The University of Southampton
University of Southampton Institutional Repository

Flexural buckling performance of concrete-filled aluminium alloy tubular columns

Flexural buckling performance of concrete-filled aluminium alloy tubular columns
Flexural buckling performance of concrete-filled aluminium alloy tubular columns
The use of aluminium alloys as a structural material has recently increased because of their advantageous properties such as high strength-to-weight ratio and corrosion resistance. However, due to their low Modulus of Elasticity, instability is a major concern for aluminium alloy structural members subjected to compression. One of the ways to improve the performance of aluminium alloy hollow sections on this count is to have concrete infill within them. Past research studies have demonstrated the potential of concrete-filled aluminium tubular (CFAT) stub columns and beams to have improved structural performance, but there is still no reported research on CFAT slender columns. This paper presents an experimental and numerical investigation on the structural response of square and rectangular CFAT members under axial compression. A series of 18 tests were carried out, including 9 CFAT and 9 bare aluminium tubular (BAT) columns for reference purpose. The columns had pin-ended boundary conditions allowing rotation about the minor axis. The tubes were made of 6082-T6 heat-treated aluminium alloy and filled with concrete. The experimental failure modes, ultimate strengths and load versus mid-height lateral displacement curves are reported. Finite element models were developed and validated against the test results. A parametric study was subsequently conducted to study the buckling behaviour for a range of cross-sections and concrete strengths. The test and numerical results were utilised to assess Eurocode design equations for Class A aluminium alloy columns. It was shown that the current codified equations underestimate the actual strength of BAT slender columns and a new buckling curve improving the design accuracy is proposed. In absence of design provisions for CFAT columns, the design methodology of European standards for composite steel-concrete members with the material properties of steel replaced by those of aluminium is adopted. Finally, on the basis of the results of this study a design buckling curve suitable for CFAT columns is proposed.
0141-0296
Georgantzia, Evangelia
915a67f2-6020-4bd3-919e-f6df11f4a031
Ali, Shafayat Bin
f88ff5ff-7c22-475d-8f3e-7549cab654c0
Gkantou, Michaela
e91cc83a-e415-44f2-a616-b88e41049fdf
Kamaris, George S.
99dc43b0-0a43-4706-8f45-c28bbe0ce99b
Kansara, Kunal D.
23eb9a5c-5cc0-4c92-a79a-2bbf2bce99d5
Atherton, William
77b6872a-505d-478f-be1c-7393833823f2
Georgantzia, Evangelia
915a67f2-6020-4bd3-919e-f6df11f4a031
Ali, Shafayat Bin
f88ff5ff-7c22-475d-8f3e-7549cab654c0
Gkantou, Michaela
e91cc83a-e415-44f2-a616-b88e41049fdf
Kamaris, George S.
99dc43b0-0a43-4706-8f45-c28bbe0ce99b
Kansara, Kunal D.
23eb9a5c-5cc0-4c92-a79a-2bbf2bce99d5
Atherton, William
77b6872a-505d-478f-be1c-7393833823f2

Georgantzia, Evangelia, Ali, Shafayat Bin, Gkantou, Michaela, Kamaris, George S., Kansara, Kunal D. and Atherton, William (2021) Flexural buckling performance of concrete-filled aluminium alloy tubular columns. Engineering Structures, 242 (9), [112546]. (doi:10.1016/j.engstruct.2021.112546).

Record type: Article

Abstract

The use of aluminium alloys as a structural material has recently increased because of their advantageous properties such as high strength-to-weight ratio and corrosion resistance. However, due to their low Modulus of Elasticity, instability is a major concern for aluminium alloy structural members subjected to compression. One of the ways to improve the performance of aluminium alloy hollow sections on this count is to have concrete infill within them. Past research studies have demonstrated the potential of concrete-filled aluminium tubular (CFAT) stub columns and beams to have improved structural performance, but there is still no reported research on CFAT slender columns. This paper presents an experimental and numerical investigation on the structural response of square and rectangular CFAT members under axial compression. A series of 18 tests were carried out, including 9 CFAT and 9 bare aluminium tubular (BAT) columns for reference purpose. The columns had pin-ended boundary conditions allowing rotation about the minor axis. The tubes were made of 6082-T6 heat-treated aluminium alloy and filled with concrete. The experimental failure modes, ultimate strengths and load versus mid-height lateral displacement curves are reported. Finite element models were developed and validated against the test results. A parametric study was subsequently conducted to study the buckling behaviour for a range of cross-sections and concrete strengths. The test and numerical results were utilised to assess Eurocode design equations for Class A aluminium alloy columns. It was shown that the current codified equations underestimate the actual strength of BAT slender columns and a new buckling curve improving the design accuracy is proposed. In absence of design provisions for CFAT columns, the design methodology of European standards for composite steel-concrete members with the material properties of steel replaced by those of aluminium is adopted. Finally, on the basis of the results of this study a design buckling curve suitable for CFAT columns is proposed.

This record has no associated files available for download.

More information

Accepted/In Press date: 13 May 2021
e-pub ahead of print date: 28 May 2021
Published date: 1 September 2021

Identifiers

Local EPrints ID: 476616
URI: http://eprints.soton.ac.uk/id/eprint/476616
ISSN: 0141-0296
PURE UUID: da812602-560d-4ffb-8d13-01d590663e4e
ORCID for Evangelia Georgantzia: ORCID iD orcid.org/0000-0001-9140-8236

Catalogue record

Date deposited: 10 May 2023 16:35
Last modified: 17 Mar 2024 04:15

Export record

Altmetrics

Contributors

Author: Evangelia Georgantzia ORCID iD
Author: Shafayat Bin Ali
Author: Michaela Gkantou
Author: George S. Kamaris
Author: Kunal D. Kansara
Author: William Atherton

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×