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Abstract—To accomplish complex tasks, several nano-machines
may need to communicate via multiple-access channel with one
access point, where information fusion is carried out. However,
multiple-access Diffusive Molecular Communications (DMC) sys-
tems suffer from severe Multiple-Access Interference (MAI)
and Inter-Symbol Interference (ISI), which should be effectively
mitigated at receiver in order to achieve acceptable performance.
Built on two fundamental single-user detection schemes, namely
Threshold assisted Majority Vote Detection (TMVD) and Equal
Gain Combination Detection (EGCD), we first propose three
low-complexity interference cancellation schemes, which are the
TMVD-assisted Iterative Interference Cancellation (TMVD-IIC),
TMVD-based Minimum-Distance Decoding assisted Interference
Cancellation (TMVD-MDDIC) and the EGCD-assisted N -order
Iterative Interference Cancellation (EGCD-NIIC), for operation
in the Molecular Type Spread assisted Molecular Shift Keying
(MTS-MoSK) DMC systems. Then, following the principle of
maximum likelihood detection, we propose a Simplified Ap-
proximate Maximum Likelihood (SAML) detection scheme. The
error performance of the MTS-MoSK DMC systems employing
respectively the considered detection schemes is comprehensively
investigated and compared. Furthermore, the complexities of the
detection schemes are analyzed and discussed in terms of the
complexity-performance trade-off. Our studies and results show
that, compared with the single-user TMVD and EGCD schemes,
the proposed interference cancellation schemes are capable of
mitigating efficiently the effect of MAI and enabling significant
performance improvement at the slightly increased complexity.

Index Terms—Diffusive molecular communications, molecular
shift keying, molecular type spreading, multiple-access inter-
ference, interference cancellation, minimum-distance decoding,
majority vote, equal gain combining, inter-symbol interference,
error performance.

I. INTRODUCTION

Following Moore’s law, nano-machines have been becoming
smaller and smaller. In practice, nano-machines may find
different applications, especially, in biology and healthcare.
In literature, there are many novel researches on the health
monitor and disease treatment that rely on the implementation
of nano-machines [1–3]. However, the manufacture capability
of nano-machines puts constraints on the computation or tasks
that a nano-machine is able to accomplish [4]. Due to this
kind of constraints, Internet of Nano-Machines (IoNM) needs
to be constructed to allow various nano-machines to coop-
erate via information exchange, so as to complete complex
tasks. As an efficient communication technique for IoNM,
Molecular Communication (MC) has a range of advantages,
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including energy saving, biocompatibility, small size, etc. [5–
7]. Besides playing the communication role in IoNM, MC has
also been integrated with sensing techniques for application
in the Internet of Medical Things (IoMT) to monitor and
detect infectious diseases like COVID-19 [8]. In [9], the
mechanism of viral spreading in the form of aerosols based
on macro-scale MC prototypes was provided. As an energy-
efficient and naturally common way to convey particles,
Diffusion-based Molecular Communication (DMC) constitutes
one of the promising techniques for information exchange in
IoMN/IoMT [10]. However, a big challenge in DMC-based
systems is inter-symbol interference (ISI) resulted from the
slow propagation process of free diffusion. Hence, in literature,
a range of methods have been proposed to combat ISI in DMC.
For instance, various information modulation schemes were
designed to reduce ISI [11–13]. The low-complexity equal-
ization techniques inspired by the conventional radio-based
communications were studied with DMC to mitigate ISI [14–
16]. Furthermore, some noncoherent schemes without relying
on Channel State Information (CSI) for signal detection were
proposed for ISI mitigation in DMC [17, 18].

However, to implement the IoNM supported by MC, there
is another critical design issue, i.e., how to design a multiple-
access MC (MAMC) scheme to allow multiple nano-machines
transmit information simultaneously with high-efficiency. For
example, in a molecular sensor network, because of limited
storage space and computation capability of individual nano-
sensors, the observations attained by individual sensors need to
be sent to a processing center for fusion. In this network, it is
highly challenging for the multiple nano-sensors to propagate
their sensed information to the processing center, reliably and
efficiently. Nonetheless, to our knowledge, MAMC has not
received sufficient attention in the MC research communities.

By following the principles of multiple-access wireless
communications, in literature, some multiple-access schemes
have been considered in DMC. More specifically, Molec-
ular Division Multiple-Access (MDMA) proposed in [19–
25] straightforwardly allocates different types of molecules
to different nano-machines for signal transmissions. In this
way, simultaneous transmissions of different nano-machines
can be implemented in one medium without interfering with
each other. The authors of [26, 27] proposed the Molecular
Code-Division Multiple-Access (MCDMA), which assigns
individual nano-machines unique signature codes for them
to simultaneously transmit with a common receiver, where
the signature codes are used to distinguish the information
sent by different nano-machines. In [28–30], Molecular Time-
Division Multiple-Access (MTDMA) was introduced to sup-
port multiple nano-machines to communicate with a common
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receiver. In MTDMA DMC systems, different time slots are
assigned to different nano-machines for them to alternatively
send information without experiencing severe inter-user in-
terference. Furthermore, considering that the molecular con-
centration impulse received is very sensitive to transmission
distance in DMC, [31] and [32] proposed the Molecular Space
Division Multiple-Access (MSDMA), which distinguishes dif-
ferent nano-machines via their distances from the receiver.

Due to the diffusive properties of DMC, multiple-access
DMC (MA-DMC) usually experiences various types of in-
terference, especially, Multiple-Access Interference (MAI).
Furthermore, due to the slow process of Brownian motion,
interference, especially MAI, in MA-DMC systems is likely to
be severe. Hence, the designs of multiple-access schemes and
transceivers are highly important in mitigating the interference
in MA-DMC systems. In literature, there are some works
having proposed and investigated the detection schemes for
MA-DMC systems [21, 26, 28, 32]. Specifically, considering
the MCDMA with On-Off Keying (OOK) modulation, a
chip-threshold-based detection scheme was developed in [26],
where an adaptive threshold is set according to the con-
centration values measured with the previous chips around
the receiver. For the MoTDMA with Molecular Shift Keying
(MoSK) [28], the authors adopted the detection approach
presented in [33], which is also a threshold-based detection
scheme. As this MoTDMA scheme employs two types of
molecules to transmit binary data, the detector uses the ob-
servation of one type of molecules as the decision variable,
while the observation of the other type of molecules is used
as the adaptive threshold for the decision-making in each
signal interval. For the MSDMA systems in [32], the expected
shapes of the received molecular pulses corresponding to all
the possible transmission cases are estimated, which are then
compared respectively with the observation samples to achieve
Information detection. Finally, in [21], different types of
molecules were straightforwardly exploited for distinguishing
the transmissions by different nano-machines.

Inspired by the Fast Frequency-Hopping M -ary Frequency
Shift Keying (FFH-MFSK) scheme [34, 35] in the conven-
tional wireless communications, we have proposed a Molec-
ular Type Spread assisted Molecular Shift Keying (MTS-
MoSK) scheme to support MA-DMC in [36]. In this MTS-
MoSK DMC scheme, different nano-machines are assigned
with unique address codes, which are used to implement
molecular type hopping at transmitter and assist signal de-
tection at receiver. For signal detection, in [36], two low-
complexity single-use detection schemes have been studied,
which are the Threshold assisted Majority Vote Detector
(TMVD) and Equal Gain Combining Detector (EGCD). In
[37], a simple MAI erasure assisted EGCD scheme has been
proposed, which can improve the detection performance of
EGCD. All these detection schemes have low complexity.
However, due to the severe interference existing in the MTS-
MoSK systems, the MTS-MoSK systems with these detectors
can only support a low number of nano-machines. Otherwise,
the error performance of MTS-MoSK systems is very poor.
To enable a MTS-MoSK system to simultaneously support
a relatively high number of nano-machines while attaining
practically meaningful reliability, in this paper, we focus on
the MAI mitigation by proposing and comparing a range of
interference mitigation schemes for the MTS-MoSK systems.

Specifically, three MAI cancellation schemes are proposed,
which are the Minimum-Distance Decoding based Interference
Cancellation (MDDIC), TMVD-assisted Iterative Interference
Cancellation (TMVD-IIC) and the EGCD-assisted N -order
Iterative Interference Cancellation (EGCD-NIIC). We inves-
tigate their achievable performance and compare it with that
obtained by the TMVD or EGCD. Furthermore, as another
bench-marker, we propose a Simplified Approximate Maxi-
mum Likelihood (SAML) detection scheme, which has high
complexity, to compare it with the interference cancellation
assisted detection schemes. Furthermore, we demonstrate the
impact of different parameters on the error performance of
MTS-MoSK DMC systems. In particular, we show the ef-
fect of the thresholds in the TMVD-MDDIC and TMVD-
IIC schemes, and the number of nano-machines participated
in the interference cancellation in the EGCD-NIIC scheme.
Additionally, we analyze the complexities of all the detection
schemes considered and show their performance-complexity
trade-off.

The novelties and contributions of the paper can be sum-
marized as follows.
• MTS-MoSK assisted MA-DMC systems with various

detection schemes are introduced, investigated and com-
pared, to show the feasibility for supporting multiple-
access communications in DMC environments.

• Four detection schemes having MAI mitigation capability
are proposed, which are the TMVD-MDDIC, TMVD-
IIC, EGCD-NIIC and SAML. Among these four detection
schemes, the TMVD-MDDIC, TMVD-IIC and EGCD-
NIIC detection schemes rely on interference cancellation
to mitigate MAI, while the SAML implements informa-
tion detection in the principle of maximum likelihood
(ML).

• The performance of the MTS-MoSK assisted MA-DMC
systems with respectively these detection schemes and the
TMVD and EGCD, which are the single-user detectors
without attempting MAI mitigation, is investigated and
compared. The impact of the parameters related to system
design, channel, and detection schemes on system per-
formance is comprehensively studied. Furthermore, the
complexities of the detection schemes are analyzed to
show the trade-off between complexity and performance.

The remainder of this paper is organized as follows. Sec-
tion II introduces the MTS-MoSK DMC system model. In
Section III, the principles of three MAI mitigation schemes
and of the SAML detection scheme are introduced. Perfor-
mance results are demonstrated and discussed in Section IV.
Finally, the main conclusions from research are summarized
in Section V.

II. SYSTEM DESCRIPTION

The framework of our MTS-MoSK DMC system is shown
in Fig. 1, which was firstly introduced in [36]. The specific
system structure and the procedure of operations are detailed
in the following subsections.

A. Description of Transmitter and Channel Model

We assume that M types of information molecules are
employed to support K ≤ M nano-machines to exchange
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Fig. 1. System diagram demonstratiing the procedures of the MTS-MoSK
DMC systems.

information with a common access point (AP). The nano-
machines and AP are static and their positions do not vary
during a communication session. For simplicity, each nano-
machine is assumed to have a similar distance from the AP.
Note that, this can be a practical case in molecular sensor
network (MSN). For example, several sensors monitoring an
event may be arranged to have a similar distance from a fusion
center, where the sensors upload their sensed data. In Fig. 1,
the transmission of several bits of binary data from one nano-
machine is demonstrated as the upper half of the figure. We
assume that each nano-machine uses M types of molecules to
transmit information in the form of M -ary symbols. Hence,
each nano-machine can send b = log2M bits information per
symbol. The symbol-duration is represented as Ts, which is
divided into L = Ts/Th chips. Each chip takes up Th = Ts/L
seconds, referred to as chip-duration. In our system model, we
also assume that the K nano-machines implement synchronous
transmission at chip level. In practice, AP can send periodic
pilot signals to the nano-machines for them to synchronize
their transmissions. As Fig. 1 shows, at the beginning of a Ts-
second symbol-duration, b bits of binary data to be transmitted
by the kth nano-machine is mapped to a M -ary symbol,
which is expressed as Xk ∈ {0, 1, . . . ,M − 1}. Then, the
M -ary symbol Xk is signed by the molecular type spreading
(MTS) code of the kth nano-machine. The kth nano-machine’s
MTS code can be expressed as aaak = [a

(0)
k , a

(1)
k , . . . , a

(L−1)
k ],

k = 1, 2, . . . ,K, a(i)k ∈ [0,M − 1]. The signature operation in
Fig. 1 can be expressed as

mmmk =[m
(0)
k ,m

(1)
k , . . . ,m

(L−1)
k ]

=Xk · 111(1×L) ⊕ aaak
=[Xk ⊕ a(0)k , Xk ⊕ a(1)k , . . . , Xk ⊕ a(L−1)k ],

k = 1, 2, . . . ,K (1)

where 111(1×L) is a row vector of L ones, which is used to
extend the symbol Xk to a row vector with L elements of
all being Xk, ⊕ is the addition operation in the Galois field
GF (M) [38]. The elements of mmmk are the symbols signed by
the MTS code at chip scale and they are the integer values in
[0,M−1]. After the signature operation, the MoSK modulation
block in Fig. 1 controls the emission of the corresponding M
types of molecules according to the values in mmmk over the L
chip-durations.

To explain the transmission process more clearly, let us
assume a MTS-MoSK DMC system, which employs M = 8
types of molecules and L = 6 chips per symbol to support the
information transmission of two nano-machines to an AP. Two
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Fig. 2. Comparison between the expectation of concentration predicated by
Fick’s law of (2) and the average concentration obtained from 1000 particle-
based simulations, when assuming that an impulse of 10000 molecules is
emitted at t = 0.

MTS codes of aaa1 = [4, 3, 7, 6, 2, 5] and aaa2 = [2, 0, 1, 6, 4, 7]
are assigned to the two nano-machines, respectively. Data
symbols to be transmitted by two nano-machines are assumed
to be X1 = 5 and X2 = 3. Then, X1 and X2 are extended
to the L-length row vectors of X1 · 111(1×L) = [5, 5, 5, 5, 5, 5]
and X2 · 111(1×L) = [3, 3, 3, 3, 3, 3], respectively. Then, these
two row vectors execute the addition operation in Galois field
GF (8) with aaa1 and aaa2, yielding mmm1 = X1 · 111(1×L) ⊕ aaa1 =
[1, 6, 2, 3, 7, 0] and mmm2 = X2 · 111(1×L) ⊕ aaa2 = [1, 3, 2, 5, 7, 4],
respectively, where every element value corresponds to a type
of molecules to be emitted within its chip-duration. Note that,
the red elements in mmm1 and mmm2 indicate that the transmissions
from two nano-machines generate collisions, which results in
MAI, because the two nano-machines emit the same type of
molecules during the same chip duration.

Assume that the MTS-MoSK DMC system employs the
M types of isomer molecules, which have similar physical
properties, including a similar diffusion coefficient expressed
by D, when diffusing in a fluid medium [39]. After the
MoSK modulation, a type of molecules are emitted at the
beginning of a chip duration. Then, the concentration of this
type of molecules around the receiver AP will start arising
from the beginning of this chip-duration. We assume that
within the lth chip duration of the uth symbol-duration, the
qth type of molecules is activated for transmission by the kth
nano-machine. According to Fick’s second law [40, 41], the
concentration observed at the AP varies with time t as

c
(u,l)
k,q (t) =

A

[4πD (t− uTs − lTh)]3/2

× exp

(
−r2

4D (t− uTs − lTh)

)
,

t ≥ (uL+ l)Th;u = 0, 1, . . . ; l = 0, 1, . . . , L− 1 (2)

where r is the transmission distance from the kth nano-
machine to AP and A is the total number of molecules emitted
per pulse.

Fig. 2 shows a molecular pulse of concentration generated,
when an impulse of A = 10000 molecules is emitted at t = 0.
The smooth curve is computed from (2) of Fick’s diffusion
law. The vibrating curve is the average concentration obtained
from 1000 realizations. Explicitly, the estimated concentration
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agrees well with the concentration predicted by Fick’s law of
(2). However, the estimated concentration slightly fluctuates
around the theoretical expectation, which is because of the
random noise generated by the Brownian motion of molecules
and the limited 1000 realizations. Note that, according to [42],
in DMC, we usually treat the expected concentration of (2)
as the ideal signal, while the expected concentration plus the
random noise generated by Brownian motion is the actual
observation at receiver.

According to the properties of the free diffusion phe-
nomenon, it can be easily deduced that there are three kinds
of interference in the multiple access DMC systems, including
the MTS-MoSK DMC system considered in this paper. First,
as mentioned in many references [43, 44], the molecules of
a given type generated for transmitting previous symbols
may overlap with that for the later symbols, generating ISI.
Second, the random Brownian motion of molecules results
in background noise, which is also referred to as counting
noise [45]. Third, as in the MTS-MoSK DMC system, when
a desired nano-machine transmits the type-m molecules at
a chip duration, the other nano-machines may also transmit
this type of molecules at the same time, which interferes
with the desired nano-machine. Furthermore, the mth type of
molecules transmitted in the previous chip durations by the
other nano-machines also interfere the desired nano-machine
in the considered chip-duration. These kinds of interference
resulted from the multiple nano-machines’ transmissions are
referred as MAI. Therefore, to achieve reliable communication
in the multiple access DMC systems, the detection scheme
must be carefully designed, so that the effect from the various
kinds of interference can be minimized. In this paper, our
focus is on the design of the effective interference cancellation
schemes, which will be detailed in the forthcoming discourses.

B. Observations Obtained by Receiver

As Fig. 2 shows, when emitting an impulse of molecules
at the beginning of a chip, the expected peak of concentration
is an appropriate sampling point for the receiver at AP to
obtain observations. From (2), we can derive that this peak
point occurs at td = r2/(6D). Assume that in our MTS-MoSK
DMC system, the chip-duration is sufficiently long, so that the
extreme point happens within one chip-duration, i.e., Th > td.
Then, the sampled observation within the lth chip-duration of
the uth symbol can be expressed as

rq,l(u) =rq(t = uTs + lTh + td),

l = 0, 1, . . . , L− 1; u = 0, 1, . . . ;

q = 0, 1, . . . ,M − 1 (3)

When the Brownian motion generated noise, ISI and MAI, as
discussed previously, are taken into account, it can be shown
that rq,l(u) can be expressed as

rq,l(u) =

K∑
k=1

min{I,uL+l}∑
i=0

`uL+l−i
k,q ck,q(iTh + td)

+ nq(uTs + lTh + td)

=

K∑
k=1

min{I,uL+l}∑
i=0

`uL+l−i
k,q ck,q (i) + nq,l (u) (4)

where I represents the ISI length in chip-durations, and `ik,q
makes a logical decision, equating to ‘1’, when the kth nano-
machine emits the type-q molecules to transmit information
within the ith chip-duration, and otherwise, is ‘0’. In (4),
ck,q (i), i.e., ck,q(iTh + td), is the expected concentration of
the type-q molecules sampled at t = iTh + td, if this type of
molecules was emitted at t = 0. It can be conceived from
(4) that only the term with i = 0 contributes the desired
observation for the current chip, while all the other terms
with i 6= 0 impose interference. Finally, nq,l (u) in (4) repre-
sents the background noise resulted from the diffusion of the
type-q molecules, which can be approximated as a Gaussian
distribution [44], with the probability density function (PDF)
expressed as

nq,l (u) ∼ N

0,
1

V

K∑
k=1

min{I,uL+l}∑
i=0

`uL+l−i
k,q ck,q (i)

 (5)

where V is the volume of the detection sphere that the AP uses
for sensing information particles. As shown in (5), the variance
of noise is depended on the amplitude of signal, which explains
that noise is introduced whenever a signal is transmitted. The
higher power of transmitted signal results in the higher power
of noise.

III. SIGNAL DETECTION AND MAI CANCELLATION IN
MTS-MOSK DMC SYSTEMS

According to the indexes shown in (3), it can be inferred
that there are in total ML observations sampled by the receiver
at AP in every symbol-duration. In order to describe the
principles of the detection and MAI mitigation schemes, the
observations in one symbol duration are arranged to form a
matrix RRRu, expressed as

RRRu =



r1,1(u) r1,2(u) · · · r1,l(u) · · · r1,L(u)
r2,1(u) r2,2(u) · · · r2,l(u) · · · r2,L(u)

...
...

. . .
...

. . .
...

rq,1(u) rq,2(u) · · · rq,l(u) · · · rq,L(u)
...

...
. . .

...
. . .

...
rM,1(u) rM,2(u) · · · rM,l(u) · · · rM,L(u)


(6)

where M rows correspond to the M molecular types repre-
senting the M possibly transmitted symbols, and L columns
correspond to the L chips of a symbol-duration. The (q, l)th
element of RRRu is rq,l(u) given by (4).

Having obtained the observation matrix RRRu, below we
introduce two fundamental detection schemes and four MAI-
mitigation enabled algorithms for signal detection in MTS-
MoSK DMC systems. More specifically, the first one, inspired
by a conventional single-user noncoherent detection scheme in
radio communication [46], implements the threshold filtering
before the majority vote assisted detection, which is named
as TMVD. The second one is the proposed TMVD-MDDIC,
which implements the minimum-distance decoding assisted
interference cancellation followed by TMVD. The third one
carries out the iterative interference cancellation after the fun-
damental TMVD, which is referred to as TMVD-IIC [47]. The
forth one is the conventional equal-gain combining assisted
detection (EGCD) [48], based on which the fifth one iteratively
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Fig. 3. An example to explain the TMVD for the MTS-MoSK DMC system
supproting K = 4 nano-machines and employing M = 8 molecular types to
transmit one symbol using L = 4 chips.

implements the EGCD and the N -order interference cancel-
lation, which is referred to as NIIC-EGCD for convenience
[49]. The last detection scheme is based on the ML principle,
which is a common and optimum signal processing method in
wireless communications.

A. Threshold-Assisted Majority Vote Detection
The detection principle of TMVD can be well explained

using the example as shown in Fig. 3. In detail, the TMVD
executes the following operations.
1) Based on the observation matrix RRRu, the TMVD inspects

each of the elements against a preset threshold, which can
be expressed as

Th = αch(0) (7)

where α > 0 is a scaling factor and ch(0) is the expected
peak concentration, as shown in Fig. 2, which can be found
from (2). The output of this procedure is a threshold-
filtered matrix denoted by RRRT , as shown in Fig. 3, which
contains the elements of ‘0’ or ‘1’, or ‘empty’ or ‘mark’.
Specifically, if an element in RRRu is larger than Th, the
corresponding element inRRRT is set to ‘1’, representing that
the element is marked. It is regarded as that this entry is
activated by one or several nano-machines. By contrast, if
an element inRRRu is less than Th, the corresponding element
in RRRT is set to ‘0’, meaning that the receiver believes that
no signal was transmitted by nano-machines in this entry.

2) The threshold-filtered matrix RRRT is de-spread respectively
by invoking the MTS signature codes of the K nano-
machines, yielding K de-spread matrices, denoted by
DDD1,DDD2, . . . ,DDDK . Specifically, based on the subtraction
operation in the Galois field GF (M), the (q, l) th element
r(q, l) in RRRT is shifted to the location (q	ak(l), l) in DDDk,
i.e.,

d(k)((q 	 ak(l), l)) = r(q, l), q = 0, 1, . . . ,M − 1;

l = 0, 1, . . . , L− 1; k = 1, 2, . . . ,K (8)

As shown in Fig. 3, after de-spreading, we obtain
DDD1,DDD2,DDD3, and DDD4.

3) Finally, based on the de-spread matrices DDD1,DDD2, . . . ,DDDK ,
the decisions are made in the principle of majority votes,
rendering the index of the row having the maximum
number of 1s as the value of the transmitted symbol. Hence,

with regard to the example shown in Fig. 3, the detected
symbols are X̂1 ∈ {7}, X̂2 ∈ {4 or 5}, X̂3 ∈ {2}, X̂4 ∈
{3}, respectively. As shown in Fig. 3 , DDD1,DDD3 and DDD4

each has just one majority row, which gives no confusive
decision. By contrast, DDD2 has two majority rows, the
TMVD has to choose randomly one of them as the detected
symbol, which results in a symbol error probability of 0.5,
even when the transmitted symbol was indeed 4 or 5.

Therefore, even when the channel is free of noise, TMVD
may make erroneous detection because of the existence of
the various interference as previously analyzed. In order to
improve the detection performance, below we introduce the
MAI-mitigation assisted detection schemes for MTS-MoSK
DMC systems.

B. Minimum Distance Decoding Assisted Interference Cancel-
lation (MDDIC)

The MDDIC algorithm is proposed to mitigate the inter-
ference experienced by TMVD by essentially examining the
Hamming distance between the threshold-filtered observation
matrix RRRT and a range of constructed matrices based on
the candidate symbols in detection. MDDIC is carried out
after TMVD obtains the candidate symbols for the K nano-
machines. In detail, MDDIC first lists all the possible com-
binations of the candidate symbols of the K nano-machines.
Then, for each combination, the candidate symbols are spread
by invoking the K nano-machines’ MTS codes. In this way,
a number of constructed matrices in the structure of RRRT

can be obtained. Finally, the similarity between any of these
constructed matrices and the threshold-filtered observation
matrix RRRT is measured. On the basis of their Hamming
distances, the combination giving the minimum distance from
the threshold-filtered observation matrixRRRT is selected, whose
corresponding candidate symbols yield the finally detected
symbols for the K nano-machines.

In detail, the principle of MDDIC can be understood with
the aid of Fig 4 as follows.
1) TMVD as described in Section III-A is first carried out

to generate the de-spread matrices DDD1,DDD2,DDD3 and DDD4, as
shown in Fig 4. When only the full rows are considered,
the candidate symbols are X̂1 ∈ {7}, X̂2 ∈ {4, 5}, X̂3 ∈
{2} and X̂4 ∈ {3}. We can see that there are two candidate
symbols for nano-machine 2.

2) All the combinations formed by the candidate symbols of
K nano-machines are listed. For the example of Fig 4,
the two combinations of candidate symbols are {X̂1 =
7, X̂2 = 4, X̂3 = 2, X̂4 = 3} and {X̂1 = 7, X̂2 =
5, X̂3 = 2, X̂4 = 3}. Then, for each combination,
the candidate symbols are respectively spread by invoking
the corresponding MTS codes of the K = 4 nano-
machines. As shown in Fig 4, after spreading the symbol
of {X̂1 = 7, X̂2 = 4, X̂3 = 2, X̂4 = 3}, we
obtain the matrices {EEE11,EEE12,EEE13,EEE14}. Similarly, for
the combination {X̂1 = 7, X̂2 = 5, X̂3 = 2, X̂4 = 3}, we
have {EEE21,EEE22,EEE23,EEE24}.

3) For each of the combinations, a matrix similar to RRRT is
constructed by adding the spreading matrices using the
logical OR addition, forming the constructed observation
matrix {FnFnFn} for the n-th combination. As shown in Fig 4,
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Fig. 4. Illustration of the TMVD-MDDIC for the MTS-MoSK DMC systems.

we have FFF 1 = EEE11 ∪ EEE12 ∪ EEE13 ∪ EEE14 and FFF 2 =
EEE21 ∪EEE22 ∪EEE23 ∪EEE24.

4) The final step of MDDIC is to compare the constructed
observation matrices {FFFn} with the threshold-filtered ob-
servation matrix RTRTRT to select the combination yielding the
minimum Hamming distance from RRRT . Correspondingly,
the candidate symbols included in the selected combination
represent the final decisions for the K symbols of the K
nano-machines. Specifically for the example in Fig 4, we
find that the distance between FFF 1 and RRRT is 0, while that
between FFF 2 andRRRT is 2. Therefore, the first combination is
finally selected, which gives the correctly detected symbols
X̂1 = 7, X̂2 = 4, X̂3 = 2, X̂4 = 3.

In summary, the algorithm of TMVD-MDDIC is stated in
Algorithm 1.

Algorithm 1 Minimum Distance Decoding assisted Interfer-
ence Cancellation (MDDIC)
Input: Observation matrix RRRu.
Output: Symbols transmitted by K nano-machines within the
uth symbol duration, expressed as X̂XX(u).

1) TMVD: Execute TMVD as stated in Section III-A based
on RRRu to generate the threshold-filtered matrix RRRT and
the de-spread matrices {DDDk}. The row indices of each
de-spread matrix DDDk with the maximum number of
activated entries are classified as the candidate symbols.
The candidate symbols of kth nano-machine are collected
to X̂XXk.

2) Combinations of candidate symbols: Pick one ele-
ment from each nano-machine’s candidate symbol set
X̂XXk to form all the possible combinations expressed as
PPP 1,PPP 2, . . . ,PPPn, . . . ,PPPN , where N is the number of
possible combinations and PPPn = {X̂n1, X̂n2, . . . , X̂nK}.

3) MDDIC:
For i = 1, 2, . . . , N , execute the following steps:

a) Initialization: The matrices EEEik are set as (M × L)
all zero matrices.

b) The candidate symbols of a combination PPP i are respec-
tively re-spread by invoking the corresponding MTS
codes and then stored into the matrices EEEik. The op-
eration can be expressed as eik

(
X̂1k ⊕ ak(l), l

)
= 1,

where eik(m, l) is the (m, l)th element in EEEik.
c) EEEik are added based on the logical OR addition, giving
FFF i = EEEi1 ∪EEEi2 ∪ . . . ∪EEEiK .

d) Find the Hamming distance between RRRT and FFF i as
Hi = L0(RRRT −FFF i), where L0 (AAA) returns the number
of nonzero elements of AAA.

End For
4) Find the PPPn yielding the minimum Hamming distance,

which is expressed as n = arg minn{H1, H2, . . . ,HN}.
5) Output: X̂XX(u) = PPPn.

It can be inferred from above that MDDIC is efficient to
cancel MAI and improve the detection performance. More
performance improvement is possible when more candidate
symbols are tested. However, the computation and complexity
may become dramatically high, when the number of candi-
date symbols is big and when the number of nano-machines
supported is high.

C. TMVD-based Iterative Interference Cancellation (TMVD-
IIC)

Since the MDDIC-assisted detector demands a high com-
putation, when a MTS-MoSK system supports a large number
of nano-machines, an IIC algorithm is proposed based on
TMVD, so as to attain a good trade-off between complexity
and reliability. This detector is referred to as the TMVD-IIC.
Its operation principle is detailed as Algorithm 2 associated
with the explanation as follow.

The principle of the TMVD-IIC can be explained with the
aid of the example shown in Fig. 5. As Fig. 5 demonstrates,
after the initial stage of TMVD, the transmitted symbols of
three nano-machines, namely k = 1, 3, 4, can be detected
as X̂1 = 7, X̂3 = 2 and X̂4 = 3, because their de-spread
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Fig. 5. Example to illustrate the operations of TMVD-IIC.

matrices DDD1,DDD3,DDD4 all have only one majority row. By
contrast, the 2nd nano-machine has two candidate symbols
{4, 5}. Therefore, during the IIC stage, the three re-spreading
matrices of the nano-machines 1, 3 and 4, namely EEE1,EEE3,EEE4,
are added in logical OR, yielding the interference matrix RRRI .
Then, according to the interference matrix RRRI , the received
matrix RRRT is updated to RRR(1) by operating the interference
cancellation, which removes the elements in RRRT according to
the marked elements in RRRI . Finally, the detector de-spreads
the updated matrix RRR(1) using the 2nd nano-machine’s MTS
code aaa2 = [7, 1, 5, 0], yielding the new de-spread matrix DDD(1)

2 .
Based on DDD

(1)
2 , the symbol transmitted by the 2nd nano-

machine can be detected, which is X̂2 = 4, yielding the correct
detection.

From the above description, we can infer that the TMVD-
IIC algorithm is capable of improving the error performance
of TMVD. It can be shown that the complexity of TMVD-
IIC only increases linearly with the number of nano-machines
supported.

Algorithm 2 TMVD-based Iterative Interference Cancellation
(TMVD-IIC)
Input: Observation matrix RRRu.
Output: Symbols transmitted by K nano-machines within the
uth symbol duration X̂XX(u).

1) Execute TMVD to generate the de-spread matrices
DDD1, . . . ,DDDK corresponding to the individual nano-
machines. In each of the de-spread matrices, the rows
with the maximum number of entries are identified,
whose indices represent the candidate symbols.

2) If a detection matrix contains only one majority row,
the detector directly makes the decision to provide an
estimate to the transmitted symbol in the principle of
TMVD.
Else: If detection matrix contains more than one majority
row, the decision on the transmitted symbol is delayed to
the later stages of the IIC, as explained below.

3) Initialization: RRR(0) = RTRTRT .
4) For j = 1, 2, . . ., execute:

a) The symbols detected by the nano-machines unam-
biguously at the (j − 1)th iteration are respectively
spreaded using the MTS codes of the nano-machines
to form the re-spreading matrices.

b) These re-spreading matrices are added element-by-
element in logical OR to generate an interference
matrix RRRI .

c) The received matrix RRR(j−1) is then updated to RRR(j)

by erasing the elements in RRR(j−1) that have the
same locations as those non-empty elements in the
interference matrix RRRI .

d) For each of the nano-machines whose transmitted
symbols have not been detected, a new de-spread
matrix as DDD(j)

k is formed by de-spreading the updated
matrix RRR(j) using the nano-machine’s MTS code. The
majority rows of these de-spread matrices are then
identified.
If there are detection matrices without ambiguous
rows, the decisions are made to provide the detected
symbols.
Else if there are no further symbols detected at the
jth iteration or the maximum number of iterations is
reached, randomly select a row as the detected symbol.
Then, iteration Stops.
Else: the detections for those nano-machines with
ambiguous rows are left to the (j + 1)th iteration.

End For

D. Equal-Gain Combining Detection (EGCD)

When the EGCD is employed, the detector first carries out
de-spreading on RRRu in the context of each nano-machine, gen-
erating the de-spread matrix DDDk,u for the kth nano-machine.
Specifically, the de-spreading process shifts the elements in
RRRu according to the rule of

d
(k)
(q	ak(l),l)

(u) = rq,l(u), q = 0, 1, . . . ,M − 1;

l = 0, 1, . . . , L− 1; k = 1, 2, . . . ,K (9)

where 	 represents the subtraction in GF (M). Eq.(9) means
that, after the de-spreading, the (q, l)th element rq,l(u) in RRRu
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is shifted to the location of (q 	 ak(l), l) in DDDk,u.
Based on the de-spread matrix DDDk,u, the detector executes

the equal-gain combining (EGC) to form M decision variables
for the kth nano-machine as

Z(k)
q (u) =

L−1∑
l=0

d
(k)
(q,l)(u), q =0, 1, . . . ,M − 1;

k =1, 2, . . . ,K (10)

Finally, the largest decision variable in
{Z(k)

0 (u), Z
(k)
1 (u), . . . , Z

(k)
M−1(u)} is selected and its

subscript represents the estimate to the symbol transmitted by
the kth nano-machine. This decision making can be expressed
as

X̂k(u) = arg max
q
{Z(k)

q (u)}, k = 1, 2, . . . ,K (11)

When there is severe MAI in the MTS-MoSK DMC system,
the EGCD’s performance may be poor. In this case, MAI
mitigation technique may be introduced to enhance the perfor-
mance at relatively practical complexity. Let us now consider
a NIIC algorithm for the purpose.

E. EGCD-assisted N -order Iterative Interference Cancella-
tion (EGCD-NIIC)

EGCD-NIIC tries to detect the transmitted symbols of K
nano-machines in the order from the most reliable one to the
least reliable one by carrying out EGCD and NIIC iteratively.
Once a symbol of a nano-machine is detected, the detector
attempts to remove its effect on the following detections via
interference cancellation. Hence, in EGCD-NIIC, efficiently
measuring the reliabilities of the symbols to be detected
is critical. In this paper, a simple but efficient reliability
measurement approach is introduced by making use of the de-
cision variables in ZZZ(k) =

{
Z

(k)
0 (u), Z

(k)
1 (u), . . . , Z

(k)
M−1(u)

}
obtained by EGCD, which can be expressed as [50]

E(k) =
max2{ZZZ(k)}
max1{ZZZ(k)}

, k = 1, 2, . . . ,K (12)

where max1{ZZZ(k)} chooses the maximum of the deci-
sion variables in {Z(k)

0 (u), Z
(k)
1 (u), . . . , Z

(k)
M−1(u)}, while

max2{ZZZ(k)} selects the second maximum from them. The
nano-machine with a lower value of E(k) is rendered to be
more reliable, as the result that the decision variable matching
to the transmitted symbol has a significant difference from
the other decision variables not matching to the transmitted
symbol.

In detail, the EGCD-NIIC detector can be described as
Algorithm 3.

From Algorithm 3 we know that EGCD-NIIC algorithm
only attempts to mitigate the interference imposed by the first
N most reliable nano-machines, while the symbols transmitted
by the other nano-machines are detected by the conventional
EGCD. Note that, for given values of K, L, signal-to-noise
ratio, transmission distance r and data rate 1/Tb, there is an
optimal value for N to result in the best error performance,
as shown by our performance results in Section IV.

Algorithm 3 EGCD-assisted N -order Iterative Interference
Cancellation (EGCD-NIIC)
Input: Observation matrix RRRu, Number of iterations:
N (N < K).
Output: Detected symbols transmitted by K nano-machines
within the uth symbol duration X̂XX(u).
Initialization: RRR(0) = RRRu.
For j = 1, 2, . . . , N , execute:

1) Corresponding to the (K − j + 1) undetected
nano-machines, their de-spread matrices
DDD

(1)
j ,DDD

(2)
j , . . . ,DDD

(K−j+1)
j are generated by applying

their MTS codes, as done in (9).
2) Apply the EGC rule to these de-spread matrices, as shown

in (10), yielding the M -length decision variable vectors
ZZZ(1),ZZZ(2), . . . ,ZZZ(K−j+1).

3) Using (12) to measure the reliabilities for detecting these
nano-machines, yielding E(1)

j , E
(2)
j , . . . , E

(K−j+1)
j .

4) Find the most reliable nano-machine from the (K−j+1)
undetected nano-machines, expressed as

k̃ = arg min
k
{E(1)

j , E
(2)
j , . . . , E

(k)
j , . . . , E

(K−j+1)
j }

5) The symbol transmitted by the most reliable nano-
machine k̃ is detected as the index of the maximum deci-
sion variable in ZZZ(k̃). The detected symbol is expressed
as X̂ k̃.

6) Interference cancellation: the detector erases the (X̂ k̃ ⊕
ak̃(l), l)th, l = 1, 2, . . . , L, elements in RRR(j−1) to update
RRR(j−1) toRRR(j), if these elements inRRR(j−1) are not empty.

End For
Completion: Symbols transmitted by the remaining K − N
nano-machines are detected using RRR(N+1) based on the con-
ventional EGCD, as introduced in Section III-D. Then, detec-
tion Stops.

F. Simplified Approximate Maximum Likelihood Detection

In the MTS-MoSK DMC systems with ISI, the optimum
detector is a sequential detector. Let us assume a MTS-
MoSK DMC system with the ISI being (I + 1) length.
Then, the detection of the uth (u > I) symbol depends
on the former IK transmitted symbols. As the MTS-MoSK
DMC system employs MoSK modulation, there are in to-
tal M IK transmission states affecting the current symbol’s
detection. Hence, when the optimum Maximum Likelihood
(ML) detection is employed, the detection complexity should
be extremely high. To reduce the complexity, a simplified
approximate ML (SAML) detector is proposed to detect the
symbols of K nano-machines. In our SAML detection, the
previously detected symbols are assumed to be correct, which
reduces the detection complexity from O

(
M IK

)
to O

(
MK

)
,

which is explicitly only suitable for the system with a small
K value.

The SAML detector estimates the K symbols transmitted
by the K nano-machines during the uth symbol duration by
maximizing the joint probability density function (pdf) of the
K candidate symbols and the received signal samples, which
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can be expressed as

X̂XX(u) = arg max
XXX(u)

f(RRRu,XXX(u)) (13)

whereRRRu is the observation matrix of (6) andXXX(u) represents
the set of K candidate symbols of the K nano-machines possi-
bly transmitted during the uth symbol duration. Upon applying
the Bayes rule, and the fact that the symbols transmitted by
different nano-machines are independent, we have

f(RRRu,XXX(u)) =P (XXX(u))f(RRRu

∣∣XXX(u))

=

K∏
k=1

P (Xk(u))

M∏
q=1

L∏
l=1

f(rq,l(u)
∣∣XXX(u)) (14)

where the observations of the different types and of the
different chips are also independent, when XXX(u) is given.

To maximize the joint pdf of (14), it is usually more
convenient to minimize the negative logarithm of it. Thus, the
SAML detector of Eq.(13) can be converted to

X̂XX(u) = − argmin
XXX(u)

ln

 K∏
k=1

P (Xk(u))

M−1∏
q=0

L−1∏
l=0

f(rq,l(u)
∣∣XXX(u))


= − argmin

XXX(u)

 K∑
k=1

lnP (Xk(u)) +

M−1∑
q=0

L−1∑
l=0

ln f(rq,l(u)
∣∣XXX(u))


(15)

Furthermore, if the probability of each transmitted symbol
is the same, i.e., P (Xk(u)) = 1/M , the first term in the
bracket of (15) is common and can be removed. Therefore,
only the conditional pdf (the second term) in (15) needs
to be minimized. Consequently, the SAML detector can be
described as

X̂XX(u) = − arg min
XXX(u)

M−1∑
q=0

L−1∑
l=0

ln f(rq,l(u)
∣∣XXX(u)) (16)

From (4) and (5), we can know that rq,l (u) follows the
Gaussian distribution expressed as

rq,l(u) ∼ N
(
µq,l(u), σ2

q,l(u)
)

(17)

where the mean and variance are

µq,l(u) =

K∑
k=1

min{I,uL+l}∑
i=0

`uL+l−i
k,q ck,q (i) ;

σ2
q,l(u) =

1

V
µq,l(u) (18)

Explicitly, the pdf of rq,l (u) on the condition of XXX (u) can
be expressed as

f(rq,l(u)
∣∣XXX(u)) =

1√
2πσ2

q,l(u)
exp

[
− (rq,l(u)− µq,l(u))2

2σ2
q,l(u)

]
(19)

Substituting this pdf into the objective function of (16), we
obtain

ΛML(RRRu,XXX(u)) =−
M−1∑
q=0

L−1∑
l=0

ln f(rq,l(u)
∣∣XXX(u))

=
1

2

M−1∑
q=0

L−1∑
l=0

ln
(
2πσ2

q,l(u)
)

+

M−1∑
q=0

L−1∑
l=0

(rq,l(u)− µq,l(u))2

σ2
q,l(u)

(20)

From the above analysis, we can see that the SAML detector
has the complexity of O(Mk). Hence, it is only practical for
application, when the number of nano-machines is relatively
small and when the value of M is not big.

G. Complexity of Detection Schemes
Now we analyze the complexity of the detection schemes

considered above. In order to describe the complexity of
different operations, we assume that the arithmetic operation
of individual elements in a matrix has the complexity of O(1).
Since some detection algorithms are joint multiuser detectors,
for convenience of comparison, the complexity is expressed in
terms of K symbols simultaneously transmitted by K nano-
machines.

Let us first analyze the complexity of TMVD. First, its
threshold-based decision operation has the complexity of
O(ML), as all the (M ×L) elements in RRRu need to be com-
pared with the threshold. Assume that after the threshold-based
decision operations, there are Qa out of the ML elements
marked. Then, de-spreading these elements by invoking K
MTS codes requires the total complexity of O(KQa). Finally,
the majority voting requires O(K(L−1)M) additions to count
the numbers of entries activated in the M rows and O(K(M−
1)) comparisons to identify the majority rows. Hence, the total
complexity of TMVD is O(ML+K(Qa +ML−1)). Having
obtained the complexity of TMVD, the TMVD-MDDIC can be
analyzed as follows. For the analysis, we assume that the num-
bers of candidate rows in de-spread matrices {DDD1, . . . ,DDDK}
are {Q(1)

b , . . . , Q
(K)
b }. Then, the number of possible com-

binations N
MDD

in Section III-B is N
MDD

=
∏K

k=1Q
(k)
b ,

meaning that there are N
MDD

iterations. In every iteration, the
complexity of re-spreading the candidate symbols is O(KL)
and also, there are in total ML(K−1) logical OR additions for
processing EEEik. To obtain the Hamming distance between RRRT

and FFF i, the complexity is O(2ML− 1) in an iteration. After
the iterations, the complexity for the comparisons to select the
most likely combination isO(N

MDD
−1). After considering all

the above operations, the complexity of MDDIC can be found
to be O(N

MDD
L(K+MK+M)−1). With the complexity of

TMVD, the complexity of TMVD-IIC can also be straightfor-
wardly analyzed. As the complexity of TMVD-IIC is related
to the number of symbols detected in every iteration, which is
uncertain, we instead analyze the complexity upper-bound of
the TMVD-IIC. Note that, from our simulations, we find that,
typically, three iterations are sufficient. When all the candidate
rows are considered in each iteration, it can be shown that the
complexity upper-bound is about O(2LK2+(Qa+ML+L−
1)K + ML + 3L(Q

(1)
b + . . . + Q

(K)
b )). However, we should
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TABLE I
COMPLEXITY OF POST-PROCESSING AND THAT OF DETECTION FOR

VARIOUS DETECTION SCHEMES.

Detector Complexity
TMVD O(ML+K(Qa +ML− 1))
TMVD-MDDIC O(K(Qa +ML− 1) +NMDDL(K +MK +M)

+ML− 1)
TMVD-IIC O(2LK2 + (Qa +ML+ L− 1)K +ML+

(upper bond) 3L(Q
(1)
b + . . .+Q

(K)
b ))

EGCD O(K(2ML−M − L))
EGCD-NIIC O(NNIIC [(

2K+1−N
NIIC

2
)(M2 + 2ML− 4M+

4)− 2ML+M + 2L− 1] +K(2ML−M − L))
SAML O(MK(L+ 3ML+KI + 1))

note that the real computation required is much lower than
this bound, as the symbols detected in the previous iterations
are not required to be considered in the following iterations.

The complexity of EGCD can be readily derived, which
is O(K(2ML − M − L)). To analyze the complexity of
EGCD-NIIC, we first calculate the complexity of the NIIC
invoked. When given N

NIIC
iterations for detecting the N

NIIC

most reliable nano-machines, according to Algorithm 3, the
complexity of each iteration can be analyzed step-by-step as
follows. 1) The de-spreading invoking (K − j + 1) nano-
machines’ signature codes costs O((K − j + 1)ML) j =
1, 2, . . . , N

NIIC
of computations. 2) The complexity of EGC

on the de-spread matrices is O(M(L−1)(K−j+1)). 3) The
measurement of (K − j + 1) nano-machines’ reliabilities re-
quires the complexity of O([((M−1)(M−2)+1](K−j+1)).
4) The complexity of finding the most reliable nano-machine
is O(K−j). 5) The erasure operation of the L entries activated
by the most reliable nano-machine requires the complexity of
O(L). Therefore, the total complexity of N

NIIC
iterations is

O(N
NIIC

[(
2K+1−N

NIIC

2 )(M2 + 2ML− 4M + 4) +L− 1]).
Then, the detection of the symbols sent by the rest K−N

NIIC

nano-machines requires O((K − N
NIIC

)(2ML − M − L))
calculations. Consequently, the overall complexity of EGCD-
NIIC is O(N

NIIC
[(

2K+1−N
NIIC

2 )(M2 + 2ML− 4M + 4)−
2ML+M + 2L− 1] +K(2ML−M − L)).

Finally, the complexity of SAML can be analyzed as
follows. First, spreading the MK possible combinations of
symbols sent by K nano-machines requires the complexity of
O(MKL). Then, to obtain the means and variances of the
received signals of all the possible combinations, the com-
plexity is O(MKKI), where I is the ISI length considered.
Finally, the complexity for decision-making is approximately
O(MK(3ML+ 1)). Hence, the overall complexity of SAML
is O(MK(L+ 3ML+KI + 1)).

The complexities of all the considered detection schemes
are summarized in Table I. Explicitly, provided that K ≥ 3,
SAML has the highest complexity followed by the TMVD-
MDDIC, whose complexity is related to N

MDD
=
∏K

k=1Q
(k)
b .

The value of N
MDD

can be a big value if the threshold in
TMVD is set to be a low value. On the contrary, if the
threshold in TMVD is relatively big, N

MDD
can be small. In

practice, the threshold should be appropriately set to make both
the false-alarm and miss probabilities sufficiently small. Sub-
sequently, EGCD-NIIC has a higher complexity than TMVD-
IIC, as TMVD-IIC can usually complete the detection in three
iterations. Fundamentally, TMVD has the lowest complexity
followed by EGCD having a slightly higher complexity than

TMVD.

IV. PERFORMANCE RESULTS AND DISCUSSION

In this section, the error performance of the MTS-MoSK
DMC systems with respectively the TMVD, TMVD-IIC, MD-
DIC, EGCD, EGCD-NIIC and SAML is demonstrated against
the signal-to-noise ratio (SNR) per bit, SNRb, in the context
of some cases. The performance results were obtained from
the Monte-Carlo simulations with random data generated by
statistical models. To carry out a fair comparison between
different settings, we consider the error performance against
SNRb. Following [51], SNRb is defined as the ratio between
the power (number of molecules) received from a pulse of
molecules emitted for transmitting one isolated bit and the
corresponding noise power. Assume that within the observa-
tion space with a volume V , the expected concentration at the
sampling time is cb(o). Then, according to [42], the number
of molecules presenting in the observation space follows the
Poisson distribution with the mean and variance both given by
V cb(o). Hence, the SNRb is

SNRb =
(V cb(o))

2

V cb(o)
= V cb(o). (21)

Based on the above definition, when given SNRb and
volume V , we can obtain cb(o) from (21). If the communi-
cation distance rk between a nano-machine and AP is known,
according to (2), the number of molecules Ab for transmitting
one bit can be calculated. As in MTS-MoSK DMC systems,
each symbol conveys b = log2M bits, the total number of
molecules emitted for transmitting one symbol is As = b×Ab.
On the other side, due to the introduction of MTS, the
transmission of a symbol is split into L chips to transmit L
pulses of molecules. Hence, the number of molecules emitted
by each chip pulse is Ah = As/L = b×Ab/L.

In our demonstration of performance result, unless specif-
ically stated, some of the parameters in our simulations are
fixed, which include D = 2.2× 10−9 m2/s and V = 4πρ3/3
with ρ = 20 nm. The duration of one bit is set to Tb =
6× 10−5 s, so one symbol duration is Ts = b× (6× 10−5) s.
Moreover, to take the effect of ISI into consideration, we
evaluate the effective length of a transmitted molecular pulse
according to

I , argi

{
ch(i)

ch(o)
≤ 0.1%

}
(22)

where ch(o) in (22) is the maximun concentration expected
within the first chip’s duration, when a molecular pulse is
started transmitting at t = 0, and ch(i) is the residue con-
centration of this molecular pulse sampled at the ith chip-
duration. From (22) we are implied that only the residue
concentration in the following chip-durations with the strength
above 0.1% of the peak concentration in the initial chip-
duration is counted. Additionally, we assume the random MTS
codes in all simulations.

A. Impact of Threshold on the Performance of TMVD
Let us first demonstrate the effect of the normalized thresh-

old α, seen in (7), on the performance of TMVD. Fig. 6
demonstrates that the probabilities of error, false-alarm and
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Fig. 6. Probability of error, miss and false-alarm versus α performance of
MTS-MoSK DMC systems detected by TMVD with different SNR.
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Fig. 7. Probability of error, miss and false-alarm versus α performance of
MTS-MoSK DMC systems detected by TMVD.

miss of TMVD vary with the normalized threshold α, as seen
in (7), when SNR= 15dB or 5dB. We can see that as the
threshold increases, the probability of false-alarm decreases
while that of miss increases. Therefore, a trade-off exists
between the probabilities of false-alarm and miss. As shown in
Fig. 6, if the general error probability is considered, there is an
optimum value for α, which results in that the MTS-MoSK
DMC system achieves the lowest error probability. Further-
more, as SNR increases from 5dB to 15dB, the optimum
threshold reduces. However, we should note that the optimum
threshold is dependent on SNR and is usually hard to derive
an analytical solution.

In Fig. 7, we show the probabilities of error, false-alarm
and miss of TMVD versus the normalized threshold α, when
M = 16 and 8 types of molecules are respectively employed.
From Fig. 7 we can observe that the miss probability typically
reduces and the false probability increases significantly as the
number of molecular types employed decreases from M = 16
to M = 8. The reason behind is that the reduction of M
results in severer ISI and MAI, which enhances the molecu-
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Fig. 8. Probability of error, miss and false-alarm versus α performance of
MTS-MoSK DMC systems detected by TMVD, when different number of
chips per symbol duration is considered.
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Fig. 9. BER versus α performance of MTS-MoSK DMC systems detected
by TMVD, when different SNRs are considered.

lar concentration around AP. Therefore, the miss probability
reduces while the false-alarm probability increases. Again,
if the general error probability is considered, there is an
optimum value of α that is M -dependent, which makes the
error probability minimum.

Fig. 8 illustrates the probabilities of error, false-alarm and
miss of TMVD, when L = 16, 8 or 4 chips per symbol
duration are used. Fig. 8 shows that for the general error
probability, the optimum α value is shifted to right as L
increases. Furthermore, as L increases, the minimum error
probability increases. This is because transmitting more pulses
yields higher interference, making the performance of TMVD
degrade.

Below we specifically consider BER. First, Fig. 9 shows
that the optimum normalized threshold α is around 0.4 in a
MTS-MoSK DMC system that employs M = 16 types of
molecules and L = 8 chips per symbol for supporting K =
4 nano-machines, wherever the SNR is 10dB or 15dB. The
reason behind the above observations is that the normalized
threshold α is proportional to the maximum concentration of
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Fig. 10. BER versus α performance of MTS-MoSK DMC systems detected
by TMVD, when different numbers of molecular types M are employed.
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Fig. 11. BER versus α performance of MTS-MoSK DMC systems detected by
TMVD, when different length of chips L per symbol duration are considered.

a molecular pulse. Therefore, to demonstrate the performance
of the MDDIC and IIC that are based on TMVD, later, the
normalized coefficient α is set to 0.5 in our simulations.

In Fig. 10, the optimum normalized threshold α is shifted
to left as the number of molecular types increases. This is
because for given K and L, the increase of molecular types
leads to the reduced MAI and ISI, due to the reduction
of concentration at AP. Therefore, when the DMC system
employs the larger number, such as M = 32, of molecular
types to transmit information, the miss probability dominates
the error performance and hence the normalized threshold
reduces.

Fig. 11 demonstrates the impact of the number of chips per
symbol on the bit error performance of the MTS-MoSK DMC
systems detected by TMVD. It can be observed that when us-
ing more chips per symbol, the optimum normalized threshold
α is shifted to right. This is because when L increases, ISI
increases as the result of the increased concentration at AP.
In this case, the false-alarm becomes dominant of the error
performance.
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Fig. 12. Comparison of BER versus SNR performance of MTS-MoSK DMC
systems detected by TMVD, TMVD-IIC and TMVD-MDDIC, when different
L is considered.

B. Performance Comparison of MTS-MoSK DMC Systems
with Various Detection Schemes

Let us now compare the error performance of the MTS-
MoSK DMC systems with the various detection schemes
introduced in this paper. First, Fig. 12 compares the BER
performance of the MTS-MoSK DMC systems with TMVD,
TMVD-IIC and TMVD-MDDIC, when the different numbers
of chips per symbol are considered. From the results of
Fig. 12, we observe that in comparison with TMVD, both
the interference cancellation assisted methods are capable of
improving the bit error performance of the MTS-MoSK DMC
systems. This is more significant, when L is small. When
compared to TMVD-IIC, TMVD-MDDIC only has a very
slight improvement on the BER performance. Hence, when
taking both the computation complexity and communication
reliability into account, TMVD-IIC is more desirable for appli-
cation. Additionally, as Fig. 12 shows, the BER performance
improves as L is increased from L = 4 to L = 8, when SNR
is sufficiently high. This is because, increasing the value of
L can bring more diversity to the detection, which helps to
average out the noise and ISI effect.

Fig. 13 illustrates the BER versus SNR performance of
the MTS-MoSK DMC systems employing TMVD, TMVD-
IIC and TMVD-MDDIC, when different numbers of molecular
types, i.e., M , are employed. Explicitly, increasing the value
of M results in significant improvement of BER performance
for all the detection schemes considered, owing to the fact that
MAI and ISI decreases with the increase of M .

In Fig. 14, we compare the BER performance of the MTS-
MoSK DMC systems with TMVD, TMVD-IIC and TMVD-
MDDIC, when the systems support different numbers of nano-
machines. As Fig. 14 shows, when the number of nano-
machines increases, yielding the increasing MAI, the BER per-
formance of MTS-MoSK DMC systems degrades. The results
also show that when multiple nano-machines are supported,
both TMVD-MDDIC and TMVD-IIC have a similar efficiency
and achieve similar BER performance, which is much better
than the BER performance attained by TMVD. Therefore,
both TMVD-MDDIC and TMVD-IIC are efficient for MAI
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Fig. 13. Comparison of BER versus SNR performance of the MTS-MoSK
DMC systems detected by TMVD, TMVD-IIC and TMVD-MDDIC detection
schemes, when different numbers of molecular types are employed.
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Fig. 14. Comparison of BER versus SNR performance of the MTS-MoSK
DMC systems detected by TMVD, TMVD-IIC and TMVD-MDDIC, when
different numbers of nano-machines are supported.

mitigation, especially, in the relatively high SNR region, where
MAI dominates the BER performance.

Fig. 15 shows the transmission rate on the BER performance
of the MTS-MoSK DMC systems with TMVD, TMVD-IIC
and TMVD-MDDIC. Here, the bit rate is given by Rb = 1/Tb
and hence, a higher data rate corresponds to a lower value of
Tb. Therefore, as shown in Fig. 15, when the bit rate reduces,
the BER performance improves, especially, when SNR is low,
which is due to the reduction of ISI, when Tb increases. By
contrast, when SNR increases, the performance attained in
two cases converge. This is because the threshold applied in
TMVD is adjusted according to the bit interval. When SNR
is high, the error performance of TMVD is insensitive to the
bit rate, provided that it satisfies the assumption for sampling
stated in Section II-B.

In Fig. 16, the BER performance of MTS-MoSK DMC
systems detected by EGCD and EGCD-NIIC is compared,
when different length of chips L per symbol duration are
considered. Furthermore, for the EGCD-NIIC, the impact of
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Fig. 15. Comparison of BER versus SNR performance of the MTS-MoSK
DMC systems employing TMVD, TMVD-IIC and TMVD-MDDIC, when
transmitting at different bit rates of 1/Tb.

0 2 4 6 8 10 12 14 16 18 20

SNR(dB)

10-5

10-4

10-3

10-2

10-1

100

B
E

R

Parameters:D=2.2  10
-9

m
2
/s, =20nm,d=250nm,T

b
=6 10

-5
s,M=16,K=4

EGCD(L=4)

EGCD-NIIC(L=4,N=1)

EGCD-NIIC(L=4,N=2)

EGCD-NIIC(L=4,N=3)

EGCD(L=8)

EGCD-NIIC(L=8,N=1)

EGCD-NIIC(L=8,N=2)

EGCD-NIIC(L=8,N=3)

Fig. 16. Comparison of BER versus SNR performance of the MTS-MoSK
DMC systems detected by EGCD and EGCD-NIIC, when different values of
L are considered.

the number of iterations for IIC, i.e. N , on the achievable
BER performance is investigated. As Fig. 16 shows, the error
performance for both L values improves as the value of N
increases. It can be expected that the best BER performance
is achieved in the case of N = K−1. However, increasing the
number of iterations of IIC results in the increase of detection
complexity. Hence, the EGCD-NIIC detection scheme can
provide a trade-off between BER performance and detection
complexity. Additionally, as seen in Fig. 16, in both cases, the
EGCD-NIIC with N = 1 achieves worse BER performance
than the EGCD, when SNR is relatively high. The reason for
the observation is that the EGCD-NIIC is more efficient, when
signals appear more like Gaussian signals. When SNR is high,
interference dominates, making the EGCD-NIIC less efficient.
This is also the reason that in Fig. 16 the BER curves with
N ≥ 1 present error floors, when SNR is high.

Fig. 17 compares the BER performance of the MTS-MoSK
DMC systems detected by EGCD and EGCD-NIIC with
respect to different values of M . Explicitly, when the value
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Fig. 17. Comparison of BER versus SNR performance of the MTS-MoSK
DMC systems employing EGCD and EGCD-NIIC, when different numbers
of molecular types M are employed.
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Fig. 18. Comparison of BER versus SNR performance of the MTS-MoSK
DMC systems employing EGCD and EGCD-NIIC, when different number of
nano-machines is supported.

of M increases, the BER performance attained by both the
detection schemes significantly improve. Furthermore, for a
given SNR, the EGCD-NIIC with a sufficient number of IIC
stages can significantly outperform the EGCD without the
attempt of interference mitigation.

In Fig. 18, we compare the BER performance of the
MTS-MoSK DMC systems employing EGCD and EGCD-
NIIC, when the systems support different numbers of nano-
machines associated with using different numbers of iterations
in the NIIC. It is shown that when K is too big (K = 8),
the application of NIIC is unable to gain any performance
improvement. This is because when K is large resulting
in high interference, the reliability measurement by (12) is
unable to identify the most reliable nano-machine. In this case,
interference cancellation in fact introduces extra interference,
which results in performance degradation. Therefore, by also
considering the results in Fig. 17, we can know that the EGCD-
NIIC scheme requires a relatively high budget of M/K to gain
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Fig. 19. Comparison of BER versus SNR performance of the MTS-MoSK
DMC systems employing EGCD and EGCD-NIIC, when different bit rate of
1/Tb is transmitted.
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Fig. 20. Comparison of BER versus SNR performance of the MTS-MoSK
DMC systems employing EGCD, EGCD-NIIC, TMVD, TMVD-IIC and
SAML, when different values of L are considered.

the benefit of performance improvement.
The BER performance of the MTS-MoSK DMC systems

employing respectively EGCD and EGCD-NIIC to support
different transmission rates is compared in Fig. 19. As the
results of Fig. 19 show, for the two bit rates considered, EGCD
achieves nearly the same BER performance. By contrast,
when the EGCD-NIIC with N = 3 is employed, significant
performance improvement is observed, when the bit rate is
reduced from about 16.7K to about 3.3K. Therefore, when
the symbol duration becomes longer, resulting the reduction of
ISI, the interference cancellation in the EGCD-NIIC becomes
more efficient and hence, the BER performance improves.

In Fig. 20, we compare the BER performance of the MTS-
MoSK DMC systems employing the various detection schemes
introduced in this paper, when K = 2 nano-machines are
supported. In addition to the detection schemes considered in
the previous figures, explicitly, the SAML detector achieves
the best BER performance, while at the cost of the highest
detection complexity. Furthermore, we can observe that even
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Fig. 21. Comparison of the BER versus SNR performance of the MTS-MoSK
DMC systems employing the TMVD-series or EGCD-series of detection
schemes and that of the MDMA DMC system employing OOK.

for the SAML, the BER curves appear error floors in high
SNR region. The reason behind is that the SAML assumes
that all the previously detected symbols are correct, which
is practically not true. Therefore, when there are erroneously
detected symbols, they impose interference on the following
detections but the SAML detector ignores and hence, it results
in error floor.

C. Comparison of MTS-MoSK DMC System with MDMA
DMC System

Above the BER performance of the MTS-MoSK DMC sys-
tems employing various detection schemes has been demon-
strated and compared. Finally, in Fig. 21, we compare the
BRE performance of our MTS-MoSK DMC systems em-
ploying respectively the TMVD-series and EGCD-series of
detection schemes with that of the legacy MDMA DMC [19–
25] system employing OOK modulation. As mentioned in
Section I, MDMA DMC scheme assigns unique types of
molecules to support the signal transmissions of different
nano-machines. Hence, there is no MAI in MDMA DMC
systems. For fair comparison, we assume the same bit rate
Rb = 1/Tb = 1/6 × 10−5 and the same SNR per-bit
budget. All parameters used in individual detectors are set
to the nearly optimal values, including that the activation
threshold of 0.6ch(0) in TMVD-series of detectors, 3 iterations
of EGCD-NIIC, and the decision threshold of 0.7cb(0) in
OOK demodulation. As shown in Fig. 21, within the BER
range (10−2, 10−3) of practically interest, all the MTS-MoSK
DMC schemes outperform the OOK-based MDMA scheme.
The main reason behind is that the OOK-based MDMA DMC
experiences severe ISI. By contrast, the MTS-MoSK DMC
is capable of efficiently mitigating ISI via molecular type
hopping and MoSK modulation. As shown in Fig. 21, when
the SNR is very high, such as higher than 16 dB or 17 dB, the
MTS-MoSK DMC with the EGCD-series of detectors may be
outperformed by the OOK-based MDMA DMC. Nevertheless,
in practice, the schemes performing well in relatively low SNR
are usually desired, as above-mentioned.

V. CONCLUSIONS

This paper has focused on comparing the performance of the
MTS-MoSK DMC systems with various detection schemes,
which include three proposed interference cancellation relied
schemes, namely, TMVD-IIC, TMVD-MDDIC and EGCD-
NIIC, a proposed SAML detector, and two legacy single-user
detection schemes, namely TMVD and EGCD. The impacts
of the various parameters involved in system design, signal
propagation and detector design have been comprehensively
investigated and demonstrated via simulations. The studies and
performance results show that both TMVD-IIC and TMVD-
MDDIC are efficient to mitigate MAI and achieve the similar
BER performance, which is much better than that attainable
by TMVD and EGCD. In particular, TMVD-IIC has the
advantage of a lower complexity than TMVD-MDDIC. When
a proper number, i.e., N , is used for interference cancellation,
EGCD-NIIC can significantly outperform EGCD. However,
the complexity of EGCD-NIIC increases with N , but a very
small value of N yields limited performance gain. Among the
detection schemes considered, SAML is capable of achieving
the best error performance, but it also has the impractically
high complexity. Therefore, when the performance-complexity
trade-off is concerned, TMVD-IIC is the most promising
detection scheme for the MTS-MoSK DMC systems. Our
future work will be extended to study the efficient interference
cancellation schemes in the MTS-MoSK DMC systems where
transmit nano-machines have certain mobility.
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