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In this thesis we use homotopy-theoretic techniques to establish a range of combinatorially-

governed relations in the algebraic invariants of polyhedral product spaces.

First, for a flag simplicial complex I, we specify a necessary and sufficient combinatorial
condition for the commutator subgroup RC} of a right-angled Coxeter group, which is
the fundamental group of the real moment-angle complex Ry, to be a one-relator group;
and for the loop homology algebra H,(2Zx) of the moment-angle complex Zx to be
a one-relator algebra. This moreover establishes a combinatorial link between distinct

concepts of geometric group theory and homotopy theory.

Second, we give a substantial generalisation of the Whitehead product to a construction
called the higher Whitehead map, which takes maps from homotopy sets of the form
[XX,Y] to a new map in homotopy sets related to polyhedral products. We analyse
these maps systematically via the combinatorial structure underlying the polyhedral
products involved, and derive combinatorial conditions describing when these maps are
non-trivial. Moreover, we establish non-trivial relations between higher Whitehead maps
which are governed combinatorially. These relations greatly generalise the Jacobi identity
for Whitehead products, and results of Hardie on relations among exterior Whitehead

products.
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Chapter 1

Introduction

Algebraic topology is the study of topological spaces via the assignment of algebraic
invariants, which are easier to work with than the geometry of the space itself. Com-
mon examples are the fundamental group, homotopy groups, homology and cohomology
groups, the cohomology ring, and the loop homology algebra. Such invariants are used,
for example, to distinguish two spaces up to homotopy, but there are many deeper and

more varied applications.

For example, the homotopy groups of a topological space X can be endowed with an
operation called the Whitehead product, taking elements o € m,(X) and 3 € my(X) to an
element [a, 8] € Tp4q—1(X). The Whitehead product was introduced by J. H. C. White-
head in 1941 [Whi41], who established that it is a bilinear operation which is graded
symmetric, that is, [a, ] and [, «] are identified up to a sign. Later it was estab-
lished by Nakaoka—Toda [NT54] and Uehara—Massey [UM57| that for a further element
v € m(X) and p,q,r = 2, the iterated Whitehead products [[a, 8],7], [[5,7], @] and
[, @], B] satisfy a linear dependence relation known as the Jacobi identity. This gives
the homotopy groups of X a Lie algebra structure. An understanding of this structure
leads to further understanding of X itself. For example, the Hilton—Milnor theorem
describes the homotopy groups of wedges of spheres in terms of this Lie algebra struc-
ture, identifying generators as iterated Whitehead products, and relations between them

coming from the Jacobi identity.

Finding generators and relations of algebraic objects, like those in the above Lie algebra,
is a key way to understand its structure and compare it to other objects. This is often a
difficult problem, and there is no single established method that is guaranteed to work.
Therefore there is a constant development of new and varied methods which employ not

only techniques from algebra, but from a wide range of different mathematical fields.

One approach is the following. Often, certain algebraic invariants of topological spaces

give rise to algebraic objects which are of interest in their own right. Therefore not only
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can understanding these invariants enhance our understanding of a topological space,
but the correspondence can go the other way, and features of the underlying topology
can be used to identify interesting algebraic features. A key example that we will see in
this thesis is the right-angled Coxeter group and its commutator subgroup both being
identified as the fundamental groups of topological spaces called polyhedral products. In
the case of the commutator subgroup, this description allows us to specify both generating
sets and relations between these generators in certain cases, a task that is very difficult

in a purely algebraic setting.

Polyhedral products are spaces constructed according to the combinatorial information
contained in a simplicial complex . This combinatorial structure is invaluable in study-
ing not only the geometry of the space itself, but also its algebraic invariants. The
polyhedral product arose out of the field of toric topology, which is at its base the study
of spaces with a torus action. A key player in toric topology is the moment-angle complex
Zy. Over time, the merging of the methods and ideas of symplectic and algebraic geo-
metry with toric topology naturally led to the introduction of combinatorial objects, at
first in the form of simple polytopes, and more recently simplicial complexes, to decode

the rich and varied information involved.

The polyhedral product was introduced to unify the topological approaches coming from
the geometric, algebraic and combinatorial viewpoints of toric topology. In turn, this
provided a base for generalisation and the use of purely homotopy-theoretic techniques
to analyse polyhedral products. These spaces have strong functoriality properties, for
example the preservation of fibrations of pairs, and the study of these spaces topologically
has become a flourishing area in its own right. The polyhedral product expresses the
moment-angle complex Zi as a union of products of discs D? and circles S! according

to how the simplices of K intersect.

In this thesis we develop homotopy-theoretic techniques to detect novel, combinatorially-
governed relations in the algebraic invariants of polyhedral products. First, we study
the moment-angle complex Zx and its lower-dimensional counterpart, the real moment-
angle complex R for a class of simplicial complexes known as flag complexes, which are
complexes completely determined by a graph. We study topological information which
is propagated through the homology of the loop spaces Q2Zx and QRx. In the latter
case, the assumption of I being a flag complex implies that Ry is a finite-dimensional
aspherical space, and therefore this information is captured entirely in the fundamental
group. Moreover, this fundamental group is identified as the commutator subgroup RCj-

of the right-angled Coxeter group RCx associated to K.

In Chapter 3 we build on existing work of Panov and Veryovkin [PV16] and also Grbié¢,
Panov, Theriault and Wu [GPTW12| which identifies when the group RCj) and the
algebra H,(2Z) are free. In particular, we characterise when these algebraic objects

have exactly one relation in terms of the same purely combinatorial condition as follows.



Theorem 3.1.1. Let K be a flag simplicial complex. The following are equivalent:

(i) RC). = m1(Rx) is a one-relator group;
(1) H«(Q2Zx) is a one-relator algebra;

(iii) K has the form
K=C,orK=Cy,xA? forp=4,¢g=0

where C) is a p-cycle, A? is a g-simplex and = denotes the join of simplicial com-

plezes.

The equivalence of statements (i) and (iii) was established by Ilyasova and Panov, whose
work is summarised in in Sections 3.2.1 and 3.2.2. The full statement of Theorem 3.1.1
was presented in [GIPS22] as joint work with the two aforementioned authors, myself,

and Jelena Grbi¢. This work is presented in Section 3.2.

We extend our results by giving further equivalent algebraic and homotopy-theoretic
statements to the above one-relator properties. The first condition is that the simplicial
complex K, up to joining with a simplex, is minimally non-Golod, a notion in combin-
atorial algebra introduced by Burglund and Jo6llenbeck [BJ07| in studying the algebra
Torzm)(Z[K], Z), where Z[m] is the polynomial ring on m generators and Z[K] is a
quotient of Z[m] determined by K known as the face ring. Another condition is that the
spaces Rx and Zy in this case are homotopy equivalent to connected sums of products
of spheres, with two spheres in each product. In the case of R, this identifies it with a
closed orientable surface of positive genus. After establishing Theorem 3.1.1, we consider
the case that K is not assumed to be a flag complex. We construct a series of examples
to highlight the key differences between the concepts of X being minimally non-Golod,
H.(Q2Zx) being a one-relator algebra, and Zx being a connected sum of sphere products,

with two spheres in each product.

In Chapter 4, we give a substantial generalisation of the Whitehead product and the Lie
algebra structure it induces on the homotopy groups of a space. We define the higher
Whitehead map, an element of a higher Whitehead product in the sense of Porter [Por65|,
which associates to maps f; € [XX;,Y;] an element hy(fi,..., fm) of the homotopy
set [ Xy # -+ Xy, FW(Y1,...,Yy)], where = denotes the topological join of spaces
and FW(Y1,...,Y,,) is the subspace of Y1 x --- x Y,, with at least one coordinate the

basepoint.

We build on existing work of Abramyan and Panov [AP19], who studied a spherical
version of the higher Whitehead map in the case that f;: S — CP® is the inclusion
of the bottom cell. In particular we develop a method of determining combinatorial
criteria identifying when the higher Whitehead map is non-trivial. Our main result then

establishes non-trivial relations between higher Whitehead maps which are controlled
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combinatorially. A partition IT = {Iy,..., I} of a set of vertices [m] = {1,...,m} is
called a k-partition. Given such a partition II, we construct a simplicial complex K,
called an identity complex, and show the following result which gives relations in the

homotopy groups of the polyhedral product (Y, i)’CH associated to K.

Theorem 4.3.7. Let f;: ¥X; —> Y; be maps fori=1,...,m. Let 1l = {I,...,I;} be a
k-partition of [m] for k = 3 and denote I; = {i1,... i} and J; = [m]—1I; = {j1, ..., jr;}.

Then if X; is a suspension for eachi=1,...,m,
k
Zhﬁn (haw (Fjrs s fin)) s firs ooy fin,) 000 = 0
i=1

m [Em_zXl A A X, (Y i)’CH], where

IR AEED CIVNFRRIND (HEE YT Y ¢RUNERRUND. CH ND. CHVNIRRND. ¢

T In;
1s the restriction of the coordinate permutation

CXyx - x OXp — CXj, x - x OX;, x CX; x - x OX;

in,

Our result generalises one of Hardie [Har61], who developed a relation between higher
Whitehead maps of the form hy, (hw(f1,-- -, fi—1, fi+1,- -+, fm), fi) when the f; are spher-
ical. Moreover we generalise the work of Cohen [Coh57|, who defined the Whitehead
product in the case that the f; are not assumed to be spherical and gave an appropri-
ate Jacobi identity. These relations also imply that when the maps f; are spherical,
the homotopy groups of the polyhedral product (Y, #)*T have the structure of an L, al-
gebra, also known as a homotopy Lie algebra, which extends the graded quasi-Lie algebra

structure given by the Whitehead product.

We extend our results by considering a novel approach to derive relations between White-
head products with some maps repeated. We define a folded higher Whitehead map by
composing the higher Whitehead map with a map from (Y, i)’CH induced by an H-space
structure on some of the Y;, which we call a fold map. We establish that such fold maps
are induced on polyhedral products by simplicial maps. Therefore composing the rela-
tions of Theorem 4.3.7 with fold maps provides relations among folded higher Whitehead
maps whose form is again governed purely combinatorially by the complex obtained by

identifying certain subsets of vertices of the complex Kry.

The material in Chapter 4 was jointly produced by myself and Matthew Staniforth,
under the supervision of Jelena Grbi¢. The development of the necessary tools to prove
Theorem 4.3.7 is my own work. The techniques used to define and analyse the triviality of

higher Whitehead maps and their folded versions were developed by Matthew Staniforth.



Chapter 2
Background

The aim of this thesis is to decode algebraic relations in the invariants of topological
spaces in terms of combinatorial properties of a simplicial complex via a functorial con-
struction called the polyhedral product. In this Chapter, we build up to the definition
of the polyhedral product and summarise necessary constructions and existing results in
homotopy theory, algebra, geometric group theory and combinatorics, on which we will
build.

2.1 Homotopy theory

Throughout this thesis, we assume that all topological spaces are based CW-complexes
and that all maps are continuous and basepoint-preserving. The category of all such
spaces and maps is denoted TOP. For a space X we denote its basepoint by #x, or

simply * if the context is clear.

Let I < R be the unit interval. The cone on a space X, denoted CX, is the quotient of
the product X x I identifying (x,1) with (x,¢) for all z € X and t € I. The path space
of X, denoted PX, is the space of all maps w: I — X such that w(0) = .

For a space X, its suspension XX is the pushout of the diagram
CX «+—— X —— =

where the left map is the inclusion z — (z,0). Similarly, its loop space QX is the
pullback of the diagram
PX — X +— =

where the left map is the evaluation w — w(1). For a map f: X — Y, there are
induced maps Xf: XX — XY and Qf: QX — QY which give rise to covariant
functors %: TOP — TOP and (2: TOP —> TOP.
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2.1.1 Homotopy limits and colimits

Fibrations and cofibrations are maps which satisfy the homotopy lifting and extension
properties, respectively, with respect to all CW-complexes. See [Ark11, Sections 3.2 & 3.3|
for definitions. Typical examples of fibrations include the projection map X x Y — X
and the evaluation map PX — X. On the other hand, any inclusion of a cellular
subcomplex A of a space X is a cofibration. These fibrations and cofibrations, along

with homotopy equivalences, provide a model category structure on TOP.

Unless otherwise stated, we work in the homotopy category HTOP, whose objects are
spaces, morphisms are homotopy classes of maps between them, and homotopy equival-
ences are viewed as categorical isomorphisms. We review necessary constructions which

allow us to view fibrations, cofibrations and other categorical constructions in HTOP.

Given two categories I and C, a diagram is a covariant functor F': I — C. The limit
lim F' and colimit colim F' of the diagram F' do not translate to HTOP since they do not
preserve homotopy equivalences. More precisely, if C' = ToP, then if F': I — C is
another diagram with homotopy equivalences F'(i) — F’(i) for each i € I, the induced

maps lim ' — lim F’ and colim F' — colim I need not be homotopy equivalences.

Homotopy limits and colimits are variants of the constructions of limits and colimits,
respectively, which preserve homotopy equivalences. Often, this property comes at the
expense of the relevant universal property, since their construction depends on making
choices of homotopies. The study of homotopy limits and colimits was initiated by
Bousfield-Kan [BK72] and Vogt [Vog73]. In this thesis, we will only need to recognise
when a certain limit or colimit is a homotopy limit or colimit, respectively. The following
can be found in [DHKS04], see also [BP15, Corollary C.3.3].

Proposition 2.1.1. Let I be a category with an initial object, that is, there is a € I such
that there is a unique morphism a — © for each i € I. Let F: I — TOP be a functor
sending 1 € I to a space X; and a morphism i — j to a map fij: X; — X;. Then if

the map fq;: Xo — X; is a cofibration, the map
colim F' — hocolim F

1s a homotopy equivalence. ]

A dual result holds for the homotopy limit, replacing initial objects with terminal objects,
that is objects b € I such that there is a unique morphism i — b for each 7 € I, and
replacing cofibrations with fibrations. The most common examples of homotopy limits

and colimits are homotopy pullbacks and pushouts, respectively, defined as follows.

Example 2.1.2. The homotopy pullback of the diagram

BL>A<LC
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is the pullback of the diagram
E f g
! r A Ey

where f’ and ¢’ are fibrant replacements for f and g. Concretely, for a map f: B — A,

the mapping path Ey given by
Er ={(b,1) e B x A"| f(b) =1(0)}

is homotopy equivalent to B, and the projection f’': E; — A sending (b,1) — (1) is
a fibration. For more details, and also for the dual notion of cofibrant replacements used
in the following, see [Ark11, Section 3.5].

Dually, the homotopy pushout of the diagram

B&A%C

is the pushout of the diagram
My +—— A < M,

where f’ and ¢’ are cofibrant replacements for f and g, respectively. Here, the mapping
cylinder My is the quotient space (A x I u B)/ ~, where (a,0) ~ f(a), and is homotopy

equivalent to B. The inclusion f': A — My sending a — (a, 1) is a cofibration.

By [Arkl1, Propositions 6.2.6 & 6.2.14], we only need to replace one of the maps f or g
in the above to ensure the resulting pullbacks and pushouts are homotopy pullbacks and

pushouts, respectively.
The homotopy fibre Iy of a map f: X — Y is the homotopy pullback of the diagram

XL>Y%*.

The sequence of maps

I —x—Isy

is called a homotopy fibration sequence.

Dually, the homotopy cofibre Cy of a map f: X — Y is the homotopy pushout of the

diagram

vyl ox .

The sequence of maps

X%YHC}

is a called a homotopy cofibration sequence.



8 Chapter 2. Background

2.1.2 Homotopy groups and exact sequences

For two spaces A and B we denote by [A, B] the set of homotopy classes of maps A — B.
If either A is a co-H space or B is an H space then there is an induced group structure
on [A, B]. If both A is a co-H space and B is an H space then these group structures
coincide, and moreover [A, B] is abelian. The homotopy groups of a space are given by
mn(B) = [S™, B] for n > 1.

Proposition 2.1.3 ([Arkll]). Let f: X — Y be a map with homotopy fibre Iy and
homotopy cofibre Cf.

(i) There is a sequence

Q%Y QI Qx QY If X Y

where each triple of consecutive spaces is a homotopy fibration sequence. Moreover,

for any space W there is a long exact sequence

L — W, Q"] —— [W,Q"X] —— [W,Q"Y] —— [W, Q" 1] —— -

(i) There is a sequence

X Y Cy nX ) el S2X

where each triple of consecutive spaces is a homotopy cofibration sequence. Moreover,

for any space Z there is a long exact sequence

. —— [2"Cy, Z] —— [S"Y, Z] —— [£"X, Z] —— [S"ACp, 2] —— -

O]

2.1.3 Topological operations

The fat wedge of spaces Xi,...,X,,, denoted FW(X,...,X,,), is the subspace of
[T, X given by

FW(Xy,...,Xm) ={(z1,...,xm) € X1 X -+ x Xy, | x; = #x, for some i =1,...,m}.

In the case that m = 2, the space FW (X7, X2) is called the wedge of X; and X9 and is
denoted X7 v Xo.

The smash product of X and Y, denoted X A Y, is the quotient space

(X xY)/(X vY).
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The m-fold smash product X7 A --- A X, is defined inductively. Equivalently, it is the
quotient space
(X1 x o x X)) JFW(Xq,..., Xn).

The left half-smash X x Y and right half-smash X »x Y are the quotient spaces (X x
Y)/(X x#y) and (X xY)/(xx x Y), respectively. Taking the further quotient of X x Y’
by (#x x Y) gives the smash X A Y, and similarly for X x Y.

The join of two spaces X and Y is denoted X # Y and is defined by
X*xY=CXxYuXx(CY

where the union is taken over X x Y. Equivalently, X =Y is the homotopy pushout of
the diagram
X+—XxY —Y.

We recall the following well-known homotopy equivalences, see for example [Sel97].

Proposition 2.1.4. There are homotopy equivalences

(i) S(X xY)~ DX vEY v 5(X A Y);
(i) S(X xY) ~ X x (XY);
(iii) if Y is co-H then X x Y ~Y v X AY;
(i) X+Y ~SX A Y.

Combining Proposition 2.1.4(iv) with the definition of the join there are homotopy equi-

valences

m
UCX1><---xXix-.-xCszxl*.--*Xm:zm*XlA---AXm.
=1

Finally, let M and N be two n-manifolds. Let M and N be obtained from M and N,
respectively, by removing an open n-ball from each. The connected sum M#N of M
and N is given by M U N, with the union taken by identifying the boundary spheres of
the removed n-balls via a homeomorphism. For any n-manifold M the connected sum
M#S™ is homeomorphic to M.

2.1.4 Whitehead products

The Whitehead product is an operation on homotopy groups introduced by J.H.C. White-
head [Whi41l]|. Originally given as an operation my(X) x my(X) — mpirq—1(X) for
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p,q = 1, the Whitehead product has undergone multiple generalisations and extensions.
We study the generalised Whitehead product, first introduced by Cohen [Coh57| and
studied in detail by Arkowitz [Ark62].

Definition 2.1.5. Let f: ¥A — X and g: ¥B — Y be maps. The Whitehead product
of f and g, denoted [f, g] is the homotopy class of the map

[f,9]: AxB=CAxBUAxCB—YAvYXB—XVvY

where the first map is the restriction of the map CA x CB — YA x ¥ B to A* B, and

the second map is f v g.

The Whitehead product is uniquely determined up to homotopy by the homotopy classes

of f and g, and therefore defines an operation of homotopy groups
[XA, X| x [EB,Y] — [A*B, X vY].

In the specific case that A = P71, B = §97! and X = Y, composing the Whitehead
product [ f, g] with the fold map X v X — X, which sends (z, *) — z and (*,x) —> z,
gives a map SPT9~1 = §P~1 4+ §9=1 _ X which we also call the Whitehead product of

f and g. In this case the Whitehead product defines a map
Tp(X) x g (X) — Tpig—1(X)

which moreover is a bilinear map satisfying graded symmetry, that is [5, a] = (—=1)P[«, 5]
for all v e m,(X), B € my(X) with p,q > 2, and the graded Jacobi identity, that is

[[CV?ﬁ]?’Y] + (_1>pq[[677]704] + <_1)qr[[770‘]7/8] =0

for all v € my(X), B € my(X) and v € 7, (X) with p,q,r > 2. These properties equip
the homotopy groups 74(X) = @,,>1 ™ (X) of a space with a graded quasi-Lie algebra

structure, if m,(X) is given a degree of n — 1.

While the properties of bilinearity and graded symmetry were given by Whitehead with
the original definition [Whi41|, the Jacobi identity is a non-trivial result which attracted
many classical and varied proofs in the early 1950s such as [Whi54, Hil55, Suz54|. Of
particular interest are the proofs due to Uehara—Massey [UM57|, which was one of the
first applications of the triple Massey product, and of Nakaoka—Toda [NT54]. One of
the main results of this thesis, Theorem 4.3.7, is a large generalisation of the Jacobi
identity to a combinatorially-controlled class of maps called higher Whitehead maps,
which generalise the Whitehead product. Our proof employs the core techniques of
Nakaoka—Toda.

Aside from the algebraic operation on homotopy groups, the Whitehead product has

deep geometric properties.
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Proposition 2.1.6. Let f: XX — XX and g: XY — XY be identity mappings. Then
the cofibre of the Whitehead product [f,g]: X *Y — XX v XY is X x XY

Proof. The square
XY —— X vXY

l |

C(X*Y) — SX x 5V

is homotopy commutative by definition of the Whitehead product. Since the vertical

cofibres are both XX %Y, this a homotopy pushout square. O

Therefore the Whitehead product [f, g] is precisely the map required to attach X Y to
YX v XYY to form XX x Y. In particular, if X = SP and Y = 57 are spheres, then the
Whitehead product is the cellular attaching map for the top cell DP*4 of the product
SP x S,

Whitehead products also appear in homotopy fibration sequences. The following result
is due to Ganea [Gan67].

Theorem 2.1.7. There is a homotopy fibration sequence
QX QY — XvY —— X xY.

Moreover, the map QX = QY — X v Y is the Whitehead product [evx,evy], where
evg: XOQA — A is the adjoint to the identity QA — QA. O

2.2 Homological algebra

We assume the definitions of graded algebras and coalgebras are known, as well as defin-
itions and basic properties of homology and cohomology. All homology and cohomology

groups are assumed to have coefficients in Z, unless otherwise stated.

2.2.1 The Kiinneth theorem

For A-modules M and N the group Tor% (M, N) is the ith homology of the sequence

'*>Ri®AN R1®AN*>RO®AN*>O

where

R e R} RO M 0

is a projective resolution of M.
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The Kiinneth theorem describes the homology groups of a Cartesian product space in
terms of Tor groups as follows. Suppose that X and Y are spaces. Then there is a short

exact sequence

0— @ H(X)QH;(Y) — Hy(X xY) — @ Tory(Hi(X),H;(Y)) — 0
i+i=n i+j=n—1

(2.1)
which splits, but not naturally. When both X and Y have torsion-free homology, the
group Tory (H;(X), H;(Y)) vanishes, giving an isomorphism

Ho(X xY) =~ Ho(X)® Hy(Y). (2.2)

A reduced version of the Kiinneth theorem, replacing all homology groups in the second
and fourth terms of (2.1) with their reduced versions, describes the reduced homology
groups of the smash product X A Y. When X and Y have torsion-free homology, this

reduces to

~

H (X AY) >~ Hy(X)®H,(Y). (2.3)

2.2.2 Free associative algebras

The free associative algebra on a graded Z-module M is given by

T(M) =P M®".

n=0

where M®™ is the n-fold tensor product over Z of M with itself. We denote by Ty(M) =
M®F,

The multiplicative structure in T'(M) given by concatenation is associative but not com-

mutative in general. The graded commutator of a and b, denoted [a, b], is given by

[a,b] = a-b— (—1)deeadesdy . ¢ (2.4)

If {a1,...,ax} is a finite generating set for M then we use T'(ay,...,a;) to denote the
algebra T'(M).

2.2.3 Differential graded algebras and coalgebras

A differential graded algebra, or dg-algebra for short, is a pair (A, d) consisting of a graded
algebra A together with a map d: A —> A of degree 1 or —1 which satisfies d> = 0 and
the graded Leibniz rule

d(ab) = d(a)b + (—1)9°&%ad(b) (2.5)
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for each a,b € A. The condition d> = 0 makes a dg-algebra a chain complex and
we can define the homology H(A). A morphism of dg-algebras is is a graded algebra
homomorphism which respects the map d. The category of dg-algebras is denoted DGA.

Example 2.2.1. The free associative algebra T'(M) is given the structure of a dg-algebra
by specifying a differential d: Ty (M) — Tj_1(M) as follows. If {aq,...,ay} is a basis
of M, set d(a;) = 1. Using the graded Leibniz rule (2.5), this extends to a differential

d(ah@"'@aik) =

J

(1) e, @ ®ai,_, ®ai,,, ® @ a;,.
1

k
A differential graded coalgebra, or dg-coalgebra is a triple (C, 0, A) consisting of a graded
coalgebra (C,A) together with a map d: C — C of degree 1 or —1 which satisfies
02 =0 and

Adc) =(1®0+71(1®0)T)A(c)

where 7(a ® b) = (—1)%@29ebp ® q. The category of dg-coalgebras is denoted DGC.

Example 2.2.2. Any singular chain complex C, (X)) of a space X is a dg-coalgebra where
the diagonal map A: Cy(X) — Ci(X) ® Cx(X) is induced by the map X — X x X,

x— (z,x).

For a cellular chain complex C,(X), the diagonal map X — X x X does not in general
induce a map Cy(X) — Cx(X) ® Ci(X). The diagonal map, however, is always ho-
motopic to a cellular map A which does induce a map A: Cy(X) — Cy(X) ® Ci(X).
Therefore a cellular chain complex is a dg-coalgebra with diagonal map induced by a

cellular approximation to X — X x X.

A differential graded Hopf algebra H is a Z-module which is simultaneously a dg-algebra
(H,d) and dg-coalgebra (H,d, A) such that A: A — A®A is an algebra homomorphism,
that is,

A(a®b) = Aa® Ab. (2.6)

Algebraically, a Hopf algebra requires the further definition of an antipode map. This
condition is automatically satisfied when considering graded connected Hopf algebras.
Graded Hopf algebras appear topologically as the homology of certain loop spaces Q.X,
for example when X is a suspension with torsion-free homology. The algebra structure
is induced by the multiplication on loop spaces. We study such algebras in detail in
Section 2.3.

The quotient of a graded Hopf algebra H by an ideal invariant under both the algebraic

and coalgebraic structures remains a Hopf algebra, with grading induced by that of H.

Example 2.2.3. The free associative algebra has two coalgebra structures, one compat-

ible with the multiplication defining a Hopf algebra, and one not.
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Given aj - - - ay € Ty (M), we define

k
Afay---ar) = Y (a0 a;) ® (aig1 - ags1)
i=0

where ag = a1 = 1. This extends to a coalgebra structure on T'(M), but is not com-
patible with the algebra structure since the compatibility condition (2.6) is not satisfied.
For example, consider ab € To(M). Then A(ab) = 1®ab+ a® b+ ab® 1 whereas

Al@)QAD) = (1®a+a®1)Q(1Qb+b®1)
—1Qab+a®b+ (—1)%82% @4 + ab® 1.

Instead, to define a Hopf algebra structure on 7'(M) we start with condition (2.6) and
define
Alar---ar) = Ala1) ® -+ - Q@ Alay)

which can be written in the following form which we will utilise later on. We have

Afar---ay) = Z 6(0)(aj1 T aji) ® (aji+1 e ajk) (2.7)

g
where o is the permutation such that o(i) = j;, €(o) has a factor (—1)de8@idesa; for
every transposition (i, j) of o, and the sum is taken over all (i, k — ¢) shuffles o, or more
concretely over all disjoint partitions {j1,...,7i} U {Jit1,.-.,Jk} of {1,...,k}, with one

side potentially empty, with j; < -+ < j; and jjo1 < -+ < Jg.

2.3 The loop homology algebra

Given a space X, recall that the loop space QX is an H space equipped with a multi-
plication p: QX x QX — QX given by concatenation of loops. There is an induced
map fix: Hy(QX x QX) — H,(QX) and therefore a product

Ho(0X) @ Ho(QX) — H (QX x QX) 2 H,(QX)

where the first map is the cross product in homology. This is known as the Pontryagin
product and equips the homology groups of a loop space with the structure of an algebra.
We call the algebra H,(Q2X) the loop homology algebra of X.

The loop homology algebra captures homotopy-theoretic structure of X which is not seen
by homology or cohomology. For example all Whitehead products are trivial in homology
since their suspension is nullhomotopic [Por65]. On the other hand, let o € m,(X)
and f € my(X) and define the map 6 as the composite of the adjunction isomorphism
e (X) — me—1(QX) with the Hurewicz map m,_1(2X) — H,_1(QX). Then it was
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shown by Samelson [Samb53| that

([, 81) = (—1)? (- 08 — (~1)M05 - 6ax) = (—1)”[8ax,05] (25)
where [z,y] is the commutator (2.4) in the algebra H,(2X).

Relation (2.8) is helpful in determining some structure of H,(22X), for example if a space
is formed by attaching a cell via a Whitehead product, then the corresponding commut-

ator under (2.8) becomes trivial. We elaborate on this method further in Section 3.2.3.

In general the full computation of the algebra H,(QX) is difficult for an arbitrary space
X. We review some methods of computation. The first, the Bott—Samelson theorem,
identifies H,(Q2X) as a free associative algebra when X is a suspension with torsion-free
homology. For simply-connected spaces, the Cobar construction gives a chain complex

for QX from a simply-connected chain coalgebra for X.

2.3.1 The Bott—Samelson Theorem

Let X be a connected space. Then there is a homotopy equivalence

TOENX =~ \/ X" (2.9)

n=1

known as the James splitting [Jam55|, where X ™ is the n-fold smash product of X with

itself. In particular, there is a homology isomorphism

Hp(QYX) =~ Hyy 1 (SOQ8X) =~ Hyoq (\/ EX“”) ~ P Hy(X™™) (2.10)
n=1 n=1

for all £k = 0.

Suppo