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Purpose: To study the individual course of retinal changes caused by healthy aging using deep learning.
Design: Retrospective analysis of a large data set of retinal OCT images.
Participants: A total of 85 709 adults between the age of 40 and 75 years of whom OCT images were ac-

quired in the scope of the UK Biobank population study.
Methods: We created a counterfactual generative adversarial network (GAN), a type of neural network that

learns from cross-sectional, retrospective data. It then synthesizes high-resolution counterfactual OCT images
and longitudinal time series. These counterfactuals allow visualization and analysis of hypothetical scenarios in
which certain characteristics of the imaged subject, such as age or sex, are altered, whereas other attributes,
crucially the subject’s identity and image acquisition settings, remain fixed.

Main Outcome Measures: Using our counterfactual GAN, we investigated subject-specific changes in the
retinal layer structure as a function of age and sex. In particular, we measured changes in the retinal nerve fiber
layer (RNFL), combined ganglion cell layer plus inner plexiform layer (GCIPL), inner nuclear layer to the inner
boundary of the retinal pigment epithelium (INL-RPE), and retinal pigment epithelium (RPE).

Results: Our counterfactual GAN is able to smoothly visualize the individual course of retinal aging. Across
all counterfactual images, the RNFL, GCIPL, INL-RPE, and RPE changed by �0.1 mm � 0.1 mm, �0.5 mm � 0.2
mm, �0.2 mm � 0.1 mm, and 0.1 mm � 0.1 mm, respectively, per decade of age. These results agree well with
previous studies based on the same cohort from the UK Biobank population study. Beyond population-wide
average measures, our counterfactual GAN allows us to explore whether the retinal layers of a given eye will
increase in thickness, decrease in thickness, or stagnate as a subject ages.

Conclusion: This study demonstrates how counterfactual GANs can aid research into retinal aging by
generating high-resolution, high-fidelity OCT images, and longitudinal time series. Ultimately, we envision that
they will enable clinical experts to derive and explore hypotheses for potential imaging biomarkers for healthy and
pathologic aging that can be refined and tested in prospective clinical trials.
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Supplemental material available at www.ophthalmologyscience.org.
Many retinal diseases, such as age-related macular degenera-
tion and diabetic retinopathy, develop gradually over time.1,2

Clinicians are able to track their progression using OCT
imaging, which provides high-resolution images of the
retina.3 However, the retina also undergoes age-related phys-
iologic changes.4 A good understanding of how healthy aging
manifests itself in the retina is a crucial prerequisite to
distinguish between normal and pathologic changes and
effectively diagnose, prognose, and treat ocular diseases.

The retina has been extensively studied by retrospectively
or prospectively collecting large amounts of OCT images
from representative populations.5e14 The pooled images are
analyzed by measuring the shape and thickness of individual
ª 2023 by the American Academy of Ophthalmology
This is an open access article under the CC BY license (http://creativecommons.o
rg/licenses/by/4.0/). Published by Elsevier Inc.
retinal layers. By identifying population-wide correlations
between the eyes’ structure and demographic, lifestyle, and
medical information, researchers are able to find and validate
imaging biomarkers. Supported by the emergence of large
population studies and automated tools for processing of
medical images,15 these approaches have successfully found
links between age and changes in the nerve fiber layer,5,6,8,14

ganglion cell complex,7e9,14 photoreceptor layers,8,13 and
retinal pigment epithelium (RPE).12

However, these population-based studies have several
shortcomings. Usually, pooled data sets only include a
single scan of each eye. Even if time series data are avail-
able, it is rare that a subject is monitored for longer than a
1https://doi.org/10.1016/j.xops.2023.100294
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couple of years. Furthermore, the imaging conditions
change between subsequent visits. The retina may appear
differently because of varying levels of pupil dilation,
changes in OCT scanner hardware and software, and
different orientations of the eye. Consequently, population-
based studies are limited in their ability to evaluate the
development of the eye at a subject-specific level and
resolve subtle retinal changes that occur over the course of
decades.

In this study, we used deep learning to study the indi-
vidual course of retinal changes caused by healthy aging.
Our counterfactual generative adversarial network (GAN), a
type of neural network, learns from cross-sectional retro-
spective data. It then synthesizes high-resolution counter-
factual OCT images and longitudinal time series. These
counterfactuals reflect hypothetical scenarios in which
certain characteristics of the imaged subject, such as age or
sex, are altered, whereas other attributes, crucially the sub-
ject’s identity and image acquisition settings, remain fixed.
Such counterfactual images allow the investigation of what-
if questions that are impossible to answer in population-
based studies. Examples of such counterfactual queries are
“how will this person’s eye look in 20 years?” or “how
would this eye look if the subject was born as the opposite
sex?” We extensively benchmark the visual fidelity and
realism of the generated counterfactual images before ulti-
mately demonstrating the utility of our proposed method by
quantifying the subject-specific retinal layer structure as a
function of age and sex.
Methods

An overview of our method and study workflow is presented in
Figure 1. After introducing the used data set of OCT images, we
describe the counterfactual GAN. Next, we present our
experiments to measure the visual fidelity and realism of the
artificial OCT images, respectively. Finally, we describe how to
extract and analyze the retinal layer structure from the
counterfactual images.

Participants and OCT Image Data Set

We used the OCT image data set that has been acquired as part of
the UK Biobank population study. The UK Biobank has collected
extensive demographic, lifestyle, health, and medical imaging in-
formation from > 500 000 members of the United Kingdom’s
general public.16 In its scope, 175 844 retinal OCT scans of 85 709
participants were acquired using a Topcon 3D OCT-1000 Mark II
device (Topcon Corporation).17,18 The UK Biobank population
study has been reviewed and approved by the North West
Multicentre Research Ethics Committee in accordance with the
tenets of the Declaration of Helsinki so that additional ethical
approval was not required for our study.

During image preprocessing, we filtered out scans of poor im-
age quality using an intensity-histogramebased score (Fig 2).19

We also excluded any subjects that reported being affected by
age-related macular degeneration, diabetic retinopathy, glaucoma,
cataracts, previous eye trauma, or other serious eye diseases. Next,
11 retinal layer surfaces of the 3-dimensional OCT scans were
segmented using the Iowa Reference Algorithms (Retinal Image
Analysis Laboratory, Iowa Institute for Biomedical Imaging).20e22

The obtained layer segmentations were used to flatten and register
2

all images. During flattening, the images were sheared so that the
outer boundary of the RPE is orientated horizontally. The center of
the fovea was defined as the position with the minimal distance
between the inner limiting membrane and the outer plexiform
layer. We extracted the transverse 2-dimensional slice that passed
through this position. Finally, all images were resampled to 224 �
224 pixels with a pixel size of 23.4 � 7.0 mm2, half the median
resolution.

Preprocessing yielded 117 246 highly standardized images of
65 831 subjects. The data set was then split into 3 subdata sets (Fig
2). Overall, 46 444 scans of the right eye of 46 444 subjects were
used for training of the counterfactual GAN. A total of 20 000
images of 10 000 eye pairs were used to train a set of referee
neural networks that evaluated the generated images. Overall,
2112 images of 528 subjects, for which initial and follow-up
scans of both eyes were available, were used for final testing.
Because images of left eyes were only used for training of the
referee networks and final testing but not for GAN training, we
ended up not using 48 688 images from our data set.

GAN to Synthesize Counterfactual OCT Images

The task of generating counterfactual OCT images was formulated
as image translation using a GAN.23 Our counterfactual GAN
consists of 2 neural networks, a generator, and a discriminator
(Fig 1). The generator is provided with a real OCT image and a
counterfactual query, which consists of the target age and sex
encoded as a vector. Given these inputs, the generator is tasked
with creating a counterfactual image. These images are provided
to the discriminator together with a set of real images from the
training data set. For each image, the discriminator has to
establish whether it is real or artificially generated. The
discriminator also has to estimate the age and sex of the subject
in each case. Finally, the counterfactual images are passed
through the generator once again with the goal of changing their
appearance back to their original state.

Based on these training objectives, the generator and discrim-
inator are trained simultaneously in a zero-sum game.

During inference, the trained generator receives an existing real
OCT image and a counterfactual query and creates a corresponding
counterfactual image (Fig 1). The neural network framework was
adapted from work by Choi et al.24 We describe our
modifications to it and the full network architecture, training
procedure, and used hyperparameters in the supplemental
material (available at www.ophthalmologyscience.org).

Visual Turing Test to Assess Image Realism

To quantitatively assess the realism of the counterfactual images,
we conducted a visual Turing test. The test measured the ability of
5 expert ophthalmologists (A.M.H., R.K., S.R., G.L.T., A.J.L.) to
distinguish between real and artificially generated OCT images. To
ensure a fair comparison, all real images were downsampled and
flattened according to the previously reported image preprocessing
steps. Initially, the participants were given the option to review up
to 100 real images. Afterward, they were shown 50 real OCT
images and 50 artificially generated images in random order and
had to determine which ones were real and which ones were fake.
We report the average accuracy of all ophthalmologists.

Neural-NetworkeBased Quantification of
Counterfactual Age, Sex, and Identity

It is crucial that the counterfactual GAN faithfully models the ef-
fect of subject age and sex, whereas simultaneously preserving the
subject identity. To measure this capability, we trained 3 referee

http://www.ophthalmologyscience.org


Figure 1. Workflow diagram explaining how the counterfactual generative adversarial network (GAN) is trained (top part), used to generate counterfactual
OCT images (middle part) and benchmarked and utilized (bottom part). ELM ¼ external limiting membrane; GCIPL ¼ ganglion cell layer plus inner plexiform
layer; INL ¼ inner nuclear layer; ISOS ¼ inner segment/outer segment junction layer; RNFL ¼ retinal nerve fiber layer; RPE ¼ retinal pigment epithelium.
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Figure 2. Data flowchart presenting the data inclusion and exclusion criteria as well as the final split into the 3 independent data sets used in the study.
GAN ¼ generative adversarial network.
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neural networks built according to the well-established Resnet50
architecture.25 The age prediction network estimates the subject’s
age from an input OCT image. The sex classification network
predicts whether a given OCT image belongs to a male or
female subject. The identity-matching network learns to assign a
similarity score to an image pair consisting of right and left eyes. A
high similarity score indicates that the 2 eyes belong to the same
subject. Full network configuration and training procedure are
included in the supplemental material.

Before ultimately using the 3 referee networks to evaluate the
counterfactual images, we benchmarked their performance on an
independent subset of real OCT images. The age regression
network estimated the subject’s age with a mean absolute error of
4.1 years. The sex classification network determined the subject’s
sex with an accuracy of 79.5% and an area under the receiver
operating characteristic curve of 0.90. The identity-matching
network was tasked with matching 2000 right and left eyes
belonging to 1000 different subjects and achieved a sensitivity of
95.8% and a specificity of 97.7%. During evaluation, the 3 referee
networks were shown 10 000 counterfactual images. The coun-
terfactual queries were evenly split between male and female sex
and distributed across a uniform age distribution spanning from 40
to 75 years, the age range of the subjects in the training data set.
We report whether the determined age, sex, and identity matched
the corresponding counterfactual queries.

Extraction and Analysis of the Retinal Layer
Structure

Finally, we analyzed the retinal structure in the OCT images. To
this end, we trained a Resnet50 neural network to segment 11
retinal surfaces following the approach by Shah et al.26 We used
4

real OCT images and the previously obtained layer
segmentations as training data. The network was able to
accurately localize the retinal layers in an independent subset of
1000 real OCT images. Across all 11 layers, the mean absolute
difference between the predicted and ground truth layer
segmentations was 4.2 mm � 7.5 mm. Because we did not have
ground truth annotations for the counterfactual OCT images, we
could not quantitatively assess the segmentation network’s
performance on these images. However, we visually confirmed
that the network is able to delineate the layers in artificially
generated images before proceeding to process all counterfactual
images. Additionally, we segmented and analyzed the real OCT
images that were used to train the counterfactual GAN,
resembling conventional population-based studies.12e14 More de-
tails can be found in the supplementary material.

In this study, we focused on the retinal nerve fiber layer
(RNFL), combined ganglion cell layer plus inner plexiform layer
(GCIPL), inner nuclear layer to the inner boundary of the retinal
pigment epithelium (INL-RPE), which contains the photoreceptor
layers, and retinal pigment epithelium (RPE). We chose these
retinal layers because their age-related changes have previously
been researched using the UK Biobank database.12e14 We report
the average thickness as well as the effect of age and sex for each
of the 4 layers. We further calculated these measures in each of the
following 5 subfields of the retina, the outer temporal subfield,
inner temporal subfield, central subfield, inner nasal subfield, and
outer nasal subfield. Because the analysis was conducted using 2-
dimensional images, we cannot report results for the superior and
inferior subfields. To better compare our findings with those of
other studies, we corrected our 1-dimensional measurements by
assuming the same thickness profile in the entire 2-dimensional
subfield.



Figure 3. The counterfactual generative adversarial network smoothly visualizes the process of healthy retinal aging at a subject-specific level. In each of the
3 representative examples, the first row presents the counterfactual time series as a function of age. The third row shows the 2 available real images from the
UK Biobank data set. The second and fourth rows depict the pixel-wise difference between the time series image and the base image. Red and blue color
denote image regions in which the counterfactual is brighter and darker, respectively.
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Figure 4. Six representative examples in which the counterfactual generative adversarial network alters a real retinal OCT scan (left image) to appear as if
the subject was born as the opposite sex (middle image). The pixel-wise difference between the 2 images is also shown (right image). In red areas the
counterfactual is brighter than the base image and in blue regions the counterfactual is darker.

Ophthalmology Science Volume 3, Number 3, September 2023
Results

Counterfactual OCT Images to Visualize the
Impact of Healthy Retinal Aging and Subject Sex

Our counterfactual GAN can smoothly visualize the indi-
vidual course of retinal aging. Based on a single input im-
age, it provides a plausible hypothesis of how a specific eye
will look several decades into the future or how it appeared
in the past (Fig 3). By comparison, population-based ap-
proaches are limited with regard to the availability, fre-
quency, and range of time series data. In the case of the UK
Biobank data set, follow-up OCT scans were acquired from
< 5% of the subjects and were dated only 2 to 4 years after
the initial scan. Retinal layer orientation, image brightness,
and contrast are preserved in the counterfactual images,
whereas it fluctuates in the follow-up scans of the UK
Biobank data set. This allows focusing on subtle retinal
changes, which are difficult to appreciate in conventionally
acquired time series. When visually inspecting the generated
counterfactual time series, we found that increased age was
associated with changes in several retinal layers, including
the RNFL, photoreceptor layers, and RPE. This agrees with
the previously reported findings.5,6,8,10e14

The counterfactual GAN can also simulate how an in-
dividual’s eye would appear if the subject had been born as
the opposite sex (Fig 4). Naturally, this counterfactual
scenario is not possible to research in population-based
studies. When changing female eyes to a male appearance,
we consistently observe that the foveal pit becomes slightly
deeper and steeper. In many cases, the overall macular
6

thickness increases. Conversely, when counterfactually
converting male eyes to female, the retina becomes shal-
lower and thinner.

Benchmarking of Counterfactual OCT Images

The realism of the counterfactual OCT images was quanti-
fied in a visual Turing test. The mean accuracy across the 5
ophthalmologists was 76.6% � 18.4% (Fig 5). Although
this is substantially better than random choice (i.e., 50%
accuracy), the ophthalmologists were not able to correctly
distinguish whether an image was real or artificially
generated in many cases. Two ophthalmologists achieved
a substantially higher accuracy of 98% and 94%,
respectively, by looking at the choroid and vitreous in the
background of the images. They also relied on spotting
pathologic features as well as shadowing artifacts caused
by blood vessels because these would mostly occur in real
OCT images. All ophthalmologists agreed that the
counterfactual GAN produces samples with a highly
realistic-looking retinal layer structure, which we focus on
in the remaining study.

Next, we used the referee networks to predict age, sex,
and identity from counterfactual images. We measured
whether these attributes matched the corresponding coun-
terfactual queries. The age estimated by the age prediction
network agreed with the counterfactual query with a mean
absolute error of 4.2 years � 0.4 years, while being strongly
correlated (Pearson’s R of 0.86 � 0.02; Fig 5). The sex
classification network correctly predicted the
counterfactual sex with an accuracy of 79.7% � 5.8% and



Figure 5. Benchmarking of the counterfactual OCT images. The visual Turing test assessed the images’ realism (left-most graph). Referee neural networks
determined the subject’s age and sex from the counterfactual images. We measured whether their prediction agreed with the counterfactual query (middle 2
graphs). A third referee neural network matched counterfactual right eyes with real left eyes. We assessed whether the correct pairing is among the top K
guesses of the network as this indicated that the subject identity was preserved in the counterfactual images (right-most graph).

Menten et al � Exploring Healthy Retinal Aging
area under the receiver operating characteristic curve of 0.92
� 0.03 (Fig 5). Finally, we tested whether the identity was
preserved in the counterfactual OCT images. We
counterfactually increased the age in 528 OCT scans to
match the subject’s age at the time of a follow-up scan.
The identity-matching network compared the images of the
artificially aged right eyes with images of the real left eyes.
In 65.8% � 9.1% of the cases, the referee network correctly
matched the right eye to its corresponding left eye, while
being given 1000 candidate eyes (top-1 accuracy; Fig 5). In
91.5% � 3.3% of cases, the correct eye is among the top 10
guesses (top-10 accuracy). Even considering the residual
error of all referee networks, these results quantitatively
confirm that the counterfactual GAN is able to faithfully
simulate the effect of age and sex on the retina, while pre-
serving the identity of the subject.

Retinal Layer Structure in Counterfactual
Images

We segmented and analyzed the RNFL, GCIPL, INL-RPE,
and RPE in the counterfactual images. Figure 6 presents
their mean thickness as well as the change per decade
aging and effect of subject sex. The thickness of the
RNFL, GCIPL, and INL-RPE decreases as we increase
the counterfactual age, whereas the RPE grows slightly with
age. The RNFL and RPE are thicker in male subjects than in
female subjects. We also obtained the same set of mea-
surements directly from the real OCT images that were used
to train the counterfactual GAN. This approach is similar to
a conventional population-based study. The absolute thick-
ness of the 4 retinal structures is very similar in the 2
different approaches. The counterfactual GAN accurately
learned to model the impact of age and sex in the RNFL and
RPE, while slightly underestimating the effect in the large
GCIPL and INL-RPE structures.

Discussion

In this study, we have created a counterfactual GAN to
investigate the individual course of retinal changes caused
by healthy aging. Learning from a data set with only 1 OCT
image per subject, our machine learning algorithm is able to
generate synthetic longitudinal time series. It can visualize
how the retina may develop with age at a subject-specific
level. This allows studying of subtle structural changes
that occur over the course of decades and cannot be resolved
in conventional population-based studies. The counterfac-
tual GAN can also simulate how a given eye would look if a
person was born as the opposite sex, a scenario that cannot
be researched naturally. In extensive benchmarking experi-
ments, we confirmed that our tool creates realistic OCT
images and faithfully models the influence of subject age,
sex, and identity on the retina.

Our results agree well with previous studies based on the
same cohort from the UK Biobank population study.12e14

Khawaja et al14 reported very similar absolute thicknesses
and impact of aging for the RNFL and GCIPL. They found
that both structures are thinner in male than in female
subjects, whereas we found that sex only has a small
impact on the GCIPL and the opposite effect on the RNFL.
The association between age and photoreceptor thickness
was researched by Chua et al.13 Our measured INL-RPE
thickness was slightly larger than the reported value. The
observed relationship between thickness and age was the
same in their study and ours. Ko et al12 measured the RPE-
Bruch membrane complex. In both their study and ours,
the RPE thickness was barely affected by subject sex. They
found that the complex thins with increasing age in subjects
that are � 45 years old, which we did not observe. These
differences are potentially caused by our layer segmentation
algorithm not fully outlining the fine Bruch membrane in the
lower-resolution images. This hypothesis is supported by the
fact that we detect a slightly thinner RPE structure compared
with their reported thicknesses. In all 3 comparisons, minor
discrepancies may also result from the use of 2-dimensional
instead of 3-dimensional images in our study and different
algorithms for retinal layer segmentation.

Previous work has explored the use of GANs for a range
of tasks in the field of ophthalmology, such as image
denoising, superresolution, and domain transfer.27e30 In
these applications, GANs alter medical images to reflect an
7



Figure 6. Average thickness, change per decade aging, and effect of male sex for 4 different retinal layer structures and 5 retinal subfields. In each case, we
compare the findings obtained by analyzing the counterfactual images (counterfactual GAN) and real OCT images (population-based). The average
thickness is reported as mean with its standard deviation, whereas the changes caused by aging and sex are listed as average difference and their 95%
confidence intervals.
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improved or functionally different image acquisition pro-
cess. Ideally, any image transformations would not change
information content related to the patient. Conversely, our
study researches the setting in which images are altered to
reflect changes in the imaged subjects themselves, whereas
the acquisition settings are kept fixed. To our knowledge,
there is only 1 other study exploring counterfactual image
generation for biomarker discovery in ophthalmology.
Narayanaswamy et al31 have previously proposed a
counterfactual synthesis of color fundus photographs to
discover indicators of diabetic macular edema. They found
that the disease state is linked to the presence of exudates,
a known biomarker for diabetic macular edema, as well as
a darkening of the foveal region, which is currently not
being used for clinical predictions. However, they have
not quantitatively assessed the quality of the
counterfactual images and did not extract imaging
biomarkers from the images. Nonetheless, their study
showcases an exciting usage for our tool, modeling the
effect of ocular disease on the eye.

At the moment, our counterfactual GAN assumes that the
eye’s appearance in OCT images is governed independently
by the subject’s age, sex, and identity. Although we aimed
to exclude any patients affected by serious eye disease,
some eyes with early-stage disease potentially remain in the
training data set. The GAN may inadvertently learn to
correlate these disease features with age or sex and alter
them when generating counterfactual images. To avoid such
8

artifacts, future work could see the creation of a more so-
phisticated causal model and its integration with a
GAN.32,33 Such a model could include and explicitly model
the relationship between the eye’s appearance and subject
genotype, lifestyle, or retinal diseases. However, this
requires the availability of corresponding labels in the data
set that is used to train the GAN. Furthermore, the
algorithm cannot learn the relationship for groups of
subjects that it has not seen in the data set. For example,
our GAN has been trained on subjects between the ages
of 40 and 75 years. It is not able to model how the eye
develops in children, young adults, or individuals that are
> 75 years old. Finally, the counterfactual GAN currently
only generates 2-dimensional OCT images. Although
generating volumetric images with GANs is challenging,34

future work should look to increase in the images’
dimensionality as well as their field-of-view and resolution.

In conclusion, this study has demonstrated how counter-
factual GANs can aid research into retinal aging by synthe-
sizing high-resolution, high-fidelity OCT images, and
longitudinal time series. Ultimately, we envision that they will
enable clinical experts to derive and explore hypotheses for
potential imaging biomarkers for healthy and pathologic aging
that can be refined and tested in prospective clinical trials.
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