΣW such that the
restriction ψ|Fi is homotopic to the relative higher Whitehead map hwpψi, fi1 , . . . , fini q ˝

σi and whose further restriction to Zi Ď Fi is a representative of

hKw
`

hw
`

fj1 , . . . , fjri
˘

, fi1 , . . . , fini
˘

˝ σi.

We construct the subspaces Fi and Zi to have the property that Fi X Fi1 Ď Zi X Zi1 for
each distinct pair i, i1 P t1, . . . , ku. Then formula (4.40) is derived from a property of the
map j given in Lemma 4.5.11.

In the case that the Xi are spheres, the subspaces Fi can be constructed using the
methods of Nakaoka–Toda [NT54] and Hardie [Har64]. For general Xi, more care must
be taken, and we carefully build these spaces starting with decompositions of the spaces
CXi. We first use the suspension structure of the Xi to construct the maps fi on
subspaces of CXi “ CΣXr i, which in turn are used to construct the maps ψi on subspaces
of CXj1 ˆ ¨ ¨ ¨ ˆ CXjni

. These are finally used to construct the subspaces Fi on which
the relative higher Whitehead maps are defined.

4.5.2.1 Decompositions of CXi

Fix i “ 1, . . . ,m. Since Xi is a suspension, write Xi “ ΣXr i. We consider CΣXr i given
by

CΣXr i “ tps, t, xq P I ˆ I ˆXr iu{p1, t, xq „ ps, 0, xq „ ps, 1, xq „ ps, t, ˚q

and realise Xi “ ΣXr i as the subspace at s “ 0. We also define C´Xr i to be the subspace
corresponding to s “ 0, t ď 1

2 and C`Xr i the subspace for s “ 0, t ě 1
2 . In Figure 4.3 we

show the situation for Xr i “ S0, which gives a useful reference for our next constructions.
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(a) Xr i

(b) Xi “ ΣXr i “ C´Xr i Y

C`Xr i (c) CXi “ CΣXr i

Figure 4.3: The spaces Xr i, Xi and CXi for Xr i “ S0.

We define two decompositions of CXi “ CΣXr i by setting

D`
i “

"

ps, pt, xqq P CΣXr i | t ě
1

2

*

D´
i “

"

ps, pt, xqq P CΣXr i | t ď
1

2

*

D1
i “

"

ps, pt, xqq P CΣXr i | s ě
3

4
´ t

*

D2
i “

"

ps, pt, xqq P CΣXr i | s ď
3

4
´ t

*

for which CΣXr i “ D´
i YD`

i “ D1
i YD2

i . The decompositions for Xr i “ S0 are shown in
Figure 4.4. On the left, the darker-shaded red area is D2

i and the lighter-shaded area is
D1
i . On the right, the darker-shaded blue area is D´

i and the lighter-shaded area is D`
i .

(a) CΣXr i “ D1
i YD2

i (b) CΣXr i “ D`
i YD´

i

Figure 4.4: Two decompositions of CΣXr i for Xr i “ S0.

Next, we define the subspaces of D´
i and D1

i that we will require throughout the rest of
this proof. We begin with further decompositions of D´

i and D1
i . Let

E´
i “

"

ps, pt, xqq P D´
i | t ď

1

8

*

E1
i “

"

ps, pt, xqq P D1
i | t ě

7

8

*

C´
i “

"

ps, pt, xqq P D´
i | t ě

1

8

*

C1
i “

"

ps, pt, xqq P D1
i | t ď

7

8

*

so that by construction we haveD1
i “ E1

i YC1
i andD´

i “ E´
i YC´

i . These decompositions
for Xr i “ S0 are shown in Figure 4.5. On the left, the darker-shaded yellow area is E1

i

and the lighter-shaded area is C1
i . On the right, the darker-shaded green area is C´

i and
the lighter-shaded area is E´

i . We observe that by construction E1
i is disjoint from D´

i ,
and E´

i is disjoint from D1
i , which we will require later.
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(a) D1
i “ E1

i Y C1
i (b) D´

i “ E´
i Y C´

i

Figure 4.5: Decompositions of D1
i and D´

i for Xr i “ S0.

Finally we define further subspaces of D´
i and D1

i as

pB2q
´
i “

"

ps, pt, xqq P D´
i | t ď

1

2
, s “ 0

*

pB2q1i “

"

ps, pt, xqq P D1
i | s “

3

4
´ t

*

pB1q
´
i “

"

ps, pt, xqq P D´
i | t “

1

2

*

pB1q1i “

"

ps, pt, xqq P D1
i | t ě

3

4
, s “ 0

*

R´
i “

"

ps, pt, xqq P D´
i | t “

1

8
, s “ 0

*

R1
i “

"

ps, pt, xqq P D1
i | t “

7

8
, s “ 0

*

S´
i “

"

ps, pt, xqq P D´
i | t “

1

8

*

S1
i “

"

ps, pt, xqq P D1
i | t “

7

8

*

T´
i “

"

ps, pt, xqq P D´
i | t ď

1

8
, s “ 0

*

T 1
i “

"

ps, pt, xqq P D1
i | t ě

7

8
, s “ 0

*

.

We also denote by B´
i “ pB1q

´
i Y pB2q

´
i and B1

i “ pB1q1i Y pB2q1i . These subspaces
are shown in Figure 4.6 for Xr i “ S0. In (a), the lighter-shaded red area is pB2q1i and
the darker-shaded area is pB1q1i . In (b), the lighter-shaded blue area is pB2q

´
i and the

darker-shaded area is pB1q
´
i . In (c), the lighter-shaded green area is T´

i , the darker-
shaded green area is S´

i , the lighter-shaded yellow area is T 1
i , and the darker-shaded

yellow area is S1
i .

(a) B1
i “ pB1q1i Y pB2q1i (b) B´

i “ pB1q
´
i Y pB2q

´
i (c) S´

i , T´
i , S1

i and T 1
i

Figure 4.6: Other subspaces of D1
i and D´

i for Xr i “ S0.

When Xi “ Sri´1, the spaces D´
i and D1

i are discs Dri and their topological boundaries
B´
i and B1

i , respectively, are also spheres Sri´1. For general Xi, the spaces B´
i and

B1
i are no longer the topological boundaries of D´

i and D1
i , respectively. Nevertheless,

we construct B´
i and B`

i to have the homotopy type of Xi. This is summarised by the
following result, with a similar observation for the spaces S´

i , S1
i , T

´
i and T 1

i .
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Lemma 4.5.3. Let δ P t1,´u. There is a homotopy equivalence CΣXr i ÝÑ Dδ
i ÝÑ Eδi ,

which restricts to a homotopy commutative diagram

Xr i C`Xr i

C´Xr i ΣXr i

pB1qδi X pB2qδi pB1qδi

pB2qδi Bδ
i

Rδi T δi

Sδi T δi Y Sδi

in which the horizontal squares are pushouts and all vertical arrows are homotopy equi-
valences.

Proof. CΣXr i is contracted to D1
i first by sending C`Xr i to pB1q1i and then sending D2

i

to pB2q1i . This then takes C´Xr i to pB2q1i , giving the first layer of the diagram. In a
similar way, D1

i can be further contracted to E1
i in a way consistent with the second

layer of the diagram. The case for δ “ ´ is dealt with similarly.

4.5.2.2 Subspaces of CXj1 ˆ ¨ ¨ ¨ ˆ CXjri

Let

V “

m
ź

i“1

CXi

V ˚ “

m
ď

i“1

CX1 ˆ ¨ ¨ ¨ ˆXi ˆ ¨ ¨ ¨ ˆ CXm.

We recall that for the partition Π “ tI1, . . . , Iku of rms we write Ii “ ti1, . . . , iniu and
rms ´ Ii “ tj1, . . . , jriu. For i “ 1, . . . , k we define subspaces of V ˚ as

Vi “ CXj1 ˆ ¨ ¨ ¨ ˆ CXjri

V ˚
i “

ri
ď

l“1

CXj1 ˆ ¨ ¨ ¨ ˆXjl ˆ ¨ ¨ ¨ ˆ CXjri
.
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For each i “ 1, . . . , k, we define a pair pGi, G
˚
i q homotopy equivalent to pVi, V

˚
i q. We use

matrix notation to encode the factors in the product. If k ě 4 is even, define the k ˆ k

matrix H 1 “ rη1
kpi, jqs by

η1
kpi, jq “

$

’

’

’

&

’

’

’

%

˚ if i “ j

1 if i` j ă k ` 1, or i` j “ k ` 1 and i ě k
2 ` 1

´ if i` j ą k ` 1, or i` j “ k ` 1 and i ď k
2

and define the matrixH “ rηkpi, jqs fromH 1 by swapping the entries pi, jq “ pk2 `1, k2 ´1q

and pi, jq “ pk2 ` 1, k2 q. If k ě 3 is odd, define the k ˆ k matrix H by

ηkpi, jq “

$

’

’

’

&

’

’

’

%

˚ if i “ j

1 if i` j ă k ` 1, or i` j “ k ` 1 and i ą k`1
2

´ if i` j ą k ` 1, or i` j “ k ` 1 and i ă k`1
2 .

Figure 4.7 shows the matrix H, on the left for k “ 8, and on the right for k “ 7.

»

—

—

—

—

—

—

—

—

—

—

–

˚ 1 1 1 1 1 1 1
1 ˚ 1 1 1 1 1 ´

1 1 ˚ 1 1 1 ´ ´

1 1 1 ˚ 1 ´ ´ ´

1 1 ´ 1 ˚ ´ ´ ´

1 1 ´ ´ ´ ˚ ´ ´

1 ´ ´ ´ ´ ´ ˚ ´

´ ´ ´ ´ ´ ´ ´ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(a) k “ 8

»

—

—

—

—

—

—

—

—

–

˚ 1 1 1 1 1 1
1 ˚ 1 1 1 1 ´

1 1 ˚ 1 1 ´ ´

1 1 1 ˚ ´ ´ ´

1 1 ´ ´ ˚ ´ ´

1 ´ ´ ´ ´ ˚ ´

´ ´ ´ ´ ´ ´ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(b) k “ 7

Figure 4.7: The matrix H for different values of k.

We define

Gi “

ri
ź

n“1

D
ηkpi,πpjnqq

jn
“ D

ηkpi,πpj1qq

j1
ˆ ¨ ¨ ¨ ˆD

ηkpi,πpjri qq

jri

G˚
i “

ri
ď

n“1

D
ηkpi,πpj1qq

j1
ˆ ¨ ¨ ¨ ˆB

ηkpi,πpjnqq

jn
ˆ ¨ ¨ ¨ ˆD

ηkpi,πpjri qq

jri

where if ji P Pl then we set πpjiq “ l.

Example 4.5.4. Consider the partition Π “ tt1u, t2, 3u, t4uu where we set P1 “ t1u,
P2 “ t2, 3u and P3 “ t4u so that πp1q “ 1, πp2q “ πp3q “ 2 and πp4q “ 3. Since Π is a
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3-partition we choose the 3 ˆ 3 matrix H as follows.

»

—

–

˚ 1 1

1 ˚ ´

´ ´ ˚

fi

ffi

fl

This then defines

G1 “ D
η3p1,πp2qq

2 ˆD
η3p1,πp3qq

3 ˆD
η3p1,πp4qq

4 “ D
η3p1,2qq

2 ˆD
η3p1,2q

3 ˆD
η3p1,3q

4 “ D1
2 ˆD1

3 ˆD1
4

and similarly we obtain

G2 “ D
η3p2,1q

1 ˆD
η3p2,3q

4 “ D1
1 ˆD´

4

G3 “ D
η3p3,1q

1 ˆD
η3p3,2q

2 ˆD
η3p3,2q

3 “ D´
1 ˆD´

2 ˆD´
3 .

Moreover we have

G˚
1 “ pB1

2 ˆD1
3 ˆD1

4q Y pD1
2 ˆB1

3 ˆD1
4q Y pD1

2 ˆD1
3 ˆB1

4q

G˚
2 “ pB1

1 ˆD´
4 q Y pD1

1 ˆB´
4 q

G˚
3 “ pB´

1 ˆD´
2 ˆD´

3 q Y pD´
1 ˆB´

2 ˆD´
3 q Y pD´

1 ˆD´
2 ˆB´

3 q.

By construction, we have the following.

Lemma 4.5.5. For all i “ 1, . . . , k, there is a homotopy equivalence of pairs pVi, V
˚
i q »

pGi, G
˚
i q.

Proof. This follows from Lemma 4.5.3, since for each i there are homotopy equivalences
of pairs pD´

i , B
´
i q » pCΣXr i,ΣXr iq and pD1

i , B
1
i q » pCΣXr i,ΣXr iq.

When each Xi is a sphere, it suffices to define G˚
i as the topological boundary of Gi. In

general, however, the topological boundary of Gi will not have the homotopy type of V ˚
i .

The following is an important consequence of our construction which will be used later.

Lemma 4.5.6. Suppose that 1 ď i ă j ď k. Then there exists i ‰ r ‰ j such that Gi
contains a factor D1

r and Gj contains a factor D´
r .

Proof. Observe that given any two rows i and j of a matrix H, there exists i ‰ r ‰ j

such that ηkpi, rq “ 1 and ηkpj, rq “ ´. Then by construction Gi has a factor D1
r and

Gj has a factor D´
r .

Example 4.5.7. To demonstrate Lemma 4.5.6, consider G1, G2 and G3 from Ex-
ample 4.5.4. Then G1 has a factor D1

4, while G2 as a factor D´
4 . Similarly, G1 has

a factor D1
2 while G3 has a factor D´

2 ; and G2 has a factor D1
1 while G3 has a factor D´

1 .
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Next, we give a decomposition of G˚
i » Σri´1Xj1 ^¨ ¨ ¨^Xjri

into two contractible spaces
τi and κi with τi » CΣri´2Xj1 ^ ¨ ¨ ¨ ^ Xjri

» κi which intersect in σi » Σri´2Xj1 ^

¨ ¨ ¨ ^ Xjri
. When G˚

i is a sphere, it is sufficient to specify τi as any open ball. In
general, however, the complement of a contractible subspace in a suspension need not be
contractible.

Instead, we build τi and κi from decompositions of Dδ
i as follows. Since D´

i “ E´
i YC´

i

and D1
i “ E1

i Y C1
i , we have

Gi “

ri
ź

n“1

D
ηkpi,πpjnqq

jn
“

ri
ź

n“1

E
ηkpi,πpjnqq

jn
Y C

ηkpi,πpjnqq

jn
“

ď

tt1,...,triu
Pt0,1uri

˜

ri
ź

n“1

pYtnq
ηkpi,πpjnqq

jn

¸

where pY0qδjn “ Eδjn and pY1qδjn “ Cδjn .

We define

τi “ G˚
i X

ri
ź

n“1

E
ηkpi,πpjnqq

jn

κi “ G˚
i X

¨

˚

˚

˚

˝

ď

tt1,...,triuPt0,1uri

tt1,...,triu‰t0,...,0u

ri
ź

n“1

pYtnq
ηkpi,πpjnqq

jn

˛

‹

‹

‹

‚

σi “ τi X κi

so that by construction G˚
i “ τi Y κi.

The construction of these spaces is demonstrated in Figure 4.8, which shows the space
CX1 ˆ CX2. In Figure 4.8(a) the area shaded green is E1 ˆ E2, the area shaded grey
is E1 ˆ C2 Y C1 ˆ E2 Y C1 ˆ C2, and their union is Gi. In Figure 4.8(b) The bold light
green line is τi and the dark green line is κi. Their union is G˚

i and their intersection is
σi.

(a) The decomposition of Gi (b) The spaces τi and κi inside Gi

Figure 4.8: The construction of the subspaces of CXj1 ˆ ¨ ¨ ¨ ˆ CXjri
.

We show that τi, κi and σi give the desired decomposition of G˚
i .
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Lemma 4.5.8. Let W “ Σri´2Xj1 ^ ¨ ¨ ¨ ^ Xjri
. There is a homotopy commutative

diagram
W C`W

C´W ΣW

σi τi

κi G˚
i

where the top and bottom squares are pushouts and the vertical maps are homotopy equi-
valences.

Proof. The top and bottom faces are pushouts since all maps are inclusions. By Lemma 4.5.5,
the homotopy equivalence Vi ÝÑ Gi restricts to a homotopy equivalence

ΣW “ V ˚
i ÝÑ G˚

i .

We show that this further restricts to homotopy equivalences W ÝÑ σi and C`W ÝÑ τj .
By commutativity it then follows that C´W ÝÑ κi is also homotopy equivalence.

We first analyse σi. Since Eδi X Cδi “ Sδi ,

σi “ τi X κi

“ G˚
i X

¨

˚

˚

˚

˝

ri
ź

n“1

E
ηkpi,πpjnqq

jn
X

¨

˚

˚

˚

˝

ď

tt1,...,triuPt0,1uri

tt1,...,triu‰t0,...,0u

ri
ź

n“1

pYtnq
ηkpi,πpjnqq

jn

˛

‹

‹

‹

‚

˛

‹

‹

‹

‚

“ G˚
i X

¨

˚

˚

˚

˝

ď

tt1,...,triuPt0,1uri

tt1,...,triu‰t0,...,0u

ri
ź

n“1

pZtnq
ηkpi,πpjnqq

jn

˛

‹

‹

‹

‚

where pZ0qδjn “ Eδjn and pZ1qδjn “ Sδjn . Since Sδi Ď Eδi , the above union simplifies to give

σi “ G˚
i X

˜

ri
ď

n“1

E
ηkpi,πpj1qq

j1
ˆ ¨ ¨ ¨ ˆ S

ηkpi,πpjnqq

jn
ˆ ¨ ¨ ¨ ˆ E

ηkpi,πpjri qq

jri

¸

.

Next, since

G˚
i “

ri
ď

n“1

D
ηkpi,πpj1qq

j1
ˆ ¨ ¨ ¨ ˆB

ηkpi,πpjnqq

jn
ˆ ¨ ¨ ¨ ˆD

ηkpi,πpjri qq

jri
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and since Bδ
i X Eδi “ T δi and Bδ

i X Sδi “ Rδi , we have

σi “

´

B
ηkpi,πpj1qq

j1
ˆB

ηkpi,πpj2qq

j2
ˆ ¨ ¨ ¨ ˆD

ηkpi,πpjri qq

jri

¯

X

˜

ri
ď

n“1

E
ηkpi,πpj1qq

j1
ˆ ¨ ¨ ¨ ˆ S

ηkpi,πpjnqq

jn
ˆ ¨ ¨ ¨ ˆ E

ηkpi,πpjri qq

jri

¸

Y ¨ ¨ ¨ Y

´

D
ηkpi,πpj1qq

j1
ˆB

ηkpi,πpj2qq

j2
ˆ ¨ ¨ ¨ ˆB

ηkpi,πpjri qq

jri

¯

X

˜

ri
ď

n“1

E
ηkpi,πpj1qq

j1
ˆ ¨ ¨ ¨ ˆ S

ηkpi,πpjnqq

jn
ˆ ¨ ¨ ¨ ˆ E

ηkpi,πpjri qq

jri

¸

“ R
ηkpi,πpj1qq

j1
ˆ E

ηkpi,πpj2qq

j2
ˆ ¨ ¨ ¨ ˆ E

ηkpi,πpjri qq

jri

Y T
ηkpi,πpj1qq

j1
ˆ

´

S
ηkpi,πpj2qq

j2
ˆ ¨ ¨ ¨ ˆ E

ηkpi,πpjri qq

jri
Y E

ηkpi,πpj2qq

j2
ˆ ¨ ¨ ¨ ˆ S

ηkpi,πpjri qq

jri

¯

Y ¨ ¨ ¨ Y E
ηkpi,πpj1qq

j1
ˆ ¨ ¨ ¨ ˆ E

ηkpi,πpjri´1qq

jri´1
ˆR

ηkpi,πpjri qq

jri

Y

´

S
ηkpi,πpj1qq

j1
ˆ ¨ ¨ ¨ ˆ E

ηkpi,πpjri´1qq

jri´1
Y E

ηkpi,πpj1qq

j1
ˆ ¨ ¨ ¨ ˆ S

ηkpi,πpjri´1qq

jri´1

¯

ˆ T
ηkpi,πpjri qq

jri

and so applying Lemma 4.5.3 we obtain

σi » Xr j1 ˆ CΣXr j2 ˆ ¨ ¨ ¨ ˆ CΣXr jri

Y C´Xr j1 ˆ

´

C`Xr j2 ˆ ¨ ¨ ¨ ˆ CΣXr jri
Y ¨ ¨ ¨ Y CΣXr j2 ˆ ¨ ¨ ¨ ˆ C`Xr jri

¯

Y ¨ ¨ ¨ Y CΣXr j1 ˆ ¨ ¨ ¨ ˆ CΣXr jri´1 ˆXr jri
´

C`Xr j1 ˆ ¨ ¨ ¨ ˆ CΣXr jri´1 Y ¨ ¨ ¨ Y CΣXr j1 ˆ ¨ ¨ ¨ ˆ C`Xr jri´1

¯

ˆ C´Xr jri

» Xr j1 ˚ C`Xr j2 ˚ ¨ ¨ ¨ ˚ C`Xr jri
Y ¨ ¨ ¨ Y C`Xr j1 ˚ C`Xr j2 ˚ ¨ ¨ ¨ ˚Xr jri

.

To conclude that σi » W , we use the following observation. Suppose that B1 and B2

are contractible spaces containing A1 and A2, respectively. Since

pA1 ˚B2q X pB1 ˚A2q “ pCA1 ˆB2 YA1 ˆ CB2q X pCB1 ˆA2 YB1 ˆ CA2q

“ CA1 ˆA2 YA1 ˆ CA2

“ A1 ˚A2

then pA1 ˚ B2q Y pB1 ˚ A2q » ΣA1 ˚ A2. Now suppose for i “ 1, . . . , k that Bi is a
contractible space containing Ai and let

D “ pA1 ˚B2 ˚ ¨ ¨ ¨ ˚Bkq Y pB1 ˚A2 ˚ ¨ ¨ ¨ ˚Bkq Y ¨ ¨ ¨ Y pB1 ˚B2 ˚ ¨ ¨ ¨ ˚Akq.
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Applying the above observation inductively we obtain that

D “ pA1 ˚B2 ˚ ¨ ¨ ¨ ˚Bkq Y pB1 ˚A2 ˚ ¨ ¨ ¨ ˚Bkq Y ¨ ¨ ¨ Y pB1 ˚B2 ˚ ¨ ¨ ¨ ˚Akq

“ A1 ˚ pB2 ˚ ¨ ¨ ¨ ˚Bkq YB1 ˚ ppA2 ˚ ¨ ¨ ¨ ˚Bkq Y ¨ ¨ ¨ Y pB2 ˚ ¨ ¨ ¨ ˚Akqq

» ΣpA1 ˚ Σk´2pA2 ˚ ¨ ¨ ¨ ˚Akqq

» Σk´1A1 ˚ ¨ ¨ ¨ ˚Ak.

Applying this to the above expression for σi we obtain

σi » Xr j1 ˚ C`Xr j2 ˚ ¨ ¨ ¨ ˚ C`Xr jri
Y ¨ ¨ ¨ Y C`Xr j1 ˚ C`Xr j2 ˚ ¨ ¨ ¨ ˚Xr jri

“ Σri´1Xr j1 ˚ ¨ ¨ ¨ ˚Xr jri

“ Σ2ri´2Xr j1 ^ ¨ ¨ ¨ ^Xr jri

“ Σri´2Xj1 ^ ¨ ¨ ¨ ^Xjri

which is equal to W , as claimed.

It remains to show that τi is contractible. Since Bδ
i X Eδi “ T δi ,

τi “ G˚
i X

ri
ź

n“1

E
ηkpi,πpjnqq

jn

“

˜

ri
ď

n“1

D
ηkpi,πpj1qq

j1
ˆ ¨ ¨ ¨ ˆB

ηkpi,πpjnqq

jn
ˆ ¨ ¨ ¨ ˆD

ηkpi,πpjri qq

jri

¸

X

ri
ź

n“1

E
ηkpi,πpjnqq

jn

“

ri
ď

n“1

E
ηkpi,πpj1qq

j1
ˆ ¨ ¨ ¨ ˆ T

ηkpi,πpjnqq

jn
ˆ ¨ ¨ ¨ ˆ E

ηkpi,πpjri qq

jri

so applying Lemma 4.5.3 again,

τi »

ri
ď

n“1

CΣXr j1 ˆ ¨ ¨ ¨ ˆ C´Xr jn ˆ ¨ ¨ ¨ ˆ CΣXr jri

» C´Xr j1 ˚ ¨ ¨ ¨ ˚ C´Xr jri

from which it follows that τi » CW , as claimed.

4.5.2.3 Subspaces of V ˚

Let ρi be the permutation map defined by

ρi
``

xj1 , . . . , xjri
˘

,
`

xi1 , . . . , xini
˘˘

“ px1, . . . , xmq
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and define

Fi “ ρi

˜

Gi ˆ

˜

ni
ď

l“1

CXi1 ˆ ¨ ¨ ¨ ˆXil ˆ ¨ ¨ ¨ ˆ CXini

¸

Y τi ˆ
`

CXi1 ˆ ¨ ¨ ¨ ˆ CXini

˘

¸

Zi “ ρi

˜

κi ˆ

˜

ni
ď

l“1

CXi1 ˆ ¨ ¨ ¨ ˆXil ˆ ¨ ¨ ¨ ˆ CXini

¸

Y σi ˆ
`

CXi1 ˆ ¨ ¨ ¨ ˆ CXini

˘

¸

.

To demonstrate the construction, Figure 4.9 shows the arrangement of F1, F2 and F3 in
V ˚ for the partition Π “ tt1u, t2u, t3uu. The green segment of the top face is the space
shown in Figure 4.8.

Figure 4.9: The arrangements of the spaces F1, F2 and F3 in V ˚ for the partition Π “

tt1u, t2u, t3uu. Observe that the subspaces pairwise intersect only at their boundaries.

The pairs pFi, Ziq are constructed to have the following properties.

Lemma 4.5.9. Let W “ Σm´2X1 ^ ¨ ¨ ¨ ^Xm.

(i) There is a homotopy equivalence of pairs

pCW,W q ÝÑ pFi, Ziq

for each i “ 1, . . . , k.

(ii) For any i ‰ i1, we have Fi X Fi1 Ď Zi X Zi1 .

Proof. We first prove (i). Let Wi “ Σri´2Xj1 ^ ¨ ¨ ¨ ^Xjri
. Then by Lemma 4.5.8, there

are homotopy equivalences of pairs pVi, C`Wiq ÝÑ pGi, τiq and pC´Wi,Wiq ÝÑ pκi, σiq.
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Therefore

Fi » ρi

˜

CΣWi ˆ

˜

ni
ď

l“1

CXi1 ˆ ¨ ¨ ¨ ˆXil ˆ ¨ ¨ ¨ ˆ CXini

¸

Y C`Wi ˆ
`

CXi1 ˆ ¨ ¨ ¨ ˆ CXini

˘

¸

» ρi
`

C`Wi ˚Xi1 ˚ ¨ ¨ ¨ ˚Xini

˘

» ρi
`

CpXj1 ˚ ¨ ¨ ¨ ˚Xjri
q ˚Xi1 ˚ ¨ ¨ ¨ ˚Xini

˘

» CW

and

Zi » ρi

˜

C´W ˆ

˜

ni
ď

l“1

CXi1 ˆ ¨ ¨ ¨ ˆXil ˆ ¨ ¨ ¨ ˆ CXini

¸

YWi ˆ
`

CXi1 ˆ ¨ ¨ ¨ ˆ CXini

˘

¸

» ρi
`

Wi ˚Xi1 ˚ ¨ ¨ ¨ ˚Xini

˘

» W

which establishes the claimed homotopy equivalence of pairs.

Now we prove (ii). Specifically, for i ă i1 we show that Fi X Fi1 Ď Zi X Zi1 . Define

H “ ρi

˜

Gi ˆ

ni
ď

l“1

CXi1 ˆ ¨ ¨ ¨ ˆXil ˆ ¨ ¨ ¨ ˆ CXini

¸

X ρi1

˜

Gi1 ˆ

ni1
ď

l“1

CXi11
ˆ ¨ ¨ ¨ ˆXi1l

ˆ ¨ ¨ ¨ ˆ CXi1n
i1

¸

.

Comparing coordinates, since Dδ
k XXk Ď Bδ

k, we have

H Ď ρi

˜

G˚
i ˆ

ni
ď

l“1

CXi1 ˆ ¨ ¨ ¨ ˆXil ˆ ¨ ¨ ¨ ˆ CXini

¸

X ρi1

˜

G˚
i1 ˆ

ni1
ď

l“1

CXi11
ˆ ¨ ¨ ¨ ˆXi1l

ˆ ¨ ¨ ¨ ˆ CXi1n
i1

¸

.

By Lemma 4.5.6, there is i ‰ r ‰ i1 such that Gi has a factor D1
r and Gi1 has a factor

D´
r . Then since πrpτiq XD´

r “ πrpτi1q XD1
r “ H,

H X ρi

˜

τi ˆ

ni
ď

l“1

CXi1 ˆ ¨ ¨ ¨ ˆXil ˆ ¨ ¨ ¨ ˆ CXini

¸

“ H
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and similarly switching i1 for i. Therefore since G˚
i ´ τi “ κi

H Ď ρi

˜

κi ˆ

ni
ď

l“1

CXi1 ˆ ¨ ¨ ¨ ˆXil ˆ ¨ ¨ ¨ ˆ CXini

¸

X ρi1

˜

κi1 ˆ

ni1
ď

l“1

CXi11
ˆ ¨ ¨ ¨ ˆXi1l

ˆ ¨ ¨ ¨ ˆ CXi1n
i1

¸

Ď Zi X Zi1 .

Finally, since πrpGiq “ D1
r and πrpτi1q XD1

r “ H,

ρi

˜

Gi ˆ

ni
ď

l“1

CXi1 ˆ ¨ ¨ ¨ ˆXil ˆ ¨ ¨ ¨ ˆ CXini

¸

X ρi1
´

τi1 ˆ CXi11
ˆ ¨ ¨ ¨ ˆ CXi1n

i1

¯

“ H

and vice-versa switching i and i1. Therefore Fi X Fi1 Ď Zi X Zi1 .

4.5.3 Final proof

We state some final preparatory results before we prove Theorem 4.3.7. The following
were given by [NT54] and [Har64] for spherical maps but are equally true for our purposes.
For completeness we give their proofs.

Lemma 4.5.10. Let rf s P rpX,Aq, pY,Bqs be represented by f : pX,Aq ÝÑ pY,Bq and
let A1 Ď X 1 be subspaces of X such that pX 1, A1q is a deformation retract of pX,Aq.
Suppose that fppX ´Aq YA1q Ď B, then f |X 1 also represents rf s.

Proof. Since pX 1, A1q is a deformation retract of pX,Aq there is a map Ht : I ˆX ÝÑ X

such that H0ppX,Aqq “ pX,Aq and H1ppX,Aqq “ pX 1, A1q. Then we define a homotopy
ft : pX,Aq ÝÑ pY,Bq by ft “ f ˝ Ht. Then f0 “ f , f1 “ f |X 1 and ftpAq “ f ˝ HtpAq Ď

fppX ´Aq YA1q Ď B.

Lemma 4.5.11. Let W be a suspension space. For i “ 1, . . . , k, consider pairs pFi, Ziq

with Fi Ď ΣW satisfying the following conditions. For each i “ 1, . . . , k, Zi is closed in
Fi, pairwise intersections are such that Fi X Fj Ď Zi X Zj for all j ‰ i, and there exists
a homotopy equivalence ei : ΣW ÝÑ ΣW such that eipFiq “ C`W , eipZiq “ W , and
eippΣW zFiq Y Ziq “ C´W .

Let pX,Aq be a pair and suppose that f : ΣW ÝÑ X satisfies fppΣW z
Ť

i FiqYp
Ť

i Ziqq Ď

A. Then

jpfq “

k
ÿ

i“1

fi

where fi “ f |Fi P rpFi, Ziq, pX,Aqs – rpCW,W q, pX,Aqs for each i “ 1, . . . , k and
j : rΣW,Xs ÝÑ rpCW,W q, pX,Aqs is the map in the long exact sequence (4.38).
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To prove Lemma 4.5.11, we first establish the following lemma.

Lemma 4.5.12. Let Z “ C1Zr Y C2Zr and write ΣZ “ C`Z Y C´Z. Let pX,Aq be a
CW -pair. Let g : ΣZ ÝÑ X be a map such that gpZq Ď A. Then jpgq “ g|C`Z ` g|C´Z .

Proof. The map j is the composite of the isomorphism ψ : rΣZ,Xs ÝÑ rpCZ,Zq, pX, ˚qs

with the map j1 induced by the inclusion pX, ˚q ÝÑ pX,Aq. We describe a choice of map
of pairs ϕ : pCZ,Zq ÝÑ pΣZ, ˚q which induces the isomorphism ψ.

Consider CZ “ CΣZr and define

G1 “

"

ps, t, zq P CΣZr | 0 ď t ď
1

2

*

G2 “

"

ps, t, zq P CΣZr |
1

2
ď t ď 1

*

G3 “

"

ps, t, zq P CΣZr |
1

2
ď s ď 1

*

G4 “

"

ps, t, zq P CΣZr | 0 ď s ď
1

2

*

.

Define the map ϕ : pCZ,Zq ÝÑ pΣZ, ˚q by ϕpG1q “ C`Z and ϕpG2q “ C´Z, which
moreover sends ϕpG3q “ ΣC1Zr and ϕpG4q “ ΣC2Zr . Then ψpgq “ gϕ.

In particular, ϕ sends G1 XG2 to Z Ď ΣZ, G1 XG3 to C`C1Zr and G1 XG4 to C`C2Zr .
Since gpZq Ď A, then ψpgq “ gϕ is a map such that G1 X G2 Ď A. Since G1 X G2 is
contractible, there is a homotopy from gϕ to a map sending G1 X G2 to the basepoint.
Therefore jpgq “ j1pψgq is homotopic to the sum gϕ|G1 ` gϕ|G2 “ g|C`Z ` g|C´Z .

We now prove Lemma 4.5.11.

Proof of Lemma 4.5.11. Write ΣW “ Fk YZk ppΣW zFkq YZkq. Pre-composing with the
homotopy equivalence ek, the map f is homotopic to a map f 1 “ f˝ek : ΣW ÝÑ X, where
f 1pW q Ď A since fpZkq Ď A. Then, by Lemma 4.5.12, jpfq “ jpf 1q “ f 1|C´W `f 1|C`W “

f |pΣW zFkqYZk`f |Fk . Since fppΣW z
Ť

i FiqYp
Ť

i Ziqq Ď A, then collapsing pΣW z
Ť

i FiqY

p
Ť

i Ziq gives a homotopy of pairs between the map f |pΣW zFkqYZk : pCW,W q ÝÑ pX,Aq

and
řk´1
i“1 f |Fi .

We now have everything we need to complete the proof of Theorem 4.3.7.

Proof of Theorem 4.3.7. Since Xj Ď D`
j Y D2

j , we represent fj : ΣXj ÝÑ Yj by a map
of pairs fj : pCΣXr j ,ΣXr jq ÝÑ pYj , ˚q such that fjpD`

j YD2
j q “ ˚.

Let L “ B∆r1, . . . ,ms and for i “ 1, . . . , k let Li “ B∆rj1, . . . , jris. Define the map
ψ : pV, V ˚q ÝÑ p

śm
l“1 Yl, pY , ˚qLq by

ψpx1, . . . , xmq “ pf1px1q, . . . , fmpxmqq

and for i “ 1, . . . , k define maps ψi : pVi, V
˚
i q ÝÑ p

śri
l“1 Yjl , pY , ˚qLiq by ψi “ ψ|Vi .
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Since fjpD
`
j Y D2

j q “ ˚, then ψi maps xi P CΣXr i away from the basepoint only if
xi P D1

i X D´
i . Therefore ψi maps all of

`

xj1 , . . . , xjri
˘

away from the basepoint only
if

`

xj1 , . . . , xjri
˘

P
śri
l“1D

1
l X D´

l Ď Gi. Equivalently, ψippVi ´ Giq Y G˚
i q Ď pY , ˚qLi .

Therefore by Lemma 4.5.10, ψi|Gi is homotopic to ψi.

Now consider

ψρi|ρ´1
i Fi

: Gi ˆ

˜

ni
ď

l“1

CXi1 ˆ ¨ ¨ ¨ ˆXil ˆ ¨ ¨ ¨ ˆ CXini

¸

Y τi ˆ
`

CXi1 ˆ ¨ ¨ ¨ ˆ CXini

˘

ÝÑ ψipGiq ˆ

˜

ni
ď

l“1

ΣXi1 ˆ ¨ ¨ ¨ ˆ ˚ ˆ ¨ ¨ ¨ ˆ ΣXini

¸

Y ˚ ˆ
`

ΣXi1 ˆ ¨ ¨ ¨ ˆ Σini
˘

ÝÑ

ri
ź

l“1

Yjl ˆ pY , ˚qB∆ri1,...,ini s Y ˚ ˆ

ni
ź

l“1

Yil

“ FW

˜

ri
ź

l“1

Yjl , Yi1 , . . . , Yini

¸

“ pY , ˚qB∆x∆rj1,...,jri s,i1,...,iniy ÝÑ pY , ˚qL

and the restriction

ψρi|ρ´1
i Zi

: κi ˆ

˜

ni
ď

l“1

CXi1 ˆ ¨ ¨ ¨ ˆXil ˆ ¨ ¨ ¨ ˆ CXini

¸

Y σi ˆ
`

CXi1 ˆ ¨ ¨ ¨ ˆ CXini

˘

ÝÑ pY , ˚qLi ˆ pY , ˚qB∆ri1,...,ini s Y ˚ ˆ

ni
ź

l“1

Yil

“ FW
`

pY , ˚qLi , Yi1 , . . . , Yini
˘

“ pY , ˚qB∆xB∆rj1,...,jri s,i1,...,iniy ÝÑ pY , ˚qK.

It follows that ψρi|ρ´1
i Fi

: pρ´1
i Fi, ρ

´1
i Ziq ÝÑ ppY , ˚qL, pY , ˚qKq is the relative higher

Whitehead map hwpψi|Gi , fi1 , . . . , fini q. Therefore ψ|Fi : pFi, Ziq ÝÑ ppY , ˚qL, pY , ˚qKq

is the composite hwpψi|Gi , fi1 , . . . , fini q ˝ρ´1
i . Finally, since ψi|Gi is homotopic to ψi and

ρ´1
i “ σi, then ψ|Fi is homotopic to hwpψi, fi1 , . . . , fini q ˝ σi.

Let W “ Σm´2X1 ^ ¨ ¨ ¨ ^ Xm, X “ pY , ˚qL and A “ pY , ˚qK. Consider long exact
sequence (4.38)

¨ ¨ ¨ rΣW,Xs rpCW,W q, pX,Aqs rW,As ¨ ¨ ¨ .
f B
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By Proposition 4.5.2 and Lemma 4.5.11,

Bjpψ|V ˚q » B

˜

k
ÿ

i“1

ψ|Fi

¸

»

k
ÿ

i“1

Bhwpψi, fi1 , . . . , fini q ˝ σi

“

k
ÿ

i“1

hwpψi|V ˚
i
, fi1 , . . . , fini q ˝ σi

“

k
ÿ

i“1

hwphwpfj1 , . . . , fjri q, fi1 , . . . , fini q ˝ σi.

On the other hand, Bj » 0, completing the proof.
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