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Palimpsest memories stored in memristive synapses
Christos Giotis1*, Alexander Serb1,2, Vasileios Manouras1, 
Spyros Stathopoulos1, Themis Prodromakis1,2

Biological synapses store multiple memories on top of each other in a palimpsest fashion and at different time 
scales. Palimpsest consolidation is facilitated by the interaction of hidden biochemical processes governing 
synaptic efficacy during varying lifetimes. This arrangement allows idle memories to be temporarily overwritten 
without being forgotten, while previously unseen memories are used in the short term. While embedded artificial 
intelligence can greatly benefit from this functionality, a practical demonstration in hardware is missing. Here, we 
show how the intrinsic properties of metal-oxide volatile memristors emulate the processes supporting biological 
palimpsest consolidation. Our memristive synapses exhibit an expanded doubled capacity and protect a consoli-
dated memory while up to hundreds of uncorrelated short-term memories temporarily overwrite it, without requiring 
specialized instructions. We further demonstrate this technology in the context of visual working memory. This 
showcases how emerging memory technologies can efficiently expand the capabilities of artificial intelligence 
hardware toward more generalized learning memories.

INTRODUCTION
While neural networks in the cerebral cortex use an estimated 1013 
to 1014 synapses to facilitate a plethora of cognitive abilities (1, 2), 
their engineered counterparts require equivalent numbers of train-
able parameters for a far narrower application spectrum (3, 4). One 
candidate for explaining this discrepancy in learning capacity 
between biological and artificial intelligence (AI) suggests that 
synapses are able to consolidate multiple memories that can be 
revealed at different time scales—much like a palimpsest (5). Synapses 
can remember long-term plasticity events, namely, long-term po-
tentiation (LTP) and long-term depression (LTD), while expressing 
altered states in the short term (6). This temporal partition enables 
the brain to use the same resources for multiple computation pro-
cesses. The adoption of this flexibility by neuromorphic hardware is 
therefore a critical milestone toward the integration of AI in a wider 
range of on-the-edge, continuously-on learning systems.

Palimpsest storage is realized biologically via the bidirectional 
interaction of hidden biochemical processes affecting the manifes-
tation of synaptic efficacy at different time scales (5) after each 
memory modification. These processes are characterized by their 
own degrees of plasticity (i.e., learning rates) and lifetimes (i.e., 
“forgetting time constants”). Sparsely presented memories induce 
fast changes in synaptic efficacy, but these quickly decay to reveal 
older but more persistent memories that have successfully affected 
less plastic but more long-lasting processes. The coexistence of 
these processes allows synapses to be both plastic in the short term, 
enabling incoming memories to be written easily, and rigid in the 
long term, thus preserving old memories of validated significance.

The flexibility promised by dynamic memory consolidation has 
naturally attracted the attention of AI hardware design and, particularly, 
that of memristive technologies, which have already showcased their 
potential in numerous neuromorphic applications (7–12). Memristor- 
based artificial synapses have demonstrated core plasticity func-
tionality in the form of LTP/LTD. These implementations show 

how plasticity changes can become more pronounced in an analog 
regime when stimulation events are applied successively. These 
synaptic designs are largely based on phase-change memory (PCM) 
materials, which experience conductance changes when stimulation 
pulses are applied on them to emulate potentiation and depression. 
These designs achieve synaptic emulation, both by using standalone 
memristors (12–14) or by integrating them in more complex cir-
cuitry (15, 16). While these studies have demonstrated the abilities 
of memristors to facilitate learning in artificial neural networks 
(ANNs), they have not considered how learned memories can be 
protected from continuous synaptic modifications—a crucial re-
quirement for efficient online learning.

Both PCM- and resistive random-access memory (RRAM)–
based memristors have been used to implement metaplasticity, i.e., 
tuning of the learning rate (17, 18), on complementary metal-oxide 
semiconductor–based artificial synapses in spiking neural networks 
(16, 19). Metaplasticity has been studied extensively because of its 
potential for protecting consolidated memories via tunable learning 
rates. In a similar vein, nonvolatile RRAM synapses use explicitly 
modulated bias voltage to tune their switching (i.e., learning) rate 
(20–24). However, these studies have not been evaluated in the 
context of dynamic memory consolidation for two reasons. First, 
their implementation of variable learning rates occurs from appro-
priately tuned stimulation variation, implying that the need for 
plasticity rate changes is known a priori. Thus, they cannot operate 
in an online learning environment where the need for consolidation 
is usually unknown in real time. In addition, although these synaptic 
models showcase both LTP and LTD, they focus only on manipulating 
learning rates unidirectionally. This means that plasticity rates vary 
only within the context of stronger or lesser potentiation/depression 
independently, for instance, an already potentiated synapse experi-
encing lower plasticity rates toward further potentiation. Nevertheless, 
for metaplasticity to function properly, it is also imperative for a 
synapse to mitigate for catastrophic forgetting and protect its learned 
state against modifications in either direction concurrently (18).

The protection of memory states has also been studied in the 
context of passive memory lifetime. Volatile RRAM has demon-
strated short-term memory (STM) to long-term memory (LTM) 
transition where repeated presentations of the same memory induce 
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longer changes in synaptic states, albeit being irreversible and 
unidirectional (10, 25–27). This means that they have only worked 
in the context of LTP, where successive potentiation leads to 
memory states that are available for longer time windows. While 
this serves as a strong foundation toward using the time dynamics 
of volatile memristors, these implementations also ignore the pro-
tection of consolidated states when opposing synaptic modifica-
tions occur, and hence, the issue of catastrophic forgetting remains 
unresolved. Last, simulated ANNs based on metaplasticity principles 
have demonstrated an increase in specialized learning capacity (28). 
While the authors comment that palimpsest capabilities can expand 
capacity toward uncorrelated memories, now, neither commercially 
available nor emerging memristive technologies have exhibited the 
necessary properties required for dynamic memory consolidation.

In this work, we built upon the studies that are mentioned above 
to bridge synaptic plasticity with automatic consolidation and memory 
protection, irrespective of plasticity direction. The characteristics 
of RRAM volatility (29, 30) are exploited to emulate the function of 
the hidden biochemical processes that enable palimpsest consolida-
tion. We harness the bidirectional volatile and nonvolatile responses 
of RRAM devices to practically realize two consolidation time scales 
in one device, effectively storing competing binary states in a single 
synapse with doubled STM and LTM capacity. Then, we upscale 
this principle to consolidate memory traces at variable consolida-
tion intensity. Our technology can protect a strong memory in its 
long-term storage while allowing multiple short-term signals to 
take over the STM fleetingly and then quickly decay. Simple meta-
plasticity is also realized as a natural subset behavior when a given 
memory is consolidated consistently. Last, we show how this 
palimpsest memory can operate in a visual system where it also boasts 
unsupervised denoising abilities. Our memory system is unique in a 

number of key attributes. First, its expanded capacity is independent 
of the correlation between memories presented to it and even 
performs under fully destructive interference. Moreover, it can 
automatically sacrifice palimpsest capabilities for even stronger 
memory protection. These features unfold naturally as a result of 
single memristive device properties and do not require special biasing 
regimes or otherwise increased operational complexity.

RESULTS
Volatile memristors as candidates for palimpsest 
consolidation
Palimpsest consolidation relies on the premise that hidden variables 
(in the case of biology, resulting from complex biochemical pro-
cesses) induce changes in synaptic efficacy acting across different 
time scales (31). While the operation of these processes is yet to be 
fully mapped, their phenotypic response can be modeled by the 
characteristics of fluid diffusion to first approximation (5). We can 
visualize a single synapse as an interconnected chain of progressively 
larger beakers, where the first beaker alone determines the synaptic 
weight and every subsequent beaker represents a hidden variable. 
The discrepancies in liquid levels across beakers affect the evolution 
of liquid distribution over time throughout the entire chain. This is 
illustrated in Fig. 1D. While stimulation of the model synapse (adding 
or removing liquid) occurs exclusively on that first beaker, repeated 
homopolar stimulation does eventually propagate to the hidden 
and crucially larger connected beakers farther down the chain. This 
is the phenomenon of consolidation. However, in a palimpsest 
memory, competing signals may still successfully write an opposing 
synaptic state with relatively little effort, albeit in the absence of 
further reinforcement, the consolidated liquid in the hidden beaker 
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Fig. 1. Demonstration of a memristive synapse. (A) Microscope images of fabricated RRAM samples. Individual memristive synapses are highlighted (see black dashed 
squares) in the intersections of their corresponding conductive electrodes. (B) Schematic operation of a volatile memristor. Plasticity events cause a pronounced and 
rapid change in synaptic efficacy observed on a fast time scale (STM) and a smaller but more stable change on a slow time scale (LTM). The change in synaptic efficacy 
over time is shown in (B) following the memory pattern applied in (C). (D) Schematic equivalence of the three consolidation stages in (B) with the analogous beaker 
theory. The temporal evolution of the first beaker’s liquid level is determined by the hidden state of the second beaker. The liquid levels of the first beaker at stages 1 and 
3 are deliberately placed at disproportionate distances from the binary threshold to reflect the asymmetric response of the particular memristive synapse to potentiation 
and depression events.
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will eventually revert the synapse to expressing the previously 
consolidated memory.

In this work, we have used TiO2-based volatile memristive de-
vices (see intersections in Fig. 1A and Materials and Methods) to 
examine the potential of palimpsest consolidation. Volatility is 
defined as the change in a device’s state within a specified time 
window, and any change in its resistance R that outlasts this 
window is considered a nonvolatile residue (29). Volatile changes 
are easily induced but equally short lived (analogous to manipulating 
the visible synaptic state). Nonvolatile residues can accumulate in 
smaller steps and act as attractors for volatile decay R(t) (30).

Our technology is a prime candidate for such conceptual demon-
stration due to the intrinsic characteristics that are observed within 
it. TiO2 RRAM has already exhibited how it experiences polarity- 
dependent bidirectional volatility in a controllable manner (29). 
This characteristic is the essential driver behind our approach to 
palimpsest consolidation since it enables reversibility from STM to 
LTM states. Moreover, volatility in TiO2 technologies can be in-
duced reversibly for prolonged time periods without suffering from 
catastrophic state degradation. For more details, see fig. S1 where 
continuous device stimulation leads to stable volatility for up to 
2500 short retention cycles and fig. S2 where volatility is continuously 
induced bidirectionally (for up to 8.5 hours) and under highly inva-
sive stimulation (up to 1000 pulses per cycle) without hindering the 
reliability of the device. It should also be noted that while TiO2 tech-
nology can support this work, it is by no means restrictive and 
standalone research on more technology candidates should be 
welcome independently, as argued later in Discussion.

Using these characteristics, we first demonstrate palimpsest 
memory on a single memristive synapse. Specifically, we aim to 
consolidate a binary state S1 via LTP and then expressing the 
antipodal S0 for a short duration. All plasticity events are uniformly 
distributed at 30 s intervals (see Materials and Methods for details). 
The results presented in Fig. 1 (B and C) illustrate three distinct 
consolidation stages. In stage 1, potentiation events push resistance 
R to below a predetermined binary threshold Rthres, corresponding 
to a short-lived expression of S1, but the hidden nonvolatile state 
remains above Rthres, so in the absence of further reinforcement, the 
synapse reverts to the more consolidated S0. In stage 2, additional 
potentiation events cause the synapse to undergo LTP. The hidden 
nonvolatile state is pushed below Rthres and S1 is consolidated at the 
long-term time scale. Successive potentiation events produce di-
minishing nonvolatile residues, observed across stages 1 and 2, 
hinting toward the soft resistive state bounds observed in RRAM 
devices (32). These bounds are manifested via the diminishing 
changes in R after the corresponding observation time window has 
closed. Consequently, successive write events eventually fail to 
consolidate one state further, since they are not entrenching the 
analog synaptic state further from the binary state threshold. This is 
quantified in fig. S3, where the successive (%) nonvolatile residues 
are shown to diminish in magnitude for successive write events 
during long-term consolidation (also shown for all devices in hard-
ware demonstration—see the next section). Bounded synaptic efficacy 
is to known aid the capacity of memory networks (5), and here, it 
results directly from device electrochemistry. Moreover, soft bound-
ing naturally mitigates any asymmetry in device volatility since it 
allows for increased memory capacity even if potentiation and 
depression event strengths are not perfectly balanced (8, 33). In 
stage 3, competing depression events cause antipodal plastic increases 

in R, manifesting as a temporary expression of S0 in memory. However, 
because the hidden nonvolatile state has been consolidated below 
Rthres, the observed state overwrite is only realized short term, re-
verting to S1 over time.

Overall, the artificial synapse is able to protect a hidden memory 
while, at the same time, reserving the flexibility to express another 
opposite memory atop it; memory capacity is thus doubled. Next, 
we note that frequently competing memory events inevitably drive 
the rigid state closer to Rthres. The synapse sacrifices stability at the 
slow time scale as a necessary trade-off for short-term plasticity. 
Last, despite our specific device family exhibiting asymmetric re-
sponses in potentiation and depression modifications, it is a good 
candidate for highlighting the consolidation applications due the 
high ratio between volatile and nonvolatile plasticity changes, a key 
functional parameter of the system.

Operation of memory system
Next, we construct a small memristive network composed of six 
synapses to consolidate two competing signals, M1 (▽ = 101100) 
and M2 (▼ = 010011). These are antipodal binary vectors, and 
consequently, competition for storage consists a worst-case zero-sum 
game. The experimental setup is explained in Fig. 2A. Each bit bn, n 
∈ {0,1, ...,5}, of memories M1,2 is written on a corresponding mem-
ristive synapse wn (see Materials and Methods). Encoding palimpsest 
memories in this worst-case scenario implies that system performance 
would only increase in generalized applications, for instance, ran-
dom uncorrelated binary vectors average a 50% similarity rate, leaving 
only the 50% subject to destructive interference effects.

Examining the analog resistance values gives further insight on 
how the two memory signals interact across the synapses. These syn-
apses cycle through the same consolidation stages which have been 
outlined in Fig. 1, B to D and have been discussed in the previous 
section. Progressive modifications push the hidden state further away 
from Rthres as reflected from the “deeper” resistance values, at which 
point, M1 is strongly consolidated at the long term. When M2 is 
presented in memory, individual synapses are resistant to encoding 
the requested bit states. Specifically, synapses w1,4,5 that have under-
gone LTD fail to fully encode the respective M2 states in the two first 
write events. This stems from the mentioned asymmetry between 
the devices’ volatile responses in opposite directions. However, all 
synapses are pushed closer to Rthres suggesting a retreat from strong 
M1 consolidation. In the final M2 event, the memory is fully written 
at the short term before M1 is reinstated.

Memory performance is macroscopically examined in Fig. 2B. The 
overlap between M1 and the system’s state is shown against time. 
Because of the antipodal relationship between M1 and M2, an x% 
overlap between the system and the former implies a (100 − x)% 
overlap with the latter. The time axis has been truncated since 
everywhere between the second writing of M1 at t = 50 s and the first 
presentation of M2 at t = 450 s the overlap with M1 is solidly 100%. 
This is also evident by examining Fig. 2A. The signal overlap is 
visibly quantized because of the small size of the synaptic circuit. 
Ultimately, each presentation of M2 is progressively more success-
ful at overwriting the consolidated M1, whose recovery becomes 
progressively slower yet still achievable. Reinstation of M1 is non-
monotonic. This is attributable to noise, which becomes a deciding 
factor when R is close to Rthres.

To further quantify how noise is expected to affect memory 
performance, we run the following experiment: First, using existing 
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volatility modeling methods (30), we obtain an expected ideal esti-
mate of behavior under the stimulation protocol of Fig. 2A. Next, 
we calculate the noise distribution observed in real device data. Last, 
we run 200 simulations, each contaminated with different random 
noise, and evaluate the recall performance of M1 after the presenta-
tions of M2 at the end of each run (see Materials and Methods for 
details). Figure 2C shows the probability of recalling M1 fully (100% 
signal overlap) or partially (at least 80 or 50% overlap) after apply-
ing the M2 write events. As expected, the ability for recall of M1 
drops after each presentation of M2, translating into longer recovery 
times and possibly lower achievable maximum recall values. Never-
theless, by the third M2 presentation, the system continues to 
achieve at least 80% recall more than 80% of the time. This illustrates 
that the degradation of recall performance as competing memories 
progressively overwrite each other is smooth, which implies that 
effective performance will be affected by the required recall accuracy. 
Most AI systems already function on the basis of average estima-
tions of learned signals, which implies a good quality partial recall 
suffices in practice (3).

The performance of the memory can be generalized even further 
by considering the palimpsest behavior within the easier context of 
random and uncorrelated memory traces. In these runs, emphasis 
has been shifted from using very large plastic capabilities that mag-
nify the contrast between LTM and LTM time scales (see Figures 1 
and 2) to ensure symmetrical performance under potentiation and 
depression modifications (see Materials and Methods). In practice, 
we have sacrificed the high ratio between volatile jump and non-
volatile residues for symmetrical, bidirectional volatile responses. 
Here, we assume a fully uniform memory network to isolate the 
system’s dynamics from devices’ operation variability. To that extent, 
the network is constructed in simulation using existing modeling 
methods for memristive volatility (see Materials and Methods).

A memory network composed of 100 synapses is subject to an ongoing 
stream of 500 input memories that are chosen randomly. Synaptic 

modifications occur evenly spaced every 10 s. In Fig. 3 (A to C), 
10 random memories are written in the system before an LTM is 
consolidated with an intensity of s = 2 repetitions. A relatively low 
value for s has been chosen on purpose to prevent a very deep 
entrenchment of LTM in the rigid time scale. As observed in Fig. 3A, 
this prevents LTM from being fully written in the system. The 
memory overlap with three randomly chosen input memories (STMs) 
is also shown against the 50% noise floor. Spikes mark the presenta-
tion of these memories to the system. The general LTM overlap is 
surpassed by STM1–3 immediately after these are written in the 
system and before LTM is reinstated as the strongest memory. Some 
notable observations deserve mention here. First, LTM’s failure to 
achieve a perfect signal overlap can be explained by the preceding 
plasticity events. Stochastic stimulation can cause spontaneous 
entrenchment of random synapses, which then challenges the 
consolidation of LTM. Second, the overall overlap of both LTM and 
successive STM signals falls over time, highlighting the slow but 
continuous degradation of memories as more recent inputs are re-
ceived. Last, all STM signals retain an above-chance representation 
strength for a long time even if the interval during which they are 
the dominant memory is short. Hence, even at one-shot scenarios, 
the network exhibits high capacity in familiarity recalls, meaning 
it can distinguish whether multiple memories have been presented 
before or not.

Because acceptance thresholds for absolute signal overlaps are 
directly related to specific application needs, we focus on the 
relative strength difference between the consolidated LTM and 
incoming STMs. Figure 3B shows which memory is dominant (has 
the highest degree of correlation with the actual state of the memory 
network) in 10 s observation windows following each presentation 
of an STM. The LTM has been consolidated just before the com-
mencement of the first STM trial. Blue regions indicate LTM 
dominance and red regions indicate STM dominance. For the first 
100 random STMs, the 10 s observation window is dominated by 
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(quickly restored) LTM signals. However, as more patterns are pre-
sented to the memory, the consolidated LTM pattern degrades, and 
more recent signals prevail; red sections become longer and denser 
as LTM restoration collapses.

STM lifetime is defined as the total time period where some 
STMx signal dominates over the LTM (see Fig. 3C). The histogram 
of lifetime occurrences is shown on the left y axis, while the corre-
sponding probability and cumulative distributions are shown on 
the right y axis. The data can be split into three main segments: 
First, a large bulk of STMs surviving between 0 and 2 s, mainly 
populated by STMs presented toward the beginning of the test and 
representing about 50% of the signals. Second, a relatively sparsely 
populated trough between ~2 and 10 s reflects the fact that, after ~2 s, 
the volatile component of the synaptic dynamics has for the most 
part relaxed. It should be noted that there is some preliminary 
evidence to suggest that volatility might function on phases, charac-
terized by an initial phase of rapid decay, followed by a slower decay 
of the residue at a much smaller time constant (29). This subtle 
phenomenon, however, requires further study. Last, the peak at 
10 s bins together any cases where the LTM would either be restored 
at more than 10 s or fail to be restored and thus appears as a promi-
nent peak. This relationship is also reflected by the distribution’s 
probability density function (PDF), as depicted by the blue line. 
Overall, while LTM remains consolidated in the rigid time scale, the 
network tends to rebound to it within that 2 s time frame. This is 
highlighted by the lifetime cumulative distribution function (CDF) 
shown in red. The probability that some STMx survives for up to 2 s 
is approximately 60%, while the probability that it never gets written 
is about 20%.

We also note that the system is able to retain LTMs more rigidly 
if they are more intensely entrenched/consolidated. The same 
experiment has been repeated for a range of LTM consolidation 
intensities s = {2,3,4,5,6}. In Fig. 3D, we show averaged STM lifetimes 
over a sliding window of 150 STM presentations for each consolida-
tion intensity (data points before STM no. 150 only average over all 
previous STMs). As consolidation intensity increases, the ability to 
write any STM on top of LTM reduces significantly. Early lifetimes 
decrease by about one order of magnitude per s level until the first 
few tens (s = 5) or hundreds (s = 6) of STMs fail to surpass the LTM 
completely (expected lifetime  =  0 s). This is because increased 
consolidation of LTM causes the rigid nonvolatile residues to shift 
further away from the (binary) efficacy threshold, reducing the effi-
ciency of potentiation/depression events in changing the weight. 
Metaplastic properties are thus realized implicitly by our synapses. 
This shows how the trade-off between capacity and recollection 
accuracy can be controlled: High levels of consolidation appear to 
safeguard the LTM against at least hundreds of incoming STMs.

Visual working memory
Short-term attention
After evaluating performance with random memory streams, we 
examine the network’s operation with statistically correlated signals. 
In particular, we draw inspiration from existing theory on working 
memory (34) to construct a vision network with short-term atten-
tion that is complementary to its memory capacity. To address this, 
we have set up a synaptic network composed of 100 × 100 simulated 
artificial synapses that observes incoming binary images (see Materials 
and Methods). We consolidate one image in the LTM and then 
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sequentially store two images ST1,2 in short-term capacity. In addi-
tion, we test the network’s ability to consolidate only the relevant 
information within LTM. To do this, we present the network with 
three independently noise-contaminated LTM (NLTM) variations 
before writing ST1 and ST2. Thus, signal correlation is observed at 
two levels: All different images are at least 70% similar to each other, 
while the noisy NLTM variations are at least 80% similar. The time-
line of synaptic modifications is shown in Fig. 4A. Time is set to 
T = 0 s at the occurrence of ST1.

The image memories are shown in Fig. 4B. Each pixel corre-
sponds to a memristive synapse. A random NLTM is illustrated. 
Snapshots of the network’s evolution are shown in Fig. 4C. In this 
scenario, NLTMs are contaminated at a 10% noise level. The first 
snapshot (top left corner) shows the LTM trace just before ST1 is 
written in the network. At T = 0 s, ST1 successfully overtakes the 
network for a short time frame. Later snapshots show the network’s 
transition to its long-term state. By time T = 9 s, the network has 
recovered LTM. The system’s state at that point constructs a visibly 

cleaner representation of LTM than the final NLTM trace shown 
before ST1 is presented. At T = 10 s, the third image, ST2 is written 
in the memory network. Noticeably, the decay of ST2 is first caused 
by the pixels that are common in LTM and ST1. These have been 
consolidated by both memories and are thus reinstated faster. It 
should be noted that while part of the LTM signal is reinstated faster 
after the observation of ST2, (namely, synapses that have previously 
been consolidated both by LTM and ST1), this does not favor the 
overall recovery of LTM. As seen at Fig. 4D, the recovery rate of 
LTM is slower after ST2, stemming from the signal’s progressive 
contamination. This is yet another depiction of the gradual LTM 
degradation that is observed at Fig. 3 (A and B). Eventually, LTM 
becomes dominant again at time T = 17 s.
Unsupervised memory reconstruction
We are also interested in whether the system can identify statistical 
significance without supervision. By comparing the LTM trace in 
the top left corner and the last snapshot, we observe that the network 
is able to automatically denoise consolidated signals. This property 
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Fig. 4. Consolidation of binary images. (A) Operation timeline: Images are written in memory every 10 s. Random noisy representations of a LTM (NLTM and LTM, 
respectively) are written three times before two images are written, once each, in the short term (ST1,2). (B) Original signals of image memories. An NLTM depiction is 
chosen at random. (C) Temporal snapshots of memory states. The initial snapshot corresponds to last observation before ST1 is seen. Time is referenced after that instant. 
The moments when the two short-term signals are written were noted. In both cases, a noisy trace of each short-term signal can be accessed in the memory immediately 
after observation. Then, the short-term signal gradually degrades, while LTM is reinstated in memory. (D) Outline of the LTM signal overlap, as it evolves following the 
timeline in (A). The initial overlap reflects the corresponding noise level. The experiment is repeated for different NLTM noise levels. Even if a noiseless version of LTM is 
never presented to the system per se, the memory that achieves above the baseline overlaps vis-à-vis LTM after consolidation has finished. This high overlap is retained 
even after the ST1 and ST2 are seen by the network.
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arises naturally from the fact that random information, presented 
only sparsely, is less susceptible to consolidation than bits written 
with higher intensity, as shown in Fig. 3. Hence, the network is able 
to average over many noisy representations and converge closer to 
the actual, but never explicitly presented, LTM signal. These 
denoising properties are clearly visible in Fig. 4D, where the experi-
ment has been repeated for several noise levels on LTM and average 
signal overlaps are shown versus time. The overlap at the time of 
the first NLTM occurrence reflects the corresponding noise levels. 
However, after writing all NLTM signals, the overlap between the 
network and the actual LTM signal is increased significantly entirely 
spontaneously by almost 10% at the limit scenario of 20% noise level. 
The representation of LTM remains at above initial noise levels 
even after the modifications induced by ST1,2.

DISCUSSION
In this work, we focused on binary synapses, which are known to 
support adequate learning in mathematical models (35) and 
deep-learning algorithms (28). The weight of the synapse is a bina-
rized version of its resistive state, and the interplay between intense 
bidirectional volatility and small nonvolatile residues underlies its 
palimpsest capability. This concept can be naturally extended to 
synaptic weights of higher resolution. Also, we would like to point 
out that, beyond the possible extension to higher efficacy resolution, 
further improvement toward the wider adoption of this technology 
can be realized in two key areas. First, systematic studies for im-
proving the fabrication uniformity of memristive synapses would 
be of high interest, particularly in the scope of large-scale hardware 
demonstration. Second, while we have prioritized conceptual clarity 
of results over writing speed and energy efficiency, these parameters 
are crucial milestones before the integration of this technology in 
real-world online learning applications. For these reasons, it is clear 
that future implementations of this work are by no means limited to 
our selected TiO2 technology. As long as a candidate technology 
exhibits bidirectional volatility, it could then be evaluated according 
to application-specific needs, e.g., write speed, retention time, energy 
efficiency, etc. Nevertheless, the scope of this study has been strictly 
focused to the conceptual derisking of palimpsest synapses, which 
boast very interesting properties in several areas.

We note that unidirectional volatility is already sufficient to 
support the transition from STM to LTM (25–27). However, this 
work differentiates that consolidated memories are also protected 
from competing memory signals, something that was overlooked 
by previous studies. Moreover, our synapses’ absolute capacity is 
effectively doubled, and palimpsest functionality has thoroughly 
been evaluated both in hardware and simulation demonstrations 
(see table S3 for a detailed comparison with memristive synaptic 
implementations). These features can be directly attributed to the 
bidirectional nature of our RRAM technology. It should be noted 
that bidirectional volatility in these devices has already been charac-
terized for observation windows of up to 2 min (29), which could 
practically extend the memory lifetime of our synapses.

Another remark about this palimpsest memory is that the contents of 
the memory are in general imperfect reflections of the desired memory. 
This is not unusual per se since neuro-inspired systems work on the 
basis of imperfect information typically by default (classifiers sort 
noisy inputs into neat classes), but, in palimpsest memories, we 
have the additional factor of LTM-STM relations to consider.

The capabilities of this technology can be interpreted in several 
distinct ways. First, the palimpsest network can be evaluated in its 
capacity to recall multiple memories concurrently. While acceptable 
recall accuracy levels are relative with respect to application-specific 
needs, the absolute capacity of the network is tied to the number of 
available time scales in the memristive synapses. Here, nonconsolidated 
memories can only access the short-term network slot, and thus 
consecutive STMs interfere destructively with each other. Nevertheless, 
the correlation statistics of incoming memory streams play a decisive 
role in the degradation of old signals. To that extent, applications that 
can afford more noisy recollections are also able to recall a consolidated 
LTM and multiple random STMs with a mean 50% correlation si-
multaneously, as illustrated in Fig. 3A. While simple metaplasticity can 
also suffice for generalizing over multiple highly correlated memories 
[see (28)], the advantage of our technology arises from the ability to 
remember consolidated states even when the attention of working 
memory falls on uncorrelated signals. An intuitive representation of 
at least two palimpsest memories coexisting in the system can be 
seen in Fig. 4C at snapshots T ∈ [0.3–3] s and T ∈ [10.1–11] s. In 
that scenario, memory degradation after recovery is much weaker. 
Further expanding the consolidation capacity and the initial signal 
overlap of the network will require manipulating the switching and 
relaxation dynamics of the memristive synapses such that they oper-
ate more flexibly in a proportionally larger number of time scales. 
This investigation in material science and a resulting more complex 
electrochemical device structure are certainly of great interest.

Moreover, this technology bears some interesting similarities to 
how real estate is used for multiple storage in visual working memory 
systems (34, 36–38). Our results within the context of a visual working 
memory encapsulate best its relevant capabilities. As it is evident 
from Fig. 4, palimpsest operation may not necessarily need to ex-
pand absolute memory capacity to provide computational advan-
tages. Contrarily, it can be enabled using a neural network flexibly 
without suffering the cost of forgetting older but consolidated 
signals. This flexibility and LTM reconstructive ability can enhance 
the performance of in-memory computing (12,  39,  40) where 
systems are required to adapt quickly to incoming stimuli and is 
thus of direct relevance to neuro-inspired applications. In these 
scenarios, systems benefiting from palimpsest functionality shift 
their resources on spontaneous online tasks while retaining a core 
consolidated functionality. As shown in Fig. 3 (B and D), this can 
occur for hundreds of uncorrelated short-term signals without 
explicit needs for reinforcing the consolidated counterpart.

Last but not the least, the short-lived span of overlapping memo-
ries resembles short-term attention mechanisms, which have recently 
shown promise toward more complex AI algorithms (41). Atten-
tion mechanisms can also be implemented using the high-capacity 
STM familiarity filters that are exhibited here (a familiarity filter is 
a memory that recognizes when a memory input is present inside 
the memory even if it no longer has enough information to re-
construct the memory). Illustrated in Fig. 3A, at least 50 uncorrelated 
memories can pass the familiarity filter simultaneously.

Our memory also implements unsupervised (LTM) memory 
reconstruction in hardware, supporting previously linked theories 
of consolidation (5, 18) and optimal recall in the CA3 area of the 
hippocampus (42). This partition of memory storage is an advanta-
geous adaptation since only information that is relevant to a specific 
cognitive task is needed for undergoing the said task. The dual 
temporal capacity that is exhibited by our devices resembles the 

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of Southam

pton on M
ay 10, 2023



Giotis et al., Sci. Adv. 8, eabn7920 (2022)     22 June 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 10

bistable switching that is known to govern synaptic plasticity (31). 
Specifically, the accumulation of nonvolatile residues after LTP/
LTD can be thought of as an equivalent mechanism to calcium/
calmodulin-dependent protein kinase II, which is considered to be 
a primary molecular memory mechanism (43, 44).

MATERIALS AND METHODS
Device fabrication
Devices used in this work are vertical metal-insulator-metal (MIM) 
structures with electrode dimensions of 20 m by 20 m as depicted 
in Fig. 1A. The initial fabrication step was to thermally grow 200 nm 
of SiO2 on top of 6-inch silicon wafers, which were used as substrates 
for the process. This thermal oxide serves as an insulator, separating 
all devices from the silicon substrate. Each of the three layers in the 
MIM structure was deposited by following a four-step process, 
namely, lithography, short reactive ion etching, deposition, and lift-
off. Lithography was completed with an EVG 620 TB mask aligner 
to expose each mask pattern on a negative tone AZ 2070 resist. After 
each lithography step, a short O2 plasma cleaning step ensures 
cleanliness of the area, which has been prepared for material depo-
sition, by removing resist residuals. The deposition step was com-
pleted by electron beam evaporation for metal materials and by 
magnetron sputtering for the active layer material. Bottom electrodes 
were deposited using the Leybold LAB 700 E-beam equipment. 
Initially, 5 nm of titanium (Ti) adhesion layer was deposited on top 
of the thermal oxide and, in continuation, 20 nm of gold (Au) was 
deposited. After bottom layer deposition, the wafer was soaked 
in N-methyl-2-pyrrolidone (NMP) overnight for lift-off. The mid-
dle layer consists of TiO2 deposited with an EvoVac angstrom 
engineering dc sputtering equipment. The active layer consists of 
25 nm of TiO2 sputtered at room temperature from a metal Ti target in 
a 4% O2/Ar atmosphere and 3-mTorr pressure at 200 W. Following the 
active layer deposition step, lift-off was carried out with the OPTIwet 
ST30 tool, which ensures a clean lift-off by spraying hot NMP (60°C) 
with 3-mbar pressure on the wafer for 30 min. Last, top electrodes 
were deposited by following the same process as described for the 
bottom electrodes, with the deposited material in this case being 
12 nm of platinum (Pt).

Memristive synapse setup
For all of our experiments, single volatile devices were operated in 
a binary fashion, dictated by resistance R compared to a chosen 
threshold value Rthres. Plasticity changes were induced following the 
rule in Eq. 1. Binary signals equal to “1” induce to “0” are causing 
the synapses to become depressed.

   plasticity event =  {   
potentiation, if V > 0

   
depression, otherwise

     (1)

Accordingly, the binary weight w was computed using Eq. 2

   w =  {   1, if R <  R  thres    
0, otherwise

     (2)

RRAM volatility modeling and noise extraction
Memristive volatility was quantified using existing modeling methods 
(30). Specifically, R(t) was expressed via Eq. 3

  R(t ) =   e   −  (    t _   )        +   (3)

Volatility noise was calculated as the percentage (%) difference 
between the ideal model and real device as shown in Eq. 4. RRAM 
noise was seen to follow a characteristic Gaussian (normal) distri-
bution. This distribution is in line with existing literature on RRAM 
reading specific noise that attributes the phenomenon to the activa-
tion and deactivation of electron traps in conductive filaments 
affecting memristive states over time (45). More analytical noise data 
are shown in figs. S4 and S5. By extracting the distribution’s mean 
value  and SD , noise could then be added stochastically on ideal 
data using Eq. 5

  (%) R = noise =    R  ideal   − R ─ R   × 100%  (4)

  p(noise ) =   1 ─ 
 √ 
_

 2     2   
    e    

 (noise−)   2  _ 
2    2 

     (5)

Consolidation of fully destructive memories
To begin our study, we wished to examine our networks performance 
on the worst-case scenario of two antipodal and fully competing 
binary memories. We used six memristive synapses that were inde-
pendently stimulated such that M1 = [101100] and M2 = [010011] 
were written in the long- and short-term time scales, respectively. 
Specifically, M1 and M2 were presented in memory for 15 and 3 
consecutive times, respectively. For this conceptual demonstration 
of our technology, we biased our devices using single ±7-V stimuli 
for a total duration of 100 s, while analog states were read at 
0.5 V. This profile yielded a significant contrast ratio between plastic 
and rigid efficacy changes, which has allowed a clearer depiction of 
palimpsest state overwrites.

It has already been shown that TiO2-based memristors exhibit 
more pronounced volatile phenomena when stimulations invasive-
ness increases, either in the form of larger pulsing amplitudes or 
numbers of pulses per stimulation (30). Here, our choice of ±7 V 
ensures that the memristive synapses experience large enough vola-
tile changes in efficacy to showcase reversible transitions from LTM 
to STM. This occurs both from potentiated to depressed states and 
vice versa. Moreover, this relatively high amplitude has been chosen 
to ensure that volatility is present even after a single programming 
pulse per write event, thereby minimizing write speeds. A more 
detailed depiction of TiO2 volatility in the context of single pulse 
write events is shown in fig. S6. These relationships are discussed 
in greater detail in (30). Furthermore, our choice of 0.5-V reading 
voltage has been made to guarantee good signal-to-noise ratio while 
ensuring that any read operations are performed at a noninvasive 
interfacing regime. Thus, synaptic weights can be read at any time 
with no interference to the consolidated memories. Current-voltage 
relationships for TiO2 devices are illustrated at fig. S7 and verify this 
noninvasive reading regime.

Plasticity changes where induced following the rule in Eq. 1, and 
the corresponding synaptic states or “weights” were calculated 
using Eq. 2. A binary threshold value Rthres = 10.6 megaohms was 
explicitly chosen such that individual device histories achieve the 
best overlap possible. A representation of our logic is shown in 
fig. S8. We also note that while the device samples occupy different 
positions in our testing wafer samples (see Fig. 1A), the differences 
in the induced line resistances are negligible compared to the baseline 
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Rthres value. Specifically, the line resistance in the worst-case scenario 
for b2 is 0.003% of the total measured R. Detailed values for all line 
resistances are provided in table S1.

Last, to obtain the results shown in Fig. 2C, we have performed 
200 simulations on the basis of the results shown in fig. S8. Specifi-
cally, the noise distribution for each memristive synapse has 
been extracted using the raw data and the ideal fittings in fig. S6 
(obtained using Eqs. 3 and 4). Then, using Eq.5, we have added 
characteristic noise on all ideal device responses, independently, in 
each simulation run. The data shown in Fig. 2C are the statistical 
results obtained from these simulations.

Random memory stream
For this study, we aimed at evaluating our technology’s ability to 
consolidate memories that were uncorrelated in nature. Moreover, 
we required a network sufficiently large to reflect the statistics of its 
performance in a smooth manner and avoid the quantization errors 
shown in Fig. 2. Hence, we devised a network that is composed of 
100 identical memristive synapses in simulation by using Eqs. 3 to 5. 
The synapses’ binary threshold was extracted via applying alternating 
plasticity events and observing the natural occurring equilibrium 
position (see figs. S5, S9, and S10). Here, Rthres is chosen at a value of 
11 megaohms. In the worst-case scenario, the device line resistance 
is about 0.001% of total R. Detailed values for all line resistances are 
provided in table S1.

The operation parameters of these synapses are included in table 
S2. To evaluate the technology’s performance at a memory level, 
our main priority has been the symmetrical response to LTP/LTD 
events such that no binary state is consolidated de facto over time. 
Devices have this time been stimulated using 500 train pulses (500-s 
width each and 10-s interpulse) at 1.4 and −2.6 V for potentiation 
and depression events, respectively. Resistance was read at 1.0 V. This 
profile uses asymmetric stimulation energy but ensures equal writing 
speeds. Our choices have been made while ignoring the energy effi-
ciency and write speeds of our systems in favor of conceptual and 
operational clarity. However, volatility in the millisecond range has 
been reported in HfO2-based memristors with programming volt-
ages as low as 0.3 V (46), which is a promising pathway toward less 
energy consuming solutions. This smaller time scale may be in line 
with existing volatility modeling work that shows a clear decrease in 
volatile phenomena with decreasing stimulation amplitude (30). 
Consequently, dedicated study on ways of increasing RRAM vola-
tility in weaker stimulation regimes is still of great importance, as 
mentioned in Discussion.

STM lifetime statistics
To compute the histogram of short-time life occurrences, the maxi-
mum short-term lifetime of 10 s has been quantized using bins of 
size 0.1 s. By transitioning from a continuous to a discrete time 
domain, the total number of occurrences for each bin, on, are calcu-
lated, resulting to an occurrence vector O = {o0, o1, …, on}. The 
lifetime PDF can then be obtained by dividing O with the total 
number of STM signals, as shown in Eq. 5.

  PDF =   O ─  #STM signals   × 100%  (6)

Last, the CDF can be obtained by computing the cumulative sum of 
the PDF for each bin such that

   CDF  k   =   ∑ 
k=0

  
i
     PDF  i  , i ∈ [0, n]  (7)

Consolidation of binary images
In this section, we used a memory network of 100 × 100 identical 
synapses to consolidate binary images. These are the same synapses 
that were described in Materials and Methods, and the same opera-
tion profile was used. The first image was implicitly reconstructed 
in the LTM using noisy variation of the original signal. Noise was 
added to the signal by independently choosing to flip each bit with 
a probability P = {0%, 2%, 5%, 10%, 20%}.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn7920
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