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An integrated eco-evolutionary framework to predict 
population-level responses of climate-sensitive pathogens
Amy M Campbell1,2, Chris Hauton1, Craig Baker-Austin2,  
Ronny van Aerle2 and Jaime Martinez-Urtaza2,3

It is critical to gain insight into how climate change impacts 
evolutionary responses within climate-sensitive pathogen 
populations, such as increased resilience, opportunistic 
responses and the emergence of dominant variants from 
highly variable genomic backgrounds and subsequent global 
dispersal. This review proposes a framework to support such 
analysis, by combining genomic evolutionary analysis with 
climate time-series data in a novel spatiotemporal dataframe 
for use within machine learning applications, to understand 
past and future evolutionary pathogen responses to climate 
change. Recommendations are presented to increase the 
feasibility of interdisciplinary applications, including the 
importance of robust spatiotemporal metadata 
accompanying genome submission to databases. Such 
workflows will inform accessible public health tools and 
early-warning systems, to aid decision-making and mitigate 
future human health threats.
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Introduction
Climate change has implications for human health, in 
terms of heat vulnerability, food and water insecurity and 

exposure to extreme weather events [1,2]. Additionally, 
these changing environmental conditions are altering the 
epidemiology of diseases caused by climate-sensitive 
pathogens that exist in natural ecosystems [1,3], wherein 
pathogen life cycles are intrinsically linked to environ
mental conditions (e.g. Vibrio parahaemolyticus, a water- 
borne bacteria causing gastroenteritis [4]), or their host 
vector is governed itself by the environment (e.g. Borrelia 
burgdorferi, the tick-borne bacteria causing Lyme disease 
[5,6]). Known mechanisms of how diseases are driven by 
climate change include seasonal shifts and expansions of 
transmission periods [1,3], and spatial range expansions 
of both vectors and pathogens themselves (transconti
nental, latitudinal and polewards) [4–10]. However, re
cent years have seen the transcontinental expansion of 
certain pathogen variants with pandemic potential [9,10]. 
The mechanisms of such emergence are unknown, as 
little research has moved beyond well-established eco
logical relationships to quantify potential evolutionary 
responses of the pathogen to changes in their native 
environment.

Specifically, there is a need to characterise how evolu
tionary drivers of individual strains or clonal groups (such 
as mutation and horizontal gene transfer) and demo
graphy can be modulated by climate change. 
Environmental variability, such as temperature changes, 
leads to pathogen variants either thriving in the new 
conditions, due to phenotypic plasticity, or adapting [11], 
indicated by the presence of candidate genes under 
positive selection [12] that correlate with particular bio
climatic conditions [13], which can lead to clonal re
placement by well-adapted variants. Such adaptation 
could offer a range of benefits, including enhanced sur
vivability, fitness or transport potential.

There is currently no climate-sensitive disease model
ling tool that considers a genetic component [14]. The 
next generation of tools will need to evaluate environ
mental drivers against observed demographic events 
(e.g. emergence, bottlenecks, population expansions and 
migrations) or the uptake of particular genetic material, 
to retrospectively identify selection pressures introduced 
by climate change [15], and identify subsequent real- 
world responses of pathogen populations — which have 
previously only been hypothesised [6,16] or explored in 
lab-based studies of adaption and tolerances [17,18]. 
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This review proposes an option to overcome these lim
itations through a framework able to integrate genomic 
data, satellite-derived climate data, epidemiological data 
and pre-existing tools within machine learning applica
tions to provide novel, interdisciplinary insights into 
current and future evolutionary pathogen responses to 
climate change. This framework will allow us to develop 
real-time public health tools and early-warning systems 
that can anticipate the future climate-driven emergence 
of well-adapted pathogenic strains and mitigate future 
pandemics, ultimately increasing the resilience of health 
systems to climate-related risks [19].

Beyond ecology
Existing ecological models, that aim to quantify how 
species will respond to climate change, are not sufficient 
to integrate genomic data and capture the full dynamics 
of pathogen-specific evolutionary responses to climate 
change (Box 1). The advent of eco-evolutionary models 
is necessary — while ecological data can give insights 

into optimum range shifts and geographic abundance, 
evolutionary genomics, in the form of genomic and 
phenotypic data, are necessary to provide population- 
level insights and predictions into genetic adaption, 
phenotypic plasticity and demography shifts in response 
to climate change [11].

An eco-evolutionary framework
The framework outlined here (Figure 1) proposes that 
various pre-existing software are redeployed to integrate 
ecological dynamics and evolutionary processes, in the 
context of climate-sensitive pathogens. The seamless 
integration of phylogenetic analysis, climate timeseries, 
and additional data or encoders into a novel dataframe 
will facilitate explicit statistical investigation of complex 
eco-evolutionary relationships between climate change 
and pathogens. The dataframe will provide training data 
for machine learning applications to facilitate forecasting 
of future pathogen epidemiology, for example, optimum 
evolution zones and population-specific forecasts. Near- 

Box 1 Limitations of existing, individual ecological and evolutionary approaches  

Existing ecological models that have been used to explore how species are responding to climate change, have certain limitations when applied to 
capture the full dynamics of complex evolutionary responses of climate-sensitive pathogens. Often, they assume the species to be an unchanging 
entity, through optimum niche habitat shifts and dispersal based on physiological limitations of the species, without considering any evolutionary 
component or opportunities for adaption. Models are based on explicit occurrence/abundance population data [11] and do not allow the in
troduction of genomic data. Additionally, recently studies exploring evolutionary responses to climate change in terms of population survivability 
[13] or heterogeneous intra-species responses [38,43], are developed for larger, slower-evolving taxa, such as plants or animals [38,44,45]. 
Pathogens, however, exhibit rapid evolutionary change on faster timescales with significant horizontal gene transfer, requiring adapted workflows 
as those that exist are not directly applicable. Finally, certain ecological models act at a species level — but pathogens may not respond 
homogeneously at a species level, as particularly well-adapted clonal groups emerge from highly variable genomic backgrounds, with multiple 
variants coexisting in a population, requiring the exploration of individual variant responses and population dynamics. We explore some examples 
of ecological models used for similar applications below:
• Species Distribution Models — also known as ecological niche modelling, the niche of a species is estimated and mapped based on statistical 

correlations between species occurrence and environmental variables, mostly using Maximum Entropy or Generalised Linear Models [46]. 
These are known to underestimate [47] or overestimate [48] range boundaries based on simplistic assumptions that ignore adaption or 
geographic barriers. Evolutionary aspects are omitted — species are treated as having uniform requirements, which is inconsistent with our 
knowledge of heterogeneous groups of individuals existing in a constant state of change within a single pathogenic species [9].

• Hybrid Genomic Species Distribution Models — which instead of species occurrence, can focus on a particular genomic process, for example, 
identifying specific SNP niches, through geographical correlation between specific SNP frequencies and environmental variables, for ex
ample, [13,43–45,49]. Recent studies have been able to add an adaptive evolutionary component in this way, but this still requires combi
nation with further genomic analysis to provide further evolutionary or demographic information, that is, migration rates, evolutionary rates 
and effective population size [11] to understand population-level responses, with limited methodologies available to do so. Studies are geared 
towards genetic vulnerability studies of animal/plant species based on discrepancies in allele presence (assuming current populations are 
well-adapted to local environments) — whereas we need to understand opportunistic pathogen evolution that can rapidly respond to such 
changes.

• Metapopulation Models — these aim to project demographic consequences of populations to changing environmental variables, allowing 
disconnected patches of species to have independent dynamics and dispersal connections [50]. However, the demography of pathogen 
populations is largely more complex and dynamic than those of larger taxa the models are developed for, with highly variable genomic 
backgrounds of many more distinct genotypes, and high rates of horizontal gene transfer between these, upon which certain well-adapted 
ones emerge — making it difficult to redeploy such models for pathogen evolution. Understanding connections between populations would 
require the explicit integration of phylogenetic analysis within the model.

Similarly, genomic approaches that aim to quantify how species respond to climate change are explored by Waldvogel et al. [11] who only elu
cidate a subset of evolutionary processes rather than fully integrating eco-evolutionary dynamics [11]. New approaches, specific to pathogens, 
have emerged recently, for example, detecting bacterial DNA transfer providing adaption to new environments [51], but require a spatiotemporal 
element to facilitate integration with environmental data to explicitly pinpoint such selective pressures and responses.

The gap between ecological models and such genomic approaches needs to be bridged with an infrastructure that facilitates seamless integration 
of eco-evolutionary processes.
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Figure 1  
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An eco-evolutionary framework to explore changing epidemiology of climate-sensitive pathogens. A range of interdisciplinary inputs are explored, 
which are then integrated in a spatiotemporal dataframe, to be used as inputs in machine learning applications. Outputs will be implemented in 
integrated tools for climate-sensitive pathogen surveillance and forecasts. Created with BioRender.com.
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real-time surveillance and climate data will be con
tinuously re-fed into models for reanalysis and refine
ment. Such a template will be invaluable in the field of 
epidemiology and human health, but is flexible enough 
to be applied to a range of climate-sensitive species to 
increase our understanding of contemporary biodiversity 
and extinction processes amidst climate change [15].

Inputs
Climate data
Spatiotemporal data of a range of environmental vari
ables affecting environmental pathogens are required for 
retrospective analysis, to identify conditions that drive 
evolutionary shifts. This requires high-resolution data 
(as pathogen niches are specific and short-lived due to 
rapid replication) and extensive coverage (to elucidate 
introduction and transport mechanisms [20]). While field 
data collection at this scale is unfeasible, solutions can be 
found in the field of remote sensing that utilises con
tinuous satellite observations to provide consistent, 
spatial coverage of climate variables for analysis, at up to 
a 1 km and hourly resolution [21]. Finally, climate fore
cast data and projections will become increasingly im
portant towards the end of the workflow to predict future 
eco-evolutionary pathways for pathogens once these re
lationships have been established.

Genomic data
Tools need to integrate analysis of evolutionary and 
demographic timescales against timeseries of climate 
data to interrogate possible interactions and anticipate 
future evolutionary pathways. To facilitate this analysis, 
robust genomic surveillance is necessary — ideally pro
viding a wide range of sequenced pathogen genomes 
from which to infer evolutionary processes. The chal
lenging spatiotemporal requirements of genomic sur
veillance for this application are discussed in Box 2.

Additional input datasets
Additional datasets to obtain, dependent on user re
quirements, include human demographic data (shipping 
and transport routes, exposure), for novel analysis into 
the global dynamics of pathogens amidst human mobi
lity [22], and epidemiological data, which, if available 

and supported by robust surveillance systems, are also 
useful for cross-validation.

Analysis
Genome-wide analysis to extract evolutionary events
Bayesian phylogenetic analysis of molecular sequences 
is utilised to reconstruct phylogenies to pinpoint the 
time and location of evolutionary events and demo
graphic shifts, to explore their associations with climate 
anomalies, requiring dated tips with discrete (country 
or region) or continuous location data (co-ordinates). 
Phylogenetic outputs (maximum clade credibility 
trees) are converted into more functional outputs (e.g. 
dataframes, KML) for further spatiotemporal analysis 
using various tools [23,24]. Demographic shifts in 
dominant sequence types and population structure are 
identified using multilocus sequence typing along a 
timeseries or clusters of single-nucleotide polymorph
isms (SNPs). Genome-wide association studies 
(GWAS) identify the presence of genes with evolu
tionary or adaptive significance, to elucidate popula
tion-specific responses used by pathogens to thrive and 
establish themselves in geographically distinct, dy
namic environments. Annotating the trend and dis
tribution of accessory gene presence reveals selective 
signatures and horizontally transferred genetic mate
rial — with genes under positive selection [12], sug
gesting a benefit that outweighs the pace of genetic 
drift [25]. Recombination events and rates are identi
fied using various software [26–29]. These ‘evolu
tionary metrics’ are all converted into useable formats 
in the next stage for downstream analyses.

Spatiotemporal dataframe generation
Existing spatiotemporal software to explore climate- 
driven evolution is unable to identify explicit, complex 
associations (Box 2). This framework advocates for the 
generation of a fit-for-purpose spatiotemporal dataframe, 
similar to that used in Campbell et al. [30] but featuring 
evolutionary-dependent variables, to deploy in various 
statistical applications and provide appropriate training 
data for machine learning applications.

Box 2 Spatiotemporal data requirements and analysis limitations  

The toolkit requires genomes (tree tips) to be georeferenced with latitude and longitude values, and time-stamped in the metadata to allow 
inference of the spatiotemporal context of phylogenetic tree branches and internal tree nodes [15]. Genomic metadata on public repositories is 
currently insufficient. Here, we strongly recommend the ‘Latitude/Longitude’, ‘Location’ and time-stamped ‘Collection Date’ (in a ‘dd-mm-yyyy’ 
format) fields are completed during genomic data submission to databases.

A range of software currently exists that can visualise spatiotemporal relationships by projecting phylogenetic trees in geographical space 
[23,24,52–54], however, they cannot explicitly facilitate spatiotemporal correlation analysis of driver variables in-house. These inferences would be 
strengthened with integrated workflows that allow hypotheses to be tested [15] — currently this is only possible for static, univariate correlation 
analysis between environmental variables and allele frequencies [55] or phylogeny branches [24], omitting complex multivariate relationships 
between the constantly evolving pathogen and its dynamic environment.
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Each data point in the nested spatiotemporal dataframe 
is aggregated by a time unit, such as month, and spatial 
unit, such as district. Evolutionary metrics and gene 
presence are converted into a binary format (attributed 
a 0 or 1), known as ‘one hot encoding’, to indicate if 
events were observed in this particular spatiotemporal 
unit. Each step is then appended with associated re
levant climate data and appropriate lagged or en
gineered features, using a zonal extraction function (as 
used in Ref. [30]), alongside any further discrete or 
continuous ancillary data, for example, socioeconomic 
data. This seamless integration of environmental and 
genomic data offers analysis potential for a range of 
evolutionary components against climate data in com
bination, which is lacking in pre-existing models 
(Box 1).

Statistical multivariate correlation analysis
Multivariate regression (using models such as ordinary 
least squares, principal component analysis and gen
eralised additive models) can expose statistically sig
nificant relationships between the environmental 
variables and evolutionary metrics. Nonlinear associa
tions can be revealed using gradient boosting trees 
(which can reveal the rank and relative importance of 
each variable in driving the evolutionary metric) and 
partial dependence plots to show the marginal effect of 
each variable on the evolutionary metric of interest. 
Significant relationships are those within a 95% con
fidence interval (p =  < 0.05). The dataframe can be split 
into spatially or temporally distinct subgroups to explore 
spatial or seasonal variations in correlation coefficients. 
However, the majority of these relationships will likely 
be complex, and so statistical analysis alone may struggle 
to explore thresholds and limiting factors of variables 
interacting in a multivariate landscape.

Machine learning applications for forecasting
Evolutionary biology is extending beyond only re
constructing the past, towards harnessing this to predict 
future evolutionary processes and dynamics for in
dividual populations [31]. Implementing this requires an 
effective method of integrating a complex range of in
terdisciplinary data, spanning all aspects of climate eco- 
evolutionary analysis, to make forecasts — a complex 
task that has proved difficult in previous studies [32,33].

Machine learning (ML), in which the system can ‘learn’ 
relationships between components of the model, is a 
computationally feasible way to effectively synthesise 
climate and genomic datasets and draw meaningful 
predictions from heterogeneous, population-specific 
nonlinear interactions, functioning on a complicated 
spatiotemporal, multivariate landscape. ML offers a 
range of modelling options itself, or has the ability to 
enhance the potential of existing ecological models by 
overcoming the limitations mentioned in Box 1, 

accommodating for heterogeneous and complex pa
thogen dynamics. ML has been utilised to forecast po
pulation-level heat tolerances [34–37], environmental 
drivers of adaption [38] and diffusion [33] in slower- 
evolving taxa, but it has not been fully exploited to 
elucidate the evolutionary responses of pathogens to 
climate change, likely due to the absence of a toolkit to 
combine genomic and climate datasets into a cohesive 
format for predictive applications [34], which our fra
mework aims to solve.

Specifically, ML tools will be developed on the pro
posed novel spatiotemporal dataframe (Figure 2). The 
spatiotemporal dataframe will be split 80%-10%-10% (or 
similar) into a training dataset, validation dataset (for 
model refinement) and unseen test dataset (to draw ac
curacy metrics from), respectively. The ML model re
sults can be interrogated to extract feature importance 
and infer the relative contribution of each climate vari
able to the final predictions. Trained and refined ML 
models can then be applied to long-term or real-time 
forecast data (or hypothetical future climate scenarios) to 
anticipate a range of evolutionary events — including 
the likelihood of mutations, gene transfer or presence of 
particular adaptive traits giving an indication on the fu
ture global ecology and evolution of a range of patho
gens. Epidemiological and surveillance data will be key 
to validating the trained models, by using real-world 
outbreak data to give indications of forecast performance 
[30], and for reanalysis to provide continuous model re
finement.

Looking forward: output opportunities and 
limitations
The outputs of the framework can then be used for 
various resulting applications, within academia or policy 
and decision-making — particularly the scientific results 
should be converted into user-friendly public health 
tools. The accuracy of these outputs is dependent on the 
input datasets, which will therefore benefit from in
creased data quality, availability and standardisation. It is 
critical to fund, develop and maintain active surveillance 
systems in the future, to provide an abundance of gen
omes from which to identify new epidemic clones and 
pinpoint when and how they emerge successfully from a 
population comprising many variants, with the recent 
Covid-19 pandemic giving an insight into what can be 
achieved with high-quality, near-real-time genomic se
quencing to identify the location of emerging strains and 
consequent outbreaks [39,40]. Data are often scattered 
across a range of community-specific repositories or 
paper supplements [41,42] making interdisciplinary re
search difficult and requiring fit-for-purpose inter
disciplinary databases for open data sharing and 
conciliation of results of climate-sensitive pathogens or 
other species [41].
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Figure 2  

Current Opinion in Biotechnology

Implementation of Machine Learning within the eco-evolutionary framework, highlighting merits and considerations of the analysis. (TP = true 
positives, FP = false positives, FN = false negatives, TN = true negatives, R = recall, P = precision). Created with BioRender.com.
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Concluding remarks
This novel eco-evolutionary framework targets knowl
edge gaps in the analysis of how climate change is 
driving climate-sensitive pathogens that exist in the 
environment, providing an option to overcome previous 
limitations. The integration of genomic analysis in the 
next generation of tools will enhance currently well- 
characterised ecological relationships with variant-spe
cific evolutionary responses to climate change, to un
derstand how strains emerge from genetically diverse 
populations, spread to new locations and become 
dominant. This review advocates for genomes to be ac
companied by better spatiotemporal metadata to facil
itate such analysis. ML applications have been explored 
as facilitators to provide forecasting capabilities of future 
pathogen evolution under climate change scenarios. 
These results require follow-through to public health 
tools and databases to increase our understanding and 
predictive capabilities of how pathogens and other spe
cies involved in disease transmission pathways (e.g. 
vectors and hosts), to ultimately reduce the human 
health burden posed by climate-sensitive pathogens.
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