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1 Introduction

Higher spin interactions are conjectured to be the necessary ingredients to construct UV
complete theories of gravity. There are several observations supporting such a conjecture.
High derivative corrections to three-point couplings break causality unless an infinite tower
of massive particles of spin larger than 2 is added to the spectrum (CEMZ causality
problem) [1]. String theories contain an infinite number of massive higher spin excitations
and their amplitudes are finite and free from the CEMZ causality problem [2]. While the
formulation of gauge-invariant higher spin interactions in Minkowski space is problematic
(for reviews, see e.g., [3, 4]), such interacting theories in AdS are conjectured to be dual to
conformal field theories (CFT) containing higher-spin operators. If the higher-spin field
in the bulk is a gauge field the dual current is conserved, otherwise it is a non-conserved
tensorial operator. Thus, holography may be used to study higher spin interactions in AdS
using correlation functions of the dual operators.

The signature of higher spin interactions in the early universe has also gained interest in
the context of holographic cosmology and the cosmological bootstrap. As the isometries of
de Sitter match that of the (Euclidean) conformal group in one dimension less, inflationary
correlators are constrained by conformal symmetry, see [5–22] for a sample of works in
this direction.

Motivated by these problems, there has been significant interest in the study of conformal
correlators in the momentum space [23–56]. The analysis in momentum space is quite
involved since it requires finding the solution of sets of coupled second and first order

– 1 –



J
H
E
P
0
3
(
2
0
2
3
)
1
9
6

differential equations coming from the momentum space conformal Ward identities. It
allows, however, to discuss in generality the short distance singularities of correlators, their
renormalization and the computation of associated conformal anomalies. Moreover, for
many applications, such as in cosmology, momentum space is the natural language.

Most of the work on tensorial corretors in momentum space has focussed on CFT
correlators involving conserved currents and/or the energy momentum tensor. Even though
there are few results about the momentum space correlators of non-conserved operators
beyond scalars [17, 28, 33, 36, 45], a systematic study of correlators of such operators is
missing. Our goal in this paper will be to initiate such systematic study by considering
the 3-point correlators when we have more than one spinning non-conserved operators.
In particular, we shall consider the 3-point function of two generic spin s operators and
one conserved current. One reason for this choice is that this 3-point function encodes
holographically the leading non-linear coupling of gauge fields with higher-spin fields. We
shall find the consequences of the conformal Ward identities when the spin s operators are
symmetric and traceless and explicitly solve the equations in terms of triple-K integrals [24]
for 3-point function when the non-conserved operators have spins 1 and 2.1 The restriction
to these values is mainly for practical reasons. While the method for solving the equations
is qualitatively the same in all cases, the higher the value of s the higher the number of
equations that one needs to solve.

In this paper, we shall consider generic conformal dimensions of the non-conserved
operators, with only restriction that the conformal dimensions are above the unitarity
bound. With generic dimensions, the 2 and 3-point functions considered here are finite.2 We
shall analyse in detail the case of both non-conserved operators having spin 1. In general,
for integer conformal dimensions, additional divergences may be present which require the
addition of counterterms. Such cases may be analysed following [24, 25, 27, 29] and leave
such analysis to future work.

The rest of this paper is organised as follows. In section 2, we review the 2-point
function of an arbitrary spin s operator in the momentum space, exemplifying our general
procedure. In section 3, we write the general decomposition of a momentum space 3-point
function involving a conserved current and two non-conserved higher spinning operators in
terms of form factors, and work out the action of the Ward identities on this 3-point function.
This gives rise to coupled differential equations which need to be solved to determine the
3-point functions. In sections 4, 5 and 6, we solve these equations and completely determine
the 3-point functions for the cases when the non-conserved operators have spins 0, 1 and 2,
respectively. We end with some discussion in section 7. The appendices contain reviews
of some results which are needed for the derivations as well as some details of the main
derivations. We use an index-free approach, where spacetime indices are contracted with
complex null auxiliary vectors, and we review this formalism in appendix A. Appendix B

1Due to additional constraints between the tensor structures in d = 3 [24, 27, 57], our expressions for
3-point functions are valid for d ≥ 4 dimensions when s ≥ 2.

2When the conformal dimensions of the two non-conserved operators are the same, some of the triple K
integrals in the expression of 3-point function diverge, but we find that the divergences cancel each other
leaving a finite expression.
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contains a summary of the conformal Ward identities both in position and momentum space
and appendix C reviews the decomposition of correlators involving conserved operators into
transverse and non-transverse parts. In appendix D we review triple-K integrals and in
appendix E we review relevant position-space results for 3-point functions. In appendix F
we review the regularisation of divergent triple-K integrals. Appendices G and H contain the
equations satisfied by the form factors in the case s = 2 and the solutions of the secondary
Ward identities, respectively.

We shall be working in the flat d dimensional space with Euclidean signature and use
δµν to raise and lower the indices.

2 Two-point functions

In this section, we consider the 2-point function of a generic spinning operators Oµ1···µs

which is symmetric and traceless. We start with the 2-point function to introduce our
conventions and the method we shall be following for the 3-point function. For earlier
works on CFT 2-point function of spinning operators in momentum space using different
approaches, see [17, 58]. To avoid dealing with the indices, it is convenient to introduce
auxiliary complex vectors εµ and work with the operators in the index free notation [57, 59]

ε · Os ≡ εµ1 · · · εµsOµ1···µs . (2.1)

Since we are interested in symmetric traceless operators, we shall also need to impose the
additional relation εµεµ = 0. This is possible since εµ are complex and lie on “complex null
cone” in Euclidean space [59]. We review this formalism in appendix A.

Using momentum conservation, the two point function of the spin s operator becomes
a function of a single momentum and hence it can be written as

A2 ≡
〈〈
ε1 · Os(p)ε2 · Os(−p)

〉〉
(2.2)

Our notation is explained in appendix B. The double bracket denotes that we have stripped
off the momentum conserving delta function. The conformal dimension of the operator
Oi is ∆i. Conformal invariance sets ∆1 = ∆2 as we shall see below. One may try to
Fourier transform the position space expression of the 2-point function to obtain the above
2-point function in the momentum space. While this is possible for generic conformal
dimensions, there are short-distance singularities when the dimensions take specific values
and renormalization is required for the 2-point function to have a Fourier transform. We
will work directly in momentum space where such issues can be dealt straightforwardly, and
we shall determine the momentum-space 2-point functions by solving the Ward identities in
momentum space.

The strategy is to write down the most general expression that the correlator can take
based on Lorentz invariance alone and then impose the conformal Ward identities. The
tensor structure of the correlator is encoded in monomials constructed out of scalar products
of the auxiliary vectors εµ with themselves and the momenta pµ. The first step is to list the
set of such monomials. Then we multiply each such monomial by a form factor, a scalar
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function of Lorentz invariants constructed out of momenta only and we sum over all of them.
The conformal Ward identities would then amount for equations for the scalar functions.

Let us exemplify this for the 2-point function. There are three scalar products one can
construct from pµ, εµ1 , ε

µ
2 :

w = ε1 · ε2 , ζ = ε1 · p , ξ = ε2 · p (2.3)

The correlator should have s powers of both auxiliary vectors ε1 and ε2 and the list of all
possible such monomials is ws−nξnζn, with n = 0, . . . s. Thus the most general expression
for the correlator is

A2 =
s∑

n=0

1
n!An(p)ws−nξnζn (2.4)

where An(p) are the form factors (which are scalar functions of the momentum magnitude,
p = √pµpµ). These will be determined using the conformal Ward identities. This requires
knowing the action of the generators of the conformal group on (2.4). To determine the
constraints coming from the Ward identities, we start by noting that for a function of the
form f = f(p, w, ξ, ζ), we have

∂f

∂pµ
= pµ

p

∂f

∂p
+ ε1µ

∂f

∂ζ
+ ε2µ

∂f

∂ξ
(2.5)

where p denotes the magnitude of momenta pµ, namely p = √pµpµ.
Using (2.5), the dilatation Ward identity, given in equation (B.13), can be expressed as(
pµ

∂

∂pµ
+ d−∆1 −∆2

)
A2 =

(
p
∂

∂p
+ ξ

∂

∂ξ
+ ζ

∂

∂ζ
+ d−∆1 −∆2

)
A2 = 0 (2.6)

Now, substituting (2.4) in above equation gives(
p
d

dp
+ 2n+ d−∆1 −∆2

)
An(p) = 0 (2.7)

This has the general solution
An = an p

∆1+∆2−d−2n (2.8)

where an are some constants which may depend upon d and ∆i.
Next, we need to determine the action of the special conformal Ward identity. Us-

ing (2.5), the special conformal Ward identities given in equations (B.15) and (B.16) can
be expressed as

b · (Ks +Kε) = 2(b · p)
[1

2K −
ζ

p

∂2

∂ζ∂p

]
+2(b · ε1)

[
(∆1 − 1) ∂

∂ζ
+ w

∂2

∂w∂ζ
+ ξ

p

∂2

∂w∂p

]
+ 2(b · ε2)

[
(∆1 − d) ∂

∂ξ
− w ∂2

∂w∂ξ
− ζ

p

∂2

∂w∂p
− ζ ∂2

∂ξ∂ζ
− p ∂2

∂p∂ξ
− ξ ∂

2

∂ξ2

]
(2.9)

where, we have contracted with an arbitrary vector bµ and defined

K = 2
(

∆1 −
d+ 1

2

)1
p

d

dp
− d2

dp2 (2.10)
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The coefficients proportional to (b ·p), (b ·ε1) and (b ·ε2) in (2.9) are independent as discussed
in appendix A. Setting these independent terms to zero, the differential equations for the
form factors are obtained to be

0 =
[1

2K −
ζ

p

∂2

∂ζ∂p

]
A2 (2.11)

0 =
[
(∆1 − 1) ∂

∂ζ
+ w

∂2

∂w∂ζ
+ ξ

p

∂2

∂w∂p

]
A2 (2.12)

0 =
[
(∆1 − d) ∂

∂ξ
− w ∂2

∂w∂ξ
− ζ

p

∂2

∂w∂p
− ζ ∂2

∂ξ∂ζ
− p ∂2

∂p∂ξ
− ξ ∂

2

∂ξ2

]
A2 (2.13)

These equations can be solved for arbitrary spin s. A convenient way to obtain the
general result is to proceed recursively. Here, we state the final result for the spin s.
Using (2.4) and (2.8), we find that (2.11) is identically satisfied provided we set ∆1 = ∆2.
Equation (2.12) determines an in terms of a0 to be

an = (−1)n cn(2∆1 − d)(2∆1 − d− 2)(2∆1 − d− 4) · · · (2∆1 − d− 2(n− 1))
(∆1 + s− 2)(∆1 + s− 3) · · · (∆1 + s− 2− (n− 1)) a0 (2.14)

with
cn = s(s− 1)(s− 2) · · · (s− n+ 1) (2.15)

The 3rd equation (2.13) is now identically satisfied for the above solution.
Thus, we have shown that the 2-point function for an operator with spin s in momentum

space is given by (2.4), (2.8) and (2.14). The conformal Ward identities have fixed this up
to a single constant a0. E.g., for spin 1 operator with conformal dimension ∆, we have

A2 = A0w +A1ξζ = a0ε
µ
1 ε
ν
2

[
δµν −

(2∆− d
∆− 1

)pµpν
p2

]
p2∆−d (2.16)

Similarly, for spin 2 operator with conformal dimension ∆, we have

A2 = A0w
2 +A1wξζ + 1

2A2ξ
2ζ2

= εµσ1 ενρ2

[
a0δµνδρσ + a1

δµνpρpσ
p2 + a2

pµpνpρpσ
2p4

]
p2∆−d (2.17)

where we have defined εµν = εµεν and the relation between the coefficients are given by

a1 = −2(2∆− d)
∆ a0 ; a2 = 2(2∆− d)(2∆− d− 2)

∆(∆− 1) a0 (2.18)

In the above derivation, we have only used the conformal properties of the operators. Hence,
the result is also valid for the conserved spin s currents when we specialise ∆ to (d+ s− 2)
which is the conformal dimension of the conserved current having spin s. It is instructive
to express the 2-point functions in a form where the conserved nature of the operators are
manifest when ∆ = (d+ s− 2). For s = 1, we can write

A2 = a0ε
µ
1 ε
ν
2

[
πµν(p)−

(∆− d+ 1
∆− 1

)pµpν
p2

]
p2∆−d (2.19)
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where, πµν(p) = δµν − pµpν
p2 . For ∆ = d− 1 which is the dimension of a conserved vector

current, the second term in (2.19) vanishes and we get the expected result for the 2-point
function of the conserved vector operators (see, e.g., equation (2.12) of [24]).

In a similar way, we can express the 2-point function of the spin 2 operators as

A2 = εµσ1 ενρ2 a0

[
Πµσ,νρ(p) + (d−∆)pµpν

∆(∆− 1)(d− 1)p2

(
E δσρ + F

pσpρ
p2

)]
(2.20)

where, E = 2(d− 1)(∆− 1), F = (2∆− 3d∆ + d2 + d− 2) and

Πµσ,νρ(p) = 1
2
[
πµν(p)πσρ(p) + πµρ(p)πνσ(p)

]
− 1
d− 1πµσ(p)πνρ(p). (2.21)

In writing equation (2.20), we have used the property εµεµ = 0 which is satisfied by the
auxiliary vectors. Again, for the conserved spin 2 current, for which ∆ = d, the second
term in (2.20) vanishes and we get the expected result for the spin 2 conserved currents
(see, e.g., equation (2.11) of [24]).

3 Ward identity constraints for 3-point function

In this section, we start the analysis of the 3-point function. As mentioned in the introduction,
we focus on 3-point functions of one conserved current with spin 1 and two non-conserved
spinning operators having spin s. We shall write down a general structure of the correlator
in terms of scalar form factors and then use the conformal Ward identities to determine
these form factors.

3.1 General form of 3-point function

To avoid dealing with the Lorentz indices, we shall again work in the index free notation
given in equation (2.1). Further, due to the translation invariance, we can extract an
overall momentum conserving delta function from our correlators and work with the reduced
correlators as defined in equation (B.7). The 3-point function of one spin-1 conserved
current and two spinning non-conserved operators, we are interested in, is

As1,J,s3 ≡
〈〈
ε1 · Os1(p1)ε2 · J(p2)ε3 · Os3(p3)

〉〉
. (3.1)

In the above expression, the spin and conformal dimension of the operator Oi are si and
∆i respectively. The conformal dimension of the conserved current Jµ is ∆2 = d− 1. Due
to the momentum conservation pµ1 + pµ2 + pµ3 = 0 and we shall eliminate pµ3 in favour of pµ1
and pµ2 . The scalar form factors depend on three scalar variables that we choose to be the
magnitude of the momenta p1, p2, p3.3

3The inner product between different momenta can be expressed in terms of the magnitudes as

pi · pj = 1
2

[
p2
k − p2

i − p2
j

]
; i, j, k = 1, 2, 3

where pi denotes the magnitude of the ith momenta pµi .
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Next, we need to write the above 3-point function in terms of form factors. Following [24],
we split the correlator as sum of transverse and longitudinal parts (see appendix C). Using
equation (C.3), we can express the 3-point function (3.1) as

As1,J,s3(p1,p2) =
〈〈
ε1 ·O(p1)ε2 ·j(p2)ε3 ·O(p3)

〉〉
+ ε2 ·p2

p2
2

〈〈
ε1 ·O(p1)p2νJ

ν(p2)ε3 ·O(p3)
〉〉

≡A⊥+A|| , (3.2)

where A⊥ and A|| denote the transverse and longitudinal parts, respectively, and jµ denotes
the transverse current defined as jµ = Jν π µ

2ν , with

πµν2 = δµν − pµ2p
ν
2

p2
2

; pµ2 π2µν = 0 . (3.3)

The transverse current jµ satisfies pµjµ = 0. The second term in r.h.s. of (3.2) can be
reduced to sum of two 2-point functions by using the conservation Ward identity (B.22)
and hence it is easily determined from the knowledge of 2-point functions obtained in the
previous section. This means that we only need to focus on the transverse part of the
correlator. The transverse part should be linear in the project operator π2 with one of its
indices contracted by ε2. Given that we have eliminated pµ3 in terms of pµ1 and pµ2 and that
p2 · π2 = 0, there are three possibilities for the contraction of the second index of π2 and
the 3-point function must be of the form:

A⊥(p1,p2) = (ε2 · π2 · p1)A+ (ε2 · π2 · ε1)B1 + (ε2 · π2 · ε3)B2 (3.4)

We now need to determine the form of A,B1, B2. We have already accounted for the ε2
dependence, so the possible scalar products between the auxiliary vectors ε1, ε3 and the
momenta are:

z = ε1 · ε3 , ξ1 = ε3 · p2 , ξ2 = ε3 · (p1 + p2) , ζ1 = ε1 · p2 , ζ2 = ε1 · p1 (3.5)

This choice is motivated by the simple transformation property under the exchange (p1 ↔
p3, ε1 ↔ ε3),

z ↔ z, ξ1 ↔ ζ1, ξ2 ↔ −ζ2 , (3.6)

which we will use later on in section 3.5. The correlator is proportional to s1 powers of ε1
and s2 powers of ε3. In this paper we focus on the case s1 = s2 = s, so A should contain s
powers of the auxiliary vectors εµ1 and εµ3 , B1 should have s powers of εµ3 and s− 1 powers
of εµ1 , and B2 should have s powers of εµ1 but only s − 1 powers of εµ3 . Thus the general
form of A,B1 and B2 is

A(p1,p2) =
s∑

n=0

n∑
p,q=0

1
n!p!q!A

(p,q)
n (p1, p2, p3)zs−nξp1ξ

n−p
2 ζq1ζ

n−q
2 (3.7)

B1(p1,p2) =
s−1∑
n=0

n+1∑
p=0

n∑
q=0

1
n!p!q!B

(p,q)
1;n (p1, p2, p3)zs−1−nξp1ξ

n−p+1
2 ζq1ζ

n−q
2 (3.8)

B2(p1,p2) =
s−1∑
n=0

n∑
p=0

n+1∑
q=0

1
n!p!q!B

(p,q)
2;n (p1, p2, p3)zs−1−nξp1ξ

n−p
2 ζq1ζ

n−q+1
2 (3.9)
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where the form factors A(p,q)
n , B

(p,q)
1;n and B

(p,q)
2;n depend on the magnitudes of the three

momenta. The problem of determining the 3-point function has been reduced to finding
the form factors A(p,q)

n , B
(p,q)
1;n and B(p,q)

2;n . We shall fix these form factors by applying the
conformal Ward identities on the transverse part of 3-point function given in equation (3.4).

3.2 Action of Ward identities

To determine the form factors, the first step is to obtain the equations satisfied by them. To
obtain these equations, we start by noting that the momentum space CFT Ward identities,
as reviewed in appendix B.2, involve derivatives with respect to the components of the
individual momenta. However, when acting on 3-point functions, they can be converted
into derivatives with respect to the magnitudes of the momenta. Further, the 3-point
function (3.1) also depends upon the auxiliary vectors ε1, ε3 via ζi, ξi and z. It is useful to
derive a chain rule which takes into account these variables. For a general function of the
form f = f(p1, p2, p3, z, ξ1, ξ2, ζ1, ζ2), we have

∂f

∂pµ1
= (p1 + p2)µ

p3

∂f

∂p3
+ pµ1
p1

∂f

∂p1
+ ε1µ

∂f

∂ζ2
+ ε3µ

∂f

∂ξ2

∂f

∂pµ2
= (p1 + p2)µ

p3

∂f

∂p3
+ pµ2
p2

∂f

∂p2
+ ε1µ

∂f

∂ζ1
+ ε3µ

∂f

∂ξ2
+ ε3µ

∂f

∂ξ1
(3.10)

Using this, the action of dilatation operator (B.13) can be expressed in the form( 2∑
i=1

pµi
∂

∂pµi
+2d−∆t

)
A⊥=

( 3∑
i=1

pi
∂

∂pi
+ξ1

∂

∂ξ1
+ξ2

∂

∂ξ2
+ζ1

∂

∂ζ1
+ζ2

∂

∂ζ2
+2d−∆t

)
A⊥= 0

where, we have defined ∆t ≡ ∆1 + ∆2 + ∆3.
The above expression is valid when acting on the 3-point correlator. It is useful to

consider the action of the dilatation operator on the functions A,B1 and B2 given in
equation (3.4). Due to the linear independence of three terms in r.h.s. of (3.4), the action
of dilatation Ward identity on each of the terms in r.h.s. is separately zero. Using this fact,
a little algebra gives the action of the dilatation on the functions A and Bi to be( 2∑

i=1
pµi

∂

∂pµi
+2d−∆t

)
T =

( 3∑
i=1

pi
∂

∂pi
+ξ1

∂

∂ξ1
+ξ2

∂

∂ξ2
+ζ1

∂

∂ζ1
+ζ2

∂

∂ζ2
+2d−∆t+a

)
T = 0

(3.11)
where T can be A,B1 or B2 and a = 1 for A and 0 for B1 and B2.

Next we consider the action of the special conformal Ward identity. The corresponding
differential operator is Kµ = Kµs +Kµε , where we have denoted the scalar and spin parts of
the special conformal operator by Kµs and Kµε respectively

Kµs =
2∑
i=1

[
2(∆i − d) ∂

∂piµ
− 2pνi

∂

∂pνi

∂

∂piµ
+ pµi

∂

∂pνi

∂

∂piν

]

Kµε = 2
2∑
i=1

Sµνi
∂

∂pνi
; Sµνi = εµi

∂

∂εiν
− ενi

∂

∂εiµ
(3.12)
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Since these operators involve a vector index, it is convenient to contract them with an
arbitrary vector bµ and work with the resulting scalar operator. Using the chain rules given
in (3.10), we find

b · Ks (T ) = (b · p1)
[
P

(0,a)
1 + 2ε1 · ε3

∂2

∂ξ2∂ζ2

]
T + (b · p2)

[
P

(0,a)
2 + 2z ∂

∂ζ1

(
∂

∂ξ1
+ ∂

∂ξ2

)]
T

− 2(b · ε1)
[
(∆3 − 1− a) ∂

∂ζ2
+ (R+ d−∆2)

(
∂

∂ζ1
− ∂

∂ζ2

)]
T

− 2(b · ε3)
[
(∆3 − 1− a) ∂

∂ξ2
+ (R+ d−∆2) ∂

∂ξ1

]
T (3.13)

where T can be A,B1 or B2 and

P
(α,β)
1 ≡ K1 −K3 − 2

(
α− β − ξ2

∂

∂ξ2
− (ζ1 + ζ2) ∂

∂ζ2

) 1
p3

∂

∂p3

P
(α,β)
2 ≡ K2 −K3 − 2

(
α− β − ξ2

(
∂

∂ξ1
+ ∂

∂ξ2

)
−(ζ1 + ζ2) ∂

∂ζ1

) 1
p3

∂

∂p3

R ≡ p2
∂

∂p2
+ 1

2
p2

2 + p2
3 − p2

1
p3

∂

∂p3
+ ξ1

(
∂

∂ξ1
+ ∂

∂ξ2

)
+ζ1

∂

∂ζ1

Ki ≡ −
∂2

∂p2
i

+ 2
(

∆i −
d+ 1

2

) 1
pi

∂

∂pi
(3.14)

Similarly, the action of the spin part can be expressed as

b·Kε (T ) =−2(b·p1)E1
∂

∂ζ2
T−2(b·p2)E1

∂

∂ζ1
T+2(b·ε1)

[
F1

(
∂

∂ζ1
− ∂

∂ζ2

)
+F2

∂

∂ζ2
+E2

∂

∂z

]
T

−2(b·ε3)
(
E1

∂

∂z

)
T (3.15)

where again T = A,B1, B2 and we have defined

E1 = z
∂

∂ξ2
+ ζ2
p1

∂

∂p1
+ (ζ1 + ζ2)

p3

∂

∂p3

E2 = z
∂

∂ζ2
+ ξ2 − ξ1

p1

∂

∂p1
+ ξ2
p3

∂

∂p3

F1 = 1
2
p2

3 − p2
2 − p2

1
p1

∂

∂p1
+ 1

2
p2

3 + p2
2 − p2

1
p3

∂

∂p3
+ ξ1

∂

∂ξ2
+ ζ1

∂

∂ζ2

F2 = 1
2
p2

3 − p2
2 + p2

1
p1

∂

∂p1
+ p3

∂

∂p3
+ ξ2

∂

∂ξ2
+ (ζ1 + ζ2) ∂

∂ζ2
+ d− 1 (3.16)

Finally, we are ready to write down the action of the special conformal Ward identity on
the full 3-point function. This is easily done by noting the following product rule for two
arbitrary functions f1 and f2

Kµε (f1f2) = f1Kµε f2+f2Kµε f1+2
2∑
i=1

(
εµi
∂f2
∂εiν

∂f1
∂pνi

+εµi
∂f1
∂εiν

∂f2
∂pνi
−ενi

∂f2
∂εiµ

∂f1
∂pνi
−ενi

∂f1
∂εiµ

∂f2
∂pνi

)

Kµs (f1f2) = f1Kµs f2+f2Kµs f1+2
2∑
i=1

piµ
∂f1
∂pνi

∂f2
∂piν
−2

2∑
i=1

pνi

(
∂f1
∂pνi

∂f2
∂pµi

+ ∂f1
∂pµi

∂f2
∂pνi

)
(3.17)
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Using this, we can determine the equations resulting from the action of the special conformal
Ward identity. Its’ action on the full 3-point function (3.2) implies

b · (Ks +Kε)A⊥ + b · (Ks +Kε)A‖ = 0 (3.18)

After a long but straightforward calculation, the action on the transverse part of the
correlator can be found to be

b·(Ks+Kε)A⊥

= (ε2 ·π2 ·p1)
[
b·(Ks+Kε)A−

2b·(p1+p2)
p3

∂A

∂p3
+ 2(b·ε1)

p1

∂B1

∂p1
− 2(b·ε3)

p3

(
∂B2

∂p3
+ ∂A

∂ξ2

)]
+(ε2 ·π2 ·ε1)

[
b·(Ks+Kε)B1−2b·(p1+p2) ∂A

∂ζ1
−2(b·ε1)

(
∂B1

∂ζ1
− ∂B1

∂ζ2

)
−2(b·ε3)

(
∂B2

∂ζ1
+ ∂A

∂z

)]
+(ε2 ·π2 ·ε3)

[
b·(Ks+Kε)B2−2(b·p1) ∂A

∂ξ1
+2(b·ε1)

(
∂A

∂z
− ∂B1

∂ξ1

)
−2(b·ε3)

(
∂B2

∂ξ1
+ ∂B2

∂ξ2

)]

+(ε2 ·π2 ·b)
[(

2∆1−2d+ ∆2−1
p2

2
(p2

1+p2
2−p2

3)−2p1
∂

∂p1
+2(ξ2−ξ1) ∂

∂ξ1
+2ζ2

∂

∂ζ1

+ (p2
3−p2

1−p2
2)

p2

∂

∂p2

)
A+ 2ζ1

p2
2

(
1−∆2+p2

∂

∂p2
− p2

2
p1

ζ2

ζ1

∂

∂p1
+ zp2

2
ζ1

∂

∂ξ1

)
B1

+ 2ξ1

p2
2

(
1−∆2+p2

∂

∂p2
+ p2

2
p3

ξ2

ξ1

∂

∂p3
+ zp2

2
ξ1

∂

∂ζ1

)
B2

]
+L (3.19)

where L denotes a longitudinal contribution given by

L ≡ −2(ε2 · p2)
p2

2
(∆2 − d+ 1)

[
(b · p1)A+ (b · ε1)B1 + (b · ε3)B2

− (b · p2)
(
p2

3 − p2
1 − p2

2
2p2

2
A+ ζ1

p2
2
B1 + ξ1

p2
2
B2

)]
(3.20)

For the conserved current ∆2 = d− 1, this longitudinal contribution vanishes identically.
This particular result can also be derived using the commutation relations of the generators
of the special conformal transformations with the momentum. To see this, we note that
the longitudinal contribution can be determined from the ε stripped correlation function,
namely A⊥µ , through the identity

(Ks+Kε)ν εµ2 A⊥µ = ε2σ

[
2
(
δσν

∂

∂pµ2
−δνµ

∂

∂p2σ

)
+δσµ(Ks+Kε)ν

]
A⊥µ

≡ ε2σ
[
(π2 ·p1)σ I(A)

ν +(π2 ·ε1)σ I(B1)
ν +(π2 ·ε3)σ I(B2)

ν + pσ2
p2

2
I‖ν

]
(3.21)

where in the last line we have written the most general expression that one gets from the
action of the generator of the special conformal transformations on the correlator. The
longitudinal contribution I‖ν can be obtained by replacing ε2µ → p2µ since the first 3 terms
in the second line of (3.21) vanish when ε2µ = p2µ, and we get

I‖ν =
[
2
(
p2ν

∂

∂pµ2
− δνµ p2 ·

∂

∂p2

)
+ p2µ (Ks +Kε)ν

]
A⊥µ (3.22)
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Now, the commutator between the generator of the special conformal transformations and
the momentum p2 is given by

[
pµ2 , (Ks)ν

]
= 2δµν

(
d−∆2 − 1 + p2 ·

∂

∂p2

)
+ 2 ∂

∂pν2
pµ2 − 2p2ν

∂

∂p2µ
(3.23)

Furthermore,

p2µ(Kε)νA⊥µ = 2p2µ

2∑
i=1

Sκi ν
∂

∂pκi
A⊥µ = 0 (3.24)

The term with i = 1 gives zero because p2µ commutes with this term and p2µA⊥µ = 0,
while the term with i = 2 is zero because A⊥µ (by definition) does not depend on ε2. Using
these results in (3.22), we find

I‖ν = 2(d−∆2 − 1)A⊥ν = 0, (3.25)

since the dimension of the conserved current is ∆2 = d− 1.
The action of the special conformal Ward identity on the longitudinal part of the

3-point function is given by

b · (Ks +Kε)A|| = b · (Ks +Kε)
[
ε2 · p2
p2

2

〈〈
ε1 · O(p1)p2νJ

ν(p2)ε3 · O(p3)
〉〉]

= ε2 · p2
p2

2
b ·
(
Ks +Kε + 2 ∂

∂p2

)
H + 2(∆2 − 1)

p2
2

(ε2 · π2 · b)H (3.26)

where H ≡
〈〈
ε1 · O(p1)p2νJ

ν(p2)ε3 · O(p3)
〉〉
.

By using the conservation Ward identity (B.22), the correlator H can be written as
the sum of two 2-point functions. However, the operators Ks and Kε are the ones that act
on 3-point functions. Thus, we have

b·
(
Ks+Kε+2 ∂

∂p2

)
3-pt

H

=−b·
(
Ks+Kε+2 ∂

∂p2

)
3-pt

[
g1
〈〈
ε1 ·O1(−p3)ε3 ·O3(p3)

〉〉
+g3

〈〈
ε1 ·O1(p1)ε3 ·O3(−p1)

〉〉]
It is easy to see that when acting on the 2nd two point function in the above expression,
the operator b · (Ks +Kε + 2 ∂

∂p2
) reduces to the one corresponding to 2-point function and

hence vanishes. For the 1st 2-point function, we can use momentum conservation to write
p3 = −p1 − p2. A simple calculation now shows

b ·
(
Ks +Kε + 2 ∂

∂p2

)
3-pt

[〈〈
ε1 · O1(−p3 = p1 + p2) ε3 · O3(p3 = −p1 − p2)

〉〉]
= b · (Ks +Kε)2-pt

[〈〈
ε1 · O1(−p3) ε3 · O3(p3)

〉〉]
(3.27)

The operator in the second line contains derivatives w.r.t. the p3 variable only. Hence, we
again have the Ward identity corresponding to a 2-point function acting on the 2-point
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function and hence it vanishes. This means that the first term in r.h.s. of equation (3.26)
does not contribute and we are left with

b·(Ks+Kε)A||

=−2(∆2−1)
p2

2
(ε2 ·π2 ·b)

[
g1
〈〈
ε1 ·O1(−p3)ε3 ·O3(p3)

〉〉
+g3

〈〈
ε1 ·O1(p1)ε3 ·O3(−p1)

〉〉]
(3.28)

where g1 and g3 denote the gauge couplings of the operators O1 and O3 respectively (see
appendix B.3 for details). The contribution (3.28) vanishes when ∆1 6= ∆3 (since the
2-point vanishes) and it contributes to the equations originating from the term proportional
to (ε2 · π2 · b) when ∆1 = ∆3.

3.3 Ward identity equations

The action of special conformal Ward identity on the full 3-point function is given by
equations (3.18), (3.19) and (3.28). In the transverse part (3.19), the coefficients of the
independent tensor structures such as (ε2 · π2 · p1)(b · p1), (ε2 · π2 · ε1)(b · p2) etc. are all
independent. This means that we can set the coefficients of these different tensor structures
to zero. However, the coefficient of (ε2 · π2 · b) has to be combined with the terms involving
the two point functions according to equation (3.28). It is useful to divide the equations
based on the order of the differential equations. Those differential equations which involve
second derivative with respect to momenta are called primary Ward identities and those
involving only a single momentum derivative are called secondary Ward identities [24]. The
secondary Ward identities can be homogeneous or inhomogeneous. As discussed above,
the inhomogeneous Ward secondary equations originate from the coefficient of (ε2 · π2 · b)
(though, as we will see below there are also secondary Ward equations originating from
the coefficient of (ε2 · π2 · b) that are still homogeneous). The primary Ward identities
are used to fix the form of 3-point function up to free parameters. The homogeneous
secondary Ward identities constrain these parameters, and the inhomogeneous secondary
Ward identities relate the parameters to the normalization coefficient of the two-point
function. The equations are given explicitly below.

3.3.1 Primary Ward identities

As mentioned above, the equations involving second derivative with respect to momenta
are called primary Ward identities. These are the equations associated with (b · p1) and
(b · p2) and are given by

ε2 · π2 · p1:

(b · p1) : 0 = 1
2P

(0,1)
1 A+ z

∂2A

∂ξ2∂ζ2
− E1

∂A

∂ζ2
− 1
p3

∂A

∂p3

(b · p2) : 0 = 1
2P

(0,1)
2 A+ z

∂

∂ζ1

(
∂

∂ξ1
+ ∂

∂ξ2

)
A− E1

∂A

∂ζ1
− 1
p3

∂A

∂p3
(3.29)
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ε2 · π2 · ε1:

(b · p1) : 0 = 1
2P

(0,0)
1 B1 + z

∂2B1
∂ξ2∂ζ ′2

− ∂A

∂ζ1
− E1

∂B1
∂ζ2

(b · p2) : 0 = 1
2P

(0,0)
2 B1 + z

∂

∂ζ1

(
∂

∂ξ1
+ ∂

∂ξ2

)
B1 −

∂A

∂ζ1
− E1

∂B1
∂ζ1

(3.30)

ε2 · π2 · ε3:

(b · p1) : 0 = 1
2P

(0,0)
1 B2 + z

∂2B2
∂ξ2∂ζ2

− ∂A

∂ξ1
− E1

∂B2
∂ζ2

(b · p2) : 0 = 1
2P

(0,0)
2 B2 + z

∂

∂ζ1

(
∂

∂ξ1
+ ∂

∂ξ2

)
B2 − E1

∂

∂ζ1
B2 (3.31)

3.3.2 Secondary Ward identities

The equations involving a single derivative with respect to momenta are called the secondary
Ward identities. They are associated with (b · ε1), (b · ε3) and (ε2 · π2 · b) and are given by

ε2 · π2 · p1:

(b · ε1) : 0 = −
[
(∆3 − 2− F2) ∂

∂ζ2
+ (R− F1 + d−∆2)

(
∂

∂ζ1
− ∂

∂ζ2

)
−E2

∂

∂z

]
A+ 1

p1

∂B1
∂p1

(b · ε3) : 0 =
[
(∆3 − 1) ∂

∂ξ2
+ (R+ d−∆2) ∂

∂ξ1
+ E1

∂

∂z

]
A+ 1

p3

∂B2
∂p3

(3.32)

ε2 · π2 · ε1:
(b · ε1) : 0 =

[
(∆3 − 1− F2) ∂

∂ζ2
+ (R− F1 + d+ 1−∆2)

(
∂

∂ζ1
− ∂

∂ζ2

)
−E2

∂

∂z

]
B1

(b · ε3) : 0 =
[
(∆3 − 1) ∂

∂ξ2
+ (R+ d−∆2) ∂

∂ξ1
+ E1

∂

∂z

]
B1 + ∂A

∂z
+ ∂B2
∂ζ1

(3.33)

ε2 ·π2 ·ε3:
(b·ε1) : 0 =

[
(∆3−1−F2) ∂

∂ζ2
+(R−F1+d−∆2)

(
∂

∂ζ1
− ∂

∂ζ2

)
−E2

∂

∂z

]
B2−

∂A

∂z
+ ∂B1
∂ξ1

(b·ε3) : 0 =
[
∆3

∂

∂ξ2
+(R+d+1−∆2) ∂

∂ξ1
+E1

∂

∂z

]
B2 (3.34)

The final secondary equation comes from the coefficient of (ε2 ·π2 · b). This is first order
non-homogeneous differential equation having two point functions as sources and is given by
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ε2 ·π2 ·b:[
(∆1−∆3)−p1

∂

∂p1
+p3

∂

∂p3
− (p2

1−p2
3)

p2

∂

∂p2
−(ξ1−ξ2)∂ξ1 +ξ2(∂ξ2 +∂ξ1)+ζ2(∂ζ1−∂ζ2)

+(ζ2+ζ1)∂ζ1

]
A+ 2(1−∆2)

p2
2

(1
2(p2

3−p2
1)A+ζ1B1+ξ1B2

)
+2
[
ζ1
p2

∂

∂p2
− ζ2
p1

∂

∂p1
+z∂ξ1

]
B1

+2
[
ξ1
p2

∂

∂p2
+ ξ2
p3

∂

∂p3
+z∂ζ1

]
B2

= 2(∆2−1)
p2

2
δ∆1,∆3

s∑
n=0

1
n!z

s−nan
[
g1 ξ

n
2 (ζ1+ζ2)n p2∆1−d−2n

3 +g3 (ξ2−ξ1)n ζn2 p
2∆1−d−2n
1

]
(3.35)

In writing the left hand side of the above equation, we have used the dilatation Ward
identity (3.11). For the right hand side, we have used the result for two point function
given in previous section. The δ∆1,∆3 ensures that the right hand side only contributes
when the two point function is non zero. We note that on the right side of (3.35), the
combination ζn1 ξ

n
1 never appears. The equations corresponding to this combination are

homogeneous equations which, together with other homogeneous secondary equations,
restrict the parameters appearing in the solutions of primary equations.

3.4 Solution of the dilation Ward identities

The dilatation Ward identity implies that the form factors are homogeneous functions of
momenta. To see this, we start with the form factors A(p,q)

n writing

A =
s∑

n=0
zs−nT (n) ; T (n) ≡

n∑
p,q=0

1
n!p!q!A

(p,q)
n ξp1ξ

n−p
2 ζq1ζ

n−q
2 (3.36)

Since the dilatation Ward identity does not involve powers and derivative with respect to z,
the T (n) is also annihilated by the dilatation ward identity, (3.11). Now, a small calculation
gives (

ξ1
∂

∂ξ1
+ ξ2

∂

∂ξ2
+ ζ1

∂

∂ζ1
+ ζ2

∂

∂ζ2

)
T (n) = 2nT (n) (3.37)

Using this, we can get rid of ξi and ζi variables in (3.11) and obtain( 3∑
i=1

pi
∂

∂pi
+ 2d+ 2n−∆t + 1

)
A(p,q)
n = 0 (3.38)

The above equation says that A(p,q)
n is a homogeneous function of degree −(2d+2n−∆t+1).

Anticipating the results to follow, we express A(p,q)
n in terms of triple K integrals (see

appendix D for details on triple K integrals). Triple K integrals satisfy the above equation
(see (D.7)), and they indeed turn out to satisfy all conformal Ward identities. In particular,
we shall find that the primary Ward identities are satisfied by the functions of the form

A(p,q)
n = a(p,q)

n JN{k1,k2,k3} ; N = 2n+ 1 + kt ; kt = k1 + k2 + k3 (3.39)
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The k1, k2 and k3 are some integers. The above expression can be written more explicitly as

A(p,q)
n = a(p,q)

n J2n+1+kt{ki}

= a(p,q)
n

∫ ∞
0

dxx
d
2 +2n+kt

3∏
j=1

p
∆j− d2 +kj
j K∆j− d2 +kj (xpj) (3.40)

The expressions for B(p,q)
1,n and B(p,q)

2,n will also be given by similar expressions

B
(p,q)
1;n = b

(p,q)
1;n JN{k1,k2,k3} , B

(p,q)
2;n = b

(p,q)
2;n JN{k1,k2,k3} , N = 2n+ 1 + kt (3.41)

The undetermined quantities in (3.39) and (3.41) are ki, a(p,q)
n , b

(p,q)
1;n and b(p,q)2;n . These will

be fixed by making use of the special conformal Ward identity. In particular, the primary
Ward identities fix the integer parameters ki. The secondary Ward identities imply some
relations between the coefficients a(p,q)

n , b
(p,q)
1;n and b(p,q)2;n .

It turns out that the primary and secondary Ward identities are very involved and
cannot be solved easily for arbitrary spin s. In the next sections, we shall solve these
equations for spins 0, 1 and 2. However, before that, we describe some useful symmetry
properties of the form factors which turn out to be useful in finding the solution and
providing consistency checks when ∆1 = ∆3.

3.5 Symmetry properties of form factors

In our discussion so far, we considered the general case where s1 6= s2. When s1 = s2
(with the operators not necessarily the same) the equations exhibit a simple transformation
property under the exchange (ε1, p1)↔ (ε3, p3), which amounts to

z ↔ z, ξ1 ↔ ζ1, ξ2 ↔ −ζ2 . (3.42)

It is easy to see that the equations coming from the Ward identities remain invariant under
this exchange if the functions A,B1 and B2 transform as

A(p1, p2, p3, ξ1, ξ2, ζ1, ζ2, z)→ ∓A(p3, p2, p1, ζ1,−ζ2, ξ1,−ξ2, z)
B1(p1, p2, p3, ξ1, ξ2, ζ1, ζ2, z)→ ±B2(p3, p2, p1, ζ1,−ζ2, ξ1,−ξ2, z)
B2(p1, p2, p3, ξ1, ξ2, ζ1, ζ2, z)→ ±B1(p3, p2, p1, ζ1,−ζ2, ξ1,−ξ2, z) . (3.43)

Useful identities for showing the symmetries under (ε1, p1)↔ (ε3, p3) exchange are

(2 + d−∆2 −∆3 +R− F1 + F2) ∂

∂ζ2
= (∆1 − a) ∂

∂ζ2
, (3.44)

where we have used equation (3.11), and the transformation properties

E1
1↔3←→ −E2 ; R− F1

1↔3←→ R (3.45)

The Ward identity equation (3.35), which receives contribution from 2-point function,
needs special attention. This equation remains invariant under the above exchange only if
g1 ↔ ±g3 (where the signs correspond to the signs in (3.43)).
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When ∆1 = ∆3, the above transformation property imply useful constraints on the form
factors. In this case, the transverse part of 3-point function (3.4), will be either symmetric
or antisymmetric under the above exchange. For the upper sign in (3.43), the equation (3.4)
remains invariant, whereas for the lower sign, (3.4) picks up an overall minus sign. This
property gives constraints on the form factors. By using the series expansions (3.7), (3.8)
and (3.9), we find

A(p,q)
n (p1, p2, p3) = ∓(−1)p+qA(q,p)

n (p3, p2, p1)

B
(p,q)
1,n (p1, p2, p3) = ±(−1)p+qB(q,p)

2,n (p3, p2, p1) (3.46)

Combining the above symmetry constraints with (3.39) and (3.41), we find

A(p,q)
n : a(p,q)

n J2n+1+kt{k1,k2,k3} = ∓(−1)p+qa(q,p)
n J2n+1+kt{k3,k2,k1}

B
(p,q)
1;n , B

(p,q)
2;n : b

(p,q)
1;n J2n+1+kt{k1,k2,k3} = ±(−1)p+qb(q,p)2;n J2n+1+kt{k3,k2,k1} (3.47)

These relations give consistency checks for the solutions of the coefficients a(p,q)
n , b

(p,q)
1;n and

b
(p,q)
2;n . Further, we can also use these to fix B1 from the knowledge of B2 or vice versa.

In the following, in the case of non-conserved spin-1 fields, we will get only the solution
of the Ward identities that is antisymmetric in the exchange of (ε1, p1)↔ (ε3, p3). This is
also consistent with the results obtained in position space where the three point correlation
function with identical spin-1 operators Oµ1 = Oµ3 vanishes due to the exchange symmetry
of the two vectors.

4 Solution for s = 0

This case has been considered in [29] and will be briefly reviewed here. When the 1st and
3rd operators are scalars, the second and third terms in r.h.s. of (3.4) are absent and the
correlator is given by

A⊥0,J,0 = (ε2 · π2 · p1)A (4.1)
The function A now involves only one form factor

A = A
(0,0)
0 (p1, p2, p3) (4.2)

In this case, the primary Ward identities take a very simple form

(K1 −K3)A(0,0)
0 = 0 ; (K2 −K3)A(0,0)

0 = 0 . (4.3)

Together with the dilatation W ard identity (3.11), and using equations (D.7) and (D.10),
we find that the above equations have unique solution

A
(0,0)
0 = a

(0,0)
0 J1{0,0,0} . (4.4)

We still need to satisfy the secondary Ward identity which, in this case, comes from
equation (3.35) with n = 0 and is given by the following single equation[

∆1 −∆3 + ∆2 − 1
p2

2
(p2

1 − p2
3)− p1

∂

∂p1
+ p3

∂

∂p3
+ (p2

3 − p2
1)

p2

∂

∂p2

]
A

(0,0)
0

= 2(∆2 − 1)
p2

2
a0 δ∆1,∆3

[
g1 p

2∆1−d
3 + g3 p

2∆1−d
1

]
(4.5)
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If ∆1 6= ∆3, then the right hand side vanishes and the only way to satisfy the above equation
is to set a(0,0)

0 = 0. This implies that the 3-point function vanishes identically. This is
consistent with the well known result in position space. For ∆1 = ∆3 = ∆, the right hand
side of (4.5) is non zero. In this case, the equation can be conveniently analysed by taking
the limit p3 → 0 in both sides. Making use of (D.8), (D.12), (D.13) and (D.29) gives the
relation between the 2 and 3-point functions to be

a0 = −2
d
2−4 2∆− d

g3(d− 2) Γ
(
d

2

)
Γ
(
d− 2∆

2

)
Γ
(2∆− d

2

)
a

(0,0)
0 (4.6)

where we have used ∆2 = d− 1. In getting this relation, we have used the standard identity
Γ(x)Γ(−x) = −π

x Cosec(πx).
For ∆1 = ∆3, the left side of (4.5) is antisymmetric in the exchange p1 ↔ p3. The right

hand side must also have this property. This is possible only if g1 = −g3. This condition
must be satisfied for the 3-point function to be non zero and can be ensured if the 1st and
3rd operators are complex conjugates of each other. In other words, the 3 point function
will vanish for uncharged scalar operators.

5 Solution for s = 1

If the two non-conserved operators have spin 1, the 3-point function is given by

A⊥1,J,1 = (ε2 · π2 · p1)A+ (ε2 · π2 · ε1)B1 + (ε2 · π2 · ε3)B2 (5.1)

where,

A = A
(0,0)
0 z +A

(0,0)
1 ξ2ζ2 +A

(0,1)
1 ξ2ζ1 +A

(1,0)
1 ξ1ζ2 +A

(1,1)
1 ξ1ζ1

B1 = B
(0,0)
1;0 ξ2 +B

(1,0)
1;0 ξ1

B2 = B
(0,0)
2;0 ζ2 +B

(0,1)
2;0 ζ1 (5.2)

Thus, in this case, there are a total of 9 form factors and hence 9 undetermined coefficients.
However, not all of these are independent. As we shall see below, this 3-point function is
characterised by only 2 independent constants for ∆1 6= ∆3 and by 3 independent constants
for ∆1 = ∆3.

5.1 Equations for form factors

The equations for the form factors can be obtained by substituting the expansions (3.7)–(3.9)
in the equations given in section 3.3 for s = 1.

5.1.1 Primary Ward identities

For the case we are considering in this section, the terms can be proportional to either z or
z0. At O(z), we have following equations

(ε2 · π2 · p1)(b · p1) : 0 = (K1 −K3)A(0,0)
0 (5.3)

(ε2 · π2 · p1)(b · p2) : 0 = (K2 −K3)A(0,0)
0 + 2A(1,1)

1 (5.4)
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At O(z0), we have following equations

(ε2 · π2 · p1)(b · p1) : 0 = (K1 −K3)A(0,0)
1 − 2

p1

∂A
(0,0)
1
∂p1

+ 2
p3

∂A
(0,0)
1
∂p3

0 = (K1 −K3)A(0,1)
1 + 2

p3

∂A
(0,1)
1
∂p3

0 = (K1 −K3)A(1,0)
1 − 2

p1

∂A
(1,0)
1
∂p1

(5.5)

0 = (K1 −K3)A(1,1)
1 (5.6)

(ε2 · π2 · p1)(b · p2) : 0 = (K2 −K3)A(0,0)
1 − 2

p1

∂A
(0,1)
1
∂p1

+ 2
p3

∂(A(0,0)
1 +A

(1,0)
1 )

∂p3

0 = (K2 −K3)A(0,1)
1 + 2

p3

∂(A(0,1)
1 +A

(1,1)
1 )

∂p3

0 = (K2 −K3)A(1,0)
1 − 2

p1

∂A
(1,1)
1
∂p1

(5.7)

0 = (K2 −K3)A(1,1)
1 (5.8)

(ε2 · π2 · ε1)(b · p1) : 0 = (K1 −K3)B(1;0)
1,0 − 2A(1,1)

1

0 = (K1 −K3)B(0,0)
1;0 + 2

p3

∂B
(0,0)
1,0
∂p3

− 2A(0,1)
1 (5.9)

(ε2 · π2 · ε1)(b · p2) : 0 = (K2 −K3)B(1;0)
1,0 − 2A(1,1)

1

0 = (K2 −K3)B(0,0)
1;0 + 2

p3

∂(B(0,0)
1,0 +B

(1,0)
1;0 )

∂p3
− 2A(0,1)

1 (5.10)

(ε2 · π2 · ε3)(b · p1) : 0 = (K1 −K3)B(0;1)
2,0 − 2A(1,1)

1

0 = (K1 −K3)B(0,0)
2;0 − 2A(1,0)

1 − 2
p1

∂B
(0,0)
2,0
∂p1

(5.11)

(ε2 · π2 · ε3)(b · p2) : 0 = (K2 −K3)B(0,0)
2;0 − 2

p1

∂B
(0,1)
2,0
∂p1

0 = (K2 −K3)B(0,1)
2;0 (5.12)

5.1.2 Secondary Ward identities

We first consider the equations coming from b · ε1 and b · ε3. At O(z), there are no equations.
On the other hand, at O(z0), we have following 6 equations

(ε2 · π2 · p1)(b · ε1):

0 = (2 + 2d−∆2 −∆3)A(0,0)
1 + (∆2 − d)A(0,1)

1 + 1
p1

∂A
(0,0)
0
∂p1

+ 1
p3

∂A
(0,0)
0
∂p3

+ p1 · p2
p1

∂A
(0,1)
1
∂p1

+ 1
p1

∂B
(0,0)
1,0
∂p1

− p2
∂A

(0,1)
1
∂p2

+ p1
∂A

(0,0)
1
∂p1

+ p2
∂A

(0,0)
1
∂p2

+ p3
∂A

(0,0)
1
∂p3
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0 = (2 + 2d−∆2 −∆3)A(1,0)
1 + (∆2 − d− 1)A(1,1)

1 − 1
p1

∂A
(0,0)
0
∂p1

+ p1 · p2
p1

∂A
(1,1)
1
∂p1

+ 1
p1

∂B
(1,0)
1,0
∂p1

− p2
∂A

(1,1)
1
∂p2

+ p1
∂A

(1,0)
1
∂p1

+ p2
∂A

(1,0)
1
∂p2

+ p3
∂A

(1,0)
1
∂p3

(ε2 · π2 · p1)(b · ε3):

0 = (∆3 − 1)A(0,0)
1 + (d−∆2)A(1,0)

1 + 1
p1

∂A
(0,0)
0
∂p1

− p2 · p3
p3

∂A
(1,0)
1
∂p3

+ 1
p3

∂B
(0,0)
2,0
∂p3

+ p2
∂A

(1,0)
1
∂p2

+ 1
p3

∂A
(0,0)
0
∂p3

0 = (∆3 − 1)A(0,1)
1 + (d−∆2 + 1)A(1,1)

1 + 1
p3

∂A
(0,0)
0
∂p3

− p2 · p3
p3

∂A
(1,1)
1
∂p3

+ 1
p3

∂B
(0,1)
2,0
∂p3

+ p2
∂A

(1,1)
1
∂p2

(ε2 · π2 · ε1)(b · ε3):

0 = −p
2
1 − p2

2 − p2
3

2p3

∂B
(1,0)
1,0
∂p3

+ p2
∂B

(1,0)
1,0
∂p2

+A
(0,0)
0 + (∆3 − 1)B(0,0)

1,0 + (d−∆2)B(1,0)
1,0 +B

(0,1)
2,0

(ε2 · π2 · ε3)(b · ε1):

0 = p1 · p2
p1

∂B
(0,1)
2,0
∂p1

+ p1
∂B

(0,0)
2,0
∂p1

+ p2
∂(B(0,0)

2,0 −B(0,1)
2,0 )

∂p2
+ p3

∂B
(0,0)
2,0
∂p3

+A
(0,0)
0 + (2d−∆2 −∆3)B(0,0)

2,0 + (∆2 − d)B(0,1)
2,0 −B(1,0)

1,0

Finally, we consider the secondary Ward identities coming from the coefficient (ε2 · π2 · b) .
There are a total of 5 equations coming from this. Four of these equations are inhomogeneous
and one is homogeneous. At O(z), we have a single equation

(p2
3−p2

1−p2
2)

p2

∂A
(0,0)
0
∂p2

+ (∆2−1)(p2
1+p2

2−p2
3)

p2
2

A
(0,0)
0 −2p1

∂A
(0,0)
0
∂p1

+2(∆1−d)A(0,0)
0 +2(B(1,0)

1,0 +B(0,1)
2,0 )

= δ∆1,∆3
2(d−2)
p2

2

(
g1 p

2∆−d
1 +g3 p

2∆−d
3

)
(5.13)

where we have used equation (3.35) and the expression of the two point function for spin-1
operators given in equation (2.16).

At O(z0), we have following 4 equations

(p2
3 − p2

2 − p2
1)

p2

∂A
(1,1)
1
∂p2

+ 2
p2

∂

∂p2
(B(1,0)

1,0 +B
(0,1)
2,0 ) + (∆2 − 1)(p2

1 + p2
2 − p2

3)
p2

2
A

(1,1)
1

− 2p1
∂A

(1,1)
1
∂p1

+ 2(∆1 − d− 1)A(1,1)
1 − 2(∆2 − 1)

p2
2

(B(1,0)
1,0 +B

(0,1)
2,0 ) = 0 (5.14)
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(p2
3 − p2

2 − p2
1)

p2

∂A
(0,1)
1
∂p2

+ 2
p2

∂

∂p2
(B(0,0)

1,0 ) + 2
p3

∂

∂p3
(B(0,1)

2,0 ) + (∆2 − 1)(p2
1 + p2

2 − p2
3)

p2
2

A
(0,1)
1

− 2p1
∂A

(0,1)
1
∂p1

+ 2(∆1 − d)A(0,1)
1 − 2(∆2 − 1)

p2
2

B
(0,0)
1,0 + 2A(1,1)

1

= δ∆1,∆3

2(d− 2)(d− 2∆1)
p2

2(∆1 − 1)
a0 p

2∆1−d−2
3 (5.15)

(p2
3 − p2

2 − p2
1)

p2

∂A
(1,0)
1
∂p2

+ 2
p2

∂

∂p2
(B(0,0)

2,0 )− 2
p1

∂

∂p1
(B(1,0)

1,0 ) + (∆2 − 1)(p2
1 + p2

2 − p2
3)

p2
2

A
(1,0)
1

− 2p1
∂A

(1,0)
1
∂p1

+ 2(∆1 − d− 2)A(1,0)
1 − 2(∆2 − 1)

p2
2

B
(0,0)
2,0 + 2A(1,1)

1

= −δ∆1,∆3

2(d− 2)(d− 2∆1)
p2

2 (∆1 − 1)
a0 p

2∆1−d−2
1 (5.16)

(p2
3 − p2

2 − p2
1)

p2

∂A
(0,0)
1
∂p2

− 2
p1

∂

∂p1
(B(0,0)

1,0 ) + 2
p3

∂

∂p3
(B(0,0)

2,0 ) + (∆2 − 1)(p2
1 + p2

2 − p2
3)

p2
2

A
(0,0)
1

− 2p1
∂A

(0,0)
1
∂p1

+ 2(∆1 − d− 1)A(0,0)
1 + 2A(0,1)

1 + 2A(1,0)
1

= δ∆1,∆3

2(d− 2)(d− 2∆1)
p2

2(∆1 − 1)
a0
(
g1 p

2∆1−d−2
1 + g3 p

2∆1−d−2
3

)
(5.17)

The equation (5.14) remains a homogeneous differential equation since it comes from the
tensor structure involving ξ1 ζ1. Hence, as discussed below equation (3.35), it does not have
a source term coming from the two-point function. All the other equations coming from
(ε2 · π2 · b) are inhomogeneous.

We now turn to solving these equations.

5.2 Solution of primary Ward identities

The primary Ward identities can be solved recursively by making use of (D.8) and (D.10).
We shall illustrate the procedure by solving for A(1,1)

1 , A
(0,0)
0 and A

(1,0)
1 . Using equa-

tions (5.6), (5.8) and (D.10), we find that A(1,1)
1 must have the following form

A
(1,1)
1 = a

(1,1)
1 JN{0,0,0} (5.18)

where, a(1,1)
1 is some constant. The N is fixed by demanding the correct scaling property.

Comparing (3.38) and (D.7) and noting the above solution, we find N = 3. Next, we consider
equations (5.3) and (5.4) for A(0,0)

0 , with (5.4) being inhomogeneous. Again using (D.10),
the solution of the homogeneous equation has the form a

(0,0)
0 JN{0,0,0} where N is again fixed

by demanding the correct scaling property to be equal to 1. To obtain the general solution
of the inhomogeneous equation (5.4), we substitute the solution for A(1,1)

1 in (5.4) to get

(K2 −K3)A(0,0)
0 = −2a(1,1)

1 J3{0,0,0} (5.19)

Comparing the above equation with (D.10), we find that a particular solution is given by
−a(1,1)

1 J2{0,1,0}. Therefore, the general solution of (5.4) is given by

A
(0,0)
0 = −a(1,1)

1 J2{0,1,0} + a
(0,0)
0 J1{0,0,0} (5.20)
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Next, we consider equations (5.5) and (5.7) for A(1,0)
1 . The general solution of the system

of homogeneous equations corresponding to (5.5) and (5.7) is

a
(1,0)
1 J2{−1,0,0}, (5.21)

where a(1,0)
1 is a constant. To obtain a particular solution, we substitute the solution of

A
(1,1)
1 in (5.7) and use (D.8) to get

(K2 −K3)A(1,0)
1 = 2a(1,1)

1 J4{−1,0,0} (5.22)

Again using (D.10), we find that the general solution of the above equation is

A
(1,0)
1 = −a(1,1)

1 J3{−1,1,0} + a
(1,0)
1 J2{−1,0,0} (5.23)

This completes the analysis for A(1,1)
1 , A

(0,0)
0 and A(1,0)

1 . The other equations can be analysed
in similar manner. The final solution is given by

A
(1,1)
1 = a

(1,1)
1 J3{0,0,0}

A
(1,0)
1 =−a(1,1)

1 J3{−1,1,0}+a
(1,0)
1 J2{−1,0,0}

A
(0,1)
1 = a

(1,1)
1 J3{0,1,−1}+a

(0,1)
1 J2{0,0,−1}

A
(0,0)
0 =−a(1,1)

1 J2{0,1,0}+a
(0,0)
0 J1{0,0,0}

A
(0,0)
1 =−a(1,1)

1 J3{−1,2,−1}+a
(0,0)
1 J1{−1,0,−1}+(a(1,0)

1 −a(0,1)
1 )J2{−1,1,−1}

B
(0,0)
1;0 =−a(1,1)

1 J2{0,1,0}+b
(0,0)
1,0 J1{0,1,−1}+(b(0,0)

1,0 −b
(1,0)
1,0 )J1{1,0,−1}+(b(0,0)

1,0 −b
(1,0)
1,0 −a

(0,1)
1 )J1{0,0,0}

B
(1,0)
1;0 =−a(1,1)

1 J2{0,0,1}+b
(1,0)
1;0 J1{0,0,0}

B
(0,0)
2;0 =−a(1,1)

1 J2{0,1,0}+b
(0,0)
2,0 J1{−1,1,0}+(b(0,0)

2;0 +b(0,1)
2;0 )J1{−1,0,1}+(b(0,0)

2,0 +b(0,1)
2,0 +a(1,0)

1 )J1{0,0,0}

B
(0,1)
2;0 = a

(1,1)
1 J2{1,0,0}+b

(0,1)
2;0 J1{0,0,0} (5.24)

From the above result, we see that each form factor is determined up to one free parameter.
Thus, there are a total of 9 independent parameters in the solution of primary Ward
identities. However, from the position space analysis [57], it is known that the 3-point
function involving a conserved current and two spin 1 operators has only 2 independent
parameters (for ∆1 6= ∆3) or 3 independent parameters (for ∆1 = ∆3). This means that
there must be some additional relations between the above 9 parameters. We shall determine
these relations by making use of the secondary identities.

5.3 Solution of secondary Ward identities

In order to solve the secondary equations, we first eliminate the momenta in the denominators
by multiplying the equation with a suitable power of momenta. Further, the secondary
equations only involve single derivatives of momenta. These derivatives may be eliminated by
making use of identity (D.8). The terms of the form p2

i JN{k1,k2,k3} may then be eliminated
using identity (D.13). This leaves us with a linear combination of different triple K integrals.
A convenient way to solve this equation is to use the identity (D.12) to convert all the triple
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K integrals of the form JN ′{k1,k2,k3} to the triple K integrals of the form JN{k1,k2,k3}, with N
being the highest value among all N ′ appearing in the equation. Doing this gives algebraic
equations involving the 9 undetermined coefficients and hence fixes the coefficients. This
procedure may be used to solve all the homogeneous secondary equations. However, this
procedure is not sufficient for solving the inhomogeneous secondary equations. These are
most conveniently solved by taking one of the momenta to be zero [24]. In fact, analysing
the equations in this limit is another way to also solve the homogeneous secondary equations.
When one of the momenta is send to zero, say, p3 → 0, then the equations take a simple
form. The relevant identity to take this limit is given in equation (D.29). In this limit the
secondary equations give algebraic equations involving the undetermined parameters. We
have explicitly verified that the two procedures give the same results for the homogeneous
equations once the regularization procedure is carefully implemented, as we shall see later.

Now, there are two cases depending upon the conformal dimensions of the 1st and 3rd
operators. We shall consider these cases separately in what follows. When ∆1 6= ∆3 all the
secondary Ward identities are homogeneous differential equations. When ∆1 = ∆3, instead,
there are only seven homogeneous differential equations that have to be solved separately
from the 4 inhomogeneous Ward identities. As mentioned earlier, the homogeneous equations
give relations between the coefficients appearing in the solution of primary equations. On
the other hand, the inhomogeneous equations relate the 2-point coefficient with the 3-point
coefficients.

5.3.1 Case 1: ∆1 6= ∆3

For the case, ∆1 6= ∆3, the 11 secondary equations can be solved to express seven out of
the nine coefficients in terms of two undetermined coefficients as

a
(0,0)
0 = −(2− d)a(1,1)

1

a
(0,0)
1 = −(d− 2)(∆1 + ∆3 − 2)(d+ ∆1 −∆3 − 4)

2(∆1 − 1) a
(1,1)
1 − (d− 2)(∆1 + ∆3 − 2)

(∆1 − 1)(∆3 − 1) b
(1,0)
1;0

a
(0,1)
1 = −(d− 2)a(1,1)

1 − 1
∆3 − 1b

(1,0)
1;0

a
(1,0)
1 = −(d− 2)(2−∆1 −∆3) + (∆3 −∆1)(∆1 + ∆3)

2(∆1 − 1) a
(1,1)
1 + 1

(∆1 − 1)b
(1,0)
1;0

b
(0,0)
1;0 = −(d−∆1 −∆3)

2(∆3 − 1) b
(1,0)
1;0

b
(0,0)
2;0 = (∆1 −∆3)(−d+ ∆1 + ∆3)(−d+ ∆1 + ∆3 + 2)

4(∆1 − 1) a
(1,1)
1 − (d−∆1 −∆3)

2(∆1 − 1) b
(1,0)
1;0

b
(0,1)
2;0 = 1

2(∆1 −∆3)(d−∆1 −∆3 − 2)a(1,1)
1 − b(1,0)

1;0 (5.25)

The above solution shows that the 3-point function involving a conserved current and two
spin 1 fields with different conformal dimension has two free parameters. We have chosen
a

(1,1)
1 and b(1,0)

1;0 as independent pararmeters. However, clearly, it is also possible to choose
any other two coefficients (out of 9) as free parameters.

In this case, namely for ∆1 6= ∆3, none of the triple K integrals appearing in the
solution (5.24) of primary identities diverge for generic non integer values of ∆1 and ∆3.
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This can be checked using the divergence condition given in (D.14). If we use the zero
momentum limit p3 → 0 to solve the secondary equations, we find the same solution as above.

5.3.2 Case 2: ∆1 = ∆3 = ∆

In this case, some of the triple K integrals appearing in the solution of primary equations,
namely J1{0,1,−1}, J1{1,0,−1}, J1{−1,1,0} and J1{−1,0,1} are divergent. The condition (D.14)
is satisfied for k = 0 for some choice of signs for each of these triple K integrals. Hence,
we need to regularise these integrals by shifting the parameters ∆ and d as described in
appendix D.2. We shall analyse the regularisation of these integrals in more detail below.
However, assuming that regularisation has been done, we can use the same approach as
above to solve all the homogeneous equations without the two points as source term. Using
identities (D.8), (D.10) and (D.12), we find the following solution of the homogeneous
secondary equations

a
(0,0)
0 = (d− 2)∆a(1,1)

1 − (∆− 1)a(1,0)
1 + b

(1,0)
1;0

a
(0,0)
1 = 2(d− 2)∆a(1,1)

1 − (2∆ + d− 4)a(1,0)
1 + (2∆− d)

(∆− 1) b
(1,0)
1;0

a
(0,1)
1 = −a(1,0)

1

b
(0,0)
1;0 = (2∆− d)

2(∆− 1)b
(1,0)
1;0

b
(0,0)
2;0 = b

(0,0)
1;0 = (2∆− d)

2(∆− 1)b
(1,0)
1;0

b
(0,1)
2;0 = −b(1,0)

1;0 (5.26)

Now, there are three independent parameters for our 3-point function as expected. We have
chosen a(1,1)

1 , a
(1,0)
1 and b(1,0)

1;0 as 3 independent parameters. However, clearly, we can also
choose some other combination of three parameters instead of these. We also note that the
above solution satisfies the relation (3.47) with the lower sign. This means that this 3-point
function is anti-symmetric under the exchange of (ε1 p1) ↔ (ε3, p3). We do not find any
solution which is symmetric under this exchange. This is in agreement with the position
space results, where the 3-point function of same operators vanishes if it is symmetric under
this exchange [57].

Again, we can also solve the homogeneous secondary equations by analysing them in
the limit p3 → 0 making use of equation (D.29). In this case, by carefully applying the
regularization procedure, as discussed in detail in the next section, we get the same result
as before. The difference between the two approaches is that in the first approach the
homogeneous equations are solved to all order in the regulator ε and the limit ε→ 0 gives
a finite non divergent answer. In the kinematic region p3 → 0, instead, the solution is
obtained as a perturbative series in the regulator. The divergent terms have to be vanishing,
while the finite O(ε0) terms are determined by solving the homogeneous Ward identities
at this order in the ε-expansion. We discuss this second approach in the next section.
However, before that, we consider the inhomogeneous secondary equations which can be
solved by taking one of the momentum to be zero. We shall consider the kinematic region

– 23 –



J
H
E
P
0
3
(
2
0
2
3
)
1
9
6

p3 → 0. Due to the symmetry of the solution, we can find a non zero result only when
g1 = −g3 ≡ g. Again, this implies that the spin 1 operators must be charged. Now, there
are four inhomogeneous secondary differential equations to solve but they give only one
condition which turns out to be

a0 = −2
d
2−4 (d− 2∆)

g3(d− 2) Γ
(
d− 2∆

2

)
Γ
(2∆− d

2

)
Γ
(
d

2

)
×
[
(∆− 1)

(
a

(0,1)
1 + (d− 2)a(1,1)

1

)
+ α

(1,0)
1,0

]
(5.27)

where α(1,0)
1,0 is defined in equation (5.33) below. To leading order in the regulator, we can

replace α(1,0)
1,0 with b(1,0)

1,0 in (5.27). In getting the above relation, we have also regularized
the two point function with the prescription given in equation (5.30) before taking the zero
momentum limit. Thus, as expected, the solution of the inhomogeneous secondary Ward
identities relate the coefficient of the two-point correlation function with those of the three
points without giving any further condition.

5.4 Regularisation for ∆1 = ∆3 = ∆

For non-integer dimensions ∆1 and ∆3, which is the case we consider in this paper, most of
the triple K integrals appearing in the solution (5.24) are well behaved and give finite results
(possibly after an analytic continuation). However, some of the triple K integrals satisfy the
divergence condition (D.14) for ∆1 = ∆3. As mentioned earlier, these triple K integrals are
J1{0,1,−1}, J1{1,0,−1}, J1{−1,1,0} and J1{−1,0,1} whose regularisation has been considered in
appendix F. In general, for integer dimensions, the condition (D.14) may also be satisfied for
other triple K integrals. However, in this paper, we only focus on non-integer dimensions.

It turns out that even though the above triple K integrals diverge individually, the
divergences cancel for the combination in which they appear in the 3-point function. To see
this, we start by noting that these divergent triple K integrals appear in B(0,0)

1;0 and B(0,0)
2;0 .

Hence, we need to focus on these form factors. Using the relations given in (5.26), the
combination involving the divergent triple K integrals which appear in these form factors
can be written as

D1 = b
(1,0)
1;0

[(2∆− d)
2(∆− 1)J1{0,1,−1} + (2− d)

2(∆− 1)J1{1,0,−1}

]
(5.28)

D2 = b
(1,0)
1;0

[(2∆− d)
2(∆− 1)J1{−1,1,0} + (2− d)

2(∆− 1)J1{−1,0,1}

]
(5.29)

The D1 and D2 correspond to the middle two terms in B
(0,0)
1;0 and B

(0,0)
2;0 respectively in

equation (5.24).
Now, as discussed in appendix D.2, the regularisation is done by shifting the parameters

d and ∆i as

d̃ = d+ 2uε , ∆̃1 = ∆1 + (u+v1)ε , ∆̃2 = ∆2 + (u+v2)ε , ∆̃3 = ∆3 + (u+v3)ε (5.30)

In our case, ∆2 corresponds to gauge field. To preserve the gauge invariance in the regulated
theory, we need to set v2 = u. Further, we also have ∆1 = ∆3 = ∆. To maintain this
condition also in the regulated theory, we need to have v1 = v3.
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Since only ∆ appears in equation (5.29) and there is no ∆1 or ∆3 in the prefactors
multiplying the triple K integrals, we shall use v1 = v3 from the beginning. From the
regularised expressions given in appendix F, we see that the individual triple K integrals
will have poles in (u − v2). However, as we shall see below, these poles disappear when
we consider the full combination of the divergent integrals. Hence, we can take the limit
u→ v2 at the end.

We start with D1. Shifting the parameters d and ∆ and using equation (F.4), we find
that the poles in ε cancel between the two terms of (5.28) and we get

D1 = 2
d
2−3b

(1,0)
1;0

(
d− 2∆
∆− 1

)
Γ
(
d

2 −∆ + 1
)

Γ
(

∆− d

2

)
Γ
(
d

2 − 1
)
p2∆−d−2

3 +O(ε) (5.31)

We also see that the dependence on the regularisation parameters u and v2 has also
disappeared from the O(ε0) terms.

In a similar way, shifting the parameters d and ∆ in (5.29) and using equation (F.5),
the divergent part of D2 is regularised to be

D2 = 2
d
2−3b

(1,0)
1;0

(
d− 2∆
∆− 1

)
Γ
(
d

2 −∆ + 1
)

Γ
(

∆− d

2

)
Γ
(
d

2 − 1
)
p2∆−d−2

1 +O(ε) (5.32)

Again, the dependence on the regularisation parameters u and v2 has disappeared from the
O(ε0) terms.

All the other triple K integrals are finite. Hence, shifting the parameters in all the
other terms of the 3-point function will not give rise to any poles in ε or (u − v2). Now,
since, the divergences have been cancelled, we can now set ε = 0. The final regularised
expression of the form factors is thus given by the same solution as in (5.24) and (5.26)
except that the naive divergent part of the middle two terms in the expressions of B(0,0)

1;0

and B(0,0)
2;0 should be replaced by their regularised expressions, namely, D1 and D2 given in

equations (5.31) and (5.32) respectively (with ε set to zero).
Next, we show that solving the secondary equations by sending one of the momenta to

zero is consistent with the results given in equation (5.26). In solving the secondary identities
in this kinematic region, the first step is to note that the divergent triple K integrals in our
case give terms of order O(1

ε ) after regularisation. To cancel these divergences, we need to
shift the coefficients multiplying these triple K integrals by ε. This means that, in our case,
we need to write

b
(0,0)
1;0 = α

(0,0)
1;0 + εβ

(0,0)
1;0 ; b

(1,0)
1;0 = α

(1,0)
1;0 + εβ

(1,0)
1;0

b
(0,0)
2;0 = α

(0,0)
2;0 + εβ

(0,0)
2;0 ; b

(0,1)
2;0 = α

(0,1)
2;0 + εβ

(0,1)
2;0 (5.33)

We do not need to shift the other coefficients since the triple K integrals multiplying them
are not divergent. Now, substituting (5.33) in the secondary equation and taking the limit
p3 → 0, we find that a-coefficients are given by the same expression as in (5.26). The
O(ε0) coefficients in (5.33), as explained before, is fixed by imposing the cancellation of the
triple-K integral divergences and hence, we have

α
(0,0)
1;0 = −(d− 2∆)

2(∆− 1)α
(1,0)
1;0 ; α

(0,0)
2;0 = (d− 2∆)

2(∆− 1)α
(0,1)
2;0 (5.34)
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For the other coefficients, the secondary equations in p3 → 0 limit give

α
(0,1)
2;0 = −α(1,0)

1;0 ; β
(0,0)
2,0 = β

(0,1)
2,0

d− 2∆
2(∆− 1) + β

(1,0)
1;0

(u− v2)
2(∆− 1) (5.35)

To preserve the gauge invariance in the regulated theory, we need to set u = v2. Furthermore,
by solving the equations in the limit p1 → 0 or requiring the antisymmetry of the solution
in the exchange of (ε1, p1)↔ (ε3, p3), we find

β
(0,0)
1;0 = β

(0,0)
2,0 ; β

(1,0)
1;0 = −β(0,1)

2;0 (5.36)

Using the above results, we can recover the results for b-coefficients given in (5.26). Indeed,
writing α(1,0)

1;0 = b
(1,0)
1,0 − εβ

(1,0)
1,0 , we get

b
(0,0)
2;0 = −(d− 2∆)

2(∆− 1)
(
b
(1,0)
1;0 − εβ

(1,0)
1;0 − εβ(0,1)

2,0

)
= −(d− 2∆)

2(∆− 1) b
(1,0)
1;0

b
(0,1)
2;0 = −b(0,1)

1;0 + ε
(
β

(1,0)
1,0 + β

(0,1)
2;0

)
= −b(0,1)

1;0

b
(0,0)
1;0 = −(d− 2∆)

2(∆− 1)
[
b
(1,0)
1;0 − ε

(
β

(1,0)
1;0 + β

(0,1)
2;0

)]
= −(d− 2∆)

2(∆− 1)b
(1,0)
1;0 (5.37)

These results are in agreement with equation (5.26).

6 Solution for s = 2

For s1 = s3 = 2, the 3 point function is given by

A⊥2,J,2 = (ε2 · π2 · p1)A+ (ε2 · π2 · ε1)B1 + (ε2 · π2 · ε3)B2 (6.1)

where, the functions A,B1 and B2 are now parametrized as

A = z2A
(0,0)
0 + ζ2ξ2zA

(0,0)
1 + 1

2ζ
2
2ξ

2
2A

(0,0)
2 + ζ1ξ2zA

(0,1)
1 + ζ2ξ1zA

(1,0)
1 + ζ1ξ1zA

(1,1)
1

+ 1
2ζ1ζ2ξ

2
2A

(0,1)
2 + 1

4ζ
2
1ξ

2
2A

(0,2)
2 + 1

2ζ
2
2ξ1ξ2A

(1,0)
2 + 1

2ζ1ζ2ξ1ξ2A
(1,1)
2 + 1

4ζ
2
1ξ1ξ2A

(1,2)
2

+ 1
4ζ

2
2ξ

2
1A

(2,0)
2 + 1

4ζ1ζ2ξ
2
1A

(2,1)
2 + 1

8ζ
2
1ξ

2
1A

(2,2)
2

B1 = ξ1zB
(1,0)
1;0 + ξ2zB

(0,0)
1;0 + ζ2ξ2ξ1B

(1,0)
1;1 + ζ1ξ2ξ1B

(1,1)
1;1 + ζ2ξ

2
2B

(0,0)
1;1 + ζ1ξ

2
2B

(0,1)
1;1

+ 1
2ζ2ξ

2
1B

(2,0)
1;1 + 1

2ζ1ξ
2
1B

(2,1)
1;1

B2 = ζ1zB
(0,1)
2;0 + ζ2zB

(0,0)
2;0 + ζ2ζ1ξ2B

(0,1)
2;1 + ζ2ζ1ξ1B

(1,1)
2;1 + ζ2

2ξ2B
(0,0)
2;1 + ζ2

2ξ1B
(1,0)
2;1

+ 1
2ζ

2
1ξ2B

(0,2)
2;1 + 1

2ζ
2
1ξ1B

(1,2)
2;1 (6.2)

Thus, in this case, there are a total of 30 form factors and hence 30 undetermined coefficients.
However, again all of these are not independent. This 3-point function is characterised by
only 4 independent parameters for ∆1 6= ∆3 and by 5 independent parameters for ∆1 = ∆3.
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6.1 Equations for form factors

In this case, we need to solve 60 primary equations and 46 secondary equations. As before,
the secondary equations can be divided in homogeneous and inhomogeneous equations. It
turns out that 37 out of 46 are homogeneous differential equations and 9 are inhomogeneous
equations connecting the 3-point function to the 2-point function.

Again, these equations can be obtained by substituting the ansatz (6.2) in the equations
given in section 3.3 and setting the coefficients of independent tensor structures involving
ξi and ζi to zero. The explicit form of the these equations is not very illuminating which
can be easily derived using some computer program. We give the 60 primary equations
in appendix G.

6.2 Solution of primary equations

The solution of the primary Ward identities is given by

A
(2,2)
2 = a

(2,2)
2 J5{0,0,0}

A
(2,1)
2 = a

(2,1)
2 J4{−1,0,0}−a

(2,2)
2 J5{−1,1,0}

A
(1,2)
2 = a

(1,2)
2 J4{0,0,−1}+a

(2,2)
2 J5{0,1,−1}

A
(2,0)
2 = a

(2,0)
2 J3{−2,0,0}−a

(2,1)
2 J4{−2,1,0}+

1
2a

(2,2)
2 J5{−2,2,0}

A
(0,2)
2 = a

(0,2)
2 J3{0,0,−2}+a

(1,2)
2 J4{0,1,−2}+

1
2a

(2,2)
2 J5{0,2,−2}

A
(1,1)
2 = a

(1,1)
2 J3{−1,0,−1}−a

(2,2)
2 J5{−1,2,−1}+

(
a

(2,1)
2 −a(1,2)

2
)
J4{−1,1,−1}

A
(1,0)
2 =

(
a

(2,0)
2 −a(1,1)

2

)
J3{−2,1,−1}+

1
2a

(2,2)
2 J5{−2,3,−1}+a

(1,0)
2 J2{−2,0,−1}

+
(1

2a
(1,2)
2 −a(2,1)

2

)
J4{−2,2,−1}

A
(0,1)
2 =

(
a

(1,1)
2 −a(0,2)

2

)
J3{−1,1,−2}−

1
2a

(2,2)
2 J5{−1,3,−2}+a

(0,1)
2 J2{−1,0,−2}

+
(1

2a
(2,1)
2 −a(1,2)

2

)
J4{−1,2,−2}

A
(0,0)
2 = a

(0,0)
2 J1{−2,0,−2}+

1
4a

(2,2)
2 J5{−2,4,−2}+

(1
2a

(0,2)
2 + 1

2a
(2,0)
2 −a(1,1)

2

)
J3{−2,2,−2}

+ 1
2
(
a

(1,2)
2 −a(2,1)

2
)
J4{−2,3,−2}+

(
a

(1,0)
2 −a(0,1)

2

)
J2{−2,1,−2} (6.3)

A
(1,1)
1 = a

(1,1)
1 J3{0,0,0}−

1
2a

(2,2)
2 J4{0,1,0}

A
(1,0)
1 = a

(1,0)
1 J2{−1,0,0}−

(
a

(1,1)
1 + 1

2a
(2,1)
2

)
J3{−1,1,0}+

1
2a

(2,2)
2 J4{−1,2,0}

A
(0,1)
1 = a

(0,1)
1 J2{0,0,−1}+

(
a

(1,1)
1 − 1

2a
(1,2)
2

)
J3{0,1,−1}−

1
2a

(2,2)
2 J4{0,2,−1}

A
(0,0)
1 =−

(
a

(1,1)
1 + 1

2a
(2,1)
2 − 1

2a
(1,2)
2

)
J3{−1,2,−1}+

(
a

(1,0)
1 −a(0,1)

1 − 1
2a

(1,1)
2

)
J2{−1,1,−1}

+a(0,0)
1 J1{−1,0,−1}+

1
2a

(2,2)
2 J4{−1,3,−1}

A
(0,0)
0 = a

(0,0)
0 J1{0,0,0}−a

(1,1)
1 J2{0,1,0}+

1
4a

(2,2)
2 J3{0,2,0} (6.4)
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B
(0,1)
2;0 = b

(0,1)
2;0 J1{0,0,0}+

(1
2a

(2,1)
2 −b(1,1)

2;1 −b
(1,2)
2;1

)
J2{0,1,0}+

(1
2a

(2,1)
2 −b(1,1)

2;1

)
J2{0,0,1}

− 1
2a

(2,2)
2 J3{1,1,0}+

(1
2a

(2,1)
2 −b(1,1)

2;1 +a(1,1)
1

)
J2{1,0,0}

B
(0,0)
2;0 = b

(0,0)
2;0 J0{−1,0,0}−

(
a

(1,1)
1 + 1

2a
(2,1)
2

)
J2{0,1,0}+b

(0,1)
2;0 J1{−1,0,1}+

(
b
(0,1)
2;0 +a(1,0)

1
)
J1{0,0,0}

+ 1
2a

(2,2)
2 J3{0,2,0}+b

(1,2)
2;1 J2{−1,2,0}

B
(1,0)
1;0 = b

(1,0)
1;0 J1{0,0,0}+

(1
2a

(1,2)
2 +b(1,1)

1;1 −b
(2,1)
1;1

)
J2{0,1,0}+

(1
2a

(1,2)
2 +b(1,1)

1;1

)
J2{1,0,0}

+ 1
2a

(2,2)
2 J3{0,1,1}+

(1
2a

(1,2)
2 +b(1,1)

1;1 −a
(1,1)
1

)
J2{0,0,1}

B
(0,0)
1;0 = b

(0,0)
1;0 J0{0,0,−1}−

(
a

(1,1)
1 − 1

2a
(1,2)
2

)
J2{0,1,0}−

(
b
(1,0)
1;0 +a(0,1)

1
)
J1{0,0,0}

−b(1,0)
1;0 J1{1,0,−1}+

1
2a

(2,2)
2 J3{0,2,0}−b

(2,1)
1;1 J2{0,2,−1} (6.5)

B
(1,2)
2;1 = b

(1,2)
2;1 J3{0,0,0}+

1
2a

(2,2)
2 J4{1,0,0}

B
(1,1)
2;1 = b

(1,1)
2;1 J3{0,0,0}−

(
b
(1,2)
2;1 −b

(1,1)
2;1 + 1

2a
(2,1)
2

)
J3{−1,1,0}+

(
b
(1,1)
2;1 −

1
2a

(2,1)
2

)
J3{−1,0,1}

− 1
2a

(2,2)
2 J4{0,1,0}

B
(1,0)
2;1 = b

(1,0)
2;1 J1{−2,0,0}+

1
2b

(1,1)
2;1 J3{0,0,0}+

1
2a

(2,1)
2 J3{−2,1,1}+

1
2b

(1,1)
2;1 J3{−2,0,2}+b

(1,1)
2;1 J3{−1,0,1}

+
(1

2a
(2,1)
2 − 1

2b
(1,1)
2;1 + 1

2b
(1,2)
2;1

)
J3{−2,2,0}+

1
4a

(2,2)
2 J4{−1,2,0}+

1
2a

(2,0)
2 J2{−1,0,0}

B
(0,1)
2;1 = b

(0,1)
2;1 J1{−1,0,−1}−

1
2a

(2,2)
2 J4{0,2,−1}+

1
2a

(1,1)
2 J2{0,0,−1}+

(
b
(1,2)
2;1 +b(1,1)

2;1 −
1
2a

(1,2)
2

)
J3{0,1,−1}

+
(
b
(1,1)
2;1 −

1
2a

(2,1)
2

)
J3{−1,2,−1}+

(
b
(1,2)
2;1 +b(1,1)

2;1 −
1
2a

(2,1)
2

)
J3{−1,1,0}−b

(0,2)
2;1 J2{−1,1,−1}

B
(0,2)
2;1 = b

(0,2)
2;1 J2{0,0,−1}−b

(1,2)
2;1 J3{0,0,0}+

1
2a

(2,2)
2 J4{1,1,−1}+

(1
2a

(1,2)
2 −b(1,2)

2;1

)
J3{1,0,−1} (6.6)

B
(0,0)
2;1 = b

(0,0)
2;1 J0{−2,0,−1}−

1
2a

(1,0)
2 J1{−2,0,0}+

(1
4a

(1,2)
2 − 1

2b
(1,1)
2;1 −

1
2b

(1,2)
2;1

)
J3{−1,2,−1}

+
(1

2a
(2,0)
2 − 1

2a
(1,1)
2

)
J2{−1,1,−1}+

(1
2a

(2,1)
2 − 1

2b
(1,1)
2;1 −

1
2b

(1,2)
2;1

)
J3{−2,2,0}+

1
4a

(2,2)
2 J4{−1,3,−1}

+
(
b
(1,0)
2;1 −

1
2a

(1,0)
2 −b(0,1)

2;1

)
J1{−2,1,−1}+

1
2b

(0,2)
2;1 J2{−2,2,−1}+

(1
2a

(2,1)
2 − 2

3b
(1,1)
2;1

)
J3{−2,3,−1}

− 1
2b

(1,1)
2;1 J3{0,0,0}−

1
2b

(1,1)
2;1 J3{−1,0,1}−

1
6b

(1,1)
2;1 J3{1,0,−1}−

1
6b

(1,1)
2;1 J3{−2,0,2} (6.7)

B
(2,1)
1;1 = b

(2,1)
1;1 J3{0,0,0}−

1
2a

(2,2)
2 J4{0,0,1}

B
(1,1)
1;1 = b

(1,1)
1;1 J3{0,0,0}+

(
b
(2,1)
1;1 +b(1,1)

1;1 + 1
2a

(1,2)
2

)
J3{0,1,−1}+

(
b
(1,1)
1;1 + 1

2a
(1,2)
2

)
J3{1,0,−1}

− 1
2a

(2,2)
2 J4{0,1,0}

B
(0,1)
1;1 = b

(0,1)
1;1 J1{0,0,−2}−

1
2b

(1,1)
1;1 J3{0,0,0}+

1
2a

(1,2)
2 J3{1,1,−2}−

1
2b

(1,1)
1;1 J3{2,0,−2}−b

(1,1)
1;1 J3{1,0,−1}

+
(1

2a
(1,2)
2 + 1

2b
(1,1)
1;1 + 1

2b
(2,1)
1;1

)
J3{0,2,−2}−

1
4a

(2,2)
2 J4{0,2,−1}−

1
2a

(0,2)
2 J2{0,0,−1}

B
(1,0)
1;1 = b

(1,0)
1;1 J1{−1,0,−1}+

1
2a

(2,2)
2 J4{−1,2,0}−

1
2a

(1,1)
2 J2{−1,0,0}+

(
b
(2,1)
1;1 −b

(1,1)
1;1 −

1
2a

(2,1)
2

)
J3{−1,1,0}

−
(
b
(1,1)
1;1 + 1

2a
(1,2)
2

)
J3{−1,2,−1}+

(
b
(2,1)
1;1 −b

(1,1)
1;1 −

1
2a

(1,2)
2

)
J3{0,1,−1}+b

(2,0)
1;1 J2{−1,1,−1}
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B
(2,0)
1;1 = b

(2,0)
1;1 J2{−1,0,0}+b

(2,1)
1;1 J3{0,0,0}+

1
2a

(2,2)
2 J4{−1,1,1}+

(
−1

2a
(2,1)
2 +b(2,1)

1;1

)
J3{−1,0,1} (6.8)

B
(0,0)
1;1 = b

(0,0)
1;1 J0{−1,0,−2}+

1
2a

(0,1)
2 J1{0,0,−2}−

(1
4a

(2,1)
2 + 1

2b
(1,1)
1;1 −

1
2b

(2,1)
1;1

)
J3{−1,2,−1}

+
(1

2a
(0,2)
2 − 1

2a
(1,1)
2

)
J2{−1,1,−1}+

(
−1

2a
(1,2)
2 − 1

2b
(1,1)
1;1 + 1

2b
(2,1)
1;1

)
J3{0,2,−2}+

1
4a

(2,2)
2 J4{−1,3,−1}

+
(
−b(0,1)

1;1 + 1
2a

(0,1)
2 +b(1,0)

1;1

)
J1{−1,1,−2}+

1
2b

(2,0)
1;1 J2{−1,2,−2}−

(1
2a

(1,2)
2 + 2

3b
(1,1)
1;1

)
J3{−1,3,−2}

− 1
2b

(1,1)
1;1 J3{0,0,0}−

1
2b

(1,1)
1;1 J3{1,0,−1}−

1
6b

(1,1)
1;1 J3{−1,0,1}−

1
6b

(1,1)
1;1 J3{2,0,−2} (6.9)

6.3 Solution of secondary equations

When ∆1 6= ∆3, the solution of the secondary equations is given in appendix H. Here, we
consider the case where ∆1 = ∆3 = ∆ for which the secondary Ward identities imply the
following constraints

a
(0,1)
1 = 1

8(d+2)d2(∆+1)a(2,2)
2 +

(
−3d2

4 −
1
2d(∆+2)+∆+1

)
a

(1,1)
1 +

(
d

2∆ + 1
∆

)
a

(0,0)
0

+ 1
8(d−2)∆a(1,1)

2 −d∆b(1,1)
1;1

a
(0,0)
1 =

(∆−1)
(
d2−2d+4∆

)
a

(0,0)
0

∆2 +
d2(d2−4

)(
∆2−1

)
a

(2,2)
2

4∆ + 1
4(d−2)2(∆−1)a(1,1)

2

−
(d−2)(∆−1)

(
3d2+2d(∆+1)−4∆

)
a

(1,1)
1

2∆ −2d(d−2)(∆−1)b(1,1)
1;1 (6.10)

a
(1,2)
2 = d2(∆+1)a(2,2)

2
4∆ − (3d+2∆−2)a(1,1)

1
2∆ + a

(0,0)
0
∆2 + 1

4a
(1,1)
2 −2b(1,1)

1;1

a
(0,2)
2 =

d
(
d2+2d−4

)
(∆+1)a(2,2)

2

4(∆−1) −
(
3d2+2d(∆+1)−8(∆+1)

)
a

(1,1)
1

2(∆−1) + da
(0,0)
0

(∆−1)∆

+ (d−4)∆a(1,1)
2

4(∆−1) −
2d∆b(1,1)

1;1

∆−1

a
(0,1)
2 =

(
3d2+2d(2∆−5)+8∆

)
2∆2 a

(0,0)
0 + (d+2)d2(∆+1)(3d+4∆−8)a(2,2)

2
8∆

+
(
−9d3

4∆ +d2
( 5

∆−
9
2

)
+d
(
−2∆+ 3

∆ +5
)

+4(∆−1)
)
a

(1,1)
1

+ 1
8

(
3d2+4d∆−18d−8∆+16

)
a

(1,1)
2 +d(−3d−4∆+6)b(1,1)

1;1

a
(0,0)
2 =

(
d2−4

)
d2(∆2−∆−2

)
(d+4∆−5)a(2,2)

2

4(∆−1)∆ −
2(d−2)d(∆−2)(d+4∆−4)b(1,1)

1;1

∆−1

−
(d−2)(∆−2)

(
14d2(∆−1)+3d3+8d

(
∆2−∆−1

)
−16(∆−1)∆

)
a

(1,1)
1

2(∆−1)∆

+
(∆−2)

(
4d2(∆−2)+d3+d(12−8∆)+8(∆−1)∆

)
a

(0,0)
0

(∆−1)∆2

+
(d−2)(∆−2)

(
d2+4d(∆−2)−8∆+8

)
a

(1,1)
2

4(∆−1) (6.11)

a
(1,0)
1 =−a(0,1)

1 ; a
(2,1)
2 =−a(1,2)

2 ; a
(2,0)
2 = a

(0,2)
2 ; a

(1,0)
2 =−a(0,1)

2 (6.12)

b
(1,0)
1;0 =

(
1− d

2−
1
∆

)
a

(0,0)
0 + 1

4

(
2d(3+∆2)+3d2∆−4(∆−1)2

)
a

(1,1)
1 − 1

8∆(2+(d−2)∆)a(1,1)
2

− 1
8d

2(∆+1)((d+2)∆+2)a(2,2)
2 +d∆2b

(1,1)
1;1
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b
(0,0)
1;0 = 1

8d
2
(
∆2−1

)(
d2−2d∆−4(∆+2)

)
a

(2,2)
2 − 1

8(∆−1)∆
(
−d2+2d(∆+2)−4∆

)
a

(1,1)
2

+ 1
4(∆−1)

(
d2(4∆+6)−3d3+4d(∆2+2∆+2)−8(∆−1)∆

)
a

(1,1)
1

+
(∆−1)

(
d2−2d(∆+2)+4∆

)
a

(0,0)
0

2∆ +d∆
(
−d∆+d+2∆2−2

)
b
(1,1)
1;1 (6.13)

b
(2,1)
1;1 = 1

4(3d+2∆+6)a(1,1)
1 − 1

8d(d+4)(∆+1)a(2,2)
2 − a

(0,0)
0
2∆ −

1
8∆a(1,1)

2 +∆b(1,1)
1;1

b
(2,0)
1;1 =

(
−3d2

4 +d(3−2∆)−∆2+1
)
a

(1,1)
1 + 1

8d(∆+1)
(
d2+2d(∆−1)+8(∆−1)

)
a

(2,2)
2

+
(
d

2∆−
3
∆ +1

)
a

(0,0)
0 + 1

8∆(d+2∆−6)a(1,1)
2 −∆(d+2∆−2)b(1,1)

1;1

b
(1,0)
1;1 =−

(d+2)d2(∆2−1
)
(d+2∆−4)a(2,2)

2

8∆ +
(

d2

2∆2−
d2

2∆−
3d
∆2 + 4d

∆ −d−
2
∆ +2

)
a

(0,0)
0

+
(∆−1)

(
4d2(2∆−3)+3d3+4d

(
∆2−3∆−1

)
−8(∆−1)∆

)
4∆ a

(1,1)
1

− 1
8(∆−1)

(
d2+2d(∆−3)−4∆

)
a

(1,1)
2 +d(∆−1)(d+2∆−2)b(1,1)

1;1

b
(0,1)
1;1 = 1

16(d−2)d3(∆+1)a(2,2)
2 +

(
d2

4∆−
3d
2∆ + 2

∆

)
a

(0,0)
0 + 1

16

(
d2−6d+8

)
∆a(1,1)

2

− 1
8(d−2)

(
3d2+2d(∆−3)−8∆+8

)
a

(1,1)
1 + 1

2∆
(
−d2+2d+4∆−4

)
b
(1,1)
1;1

b
(0,0)
1;1 =

(d+2)d2(∆2−∆−2
)(
d2+4d(∆−3)−16∆+24

)
a

(2,2)
2

16∆

+
d(∆−2)

(
d2+2d(2∆−7)−24∆+32

)
a

(0,0)
0

4∆2

− 1
8∆

[
2d3

(
7∆2−32∆+36

)
+4d2

(
2∆3−23∆2+53∆−30

)
+3d4(∆−2)

−16d(∆−2)2(3∆+1)+64∆
(
∆2−3∆+2

)]
a

(1,1)
1

+ 1
16(d−4)(∆−2)

(
d2+2d(2∆−5)−8∆+8

)
a

(1,1)
2

+ 1
6(∆−2)

(
−6d2(2∆−5)−3d3+48d(∆−1)+8(∆−1)∆

)
b
(1,1)
1;1 (6.14)

The corresponding coefficients for B2 are given in terms of the coefficients of B1 as

b
(0,1)
2;0 = −b(1,0)

1;0 ; b
(0,0)
2;0 = b

(0,0)
1;0

b
(1,2)
2;1 = −b(2,1)

1;1 ; b
(0,2)
2;1 = b

(2,0)
1;1 ; b

(1,1)
2;1 = b

(1,1)
1;1

b
(1,0)
2;1 = −b(0,1)

1;1 ; b
(0,1)
2;1 = −b(1,0)

1;1 ; b
(0,0)
2;1 = b

(0,0)
1;1 (6.15)

The above results can be obtained by either using the identities (D.8), (D.10) and (D.12)
or analysing the homogeneous Ward identities in the limit p3 → 0. The regularisation of
the equations needs to be done, as before, according to equation (5.30) and the procedure
described in section 5.4.

Finally, we need to consider 9 non homogeneous secondary Ward identities which relate
the coefficients appearing in 2 and 3 point functions. These equations can be used to find
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the relation between two and three point coefficients to obtain

a0 = 2
d
2−6 (d− 2∆)

g3 (d− 2) Γ
(2∆− d

2

)
Γ
(
d− 2∆

2

)
Γ
(
d

2

) [
4a(0,0)

0 + (d− 2)(−4a(1,1)
1 + da

(2,2)
2 )

]
(6.16)

This completes the analysis for the 3-point function of the two spin 2 non-conserved operators
and a gauge field.

7 Discussion

In this paper, we have derived the consequences of the conformal Ward identities for
three-point correlation functions of a conserved current and two generic spin-s operators in
the momentum space. We have solved the resulting set of differential equations in the case
when spin s is 1 and 2 for operators having the same or different conformal dimensions. The
correlator involving spin-1 operators depends on 9 form factors that are constrained by 28
coupled differential equations. For spin-2, the number of form factors grows to 30 which are
fixed by a system of 106 differential equations. The solution has been found analytically by
using the properties of the triple-K integrals. The extension of the calculation to higher spins
is more tedious but can be done with the help of computer softwares such as Mathematica.
There are numerous natural extensions of this work, including the computation of three-point
correlation functions of the stress-energy tensor with higher spin non-conserved operators
and the computation of four-point functions.

Apart from the general utility of the results derived here in physics situations where
CFTs with suitable spectrum are relevant, our results should also have applications to
the AdS/CFT correspondence and the study of signatures of higher spin fields in early
universe cosmology. One of our motivations for this work was to use CFT and holography
to understand interactions of higher-spin fields with gauge fields and gravitons, both in
AdS and dS and also in flat space using an appropriate flat space limit, and results in this
direction will be presented in [60].
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A Auxiliary vectors

In this appendix we recall some basic facts about these auxiliary vectors following [57, 59].
Suppose we are dealing with an SO(d) symmetric traceless tensor fµ1...µl . It is in one-to-one
correspondence with a homogeneous polynomials f(z)

fµ1...µl ←→ f(z) = fµ1...µl z
µ1 zµ2 . . . zµl (A.1)
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The vectors zµ are complex and define a “complex null cone” Kd in the Euclidean space
Rd [59]

Kd =
{
z ∈ Cd, z2 ≡ (z1)2 + · · ·+ (zd)2 = 0

}
(A.2)

In CFT, symmetric traceless tensors describe spin l primary fields and they can be rep-
resented by homogeneous polynomial defined on the complex light cone in one-to-one
correspondence as in equation (A.1) and (A.2). From these equations, it then also follows
that spin l primary fields can be represented by different homogeneous polynomials, f(z)
and f̃(z) differing by terms proportional to z2

fµ1...µl ↔ f̃l(z)
∣∣∣
z2=0

; fl(z)− f̃l(z) = z2 gl−2(z) (A.3)

This is easily seen by introducing the projector for symmetric, traceless tensors πµ1...µl
ν1...νl and

observing that

fµ1...µlπ
µ1...µl
ν1...νl = fν1...νl ; f̃µ1...µlπ

µ1...µl
ν1...νl = fν1...νl . (A.4)

It is useful to note that the above projector operator can also be expressed as a differential
operator

πµ1...µl
ν1...νl = 1

l!(h− 1)l
Dµ1 . . . Dνlz

µ1 . . . zµl ; h = d

2 , (A.5)

where (a)l = Γ(a+ l)/Γ(a) and

Dµ =
(
h− 1 + z · ∂

∂z

)
∂

∂zµ
− 1

2zµ
∂2

∂z · ∂z
. (A.6)

Next, we define the notion of interior differential operator. An interior differential operator
Q on the complex light cone Kd satisfies the identity

(Qz2 f(z))
∣∣∣
z2

= 0 for every polynomial f(z) (A.7)

Such an operator preserves the identification written in equation (A.3). For our purposes,
we note that the generator of special conformal transformation is an interior differential
operator. This can be easily seen from the definition (B.16) in momentum space(

zµ
∂

∂zν
− zν

∂

∂zµ

)
∂

∂pµ
z2 f(z) = z2

(
zµ

∂

∂zν
− zν

∂

∂zµ

)
∂

∂pµ
f(z) (A.8)

We notice that acting with this operator on an expression which is linear in z, we shall
always get an expression which is also linear in z.

For the n-point function of spin l primary operators, we introduce n independent null
cones, of dimension d, parametrized by n independent auxiliary vectors, ε1, . . . , εn. For
example for 2-point function we need ε1 ≡ ε and ε2 ≡ ε̃, i.e.,

Kε
d =

{
ε ∈ Cd, (ε1)2 + · · ·+ (εd)2 = 0

}
, Kε̃

d =
{
ε̃ ∈ Cd, (ε̃1)2 + · · ·+ (ε̃d)2 = 0

}
(A.9)

This guarantees that interior differential operators acting on the homogeneous polynomials
defined on one null cone do not have any action on the homogeneous polynomials defined
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on the other cone. The 2-point function can be thought as defined in the complex double
cone Kε

d ⊗Kε̃
d.

In [24] the calculations of correlators was done without making use of auxiliary vectors.
This requires us to work with explicit indices which makes expressions complicated for
higher spins. It is instructive however to see in a simple example that both approaches give
the same set of equations. Consider the case of 2-point function of spin 1 operators. In the
approach of [24] the most general expression for the 2-point function of spin 1 is given by

Aµν2 (p) = δµνA0(p) + pµ pν A1(p) (A.10)

The action of the scalar part of the special conformal Ward identity (B.14) on the above
ansatz is given by

Kρs A
µν
2 (p) = pρδµν [KA0(p) + 2A1(p)]− 2pνδµρ

[
(d−∆ + 1) + p

∂

∂p

]
A1(p)

− 2pµδνρ
[
(d−∆ + 1) + p

∂

∂p

]
A1(p) + pρ pµ pν KA1(p) (A.11)

The operator K in the above expression is defined in equation (2.10). Next, the action of
the spin part of the special conformal Ward identity (B.15) on (A.10) is given by

Kρε A
µν
2 (p) = 2δρµpν

(1
p

∂

∂p
A0(p) + dA1(p) + p

∂

∂p
A1(p)

)
− 2δρν pµ 1

p

∂

∂p
A0(p)

− 2pρ
(
δµν + pµpν

1
p

∂

∂p

)
A1(p) (A.12)

We now add the two contributions, and note that pρδµν , pνδµρ, pµδνρ and pµpνpρ are
independent tensor structures. Hence, we can set their coefficients to zero obtaining
following 4 equations

KA0 = 0 ; KA1 −
2
p

∂A1
∂p

= 0

1
p

∂A0
∂p

+ (∆− 1)A1 = 0 ; 1
p

∂A0
∂p

+ p
∂A1
∂p

+ (d−∆ + 1)A1 = 0 (A.13)

Next, we consider the same 2-point function in the index free formalism we have used in
this paper. In the notation of section 2, the action of the scalar and spin parts of the special
conformal transformations on the spin-1 two point function are given by

b·KsA2(p) = 2(b·p)
[
w

2KA0+wA1(p)+ 1
2ζ ξKA1(p)

]
−2(b·ε2)ζ

[
d−∆+1+p ∂

∂p

]
A1(p)

−2(b·ε1)ξ
[
d−∆+1+p ∂

∂p

]
A1(p) (A.14)

and

b · KεA2(p) = 2(b · ε1) ξ
[
p
∂

∂p
A1(p) + dA1(p) + 1

p

∂

∂p
A0(p)

]
− 2(b · ε3)ζ 1

p

∂

∂p
A0(p)

− 2(b · p)
[
ζξ

1
p

∂

∂p
+ w

]
A1(p) (A.15)
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Again adding the two contributions and setting the coefficients of (b · p)w, (b · p)ζξ, (b · ε1)ξ
and (b · ε3)ζ to zero, we obtain precisely the four equations given in (A.13). These coincide
with equations (2.11), (2.12) and (2.13) evaluated for spin-1 non-conserved operators
(as expected).

B CFT Ward identities

Momentum space CFT correlators may be obtained non-perturbatively by solving the Ward
identities directly in momentum space. In this section, we summarise these CFT Ward
identities in d flat space time dimensions in both position as well as momentum space.

B.1 Ward identities in position space

By imposing the invariance of correlation functions under a symmetry transformation, one
can obtain the following local Ward identity

∂µ
〈
Jµ(x)O1(x1) · · · On(xn)

〉
= −i

n∑
j=1

δd(x− xj)
〈
O1(x1) · · · δOj(xj) · · · On(xn)

〉
(B.1)

where Jµ(x) denotes the Noether current associated with the invariance under the transfor-
mation O(x)→ O(x) + δO(x).

By specialising the transformation to be conformal transformation and integrating the
local Ward identity (B.1) over x, we obtain the global Ward identities associated with the
conformal symmetry

Translation : 0 =
n∑
i=1

∂

∂xµi

〈
O1(x1) · · · On(xn)

〉
(B.2)

Dilatation : 0 =
n∑
i=1

[
∆i + xµi

∂

∂xµi

]〈
O1(x1) · · · On(xn)

〉
(B.3)

SCT : 0 =
n∑
i=1

[
2∆ix

µ
i + 2xµi x

ν
i

∂

∂xνi
− x2

i

∂

∂xiµ

]〈
O1(x1) · · · On(xn)

〉
(B.4)

If the operators Oi transform non trivially under the Lorentz transformation, then the r.h.s.
of the special conformal Ward identity has extra terms. E.g., for a tensor operator having
r indices, namely Oµ1···µr

i , we need to add the following term in the r.h.s. of (B.4) (see
e.g., [24])

2
n∑
i=1

ri∑
j=1

[
(xi)νijδρµij − (xi)µijδρνij

]〈
Oµ11···µ1r1

1 (x1) · · · Oµi1···νij ···µirii (xi) · · · Oµn1···µnrn
n (xn)

〉
(B.5)

B.2 Ward identities in momentum space

We define the correlators in momentum space by the Fourier transform〈
O1(p1) · · · On(pn)

〉
=
∫
ddx1 · · · ddxn e−i(p1·x1+···+pn·xn)

〈
O1(x1) · · · On(xn)

〉
(B.6)
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Using translation invariance, we may show the right hand side is proportional to δd(
∑
i pi),

and we write

(2π)dδd
(∑

i

pi

)〈〈
O1(p1) · · ·On(pn)

〉〉
=
∫
ddx1 · · ·ddxn e−i(p1·x1+···+pn·xn)

〈
O1(x1) · · ·On(xn)

〉
(B.7)

The inverse Fourier transform can be expressed as〈
O1(x1) · · · On(xn)

〉
=
∫

ddp1
(2π)d · · ·

ddpn−1
(2π)d ei(p1·x1+···+pn·xn)

〈〈
O1(p1) · · · On(pn)

〉〉
(B.8)

together with the constraint p1 + p2 + · · ·+ pn = 0.
The expression (B.8) is useful. E.g., for the scaling transformation, using〈

O1(λx1) · · · On(λxn)
〉

= (λ)−∆1−···−∆n

〈
O1(x1) · · · On(xn)

〉
(B.9)

we find,〈〈
O1(λp1) · · · On(λpn)

〉〉
= (λ)−(n−1)d+∆1+···+∆n

〈〈
O1(p1) · · · On(pn)

〉〉
(B.10)

We shall need the expression of Ward identities in the momentum space. Taking the Fourier
transform of both sides in (B.1), the local Ward identity becomes

〈〈
kµJ

µ(k)O1(p1) · · · On(pn)
〉〉

= −
n∑
j=1

〈〈
O1(p1) · · · δOj(k + pj) · · · On(pn)

〉〉
(B.11)

where the condition k + p1 + · · ·+ pn = 0 is understood.
In a similar way, the global Ward identities in momentum space can be written as

Translation : 0 =
n∑
i=1

pµi

〈〈
O1(p1) · · · On(pn)

〉〉
(B.12)

Dilatation : 0 =
[
−
n−1∑
i=1

pµi
∂

∂pµi
+

n∑
i=1

∆i − (n− 1)d
]〈〈
O1(p1) · · · On(pn)

〉〉
(B.13)

SCT : 0 =
n−1∑
i=1

[
2(∆i − d) ∂

∂pµi
− 2pνi

∂

∂pνi

∂

∂pµi
+ piµ

∂

∂pνi

∂

∂piν

]〈〈
O1(p1) · · · On(pn)

〉〉
(B.14)

Again, for the operators Oi having r indices, the extra term in the r.h.s. of (B.14) takes
the form

2
n−1∑
i=1

ri∑
j=1

[
δµµij

∂

∂p
νij
i

− δµνij
∂

∂piµij

]〈〈
Oµ11···µ1r1

1 (p1) · · · Oµi1···νij ···µirii (pi) · · · Oµn1···µnrn
n (pn)

〉〉
(B.15)

We should note that the above Ward identities involve the correlators from which momentum
conserving delta functions have been stripped off. One needs to be careful about the delta
function in deriving these identities. The factor −1 in n − 1 of (B.13) arises when the
derivatives act on the delta function.
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If the polarisation tensor of the spin r operator is expressed as εµ1 · · · εµr , then the
operator acting on the correlator in above expression can also be expressed as

Kµε ≡ 2
n−1∑
i=1

Sµνi
∂

∂pνi
, Sµνi = εµi

∂

∂εiν
− ενi

∂

∂εiµ
(B.16)

To see this, we consider r = 1 and compute

2
(
εµ

∂

∂εν
− εν ∂

∂εµ

)
∂

∂pν
(ερTρ) = 2εσ

(
δµσ

∂

∂pρ
− δµρ

∂

∂pσ

)
T ρ (B.17)

where, we have used the fact that Tρ is independent of the polarisation vector. This equation
establishes the relation between (B.15) and (B.16) and also shows that the relative sign
between two terms in (B.16) is consistent with the expression in (B.15).

B.3 Transverse Ward identity

The equations (B.1) and (B.11) express the correlator involving an insertion of a conserved
current in terms of the lower point correlators without the current. The expressions are
valid for any symmetry transformation. However, it is instructive to see how these relations
arise due to gauge invariance of the partition function when we couple the operators to
corresponding sources.

We consider the case when the non-conserved operators have spin-1. The generating
functional for the CFT correlators involving the operators Jµ,Oµ1 and Oµ2 is given by

Z[aµ, w(1)
µ , w(2)

µ ] =
∫
DΦ exp

[
−S −

∫
ddx

(
Jµaµ +Oµ1w

(1)
µ +Oµ2w

(2)
µ

)]
(B.18)

where, aµ, w(1)
µ and w(2)

µ are the sources for Jµ,Oµ1 and Oµ2 respectively. These sources have
a natural interpretation from the point of view of AdS/CFT where they correspond to the
boundary values of bulk fields. Under a U(1) gauge transformation they transform as

aµ(x)→ aµ(x)− ∂µλ(x) ; w(i)
µ (x)→ eigiλ(x)w(i)

µ (x) , i = 1, 2 (B.19)

where gi denote the gauge couplings of the sources w(i)
µ .

The partition function for the connected correlator can be obtained by taking the loga-
rithm of (B.18). Demanding the invariance of this under the infinitesimal variation, we find

0 = 1
Z
δλZ = − 1

Z

∫
DΦ exp

[
· · ·
]∫

ddxλ(x)
(
∂µJ

µ + ig1Oµ1w
(1)
µ + ig2Oµ2w

(2)
µ

)
(B.20)

where, we have done an integration by parts in the first term.
Differentiating (B.20) with respect to w(1)

µ and w
(2)
µ , we find the desired transverse

Ward identity

∂µ〈Jµ(x)Oν1(x1)Oσ2 (x2)〉 = −ig1 δ
d(x−x1)〈Oν1(x1)Oσ2 (x2)〉− ig2 δ

d(x−x2)〈Oν1(x1)Oσ2 (x2)〉
(B.21)

The Fourier transform to momentum space defined by equation (B.7) gives

p1µ
〈〈
Jµ(p1)Oν1(p2)Oρ2(p3)

〉〉
= −g1

〈〈
Oν1(−p3)Oρ2(p3)

〉〉
− g2

〈〈
Oν1(p2)Oρ2(−p2)

〉〉
(B.22)

This shows that the longitudinal component of our 3-point function is fully determined by
the 2-point function of the operators Oµ1 and Oµ2 .
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C Decomposition of correlator

If a correlator involves conserved currents, its analysis can be simplified by making use
of the transverse Ward identities. In particular, the transverse and trace Ward identities
imply that we can focus on the transverse traceless parts of the correlators [24]. To see
how it works, we consider a simple example. Suppose, we are interested in the correlator
〈Jµ(p1)O(p2)O(p3)〉 where Jµ is a conserved current and O denote some arbitrary operators.
We can define the transverse part of the current Jµ as

jµ = πµνJ
ν ; πµν = δµν − pµpν

p2 ; πµνp
µ = 0 (C.1)

The jµ satisfies the transversality condition pµjµ = 0. The current can now be written as

Jµ = jµ + pµ

p2 pνJ
ν (C.2)

Using this, we can express the correlator as sum of the transverse and longitudinal parts as

〈
Jµ(p1)O(p2)O(p3)

〉
=
〈
jµ(p1)O(p2)O(p3)

〉
+pµ

p2
〈
pνJ

ν(p1)O(p2)O(p3)
〉

(C.3)

The term involving the longitudinal piece can be reduced to 2-point function by the local
Ward identity (B.1). This shows that we only need to focus on the transverse part of the
conserved current while computing a correlator. The non transverse part can be obtained
from the knowledge of the lower point function. In a similar way, if we have insertions of
stress tensor Tµν , we can focus on the transverse traceless part tµν satisfying

∂µt
µν = 0 ; tµµ = 0 (C.4)

where

tµ1µ2 = Πµ1µ2
ν1ν2 T ν1ν2 ; Πµ1µ2

ν1ν2 = 1
2
[
πµ1
ν1π

µ2
ν2 + πµ1

ν2π
µ2
ν1

]
− 1
d− 1π

µ1µ2πν1ν2 (C.5)

In general, for a symmetric conserved current having spin `, the projection operator can be
constructed recursively as (see, e.g., [61])

Πµ1···µ`
ν1···ν` = πµ`(ν`Π

µ1···µ`−1
ν1···ν`−1) −

2
d+ 2`− 5π(ν1ν2Πµ1···µ`

ν3···ν`) (C.6)

D Triple K integrals

The momentum space correlators are conveniently expressed in terms of the triple K integrals
which are integrals over the product of three modified Bessel functions of the second kind.
In this section, we review some basic facts about these integrals. For details and proofs,
see [24, 26].
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D.1 Basic identities

The triple K integrals are defined by

Iα{β1,β2,β3} ≡
∫ ∞

0
dxxα

3∏
j=1

p
βj
j Kβj (xpj) . (D.1)

This is well defined and convergent for

α >
3∑
i=1
|βi| − 1 ; p1, p2, p3 > 0 . (D.2)

The Kn(px) denotes the modified Bessel function of the second kind and satisfies the
equation

x2 d
2y

dx2 + x
dy

dx
− (p2x2 + n2)y = 0 . (D.3)

Some useful properties of this Bessel function are

Kn(x) = K−n(x) ;

Kn+1(x) = Kn−1(x) + 2n
x
Kn(x) ;

∂

∂p

[
pnKn(px)

]
= −xpnKn−1(px) ;

∂Kn(x)
∂x

= −1
2
(
Kn−1(x) +Kn+1(x)

)
. (D.4)

For our purposes, it is convenient to introduce the following quantity

JN{kj} = I d
2−1+N{∆j− d2 +kj} (D.5)

The convergence condition for these are

d

2 − 1 +N >
3∑
i=1

∣∣∣∆j −
d

2 + kj
∣∣∣−1 =⇒ N − 1 > ∆t + kt − 2d (D.6)

where, we have assumed ∆i − d
2 + ki > 0.

The derivatives of the triple K integral JN{ki} satisfy the following identities[ 3∑
i=1

pi
∂

∂pi
+ (N −∆t + 2d− kt)

]
JN{kj} = 0 (D.7)

∂

∂pi
JN{kj} = −piJN+1{kj−δij} (D.8)

KiJN{kj} = 2kiJN+1{kj−δji} − JN+2{kj} (D.9)

KijJN{k`} = 2kiJN+1{k`−δi`} − 2kjJN+1{k`−δj`} (D.10)

where
Ki ≡

[
− ∂2

∂p2
i

+ 2
(
∆i −

d+ 1
2

) 1
pi

]
; Kij ≡ Ki −Kj (D.11)
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The first identity in (D.10) shows that the degree of the triple K integral JN{ki} is ∆t −
2d+ kt −N . The last identity in (D.10) shows that KijJN{k`} = 0 iff ki = kj = 0. This is
useful in solving the primary Ward identities. Some other useful identities involving the
triple K integrals are

(N+∆t+kt−d)JN{k1,k2,k3}= JN+1{k1+1,k2,k3}+JN+1{k1,k2+1,k3}+JN+1{k1,k2,k3+1} (D.12)

p2
i JN{kj}= JN{kj+2δji}−2(∆i−

d

2 +ki+1)JN−1{kj+δji} (D.13)

These identities will be very useful in solving the Ward identities.

D.2 Regularization

It can be shown that the triple K integrals Iα{β1,β2,β3} diverge if

α+ 1± β1 ± β2 ± β3 = −2k , k = 0, 1, 2, · · · (D.14)

This can be written as

α+ 1 + σ1β1 + σ2β2 + σ3β3 = −2kσ1σ2σ3 ; σi = ±1 ; kσ1σ2σ3 = 0, 1, 2, · · · (D.15)

If the above condition is satisfied, we need to regularize the integrals. This can be done by
shifting the parameters of the triple K integrals as

Iα{β1,β2,β3} → Iα̃{β̃1,β̃2,β̃3} =⇒ JN{k1,k2,k3} → JN+uε{k1+v1ε,k2+v2ε,k3+v3ε} (D.16)

where
α̃ = α+ uε , β̃1 = β1 + v1ε , β̃2 = β2 + v2ε , β̃3 = β3 + v3ε (D.17)

or equivalently
d→ d̃ = d+ 2uε ; ∆→ ∆̃i = ∆i + (u+ vi)ε (D.18)

In general, the regularisation parameters u and vi are arbitrary. However, in certain cases,
there may be constraints on these parameters. E.g., for spin ` conserved currents, the
regularization procedure must satisfy ∆̃i = d̃+ `− 2 together with ∆i = d+ `− 2. This
implies u = vi. In general, one may work with arbitrary values of these parameters and
take the limit u→ vi in the end.

With the above regularization, the triple K integrals become finite. However, they still
diverge as ε→ 0. For explicit calculations, we need to know this divergent behaviour. This
was determined in generality in [25] (see also the streamlined discussion in [54]) and we
summarise the main points here. To determine this behaviour, we note that x→∞ end
of the triple K integral converges even when ε→ 0 (this happens due to the exponential
suppression of modified Bessel function Kβ(x) as x→∞). Hence, all the singularities come
from the x→ 0 end. Thus, we can write the regulated triple K integral as

Iα̃{β̃i} =
∫ µ−1

0
dx xα̃

3∏
j=1

p
β̃j
j Kβ̃j

(pjx) +
∫ ∞
µ−1

dxxα̃
3∏
j=1

p
β̃j
j Kβ̃j

(pjx) (D.19)
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where µ is an arbitrary scale. The full triple K integral Iα̃{β̃i} is independent of this scale.
Now, for small x, we have following Frobenius expansion

xα̃
3∏
j=1

p
β̃j
j Kβ̃j

(pjx)

=
∑

{σj=±1}

∞∑
{kj}=0

( 3∏
i=1

(−1)ki

2σiβ̃i+2ki+1ki!
Γ(−ki − σiβi)p(1+σi)β̃i+2ki

i

)
x
α̃+
∑

j
(σj β̃j+2kj)

=
∑
η

cηx
η (D.20)

where the sum runs over all values of the σj and all non negative integer values of kj . Also,
we have defined

η = α̃+
∑
j

(σj β̃j + 2kj) = −1 + 2

−kσ1σ2σ3 +
∑
j

kj

+ ε

u+
∑
j

vjσj

 (D.21)

The expansion (D.20) can more explicitly be written as (dropping the tilde)

xα
3∏
i=1

pβii Kβi(xpi)

= xα−β1+β2+β3

23−β1+β2+β3
Γ
(
β1
)
Γ
(
−β2

)
Γ
(
−β3

)
p2β2

2 p2β3
3 + xα+β1+β2+β3

23+β1+β2+β3
Γ
(
−β1

)
Γ
(
−β2

)
Γ
(
−β3

)
p2β1

1 p2β2
2 p2β3

3

+ xα+β1+β2−β3

23+β1+β2−β3
Γ
(
−β1

)
Γ
(
−β2

)
Γ
(
β3
)
p2β1

1 p2β2
2 + xα+β1−β2+β3

23+β1−β2+β3
Γ
(
−β1

)
Γ
(
β2
)
Γ
(
−β3

)
p2β1

1 p2β3
3

+ xα−β1+β2−β3

23−β1+β2−β3
Γ
(
β1
)
Γ
(
−β2

)
Γ
(
β3
)
p2β2

2 + xα−β1−β2+β3

23−β1−β2+β3
Γ
(
β1
)
Γ
(
β2
)
Γ
(
−β3

)
p2β3

3

+ xα−β1−β2−β3

23−β1−β2−β3
Γ
(
β1
)
Γ
(
β2
)
Γ
(
β3
)
+xα+β1−β2−β3

23+β1−β2−β3
Γ
(
−β1

)
Γ
(
β2
)
Γ
(
β3
)
p2β1

1 (D.22)

Using the above expansion, the triple K integral can be written as

Iα̃{β̃i} =
∑
η

cη
µ−η−1

η + 1 +
∫ ∞
µ−1

dxxα̃
3∏
j=1

p
β̃j
j Kβ̃j

(pjx) (D.23)

We have used the fact that the lower limit x = 0 gives a vanishing contribution [25].
Now, demanding that the singularity is independent of the scale µ gives the condition
kσ1σ2σ3 =

∑
j kj and hence we have η = −1 + wε, where

w = u+
∑
j

vjσj (D.24)

The above equations determine the singularity behaviour of the triple K integral as ε→ 0.
In general, the coefficient cη in (D.23) may also be divergent. If the condition (D.14) is
satisfied in m ways, the c−1+wε can diverge as ε−m+1 and hence, the triple K integral can
diverge as ε−m. For our purposes, we need the result when the condition (D.14) is satisfied
in a single way. Using, µ−wε = 1− wε lnµ+ · · · , the singularity for the case of single pole
can be written as

cη
µ−(η+1)

η + 1 = c−1+wε
wε

+O(lnµ) (D.25)
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D.3 Zero momentum limit

In solving the secondary Ward identities, we need to take into account the linear dependence
among various triple K integral before setting their individual coefficients to zero. One way
to do this is to analyse the equations in the zero momentum limit [24]. In this subsection,
we review the behaviour of the triple K integrals in the limit p3 → 0. In this limit, the
momentum conservation gives

p1 = −p2 =⇒ p1 = p2 ≡ p. (D.26)

Also, in this limit, the Bessel functions Kβ(p3x) behave as

pn3Kn(p3x) = 2n−1Γ(n)
xn

+O(p2
3)+p2n

3

[
(−1)n+1

2nΓ(n+1)x
n logp3+ultralocal+O(p2

3)
]
, n= 1,2,3, · · ·

pβ3
3 Kβ3(p3x) = 2β3−1Γ(β3)

xβ3
+O(p2

3)+p2β3
3

[
2−β3−1Γ(−β3)xβ3 +O(p2

3)
]
, β3 6 ∈Z

K0(p3x) =− logp3−logx+log2−γE+O(p2
3) (D.27)

This shows that for β3 > 0, the zero momentum limit of pβ3
3 Kβ3(p3x) exists. Assuming

β3 > 0 and using the identity∫ ∞
0

dx xα−1Kβ1(px)Kβ2(px) = 2α−3

Γ(α)pα
∏

a,b∈{1,−1}
Γ
(
α+ aβ1 + bβ2

2

)
(D.28)

which is valid for Re(α) > |Re β1|+ |Re β2| and Re(p) > 0, we find

lim
p3→0

JN{kj}(p1, p2, p3) = A(N, ki,∆i, d) p∆t+kt−N−2d (D.29)

where, we have defined

A≡
2N+ d

2−4Γ(∆3− d
2 +k3)

Γ(N+d−∆3−k3)
∏

a,b∈{1,−1}
Γ
(
N+d−∆3−k3+a(∆1− d

2 +k1)+b(∆2− d
2 +k2)

2

)

The compatibility between the convergence condition β3 = ∆3− d
2 +k3 > 0 and the unitarity

bound ∆3 ≥ d+ `− 2 for the higher spin operators imply the following condition

d+ `− 2 > d

2 − k3 =⇒ k3 > −
(d

2 + `− 2
)

(D.30)

E Some results about CFT 3 point functions

In this section, we note some useful results about the 3 point functions in CFT.

E.1 Number of tensor structures in d ≥ 4

In d ≥ 4, an arbitrary 3-point CFT correlator involving operators of spins `1, `2 and `3 can
have following number of independent tensor structures [57]

N(`1, `2, `3) = (`1 + 1)(`1 + 2)(3`2 − `1 + 3)
6 − p(p+ 2)(2p+ 5)

24 − 1− (−1)p

16 (E.1)

where, we have ordered the spins `1 ≤ `2 ≤ `3 and defined p = max(0, `1 + `2 − `3).
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For the cases of our interest, we have

N(1, 1, 1) = 4 ; N(1, 2, 2) = 7 ; N(0, 0, 1) = 1 (E.2)

If some of the operators are conserved, then the conservation condition eliminates some
tensor structures. However, there can be enhancement in the number of tensor structures if
the conformal dimension of some operators coincide. We shall consider an example below.

E.2 Number of tensor structures in d = 3

In 3 dimensions, there may be additional relations between the general tensor structures. It
turns out that the total number of independent tensor structures in 3d are [57]

N3d(`1, `2, `3) = (2`1 + 1)(2`2 + 1)− p(1 + p) (E.3)

where, we have again ordered the spins `1 ≤ `2 ≤ `3 and defined p = max(0, `1 + `2 − `3).
Of these, the total number of parity even structures are

N+
3d(`1, `2, `3) = 2`1`2 + `1 + `2 + 1− p(1 + p)

2 (E.4)

and the number of parity odd structures are

N−3d(`1, `2, `3) = 2`1`2 + `1 + `2 −
p(1 + p)

2 . (E.5)

The number of parity even structures can be expressed in terms of the general formula (E.1)
as

N+
3d(`1, `2, `3) = N(`1, `2, `3)−N(`1 − 2, `2 − 2, `3 − 2) (E.6)

This shows that the corrrelators involving spin 2 and higher fields will have less number
of tensor structures in 3 dimensions than their counterparts in higher dimensions. It also
means that 3-point function of operators having spin 1 fields have same number of tensor
structures in all dimensions d ≥ 3.

E.3 Correlators involving three spin-1 operators

E.3.1 Generic structure in position space

The 3-point correlators of three spin-1 fields have 4 independent tensor structures. Using
the embedding formalism, it is easy to work out the form of these tensor structures [57].
The explicit expression of the correlator is given by

〈Oµ1(x1)Oµ2(x2)Oµ3(x3)〉

=
a1J

23;1
µ1 J31;2

µ2 J12;3
µ3 + a2J

12;3
µ3

Iµ1µ2 (x12)
(x12)2 + a3J

31;2
µ2

Iµ3µ1 (x31)
(x31)2 + a4J

23;1
µ1

Iµ2µ3 (x23)
(x23)2

|x12|τ1+τ2−τ3−2|x23|τ2+τ3−τ1−2|x31|τ3+τ1−τ2−2 (E.7)

where ai are arbitrary constants, τi ≡ ∆i + 1 and

J ij;kµ (x) = (xk − xi)µ
(xk − xi)2 −

(xk − xj)µ
(xk − xj)2 , Iµ1µ2(x12) = δµ1µ2 −

2(x12)µ1(x12)µ2

(x12)2 (E.8)
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E.3.2 One conserved current

If one of the operator is a conserved current, we need to impose the conservation condition.
E.g. if the 2nd operator is a conserved current, i.e., ∆2 = d− 1, then the correlator satisfies

∂

∂xµ2
2
〈Oµ1(x1)Jµ2(x2)Oµ3(x3)〉 = 0 (E.9)

Depending upon the conformal dimensions ∆1 and ∆3, the above equation eliminates some
tensor structures. If ∆1 6= ∆3, two structures get eliminated and the total number of
independent conformal tensor structures reduces to 2. On the other hand, if ∆1 = ∆3, the
total number of independent conformal tensor structures becomes 3. However, if the two
operators are identical (so that the 3-point function is symmetric under the exchange of x1
and x3), then all the tensor structures get eliminated and the correlator vanishes.

F Regularisation of divergent triple K integrals

For our 3-point functions, some of the triple K integrals appearing in the solution of Ward
identities diverge for ∆1 = ∆3. Hence, we need to regularise these divergences using the
procedure described in appendix D.2. In this section, we consider the divergent triple K
integrals which appear in the 3-point functions considered in this paper and extract their
divergent and finite parts. These will be needed to regularise the full 3-point functions.

Now, as discussed in appendix D.2, the regularisation is done by shifting the parameters
d and ∆i. In our case, ∆2 corresponds to gauge field. To preserve the gauge invariance in
the regulated theory, we need to set v2 = u. Further, we also have ∆1 = ∆3. To maintain
this condition also in the regulated theory, we need to set v1 = v3. We shall work with
generic values of these regularisation parameters and take the appropriate limit in the end.
Since the condition (D.14) for the divergent triple K integrals are satisfied in a single way,
it follows that these triple K integrals only have single order poles in ε. Moreover, since the
right hand side of condition (D.14) vanishes, we shall have {kj} = 0 in the identity (D.20).
Thus, using (D.20), the divergent part of the triple K integrals is given by

Γ(−σ1β̃1)Γ(−σ2β̃2)Γ(−σ3β̃3)
22−α̃ ε w

p
(1+σ1)β̃1
1 p

(1+σ2)β̃2
2 p

(1+σ3)β̃3
3 (F.1)

where,

w = u+
∑
j

σjvj (F.2)

F.1 Divergent integrals for s = 1

The triple K integrals which diverge for ∆1 = ∆3 in the spin 1 case are J1{0,1,−1}, J1{1,0,−1},
J1{−1,1,0} and J1{−1,0,1}. For ∆1 = ∆3, these triple K integrals satisfy the divergence
condition (D.14) for k = 0. To analyse these divergent triple K integrals, we start by noting
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the divergence condition (D.14) for them. The conditions for each integrals are

J1{0,1,−1} : α+ 1− β1 − β2 + β3 = ∆3 −∆1 (−−+)
J1{1,0,−1} : α+ 1− β1 − β2 + β3 = ∆3 −∆1 (−−+)
J1{−1,1,0} : α+ 1 + β1 − β2 − β3 = ∆1 −∆3 (+−−)
J1{−1,0,1} : α+ 1 + β1 − β2 − β3 = ∆1 −∆3 (+−−) (F.3)

Hence, for ∆1 = ∆3, these triple K integrals satisfy the condition (D.14) for k = 0. In
general, for integer dimensions, the condition (D.14) may also be satisfied for other triple
K integrals and for other combinations of signs. However, in this paper, we focus on non
integer dimensions.

Using (F.1), the regularised expressions of first two triple K integrals, namely, J1{0,1,−1}
and J1{1,0,−1} can be written in a single equation as

JN{a,b,c}

=
Γ
(
d
2−∆3−c

)
Γ
(
∆2− d

2 +b
)
Γ
(
∆1− d

2 +a
)

2
d
2−∆1−∆2+∆3+3−a−b+c(u−v1−v2+v3)

[1
ε

+v1
(
H∆1− d2 +a−1−γ+log2

)
+v2

(
H∆2− d2 +b−1−γ+log2

)
−v3

(
H−∆3+ d

2−c−1−γ+log2−2logp3
)
+O(ε)

]
p−d+2∆3+2c

3

(F.4)

Similarly, the regularised expressions of J1{−1,1,0} and J1{−1,0,1} are given by

JN{a,b,c}

=
Γ
(
d
2−∆1−a

)
Γ
(
∆2− d

2 +b
)
Γ
(
∆3− d

2 +c
)

2
d
2−∆3−∆2+∆1+3+a−b−c(u+v1−v2−v3)

[1
ε
−v1

(
H−∆1+ d

2−a−1−γ+log2−2logp1
)

+v2
(
H∆2− d2 +b−1−γ+log2

)
+v3

(
H∆3− d2 +c−1−γ+log2

)
+O(ε)

]
p−d+2∆1+2a

1 (F.5)

The Hn in the above expressions denote the Harmonic number which is related to the
PolyGamma function by

Hn−1 = ψ(n) + γ = Γ′(n)
Γ(n) + γ (F.6)

with γ being the Euler-Mascheroni constant.
From the above expressions, we also see that the above regularised expressions for the

triple K integrals of the form JN{a,b,c} are related to the triple K integrals of the form
JN{c,b,a} by the interchanges of ∆1 ↔ ∆3, p1 ↔ p3, a↔ c and v1 ↔ v3.

F.2 Divergent integrals for s = 2

The triple K integrals which appear in B1 and are divergent are

J0{0,0,−1} , J1{1,0,−1} , J2{0,2,−1} , J1{0,0,−2} , J3{1,1,−2} , J3{2,0,−2},

J3{0,2,−2} , J0{−1,0,−2} , J1{−1,1,−2} , J2{−1,2,−2} , J3{−1,3,−2} (F.7)
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The condition (D.14) for these triple K integrals give

α+ 1− β1 − β2 + β3 = ∆3 −∆1 : (−−+) (F.8)

Similarly, the triple K integrals which appear in B2 and are divergent are

J0{−1,0,0} , J1{−1,0,1} , J2{−1,2,0} , J1{−2,0,0} , J3{−2,1,1} , J3{−2,0,2},

J3{−2,2,0} , J0{−2,0,−1} , J1{−2,1,−1} , J2{−2,2,−1} , J3{−2,3,−1} (F.9)

They satisfy
α+ 1 + β1 − β2 − β3 = ∆1 −∆3 : (+−−) (F.10)

Thus, for ∆1 = ∆3, the above triple K integrals diverge and we need to regularise them.
Again using (F.1), the divergent parts of the triple K integrals in equation (F.7) can be
easily regularised and the regulated expressions are again given by equation (F.4). Similarly,
the regularised divergent parts of the triple K integrals in (F.9) are given by the expression
in (F.5).

G Equations for form factors for s = 2

In this section, we list the primary equations which result from the special conformal Ward
identity when it acts on the 3-point function involving two spin 2 non-conserved operators
and one conserved vector current. There are a total of 60 primary equations. At O(z2), we
have following equations

(ε2 · π2 · p1)(b · p1) : (K1 −K3)A(0,0)
0 = 0

(ε2 · π2 · p1)(b · p2) : (K2 −K3)A(0,0)
0 + 2A(1,1)

1 = 0 (G.1)

At O(z), we have following equations

(ε2 · π2 · p1)(b · p1) : (K1 −K3)A(0,0)
1 − 2

p1

∂A
(0,0)
1
∂p1

+ 2
p3

∂A
(0,0)
1
∂p3

= 0

(K1 −K3)A(0,1)
1 + 2

p3

∂A
(0,1)
1
∂p3

= 0

(K1 −K3)A(1,0)
1 − 2

p1

∂A
(1,0)
1
∂p1

= 0

(K1 −K3)A(1,1)
1 = 0

(ε2 · π2 · p1)(b · p2) : (K2 −K3)A(0,0)
1 − 2

p1

∂A
(0,1)
1
∂p1

+ 2
p3

∂(A(0,0)
1 +A

(1,0)
1 )

∂p3
+A

(1,1)
2 = 0

(K2 −K3)A(0,1)
1 + 2

p3

∂(A(0,1)
1 +A

(1,1)
1 )

∂p3
+A

(1,2)
2 = 0

(K2 −K3)A(1,0)
1 − 2

p1

∂A
(1,1)
1
∂p1

+A
(2,1)
2 = 0

(K2 −K3)A(1,1)
1 +A

(2,2)
2 = 0 (G.2)
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(ε2 · π2 · ε1)(b · p1) : (K1 −K3)B(0,0)
1,0 + 2

p3

∂B
(0,0)
1,0
∂p3

− 2A(0,1)
1 = 0

(K1 −K3)B(1,0)
1,0 − 2A(1,1)

1 = 0

(ε2 · π2 · ε1)(b · p2) : (K2 −K3)B(0,0)
1,0 + 2

p3

∂(B(0,0)
1,0 +B

(1,0)
1,0 )

∂p3
− 2A(0,1)

1 + 2B(1,1)
1,1 = 0

(K2 −K3)B(1,0)
1,0 − 2A(1,1)

1 + 2B(2,1)
1;1 = 0 (G.3)

(ε2 · π2 · ε3)(b · p1) : (K1 −K3)B(0,0)
2,0 − 2

p1

∂B
(0,0)
2,0
∂p1

− 2A(1,0)
1 = 0

(K1 −K3)B(0,1)
2,0 − 2A(1,1)

1

(ε2 · π2 · ε3)(b · p2) : (K2 −K3)B(0,0)
2,0 − 2

p1

∂B
(0,1)
2,0
∂p1

+ 2B(1,1)
2,1

(K2 −K3)B(0,1)
2,0 + 2B(1,2)

2,1 = 0 (G.4)

Finally, at O(z0), we have following equations

(ε2 · π2 · p1)(b · p1) : (K1 −K3)A(0,0)
2 − 4

p1

∂A
(0,0)
2
∂p1

+ 4
p3

∂A
(0,0)
2
∂p3

= 0

(K1 −K3)A(0,1)
2 − 2

p1

∂A
(0,1)
2
∂p1

+ 4
p3

∂A
(0,1)
2
∂p3

= 0

(K1 −K3)A(0,2)
2 + 4

p3

∂A
(0,2)
2
∂p3

= 0

(K1 −K3)A(1,0)
2 − 4

p1

∂A
(1,0)
2
∂p1

+ 2
p3

∂A
(1,0)
2
∂p3

= 0

(K1 −K3)A(1,1)
2 − 2

p1

∂A
(1,1)
2
∂p1

+ 2
p3

∂A
(1,1)
2
∂p3

= 0

(K1 −K3)A(1,2)
2 + 2

p3

∂A
(1,2)
2
∂p3

= 0

(K1 −K3)A(2,0)
2 − 4

p1

∂A
(2,0)
2
∂p1

= 0

(K1 −K3)A(2,1)
2 − 2

p1

∂A
(2,1)
2
∂p1

= 0

(K1 −K3)A(2,2)
2 = 0 (G.5)

(ε2 · π2 · p1)(b · p2) : (K2 −K3)A(0,0)
2 − 2

p1

∂A
(0,1)
2
∂p1

+ 1
p3

∂(4A(0,0)
2 + 2A(1,0)

2 )
∂p3

= 0

(K2 −K3)A(0,1)
2 − 2

p1

∂A
(0,2)
2
∂p1

+ 1
p3

∂(4A(0,1)
2 + 2A(1,1)

2 )
∂p3

= 0
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(K2 −K3)A(0,2)
2 + 1

p3

∂(4A(0,2)
2 + 2A(1,2)

2 )
∂p3

= 0

(K2 −K3)A(1,0)
2 − 2

p1

∂A
(1,1)
2
∂p1

+ 2
p3

∂(A(1,0)
2 +A

(2,0)
2 )

∂p3
= 0

(K2 −K3)A(1,1)
2 − 2

p1

∂A
(1,2)
2
∂p1

+ 2
p3

∂(A(1,1)
2 +A

(2,1)
2 )

∂p3
= 0

(K2 −K3)A(1,2)
2 + 2

p3

∂(A(1,2)
2 +A

(2,2)
2 )

∂p3
= 0

(K2 −K3)A(2,0)
2 − 2

p1

∂A
(2,1)
2
∂p1

= 0

(K2 −K3)A(2,1)
2 − 2

p1

∂A
(2,2)
2
∂p1

= 0

(K2 −K3)A(2,2)
2 = 0 (G.6)

(ε2 · π2 · ε1)(b · p1) : (K1 −K3)B(0,0)
1,1 − 2

p1

∂B
(0,0)
1,1
∂p1

+ 4
p3

∂B
(0,0)
1,1
∂p3

−A(0,1)
2 = 0

(K1 −K3)B(0,1)
1,1 + 4

p3

∂B
(0,1)
1,1
∂p3

−A(0,2)
2 = 0

(K1 −K3)B(1,0)
1,1 − 2

p1

∂B
(1,0)
1,1
∂p1

+ 2
p3

∂B
(1,0)
1,1
∂p3

−A(1,1)
2 = 0

(K1 −K3)B(1,1)
1;1 + 2

p3

∂B
(1,1)
1;1
∂p3

−A(1,2)
2 = 0

(K1 −K3)B(2,0)
1;1 − 2

p1

∂B
(2,0)
1;1
∂p1

−A(2,1)
2 = 0

(K1 −K3)B(2,1)
1;1 −A(2,2)

2 = 0 (G.7)

(ε2 · π2 · ε1)(b · p2) : (K2 −K3)B(0,0)
1,1 − 2

p1

∂B
(0,1)
1,1
∂p1

+ 1
p3

∂(4B(0,0)
1,1 + 2B(1,0)

1;1 )
∂p3

−A(0,1)
2 = 0

(K2 −K3)B(0,1)
1,1 + 1

p3

∂(4B(0,1)
1,1 + 2B(1,1)

1,1 )
∂p3

−A(0,2)
2 = 0

(K2 −K3)B(1,0)
1,1 − 2

p1

∂B
(1,1)
1,1
∂p1

+ 2
p3

∂(B(1,0)
1,1 +B2,0

1,1)
∂p3

−A(1,1)
2 = 0

(K2 −K3)B(1,1)
1;1 + 2

p3

∂(B(1,1)
1;1 +B2,1

1;1)
∂p3

−A(1,2)
2 = 0

(K2 −K3)B(2,0)
1;1 − 2

p1

∂B
(2,1)
1;1
∂p1

−A(2,1)
2 = 0

(K2 −K3)B(2,1)
1;1 −A(2,2)

2 = 0 (G.8)
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(ε2 · π2 · ε3)(b · p1) : (K1 −K3)B(0,0)
2,1 − 4

p1

∂B
(0,0)
2,1
∂p1

+ 2
p3

∂B
(0,0)
2,1
∂p3

−A(1,0)
2 = 0

(K1 −K3)B(0,1)
2,1 − 2

p1

∂B
(0,1)
2,1
∂p1

+ 2
p3

∂B
(0,1)
2,1
∂p3

−A(1,1)
2 = 0

(K1 −K3)B(0,2)
2,1 + 2

p3

∂B
(0,2)
2,1
∂p3

−A(1,2)
2 = 0

(K1 −K3)B(1,0)
2;1 − 4

p1

∂B
(1,0)
2;1
∂p1

−A(2,0)
2 = 0

(K1 −K3)B(1,1)
2;1 − 2

p1

∂B
(1,1)
2;1
∂p1

−A(2,1)
2 = 0

(K1 −K3)B(1,2)
2;1 −A(2,2)

2 = 0 (G.9)

(ε2 · π2 · ε3)(b · p2) : (K2 −K3)B(0,0)
2,1 − 2

p1

∂B
(0,1)
2,1
∂p1

+ 2
p3

∂(B(0,0)
2;1 +B

(1,0)
2;1 )

∂p3
= 0

(K2 −K3)B(0,1)
2,1 − 2

p1

∂B
(0,2)
2,1
∂p1

+ 2
p3

∂(B(0,1)
2,1 +B

(1,1)
2,1 )

∂p3
= 0

(K2 −K3)B(0,2)
2,1 + 2

p3

∂(B(0,2)
2,1 +B1,2

2,1)
∂p3

= 0

(K2 −K3)B(1,0)
2;1 − 2

p1

∂B
(1,1)
2;1
∂p1

= 0

(K2 −K3)B(1,1)
2;1 − 2

p1

∂B
(1,2)
2;1
∂p1

= 0

(K2 −K3)B(1,2)
2;1 = 0 (G.10)

H Solution of secondary equations for s = 2 and ∆1 6= ∆3

For ∆1 6= ∆3, the secondary equations give following relations between the coefficients for
the spin 2 case

a
(2,2)
2 =

4
(

∆3a
(1,2)
2 +∆1a

(2,1)
2

)
(∆1−∆3)(d+3∆1+3∆3+4)

a
(0,2)
2 =−4(∆1−∆3)(−d+∆1+∆3+2)a{1,1}

1
2∆3(∆3−1) + 2(∆1−1)∆1a

{2,0}
2

2∆3(∆3−1)

+
(
(∆1+∆3)

(
∆1(2d+3∆1+8)−(d−8)d−3∆2

3
)
−4(d−2)d

)
a

{1,2}
2

2(d+3∆1+3∆3+4)(∆3−1)

+
∆1
(
−(∆1+∆3)

(
(d+∆3)(d−3∆3−8)+3∆2

1
)
−4(d−2)d

)
a

{2,1}
2

2∆3(d+3∆1+3∆3+4)(∆3−1)
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J
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P
0
3
(
2
0
2
3
)
1
9
6

a
(1,1)
2 = 2(−d+∆1+∆3+2)a(1,1)

1
∆3

+ (d−2)((∆1+∆3)(d+∆1−∆3)+2d)a(1,2)
2

(∆1−∆3)(d+3∆1+3∆3+4)

+ a
(2,1)
2

2(∆1−∆3)∆3(d+3∆1+3∆3+4)

[
∆2

1((d−8)d−2∆3(2d+3∆3+2))

+2(d−2)d(∆3+2)∆1+∆2
3(d+∆3)(d+3∆3+4)+3∆4

1

]
− (∆1−1)a(2,0)

2
∆3

a
(1,0)
2 = (∆1+∆3−2)(d+∆1−∆3)(−d+∆1+∆3+2)a(1,1)

1
∆1∆3

+ 1
4(∆1−∆3)∆3(d+3∆1+3∆3+4)

[
(∆1+∆3−2)(d+∆1−∆3)(

(∆1+∆3)
(
(d−2)∆1−∆3(3d+2∆3+2)+(d−6)d+2∆2

1
)
+4(d−2)d

)]
a

(2,1)
2

+ 1
4∆1(∆1−∆3)(d+3∆1+3∆3+4)

[
(∆1+∆3−2)(d+∆1−∆3)

((∆1+∆3)(∆3(−2d+∆3+2)+(d−6)d−∆1(∆1+6))+4(d−2)d)
]
a

(1,2)
2

− (∆1+∆3−2)(3d+∆1+∆3−4)a(2,0)
2

4∆3

a
(0,1)
2 =−

(∆1+∆3−2)(−d+∆1+∆3+2)
(
∆1(3d−2∆3−2)−(∆3+2)(d−∆3)+∆2

1
)
a

(1,1)
1

2∆1(∆3−1)∆3

− (∆1+∆3−2)
8(∆1−∆3)(∆3−1)∆3(d+3∆1+3∆3+4)

[
−8(d−2)d2+∆4

3(9d+3∆1−14)

+∆3
3(−2∆1(2d+∆1−6)+d(7d+2)−20)−∆2

3

(
∆1(6∆1(3d+∆1−4)+d(5d−6)+4)

+d((d−18)d+16)
)

+∆3

(
∆1
(
∆1
(
4(d−3)∆1−d(11d+10)+∆2

1+20
)
+2(d−6)(d−2)d

)
−2(d−4)d(3d−2)

)
+∆1

(
∆1(∆1(∆1(9d+3∆1−10)+(d−14)d+4)+d(3(d−6)d+8))

+2d(5(d−2)d+8)
)

+∆5
3

]
a

(2,1)
2

− ∆1+∆3−2
8∆1(∆1−∆3)(∆3−1)(d+3∆1+3∆3+4)

[
∆4

1(∆3−11d)+∆3
1

(
−d(5d+26)+6∆2

3

−4∆3+28
)

+∆2
1((d−4)d(3d−4)−∆3(2∆3(−7d+∆3+2)+d(7d−6)+4))

+∆1(∆3(∆3(d(d+18)+∆3(4−3∆3)−28)+2(d−6)(d−2)d)+2d(5(d−2)d+8))

−(∆3+2)(d−∆3−2)(d−∆3)(∆3(d−∆3)+4d)−3∆5
1

]
a

(1,2)
2

+ (∆1−1)(∆1+∆3−2)(3d+∆1+∆3−4)a(2,0)
2

4(∆3−1)∆3

a
(0,0)
2 = (d−2)(∆1+∆3−4)(∆1+∆3−2)(d−∆1−∆3−2)(d+∆1−∆3)a(1,1)

1
2∆1(∆3−1)∆3

− (d−2)(∆1+∆3−4)(∆1+∆3−2)(d+∆1−∆3)
8(∆1−∆3)(∆3−1)∆3(d+3∆1+3∆3+4)

[
4(d−2)d
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P
0
3
(
2
0
2
3
)
1
9
6

+(∆1+∆3)
(
(d+∆3)(d−5∆3−6)+3∆2

1+2(∆3−1)∆1
)]
a

(2,1)
2

− (d−2)(∆1+∆3−4)(∆1+∆3−2)(d+∆1−∆3)
8(∆1−∆3)(∆3−1)∆1(d+3∆1+3∆3+4)

[
4(d−2)d

+(∆1+∆3)
(
−2∆1(d−∆3+5)+∆3(−2d+∆3+2)+(d−6)d−3∆2

1

)]
a

(1,2)
2

+ (d−2)(∆1+∆3−4)(∆1+∆3−2)(d+∆1+∆3−2)a(2,0)
2

4(∆3−1)∆3

a
(1,0)
1 = ((∆1+∆3)(d+∆1−∆3)−2d+4)a(1,1)

1
2∆1

− 1
4(∆1−1)a(2,0)

2

−
(
(∆1+∆3)(d+∆1−∆3)

(
∆3(d+∆3+2)+d−∆2

1+2
)
−4(d−2)d

)
a

(2,1)
2

4(∆1−∆3)(d+3∆1+3∆3+4)

−∆3((∆1+∆3)(∆1+∆3+2)(d+∆1−∆3)(d+∆1−∆3+2)−8(d−2)d)a(1,2)
2

8∆1(∆1−∆3)(d+3∆1+3∆3+4)

a
(0,1)
1 =− ((d−1)∆3−d+∆1+2)a(1,1)

1
∆3

+ (∆1−1)∆1a
(2,0)
2

4∆3

− ∆1

4(∆1−∆3)∆3(d+3∆1+3∆3+4)

[
d∆3

1−∆2
1(3d+2∆3(∆3+1)−2)+4(d−2)d

−d∆1(∆3(d+∆3+2)−d+6)−∆3(d−∆3)(∆3(d+∆3+2)+3d−2)+∆4
1

]
a

(2,1)
2

+ 1
8(∆1−∆3)(d+3∆1+3∆3+4)

[
−2d∆3

3+∆2
3(−2∆1(d+∆1+2)+(d−6)d+4)

+2d∆3(∆1(d+∆1+2)+3d−2)+∆1(∆1(∆1(2d+∆1+4)+d(d+10)−4)−2(d−6)d)

−8(d−2)d+∆4
3

]
a

(1,2)
2

a
(0,0)
1 =− (d−2)(∆1+∆3−2)(d+∆1−∆3−2)a(1,1)

1
2∆1

+ (d−2)(∆1−1)(∆1+∆3−2)a(2,0)
2

4∆3

+ (d−2)(∆1+∆3−2)
4(∆1−∆3)∆3(d+3∆1+3∆3+4)

[
∆2

3(∆1(d+2∆1−1)+(d−1)d)

+∆3
(
d(d+4)∆1+2(d−2)d+∆2

1
)
−(∆1−1)∆2

1(d+∆1)−∆4
3−∆3

3

]
a

(2,1)
2

+ (d−2)(∆1+∆3−2)
8∆1(∆1−∆3)(d+3∆1+3∆3+4)

[
−2(d−1)∆3

3+∆2
3((d−6)d−2∆1(d+∆1+3))

+2∆3
(
(d−1)∆2

1+d(d+4)∆1+2(d−2)d
)
+∆2

1(d+∆1)(d+∆1+6)+∆4
3

]
a

(1,2)
2

a
(0,0)
1 =

(d−2)
(

(∆1−∆3)(d+3∆1+3∆3+4)a{1,1}
1 −d∆3a

{1,2}
2 −d∆1a

{2,1}
2

)
(∆1−∆3)(d+3∆1+3∆3+4)

b
(1,0)
1;0 =

(
∆3(2d+∆1−3)+(∆1−1)(d−∆1−2)+2∆2

3
)
a

(1,1)
1

∆3
− (∆1−1)∆1(∆3−1)a(2,0)

2
4∆3
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0
3
(
2
0
2
3
)
1
9
6

+ ∆1

4(∆1−∆3)∆3(d+3∆1+3∆3+4)

[
−d(d+5)∆3

3−(d+1)(3d+2)∆2
3+d(10−7d)∆3

+d∆3
1(∆3+1)−d∆1(∆3+1)(∆3(d+∆3+2)+3d−2)

+∆2
1(∆3(3d−2(∆3−1)∆3)−(d−5)d+2)+4(d−2)d+∆5

3+∆4
1(∆3−2)

]
a

(2,1)
2

− 1
8(∆1−∆3)(d+3∆1+3∆3+4)

[
∆3

3
(
d2−2∆1(d+∆1+2)−12

)
+∆3

(
∆1
(
8d2+∆1(∆1(2d+∆1+4)+d(d+4)+12)

)
+2d(7d−10)

)
−(2d+5)∆4

3+∆2
3(2∆1((d+5)∆1+d(d+3)+6)+d(5d+6)+4)

+∆1(∆1+2)(d+∆1)(3d−5∆1−2)−8(d−2)d+∆5
3

]
a

(1,2)
2

b
(0,0)
1;0 =−

(∆1+∆3−2)
(
−2∆1(d+∆3−1)+∆3(−2d−3∆3+2)+(d−2)d+∆2

1
)
a

(1,1)
1

2∆3

+ ∆1(∆1+∆3−2)
8(∆1−∆3)∆3(d+3∆1+3∆3+4)

[
(∆1+∆3)

(
−d∆3

3−∆2
3

(
d(d+11)

+2(∆1−1)∆1−2
)

+d∆3

(
(d−6)d+∆1(∆1+4)−12

)
+∆1

(
∆1

(
(∆1−2)∆1

−(d−2)(d−1)
)
−2(d−4)d

)
+d((d−10)d+8)+∆4

3

)
+4(d−2)d2

]
a

(2,1)
2

− ∆1+∆3−2
16(∆1−∆3)(d+3∆1+3∆3+4)

[
−8(d−2)d2+(∆1+∆3)

(
∆1

(
∆1
(
∆1(d+∆1−4)

−(d−2)d−12
)
−(d−4)d2

)
−(3d+8)∆3

3−∆2
3(∆1(d+2∆1−4)+d(2−3d)+20)

+∆3(∆1((3d+8)∆1+2d(d+4)+32)+d(8−(d−12)d))−2d((d−10)d+8)+∆4
3

)]
a

(1,2)
2

− (∆1−1)∆1(∆1+∆3−2)(−d+∆1+∆3)a(2,0)
2

8∆3

b
(2,1)
1;1 = 2a(1,1)

1 +
∆1
(
−d∆1−∆3(3d+∆3)−4d+∆2

1
)
a

(2,1)
2

2(∆1−∆3)(d+3∆1+3∆3+4)

−∆3(∆1+∆3+2)(d+∆1−∆3)a(1,2)
2

(∆1−∆3)(d+3∆1+3∆3+4)

b
(1,1)
1;1 =

(
−(d−1)∆1−∆3(d+∆3−1)+d+∆2

1−2
)
a

(1,1)
1

∆3(∆1+∆3) − (∆1−1)∆1a
(2,0)
2

4∆3(∆1+∆3)

− ∆1

4∆3(∆2
3−∆2

1)(d+3∆1+3∆3+4)

[
(∆1+∆3)

(
−∆2

1(d+2∆3)

+∆1(−∆3(3d+2∆3+2)+(d−5)d−2)+∆3(2∆3(2d+∆3+1)+d(2d+3)+2)

+d(3d−2)+2∆3
1

)
−4(d−2)d

]
a

(2,1)
2

+ 1
8(∆2

1−∆2
3)(d+3∆1+3∆3+4)

[
(∆1+∆3)

(
∆2

1(5∆3−2(d+12))

+∆1(d(3d−10)+5∆3(∆3+4)−20)+∆3(∆3(2d−5∆3+4)+3d(d+2)+20)
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0
3
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3
)
1
9
6

+2d(3d−2)−5∆3
1

)
−8(d−2)d

]
a

(1,2)
2

b
(0,1)
1;1 = (∆1+∆3−2)(−d+∆1+∆3+2)(2(d+∆3−1)−(∆1+∆3)(d−∆1+∆3))a(1,1)

1
4(∆3−1)∆3

+ ∆1(∆1+∆3−2)
16(∆1−∆3)(∆3−1)∆3(d+3∆1+3∆3+4)

[
∆1

(
∆3

(
∆3
(
5d2+∆3(6d+3∆3+4)+4

)
−2(d−2)2d

)
−2d(d(d+3)−6)

)
+∆3

(
∆3
(
∆3
(
−d2+∆3(d+∆3+2)+4

)
−d
(
d2+6

)
+4
)

−2d((d−1)d+2)
)

+∆4
1(−3d+∆3+2)+∆3

1(−2∆3(3d+3∆3+2)+(d−4)d−4)+3∆5
1

−∆2
1(∆3(2∆3(−d+∆3+2)+d(4−7d)+4)+d((d−8)d+2)+4)+8(d−2)(d−1)d

]
a

(2,1)
2

− ∆1+∆3−2
16(∆1−∆3)(∆3−1)(d+3∆1+3∆3+4)

[
∆4

3(−3d+3∆1−7)−2∆3
3

(
∆1(d+2∆1+6)

+5d+2
)

+∆2
3(∆1(2∆1(2d−3∆1−1)+d(4−3d)+4)+d((d−1)d+6)+12)

+2∆3
(
∆1
(
∆1(∆1(d+∆1+6)+d(7−3d)+2)+d(d−2)2)+d((d−1)d+2)

)
+2∆5

3

+∆1(d+∆1)(∆1(∆1(−4d+3∆1+9)+(d−9)d−4)+2(d(d+3)−6))

−8(d−2)(d−1)d
]
a

(1,2)
2 + (∆1−1)∆1(∆1+∆3−2)(d−∆1−1)a(2,0)

2
8(∆3−1)∆3

b
(1,0)
1;1 = (∆1+∆3−2)

2∆1∆3

[
−∆1

(
d2+(∆3−2)∆3

)
−(∆3−2)(d−∆3−2)(d+∆3)

+∆3
1−(∆3−2)∆2

1

]
a

(1,1)
1 − (∆1−1)(∆1+∆3−2)(d+∆3)a(2,0)

2
4∆3

+ ∆1+∆3−2
8(∆1−∆3)∆3(d+3∆1+3∆3+4)

[
∆3

1
(
(d−8)d−2∆2

3
)
+∆5

1

+∆1
(
2d
(
d2+d−2

)
∆3+2d2(d+2)+d(4−3d)∆2

3+∆4
3
)
+∆4

1(d+∆3+2)

+(d+∆3)
(
∆3
(
∆3
(
d2+∆3(−2d+∆3+6)+4

)
+2d(d+2)

)
−8(d−2)d

)
+∆2

1
(
d
(
d2−12

)
−∆3(d(d+10)+2∆3(∆3+4)+4)

)]
a

(2,1)
2

+ ∆1+∆3−2
8∆1(∆1−∆3)(d+3∆1+3∆3+4)

[
∆2

3
(
d3+2∆1(2∆1(d+∆1+2)−(d−2)d+4)

)
+∆3

(
∆1
(
2d
(
d2+d−2

)
+∆1(∆1(−2d+∆1+4)−d(d+2)+4)

)
+2d((d−2)d+8)

)
−8(d−2)d2−∆4

3(d+2∆1)−∆3
3(2∆1(−d+∆1+2)+d(d+2)+4)

−∆1(∆1+2)(d+∆1)(d+∆1+2)(2∆1−d)+∆5
3

]
a

(1,2)
2

b
(2,0)
1;1 =− (∆1+∆3−2)(−d+∆1+∆3+2)a(1,1)

1
∆1

+ 1
2(∆1−1)a(2,0)

2

− 1
4(∆1−∆3)(d+3∆1+3∆3+4)

[
(∆1+∆3)

(
∆3
(
d2+∆3(−2d+∆3+6)+4

)
+∆1(−∆3(6d+3∆3+4)+(d−4)d−4)+2d(d+2)+3∆3

1−(∆3+2)∆2
1

)
−8(d−2)d

]
a

(2,1)
2
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0
3
(
2
0
2
3
)
1
9
6

−∆3((∆1+∆3)(∆1+∆3+2)(d−3∆1−∆3+2)(d+∆1−∆3)−8(d−2)d)a(1,2)
2

4∆1(∆1−∆3)(d+3∆1+3∆3+4)

b
(0,0)
1;1 = (∆1+∆3−4)(∆1+∆3−2)

24∆1(∆3−1)∆3

[
∆3

1(−3d−2∆3+20)−∆2
1((d+8)∆3+(d−4)(3d+2))

+∆1
(
−(d+16)∆2

3+4(5d−3)∆3+d(3(d−8)d+44)+2∆3
3−40

)
+3(d−∆3−2)(∆3(∆3(2d+∆3−6)+(d−4)d)−2(d−4)d)+3∆4

1

]
a

(1,1)
1

+ (∆1+∆3−4)(∆1+∆3−2)
96(∆1−∆3)(∆3−1)∆3(d+3∆1+3∆3+4)

[
−∆4

1
(
6d2+∆3(16d+21∆3+6)−40d+60

)
+3∆3

(
∆3

(
∆3
(
4
(
d2+d−8

)
−∆3(−2d(d+2)+∆3(∆3+2)+20)

)
−d(d(d(d+4)−36)+32)

)
−2(d−4)d2(d+2)

)
+24(d−4)(d−2)d2

−4∆3
1(∆3(∆3(d+∆3+19)+d(2d−5)+24)−8(d−5)d−2)

+∆2
1

(
∆3
(
∆3
(
4(4d+3)∆3+12(d−5)d+15∆2

3+120
)
+12(d((d−3)d−9)+8)

)
+d(8−3(d−8)(d−4)d)

)
+2∆1

(
∆3

(
∆3

(
∆3(∆3(2d+∆3+21)+2d(5d−7)+48)

+2(d−2)d(3d−8)−4
)

+d(d(−3(d−4)d−50)+68)
)

+d(d(−3(d−10)d−64)+80)
)

+9∆6
1+2(∆3+17)∆5

1

]
a

(2,1)
2

− (∆1+∆3−4)(∆1+∆3−2)
96∆1(∆1−∆3)(∆3−1)(d+3∆1+3∆3+4)

[
−2∆3

1

(
3d3+2∆3

(
∆3(2d−∆3+17)

+(d−1)(3d−4)
)
−104d+68

)
+∆4

1
(
4(d−3)∆3+2d(49−6d)−15∆2

3+60
)

+∆2
1

(
∆3
(
∆3
(
−4(d−6)∆3+6(d−18)d+3∆2

3−24
)
+6d(d(7−2d)+2)

)
+d(3d((d−10)d+32)−104)

)
+∆5

1(6d−2∆3+62)+2∆1

(
∆3
(
∆3
(
∆3
(
∆3(d−∆3+3)

−10d+8
)
+d(−3(d−4)d−56)+68

)
+d(d(3(d−4)d+50)−68)

)
+d(d(3(d−10)d+64)−80)

)
+3(d−∆3−2)(∆3(d−∆3)+4d)(∆3(∆3(2d+∆3−6)+(d−4)d)−2(d−4)d)+9∆6

1

]
a

(1,2)
2

− (∆1−1)(∆1+∆3−4)(∆1+∆3−2)
48(∆3−1)∆3

[
−3(∆3(2d+∆3−4)+(d−8)d+8)+3∆2

1

+2(∆3+5)∆1

]
a

(2,0)
2

b
(0,1)
2;0 =

(
−d(∆1+1)∆3−∆1(∆1(−d+∆1+5)+5d−8)+2(d−2)+(∆1+1)∆2

3
)
a

(1,1)
1

2∆1

1
4(∆1−∆3)(d+3∆1+3∆3+4)

[
−(d+1)∆4

1+2∆3
1
(
2d+∆2

3+∆3−3
)

+∆2
1(∆3((d+2)∆3+d(d+2)+2)+(d+1)(d+2))−4(d−2)d−∆5

1

+∆1(∆3(∆3((d−2)d−∆3(∆3+2)+6)+2d(3d−2))+d(9d−14))

– 53 –



J
H
E
P
0
3
(
2
0
2
3
)
1
9
6

+∆3(d−∆3)(∆3(d+∆3+2)+d+2)
]
a

(2,1)
2 + 1

4(∆1−1)2a
(2,0)
2

+ ∆3

8∆1(∆1−∆3)(d+3∆1+3∆3+4)

[
(2d+5)∆4

1+∆3
1(2∆3(d−∆3)+d(d+16)−8)

+∆2
1(2(d+3)∆3(d−∆3)+d(3d+10)+4)+(∆3−2)(d−∆3−2)(∆3(d−∆3)+4d)

+∆1(∆3(d−∆3)(∆3(d−∆3)+12d−8)+2d(9d−14))+∆5
1

]
a

(1,2)
2

b
(0,0)
2;0 = (∆1+∆3−2)

4∆1

[
∆2

1(−2d+∆3+8)+∆1(d(d+2)−(∆3−4)∆3−4)

−(∆3+2)(d−∆3−2)(d−∆3)+∆3
1

]
a

(1,1)
1

+ ∆1+∆3−2
8(∆1−∆3)(d+3∆1+3∆3+4)

[
−∆3

3
(
d2+∆1(d+2∆1−2)+d−6

)
+4(d−2)d2

+∆2
3
(
d((d−8)d+4)−∆1

(
d2+∆1(−d+2∆1+10)+d+10

))
+∆4

3(−d+∆1+6)

+∆3(∆1(∆1(∆1(d+∆1−2)−d(d+3)−6)+d((d−8)d−4))+(d−4)d(3d−2))

+∆1(∆1(∆1(∆1(∆1+4)−(d−2)(d+5))−8d)−d(d(d+6)−8))+∆5
3

]
a

(2,1)
2

− ∆3(∆1+∆3−2)
16∆1(∆1−∆3)(d+3∆1+3∆3+4)

[
−∆3

1(2∆3(∆3−2(d+1))+(d−22)d+4)

∆2
1
(
∆3(2∆3(d−∆3−6)+d(d+22)−4)−d

(
d2−32

))
+∆4

1(d+∆3+8)

+∆1

(
∆3
(
∆3
(
−4(d+1)∆3+d(5d−14)+∆2

3+4
)
−2d((d−8)d−4)

)
+2d(d(d+6)−8)

)
−(∆3+2)(d−∆3−2)(d−∆3)(∆3(d−∆3)+4d)+∆5

1

]
a

(1,2)
2

− 1
8(∆1−1)(∆1+∆3−2)(−d+∆1+∆3)a(2,0)

2

b
(1,2)
2;1 =

∆3
(
3d∆1+∆3(d−∆3)+4d+∆2

1
)
a

(1,2)
2 +2∆1(∆1+∆3+2)(d−∆1+∆3)a(2,1)

2
2(∆1−∆3)(d+3∆1+3∆3+4)

−2a(1,1)
1

b
(1,1)
2;1 =−

(
d∆3+∆1(3d+∆1−4)−2d−∆2

3+4
)
a

(1,1)
1

2∆1(∆1+∆3) − (∆1−1)a(2,0)
2

4(∆1+∆3)

− 1
4(∆2

1−∆2
3)(d+3∆1+3∆3+4)

[
∆2

1
(
−2d2+d−2∆3(∆3+4)−10

)
+∆3

(
∆3
(
−d2+d+∆3(∆3+8)+10

)
−d(d+2)

)
−(d+2)∆3

1

+∆1
(
(d+2)∆2

3+d(2−3d)∆3+d(6−5d)
)
+4(d−2)d+∆4

1

]
a

(2,1)
2

+ ∆3

8∆1(∆2
1−∆2

3)(d+3∆1+3∆3+4)

[
∆2

1(2∆3(d−∆3)+d(5d−2)+4)

+(6d−4)∆3
1+2∆1((3d−2)∆3(d−∆3)+d(5d−6))+∆4

1

+(∆3−2)(d−∆3−2)(∆3(d−∆3)+4d)
]
a

(1,2)
2
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b
(1,0)
2;1 = (∆1+∆3−2)(2d+∆1−∆3−2)(−d+∆1+∆3+2)a(1,1)

1
4∆1

+ ∆1+∆3−2
8(∆1−∆3)(d+3∆1+3∆3+4)

[
−∆2

1(∆3(d+2∆3+6)+5d+6)

+∆1
(
d(2−3d)∆3+d((d−5)d+2)+4∆2

3
)
+4(d−2)(d−1)d+∆4

1−4∆3
1

+∆3(∆3(∆3(d+∆3+6)+d(7−3d)+6)+d((d−9)d+10))
]
a

(2,1)
2

− ∆3(∆1+∆3−2)
16∆1(∆1−∆3)(d+3∆1+3∆3+4)

[
∆2

1
(
4(d−1)∆3+d(d+10)−2∆2

3−4
)

−2d∆1(∆3(−3d+2∆3+2)+(d−5)d+2)+4d∆3
1+∆4

1

−(d−∆3−2)(2d−∆3−2)(∆3(d−∆3)+4d)
]
a

(1,2)
2

− 1
8(∆1+∆3−2)(d−∆3−1)a(2,0)

2

b
(0,1)
2;1 = (∆1+∆3−2)

2∆1∆3

[
∆2

3(d+2∆1−2)−2(∆1−1)(−d+∆1+2)(d+∆1)

+∆3
(
−d∆1+2d+∆2

1
)
−∆3

3

]
a

(1,1)
1 + (∆1−1)(∆1+∆3−2)(d+∆1)a(2,0)

2
4∆3

− ∆1+∆3−2
4(∆1−∆3)∆3(d+3∆1+3∆3+4)

[
∆3

3
(
d2+2∆1(∆1+3)−4

)
−∆3

(
∆1
(
∆1
(
2
(
d2+d−2

)
+∆1(∆1+6)

)
+d
(
−d2+d−2

))
+(d−6)d2)

−∆2
3(∆1(∆1(d+4∆1−4)+(d−3)d−2)+d(2−5d))+2(∆1−2)∆4

3

+(∆1−1)(d+∆1)(∆1(∆1(−d+2∆1+2)+(d−6)d)+4(d−2)d)−∆5
3

]
a

(2,1)
2

− ∆1+∆3−2
8∆1(∆1−∆3)(d+3∆1+3∆3+4)

[
∆3

3
(
(d−8)d−2∆2

1
)
+∆5

3

∆3
(
−2(d−6)d2+d(4−3d)∆2

1+2d((d−1)d+2)∆1+∆4
1
)

+2∆2
3(∆1(2∆1(2d+∆1)+3d−2)+2d(2d−3))−2∆4

3(d+∆1−1)

−2(∆1−1)(d+∆1)(∆1(∆1(2d+∆1+2)−(d−6)d)−4(d−2)d)
]
a

(1,2)
2

b
(0,2)
2;1 =−2(∆1−1)(−d+∆1+∆3+2)a(1,1)

1
∆3

+ (∆1−1)∆1a
(2,0)
2

2∆3

− (∆1−1)∆1

2(∆1−∆3)∆3(d+3∆1+3∆3+4)

[
4(d−2)d

+(∆1+∆3)
(
−(d−2)∆1−∆3(3d+2∆3+2)+(d−6)d+2∆2

1
)]
a

(2,1)
2

+ ∆1−1
2(∆1−∆3)(d+3∆1+3∆3+4)

[
−4(d−2)d

(∆1+∆3)
(
2(d+1)∆1+∆3(2d−∆3−2)−(d−6)d+∆2

1
)]
a

(1,2)
2
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b
(0,0)
2;1 =− (∆1+∆3−4)(∆1+∆3−2)

12∆1∆3

[
∆3(∆1(3d−2∆1−4)+d(3d−14)+4)

+∆2
3(−2d−3∆1+6)−3(d−∆1−2)(d+∆1−4)(d+∆1)+2∆3

3

]
a

(1,1)
1

− (∆1+∆3−4)(∆1+∆3−2)
48(∆1−∆3)∆3(d+3∆1+3∆3+4)

[
∆4

3(9d+6∆1−26)−4∆5
3

∆3

(
∆1
(
2d
(
−3d2+d+30

)
−∆1(2∆1(d+2∆1+14)+d(7d+16)−28)

)
+d(d(3(d−10)d+80)−16)

)
+∆3

3(2∆1(d+4∆1+14)+d(d+20)−28)

−∆2
3(∆1(2∆1(9d+6∆1−22)+d(9d−34))+d(d(9d−40)+4))

+3(d+∆1)(∆1(∆1(∆1(d+2∆1−6)−4d)+d((d−6)d+16))+4(d−4)(d−2)d)
]
a

(2,1)
2

+ (∆1+∆3−4)(∆1+∆3−2)
48∆1(∆1−∆3)(d+3∆1+3∆3+4)

[
2∆3

1
(
3
(
2d2+d−8

)
−∆3(3∆3+2)

)
+∆2

1(∆3(4∆3(−4d+∆3+3)+d(11d−32)+4)+6d(5d−16))

+∆1

(
∆3(∆3(−2d(3d+5)+∆3(3∆3+4)+48)+2d(d+3)(3d−10))

−3d((d−4)d(d+2)+32)
)

+2∆4
1(6d−∆3−3)+3∆5

1

−(d−∆3−2)(∆3(d−∆3)+4d)(3(d−4)d+2∆3(∆3+1))
]
a

(1,2)
2

+ (∆1+∆3−4)(∆1+∆3−2)
48∆3

[
3(∆1(2d+∆1−4)+(d−8)d+8)−3∆2

3

−2(∆1+5)∆3

]
a

(2,0)
2
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