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Effects of reconstruction of variables on the accuracy and computational
performance of upscaling solutions of the shallow water equations

ABSTRACT

This paper presents a new sub-grid flood inundation model obtained by upscaling the shallow

water equations (SWE) to enhance the model efficiency in large-scale problems. The model

discretises study domains using two nested meshes. The equations are solved at the coarse

mesh by a second order accurate in space (i.e., piecewise linear reconstruction of variables)

Godunov-type finite volume (FV) method, while the fine mesh is used to incorporate

high-resolution topography and roughness into the solution. The accuracy and performance of

the model were compared against a first order version of the model recently proposed by the

authors and a second order conventional FV model using artificial and real-world test

problems. Results showed that improved accuracy is delivered by the proposed model, and that

at low-resolution meshes, the spatial reconstruction of variables of the numerical scheme plays

a major role in the solution’s accuracy.

Keywords: 2D shallow water equations; finite volume; flooding; nested meshes; solution

upscaling and downscaling; sub-grid

1 Introduction

Computational simulation of flood inundation is now a central component of a wide range of

critical applications, such as flood risk assessment and mitigation, emergency response, and

engineering design. The vast majority of codes developed by industry and research institutions

to perform these simulations are based on the numerical solution of the system of shallow

water equations (SWE) (e.g. Alcrudo and García-Navarro, 1993; Mignot et al., 2006; Liang,

2010; Cea et al., 2010; Kesserwani and Liang, 2015; DHI, 2017; Deltares, 2019; Sanders and

Schubert, 2019; Guinot et al., 2017; Kahl et al., 2022, to cite only a few). While existing SWE

models (in particular those implemented in two horizontal dimensions, or simply 2D) are able

to accurately and robustly capture the most relevant characteristics of flood inundation, their

high computational cost still represents a barrier to a large number of important applications.

This computational constraint has restricted the application of these models to even relatively

small domains and short duration flood events (Liang and Smith, 2015; Ming et al., 2020), but

is even more problematic for large-scale inundation simulations, which are needed to inform

important decisions. This is despite the recent progress in the development of
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high-performance computational modelling using computational parallelisation techniques

(e.g. Morales-Hernández et al., 2021; Vacondio et al., 2014; Sanders and Schubert, 2019; Xia

et al., 2019). The numerical solution procedure has a significant impact on model efficiency

(e.g. Yu et al., 2015; Liang and Smith, 2015). Typically, computational methods for the

solution of flood inundation offer a compromise between efficiency, accuracy and complexity

of a model.

It is widely recognised that high-resolution topography data can substantially improve

the accuracy of inundation models. On the other hand, the computational time (C) of a

simulation substantially increases as the model resolution is refined (e.g. typically, for an

explicit scheme, 𝐶 ∼ Δ𝑥−3 , where Δ𝑥 is the size of a square grid cell). To overcome the

challenges associated with the computational cost of high-resolution simulations, a new class

of dual-grid models has been developed for flood inundation modelling (e.g. Volp et al., 2013;

Stelling, 2012; Sanders and Schubert, 2019; Shamkhalchian and de Almeida, 2021), which has

been observed to provide efficient solutions for large-scale simulations (e.g. Schubert et al.,

2022; Sanders et al., 2022). This approach may take advantage of Godunov-type finite-volume

(FV) methods, which have been the object of extensive research over the last decades.

Godunov-type models require assumptions about the spatial structure of the free surface

elevation, depth, discharge per unit width, velocity, and topographic heights, which may have

an important impact on the accuracy of solutions. For example, Begnudelli et al. (2008)

performed an interesting comparison of two Godunov-type (FV) models, namely (i) a first

order accurate (i.e., piecewise constant spatial reconstruction of variables) FV scheme for the

solution of the homogeneous SWE combined with a second order model of topography (i.e.,

piecewise linear change in bed elevation) and (ii) a second order accurate scheme for the

homogeneous equations (i.e., piecewise linear reconstruction) combined with a first order

representation of topography (i.e., piecewise constant). The results of this comparison

indicated that in selected practical cases, the former can be more accurate, efficient and robust

than the latter.

Compared to single-grid models, dual-grid models may result in several different types

of spatial structure in the solution. Figure 1 compares a FV single-grid against a FV dual-grid.

In single-grid models, topography is typically represented as piecewise constant across a

domain of study, although a piecewise linear approximation has also been used (e.g.

Begnudelli and Sanders, 2006; de Almeida et al., 2018). On the other hand, in FV dual-grid

models, topography within the computational cells is not prescribed by mathematical

3



expressions, but instead is represented by the actual data defined at the resolution of the fine

grid. Similarly, in FV single-grid models, the conservative variables (such as the water depth

and unit width discharge) are typically reconstructed as piecewise linear or piecewise constant.

In FV dual-grid models, the solution is typically provided for the non-conservative variable

water surface elevation, which can be reconstructed as piecewise constant or piecewise linear.

In both cases, the water depth varies within a computational cell. This implies a non-uniform

distribution of velocity inside a computational cell even if the unit width discharge is assumed

piecewise constant. These differences between FV single- and dual-grid, which are related to

spatial reconstruction of topography and flow variables, may lead to very different solutions.

The aim of this paper is to assess how accuracy and computational cost vary across different

assumptions of spatial structure using a range of grid resolutions. This assessment will be

conducted by implementing these assumptions in the dual-grid model by Shamkhalchian and

de Almeida (2021).

Shamkhalchian and de Almeida (2021) recently proposed and tested a new sub-grid

model (SG) that makes use of two nested meshes, an approach that has also been previously

used by Volp et al. (2013), Hénonin et al. (2015), and Sanders and Schubert (2019). The main

differences among these models relate to the methods and the assumptions adopted to upscale

the water depth (or water surface elevation) and velocity (or discharge) from high- to

low-resolution, and the numerical techniques used, in addition to other, more specific

approaches that are not described here. For example, Volp et al. (2013) used the method of

Finite Volume to solve the SWE, while the upscaling of water depths and velocities was

performed by spatially averaging the variables over the wet part of coarse cells. Friction was

upscaled under the assumptions of a constant friction slope and uniform flow direction. In the

model presented by Hénonin et al. (2015), water depths were also averaged over the wet area

of the computational cell under the assumption of a piecewise constant free surface elevation,

and the SWE were solved using the Alternating Direction Implicit Finite Difference scheme.

Mass fluxes and friction were estimated at coarse resolution based on the averaged quantities.

Sanders and Schubert (2019) solved the SWE using the Finite Volume method and also defined

variables (water depth and unit width discharge) that were averaged over the wet part of

computational cells. Fluxes along the edges of the coarse cell were computed at fine resolution

by downscaling depths using a piecewise linear reconstruction of the free surface combined

with local (i.e., fine resolution) topography, while the values of the velocity on the left and right

of the edge are defined by the average over the corresponding coarse grid grid (B. Sanders,

private communication). Friction was estimated based on the assumptions of constant friction
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slope and water surface elevation over the coarse grid. Shamkhalchian and de Almeida (2021)

used the FV approach with fluxes along the edges of the coarse cells computed at the fine

resolution grid [as in Sanders and Schubert (2019)], but in this case the Riemann problem was

solved with both depths and velocities that were downscaled from coarse to fine resolution.

Also, friction inside large cells was defined through the integration of the flow resistance

equation over the coarse cell under the assumption of a uniform flow direction only. A brief

outline of this model is presented in the following section, while further details can be found on

Shamkhalchian and de Almeida (2021). The models described above were designed to reduce

errors that typically arise with grid coarsening by incorporating topographical information at

finer resolution. However, they cannot capture the effects of a complete blockage of the flow

by, for example, unsubmerged topography bisecting a coarse cell (e.g. slender elements such as

a dyke, or flood defence). New methods have been recently proposed to address this specific

condition, (e.g. Ferrari and Viero, 2020; Ferrari et al., 2019; Viero, 2019).

This paper is structured as follows. Section 2 outlines the methodology adopted in the

SG model to solve the governing equations. The first order SG model (piecewise constant

reconstruction) was introduced in Shamkhalchian and de Almeida (2021), and is extended to

second order spatial accuracy (piecewise linear reconstruction) in this paper. In Section 3, the

artificial and real-world test cases utilised in this paper are described and the results of

numerical simulations are presented and analysed. Finally, the main new insights and

conclusions of the research are synthesized in Section 4.

2 The SG model methodology

This section provides a concise description of the SG model, including the extension of the

Shamkhalchian and de Almeida (2021) approach to second order spatial reconstruction of

variables. A more detailed description is provided in Shamkhalchian and de Almeida (2021).

2.1 Governing equations and nested meshes used in the solution

The SG model solves the following integral form of the 2D shallow water equations to predict

the water surface elevation and depth-averaged unit width discharge in time and space.

𝜕
𝜕𝑡 ∫𝛺

Ud𝛺 + ∮𝛤
[E(U) ⋅ e]d𝛤 = ∫𝛺

S(U)d𝛺, (1)
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where

U =

⎡

⎢

⎢

⎢

⎢
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𝜂
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⎥
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⎦
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⎡
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⎢

⎣

𝑞𝑥
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ℎ
+ 𝑔
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⎦

, G(U) =

⎡
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⎢

⎢

⎢

⎣

𝑞𝑦
𝑞𝑥𝑞𝑦
ℎ

𝑞2𝑦
ℎ
+ 𝑔
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2

⎤

⎥

⎥

⎥

⎥

⎦

, (2)

S(U) = S𝑏(U) + S𝑓 (U), S𝑏(U) =

⎡

⎢

⎢

⎢

⎢

⎣

0

𝑔ℎ𝑆0𝑥

𝑔ℎ𝑆0𝑦

⎤

⎥

⎥

⎥

⎥

⎦

, S𝑓 (U) =

⎡

⎢

⎢

⎢

⎢

⎣

0

−𝑔ℎ𝑆𝑓𝑥
−𝑔ℎ𝑆𝑓𝑦

⎤

⎥

⎥

⎥

⎥

⎦

, (3)

t is time, 𝜂 denotes water surface elevation, h represents water depth, 𝛺 denotes the polygonal

area (e.g. the quadrilateral area of a fully submerged computational cell) of the domain over

which the equations are solved, the boundary of which is represented by 𝛤 , e = [𝑒𝑥, 𝑒𝑦] is the

outward unit vector normal to 𝛤 , 𝑔 is the gravitational acceleration, 𝑆0𝑥 ,𝑆0𝑦, 𝑆𝑓𝑥 , 𝑆𝑓𝑦 , 𝑞𝑥 and

𝑞𝑦 are the 𝑥 and 𝑦 components of bed and frictional slopes, and depth averaged unit width

discharges, respectively. The frictional slopes are defined based on Manning’s expression as

𝑆𝑓𝑥 =
𝑢‖V‖𝑛2𝑀
ℎ4∕3

, 𝑆𝑓𝑦 =
𝑣‖V‖𝑛2𝑀
ℎ4∕3

, where 𝑢 and 𝑣 are the 𝑥 and 𝑦 components of the velocity vector,

the magnitude of which is ‖V‖ =
√

𝑢2 + 𝑣2.

The governing equations are solved using a structured (in the current study, square and

rectangular meshes, although the methodology can be easily extended to other mesh types)

coarse computational mesh within which another structured, high-resolution mesh is nested

(see Fig. 2). The coarse and fine meshes form cells that are hereafter also referred to as large

cells (computational cells) and small cells, respectively. Topography (i.e., bed elevation) and

roughness (i.e., Manning’s 𝑛𝑀 ) are constant within each small cell, and the arrangement of

small cells inside a large cell determines a non-uniform distribution of these properties (see

Fig. 2, which shows an arbitrary rectangular computational domain). The geometrical and

other relevant variables are defined as follows. The size of computational domain is

(𝑊𝑑) × (𝐿𝑑). The dimensions of the large and small cells along the 𝑥 and 𝑦 directions are

denoted by Δ𝑥,Δ𝑦, 𝛿𝑥, 𝛿𝑦, respectively. The edges of the computational cells are denoted by

𝛤1 to 𝛤4 anticlockwise. The small cells are arranged in 𝐽 columns and 𝐾 rows within a large

cell. 𝑧 represents the bed level, which is defined at fine resolution. Large cells are specified by

the subscript 𝑖, 1 ≤ 𝑖 ≤ 𝑁 , where 𝑁 is the number of large cells in the computational domain.

The location of a small cell inside a large cell is defined by the indices 𝑗 and 𝑘 (i.e., column

and row, respectively). As an example, 𝑧𝑖 ∣𝑗,𝑘 specifies the bed elevation at the 𝑗th column and

𝑘th row of small cells within the 𝑖th large cell.
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2.2 Solution updating procedure

The governing equations are solved using the FV method. In order to improve the accuracy of

the solution performed at a coarse resolution (i.e., large cells), each term in the SWE equations

is upscaled, allowing for finely resolved information to be included into the solution. The

methods for upscaling the equations are described in detail in Shamkhalchian and de Almeida

(2021) and are only briefly outlined in the following sections. Upscaled properties (i.e., defined

at coarse resolution through the integration over a large cell of quantities distributed at fine

resolution) are hereafter denoted by the overbar symbol, e.g.,

U = 1
𝛺 ∫𝛺

Ud𝛺. (4)

The solution is indirectly updated by one time step Δ𝑡 from time level 𝑛 to 𝑛 + 1 via an

intermediate state or fractional step (LeVeque, 2002), which is denoted by the superscript *. In

this intermediate state, the solution is advanced for all the terms of the governing equations

except for S𝑓 ; the solution at * is then used to integrate the friction term using a semi-implicit

method (Liang and Marche, 2009; de Almeida et al., 2018; Sanders and Schubert, 2019)

detailed in the next sections. The fractional time-step integration has been widely adopted to

prevent numerical instabilities (e.g. Liang and Marche, 2009), and is defined by:

U
∗
𝑖 = U

𝑛
𝑖 −

Δ𝑡
𝛺𝑖

{𝑚=4
∑

𝑚=1

[

∮𝛤𝑚
E(U𝑛

𝑖 ) ⋅ e𝑚d𝛤𝑚

]

+ ∫𝛺𝑖

S𝑏(U
𝑛
𝑖 )d𝛺𝑖

}

, (5)

d
d𝑡 ∫𝛺𝑖

U∗
𝑖 d𝛺 = ∫𝛺𝑖

S𝑓
(

U∗,𝑛+1
𝑖

)

d𝛺, (6)

where, Eq. (5) is obtained from the first order Euler method (therefore, the methods described

in this paper are only first order in time). The time step Δ𝑡 is determined dynamically by the

Courant–Friedrichs–Lewy (CFL) condition (see e.g. Toro, 2001; LeVeque, 2002;

Shamkhalchian and de Almeida, 2021) at the level of coarse cells, which are the computational

cells. Fluxes in the first integral of Eq. (5) are computed along each side of large cells by

solving the Riemann problem at the scale of small cells, via the efficient Harten, Lax and van

Leer Contact (HLLC) Riemann solver (Toro et al., 1994). These fluxes are then integrated

along each edge of a large cell to approximate the total flux for the edge. This local Riemann

problem requires the reconstruction of the variables in the vector U
𝑛
𝑖 at fine resolution, i.e.,

variables must be downscaled from the solution obtained at coarse resolution, as described in

the next sections. The treatment of Eq. (6) and the second integral in Eq. (5) are detailed in the

Section 2.4.
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2.3 Reconstruction of variables and flux computation

One key difference between the SG model and conventional (i.e., single- mesh) finite volume

models based on the SWE is that the SG model requires two reconstructions of variables, while

a conventional model only needs one. The vector U
𝑛
𝑖 is first reconstructed at each

computational edge (i.e., U
𝑛
𝑖 ∣𝛤𝑚 , where 𝑚 = 1, 2, 3, 4) using conventional methods (e.g.,

piecewise constant or piecewise linear reconstruction of variables over a large cell). In the

second step of the reconstruction (only performed in the SG model), U
𝑛
𝑖 ∣𝛤𝑚 is distributed (i.e.,

downscaled from coarse to fine resolution) over the large cell edges to define values of

variables at small cells along the edges (e.g., U
𝑛
𝑖 ∣𝑗,1 where 𝑗 = 1, 2, ..., 𝐽 for 𝛤1). This

distribution is implemented based on topography and roughness at the resolution of small cells.

The order of spatial accuracy of the model is hereafter defined in the conventional way,

which depends on how the first reconstruction of variables is performed. A piecewise constant

reconstruction within a large cell
(

U
𝑛
𝑖 ∣𝛤𝑚= U

𝑛
𝑖

)

yields a first order accurate scheme. A second

order spatial accurate scheme can be obtained by a piecewise linear reconstruction. In this

paper, the slope of the linear reconstruction is limited by the minmod method (LeVeque, 2002)

to improve numerical stability. Also, for the same reason, the order of accuracy of the scheme

is always reduced to first order around the wet-dry fronts. This means that in a wet large cell

(fully or partially wet) next to a fully dry cell, the reconstruction is piecewise constant.

For the second step of the reconstruction (i.e., downscaling along the edges), the first

component of U (i.e., 𝜂) is set constant across each edge. This results in a non-uniform

distribution of ℎ = max(𝜂 − 𝑧, 0) along the edges, which depends exclusively on the fine

resolution topography. The second component of U
𝑛
𝑖 (i.e., q𝑛𝑥𝑖) is distributed along the edge 𝛤4

(as shown in Fig. 3) as follows (the process for q𝑛𝑦𝑖 distribution is identical, except for the

direction considered). The method is based on the assumption of constant friction slope, which

is herein defined using Manning’s relation (Chow, 1959; Cunge et al., 1980; Burguete et al.,

2007; Viero and Valipour, 2017), and yields the following distribution:

𝑞𝑛𝑥𝑖
|

|1,𝑘 =

[

(

1
𝑛𝑀

ℎ
5
3

)

1,𝑘

q𝑥
(

𝜓𝑎
)

𝛤4

]𝑛

𝑖

, 1 ≤ 𝑘 ≤ 𝑁𝑛
𝛤4
, (7)

where, 𝑞𝑛𝑥𝑖 ∣1,𝑘 represents the unit width discharge (at time level 𝑛 ) in a small cell neighbouring

the edge 𝛤4 of a large cell, 𝑁𝑛
𝛤4

is the number of wet small cells next to the edge 𝛤4 (which is a

function of 𝜂𝑛𝑖 ), 𝜓𝑎 is the conveyance of the edge 𝛤4 , which is approximated as (see
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Shamkhalchian and de Almeida, 2021, for the full derivation):

𝜓𝑛𝑎𝑖
|

|

|𝛤4
=
{

[

(𝜂 − 𝑧̃)
5
3 𝑇1 +

5
3
(𝜂 − 𝑧̃)

2
3 𝑇2 +

5
9
(𝜂 − 𝑧̃)

−1
3 𝑇3

]

𝛤4

}𝑛

𝑖
, (8)

where, 𝑧̃𝑛𝑖 ∣𝛤4 is the average of submerged small cells bed levels at the edge 𝛤4 at time level 𝑛.

The parameters, 𝑇 𝑛1𝑖
|

|

|Γ4
, 𝑇 𝑛2𝑖

|

|

|Γ4
,and 𝑇 𝑛3𝑖

|

|

|Γ4
are defined as

𝑇 𝑛𝑝𝑖
|

|

|𝛤4
=

⎧

⎪

⎨

⎪

⎩

1
𝑁Γ4

𝑁𝛤4
∑

𝑘=1

⎡

⎢

⎢

⎣

(

𝑧̃|𝛤4−𝑧
)(𝑝−1)

𝑛𝑀

⎤

⎥

⎥

⎦1,𝑘

⎫

⎪

⎬

⎪

⎭

𝑛

𝑖

, 𝑝 = 1, 2, 3. (9)

Equation (7) has been written for a particular edge as an example; the formulation for

the other edges is identical. The parameters 𝑇 𝑛1𝑖 to 𝑇 𝑛3𝑖 on each edge are dynamic and depend on

𝑁𝛤 and therefore, on 𝜂𝑛𝑖 . The estimation of these parameters could impose a high

computational burden to the model as it requires summations at fine resolution, which would

also need to be repeated at each time level. To improve the efficiency of the model, these

parameters are computed for all possible values 𝑁𝛤 and stored in sorted vectors at

pre-processing. They are retrieved during the simulation as a function of the water surface level

at very low computational cost.

The reconstruction of the variables ℎ, 𝑞𝑥, 𝑞𝑦, and 𝑧 on both sides of a large cell edge at

high-resolution defines the states of the Riemann problem at fine resolution, which is solved by

the HLLC Riemann solver to approximate the mass and momentum fluxes. Integration of

fluxes along each large cell’s edge provides the total fluxes, which is substituted into the first

integral of Eq. (5) to complete an important step to solve the homogeneous part of the 2D

SWE.

2.4 Source terms

The bed slope source term, which appears in the second integral of Eq. (5) is estimated by the

following equation [further details are available in Shamkhalchian and de Almeida (2021)].

−Δ𝑡
𝛺𝑖

(

∫𝛺𝑖

𝑔ℎ𝑠0𝑥d𝛺
)𝑛

𝑖
=

−𝑔Δ𝑡
2Δ𝑥𝐾

𝐾
∑

𝑘=1

[

2Δ𝑧́𝑥|𝑘
(

𝜂 − ̂́𝑧|𝑘
)]𝑛

𝑖
, (10)

where 𝐾 = Δ𝑦∕𝛿𝑦,Δ𝑧́𝑥|𝑛𝑘=
(

𝑧́ ∣1,𝑘 −𝑧́ ∣𝐽 ,𝑘
)𝑛
𝑖 and ̂́𝑧|𝑛𝑘=

1
2

(

𝑧́ ∣1,𝑘 +𝑧́ ∣𝐽 ,𝑘
)𝑛
𝑖 , 𝑧́(𝑧, 𝜂) = min(𝑧, 𝜂).

The estimation of the bed slope source term is based on the assumption that water

surface level is constant within each large cell. This means that bed slope source term depends
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on the water surface level, the mesh resolution and topographic data next to the large cell

edges. Topographic data that is not adjacent to the edges of the large cell does not play any role

in the estimation of this term, leading to improved computational efficiency.

The friction source term is treated via a widely used implicit scheme, which updates

the solution from 𝑈
∗
𝑖 to 𝑈

𝑛+1
𝑖 via Eq. (6), (see e.g. Liang and Marche, 2009; Kesserwani and

Liang, 2012; Cea and Bladé, 2015; de Almeida et al., 2018; Sanders and Schubert, 2019). The

method is adapted in the SG model in order to include fine resolution data into the solution and

thus, to improve the accuracy of the model. To this end, the conservative variables are

non-uniformly distributed (i.e., downscaled) over a large cell. Then, Eq. (6) is solved at the

high-resolution mesh and finally, the high-resolution solutions are upscaled to the large cell

[further details are available in Shamkhalchian and de Almeida (2021)], yielding

q𝑛+1𝑖 =
q∗𝑖
𝜎∗𝑖
, 𝜎∗𝑖 =

⎡

⎢

⎢

⎣

1 +
𝑔 ∥ q ∥ Δ𝑡

(

𝜂 − 𝑧
)

7
3 𝑇4 +

7
3

(

𝜂 − 𝑧
)

4
3 𝑇5 +

14
9

(

𝜂 − 𝑧
)

1
3 𝑇6

⎤

⎥

⎥

⎦

∗

𝑖

, (11)

where q = [𝑞𝑥, 𝑞𝑦] is the unit width discharge vector, and

𝑇 ∗
𝑝𝑖
=

⎧

⎪

⎨

⎪

⎩

1
𝑁𝑤

𝐽
∑

𝑗=1

𝐾
∑

𝑘=1

[
(

𝑧 − 𝑧
)(𝑝−4)

𝑛2𝑀

]

𝑗,𝑘

⎫

⎪

⎬

⎪

⎭

∗

𝑖

, 𝑝 = 4, 5, 6. (12)

𝑇4, 𝑇5 and 𝑇6 are computed at pre-processing as a function of 𝑁𝑤 (i.e., the number of wet cells

within a large cell) and are then retrieved efficiently from the sorted vectors during the

simulation. It should be noted that the friction updating only affects the unit width discharge

components of 𝑈
∗
𝑖 and has no effect on 𝜂. In the process of updating the solution for the friction

source term, the water surface level is treated as piecewise constant over computational cells.

3 Test cases and numerical results

In the SG model described in this paper, topography is represented at a resolution that is

typically much higher than the resolution at which the conservative variables vector is

reconstructed. This has two main implications, (i) the model’s estimation of terrain elevations

is very accurate (and for the purpose of this analysis may be assumed nearly exact) and (ii) this

estimation is independent of the resolution of the computational mesh (i.e., large cells). This

enables the effect of the computational mesh resolution on the solution of the homogeneous

SWE (obtained with first and second order models) to be separated from the corresponding

effect it would have on how bed elevations are represented in the model (e.g., by a piecewise

constant or piecewise linear approximation).
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In this study, all simulations performed using the SG model are compared to those

obtained using the so-called traditional (T) model. The T model is a conventional (i.e.,

single-mesh) Godunov-type FV model, which also uses the HLLC Riemann solver to solve the

2D SWE over regular quadrilateral cells. It is a particular case of the SG model for the

condition Δ𝑥 = 𝛿𝑥 and Δ𝑦 = 𝛿𝑦 (i.e., there is only one small cell within each large cell). In

this section, an artificial and a real-world test cases are employed, which are simulated via four

methods; (1) SG1: The SG (i.e., dual-mesh) model, which implements a first order spatial

reconstruction of flow variables over a detailed terrain model introduced in Fig. 2, (2) SG2: the

second order accurate SG model (i.e., piecewise linear spatial reconstruction) for the solution

of the homogeneous SWE over the detailed terrain model; (3) T: the single-grid model

implementing the second order reconstruction of flow variables (i.e., piecewise linear spatial

reconstruction of the vector [𝜂, ℎ𝑢, ℎ𝑣]), where the bed levels are assumed piecewise constant

within each computational cell and finally (4) Td: the single-grid numerical solution similar to

the T model, but which reconstructs the vector [ℎ, ℎ𝑢, ℎ𝑣] (i.e., the flow depth is reconstructed

instead of water surface level) piecewise linearly within a large cell. All four models are only

first order accurate in time.

In the next sections, the following notation is adopted to label the solutions. The labels

defined by SG1, SG2, T, and Td are used to describe the methods defined in the previous

paragraph, while the mesh-resolutions are shown in brackets. For example, SG1 (50/5)

represents the solution obtained by the first order SG1 model in a simulation using 50 m and 5

m coarse and fine resolution meshes, respectively. The second order T model solution at the

mesh resolution 300 m is denoted by T (300).

3.1 Test Case 1: 1D steady subcritical flow over bed with large elevation changes

The first test is for steady subcritical flow in a 1D rectangular and prismatic channel with

varying bed elevation. This test case is aimed at assessing the performance of the models in

problems involving relatively large variation of topography, such as channels with sections of

adverse (negative) bed slope. The test case (in particular the longitudinal variation of bed

elevations) and the corresponding analytical solution were defined by the inverse method

proposed by MacDonald (1996); the water depth profile, flow discharge (𝑄), channel width,

and roughness are assumed and then, using the 1D steady flow form of the SWE, the

expression for the bed profile is derived. In this test, a rectangular 3000 m long, 10 m wide

channel is used, where the Manning number 𝑛𝑀 = 0.05 s m−1∕3 is constant and the flow
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discharge is 𝑄 = 16 m3s−1. The water depth profile is defined as ℎ(𝑥) = 1.5 + 0.4 sin5
(

𝜋𝑥
550

)

.

The water depth and Froude number (F) vary between 1.1 m ⩽ ℎ ⩽ 1.9 m and 0.2 ⩽ F ⩽ 0.44,

respectively. Simulations were performed for computational cells with resolutions of 5 m, 10

m, 20 m, 50 m, 100 m, 200 m, and 300 m. The fine mesh resolution for the SG model was 1 m

for all the simulations.

Figure 4a shows the water surface elevation predicted by SG1, SG2, T, and Td models

in Test Case 1. For clarity, only the solutions at low-resolution computational meshes are

displayed, as the high-resolution results were all very close to the analytical solution (this is

further shown and discussed next). These results show that at low resolution, SG2 yields the

best accuracy followed by Td, T and then SG1.

Further information on the accuracy obtained with each method is provided by Fig. 4b,

where the Root Mean Square Error (RMSE) of the solutions of 𝜂 relative to the analytical

solution is presented. According to Fig. 4b, at high-resolution meshes (e.g. Δ𝑥 ⩽ 20 m), the

values of RMSE are similar for all the methods. This would imply that a first order accurate

scheme over detailed terrain model (i.e., SG1) delivers solutions with accuracy similar to those

by a second order accurate solution (SG2, Td and T), which is in agreement with the

observation by Begnudelli et al. (2008). On the other hand, the influence of the spatial order of

the numerical method used to solve the homogeneous SWE on the solution becomes

distinguishable at coarse resolutions (i.e., Δ𝑥 > 20 m for this case). This finding was also

confirmed in many (but not all) other similar test cases, the results of which are not reported in

this paper to avoid repetition. For example, at Δ𝑥 = 300 m, the RMSE of SG1 is about 0.6 m,

while for SG2, a much smaller value of ∼ 0.1 m was observed. This has important implications

for large-scale flood inundation problems, where simulations at coarse resolution are adopted

to reduce the computational cost. Thus, solutions such as SG2, which benefits from a second

order reconstruction of flow variables and the upscaling methods to that make use of

high-resolution topography data, may lead to improved accuracy compared to the SG1 model,

which uses a first order reconstruction of flow variables and the same upscaling techniques. In

this test, the single-mesh model using a second order reconstruction of the water depth (Td)

provided better accuracy when compared to the corresponding reconstruction of the water

surface elevation (T), as was also previously observed by Buttinger-Kreuzhuber et al. (2019).

The above results indicate that at low resolution, the second order reconstruction of

variables is as important as (or even more important than) the use detailed topography [e.g.

compare the methods SG1 and T (Td) in Fig. 4a]. The reason for this may be explained as
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follows. Assume for example, the common problem of flow down a positive slope. Figure 5

illustrates this scenario, as well as the corresponding first and second order accurate

reconstruction of variables (herein, the main focus is on water surface) in the computational

cells of the SG (Fig. 5a) and traditional models (i.e., T and Td, Fig. 5b). For the T and Td

models, the bed level is constant and defined as the averaged bed level within the large cell

(Fig. 5b), while the SG model represents the detailed topography using the small cells (Fig.

5a). A first order reconstruction of 𝜂 combined with the detailed topography (blue line in Fig.

5a) would imply an increase in depth from left to right (in the direction of the flow) for the SG

model’s cell, while the depth would be modelled as constant within the cell in the T and Td

models (i.e., Fig. 5b). On the other hand, the improved representation of the water surface

obtained with a second order reconstruction combined with the detailed topography in the SG

model yields a more realistic approximation of depths on the edges of the computational cell

(see red line in Fig. 5a). It should be noted that the relative importance of the second order

reconstruction of the variables, compared to the detailed representation of topography,

becomes relevant at low resolution, where, Δ𝜂 (in Fig. 5) is typically large. These results

highlight the need for coherent methods to represent the bed topography and the reconstruction

of flow variables.

3.2 Test Case 2: real-world flood inundation problem

Test Case 2 is aimed at comparing the performance of the modelling methods described in this

paper when simulating a real-world flood inundation problem. The test simulates a flood event

that occurred in the River Tiber between 27th November and 1st December 2005 and lasted for

113 hours. The River Tiber is an important River in Italy which flows between Apennine

Mountains and Tyrrhenian Sea and has a total length of approximately 400 km and catchment

area of 17,000 km2 (Morales-Hernández et al., 2016). The computational domain used covers

a 6 km × 2 km area (Fig. 6) near the city of Rome and was previously studied by

Morales-Hernández et al. (2016) and Shamkhalchian and de Almeida (2021).

The initial conditions of the model were defined through a steady flow simulation

using the boundary conditions immediately before the event (e.g., 𝑄 = 374 m3 s−1). The

unsteady boundary conditions are presented in Shamkhalchian and de Almeida (2021). The

values of Manning’s coefficient are 0.035 m s−1∕3 and 0.0446 m s−1∕3 for the main channel and

floodplain, respectively, as previously defined by Morales-Hernández et al. (2016). A 5 m × 5

m resolution digital elevation model (DEM) is used to produce the terrain models required for
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the T and proposed SG model simulations. The computational mesh resolutions are 20 m, 40

m, 50 m, and 100 m, while the fine mesh used for all the SG model simulations is the 5 m

resolution DEM. The solution of the T model at the resolution 4 m is hereafter referred to as

the benchmark solution. Water surface levels recorded (field data) during the flood event at two

cross-sections C1 and C2 are available, which are shown in Fig. 6.

Figure 7 shows the measured and predicted time series of the water surface elevation at

cross-sections C1 and C2 during the 113 hours flooding event. For the sake of clarity, the

results for the mesh with 40 m resolution are not displayed in Fig. 7. Furthermore, results for T

(100) are not shown because the model was unable to complete the simulation of this problem

at this (and coarser) resolution. This is because at low resolution (e.g. 100 m), the piecewise

constant terrain elevation (obtained by averaging) leads to cell bed levels that are higher than

the water surface level that is set as the downstream boundary condition. Figure 7 shows that at

low resolution, the set of runs obtained by the SG1 and SG2 models provides more accurate

results than those from the single-mesh T model. The advantage of the sub-grid approach is

particularly clear considering that T (50) benefits from a computational mesh resolution twice

finer than that used in SG1 (100/5) and SG2 (100/5). For example, at 𝑡 = 113 h, the water

surface errors (relative to the benchmark solution) of SG1 (100/5), SG2 (100/5) and T (50) are

0.51 m, 0.30 m, and 1.23 m at cross-section C1 and 0.47 m, 0.39 m and 2.04 m at cross-section

C2, respectively. The main difference between Test Cases 1 and 2 is that the domain (and

therefore the computational cells) are fully wet in the first test, while in test case 2 it is partially

wet, and the SG models benefit from the algorithm to account for partially wet cells. The

possibility of simulating the effects of partially wet cells, along with the inclusion of

high-resolution data at sub-grid scale in the process of solution lead to the improved accuracy

delivered by the SG models. Further analysis of the accuracy of the numerical solutions is

presented in Fig. 8, where the water depth RMSE (relative to the benchmark solution) of the

results are plotted as a function of the mesh resolution. The results in Fig. 8 are at 𝑡 = 110 h,

when large differences appear between the numerical simulations and the benchmark solution

(see Fig. 8). The water depth is obtained by subtracting the 5 m resolution bed elevations from

the corresponding water surface level obtained by the simulations. Figure 8 shows that the

RMSE from the T simulations is much higher (especially at coarse resolution) compared to the

two other sets of runs with the SG models. This shows the importance of high-resolution data

in the solution process. At all mesh resolutions, the accuracy of results from the SG2 model is

significantly better than those by the SG1 results at the same resolution, which, as previously

indicated in test case 1, highlights the importance of higher order numerical schemes at coarser
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resolution SG simulations. Based on Figs 7 and 8, the Td model provided slightly more

accurate results relative to the T model in this test.

Table 1 presents the computation time of the models at different resolutions. The

simulation cost decreases faster (with increasing cell size) for the traditional models (i.e., T and

Td) than for the SG models (i.e., SG1 and SG2). This is because the SG models need to

compute the mass and the momentum fluxes across the interface of computational cells by

solving the Riemann problem for all small cells at the interface, while the Riemann problem is

only solved once for each cell of the traditional models. The improvement offered by the SG

model against the traditional models becomes clearer when the accuracy reported in Fig. 8 is

also taken into account. For instance, SG2 (100/5) delivers more accurate results than T (20),

while the corresponding runtimes are 0.21 h, and 4.41 h, translating into 21.15 times speedup.

The results in Table 1 also show that the computational cost of SG2 is only marginally higher

than SG1.

Figure 9a shows the runtime (computational cost 𝐶) of simulations performed with

each model as a function of the resolution. The computational cost is commonly expressed as a

power function of resolution (i.e., 𝐶 ∼ Δ𝑥−𝜆), where 𝜆 can be used as a measure of rate of a

model speed up as a result of grid coarsening. For conventional (single-grid) explicit schemes

𝜆 = 3, as confirmed (𝜆 = 3.08) for the T and Td models. On the other hand, the values of 𝜆 are

lower for SG1 and SG2 (𝜆 = 2.4). This may be attributed to the fact that in the SG models,

while the number of computational cells and time step are reduced quadratically and linearly,

respectively, with increasing Δ𝑥 (as it is the case for the T models), the number of flux

computations only decreases linearly with increasing Δ𝑥. Figure 9b shows the RMSE of water

depth predictions relative to the benchmark solution at 𝑡 = 110 h (when large differences are

observed between the different simulations) as a function of the model runtime. The figure

provides a fair comparison of the performance of models, as it helps to identify the trade-off

between accuracy and runtime of each model directly, regardless of the resolution at which the

simulations were performed. According to this figure, SG2 provides the best performance (e.g.

best accuracy for the same computation time), followed by SG1, Td and T.

4 Conclusions

This research assesses the performance of a new sub-grid model for the solution of the 2D

shallow water equations, which was developed by extending the first order model by
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Shamkhalchian and de Almeida (2021) to also include a second order spatial reconstruction of

flow variables. The model solves the governing equations using the Godunov finite volume

method in a domain discretised by two structured nested meshes. The low-resolution mesh is

the computational mesh, over which the governing equations are solved, while the

high-resolution mesh provides detailed representation of inputs such as the bed topography and

roughness. The proposed model is aimed at upscaling the solution from the high- to low-

resolution mesh to enable computationally efficient coarse resolution solutions to be obtained

at high accuracy. Four models, named SG1, SG2 (first and second order sub-grid models), T

and Td (single-mesh, conventional models that reconstruct the water surface elevation and

depth, respectively, and the unit width discharge) were compared via an idealised and a

real-world test case. This comparison, which was mainly focussed on subcritical flows showed

that SG2 provides the most accurate solutions, and that the improved accuracy is more

significant at low-resolution simulations. This makes the SG2 particularly suitable for large

scale flood inundation problems, where low-resolution meshes are typically required to reduce

the computational cost. Our observations agree with conclusions from previous research (i.e.,

Begnudelli et al., 2008), and showed that at high to mid-resolution (e.g. Δ𝑥 < 50 m, in our

tests), the order of accuracy used to reconstruct the dependent variables is less important than

the terrain model (e.g., first versus second order used previously, or the sub-grid mesh in this

work). The results in this paper indicate that at coarse resolution, in addition to the terrain

model, the order of the reconstruction of flow variables is key to the accuracy of the solutions.
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Notation

𝐶 = computational cost, runtime and time cost (s or h)

𝑒𝑥, 𝑒𝑦 = 𝑥 and 𝑦 components of unit vector normal to cells boundary (-)

e = unit vector normal to cells boundary (-, -)

E = flux tensor (m2 s−1, m3 s−2,m3 s−2 | m2 s−1, m3 s−2,m3 s−2)

F = Froude number (-)

F, G = flux vectors in the 𝑥 and 𝑦 directions (m2 s−1, m3 s−2, m3 s−2)

𝑔 = acceleration due to gravity (m s−2)

ℎ = water depth (m)

𝐽 ,𝐾 = number of columns and rows of the small cells in a large cell (-)

𝐿𝑑 = length of the study domain (m)

𝑛 = time level (s m-1/3)

𝑛𝑀 = Manning coefficient (s m-1/3)

𝑁 = number of computational cells (-)

𝑁𝑤 = number of submerged small cells in a large cell (-)

𝑁Γ = number of submerged small cells adjacent to the cell boundary (-)

𝑞𝑥, 𝑞𝑦 = 𝑥 and 𝑦 components of unit width discharge (m2 s-1)

q = vector of unit width discharge (m2 s-1)

𝑄 = flow discharge (m3 s-1)

𝑆0𝑥 , 𝑆0𝑦 = 𝑥 and 𝑦 components of bed slope (-)

𝑆𝑓𝑥 , 𝑆𝑓𝑦 = 𝑥 and 𝑦 components of frictional slope (-)

S = vector of source terms (m s-1, m2 s-2, m2 s-2)

S𝑏 = vector of bed slope source term (m s-1, m2 s-2, m2 s-2)

S𝑓 = vector of friction slope source term (m s-1, m2 s-2, m2 s-2)

𝑡 = time (s or hr)

𝑇𝑝 = parameters in Eqs 8 and 9, 𝑝 = 1, 2, 3
(

m(𝑝−2∕3) s−1
)

𝑇𝑝 = parameters in Eqs 11 and 12, 𝑝 = 4, 5, 6
(

m(𝑝−10∕3) s−2
)

𝑢, 𝑣 = 𝑥 and 𝑦 velocity components (m s-1)

U = vector of conservative variables (m, m2 s-1, m2 s-1)

V = velocity vector (m s-1, m s-1)

𝑊𝑑 = width of the study domain (m)

𝑥, 𝑦 = Cartesian coordinates (m)

𝑧 = bed level (m)

𝑧́ = a binary elevation function giving the minimum of bed and water surface level (m)
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𝛤 = boundary length (m)

𝛤1 − 𝛤4 = four edges of a large cell as defined in Fig. 2 (-)

𝛿𝑥, 𝛿𝑦 = dimensions of small cells (m)

Δ𝑋,Δ𝑌 = dimensions of large cells (m)

Δ𝑡 = time step (s)

𝜂 = water surface elevation (m)

𝜎 = frictional correction coefficient of intermediate state unit width discharge (-)

𝜓𝑎 = approximated cross-section’s conveyance (m2 s-1)

𝛺 = cell area (m2)

□ = averaged value of a variable or averaged values of components of a vector over a large cell

□∗ = value of a variable or values of components of a vector at the intermediate state

□𝑛 = value of a variable or values of components of a vector at the time level 𝑛
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Table 1 Simulation time and speedup relative to benchmark solution [T (4)] for the different

models resolutions (Test Case 2).

Model/resolution Runtime (h) Speedup (-)

T (4) 412.1 1

T (20) 4.41 93.4

T (40) 0.53 782.9

T (50) 0.26 1560

Td (20) 4.32 95.4

Td (40) 0.52 785.4

Td (50) 0.25 1617.3

SG1 (20/5) 8.7 47.4

SG1 (40/5) 1.8 228.9

SG1 (50/5) 1 412.1

SG1 (100/5) 0.2 2060.5

SG2 (20/5) 9.56 43.1

SG2 (40/5) 1.92 214.6

SG2 (50/5) 1.09 377.1

SG2 (100/5) 0.21 1975.4
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Figure 1 Bed and water volume representation in dual-grid and single-grid models. In

single-grid and dual-grid models, water volume representation is typically based on water depth

and water surface level, respectively. Dual-grid models adopt high-resolution bed level, while a

single-grid model makes use of the average bed level for the solution of the homogeneous SWE

Figure 2 Nested meshes adopted in the SG model
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Figure 3 Second step of the reconstruction of variables, which downscales the vector U
𝑛
𝑖 along

the edge 𝛤4 from coarse to fine resolution

Figure 4 (a) Longitudinal bed and water surface level, and (b) RMSE of water surface

elevation relative to the analytical solution for the four numerical methods and at different mesh

resolutions, Test Case 1
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Figure 5 Sketch of a conceptual large cell, illustrating (a) the detailed topography used by the SG

model, and (b) the corresponding piecewise constant terrain model typically used in single-grid

(T) models. The piecewise constant and linear reconstruction of 𝜂 are also illustrated. The flow

direction is from left to right.

Figure 6 Computational domain used in Test Case 2. C1 and C2 are two cross-sections where

field data (i.e., measured water surface elevation) is available.
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Figure 7 Test Case 2. Numerical solutions of water surface elevation at cross-sections: (a)

C1, (b) C2 obtained by different models, along with the measured field data, and benchmark

solution.

Figure 8 Test Case 2. Water depth RMSE of numerical predictions, obtained by different mesh

resolutions in the three scenarios, relative to the benchmark solution where, water depth is values

at 𝑡 = 110 h
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Figure 9 Comparative analysis of the the accuracy (i.e., RMSE of water depths relative to the

benchmark solution at 𝑡 = 110 h) and computational time (𝐶 in hours) of the simulations

performed with the four models at different resolutions. In (a), as the results for Td and T

models are very close, only the regression expression for the T model is shown.
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