
EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial
Computing Missions
Uchechukwu Awadaa, Jiankang Zhangb, Sheng Chenc, Shuangzhi Lia and Shouyi Yanga

aSchool of Information Engineering, Zhengzhou University, Zhengzhou, 450001, China
bDepartment of Computing and Informatics, Bournemouth University, Poole, BH12 5BB, UK
cSchool of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK

A R T I C L E I N F O

Keywords:
Edge computing
Aerial computing
Vehicle routing
Linear regression
Execution time
Resource efficiency
Co-location

A B S T R A C T

Low altitude platform (LAP) unmanned aerial vehicles (UAVs), also called drones, are currently
being exploited by Edge computing (EC) systems to execute complex resource-hungry use cases,
such as virtual reality, smart cities, autonomous vehicles, etc., by attaching portable edge devices
on them. However, a typical drone has limited flight time, coupled with the resource-constrained
attached edge device, which can jeopardize aerial computing missions if they are not holistically
taking into consideration. Moreover, the fundamental challenge is how to co-schedule multi-drone
among multi-location where EC services are needed, such that drones are scheduled to maximize the
utility from the activities while meeting computing resource and flight time constraints. Therefore,
for a given fleet of drones and tasks across disjointed target locations in a city, we derive a machine
learning (ML) linear regression model that estimates these tasks resource requirement and excution
time. Leveraging this estimation values, we jointly consider each drone’s flight time availability and
its attached edge device resource capacity, and formulate a novel Multi-Location Capacitated Mission
Scheduling Problem (MLCMSP) that selects suitable drones and co-schedules their flight routes
with the least total distance to visit and execute tasks at the target locations. Then, we show that
faster scheduling and execution of complex tasks at each location, while considering the inter-task
dependencies is important to achieve effective solution for our MLCMSP. Hence, we further propose
EdgeDrones, a variant bin-packing optimization approach through gang-scheduling of inter-dependent
tasks that co-schedules and co-locates tasks tightly so as to achieve faster execution time, as well as
to fully utilize available resources. Extensive experiments on Alibaba cluster trace with information
on task dependencies (about 12,207,703 dependencies) show that EdgeDrones achieves up to 73%
higher resource utilization, up to 17.6 times faster executions, and up to 2.87 times faster flight travel
time compared to the baseline approaches.

1. Introduction
Edge computing (EC) is a distributed computing model

which places cloud computing [1, 2] services closer to data
sources so as to achieve faster response times and real-time
insights. Many latency-sensitive applications that process
data from IoT devices and sensors, rely on heterogeneous
edge resources in close proximity for faster response times
and to promote rapid development. To this end, several
EC devices of various sizes and capacities have emerged.
For example, AWS Snowcone1, Azure Stack Edge mini2,
etc., are portable EC devices that weighs about 2 ∼ 3 kg
but are inherently resource-constrained relative to their on-
premise counterparts, i.e., AWS Snowball3, etc. Nonether-
less, EC systems are currently exploiting attaching these
portable edge devices on low altitude platform (LAP) un-
manned aerial vehicles (UAVs) or drones to execute complex
resource-hungry use cases, such as cyber-physical systems
[3], virtual reality [4], smart vehicles [5], face recognition
[6], smart cities [7], etc. In addition, an autonomous drone

∗Corresponding author
jzhang3@bournemouth.ac.uk (J. Zhang); ielsz@zzu.edu.cn (S. Li)

ORCID(s):
1https://aws.amazon.com/snowcone/
2https://azure.microsoft.com/en-us/products/azure-

stack/edge/#overview
3https://aws.amazon.com/snowball/

technology called Drone-in-a-box4, is currently being ex-
ploited for aerial EC missions [5, 8, 9]. A drone-in-a-box
system can be deployed autonomously from a box that serves
as a landing pad and charging base (i.e., depot) to perform
on-demand computation activities in a city. An activity
involves visiting points of interest (i.e., target locations),
hovering and interacting with end devices to execute tasks on
its attached edge device(s). After completing the tasks, the
results are immediately and deterministically communicated
back to the end device, then it returns to its box or depot.
However, a typical drone has a limited flight time due to
power factor which can jeopardize the entire mission if it
is not taking into consideration [10, 11, 12]. Hence, the
critical issue is how to assign missions and optimal routes
for multiple drones to visit a set of locations, so that they
can complete their tasks, subject to the flight time and
attached edge resource constraints of each drone, without
jeopardizing application performance.

Therefore, for a given fleet of drones and multi-task
across disjointed locations in a city, we propose a novel
Multi-Location Capacitated Mission Scheduling Problem
(MLCMSP) that co-schedules their optimal flight routing
among the locations, such that the drones can visit the
locations and complete the tasks, within their flight times
and computing resource constraints, while maximizing the

4https://en.wikipedia.org/wiki/Drone_in_a_Box

U. Awada et al.: Preprint submitted to Elsevier Page 1 of 22

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions

T_{2}

T1T1

T2T2

T3T3

T4T4

T5T5

T6T6

T7T7

T8T8

T9T9

T10T10

T11T11

T12T12

T1T1

T2T2 T3T3 T4T4

T5T5

T6T6

T1T1

T2T2

T3T3

T4T4

T5T5

T6T6

T7T7

T8T8

T9T9

T10T10

T1T1

T2T2 T3T3 T4T4

T5T5 T6T6 T7T7

T8T8

(a) Video classification
application

T_{2}

T1T1

T2T2

T3T3

T4T4

T5T5

T6T6

T7T7

T8T8

T9T9

T10T10

T11T11

T12T12

T1T1

T2T2 T3T3 T4T4

T5T5

T6T6

T1T1

T2T2

T3T3

T4T4

T5T5

T6T6

T7T7

T8T8

T9T9

T10T10

T1T1

T2T2 T3T3 T4T4

T5T5 T6T6 T7T7

T8T8

(b) Face recogni-
tion application

T_{2}

T1T1

T2T2

T3T3

T4T4

T5T5

T6T6

T7T7

T8T8

T9T9

T10T10

T11T11

T12T12

T1T1

T2T2 T3T3 T4T4

T5T5

T6T6

T1T1

T2T2

T3T3

T4T4

T5T5

T6T6

T7T7

T8T8

T9T9

T10T10

T1T1

T2T2 T3T3 T4T4

T5T5 T6T6 T7T7

T8T8

(c) Image classification
application

T_{2}

T1T1

T2T2

T3T3

T4T4

T5T5

T6T6

T7T7

T8T8

T9T9

T10T10

T11T11

T12T12

T1T1

T2T2 T3T3 T4T4

T5T5

T6T6

T1T1

T2T2

T3T3

T4T4

T5T5

T6T6

T7T7

T8T8

T9T9

T10T10

T1T1

T2T2 T3T3 T4T4

T5T5 T6T6 T7T7

T8T8

(d) Crowd counting
application

Figure 1: DAG of representative applications.

total utilization. Specifically, our MLCMSP combines ele-
ments of Vehicle Routing Problem (VRP), which is a variant
of the well known Traveling Salesman Problem (TSP) to
find optimal routes for a set of vehicles and customers
[13, 14]. Existing works have proposed routing strategies
for UAV-enabled task offloading in edge-cloud computing
systems [15, 16]. However, they have either focused on co-
scheduling a fleet of drones or task offloading to meet some
specific objectives. It is important to note that a drone routing
strategy for EC which do not consider the drones’ flight
time and resource capacity or charateristics of target tasks,
such as dependencies, resource requirement, etc., can lead to
loss of job or an incomplete mission [10, 11, 12]. Effective
co-scheduling of a given fleet of drones for EC missions
across multi-location, requires jointly optimization of the
following; (i) update information of each drones’ flight time
availability and its attached edge device(s)5 resource capac-
ity or availability, (ii) locations of end devices requesting
EC services interms of flight distance, flight travel time,
etc., and (iii) their tasks resource requirement and execution
time estimations, so as to select drones which can maximize
the utility from the activities. A disjointed approach which
interacts individually with each drone, would exhibit high
computation complexity and is far from trivial to realize
[11, 12]. For this reason, we wish to consider an approach
which seamlessly integrate all end devices, service entities
and edge resources running across multiple drones in a single
pool, such that these information can be holistically obtained
and monitored from a single control plane (CP), where it can
be used for decision making on efficient mission planning
and assignment. This approach is called Edge Federation
(EF) [17, 18]. For example, recently introduced edge com-
puting frameworks, i.e., KubeEdge, MicroK8s, etc, have the
capabilities of integrating service entities and edge resources
running across multiple drones, run containerized tasks and
eliminate provider lock-in situations. EF can enable effective
co-scheduling of multiple drones, by selecting a minimum
number of drones which can maximize the utility for any
given activities. Hence, a drone can be assigned multiple
disjointed locations as part of its mission.

5A typical drone-based edge deployment can attach one or more or
different combination of portable edge devices, depending on the drones’
load capacity.

An important challenge is developing an efficient schedul-
ing strategy that can place and execute complex applications
on the attached edge devices in a timely manner, while
efficiently managing available resources as drones visit
their assigned locations. For example, modern applications
(i.e., face recognition [6], image classification [19], crowd
counting [20], etc.,), as shown in Fig (1) are becoming more
complex in nature, structured on microservices architec-
tural style, consisting of a large number of inter-dependent
applications and often latency-sensitive [21, 22, 23]. It
is naturally important to intelligently schedule such inter-
dependent applications in a best possible way, such that they
are quickly executed and immediately sent back to the IoT
and end devices. Existing scheduling approaches which do
not consider such task dependencies, co-location strategy or
which randomly deploy tasks to any available resources can
easily result in delay, fragmentation and over-allocation of
resources, hence jeopardizing the application performance,
given the drones’ flight time and resource constraints. To
address this challenge, we first estimate tasks resource re-
quirement and execution time at target locations, using linear
regression machine learning (ML) model. These estimation
values, as well as the drones’ flight time, flight distance to
target locations, and attached edge resource availability are
used as inputs to plan missions for a captive set of drones
to accomplish any given activities. One drawback of this
concept is that inaccurate estimations of tasks resource re-
quirement and execution time at target locations, could also
jeopardize the entire missions for selected drones. Similarly,
if the tasks are scheduled naively, e.g., in an edge deployment
which can only execute one task or job at any time and where
each task is scheduled individually [24, 25], the system
might not yield an optimal performance. Therefore, we first
investigate the accuracy of our trained linear regression ML
model for estimating multi-task resource requirement and
execution time, using the normalized absolute estimate error
(NAEE) method. This serves as the estimation accuracy
measure for the trained linear regression ML model. We
further propose EdgeDrones, which extends the state-of-
the-arts by providing an intelligent dependency-aware multi-
task scheduling and co-location scheme to achieve high
resource utilization and faster execution of tasks.

U. Awada et al.: Preprint submitted to Elsevier Page 2 of 22

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions

In particular, we show that EF [17, 18] and ML tech-
niques [26, 27] can help aerial edge systems to achieve
effective co-scheduling and optimal route planning for a
fleet of autonomous drones to accomplish stochastic service
requests from end devices across target locations in a city.
With limited edge resources and drones’ flight time, it is
necessary to consider task dependencies in drone-based EC
task offloading, by jointly optimizing the drones’ flight time
and resource availability, such that all the tasks can be intelli-
gently scheduled and fast executed with minimum resources
before the drone returns for recharging or departs for another
assigned location. Hence, our aim is to plan optimal flight
routes for drones to execute all the tasks by considering
dependencies and resource demands, such that the actual
scheduling and execution time is minimized, and is much
less than the drones’ flight time. In summary, to achieve
our EdgeDrones implementation, we address the following
critical areas:

• We propose an integrated system with global infor-
mation, through the joint optimization of all service
entities, and formally define the novel Multi-Location
Capacitated Mission Scheduling Problem (MLCMSP)
that selects and co-schedules optimal flight routes for a
fleet of drones for any given aerial computing missions
in a city.

• Specifically, we derive a multi-task machine learn-
ing (ML) execution time and resource requirement
estimation, to aid MLCMSP to select drones with
requisite resource availability which can maximize the
utility from the aerial activities.

• To guarantee optimal usage of cluster resources and
faster execution of tasks, we further propose a variant
bin-packing optimization approach through gang-
scheduling of multi-dependent tasks, which co-schedules
and co-locate tasks firmly on available nodes, so as to
avoid resource wastage.

• We show that EdgeDrones is capable of minimizing
the actual completion time of multi-dependent tasks
using minimum resources, and we conduct extensive
experiments to compare the performance of our Edge-
Drones with several existing approaches using real-
world data-trace from Alibaba cluster trace6, which
provides information on task dependencies.

The rest of the paper is organized as follows. In Section
2, we discuss the related work. In Section 3, we present some
preliminaries on task dependency-awareness and discuss our
motivation. In Secton 4, we detail our proposed EdgeDrones
for achieving high resource utilization and minimizing the
execution times of applications deployed on federated aerial
edge resources. In Section 5, we compare the performance
of our proposed EdgeDrones against that of several state-of-
the-art approaches through extensive experiments. Finally,
we conclude the paper in Section 6.

6https://github.com/alibaba/clusterdata

2. Related Works
UAV or drone-based edge computing deployments are

gaining increasingly popularity due to their autonomous nav-
igation, low cost, mobility, flexibility and adaptive altitude
to deliver faster execution closer to data sources. They are
currently being exploited for several use cases, i.e., task
offloading, data caching, data streaming, etc. For example,
the authors of [28] proposed a UAV-enabled edge network
to minimize the system-wide computation cost by efficient
task offloading and deployment. They have formulated and
solved this problem as a stochastic game. The work [3]
proposed a joint trajectory, task offloading and caching
optimization in a UAV-enabled edge for Cyber-Physical
System. They have proposed this to realize energy-efficient
performance of the UAV. In [4], the authors explored the
UAV-assisted edge and streaming for virtual reality. They
formulated this problem as a joint joint UAV placement,
edge resource allocation, and 360-degree video content layer
assignment. They aim to select the allocation of computing
and communications resources, such that the delivered qual-
ity of experience (QoE) is maximized.

UAV or drone-enabled multi-task offloading schemes in
edge systems can benefit from joint optimization of drones’
flight time, resource availability status, multi-task’s resource
requirement and execution time, such that drone with suf-
ficient resource availability can be deloyed to conduct ef-
ficient execution request. A-priori information about task
execution time is mostly important for drone-based edge
deployments [11, 12]. This is because a typical drone has
limited flight time, and could possibly lead to a delayed
task execution if it is not taken into consideration [10].
In particular, optimal route can be planned and assinged
to ensure that drones can complete their tasks, given their
flight time constriants. There exist works that explore routing
and trajectory scheduling for drone-enable edge systems.
For example, the work [15] proposed a mssion scheduling
problem (MSP) that co-schedules the flight routes of drones
to visit target locations and record videos. Similarly, the
work [16] proposed an online algorithm for UAV swarms
to jointly optimize the task offloading and multi-hop routing
scheduling. In [3], the authors proposed a joint optimization
of drone’s 3D trajectory scheduling and the task-cache strate-
gies to minimize its total energy consumption. The work [29]
formulated an optimization problem to minimize the total
energy consumption of a UAV through joint partitioning and
UAV trajectory scheduling. In [30], the authors presented
a distributed task offloading and path planning algorithm
to provide computational support to large-scale IoT nodes.
However, these schemes do not consider drones’ flight time
and assume a drone can fly for unlimited amount of time,
which can lead to delay or loss of job due to drones’ limited
flight time [10, 11, 12].

For multi-task at target locations, an accurate execution
time and resource demand estimation is mostly needed to
schedule routes for drone(s) and a-priori to conduct efficient
multi-task scheduling. Consequently, existing researches

U. Awada et al.: Preprint submitted to Elsevier Page 3 of 22

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions

have proposed a huge number of learning methods to es-
timate task’s resource requirements and execution time,
based on collaborative learning (CL) [11, 18, 31], machine
learning (ML) [12, 26, 27, 32], incremental learning (IL)
[33], scheduling [34, 35, 36, 37] and statistical models
[38]. Our previous works [11, 12] focused on of multi-
dependent tasks orchestration in autonomous drone-enabled
edge computing system, while considering the drones’ flight
time, so as to avoid loss of jobs [10]. Specifically, in [11],
we have proposed a multi-output linear regression model
based on CL to estimate multi-dependent task’s resource
requirement and execution time, to select the closest drone
deployment having matching resource availability and flight
time to execute ready tasks at a given time. In [12], we have
proposed a ML based multi-dependent tasks dispatching
over a federated autonomous drone-enabled edge computing
platform, using the total estimated value of the multi-
dependent tasks’ execution time to select a suitable drone.

With limited edge resources, is it also important to avoid
any form of resource wastage, i.e., resource under utilization.
Efficiently managing edge resources directly dictates service
quality and performance [39]. As a result, task co-location
has gained attention both in academia and industry as an
optimal solution for improving resource utilization and sys-
tem throughput in distributed systems. However, effective
task co-location is a non-trivial task, as it requires an under-
standing of the computing resource requirement of the co-
running tasks, in order to determine how many of them can
be co-located. To this end, a tasks co-location mechanism
was proposed in [40], where it was showed that by accurately
estimating the resource level needed, a co-location scheme
can effectively determine how many tasks can be co-located
on the same host to improve the system throughput, by taking
into consideration the memory and CPU requirements of
co-running tasks. With the aim to maximize the resource
utilization, the authors of [41] utilized reinforcement learn-
ing to co-locate interactive services with batched ML work-
loads. Our previous works [42, 43] focused on workload
co-location in cloud environment, rather than edge systems.
To further improve edge resource management, a resource
management scheme was proposed in [17, 18] which unifies
distributed edge resources, such that they are holistically
managed. Our previous work [17] proposed a dependency-
aware task scheduling in such unified system. Modern appli-
cations are usually structured with inter-task dependencies,
whereby a task depends on an input from other task(s).
A huge number of existing works, i.e., [21, 22, 23, 44]
have tackled the problem scheduling such inter-dependent
tasks or multi-dependent tasks, and their common goal is to
formulate a scheduling decision that minimizes the average
completion time of such tasks.

Existing works on UAV-enabled approaches for task
offloading and execution in multi-edge deployments do not
jointly consider tasks dependencies, do not unify service en-
tities and distributed edge resources, such that they are holis-
tically managed and monitored from a single control plan
(CP), where such information can be utilized to co-schedules

multi-drone, co-locate multi-task effectively . This motivates
our research to extend existing schemes by proposing Edge-
Drones. Specifically, we propose a learning-based multi-
drone route scheduling through a unified system, which
include all service entities and resources running across the
multi-drone, location of end devices and their applications.
We further propose a variant bin-packing optimization ap-
proach through gang-scheduling of multi-dependent tasks,
which quickly co-schedules and co-locate tasks firmly on
available nodes, so as to avoid delay and resource wastage.
We finally show that EdgeDrones is capable of minimizing
the actual completion time of multi-dependent tasks us-
ing minimum resources through extensive experiments and
comparison.

3. A Case Study on a Smart City
We consider a smart city senario, where multiple IoT and

other end devices are deployed across the city to improve life
standards of its citizens. For example, Toyota Motor Cor-
poration has recently embarked on a new smart city project
called Woven City7, where new technologies such as smart
construction and manufacturing, smart homes, robotics, con-
nectivity through AI, autonomy, etc are being deployed. EC
provides a promising way of enabling these technologies
by offering computing resources with low latency. Smart
city solutions are increasingly integrating UAVs or drone-
enabled EC for enhanced performance [7]. Suppose at time
𝑡, there are updates from devices at multiple locations in
the city, as shown in Fig. 2(a), drones equipped with EC
devices can fly to these locations to render needed services
in a timely manner. However, how to select, assign and route
flight paths for drones to accomplish these tasks effectively
is a major challenge. To address this, each task’s resource
requirement in terms of CPU and memory at each location
𝐿𝑖 is estimated, i.e., ⟨𝑐𝑖, 𝑚𝑖⟩, as well as its execution time
𝐸𝑒𝑥𝑖 . These values, as well as the location coordinates are
utilized to select suitable drones (i.e., drones with sufficient
flight time 𝑓𝑖 and resource capacity ⟨𝑐, 𝑚⟩), such that their
optimal routes to visit the locations are scheduled, as shown
in Fig. 2(b). Nevertheless, a routing problem with many
locations can take a long time to solve. Therefore, for such
problems, it is better to set a search limit which terminates
the search after a specific length of time or number of
solutions is returned.

Most importantly, as the drones embark on their mis-
sions, efficient scheduling strategy for complex applications
at each location 𝐿𝑖 is absolutely necessary to guarantee high
application performance and successful completion of each
drone’s mission. For example, in Fig. 2(b), Drone 1 is as-
signed 4 locations (𝐿1, 𝐿2, 𝐿3 and 𝐿4). Suppose at these lo-
cations, we have complex applications in the form of directed
ayclic graphs (DAGs), as shown in Figs. 2(a), (b), (c) and
(d), respectively, where each job typically consists of several
tasks whose dependencies are expressed by DAG, i.e., the
job in Fig. 1(a) consists of inter-task dependency depth 𝛾 of

7https://www.woven-city.global/

U. Awada et al.: Preprint submitted to Elsevier Page 4 of 22

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions

IoT - Thing - Cart

IoT - Thing - Factory

IoT - Thing - Bicycle

IoT - Thing - Wind Farm

IoT - Thing - Medical Emergency

(a) Locations of end devices needing EC services in a smart city

L1L1

$L_{1}
$

L2L2

L3L3

L4L4

L5L5

L6L6

L7L7

L8L8

L9L9

L10L10

L11L11

L12L12

L13L13

L14L14

L15L15

L16L16

D1D1

D2D2D3D3

D4D4

(b) Drones assignement, their optimal routes and flight paths

Figure 2: (a)Locations of end devices needing EC services, (b) drones assignement together with their optimal routes.

12, i.e., (𝑇1, 𝑇2,. . . ,𝑇12). Such complex inter-task dependen-
cies with multi-dimensional resource demands, i.e., various
amounts of CPU and memory resources, and communication
requirements, make resource management in such a drone-
enabled EC system very challenging. Knowledge about these
tasks characteristics, i.e., resource demands and dependen-
cies, is necessary to pack or co-locate them effectively in
available resources, ultimately to minimize their collective
response times and improve the resource utilization [11, 12].
Clearly, tasks 𝑇1, 𝑇2 and 𝑇3 are independent task, i.e., no
dependency, and they can be started without waiting for
any other task(s), while tasks 𝑇4 and 𝑇5 depend on the
completion of task 𝑇1. Similarly, task 𝑇10 depends on the
completion of tasks 𝑇6, 𝑇7 and 𝑇8. Hence a key objective of
our EdgeDrones is to reduce the collective execution time of
such tasks and improve resource utilization by considering
the inter-task dependency and resource demands. Therefore,
given the 𝑛 multi-dependent tasks 𝑇1, 𝑇2,⋯ , 𝑇𝑛, as shown in
Fig. 2, EdgeDrones adopts the gang-scheduling [11, 12, 45]
strategy and a variant bin-packing optimization to efficiently
co-schedule and co-locate them in the attached edge nodes.
We consider EdgeDrones as a Full Dependency and Full
Packing (FDFP) scheduling approach. Thus, the scheduling
time can be expressed as:

𝑚∑
𝑧=1

𝑘𝑧∑
𝑖=1

𝑆𝑐ℎ𝑧𝑖
∕𝑘𝑧, (1)

where 𝑚 is the number of scheduling units, 𝑘𝑧 is the number
of tasks within the 𝑧-th scheduling unit having the tasks{
𝑇𝑧1 , 𝑇𝑧2 ,⋯ , 𝑇𝑧𝑘𝑧

}
.

We illustrate the advantage of the scheduling approach
in EdgeDrones over three other existing schemes as follows;
(i) a scheduling approach which does not consider tasks’ de-
pendencies, but schedules 50% of any given multi-dependent
tasks by mainly focusing on task co-location, we refer to this
scheduling approach as No Dependency and Full Packing

(NDFP), and it is similar to the approach in [46]; (ii) a
scheduling approach which schedules up to 15% of any given
multi-dependent tasks at a time, but does not consider task
co-location, we refer to this scheduling approach as Partial
Dependency and No Packing (PDNP), and it is similar to
to the approach in [47]; (iii) a scheduling approach which
schedules up to 40% of any given multi-dependent tasks
with task co-location, we consider this scheduling approach
as a Partial Dependency and Full Packing (PDFP), and it
is similar to to the approach in [48]; and (iv) the Random
approach, which does not consider both tasks’ dependencies
and task co-location, we refer to this scheduling approach as
No Dependency and No Packing (NDNP). It is important
to note that delay in scheduling inter-dependent tasks di-
rectly impacts their collective execution time. For the multi-
dependent tasks of Fig. 1 with 𝑛 = 12 tasks, Table 1 lists
the scheduling orders and scheduling units for the schemes
compared. EdgeDrones only needs one scheduling unit (𝑚=
1) which has 𝑘1 = 12 tasks, and it also achieves the lowest
execution time of 1

12
∑12

𝑖=1𝐸𝑒𝑥𝑖 . By contrast, Random has
𝑚 = 12 scheduling units, each having a single task. Hence
it has the highest execution time of

∑12
𝑖=1𝐸𝑒𝑥𝑖 . Thus, Edge-

Drones achieves the lowest scheduling and execution time.
PDNP, PDFP and NDFP deploy individual or subsets of the
tasks at a time. Generally, delay in scheduling dependent
tasks directly impacts job completion time, and utilizing
gang scheduling is beneficial for overall performance.

4. System Model, Problem Formulation and
Algorithm Framework
In this section, we detail our proposed EdgeDrones for

achieving optimal routing scheduling for drones aerial mis-
sions, high resource utilization and minimizing the execu-
tion times of applications deployed on an integrated edge
computing system. The system model is shown in Fig. 3.

U. Awada et al.: Preprint submitted to Elsevier Page 5 of 22

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions

Table 1
Scheduling orders and units of various schemes

Scheme Scheduling Order Scheduling Units
EdgeDrones {𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6, 𝑇7, 𝑇8, 𝑇9, 𝑇10, 𝑇11, 𝑇12} 1

PDNP 𝑇3 → 𝑇2 → {𝑇1, 𝑇4} → {𝑇6, 𝑇8} → {𝑇5, 𝑇7} → {𝑇10, 𝑇11} → {𝑇12, 𝑇9} 7
PDFP 𝑇1 → 𝑇2 → 𝑇3 → {𝑇4, 𝑇5} → {𝑇6, 𝑇7, 𝑇8, 𝑇9} → {𝑇10, 𝑇11, 𝑇12} 6
NDFP {𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6} → {𝑇7, 𝑇8, 𝑇9, 𝑇10, 𝑇11, 𝑇12} 2
Random 𝑇1 → 𝑇2 → 𝑇3 → 𝑇4 → 𝑇5 → 𝑇6 → 𝑇7 → 𝑇8 → 𝑇9 → 𝑇10 → 𝑇11 → 𝑇12 12

4.1. System Model
At the city center, we have a depot 𝐿0 with coordinate

{𝑥0, 𝑦0}, where a fleet of drones 𝔻ℝ = {1,⋯ ,𝑁}
are stationed and ready for aerial computing missions. Each
drone has flight time availability 𝑓 𝑎𝑣𝑎𝑙

𝑖 and resource ca-
pacity ⟨𝑐,𝑚⟩

𝑖 , in terms of CPU and memory resources.
Then, at time 𝑡 > 0, we have a set of end devices 𝔻 =
{1,⋯ ,𝑀} requesting EC services across multi-location
𝕃 = {𝐿1,⋯ , 𝐿𝑀} with their coordinates 𝐿1 = {𝑥1, 𝑦1},⋯ ,
𝐿𝑀 = {𝑥𝑀 , 𝑦𝑀} within the city. The edge federated system
𝔼𝔽 consists of all service entities in the 𝑁 drones 𝑖,
1 ≤ 𝑖 ≤ 𝑁 , and 𝑀 end devices 𝑖, 1 ≤ 𝑖 ≤ 𝑀 , i.e.,

𝔼𝔽 = 𝔻ℝ
⋃

𝔻. (2)

A set of multi-task 𝕋 = {𝑇1,⋯ , 𝑇𝑁} from the end device(s)
at each location 𝐿𝑖 ∈ 𝕃 require an amount of CPU and
memory resources ⟨𝑐,𝑚⟩

𝑖 for execution. These resource
requirements along with execution times are first estimated
using linear regression ML model. The multi-task features
𝒇mt(𝜔, 𝜖, 𝛾), where 𝜔 is the number of instances, 𝜖 is type
of tasks , 𝛾 is dependency depth, are fed into the model
Θ⋆ to estimate the values of the resource requirement and
execution times according to

𝒇mt ⋅Θ⋆ =
[
𝐸𝑒𝑥1𝑇

⟨𝑐,𝑚⟩
1 𝐸𝑒𝑥2𝑇

⟨𝑐,𝑚⟩
2 ⋯𝐸𝑒𝑥𝑁𝑇

⟨𝑐,𝑚⟩
𝑁

]
, (3)

where 𝑇 ⟨𝑐,𝑚⟩
𝑖 and 𝐸𝑒𝑥𝑖 are the estimated resource require-

ment (in terms of CPU and memory ⟨𝑐, 𝑚⟩) and estimated
execution time for task 𝑖, respectively. We show that with
these estimated values, suitable drones can be assigned and
multi-dependent tasks can be intelligently scheduled with
the aim of minimizing their actual completion time, while
maximizing available resources. Assuming that 𝒇mt ∈ℝ1×𝑑

Dispatcher

Integrated Edge Computing System

.

.

.

DR1DR1

DR2DR2

DRNDRN

fmt ·⇥? =
h
eEex1

eT hc,mi
1 · · · eEexN

eT hc,mi
N

i
,fmt ·⇥? =

h
eEex1

eT hc,mi
1 · · · eEexN

eT hc,mi
N

i
,

.

.

.

L1L1

L2L2

LMLM

Estimator

eT hc,mi
i

eEexi ,DM,RChc,mi
i , faval

i
eT hc,mi
i

eEexi ,DM,RChc,mi
i , faval

i

! DRassign
i ,DRroute

i! DRassign
i ,DRroute

i

such that J) DRisuch that J) DRi

DRDRCP

An Integrated Edge Computing System

L,D,TL,D,T

fmt ·⇥? =
h
eEex1

eT hc,mi
1 · · · eEexM

eT hc,mi
M

i
fmt ·⇥? =

h
eEex1

eT hc,mi
1 · · · eEexM

eT hc,mi
M

i

Figure 3: Orchestration overview of EdgeDrones.

is a 𝑑-dimensional vector (tensor), then Θ is a (𝑑 × 𝜖)-
dimensional parameter matrix. To build this predictor Θ,
we train it using historical data from previously executed
tasks/jobs based on Keras8. Keras is a library which wraps
TensorFlow9 complexity into simple and user-friendly API.
The dataset = {(𝒙𝑖, 𝒚𝑖)}𝑛𝑖=1 contain 𝑑-dimensional ten-
sors of data features 𝒙𝑖 ∈ ℝ1×𝑑 and 𝜖-dimensional tensors
of labels (actual execution times) 𝒚𝑖 ∈ ℝ1×𝜖 . The learning
problem is to solve the following optimization:

Θ⋆ = arg min
Θ∈ℝ𝑑×𝜖

1
2𝑛

𝑛∑
𝑖=1

‖𝒙𝑖Θ − 𝒚𝑖‖22 + 𝜆
2
‖Θ‖2𝐹 , (4)

where 𝜆 is the regularization parameter and ‖ ⋅ ‖𝐹 denotes
the Frobenius norm. The optimization (4) is solved using
gradient-descent, where the model is updated iteratively
until convergence, i.e., Θ𝑡+1 = Θ𝑡 − 𝜂

(1
𝑛𝒈(Θ

𝑡) + 𝜆Θ𝑙), in
which 𝜂 is the learning rate, 𝒈(Θ)= 1

𝑛𝑿
T(𝑿Θ−𝒀

)
denotes

the gradient of the loss function, 𝑿 =
[
𝒙T1 ⋯𝒙T𝑛

]T and
𝒀 =

[
𝒚T1 ⋯ 𝒚T𝑛

]T are the feature set and label set, respec-
tively. These estimation values 𝑇 ⟨𝑐,𝑚⟩ and 𝐸𝑒𝑥 are important
information for selecting suitable drones from the depot for
the missions. The target location coordinates 𝐿𝑖 = {𝑥𝑖, 𝑦𝑖}
and depot coordinates 𝐿0 = {𝑥0, 𝑦0} are used to compute
the distance matrix to also aid with the selection of suitable
drones. The distance matrix is an array of distances between
these locations. These distances can be obtained using the
Manhattan Distance10, in which the distance between two
locations 𝐿𝑖 = {𝑥𝑖, 𝑦𝑖} and 𝐿𝑗 = {𝑥𝑗 , 𝑦𝑗} is given as:

𝑑𝐿𝑖,𝑗 = |𝑥𝑖 − 𝑥𝑗| + |𝑦𝑖 − 𝑦𝑗|. (5)

These distances can also be obtained using Google Distance
Matrix API11. Hence, the distance matrix is given as;

𝔻𝕄 =

⎡⎢⎢⎢⎣
𝑑𝐿0,0 𝑑𝐿0,1 𝑑𝐿0,2 … 𝑑𝐿0,𝑛

𝑑𝐿1,0 𝑑𝐿1,1 𝑑𝐿1,2 … 𝑑𝐿1,𝑛

⋮ ⋮ ⋮ ⋱ ⋮
𝑑𝐿𝑚,0 𝑑𝐿𝑚,1 𝑑𝐿𝑚,2 … 𝑑𝐿𝑚,𝑛

⎤⎥⎥⎥⎦ . (6)

The number of rows of the 𝔻𝕄 indicates the number of
target locations and the depot inclusive. Autonomous drone

8https://keras.io/
9https://www.tensorflow.org/

10https://en.wikipedia.org/wiki/Taxicab_geometry
11https://cloud.google.com/blog/products/maps-platform/how-use-

distance-matrix-api

U. Awada et al.: Preprint submitted to Elsevier Page 6 of 22

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions

systems have tools to help them estimate flight travel time
for distances between locations [11, 12]. A drone’s power
has a capacity P, which is used for the flights (i.e., traveling
and hovering) at a constant energy-efficient speed 𝑠. Note
that the attached edge device(s) does not depend on the
drone’s power, instead, it is powered by its on-board power
supply. For example, AWS Snowcone can be powered by
any standard USB-C power bank and can deliver up to
14 trillion operations per seconds (TOPs) with as little as
10W of power. Therefore, the flight travel time for 𝑑𝐿𝑖,𝑗 is
given as 𝑓𝐿𝑖,𝑗 , and the flight hovering time at 𝐿𝑖 is given
as 𝑓ℎ𝑜𝑣𝑒𝑟. As the actual execution time is unknown at this
point, we assume that the flight hovering time is equivalent
to the multi-task execution time estimation, i.e., 𝑓ℎ𝑜𝑣𝑒𝑟 ≈∑𝑁

𝑖=1 𝐸𝑒𝑥𝑖 . Suppose that a drone travels from 𝐿𝑖 to 𝐿𝑗 in one
step of its route, and that:

• The drone’s cumulative flight travel time upon arrival
at 𝐿𝑖, given as 𝑓𝐿𝑖 is 60𝑠.

• The drone’s cumulative flight travel time upon arrival
at 𝐿𝑗 , given as 𝑓𝐿𝑗 is 130𝑠.

• The drone’s flight travel time 𝑓𝐿𝑖,𝑗 is 50𝑠.

Obviously, the drone can not depart location 𝐿𝑖 immediately
upon arrival, otherwise its cumulative flight travel time 𝑓𝐿𝑗

upon arrival at 𝐿𝑗 would be 110𝑠. Instead, the drone must
hover and execute the tasks at 𝐿𝑖 for 20𝑠 before departing
for 𝐿𝑗 . In other words, the execution time also constitues a
drone’s flight travel time. On the other hand, note that the
a drone’s resource capacity ⟨𝑐,𝑚⟩ does not accumulate as
it travels along its route. This is because, after executing its
tasks at 𝐿𝑖, the results are immediately and deterministically
communicated back to the end device at 𝐿𝑖, and its resources
becomes available for its next task execution at location 𝐿𝑗 .
Also, a drone can be assigned multiple disjointed locations
as part of its mission, giving that it has sufficient resource
availability, i.e., compute resources and flight time. Hence,
a drone’s total distance and flight travel time for its entire
mission is given as;

𝑑𝑡𝑜𝑡𝑎𝑙 =
𝑛∑
𝑖=0

𝑚+1∑
𝑗=𝑖+1

𝑑𝐿𝑖,𝑗 (7)

and

𝑓 𝑡𝑜𝑡𝑎𝑙 =
𝑛∑
𝑖=0

𝑚+1∑
𝑗=𝑖+1

𝑓𝐿𝑖,𝑗 + 𝑓ℎ𝑜𝑣𝑒𝑟
𝑗 , (8)

respectively. Since, a drone can be assigned multiple dis-
jointed 𝑚 locations, it must start and end its missions at the
depot 𝐿0. For uniformity, we denote the starting and the
ending depot location in its route as 𝐿0 and 𝐿𝑚+1, respec-
tively. Therefore, given a federated system 𝔼𝔽 consisting
of drone-enabled EC deployments 𝔻ℝ, where each par-
ticipating drone 𝑖 is attached with container-optimized

nodes, and a set end devices 𝔻 requesting EC services across
multiple locations in a city, an update state information from
the CP which include each drones’ fight time availability
𝑓 𝑎𝑣𝑎𝑙
𝑖 , its total resource capacity ⟨𝑐,𝑚⟩

𝑖 , each end device𝑖 inter-dependent tasks execution and resource demand
estimation 𝐸𝑒𝑥𝑖𝑇

⟨𝑐,𝑚⟩
𝑖 , location coordinates 𝐿𝑖 = {𝑥𝑖, 𝑦𝑖}

and distance matrix 𝔻𝕄, is needed to select, assign and
schedule optimal routes 𝑟𝑜𝑢𝑡𝑒

𝑖 for drones to visit these
locations and execute the tasks, such that

𝑟𝑜𝑢𝑡𝑒
𝑖 =arg min𝑖∈𝔻ℝ

{
𝑑𝑡𝑜𝑡𝑎𝑙𝑖 ∶ 𝑓 𝑡𝑜𝑡𝑎𝑙

𝑖 <𝑓 𝑎𝑣𝑎𝑙
𝑖 ,⟨𝑐,𝑚⟩

𝑖 sufficient
}
.

(9)

A drone must execute a set of inter-dependent tasks 𝕋
at each of its assinged location before it returns to its depot.
EdgeDrones utilizes the gang scheduling [45] strategy to co-
schedule all tasks 𝑇𝑖 ∈ 𝕋 at a time, i.e.,

𝕋 ⇒ 𝑖. (10)

For a task 𝑇𝑖 ∈ 𝕋 , its actual starting time and completion
time are denoted as𝐸𝑠𝑡 and𝐸𝑐𝑝, respectively. Thus, its actual
execution time is given as:

𝐸𝑒𝑥 = 𝐸𝑐𝑝 − 𝐸𝑠𝑡. (11)

Hence the collective actual execution time of a multi (𝑛)-
task 𝕋 is given as

∑𝑛
𝑖=1

𝐸𝑒𝑥𝑖
𝑛 . Given a cluster of container-

instances or nodes 𝐼𝑝 in the edge device(s) attached to
𝑖, let 𝐼 ⟨𝑐,𝑚⟩𝑝 denote the 𝑝-th node’s resource capacity.
The estimated resource demands of 𝑘-dependent tasks to be
orchestrated

∑𝑘
𝑞=1 𝑇

⟨𝑐,𝑚⟩
𝑞 and the resource capacity of each

node is important information needed in order to make an
efficient scheduling and co-location decision on 𝐼𝑝 at time
𝑡. Our system extends to handle bulk requests from multiple
end devices at the same location. Suppose at 𝑡, there are 𝑛
service requests from multiple end devices at the same loca-
tion 𝐿𝑖, where each device 𝑖 is offloading 𝕋 . The collective
𝑛 requests from the end devices can be scheduled as a multi-
Job 𝕁, where 𝕁 =

∑𝑛
𝑖=1 𝕋𝑖, with collective resource demand

estimation of each job denoted as
∑𝑘

𝑞=1𝑇
⟨𝑐,𝑚⟩
𝑞 = 𝑇 ⟨𝑐,𝑚⟩′,

and the aggregate execution time estimation of each job as∑𝑘
𝑞=1𝐸𝑒𝑥𝑞 = 𝐸𝑒𝑥′. We can gang-schedule and co-locate 𝕁

effectively on 𝑖:

𝕁 ⇒ 𝑖, (12)

by considering the estimated total resource demand of 𝕁:

∑
𝐽∈𝕁

𝑇 ⟨𝑐,𝑚⟩′ = 𝑇 ⟨𝑐,𝑚⟩′
total , (13)

and 𝑖 resource capability ⟨𝑐,𝑚⟩
𝑖 . Hence, the total esti-

mated execution time of 𝕁 at 𝐿𝑖 is given as:∑
𝐽∈𝕁

𝐸𝑒𝑥′ = 𝐸total
𝑒𝑥′ . (14)

U. Awada et al.: Preprint submitted to Elsevier Page 7 of 22

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions

Therefore, estimated resource utilization of 𝑖 for multi-
job 𝕁 at 𝐿𝑖 is given by

𝜌⟨𝑐,𝑚⟩𝑖
=

𝑇 ⟨𝑐,𝑚⟩′
total

⟨𝑐,𝑚⟩
𝑖

. (15)

For a drone 𝑖, let the aggregate of the actual execution
time of multi-job 𝕁 at 𝐿𝑖 be

∑
𝐽∈𝕁

∑𝑘
𝑞=1

𝐸𝑒𝑥𝑞

𝑘
=
∑

𝐽∈𝕁
𝐸𝑒𝑥′ = 𝐸total

𝑒𝑥′ , (16)

and the total resources actually assigned for multi-job 𝕁 at
𝐿𝑖 be ⟨𝑐,𝑚⟩𝑖𝑈

. Under the condition that estimated total

resource demand 𝑇 ⟨𝑐,𝑚⟩′
total is accurate, i.e., 𝑇 ⟨𝑐,𝑚⟩′

total ≈⟨𝑐,𝑚⟩𝑖𝑈
,

then ⟨𝑐,𝑚⟩𝑖𝑈
will not exceed ⟨𝑐,𝑚⟩

𝑖 . Similarly, under the

condition that estimated total estimated execution time𝐸total
𝑒𝑥′

is accurate, i.e., 𝐸total
𝑒𝑥′ ≈𝐸total

𝑒𝑥′ , then the drone 𝑖 will have
sufficient flight time availability 𝑓 𝑎𝑣𝑎𝑙

𝑖 for its entire mission.
Our learning-based approach has significant advantages

over non-learning based counterparts. By accurately esti-
mating the resource requirement and execution times of
multi-tasks/multi-jobs, our scheme can intelligently select
suitable drones having requisite resource and flight time
availability for the missions, and co-locate multi-dependent
tasks in their attached edge nodes, such that the depen-
dent tasks can communicate and execute faster, ultimately
to minimize the response times and improve resource uti-
lization, hence guarantees the entire mission completion.
The accuracy of the estimated resource requirement and
execution times can be ensured by constructing multiple
training datasets for different classes of multi-tasks/multi-
jobs from historical data to learn multiple models, one for a
class of multi-tasks/multi-jobs. Given the multi-tasks/multi-
jobs to be deployed, the model that is most similar to
them is employed to estimate the resource requirement and
execution times. Since the estimated total resource demand
𝑇 ⟨𝑐,𝑚⟩′
total and execution time 𝐸total

𝑒𝑥′ are accurate estimates of
the actual total resource need to be allocated ⟨𝑐,𝑚⟩𝑖𝑈

and
actual execution time 𝐸total

𝑒𝑥′ , it is unlikely that the selected
drone edge 𝑖 will not have sufficient resources. In other
words, it is very unlikely that

𝑓 total
𝑖 > 𝑓 𝑎𝑣𝑎𝑙

𝑖 and/or ⟨𝑐,𝑚⟩𝑖𝑈
> ⟨𝑐,𝑚⟩

𝑖 , (17)

which would lead to loss of job and jeopadize the entire
mission. By contrast, standard non-learning based schemes
have no means to intelligently select appropriate drones for
ensuring that they will have sufficient resources, and the
probability of (17) occurring can be much higher than our
intelligent learning approach. There also exists simple and
effective measure to guard against estimation error. It is
obvious that loss of job may only occur in under estimation
scenario. Instead of using the estimates of resource demand
and execution time for selecting drones, we can add the two

Table 2
Common notations

Notation Description
𝔼𝔽 Federated edge deployments
𝔻ℝ A fleet of autonomous drones
𝔻 A set of end devices
𝕃 A set of disjointed locations
𝕋 A set of containerized inter-dependent applications
𝔻𝕄 Distance matrix among the depot and target locations
𝑇 Individual application or task
𝑇 ⟨𝑐,𝑚⟩ Task resource requirements estimation
𝑇 ⟨𝑐,𝑚⟩′
total Estimated total resource requirements for jobs

𝐼𝑖 Container-instance or node attached to a drone
𝐼 ⟨𝑐,𝑚⟩
𝑖 Resource capacity or availability of a node𝑖 Individual drone-enabled EC deployment
⟨𝑐,𝑚⟩

𝑖 Resource capacity in a drone attached edge devices
⟨𝑐,𝑚⟩𝑖𝑈

The total resources actually assigned for jobs
𝑎𝑠𝑠𝑖𝑔𝑛

𝑖 A drone’s set of assigned locations𝑟𝑜𝑢𝑡𝑒
𝑖 The route for a drone’s mission

⟨𝑐,𝑚⟩
𝑖𝑈 Actual resources used for execution of jobs

⟨𝑐,𝑚⟩
𝑖𝐴𝑅𝑈 The actual resource usage of a cluster

𝜌⟨𝑐,𝑚⟩𝑖
Actual resource utilization of jobs

𝜌⟨𝑐,𝑚⟩𝑖
Estimated resource utilization of jobs

𝜌⟨𝑐⟩𝑖
, 𝜌⟨𝑚⟩𝑖

Actual cluster CPU, memory resource utilization
𝐸𝑠𝑡, 𝐸𝑐𝑝 Application/task starting, completion time
𝐸𝑒𝑥 Application or task execution time
𝐸 total

𝑒𝑥′ Actual total execution time for jobs
𝐸𝑒𝑥 Application or task execution time estimation
𝐸 total

𝑒𝑥′ Estimated total execution time for jobs
𝐿0, 𝐿𝑖 Drone’s depot and destination location
𝑓 𝑎𝑣𝑎𝑙
𝑖 Drone’s flight time availability

𝑓 ℎ𝑜𝑣𝑒𝑟
𝑖 Drone’s hovering time at location

𝑑𝑡𝑜𝑡𝑎𝑙
𝑖 Total distance of a drone’s mission/trip

𝑓 𝑡𝑜𝑡𝑎𝑙
𝑖 Total flight travel time of a drone’s mission/trip

𝑑𝐿𝑖,𝑗 Travel distance of a drone from location 𝑖 to 𝑗
𝑓𝐿𝑖,𝑗 Flight travel time of a drone from location 𝑖 to 𝑗
𝜔𝐽 Number of instances of a Job
𝜖𝐽 The type of job
𝛾𝐽 Dependency depth of a job
𝒇mt Set of multi-task runtime parameters
Θ Multi-output linear regression model
𝐽 , 𝕁 A Job, A set of Jobs

standard deviations of the estimation to the corresponding
estimates and use these ‘modified’ or ‘overly’ estimated
values to select the drones. This will reduce the probability
of (17) occurring to almost zero. It is straightforward to
provide both the estimate and estimation standard deviation
by dividing the training data into multiple subsets and run-
ning the estimation procedure multiple times to provide the
average estimate and estimation standard deviation.

4.2. Problem Formulation
The notations adopted are listed in Table 2. Our Multi-

Location Capacitated Mission Scheduling Problem (ML-
CMSP) is summarized as: Given a federated system 𝔼𝔽
consisting of a fleet of autonomous drones 𝑖, 1 ≤ 𝑖 ≤ 𝑁 ,

U. Awada et al.: Preprint submitted to Elsevier Page 8 of 22

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions

and a set of end devices 𝑖, 1 ≤ 𝑖 ≤ 𝑀 with their com-
puting activities to be performed across multi-location 𝕃 =
{𝐿1,⋯ , 𝐿𝑀} within a city, the objectives are to co-schedule
suitable drones, i.e., drones with sufficient flight time and
computing resource availability, onto optimal mission routes
among the locations, then co-locate the corresponding inter-
dependent tasks on each drone’s attached edge nodes at
each location, such that all the activities are successful.
Particularly, we present EdgeDrones, which intelligently
co-schedules and co-locates multi-dependent tasks firmly
on nodes, while considering task dependencies in oder to
minimize the overall actual execution time and maximize the
actual resource utilization, subject to certain constraints.

4.2.1. Constraints
At time 𝑡 > 0, a set of end devices at different locations in

the city require EC services, then a set of suitable drones are
selected and co-schedule for EC missions. A drone can be
assigned multiple disjointed locations as part of its mission,
i.e., 𝑎𝑠𝑠𝑖𝑔𝑛

𝑖 = {𝐿1,⋯ , 𝐿𝑛} ⊆ 𝕃. For a drone 𝑖, its trip
route is given as:

𝑟𝑜𝑢𝑡𝑒
𝑖 =

(
𝐿0 → 𝐿1 →,⋯ ,→ 𝐿𝑛,→ 𝐿0

)
, (18)

and no location is assigned twice within a mission, i.e.,

𝜗
[𝑎𝑠𝑠𝑖𝑔𝑛

𝑖 , 𝐿𝑖

]
=
{

1, if 𝐿𝑖 is assigned to 𝑖,
0, otherwise,

(19)

such that;

𝑎𝑠𝑠𝑖𝑔𝑛
𝑖 ∩𝑎𝑠𝑠𝑖𝑔𝑛

𝑘 = ∅,∀𝑖, 𝑘. (20)

This is to ensure that a location is mapped to just one
drone, and that no location is assigned twice within the
missions, where the indicator 𝜗

[𝑎𝑠𝑠𝑖𝑔𝑛
𝑖 , 𝐿𝑖

]
=1 indicates

that location 𝐿𝑖 is assigned to the drone 𝑖; otherwise
𝜗
[𝑎𝑠𝑠𝑖𝑔𝑛

𝑖 , 𝐿𝑖

]
=0, all selected drones must start and end

their missions at the depot 𝐿0, i.e.,

𝑛∑
𝑖=0

𝑚+1∑
𝑗=𝑖+1

𝑑𝐿𝑖,𝑗 −
𝑚∑
𝑗=0

𝑛+1∑
𝑖=𝑗+1

𝑑𝐿𝑗,𝑖 = 0,∀𝑖 ∈ 𝔻ℝ, (21)

and they must complete all their tasks at any location 𝐿𝑖
before departing for another location 𝐿𝑗 , i.e.,

∀𝑖 ∈ 𝔻ℝ, 𝜑
(𝐿𝑖→𝐿𝑗

𝑖

)
=
{

1, if 𝕁 ∈ [𝐸𝑐𝑝],
0, if 𝕁 ∉ [𝐸𝑐𝑝],

(22)

where the indicator 𝜑
(𝐿𝑖→𝐿𝑗

𝑖

)
= 1 indicates that the

drone 𝑖 has completed the execution of 𝕁, and sent the
results back to the devices at 𝐿𝑖. Hence it can depart 𝐿𝑖 for
𝐿𝑗; otherwise 𝜑

(𝐿𝑖→𝐿𝑗
𝑖

)
= 0. The collective resource

demand estimation of 𝕁 at any of the locations assigned to
each drone, cannot exceed its resource capacity. Recall that
a drone’s resource capacity ⟨𝑐,𝑚⟩ does not accumulate as
it travels along its route. This is because, after executing
its tasks at any location 𝐿𝑖, the results are sent back to the
device(s) at 𝐿𝑖, and its resources becomes available again
for the jobs at its next location 𝐿𝑗 . Since the actual total
resources that needs to be assigned to the multi-job at 𝐿𝑖 is
unknown at the scheduling stage, we use the estimated total
resource demand 𝑇 ⟨𝑐,𝑚⟩′

total to replace it:

𝑇 ⟨𝑐,𝑚⟩′
total ≤ ⟨𝑐,𝑚⟩

𝑖 , ∀𝑖 ∈ 𝔻ℝ. (23)

Durng the multi-task scheduling, unused or inactive attached
nodes 𝐼𝑖∈𝑖 in a selected drone would be shut down. All
the nodes can be expressed in one of these two states: Active
and Inactive. An Active node is a node that is running and is
currently considered for allocation or has at least a job being
started, executing or completing. An Inactive node is a node
that is not running and and is not currently considered for
allocation and not having at least a job that is being started,
executing or completing. These two states can be expressed
as follows:

∀𝑐, 𝑚 𝛽
(
𝐼𝑖
)
=
{

1, Active if 𝐽𝑖 ∈ [𝐸𝑠𝑡, 𝐸𝑐𝑝, 𝐸𝑒𝑥],
0, Inactive if 𝐽𝑖 ∉ [𝐸𝑠𝑡, 𝐸𝑐𝑝, 𝐸𝑒𝑥],

(24)

where the indicator 𝛽
(
𝐼𝑖
)
= 1 indicates that the node 𝐼𝑖

is ready to accept new jobs, and at least a job 𝐽𝑖 is being
started, executing or completing, i.e., 𝐽𝑖 ∈ [𝐸𝑠𝑡, 𝐸𝑐𝑝, 𝐸𝑒𝑥],
on 𝐼𝑖; otherwise 𝛽

(
𝐼𝑖
)
=0.

The aggregate actual execution time of 𝕁 at all locations
assinged to each drone

∑𝑛
𝐿=𝑖 𝐸

total
𝑒𝑥𝑖′

and the total flight travel
time

∑𝑛
𝑖=0

∑𝑚+1
𝑗=𝑖+1𝑓

𝐿𝑖,𝑗 cannot exceed its flight time avail-
ability 𝑓 𝑎𝑣𝑎𝑙

𝑖 . Since the aggregate actual execution time∑𝑛
𝐿=𝑖 𝐸

total
𝑒𝑥𝑖′

is unavailable at the scheduling stage, we replace
it with the estimate

∑𝑛
𝐿=𝑖 𝐸

total
𝑒𝑥𝑖′

≈ 𝑓ℎ𝑜𝑣𝑒𝑟′:

𝑓 𝑡𝑜𝑡𝑎𝑙
𝑖 =

𝑛∑
𝑖=0

𝑚+1∑
𝑗=𝑖+1

𝑓𝐿𝑖,𝑗 + 𝑓ℎ𝑜𝑣𝑒𝑟′
𝑗 , (25)

therefore,

𝑓 𝑡𝑜𝑡𝑎𝑙
𝑖 ≤ 𝑓 𝑎𝑣𝑎𝑙

𝑖 , ∀𝑓 𝑎𝑣𝑎𝑙
𝑖 ∈ 𝔻ℝ. (26)

4.2.2. Optimization formulation
Suitable drones are selected and co-schedule with the

least total distance to visit and execute tasks at target loca-
tions:

Minimize 𝑑𝑡𝑜𝑡𝑎𝑙𝑖 ∀𝑖 ∈ 𝔻ℝ, (27)

subject to 𝜗
[𝑎𝑠𝑠𝑖𝑔𝑛

𝑖 , 𝐿𝑖

]
∈ {0, 1}, ∃, (28)

𝑎𝑠𝑠𝑖𝑔𝑛
𝑖 ∩𝑎𝑠𝑠𝑖𝑔𝑛

𝑘 = ∅,∀𝑖, 𝑘, (29)

U. Awada et al.: Preprint submitted to Elsevier Page 9 of 22

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions

𝑛∑
𝑖=0

𝑚+1∑
𝑗=𝑖+1

𝑑𝐿𝑖,𝑗 −
𝑚∑
𝑗=0

𝑛+1∑
𝑖=𝑗+1

𝑑𝐿𝑗,𝑖 = 0, (30)

𝜑
(𝐿𝑖→𝐿𝑗

𝑖

)
∈ {0, 1},∀𝑖 ∈ 𝔻ℝ, ∃,

(31)

𝑇 ⟨𝑐,𝑚⟩′
total ≤ ⟨𝑐,𝑚⟩

𝑖 , ∀𝑖 ∈ 𝔻ℝ, (32)

𝑓 total
𝑖 ≤ 𝑓 𝑎𝑣𝑎𝑙

𝑖 , ∀𝑓 𝑎𝑣𝑎𝑙
𝑖 ∈ 𝔻ℝ. (33)

The objective function (27) is to minimize the total distance
𝑑𝑡𝑜𝑡𝑎𝑙 =

∑𝑛
𝑖=0

∑𝑚+1
𝑗=𝑖+1𝑑

𝐿𝑖,𝑗 of each drone’s route to visit its as-
signed locations. Constraints (28) to (30) and condition (31)
ensure that no location is assigned twice within the missions,
all drones must start and finish their trip at the depot, and
each drone must execute all its task at any location before
it departs for another location. Constraint (32) guarantees
that 𝑇 ⟨𝑐,𝑚⟩′

total of 𝕁 at any assigned location for 𝑖 would not
exceed its resource capacity ⟨𝑐,𝑚⟩

𝑖 . Constraint (33) also
guarantees that each drones’ total flight travel time 𝑓 total

𝑖
for any mission would not exceed its flight time availability
𝑓 𝑎𝑣𝑎𝑙
𝑖 . The details of our optimal mission and route planning

is given in Section 4.3 and in Algorithm 2.
As the actual resource utilization of a cluster/edge is

unknown, we maximize the estimated resource utilization:

Maximize 𝜌⟨𝑐,𝑚⟩𝑖
, (34)

subject to 𝕁 ⇒ 𝑖, ∃, (35)

𝑇 ⟨𝑐,𝑚⟩′
total ≤ ⟨𝑐,𝑚⟩

𝑖 , ∀𝑖 ∈ 𝔻ℝ, (36)

𝑓 total
𝑖 ≤ 𝑓 𝑎𝑣𝑎𝑙

𝑖 , ∀𝑓 𝑎𝑣𝑎𝑙
𝑖 ∈ 𝔻ℝ, (37)

𝜑
(𝐿𝑖→𝐿𝑗

𝑖

)
∈ {0, 1},∀𝑖 ∈ 𝔻ℝ, ∃,

(38)
𝛽
(
𝐼𝑖
)
∈ {0, 1}, ∀𝑐, 𝑚, ∃. (39)

Provided that the estimated resource utilization 𝜌⟨𝑐,𝑚⟩𝑖
is

accurate, little optimality will be lost. The constraints (35) to
(37) indicate the dispatching of multi-job 𝕁 at each assigned
location to 𝑖, given that its resources and flight time
availability is sufficient. More specifically, (35) is the multi-
job 𝕁 deployment constraint, guaranteeing that 𝕁 is gang-
scheduled onto 𝑖 attached resources, such that dependent
tasks within each 𝐽 ∈ 𝕁 can communicate and execute
faster. The constraint (36) guarantees that 𝑇 ⟨𝑐,𝑚⟩′

total of 𝕁 would
not exceed ⟨𝑐,𝑚⟩

𝑖 of 𝑖, and constraint (37) guarantees
that 𝑓 total

𝑖 would not exceed 𝑓 𝑎𝑣𝑎𝑙
𝑖 of any 𝑖 ∈ 𝔻ℝ.

The condition (38) guarantees that active nodes
(
𝛽
(
𝐼𝑖
)
=1

)
would be used for execution, and inactive nodes

(
𝛽
(
𝐼𝑖
)
=0

)
would be shut down. Hence, our aim is to minimize the
number of active nodes used for execution by co-locating
jobs tightly on each node in order to maximize resource
utilization. We shall discuss the details of our multi-job co-
location principle in Section 4.3 and Algorithm 3.

Then again, 𝐸total
𝑒𝑥′ of 𝕁 can be minimized depending on

scheduling:

Minimize 𝐸total
𝑒𝑥′ , (40)

subject to 𝕁 ⇒ 𝑖⋆ , ∃, (41)

𝑇 ⟨𝑐,𝑚⟩′
total ≤ ⟨𝑐,𝑚⟩

𝑖 , ∀𝑖 ∈ 𝔻ℝ, (42)

𝑓 total
𝑖 ≤ 𝑓 𝑎𝑣𝑎𝑙

𝑖 , ∀𝑓 𝑎𝑣𝑎𝑙
𝑖 ∈ 𝔻ℝ, (43)

𝜑
(𝐿𝑖→𝐿𝑗

𝑖

)
∈ {0, 1},∀𝑖 ∈ 𝔻ℝ, ∃.

(44)

Note that the actual overall execution time 𝐸total
𝑒𝑥′ is unknown

at this stage, and we use the estimated overall execution
𝐸total
𝑒𝑥′ to replace it in the optimization. Again, provided that

the estimate 𝐸total
𝑒𝑥′ is accurate, little optimality will be lost.

The constraint (41) guarantees that 𝕁 at any location is
dispatched to 𝑖, such that dependent tasks within each
𝐽 ∈ 𝕁 can communicate and execute faster. The constraint
(42) guarantees that 𝑇 ⟨𝑐,𝑚⟩′

total of 𝕁 would not exceed ⟨𝑐,𝑚⟩
𝑖

of 𝑖, and constraint (43) guarantees that 𝑓 total
𝑖 would not

exceed 𝑓 𝑎𝑣𝑎𝑙
𝑖 of any 𝑖 ∈ 𝔻ℝ. The condition (44) ensures

that each drone must execute all its task at any location
before it departs for another location.

4.3. EdgeDrones Algorithm Framework
Our EdgeDrones approach consists of linear regression

estimation, optimal route planning for multi-drone, and gang
scheduling of tasks. These three components aim at pro-
viding optimal solution for our Multi-Location Capacitated
Mission Scheduling Problem (MLCMSP). Particularly, the
optimization (27), (34) and (40) aim at ensuring least travel
distance for drones to visit their assigned locations, and
every task at each location is fast executed given the available
resources, such that the missions are accomplished. The
values of the linear regression estimations are required by the
router, as well as the update state of the drones’ flight time
availabity for effective route planning and assignment, while
our gang-scheduling approach involves co-scheduling and
co-locating tasks firmly on available resources. We detail
the procedures of the three components of EdgeDrones as
follows:

4.3.1. Resource and execution time estimation
Algorithm 1 describes the resource and execution time

estimations for multi-job. As 𝕁 are released, their collective
resource requirement 𝑇 ⟨𝑐,𝑚⟩′

total and execution time 𝐸total
𝑒𝑥′ are

estimated. The set of runtime parameters 𝒇mt(𝜔, 𝜖, 𝛾), where
𝜔 is the number of instances, 𝜖 is type of tasks , 𝛾 is
dependency depth, are fed into the model Θ⋆ to to produce
the estimation values (line 2∼ 9). Once the estimation values
are produced, they are used in the assignment and route
planning.

4.3.2. Mission planning
Given the update state from the CP, i.e., all ready drones𝑖 ∈ 𝔻ℝ at the depot 𝐿0 (which include each drones’

U. Awada et al.: Preprint submitted to Elsevier Page 10 of 22

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions

Algorithm 1 Linear Regression Estimation
Input: At 𝑡 > 0, 𝕁 at 𝐿𝑖; 𝒇mt are fed into Θ⋆

Output: 𝑇 ⟨𝑐,𝑚⟩′
total and 𝐸total

𝑒𝑥′
1: for 𝐽𝑖 ∈ 𝕁 do
2: Type of Job 𝐽 = 𝜖𝐽
3: Number of instances of Job 𝐽 = 𝜔𝐽
4: Dependency depth of Job 𝐽 = 𝛾𝐽
5: for 𝑇𝑖 ∈ 𝐽𝑖 do
6: 𝒇mt(𝜔, 𝜖, 𝛾) ⋅ Θ⋆ =

[
𝑇 ⟨𝑐,𝑚⟩
𝑖 𝐸𝑒𝑥𝑖

]
7: end for
8: 𝑇 ⟨𝑐,𝑚⟩′

𝑖 = 𝑇 ⟨𝑐,𝑚⟩′
𝑖 + 𝑇 ⟨𝑐,𝑚⟩

𝑖
9: 𝐸𝑒𝑥𝑖′ = 𝐸𝑒𝑥𝑖′ + 𝐸𝑒𝑥𝑖

10: end for

Algorithm 2 Mission Planning

Input: At 𝑡 > 0; 𝐿𝑖∈𝕃; 𝑇 ⟨𝑐,𝑚⟩′
total ∈𝐿𝑖; 𝐸total

𝑒𝑥′ ∈𝐿𝑖; 𝑖∈𝔻ℝ;
𝑓 𝑎𝑣𝑎𝑙∈𝑖; ⟨𝑐,𝑚⟩∈𝑖; and 𝔻𝕄
Output: 𝑎𝑠𝑠𝑖𝑔𝑛

𝑖 and 𝑟𝑜𝑢𝑡𝑒
𝑖

1: for 𝑖 ∈ 𝔻ℝ do
2: Initialize total flight travel time 𝑓 𝑡𝑜𝑡𝑎𝑙

𝑖 for 𝑖
3: Initialize total travel distance 𝑑𝑡𝑜𝑡𝑎𝑙𝑖 for 𝑖
4: 𝑓 𝑎𝑣𝑎𝑙

𝑖 = Flight travel time availability of 𝑖

5: ⟨𝑐,𝑚⟩
𝑖 = Resource capacity of 𝑖

6: 𝕃 = Target locations
7: 𝐿𝑖 = route start for 𝑖
8: while 𝐿𝑖 ≠ end of route do
9: 𝑇 ⟨𝑐,𝑚⟩′

total = Resource demand at 𝐿𝑖

10: 𝐸total
𝑒𝑥′ = Execution time estimation at 𝐿𝑖

11: 𝑓 𝑡𝑜𝑡𝑎𝑙
𝑖 = 𝑑𝑡𝑜𝑡𝑎𝑙𝑖 + 𝐸total

𝑒𝑥′

12: if 𝑓 𝑡𝑜𝑡𝑎𝑙
𝑖 ≤ 𝑓 𝑎𝑣𝑎𝑙

𝑖 ; 𝜗
[𝑎𝑠𝑠𝑖𝑔𝑛

𝑖 , 𝐿𝑖

]
= 0; and

𝑇 ⟨𝑐,𝑚⟩′
total ≤ ⟨𝑐,𝑚⟩

𝑖 then

13: 𝜗
[𝑎𝑠𝑠𝑖𝑔𝑛

𝑖 , 𝐿𝑖

]
=1

14: 𝐿𝑗 = next feasible neighbor
15: 𝐿𝑖 = 𝐿𝑗
16: else
17: 𝐿𝑗 = next feasible neighbor
18: 𝐿𝑖 = 𝐿𝑗
19: end if
20: 𝑑𝑡𝑜𝑡𝑎𝑙𝑖 = 𝑑𝑡𝑜𝑡𝑎𝑙𝑖 + 𝑑𝐿𝑖,𝑗

21: end while
22: end for

flight time availability 𝑓 𝑎𝑣𝑎𝑙
𝑖 and resource capacity ⟨𝑐,𝑚⟩

𝑖),
all end devices at target locations 𝐿𝑖 ∈ 𝕃 (which include
each device set of inter-dependent tasks resource require-
ment 𝑇 ⟨𝑐,𝑚⟩′

total and execution time 𝐸total
𝑒𝑥′ estimation), and the

distance matrix 𝔻𝕄, such that starting from 𝐿0, a route is
iteratively built and assigned to a drone 𝑖, by selecting
from among the nearest locations which meet the constraints,
i.e., 𝐿1 whose its end device(s) 𝑇 ⟨𝑐,𝑚⟩′

total and 𝐸total
𝑒𝑥′ does

not exceed the drone’s ⟨𝑐,𝑚⟩
𝑖 and 𝑓 𝑎𝑣𝑎𝑙

𝑖 , respectively, and

Algorithm 3 Multi-job Co-location
Input: 𝕁 gang-scheduled onto 𝑖⋆ , resource demand esti-
mation

∑
𝐽∈𝕁 𝑇

⟨𝑐,𝑚⟩′
𝐽 , resource availability 𝐼 ⟨𝑐,𝑚⟩𝑖 of all nodes

𝐼𝑖∈𝑖⋆
Output: 𝕁 is co-located, such that Minimize

∑
𝐼𝑖∈𝑖⋆

𝐼𝑖
1: for 𝐼𝑖 ∈ 𝑖⋆ do
2: if 𝛽

(
𝐼𝑖
)
= 1 then

3: 𝐼⟨𝑐,𝑚⟩𝑖 = ⟨𝑐, 𝑚⟩, i.e., initial resource available
4: for 𝐽 ∈ 𝕁 do
5: if Γ

[
𝐽 , 𝐼𝑖

]
=0 and 𝑇 ⟨𝑐,𝑚⟩′

𝐽 ≤𝐼 ⟨𝑐,𝑚⟩𝑖 then
6: 𝐽 ⇒ 𝐼𝑖
7: Γ

[
𝐽 , 𝐼𝑖

]
= 1

8: 𝐼 ⟨𝑐,𝑚⟩𝑖 = 𝐼⟨𝑐,𝑚⟩𝑖 − 𝑇 ⟨𝑐,𝑚⟩′
𝐽

9: end if
10: if 𝐼 ⟨𝑐,𝑚⟩𝑖 close to zero then
11: break
12: end if
13: end for
14: end if
15: end for

whose flight travel time 𝑓 𝑡𝑜𝑡𝑎𝑙
1 does not exceed the drone’s

𝑓 𝑎𝑣𝑎𝑙
𝑖 . This process resumes from 𝐿1 to find 𝐿2, and so on

until there is no feasible neighbor (line 6 ∼ 17). 𝐿0 is finally
added to conclude the route. This procedure is repeated to
find other routes until all the possible target locations are
chosen. This mission planning also aims to optimized and
minimize the distance travelled by each drone, which lets
us find an optimal solution from the given Algorithm 2. To
solve this mission scheduling problem, we have adopted the
CP-SAT solver and the MPSolver wrapper.

4.3.3. Co-location
In the edge resources attached to each drone 𝑖, our

co-location algorithm uses the 𝐼 ⟨𝑐,𝑚⟩𝑖 and 𝑇 ⟨𝑐,𝑚⟩′
𝑖 of each

𝐽𝑖 ∈ 𝕁 to provide efficient co-location, such that fewer nodes
are used for execution at each location. Specifically, the gang
scheduling approach is adopted alongside our bin-packing
optimization to co-schedule and co-locate 𝕁 at a time. Bin-
packing is one the of the most popular packing problems.
The goal is to minimize the number of nodes used as given
in optimization (45). Unlike other approaches, such as first fit
bin packing problem (FFBPP) [49], it requires the next 𝐽𝑖 to
be placed on the active node, otherwise, it is placed on a new
node. Our approach scans all 𝐽 ∈ 𝕁 and maps 𝐽𝑖 to active
nodes in full utilization. All 𝐽 ∈ 𝕁 are co-located firmly on
active nodes, so that resource wastage is avoided and fewer
nodes are used to execute all jobs concurrently. Hence our
co-location strategy is to find the solution to the problem:

Minimize
∑

𝐼𝑖∈𝑖⋆

𝐼𝑖, (45)

subject to 𝕁 ⇒ 𝑖⋆ , ∃, (46)

U. Awada et al.: Preprint submitted to Elsevier Page 11 of 22

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions

Table 3
Multi-job across multiple disjointed locations in a city, where the actual resource consumed for multi-job execution 𝑇 ⟨𝑐,𝑚⟩′

total and the
actual execution time 𝐸 total

𝑒𝑥′ are taken from the original Alibaba data, while the estimated resource demand 𝑇 ⟨𝑐,𝑚⟩′
total and execution

time 𝐸 total
𝑒𝑥′ are calculated by Algorithm 1

𝕃 𝕁 𝕋 𝑇 ⟨𝑐,𝑚⟩′
total 𝑇 ⟨𝑐,𝑚⟩′

total NAEE 𝐸 total
𝑒𝑥′ (𝑠) 𝐸 total

𝑒𝑥′ (𝑠) NAEE
𝐿1 2 10 ⟨570.18, 1.98⟩ ⟨595, 1.92⟩ ⟨0.04, 0.03⟩ 173.46 148 0.17
𝐿2 3 12 ⟨625.06, 2.37⟩ ⟨540, 1.85⟩ ⟨0.15, 0.28⟩ 189.03 164 0.15
𝐿3 2 9 ⟨478.02, 1.73⟩ ⟨340, 0.96⟩ ⟨0.4, 0.8⟩ 167.8 142 0.18
𝐿4 2 8 ⟨398.42, 1.71⟩ ⟨445, 1.42⟩ ⟨0.1, 0.2⟩ 56.69 44 0.28
𝐿5 5 21 ⟨1135.11, 4.13⟩ ⟨1035, 3.38⟩ ⟨0.09, 0.22⟩ 355.68 309 0.15
𝐿6 5 23 ⟨1228.72, 4.56⟩ ⟨1080, 3.4⟩ ⟨0.13, 0.3⟩ 370.27 311 0.19
𝐿7 5 19 ⟨1005.85, 3.89⟩ ⟨1070, 3.39⟩ ⟨0.05, 0.14⟩ 236.95 198 0.19
𝐿8 3 15 ⟨773.7, 3.02⟩ ⟨655, 2.13⟩ ⟨0.18, 0.4⟩ 211.06 178 0.18
𝐿9 2 10 ⟨570.18, 1.98⟩ ⟨595, 1.92⟩ ⟨0.04, 0.03⟩ 173.46 148 0.17
𝐿10 3 14 ⟨727.81, 2.8⟩ ⟨670, 2.1⟩ ⟨0.08, 0.3⟩ 202.45 172 0.17
𝐿11 3 15 ⟨773.7, 3.02⟩ ⟨655, 2.13⟩ ⟨0.18, 0.4⟩ 211.06 178 0.18
𝐿12 4 17 ⟨876.45, 3.44⟩ ⟨785, 2.38⟩ ⟨0.11, 0.4⟩ 224.49 188 0.19
𝐿13 5 19 ⟨1025.99, 3.7⟩ ⟨885, 2.88⟩ ⟨0.15, 0.28⟩ 341.79 298 0.14
𝐿14 3 17 ⟨925.32, 3.48⟩ ⟨990, 3.14⟩ ⟨0.06, 0.1⟩ 341.79 182 0.87
𝐿15 3 14 ⟨727.81, 2.8⟩ ⟨670, 2.1⟩ ⟨0.08, 0.33⟩ 202.45 172 0.17
𝐿16 4 15 ⟨773.7, 3.02⟩ ⟨655, 2.13⟩ ⟨0.18, 0.4⟩ 202.45 178 0.13

∑
𝐽∈𝕁

Γ
[
𝐽 , 𝐼𝑖

]
⋅ 𝑇 ⟨𝑐,𝑚⟩′

𝐽 ≤ 𝐼⟨𝑐,𝑚⟩𝑖 , ∀𝑐, 𝑚,

(47)

where

Γ
[
𝐽 , 𝐼𝑖

]
=
{

1, if 𝐽 ⇒ 𝐼𝑖,
0, otherwise. (48)

The constraint (46) is the multi-job 𝕁 deployment constraint,
guaranteeing that 𝕁 is gang-scheduled to 𝑖⋆ , such that
dependent tasks within each 𝐽 ∈ 𝕁 can communicate and ex-
ecute faster. The constraint (47) indicates that the total esti-
mated resource requirements of co-located jobs

∑𝑁
𝑖=1 𝑇𝑖

⟨𝑐,𝑚⟩′
cannot exceed 𝐼 ⟨𝑐,𝑚⟩𝑖 , the node resource availability. The
condition (48) means that if job 𝐽𝑖 is placed on the node 𝐼𝑖,
then Γ

[
𝐽𝑖, 𝐼𝑖

]
= 1; otherwise, Γ

[
𝐽𝑖, 𝐼𝑖

]
= 0. This is to

guarantee that each 𝐽 ∈ 𝕁 is placed in exactly one node. To
solve this multi-job packing problem, we have adopted the
solving Constraint Integer Programs (SCIP) solver, which
is currently one of the fastest mathematical programming
(MP) solvers for this problem [12]. Algorithm 3 describes
the co-location strategy which co-locates multi-dependent
tasks firmly on nodes, such that for any given jobs, resource
wastage is avoided and fewer nodes are used for execution. It
takes the resource demand estimation of multi-task/job and
resource availability of nodes as input, then scans all 𝐽 ∈ 𝕁
and maps them to active nodes in full utilization (line 2 ∼ 7).

4.3.4. Connection with optimization objectives
As stated previously, our objectives are to minimize

the number of selected drones and total distance travelled
by each drone, maximize the actual edge cluster resource
utilization, and to minimize the overall actual execution time
of the task-dependent multi-jobs. Algorithms 1, 2 and 3
together achieve these objectives. By gang-dispatching the

task-dependent multi-jobs to an edge having the sufficient
resource for the jobs and flight time availability, Algorithm 2
ensures that drones assigned for missions allocates the suf-
ficient actual resources needed for jobs execution ⟨𝑐,𝑚⟩

𝑖𝑈 ,
such that the dependent tasks can be executed faster, ul-
timately leading to a smaller actual aggregate execution
time 𝐸total

𝑒𝑥′ and better actual cluster resource utilization.
By intelligently packing dependent tasks tightly on nodes,
Algorithm 3 is capable of fully utilizing available resources
at edge clusters, ultimately leading to the actual resource as-
signed to the execution of jobs ⟨𝑐,𝑚⟩

𝑖𝑈 as small as possible
while guaranteeing it is sufficient for the multi-jobs. More
specifically, the actual resource usage (ARU) of the cluster
for multi-job 𝕁 deployment is given by

⟨𝑐,𝑚⟩
𝑖𝐴𝑅𝑈 =

⟨𝑐,𝑚⟩
𝑖𝑈

⟨𝑐,𝑚⟩
𝑖

. (49)

It can be seen that solving the optimization (45) is di-
rectly linked to minimize the ARU (49). Let the actual
CPU resource and the actual memory resource assigned for
𝕁 be ⟨𝑐⟩

𝑖𝑈 and ⟨𝑚⟩
𝑖𝑈 , respectively. Further denote the

actual CPU consumed and the actual memory consumed
in executing 𝕁 as

∑
𝐽∈𝕁 𝑇

⟨𝑐⟩′ and
∑

𝐽∈𝕁 𝑇
⟨𝑚⟩′, respectively.

Then the actual CPU utilization 𝜌⟨𝑐⟩𝑖
and the actual memory

utilization 𝜌⟨𝑚⟩𝑖
are defined respectively by

𝜌⟨𝑐⟩𝑖
=
∑

𝐽∈𝕁 𝑇
⟨𝑐⟩′

⟨𝑐⟩
𝑖𝑈

, (50)

𝜌⟨𝑚⟩𝑖
=
∑

𝐽∈𝕁 𝑇
⟨𝑚⟩′

⟨𝑚⟩
𝑖𝑈

. (51)

U. Awada et al.: Preprint submitted to Elsevier Page 12 of 22

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions
1

ED NDFP PDFP PDNP RP RD

0

50

100 98
87 87 87

79

65

98 98
89 89

80
74

ρ
⟨c
⟩

D
R

i
%

L12 L13

ED NDFP PDFP PDNP RP RD

0

50

100

60
53 53 53

48
40

64 64
58 58

52 48

ρ
⟨m

⟩
D
R

i
%

L12 L13

ED NDFP PDFP PDNP RP RD

0

50

100

67
75 75 75

83

100

75 75
83 83

92
100

D
R

⟨c
,m

⟩
iA

R
U
%

L12 L13

(a) CPU utilization across assigned locations

1

ED NDFP PDFP PDNP RP RD

0

50

100 98
87 87 87

79

65

98 98
89 89

80
74

ρ
⟨c
⟩

D
R

i
%

L12 L13

ED NDFP PDFP PDNP RP RD

0

50

100

60
53 53 53

48
40

64 64
58 58

52 48

ρ
⟨m

⟩
D
R

i
%

L12 L13

ED NDFP PDFP PDNP RP RD

0

50

100

67
75 75 75

83

100

75 75
83 83

92
100

D
R

⟨c
,m

⟩
iA

R
U
%

L12 L13

(b) Memory utilization across assigned loca-
tions

1

ED NDFP PDFP PDNP RP RD

0

50

100 98
87 87 87

79

65

98 98
89 89

80
74

ρ
⟨c
⟩

D
R

i
%

L12 L13

ED NDFP PDFP PDNP RP RD

0

50

100

60
53 53 53

48
40

64 64
58 58

52 48

ρ
⟨m

⟩
D
R

i
%

L12 L13

ED NDFP PDFP PDNP RP RD

0

50

100

67
75 75 75

83

100

75 75
83 83

92
100

D
R

⟨c
,m

⟩
iA

R
U
%

L12 L13

(c) Actual resource usage across assigned
locations

ED NDFP PDFP PDNP RP RD

0

1,000

2,000

3,000

S
ch

(m
s)

L12 L13

ED NDFP PDFP PDNP RP RD

0

200

400

E
to

ta
l

e
x
′

(s
)

L12 L13

1

(d) Actual multi-Job scheduling time
across assigned locations

ED NDFP PDFP PDNP RP RD

0

1,000

2,000

3,000

S
ch

(m
s)

L12 L13

ED NDFP PDFP PDNP RP RD

0

200

400

E
to

ta
l

e
x
′

(s
)

L12 L13

1

(e) Actual multi-Job execution time
across assigned locations

ED NDFP PDFP PDNP RP RD

200

400

600

800

260.68
287.36

329.72
356.4 367.4

720

f
to
ta

l
(s
)

faval = 700(s)

2

(f) Actual total flight travel time for
Drone-1’s mission

Figure 4: Activities and utilities of Drone-1’s mission.

Algorithms 2 and 3 are directly connected with minimizing
𝑑𝑡𝑜𝑡𝑎𝑙, minimizing 𝐸total

𝑒𝑥′ as well as maximizing 𝜌⟨𝑐⟩ and
maximizing 𝜌⟨𝑚⟩.

5. Performance Evaluation
In this section, we described our experimental setup

including cluster resource configuration, the Alibaba cluster
data traces used, and the comparison baselines. We perform
extensive experiments to compare EdgeDrones against some
existing schemes. We will also compare the performance of
EdgeDrones against exisiting schemes in individual drones.
We show that EdgeDrones can achieve minimized actual
execution time of multi-dependent tasks, achieve high re-
source utilization, achieve load balancing, use fewer cluster
resources and avoid loss of job in an aerial edge computing
system.

5.1. Experimental Setup
Drone’s Mission Scheduling and Resources: Our ML-
CMSP is implemented using Google OR Tools12. It uses
MPSolver wrapper for solving LP and MIP problems. We
perform experiments for a set of drones with computing
resource and flight time constraints, among a set of 16 target
locations in a city. At each of these locations are end devices,
with multi-dependent tasks/jobs needed to be executed. Our
linear regression ML model, as given in Algorithm 1, esti-
mates the resource demands and execution time of tasks at
each location (as shown in Table 3).

12https://developers.google.com/optimization

Each of the drones has different payload capacity. The
payload is the weight a drone can carry in the air. The total
weight of the payload has a great impact on the flight time
of the drone. For example, the Aurelia X8 Standard drone13

with a payload of 8 kg, has a net flight time of 25 min.
However, with a maximum payload capacity, the maximum
flight time availability of the drone will be 12 min. It has
a maximum flight speed 𝑠 of 15 m/s and a maximum wind
resistance speed of 9m/s. Also, for the Aurelia X6 Pro drone,
its net flight time is 55 min, however, with its full payload of
5 kg, it will have a 30 min flight time availability. Hence, the
flight time availability of the selected drones, as well as their
resource capacities is given in Table 4.

The optimal routes of the selected drones is also given in
Table 4. These optimal routes are derived using Algorithm 2.
The entire missions covered a distance of 6552 meters, with
total flight travel time of 3659 seconds, given that each drone
is traveling at a constant flight speed 𝑠 of 13 m/s.
Multi-dependent Tasks: We employ the v-2018 version
of Alibaba cluster trace14, which records the activities of
about 4000 machines in a perids of 8 days. The entire trace
contains more than 14 million tasks with more than 12
million dependencies, and more than 4 million jobs. Among
which we have deployed 54 jobs with total of 238 tasks
(including dependencies) for our experiments. The number
of tasks within each job ranges from (1, 5], while the task
dependency depth among the jobs ranges from (1, 4]. The
multi-task dependencies in in the data trace is valuable for
our investigation. Researchers have thoroughly investigated

13https://aurelia-aerospace.com/our-drones/
14https://github.com/alibaba/clusterdata

U. Awada et al.: Preprint submitted to Elsevier Page 13 of 22

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions

Table 4
Drones assigned locations, optimal routes and resources

𝑖 𝑟𝑜𝑢𝑡𝑒
𝑖 𝑑𝑡𝑜𝑡𝑎𝑙

𝑖 (𝑚) 𝑓 ℎ𝑜𝑣𝑒𝑟′
𝑖 (𝑠) Attached Edge Devices and total weight ⟨𝑐⟩

𝑖 ⟨𝑚⟩
𝑖 𝑓 𝑎𝑣𝑎𝑙

𝑖 (𝑠)1 {𝐿0 → 𝐿12 → 𝐿13 → 𝐿0} 936 566 Huawei AR502H Series x3 = 3.3kg 12 Cores 6 GiB 6002 {𝐿0 → 𝐿9 → 𝐿14 → 𝐿16 → 𝐿8 → 𝐿7 → 𝐿0} 1712 1165 HIVECELL x2 = 2.72kg 12 Cores 16 GiB 12003 {𝐿0 → 𝐿1 → 𝐿4 → 𝐿3 → 𝐿15 → 𝐿11 → 𝐿0} 2192 811 HIVECELL + Huawei AR502H Series = 2.46kg 10 Cores 8 GiB 9004 {𝐿0 → 𝐿10 → 𝐿2 → 𝐿6 → 𝐿5 → 𝐿0} 1712 1117 Azure Stack Edge mini = 3.17kg 16 Cores 48 GiB 1200

v-2018 version of Alibaba cluster trace and used it for
various task scheduling problems [11, 12, 50, 51].
Comparison Baselines: We compare the scheduling ap-
proach of EdgeDrones (ED) with the following three exist-
ing schemes and the random approach, fixing each drone’s
routes to that of EdgeDrones, as follows:

1. An approach which does not consider tasks’ de-
pendencies, but schedules 50% of any given multi-
dependent tasks by mainly focusing on task co-location.
We refer to this approach as No Dependency and Full
Packing (NDFP), and it is similar to the approach in
[46].

2. An approach which schedules up to 40% of any given
multi-dependent tasks with task co-location. We con-
sider this approach as a Partial Dependency and Full
Packing (PDFP), and it is similar to to the approach
in [48].

3. An approach which schedules up to 15% of any given
multi-dependent tasks at a time, but does not consider
task co-location. We refer to this approach as Partial
Dependency and No Packing (PDNP), and it is similar
to to the approach in [47].

4. An approach which schedules tasks according to their
resource requests for execution, i.e., the more resource
demand, the higher priority for the task to be sched-
uled and allocate resources. We refer to this strategy
as Resource Priority (RP), and it is similar to the
approach in [52].

5. Random (RD) approach schedules a single task indi-
vidually and assumes a node can only execute a task
at a time.

5.2. Deployment Results and Performance
Comparison

Our investigation focuses on CPU and memory us-
age/utilization, task deployment, scheduling time, execu-
tion time and successful mission completion. The results
obtained by ED, NDFP, PDFP, PDNP, RP and RD are
compared.

5.2.1. Resource and execution time estimation
accuracy

As detailed in the previous section, to implement the
proposed learning based intelligent drone routing and multi-
task co-location strategy, we train a linear regression model
from a training dataset. In the real-time application experi-
ments, the trained model is used to estimate the resource re-
quirement and execution time (Algorithm 1). The estimated
resource requirement and execution time are then employed

to aid our optimal route planning and intelligent multi-task
scheduling strategy (Algorithms 2 and 3). Clearly, the accu-
racy of Algorithm 1 impacts the achievable performance of
our EdgeDrones. Therefore, we first investigate the accuracy
of our trained linear regression model.

The multi-job execution information across the federated
deployments, obtained according to Alibaba data, are listed
in Table 3, where the estimated resource demand 𝑇 ⟨𝑐,𝑚⟩′

total
and the estimated execution time 𝐸total

𝑒𝑥′ are calculated using
Algorithm 1, while the actual resource consumed for the
multi-job execution 𝑇 ⟨𝑐,𝑚⟩′

total and the actual execution time
𝐸total
𝑒𝑥′ are taken from the original data. The normalized

absolute estimate error (NAEE), defined as

NAEE =
|||estimated value − actual value|||

actual value
, (52)

is also listed in Table 4 for both resource consumed and
execution time, which serves as the estimation accuracy
measure for the trained multi-output linear regression model.
The average NAEE across 16 locations is 0.13 for CPU
resource, 0.28 for memory resource, and 0.22 for execution
time. From Tables 3 and 4, it can be seen that 𝑇 ⟨𝑐,𝑚⟩′

total <
⟨𝑐,𝑚⟩, 𝑇 ⟨𝑐,𝑚⟩′

total <⟨𝑐,𝑚⟩
𝑖 and 𝑓 𝑡𝑜𝑡𝑎𝑙 <𝑓 𝑎𝑣𝑎𝑙 ∀𝑖, given

that each drone is traveling at a constant flight speed 𝑠 of
13 m/s. In other words, each drone has sufficient resource to
execute its multi-jobs assigned to it. This further indicates
the suitability or accuracy of the trained ML model to pro-
vide the necessary information for our intelligent co-location
strategy.

5.2.2. Performance comparison across integrated edge
resources

After completing the optimal route planning, as shown
in Table 4, we are now ready to co-schedule the drones
for their missions, apply our EdgeDrones to orchestrate 54
jobs with 238 tasks among the four drones and compare
its performance with those of the benchmark schemes. We
first investigate the CPU utilization across the assigned
locations of the four drones, depicted in Figs. 4(a), 5(a),
6(a) and 7(a). It can be observed that both EdgeDrones
(ED) achieved the highest CPU utilization across the entire
missions. Specifically, in Drone-1’s mission, as shown in
Fig. 4(a), EdgeDrones acheieves an average of 98% CPU
utilization across Drones-1’s assigned locations. This is fol-
lowed by the NDFP, PDFP and PDNP schemes, which
achieves the same average of 92.5%. The remaining two
schemes, RP and RD achieves the lowest CPU utilization
across the same assigned locations of Drone-1. RP achieves

U. Awada et al.: Preprint submitted to Elsevier Page 14 of 22

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions

1

ED NDFP PDFP PDNP RP RD

0

50

100
99 99

85 85

66
60

99 99 99
90

83 83
94

82 82
73 73

55

94
82 82

73 73

55

97
89 89 89 89 89

ρ〈
c〉 D
R

i
%

L9 L14 L16 L8 L7

(a) CPU utilization across assigned locations

2

ED NDFP PDFP PDNP RP RD

0

50

100

24 24 21 21 16 14
24 24 24 21 20 2023 20 20 18 18 13

23 20 20 18 18 13
23 21 21 21 21 21

ρ〈
m

〉
D
R

i
%

L9 L14 L16 L8 L7

(b) Memory utilization across assigned locations

3

ED NDFP PDFP PDNP RP RD

0

50

100

50 50
58 58

75
8383 83 83

92
100 100

58
67 67

75 75

100

58
67 67

75 75

100
92

100 100 100 100 100

D
R

〈c
,m

〉
iA

R
U
%

L9 L14 L16 L8 L7

(c) Actual resource usage across assigned locations

ED NDFP PDFP PDNP RP RD

0

2,000

4,000

6,000

S
ch

(m
s)

L9 L14 L16 L8 L7

ED NDFP PDFP PDNP RP RD

0

200

400

600

800

1,000

E
to

ta
l

e
x
′

(s
)

L9 L14 L16 L8 L7

1

(d) Actual multi-Job scheduling time
across assigned locations

ED NDFP PDFP PDNP RP RD

0

2,000

4,000

6,000

S
ch

(m
s)

L9 L14 L16 L8 L7

ED NDFP PDFP PDNP RP RD

0

200

400

600

800

1,000

E
to

ta
l

e
x
′

(s
)

L9 L14 L16 L8 L7

1

(e) Actual multi-Job execution time
across assigned locations

ED NDFP PDFP PDNP RP RD

400

600

800

1,000

1,200

1,400

487.64
547.28

606.92
666.56

726.2

1,312

f
to
ta

l
(s
)

faval = 1300(s)

2

(f) Actual total flight travel time for
Drone-2’s mission

Figure 5: Activities and utilities of Drone-2’s mission.

an average of 79.5%, while RD obviously achieves an aver-
age of 69.5%. It can also be seen that Edgedrones achieves
the highest CPU utilization, according to Figs. 5(a), 6(a) and
7(a) for Drone-2, Drone-3 and Drone-4, respectively. Edge-
drones is able to intelligently gang-schedule and co-locate all
task tightly on nodes, resulting in higher resource utilization.
In Figs. 5(a), 6(a) and 7(a), EdgeDrones achieves the highest
average CPU utilization of 96.6, 92.6 and 94.5, respectively,

compared to other schemes. In particular, NDFP achieves the
second highest average CPU utilization across the assigned
locations of the drones, i.e., it achieves an average CPU uti-
lization of 6.4%, 4.8% and 3% less than EdgeDrones across
Drone-2. Drone-3 and Drone-4 missions, respectively. PDFP
and PDNP schemes performed averagely in terms of CPU
utilization compared to EdgeDrones and NDFP, i.e., PDFP
and PDNP achieve 9.2%, 14.6%; 14%, 18%; and 5%, 8.25%

U. Awada et al.: Preprint submitted to Elsevier Page 15 of 22

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions
1

ED NDFP PDFP PDNP RP RD

0

50

100
99 99

85 85

66
60

89 89

74 74
64

56

85 85

68
57 57

38

96
84 84 84

74
67

94
82 82

73 73

55

ρ〈
c〉 D
R

i
%

L1 L4 L3 L15 L11

(a) CPU utilization across assigned locations

2

ED NDFP PDFP PDNP RP RD

0

50

100

24 24 21 21 16 14

36 36
30 30 25 22

30 30
24 20 20

13

38 33 33 33 29 2623 20 20 18 18 13

ρ〈
m

〉
D
R

i
%

L1 L4 L3 L15 L11

(b) Memory utilization across assigned locations

3

ED NDFP PDFP PDNP RP RD

0

50

100

50 50
58 58

75
83

50 50
60 60

70
80

40 40
50

60 60

90

70
80 80 80

90
100

58
67 67

75 75

100

D
R

〈c
,m

〉
iA

R
U
%

L1 L4 L3 L15 L11

(c) Actual resource usage across assigned locations

ED NDFP PDFP PDNP RP RD

0

1,000

2,000

3,000

S
ch

(m
s)

L1 L4 L3 L15 L11

ED NDFP PDFP PDNP RP RD

0

200

400

600

800

E
to

ta
l

e
x
′

(s
)

L1 L4 L3 L15 L11

1

(d) Actual multi-Job scheduling time
across assigned locations

ED NDFP PDFP PDNP RP RD

0

1,000

2,000

3,000

S
ch

(m
s)

L1 L4 L3 L15 L11

ED NDFP PDFP PDNP RP RD

0

200

400

600

800

E
to

ta
l

e
x
′

(s
)

L1 L4 L3 L15 L11

1

(e) Actual multi-Job execution time
across assigned locations

ED NDFP PDFP PDNP RP RD

600

800

1,000

1,200

608.16
668.32

728.48
788.64

848.8

1,232

f
to
ta

l
(s
)

faval = 1000(s)

2

(f) Actual total flight travel time for
Drone-3’s mission

Figure 6: Activities and utilities of Drone-3’s mission.

less than EdgeDrones across Drone-2, Drone-3 and Drone-
4 missions, respectively. However, RP and RD schemes per-
formed poorly mainly due to their resource under-utilization,
i.e., both RP and RD schieve an average CPU utilization of
19.8%, 28.2%; 25.8%, 37.4%; and 18.25%, 44.25% less than
EdgeDrones across Drone-2, Drone3 and Drone4 missions,
respectively.

Figs. 4(b), 5(b), 6(b) and 7(b) compares the Memory
Utilization of EdgeDrones with those of the four baseline

schemes and the random approach. Note that all the tasks
executed across the assigned locations of the four drones
are CPU intensive tasks, hence, the memory utilization
across the locations are lower compared to the CPU uti-
lizations. Nevertheless, EdgeDrones outperformes all the
benchmark schemes, including the random approach. For
example, across Drone-1’s activities at its assigned loca-
tions, EdgeDrones is superior in achieving higher mem-
ory utilization with 3.5%, 6.5%, 6.5%, 12% and 18% more

U. Awada et al.: Preprint submitted to Elsevier Page 16 of 22

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions

memory utilizations than NDFP, PDFP, PDNP, RP and RD,
respectively. It achieves 23.4% average memory utilization
across Drone-2’s activities, which surpasses NDFP, PDFP,
PDNP, RP and RD by 1%, 2.2%, 3.6%, 4.8% and 7.2%,
respectively. EdgDrones also outperforms all the baseline
schemes and random approach across Drone-3 and Drone-
4 assigned locations. It achieves an average of 30.2% and
17% memeory utilization at Drone-3 and Drone-4 activities,
respectively. NDFP came second at both drones memory uti-
lization (with 1.6% and 1.25% less compared to EdgeDrones
at Drone-3 and Drone-4, respectively). PDFP and PDNP
came third and forth, respectively. PDFP achieves 4.6% and
1.5% less in memory utilization compared to EgeDrones at
Drone-3 and Drone-4 activities, respectively, while PDNP
achieves 5.8% and 1.75% less compared to EgeDrones at
Drone-3 and Drone-4 activities, respectively. RP and RD
performance are the worst compared to all other schemes. In
particular, the random approach (RD) achieves an average of
17.6% and 11.25% memory utilization across the assigned
locations of Drone-3 and Drone-4, respectively, which is
12.6% and 5.75% less than EdgeDrones’ achievement across
the two drones activitites. RP on the other hand, achieves
an average of 8.6% less compared to EdgeDrones across
Drone-3 assigned locations, and an average of 3.5% less than
EdgeDrones across Drone-4 assigned locations.

Figs. 4(c), 5(c), 6(c) and 7(c) compares the actual
resource usage ⟨𝑐,𝑚⟩

𝑖𝐴𝑅𝑈 of EdgeDrones with those of the
four baseline schemes and the random approach. It can be
seen that solving the optimization (45) is directly linked to
minimize the ARU (49), by packing or co-locating tasks
firmly on available resources. Hence, it can be seen that
EdgeDrones consumes the fewest resources across the inte-
grated drones activities with NPFP as the very close second
best, while Random uses all the resources across almost all
the drones activities with RP as the second worst. PDFP
ranks in the middle, in terms of resource usage across the
drones activities. Again, EdgeDrones and NDFP are superior
than PDFP, PDNP, RD and Random, and they achieve the
highest and close second highest resource utilization across
the integrated drones activities, respectively. For example,
across Drone-1’s assigned locations, EdgeDrone uses the
fewest resources amounting to an average of 71% compared
to NDFP, PDFP, PDNP and RP, which use 4%, 8%, 8%,
16.5% more than EdgeDrones, respectively. However, RD
uses all available resources, i.e., 100%, due to its inabil-
ity to co-locate tasks on nodes. Across Drone-2, Drone-3
and Drone-4’s assgined locations, it can also be seen that
EdgeDrones uses fewer resources, up to an average of 37%
less compared to other baseline schemes and the random
approach.

Three other key metrics are the actual multi-tasks/job
scheduling time

∑
𝐽∈𝕁

∑𝑚
𝑧=1

∑𝑘𝑧
𝑖=1𝑆𝑐ℎ𝑧𝑖

∕𝑘𝑧, where 𝑚 is the
number of scheduling units, 𝑘𝑧 is the number of tasks within
the 𝑧-th scheduling unit, and more importantly, the actual
multi-tasks/jobs execution time 𝐸total

𝑒𝑥′ and total flight travel
time 𝑓 𝑡𝑜𝑡𝑎𝑙. Figs. (4(d), 5(d), 6(d), (7(d)); (4(e), 5(e),
6(e), 7(e)); and (4(f), 5(f), 6(f), 7(f)) compares the actual

multi-tasks/jobs scheduling time, multi-tasks/job execution
time and total flight travel time of EdgeDrones with those of
the four benchmarks and random approach, respectively. The
results show that EdgeDrones is the best, NDFP is the second
best, and PDFP is the third best, PDNP is forth best, while RP
and Random is the worst and RP the second worst, in terms
of actual task scheduling times, actual task execution times
and drone’s total flight time. The superior performance of
EdgeDrones over the other benchmarks is overwhelmingly
clear.

5.2.3. Performance comparison in individual Drones
Figs. 4 ∼ 7 show the performance of the schemes in

terms of resource utilization, actual resource usage, actual
task scheduling times, actual task execution times and actual
flight total travel times across the integrated drones. We now
delve into the individual drone to examine the performance
of all the schemes.

Drone-1 is attached with three Huawei AR502H Series edge
devices, with total resource capacity of 12 Cores and 6 GiB
for CPU and memory, respectively. The entire weight of
the devices is ≈3.3kg. Its assigned locations 𝑎𝑠𝑠𝑖𝑔𝑛

1 =
{𝐿12, 𝐿13}; its route 𝑟𝑜𝑢𝑡𝑒

1 = 𝐿0 → 𝐿12 → 𝐿13 → 𝐿0;
and its flight time availability 𝑓 𝑎𝑣𝑎𝑙 = 700(𝑠). We deploy
9 jobs with a total of 36 tasks, where the job has a task
dependency depth 𝛾 (1, 5]. Utilizing the gang scheduling
strategy, EdgeDrones co-shedules and co-locates all the 9
jobs at a time in the attached edge devices as possible to
minimize the overall used nodes. These jobs are tightly
co-located, which enables dependent tasks to communicate
and share data effectively. As a result, EdgeDrones achieves
the fastest scheduling time and execution time compared
to NDFP, PDFP, PDNF, RP and the random approach.
In addition, EdgeDrones only uses an average 71% of re-
sources to execute the jobs. Using the same resource ca-
pacity, NPFP, PDFP, PDNP and RP utilize an average of
75%, 79%, 79% and 87.5% of the resources, respectively, as
shown in Fig 4(c). The random approach uses all available
resources. It is observed that EdgeDrones is 1.7 times and 2
times faster than the second best NDFP in both the schedul-
ing time and execution time, respectively. EdgeDrones is
more than 3 times and more than 3 times faster than PDFP
as well as more than 5 times and more than 4 times faster
than PDNP in the scheduling time and execution time, as
shown in Figs 4(d) and 4(e), respectively. EdgeDrones is 6
times and 5 times faster than the RP, as well as 47 times and
18 times faster than the random approach in the scheduling
and execution times, respectively. The most important is the
total flight travel time 𝑓 𝑡𝑜𝑡𝑎𝑙 of Drone-1, such that if along the
drone’s mission 𝑓 𝑡𝑜𝑡𝑎𝑙 becomes greater than its flight time
availability 𝑓 𝑎𝑣𝑎𝑙, then it might lead to loss of job or mission
failure. Recall that 𝑓 𝑡𝑜𝑡𝑎𝑙 =

∑𝑛
𝑖=0

∑𝑚
𝑗=𝑖+1𝑓

𝐿𝑖,𝑗+𝑓ℎ𝑜𝑣𝑒𝑟
𝑗 , where∑𝑚

𝑗=0 𝑓
ℎ𝑜𝑣𝑒𝑟
𝑗 = 𝐸total

𝑒𝑥′ . Hence, EdgeDrones is bale to quickly
schedule and execute all the 9 jobs at each assigned location,
resulting to a successful mission, and the fastest 𝑓 𝑡𝑜𝑡𝑎𝑙 (upto
2.7 times faster) compared to the four baseline schems and
the random approach, as shown in Fig. 4(f). The random

U. Awada et al.: Preprint submitted to Elsevier Page 17 of 22

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions

1

ED NDFP PDFP PDNP RP RD

0

50

100 96
84 84 84

74
67

90 90 90

77
68

45

98 98
90 90

77
68

94 94 94 94
86

21
ρ〈

c〉 D
R

i
%

L10 L2 L6 L5

(a) CPU utilization across assigned locations

2

ED NDFP PDFP PDNP RP RD

0

50

100

38 33 33 33 29 26

10 10 10 9 8 510 10 9 9 8 710 10 10 10 9 7

ρ〈
m

〉
D
R

i
%

L10 L2 L6 L5

(b) Memory utilization across assigned locations

3

ED NDFP PDFP PDNP RP RD

0

50

100

70
80 80 80

90
100

38 38 38
44

50

75
69 69

75 75

88
100

69 69 69 69
75

100

D
R

〈c
,m

〉
iA

R
U
%

L10 L2 L6 L5

(c) Actual resource usage across assigned locations

ED NDFP PDFP PDNP RP RD

0

2,000

4,000

6,000

S
ch

(m
s)

L10 L2 L6 L5

ED NDFP PDFP PDNP RP RD

0

200

400

600

800

1,000

E
to

ta
l

e
x
′

(s
)

L10 L2 L6 L5

1

(d) Actual multi-Job scheduling time
across assigned locations

ED NDFP PDFP PDNP RP RD

0

2,000

4,000

6,000

S
ch

(m
s)

L10 L2 L6 L5

ED NDFP PDFP PDNP RP RD

0

200

400

600

800

1,000

E
to

ta
l

e
x
′

(s
)

L10 L2 L6 L5

1

(e) Actual multi-Job execution time
across assigned locations

ED NDFP PDFP PDNP RP RD

400

600

800

1,000

1,200

1,400

482.1
536.2

590.3
657.9

700.5

1,384

f
to
ta

l
(s
)

faval = 1300(s)

ED NDFP PDFP PDNP RP RD

0

200

400

e E
to

ta
l

e
x
0
(s
)

L12 L13

2

(f) Actual total flight travel time for
Drone-4’s mission

Figure 7: Activities and utilities of Drone-4’s mission.

approach could not successfully schedule and execute all
the jobs within the drone’s 𝑓 𝑎𝑣𝑎𝑙, thereby leading to a failed
mission.

Like Drone-1, Drone-2 is attached with two HIVECELL

portable edge devices with total weight of ≈2.72kg, and
total resource capacity of 12 Cores and 16 GiB for CPU
and memory, respectively. Its assigned locations𝑎𝑠𝑠𝑖𝑔𝑛

1 =
{𝐿7, 𝐿8, 𝐿9, 𝐿14, 𝐿16}; it has to visit and execute tasks on
route: 𝑟𝑜𝑢𝑡𝑒

1 = 𝐿0 → 𝐿9 → 𝐿14 → 𝐿16 → 𝐿8 → 𝐿7 →

𝐿0; and its flight time availability 𝑓 𝑎𝑣𝑎𝑙 = 1200(𝑠). Here,
we deploy a total of 𝕁 = 17, where each 𝐽 ∈ 𝕁 has a task
dependency in the range of (1, 4]. The total number of tasks
in

∑
𝕁 is 76. We ensure that the attached edge resources

are fully utilized by co-locating the jobs tightly on them.
As discussed earlier, application container provides isolation
to co-located tasks, thereby eliminating interference and
resource contentions in the cluster. A single node is capable
of running several containerized tasks, given that available

U. Awada et al.: Preprint submitted to Elsevier Page 18 of 22

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions

resources are sufficient. In this drone’s activities, Edge-
drones consume an average of 5.2% fewer resources than
NDFP, an average of 6.8%, 11.8%, 16.8% and 28.4% fewer
resources than PDFP, PDNP, RP and Random. EdgeDrones,
also gain an average of upto 28.2% higher CPU utilization
over NDFP, PDFP, PDNP, RP and Random (as shown in
Fig. 5(a)), as well as an average of upto 7.2% higher memory
utilization than NDFP, PDFP, PDNP, RP and Random, as
shown in Fig. 5(b). More significantly, EdgeDrones is 2,
3.7, 5, 7.4 and 42.5 times faster in the scheduling time
than NDFP, PDFP, PDNP, RP and the random approach
respectively, while it is 2, 3, 4, 5 and 14.8 times faster in
the execution time than NDFP, PDFP, PDNP, RP and the
random approach, respectively across the assigned locations.
Although all the schemes, except for the random approach
were able to complete their task within the drone’s flight time
availability, nonetheless, EdgeDrones achieves the fasters
mission completion time, which is much more less than the
drone’s flight time availability. It can be seen in Fig. 5(f) that
EdgeDrones is upto 2.7 times faster than other schemes.

Drone-3 is attached with one HIVECELL and one Huawei

AR502H Series portable edge devices with total weight of
≈2.46kg. Its total resource capacity is 10 Cores and 8 GiB
of CPU and memory, respectively. Its assigned locations𝑎𝑠𝑠𝑖𝑔𝑛

1 = {𝐿1, 𝐿3, 𝐿4, 𝐿11, 𝐿15}; flight travel route
𝑟𝑜𝑢𝑡𝑒

1 = {𝐿0 → 𝐿1 → 𝐿4 → 𝐿3 → 𝐿15 → 𝐿11 → 𝐿0};
and flight time availability 𝑓 𝑎𝑣𝑎𝑙 = 900(𝑠). In this cluster,
we deploy 𝕁 = 12 in total of 56 tasks, where each 𝐽 ∈ 𝕁
has a task dependency depth 𝛾 range (2, 5]. Across this
drone’s activities, EdgeDrones achieve reduced ⟨𝑐,𝑚⟩

𝑖𝐴𝑅𝑈 by
3.8%, 9.4%, 13%, 20.4% and 37% compared with NDFP,
PDFP, PDNP, RD and Random, respectively (as shown in
Fig. 6(c)). EdgeDrones achieve 4.8%, 14%, 18%, 25.8%
and 37.4% higher CPU utilization as well as 1.6%, 4.6%,
5.8%, 8.6% and 12.6% higher memory utilization compared
to NDFP, PDFP, PDNP, RD and Random, respectively. In
terms of scheduling, EdgeDrones is about 2.3 times, 4.2
times, 6.5 times, 9.6 times and 34 times faster than NDFP,
PDFP, PDNP, RD and Random, respectively (as shown in
Fig. 6(d)). It achieves approximately 2 times, 3 times, 4
times, 5 times and 11 times faster execution times than
NDFP, PDFP, PDNP, RD and Random, respectively (as
shown in Fig. 6(e)). Not surprisingly, Random has the worst
scheduling time and execution time performance, resulting
to incomplete mission (since its 𝑓 𝑡𝑜𝑡𝑎𝑙 > 𝑓 𝑎𝑣𝑎𝑙). On the other
hand, EdgeDrones achieves the fasters mission completion
time, which is upto 1.4 times faster than NDFP, PDFP, PDNP
and RD, as shown in Fig. 6(f).

Drone-4 is attached with Azure Stack Edge mini memory
intensive edge device, with resource capacity of 16 Cores
and high memory capacity of 48 GiB. It is four locations𝑎𝑠𝑠𝑖𝑔𝑛

1 = {𝐿2, 𝐿5, 𝐿6, 𝐿10}, where there are total of 16
jobs made up of 70 tasks to be executed. Its flight travel route𝑟𝑜𝑢𝑡𝑒

1 = {𝐿0 → 𝐿10 → 𝐿2 → 𝐿6 → 𝐿5}, and flight time
availability 𝑓 𝑎𝑣𝑎𝑙 = 1200(𝑠). It is observed that EdgeDrones
consumes the fewest resources at an average of 61.5%,
followed by NDFP at 64%. PDFP consumes an average of

65.5%, PDNP consumes an average of 67%, RP consumes
an average 75.75% of the resources, while the Random
approach uses all the available resources at 𝐿10, 𝐿6𝑎𝑛𝑑𝐿5
locations, but consumes an average of 93.75% of resources
across the assigned locations. EdgeDrones also achieves
3%, 5%, 8.25%, 18.25% and 44.25% higher CPU utilization
over NDFP, PDFP, PDNP, RP and Random, respectively
(as shown in Fig. 7(a)). Note the edge device attached to
this drone is memory intensive, i.e., it has huge memory
capacities compared to the memory resource request of jobs
at the assigned locations. Therefore, the jobs can only con-
sume few such capacities, as shown in Fig. 7(b). In terms of
scheduling time, EdgeDrones is approximately 1.6 times, 1.5
times, 4.3 times, 5.8 times and 41.7 times faster than NDFP,
PDFP, PDNP, RP and random respectively (Fig. 7(d)). In
terms of execution time, EdgeDrones is about 2 times, 3
times, 4.2 times, 5 times and 17.6 times faster than NDFP,
PDFP, PDNP, RP and the random approach respectively
(Fig. 7(e)). Importantly, Drone-4 completed its mission with
the fastest time under EdgeDrones strategy, with up to 1.5
times faster compared to the baseline schemes, as shown in
Fig. 7(f)).

5.3. Discussion
Overall, EdgeDrones has demonstrated better perfor-

mance in an integrated edge computing system. It has con-
sistently outperform existing schemes (NDFP, PDFP, PDNP,
RP and Random) by achieving faster scheduling times and
excution times, while using fewer resources. Most impor-
tantly, effective multi-tasks scheduling and execution of
EdgeDrones across the locations, enables faster tasks re-
sponse times and mission completion times. EdgeDrones
achievements is attributed to its effective orchestration strat-
egy, gang-deployment and co-location of multi-jobs, which
allows inter-dependent tasks within each job to communicate
and share data faster. Such fast execution is crucial for mod-
ern applications to perform better. The existing schemes do
not consider task’s dependecies or multi-tasks co-location,
leading to limited edge resource wastage through under
utilization, as well as causing execution delay.

6. Conclusions
This paper has presented a novel Multi-Location Capac-

itated Mission Scheduling Problem (MLCMSP) that selects
suitable drones and co-schedules their flight routes with
the least total distance to visit and execute tasks at the
target locations. We proposed an intelligent multi-dependent
tasks orchestration scheme called EdgeDrones, a variant bin-
packing optimization approach through gang-scheduling of
multi-dependent tasks, that co-schedules and co-locate tasks
firmly on available nodes, so as to avoid resource wastage.
Evaluations using real world workloads from Alibaba clus-
ters, shows that EdgeDrones is superiror compared to the
baseline schemes. Importantly, EdgeDrones is able to avoid
loss of jobs in aerial edge computing missions. In our future
research, we can further integrate cost models to MLCMSP
by assigning an operational cost per drone’s mission, and

U. Awada et al.: Preprint submitted to Elsevier Page 19 of 22

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions

convert the MLCMSP into a profit maximization problem.
In addition, we can also deploy on-premise (fog-based com-
puting) alongside with the drones (aerial-based computing)
to form a hybrid deployment.

CRediT authorship contribution statement
Uchechukwu Awada: Conceptualization, Methodol-

ogy, Software, Validation, Formal analysis, Investigation,
Resources, Writing original draft, Writing review &
editing, Visualization. Jiankang Zhang: Conceptualiza-
tion, Methodology, Software, Validation, Formal analysis,
Investigation, Resources, Writing original draft, Writing
review & editing, Visualization, Supervising, Project ad-
ministration, Funding acquisition. Sheng Chen: Concep-
tualization, Methodology, Software, Validation, Investiga-
tion, Resources, Visualization, Supervising. Shuangzhi Li:
Conceptualization, Methodology, Formal analysis, Super-
vising, Funding acquisition. Shouyi Yang: Conceptualiza-
tion, Methodology, Formal analysis, Supervising, Funding
acquisition.

Declaration of competing interest
The authors declare that they have no known competing

financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability
Data will be made available on request.

Acknowledgements
The financial support of the National Natural Science

Foundation of China under grants 61571401 and 61901416
(part of the China Postdoctoral Science Foundation un-
der grant 2021TQ0304), and the Innovative Talent of Col-
leges and the University of Henan Province under grant
18HASTIT021 are gratefully acknowledged.

References
[1] M. U. Bokhari, Q. Makki, Y. K. Tamandani, A survey on cloud

computing, in: V. B. Aggarwal, V. Bhatnagar, D. K. Mishra (Eds.),
Big Data Analytics, Springer Singapore, Singapore, 2018, pp. 149–
164.

[2] S. Li, H. Liu, W. Li, W. Sun, Optimal cross-layer resource allocation in
fog computing: A market-based framework, Journal of Network and
Computer Applications 209 (2023) 103528. doi:https://doi.org/10.
1016/j.jnca.2022.103528.

[3] H. Mei, K. Wang, D. Zhou, K. Yang, Joint trajectory-task-cache
optimization in uav-enabled mobile edge networks for cyber-physical
system, IEEE Access 7 (2019) 156476–156488. doi:10.1109/ACCESS.
2019.2949032.

[4] L. Zhang, J. Chakareski, Uav-assisted edge computing and streaming
for wireless virtual reality: Analysis, algorithm design, and perfor-
mance guarantees, IEEE Transactions on Vehicular Technology 71 (3)
(2022) 3267–3275. doi:10.1109/TVT.2022.3142169.

[5] M. Laroui, H. Ibn-Khedher, H. Moungla, H. Afifi, Autonomous uav
aided vehicular edge computing for service offering, in: 2021 IEEE

Global Communications Conference (GLOBECOM), 2021, pp. 1–6.
doi:10.1109/GLOBECOM46510.2021.9685525.

[6] A. Koubaa, A. Ammar, A. Kanhouch, Y. AlHabashi, Cloud versus
edge deployment strategies of real-time face recognition inference,
IEEE Transactions on Network Science and Engineering 9 (1) (2022)
143–160. doi:10.1109/TNSE.2021.3055835.

[7] L. U. Khan, I. Yaqoob, N. H. Tran, S. M. A. Kazmi, T. N. Dang,
C. S. Hong, Edge-computing-enabled smart cities: A comprehensive
survey, IEEE Internet of Things Journal 7 (10) (2020) 10200–10232.
doi:10.1109/JIOT.2020.2987070.

[8] D. Callegaro, S. Baidya, M. Levorato, A measurement study on
edge computing for autonomous uavs, in: Proceedings of the ACM
SIGCOMM 2019 Workshop on Mobile AirGround Edge Computing,
Systems, Networks, and Applications, MAGESys’19, Association for
Computing Machinery, New York, NY, USA, 2019, pp. 29–35. doi:

10.1145/3341568.3342109.
[9] Q. Chen, H. Zhu, L. Yang, X. Chen, S. Pollin, E. Vinogradov, Edge

computing assisted autonomous flight for uav: Synergies between
vision and communications, IEEE Communications Magazine 59 (1)
(2021) 28–33. doi:10.1109/MCOM.001.2000501.

[10] G. Faraci, C. Grasso, G. Schembra, Fog in the clouds: Uavs to provide
edge computing to iot devices, ACM Trans. Internet Technol. 20 (3)
(aug 2020). doi:10.1145/3382756.

[11] U. Awada, J. Zhang, S. Chen, S. Li, Air-to-air collaborative learning:
A multi-task orchestration in federated aerial computing, in: 2021
IEEE 14th International Conference on Cloud Computing (CLOUD),
2021, pp. 671–680. doi:10.1109/CLOUD53861.2021.00086.

[12] U. Awada, J. Zhang, S. Chen, S. Li, Airedge: A dependency-aware
multi-task orchestration in federated aerial computing, IEEE Trans-
actions on Vehicular Technology (2021) 1–1doi:10.1109/TVT.2021.
3127011.

[13] S. Sanyal, K. Roy, Neuro-ising: Accelerating large scale travelling
salesman problems via graph neural network guided localized ising
solvers, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2022) 1–1doi:10.1109/TCAD.2022.3164330.

[14] J. Shi, J. Sun, Q. Zhang, K. Ye, Homotopic convex transformation: A
new landscape smoothing method for the traveling salesman problem,
IEEE Transactions on Cybernetics 52 (1) (2022) 495–507. doi:

10.1109/TCYB.2020.2981385.
[15] A. Khochare, Y. Simmhan, F. B. Sorbelli, S. K. Das, Heuristic

algorithms for co-scheduling of edge analytics and routes for uav fleet
missions, in: IEEE INFOCOM 2021 - IEEE Conference on Computer
Communications, 2021, pp. 1–10. doi:10.1109/INFOCOM42981.2021.

9488740.
[16] B. Liu, W. Zhang, W. Chen, H. Huang, S. Guo, Online computation

offloading and traffic routing for uav swarms in edge-cloud comput-
ing, IEEE Transactions on Vehicular Technology 69 (8) (2020) 8777–
8791. doi:10.1109/TVT.2020.2994541.

[17] U. Awada, J. Zhang, Edge federation: A dependency-aware multi-task
dispatching and co-location in federated edge container-instances, in:
2020 IEEE International Conference on Edge Computing (EDGE),
2020, pp. 91–98. doi:10.1109/EDGE50951.2020.00021.

[18] X. Cao, G. Tang, D. Guo, Y. Li, W. Zhang, Edge federation: Towards
an integrated service provisioning model, IEEE/ACM Transactions
on Networking 28 (3) (2020) 1116–1129. doi:10.1109/TNET.2020.

2979361.
[19] C. Cheng, L. Li, J. Wang, F. Gu, The design and implementation of

secure distributed image classification reasoning system for heteroge-
neous edge computing, in: 2021 IEEE 20th International Conference
on Trust, Security and Privacy in Computing and Communications
(TrustCom), 2021, pp. 250–257. doi:10.1109/TrustCom53373.2021.

00049.
[20] A. Graziosi, G. Iannello, V. Lapadula, M. Merone, M. Sabatini,

L. Vollero, Edge computing optimization method. analyzed task:
crowd counting, in: 2021 IEEE International Workshop on Metrology
for Industry 4.0 and IoT (MetroInd4.0IoT), 2021, pp. 397–401. doi:

10.1109/MetroInd4.0IoT51437.2021.9488437.

U. Awada et al.: Preprint submitted to Elsevier Page 20 of 22

https://doi.org/https://doi.org/10.1016/j.jnca.2022.103528
https://doi.org/https://doi.org/10.1016/j.jnca.2022.103528
https://doi.org/10.1109/ACCESS.2019.2949032
https://doi.org/10.1109/ACCESS.2019.2949032
https://doi.org/10.1109/TVT.2022.3142169
https://doi.org/10.1109/GLOBECOM46510.2021.9685525
https://doi.org/10.1109/TNSE.2021.3055835
https://doi.org/10.1109/JIOT.2020.2987070
https://doi.org/10.1145/3341568.3342109
https://doi.org/10.1145/3341568.3342109
https://doi.org/10.1109/MCOM.001.2000501
https://doi.org/10.1145/3382756
https://doi.org/10.1109/CLOUD53861.2021.00086
https://doi.org/10.1109/TVT.2021.3127011
https://doi.org/10.1109/TVT.2021.3127011
https://doi.org/10.1109/TCAD.2022.3164330
https://doi.org/10.1109/TCYB.2020.2981385
https://doi.org/10.1109/TCYB.2020.2981385
https://doi.org/10.1109/INFOCOM42981.2021.9488740
https://doi.org/10.1109/INFOCOM42981.2021.9488740
https://doi.org/10.1109/TVT.2020.2994541
https://doi.org/10.1109/EDGE50951.2020.00021
https://doi.org/10.1109/TNET.2020.2979361
https://doi.org/10.1109/TNET.2020.2979361
https://doi.org/10.1109/TrustCom53373.2021.00049
https://doi.org/10.1109/TrustCom53373.2021.00049
https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488437
https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488437

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions

[21] C. Shu, Z. Zhao, Y. Han, G. Min, H. Duan, Multi-user offloading for
edge computing networks: A dependency-aware and latency-optimal
approach, IEEE Internet of Things Journal 7 (3) (2020) 1678–1689.
doi:10.1109/JIOT.2019.2943373.

[22] J. Liu, H. Shen, Dependency-aware and resource-efficient scheduling
for heterogeneous jobs in clouds, in: 2016 IEEE International Con-
ference on Cloud Computing Technology and Science (CloudCom),
2016, pp. 110–117. doi:10.1109/CloudCom.2016.0032.

[23] J. Lee, H. Ko, J. Kim, S. Pack, Data: Dependency-aware task al-
location scheme in distributed edge clouds, IEEE Transactions on
Industrial Informatics 16 (12) (2020) 7782–7790. doi:10.1109/TII.

2020.2990674.
[24] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, K. K. Leung,

Dynamic service migration and workload scheduling in edge-clouds,
Performance Evaluation 91 (2015) 205–228, special Issue: Perfor-
mance 2015. doi:https://doi.org/10.1016/j.peva.2015.06.013.

[25] L. Tong, Y. Li, W. Gao, A hierarchical edge cloud architecture for
mobile computing, in: IEEE INFOCOM 2016 - The 35th Annual
IEEE International Conference on Computer Communications, 2016,
pp. 1–9. doi:10.1109/INFOCOM.2016.7524340.

[26] T.-P. Pham, J. J. Durillo, T. Fahringer, Predicting workflow task
execution time in the cloud using a two-stage machine learning
approach, IEEE Transactions on Cloud Computing 8 (1) (2020) 256–
268. doi:10.1109/TCC.2017.2732344.

[27] F. Nadeem, D. Alghazzawi, A. Mashat, K. Faqeeh, A. Almalaise,
Using machine learning ensemble methods to predict execution time
of e-science workflows in heterogeneous distributed systems, IEEE
Access 7 (2019) 25138–25149. doi:10.1109/ACCESS.2019.2899985.

[28] Z. Ning, Y. Yang, X. Wang, L. Guo, X. Gao, S. Guo, G. Wang,
Dynamic computation offloading and server deployment for uav-
enabled multi-access edge computing, IEEE Transactions on Mobile
Computing (2021) 1–1doi:10.1109/TMC.2021.3129785.

[29] D. Wang, J. Tian, H. Zhang, D. Wu, Task offloading and trajec-
tory scheduling for uav-enabled mec networks: An optimal transport
theory perspective, IEEE Wireless Communications Letters 11 (1)
(2022) 150–154. doi:10.1109/LWC.2021.3122957.

[30] X. Chen, Y. Bi, G. Han, D. Zhang, M. Liu, H. Shi, H. Zhao, F. Li,
Distributed computation offloading and trajectory optimization in
multi-uav-enabled edge computing, IEEE Internet of Things Journal
9 (20) (2022) 20096–20110. doi:10.1109/JIOT.2022.3175050.

[31] J. Ren, H. Wang, T. Hou, S. Zheng, C. Tang, Federated learning-based
computation offloading optimization in edge computing-supported
internet of things, IEEE Access 7 (2019) 69194–69201. doi:10.1109/
ACCESS.2019.2919736.

[32] T. Khan, W. Tian, G. Zhou, S. Ilager, M. Gong, R. Buyya, Machine
learning (ml)-centric resource management in cloud computing: A
review and future directions, Journal of Network and Computer
Applications 204 (2022) 103405. doi:https://doi.org/10.1016/j.

jnca.2022.103405.
[33] M. H. Hilman, M. A. Rodriguez, R. Buyya, Task runtime prediction in

scientific workflows using an online incremental learning approach,
in: 2018 IEEE/ACM 11th International Conference on Utility and
Cloud Computing (UCC), 2018, pp. 93–102. doi:10.1109/UCC.2018.

00018.
[34] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,

P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, L. Zhou, Gandiva:
Introspective cluster scheduling for deep learning, in: Proceedings
of the 13th USENIX Conference on Operating Systems Design and
Implementation, OSDI’18, USENIX Association, USA, 2018, pp.
595–610.

[35] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, I. Stoica, Ernest:
Efficient performance prediction for large-scale advanced analytics,
in: Proceedings of the 13th Usenix Conference on Networked Systems
Design and Implementation, NSDI’16, USENIX Association, USA,
2016, pp. 363–378.

[36] Y. Peng, Y. Bao, Y. Chen, C. Wu, C. Guo, Optimus: An efficient dy-
namic resource scheduler for deep learning clusters, in: Proceedings
of the Thirteenth EuroSys Conference, EuroSys ’18, Association for

Computing Machinery, New York, NY, USA, 2018. doi:10.1145/

3190508.3190517.
[37] G. Zhou, R. Wen, W. Tian, R. Buyya, Deep reinforcement learning-

based algorithms selectors for the resource scheduling in hierarchical
cloud computing, Journal of Network and Computer Applications 208
(2022) 103520. doi:https://doi.org/10.1016/j.jnca.2022.103520.

[38] C. Delimitrou, C. Kozyrakis, Quasar: Resource-efficient and qos-
aware cluster management, SIGPLAN Not. 49 (4) (2014) 127–144.
doi:10.1145/2644865.2541941.

[39] R.-A. Cherrueau, A. Lebre, D. Pertin, F. Wuhib, J. M. Soares, Edge
computing resource management system: a critical building block!
initiating the debate via OpenStack, in: USENIX Workshop on Hot
Topics in Edge Computing (HotEdge 18), USENIX Association,
Boston, MA, 2018.

[40] V. S. Marco, B. Taylor, B. Porter, Z. Wang, Improving spark appli-
cation throughput via memory aware task co-location: A mixture of
experts approach, in: Proceedings of the 18th ACM/IFIP/USENIX
Middleware Conference, Middleware’17, Association for Computing
Machinery, New York, NY, USA, 2017, pp. 95–108. doi:10.1145/

3135974.3135984.
[41] Y. Li, D. Sun, B. C. Lee, Dynamic colocation policies with reinforce-

ment learning, ACM Trans. Archit. Code Optim. 17 (1) (mar 2020).
doi:10.1145/3375714.

[42] U. Awada, A. Barker, Resource efficiency in container-instance clus-
ters, in: Proceedings of the Second International Conference on In-
ternet of Things, Data and Cloud Computing, ICC ’17, Association
for Computing Machinery, New York, NY, USA, 2017. doi:10.1145/

3018896.3056798.
[43] U. Awada, A. Barker, Improving resource efficiency of container-

instance clusters on clouds, in: Proceedings of the 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing,
CCGrid ’17, IEEE Press, 2017, pp. 929–934. doi:10.1109/CCGRID.

2017.113.
[44] Y. Liu, S. Wang, Q. Zhao, S. Du, A. Zhou, X. Ma, F. Yang,

Dependency-aware task scheduling in vehicular edge computing,
IEEE Internet of Things Journal 7 (6) (2020) 4961–4971. doi:10.

1109/JIOT.2020.2972041.
[45] Z. Han, H. Tan, S. H.-C. Jiang, X. Fu, W. Cao, F. C. Lau, Scheduling

placement-sensitive bsp jobs with inaccurate execution time estima-
tion, in: IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications, 2020, pp. 1053–1062. doi:10.1109/INFOCOM41043.

2020.9155445.
[46] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, A. Akella,

Multi-resource packing for cluster schedulers, in: Proceedings of the
2014 ACM Conference on SIGCOMM, SIGCOMM’14, Association
for Computing Machinery, New York, NY, USA, 2014, pp. 455–466.
doi:10.1145/2619239.2626334.

[47] Z. Hu, J. Tu, B. Li, Spear: Optimized dependency-aware task schedul-
ing with deep reinforcement learning, in: 2019 IEEE 39th Interna-
tional Conference on Distributed Computing Systems (ICDCS), 2019,
pp. 2037–2046. doi:10.1109/ICDCS.2019.00201.

[48] R. Grandl, S. Kandula, S. Rao, A. Akella, J. Kulkarni, Graphene:
Packing and dependency-aware scheduling for data-parallel clusters,
in: Proceedings of the 12th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI’16, USENIX Association,
USA, 2016, pp. 81–97.

[49] S. Rampersaud, D. Grosu, Sharing-aware online virtual machine
packing in heterogeneous resource clouds, IEEE Transactions on
Parallel and Distributed Systems 28 (7) (2017) 2046–2059. doi:

10.1109/TPDS.2016.2641937.
[50] J. Guo, Z. Chang, S. Wang, H. Ding, Y. Feng, L. Mao, Y. Bao, Who

limits the resource efficiency of my datacenter: An analysis of alibaba
datacenter traces, in: 2019 IEEE/ACM 27th International Symposium
on Quality of Service (IWQoS), 2019, pp. 1–10. doi:10.1145/3326285.
3329074.

[51] H. Wu, W. Zhang, Y. Xu, H. Xiang, T. Huang, H. Ding, Z. Zhang,
Aladdin: Optimized maximum flow management for shared produc-
tion clusters, in: 2019 IEEE International Parallel and Distributed

U. Awada et al.: Preprint submitted to Elsevier Page 21 of 22

https://doi.org/10.1109/JIOT.2019.2943373
https://doi.org/10.1109/CloudCom.2016.0032
https://doi.org/10.1109/TII.2020.2990674
https://doi.org/10.1109/TII.2020.2990674
https://doi.org/https://doi.org/10.1016/j.peva.2015.06.013
https://doi.org/10.1109/INFOCOM.2016.7524340
https://doi.org/10.1109/TCC.2017.2732344
https://doi.org/10.1109/ACCESS.2019.2899985
https://doi.org/10.1109/TMC.2021.3129785
https://doi.org/10.1109/LWC.2021.3122957
https://doi.org/10.1109/JIOT.2022.3175050
https://doi.org/10.1109/ACCESS.2019.2919736
https://doi.org/10.1109/ACCESS.2019.2919736
https://doi.org/https://doi.org/10.1016/j.jnca.2022.103405
https://doi.org/https://doi.org/10.1016/j.jnca.2022.103405
https://doi.org/10.1109/UCC.2018.00018
https://doi.org/10.1109/UCC.2018.00018
https://doi.org/10.1145/3190508.3190517
https://doi.org/10.1145/3190508.3190517
https://doi.org/https://doi.org/10.1016/j.jnca.2022.103520
https://doi.org/10.1145/2644865.2541941
https://doi.org/10.1145/3135974.3135984
https://doi.org/10.1145/3135974.3135984
https://doi.org/10.1145/3375714
https://doi.org/10.1145/3018896.3056798
https://doi.org/10.1145/3018896.3056798
https://doi.org/10.1109/CCGRID.2017.113
https://doi.org/10.1109/CCGRID.2017.113
https://doi.org/10.1109/JIOT.2020.2972041
https://doi.org/10.1109/JIOT.2020.2972041
https://doi.org/10.1109/INFOCOM41043.2020.9155445
https://doi.org/10.1109/INFOCOM41043.2020.9155445
https://doi.org/10.1145/2619239.2626334
https://doi.org/10.1109/ICDCS.2019.00201
https://doi.org/10.1109/TPDS.2016.2641937
https://doi.org/10.1109/TPDS.2016.2641937
https://doi.org/10.1145/3326285.3329074
https://doi.org/10.1145/3326285.3329074

EdgeDrones: Co-Scheduling of Drones for Multi-Location Aerial Computing Missions

Processing Symposium (IPDPS), 2019, pp. 696–707. doi:10.1109/

IPDPS.2019.00078.
[52] H. Liao, X. Li, D. Guo, W. Kang, J. Li, Dependency-aware application

assigning and scheduling in edge computing, IEEE Internet of Things
Journal 9 (6) (2022) 4451–4463. doi:10.1109/JIOT.2021.3104015.

Uchechukwu Awada is currently
working toward the PhD degree in
the School of Information Engineer-
ing, Zhengzhou University, China.
His current research interests include
edge computing, cloud computing, dis-
tributed systems, IoT and wireless com-
munications. He is a student member of

the ACM.
Jiankang Zhang is a Senior Lecturer at
Bournemouth University. Prior to join-
ing in Bournemouth University, he was
a senior research fellow at University
of Southampton, UK. Dr Zhang was a
lecturer from 2012 to 2013 and then an
associate professor from 2013 to 2014
at Zhengzhou University. His research
interests are in the areas of aeronautical

communications, aeronautical networks, evolutionary algo-
rithms and edge computing. He serves as an Associate Editor
for IEEE ACCESS.

Sheng Chen received his BEng degree
from the East China Petroleum Insti-
tute, Dongying, China, in 1982, and
his PhD degree from the City Univer-
sity, London, in 1986, both in control
engineering. In 2005, he was awarded
the higher doctoral degree, Doctor of
Sciences (DSc), from the University of

Southampton, Southampton, UK. From 1986 to 1999, He
held research and academic appointments at the Univer-
sities of Sheffield, Edinburgh and Portsmouth, all in UK.
Since 1999, he has been with the School of Electronics
and Computer Science, the University of Southampton, UK,
where he holds the post of Professor in Intelligent Systems
and Signal Processing. Dr Chen’s research interests include
adaptive signal processing, wireless communications, mod-
eling and identification of nonlinear systems, neural network
and machine learning, intelligent control system design,
evolutionary computation methods and optimization. He has
published over 600 research papers. Professor Chen has
16,700+ Web of Science citations with h-index 57 and
33,200+ Google Scholar citations with h-index 77. Dr. Chen
is a Fellow of the United Kingdom Royal Academy of
Engineering, a Fellow of Asia-Pacific Artificial Intelligence
Association and a Fellow of IET. He is one of the original
ISI highly cited researcher in engineering (March 2004).

Shuangzhi Li received the B.S. and
Ph.D. degrees from the School of Infor-
mation Engineering, Zhengzhou Uni-
versity, Zhengzhou, China, in 2012
and 2018, respectively. From 2015 to
2017, he was a Visiting Student with
the Department of Electrical and Com-
puter Engineering, McMaster Univer-
sity, Canada. He is currently a Lecturer

with the School of Information Engineering, Zhengzhou
University, China. His research interests include noncoher-
ent space-time coding and ultra-reliable low-latency com-
munications.

Shouyi Yang received the Ph.D. de-
gree from the Beijing Institute of Tech-
nology, Beijing, China, in 2002. He
is currently a Full Professor with the
School of Information Engineering,
Zhengzhou University, Zhengzhou,
China. He has authored or coauthored
various articles in the field of signal

processing and wireless communication. His current re-
search interests include signal processing in communi-
cations systems, wireless communications, and cognitive
radio.

U. Awada et al.: Preprint submitted to Elsevier Page 22 of 22

https://doi.org/10.1109/IPDPS.2019.00078
https://doi.org/10.1109/IPDPS.2019.00078
https://doi.org/10.1109/JIOT.2021.3104015

