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A B S T R A C T

Low altitude platform (LAP) unmanned aerial vehicles (UAVs), also called drones, are currently being exploited
by Edge computing (EC) systems to execute complex resource-hungry use cases, such as virtual reality, smart
cities, autonomous vehicles, etc., by attaching portable edge devices on them. However, a typical drone has
limited flight time, coupled with the resource-constrained attached edge device, which can jeopardize aerial
computing missions if they are not holistically taking into consideration. Moreover, the fundamental challenge
is how to co-schedule multi-drone among multi-location where EC services are needed, such that drones
are scheduled to maximize the utility from the activities while meeting computing resource and flight time
constraints. Therefore, for a given fleet of drones and tasks across disjointed target locations in a city, we derive
a machine learning (ML) linear regression model that estimates these tasks resource requirement and execution
time. Leveraging this estimation values, we jointly consider each drone’s flight time availability and its attached
edge device resource capacity, and formulate a novel Multi-Location Capacitated Mission Scheduling Problem
(MLCMSP) that selects suitable drones and co-schedules their flight routes with the least total distance to visit
and execute tasks at the target locations. Then, we show that faster scheduling and execution of complex tasks
at each location, while considering the inter-task dependencies is important to achieve effective solution for
our MLCMSP. Hence, we further propose EdgeDrones, a variant bin-packing optimization approach through
gang-scheduling of inter-dependent tasks that co-schedules and co-locates tasks tightly so as to achieve faster
execution time, as well as to fully utilize available resources. Extensive experiments on Alibaba cluster trace
with information on task dependencies (about 12,207,703 dependencies) show that EdgeDrones achieves up to
73% higher resource utilization, up to 17.6 times faster executions, and up to 2.87 times faster flight travel
time compared to the baseline approaches.
1. Introduction

Edge computing (EC) is a distributed computing model which places
cloud computing (Bokhari et al., 2018; Li et al., 2023) services closer
to data sources so as to achieve faster response times and real-time
insights. Many latency-sensitive applications that process data from
IoT devices and sensors, rely on heterogeneous edge resources in close
proximity for faster response times and to promote rapid development.
To this end, several EC devices of various sizes and capacities have
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emerged. For example, AWS Snowcone,1 Azure Stack Edge mini,2
etc., are portable EC devices that weighs about 2∼3 kg but are inher-
ently resource-constrained relative to their on-premise counterparts,
i.e., AWS Snowball,3 etc. Nonetheless, EC systems are currently ex-
ploiting attaching these portable edge devices on low altitude platform
(LAP) unmanned aerial vehicles (UAVs) or drones to execute com-
plex resource-hungry use cases, such as cyber–physical systems (Mei
et al., 2019), virtual reality (Zhang and Chakareski, 2022), smart
vehicles (Laroui et al., 2021), face recognition (Koubaa et al., 2022),
vailable online 18 April 2023
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Fig. 1. DAG of representative applications.
smart cities (Khan et al., 2020), etc. In addition, an autonomous drone
technology called Drone-in-a-box,4 is currently being exploited for aerial
EC missions (Callegaro et al., 2019; Laroui et al., 2021; Chen et al.,
2021). A drone-in-a-box system can be deployed autonomously from a
box that serves as a landing pad and charging base (i.e., depot) to per-
form on-demand computation activities in a city. An activity involves
visiting points of interest (i.e., target locations), hovering and interacting
with end devices to execute tasks on its attached edge device(s). After
completing the tasks, the results are immediately and deterministically
communicated back to the end device, then it returns to its box or
depot. However, a typical drone has a limited flight time due to power
factor which can jeopardize the entire mission if it is not taking into
consideration (Faraci et al., 2020; Awada et al., 2021b,a). Hence, the
critical issue is how to assign missions and optimal routes for multiple
drones to visit a set of locations, so that they can complete their tasks,
subject to the flight time and attached edge resource constraints of each
drone, without jeopardizing application performance.

Therefore, for a given fleet of drones and multi-task across dis-
jointed locations in a city, we propose a novel Multi-Location Ca-
pacitated Mission Scheduling Problem (MLCMSP) that co-schedules
their optimal flight routing among the locations, such that the drones
can visit the locations and complete the tasks, within their flight
times and computing resource constraints, while maximizing the total
utilization. Specifically, our MLCMSP combines elements of Vehicle
Routing Problem (VRP), which is a variant of the well known Traveling
Salesman Problem (TSP) to find optimal routes for a set of vehicles and
customers (Sanyal and Roy, 2022; Shi et al., 2022). Existing works have
proposed routing strategies for UAV-enabled task offloading in edge-
cloud computing systems (Khochare et al., 2021; Liu et al., 2020b).
However, they have either focused on co-scheduling a fleet of drones or
task offloading to meet some specific objectives. It is important to note
that a drone routing strategy for EC which do not consider the drones’
flight time and resource capacity or characteristics of target tasks, such
as dependencies, resource requirement, etc., can lead to loss of job or
an incomplete mission (Faraci et al., 2020; Awada et al., 2021b,a).
Effective co-scheduling of a given fleet of drones for EC missions across
multi-location, requires jointly optimization of the following; (i) update
information of each drones’ flight time availability and its attached
edge device(s)5 resource capacity or availability, (ii) locations of end
devices requesting EC services in terms of flight distance, flight travel
time, etc., and (iii) their tasks resource requirement and execution
time estimations, so as to select drones which can maximize the utility
from the activities. A disjointed approach which interacts individually
with each drone, would exhibit high computation complexity and is
far from trivial to realize (Awada et al., 2021b,a). For this reason,
we wish to consider an approach which seamlessly integrate all end
devices, service entities and edge resources running across multiple
drones in a single pool, such that these information can be holistically

5 A typical drone-based edge deployment can attach one or more or
different combination of portable edge devices, depending on the drones’ load
capacity.
2

obtained and monitored from a single control plane (CP), where it
can be used for decision making on efficient mission planning and
assignment. This approach is called Edge Federation (EF) (Awada and
Zhang, 2020; Cao et al., 2020). For example, recently introduced edge
computing frameworks, i.e., KubeEdge, MicroK8s, etc, have the capa-
bilities of integrating service entities and edge resources running across
multiple drones, run containerized tasks and eliminate provider lock-
in situations. EF can enable effective co-scheduling of multiple drones,
by selecting a minimum number of drones which can maximize the
utility for any given activities. Hence, a drone can be assigned multiple
disjointed locations as part of its mission.

An important challenge is developing an efficient scheduling strat-
egy that can place and execute complex applications on the attached
edge devices in a timely manner, while efficiently managing available
resources as drones visit their assigned locations. For example, modern
applications (i.e., face recognition (Koubaa et al., 2022), image classi-
fication (Cheng et al., 2021), crowd counting (Graziosi et al., 2021),
etc.,), as shown in Fig. 1 are becoming more complex in nature, struc-
tured on micro-services architectural style, consisting of a large number
of inter-dependent applications and often latency-sensitive (Shu et al.,
2020; Liu and Shen, 2016; Lee et al., 2020). It is naturally important
to intelligently schedule such inter-dependent applications in a best
possible way, such that they are quickly executed and immediately
sent back to the IoT and end devices. Existing scheduling approaches
which do not consider such task dependencies, co-location strategy
or which randomly deploy tasks to any available resources can easily
result in delay, fragmentation and over-allocation of resources, hence
jeopardizing the application performance, given the drones’ flight time
and resource constraints. To address this challenge, we first estimate
tasks resource requirement and execution time at target locations,
using linear regression machine learning (ML) model. These estimation
values, as well as the drones’ flight time, flight distance to target
locations, and attached edge resource availability are used as inputs
to plan missions for a captive set of drones to accomplish any given
activities. One drawback of this concept is that inaccurate estimations
of tasks resource requirement and execution time at target locations,
could also jeopardize the entire missions for selected drones. Similarly,
if the tasks are scheduled naively, e.g., in an edge deployment which
can only execute one task or job at any time and where each task is
scheduled individually (Urgaonkar et al., 2015; Tong et al., 2016), the
system might not yield an optimal performance. Therefore, we first
investigate the accuracy of our trained linear regression ML model for
estimating multi-task resource requirement and execution time, using
the normalized absolute estimate error (NAEE) method. This serves
as the estimation accuracy measure for the trained linear regression
ML model. We further propose EdgeDrones, which extends the state-
of-the-arts by providing an intelligent dependency-aware multi-task
scheduling and co-location scheme to achieve high resource utilization
and faster execution of tasks.

In particular, we show that EF (Awada and Zhang, 2020; Cao et al.,
2020) and ML techniques (Pham et al., 2020; Nadeem et al., 2019)
can help aerial edge systems to achieve effective co-scheduling and
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optimal route planning for a fleet of autonomous drones to accomplish
stochastic service requests from end devices across target locations in a
city. With limited edge resources and drones’ flight time, it is necessary
to consider task dependencies in drone-based EC task offloading, by
jointly optimizing the drones’ flight time and resource availability, such
that all the tasks can be intelligently scheduled and fast executed with
minimum resources before the drone returns for recharging or departs
for another assigned location. Hence, our aim is to plan optimal flight
routes for drones to execute all the tasks by considering dependencies
and resource demands, such that the actual scheduling and execution
time is minimized, and is much less than the drones’ flight time. In
summary, to achieve our EdgeDrones implementation, we address the
following critical areas:

• We propose an integrated system with global information, through
the joint optimization of all service entities, and formally define
the novel Multi-Location Capacitated Mission Scheduling Problem
(MLCMSP) that selects and co-schedules optimal flight routes for
a fleet of drones for any given aerial computing missions in a city.

• Specifically, we derive a multi-task machine learning (ML) execu-
tion time and resource requirement estimation, to aid MLCMSP
to select drones with requisite resource availability which can
maximize the utility from the aerial activities.

• To guarantee optimal usage of cluster resources and faster execu-
tion of tasks, we further propose a variant bin-packing optimiza-
tion approach through gang-scheduling of multi-dependent tasks,
which co-schedules and co-locate tasks firmly on available nodes,
so as to avoid resource wastage.

• We show that EdgeDrones is capable of minimizing the actual
completion time of multi-dependent tasks using minimum re-
sources, and we conduct extensive experiments to compare the
performance of our EdgeDrones with several existing approaches
using real-world data-trace from Alibaba cluster trace,6 which
provides information on task dependencies.

The rest of the paper is organized as follows. In Section 2, we discuss
he related work. In Section 3, we present some preliminaries on task
ependency-awareness and discuss our motivation. In Section 4, we
etail our proposed EdgeDrones for achieving high resource utilization
nd minimizing the execution times of applications deployed on feder-
ted aerial edge resources. In Section 5, we compare the performance
f our proposed EdgeDrones against that of several state-of-the-art
pproaches through extensive experiments. Finally, we conclude the
aper in Section 6.

. Related works

UAV or drone-based edge computing deployments are gaining in-
reasingly popularity due to their autonomous navigation, low cost,
obility, flexibility and adaptive altitude to deliver faster execution

loser to data sources. They are currently being exploited for several
se cases, i.e., task offloading, data caching, data streaming, etc. For
xample, the authors of Ning et al. (2021) proposed a UAV-enabled
dge network to minimize the system-wide computation cost by ef-
icient task offloading and deployment. They have formulated and
olved this problem as a stochastic game. The work (Mei et al., 2019)
roposed a joint trajectory, task offloading and caching optimization in
UAV-enabled edge for Cyber–Physical System. They have proposed

his to realize energy-efficient performance of the UAV. In Zhang
nd Chakareski (2022), the authors explored the UAV-assisted edge
nd streaming for virtual reality. They formulated this problem as a
oint UAV placement, edge resource allocation, and 360-degree video

6 https://github.com/alibaba/clusterdata
3

content layer assignment. They aim to select the allocation of comput-
ing and communications resources, such that the delivered quality of
experience (QoE) is maximized.

UAV or drone-enabled multi-task offloading schemes in edge sys-
tems can benefit from joint optimization of drones’ flight time, resource
availability status, multi-task’s resource requirement and execution
time, such that drone with sufficient resource availability can be de-
ployed to conduct efficient execution request. A-priori information
about task execution time is mostly important for drone-based edge
deployments (Awada et al., 2021b,a). This is because a typical drone
has limited flight time, and could possibly lead to a delayed task
execution if it is not taken into consideration (Faraci et al., 2020). In
particular, optimal route can be planned and assigned to ensure that
drones can complete their tasks, given their flight time constraints.
There exist works that explore routing and trajectory scheduling for
drone-enable edge systems. For example, the work (Khochare et al.,
2021) proposed a mission scheduling problem (MSP) that co-schedules
the flight routes of drones to visit target locations and record videos.
Similarly, the work (Liu et al., 2020b) proposed an online algorithm
for UAV swarms to jointly optimize the task offloading and multi-hop
routing scheduling. In Mei et al. (2019), the authors proposed a joint
optimization of drone’s 3D trajectory scheduling and the task-cache
strategies to minimize its total energy consumption. The work (Wang
et al., 2022) formulated an optimization problem to minimize the total
energy consumption of a UAV through joint partitioning and UAV
trajectory scheduling. In Chen et al. (2022), the authors presented a
distributed task offloading and path planning algorithm to provide com-
putational support to large-scale IoT nodes. However, these schemes
do not consider drones’ flight time and assume a drone can fly for
unlimited amount of time, which can lead to delay or loss of job due to
drones’ limited flight time (Faraci et al., 2020; Awada et al., 2021b,a).

For multi-task at target locations, an accurate execution time and
resource demand estimation is mostly needed to schedule routes for
drone(s) and a-priori to conduct efficient multi-task scheduling. Conse-
quently, existing researches have proposed a huge number of learning
methods to estimate task’s resource requirements and execution time,
based on collaborative learning (CL) (Awada et al., 2021b; Cao et al.,
2020; Ren et al., 2019), machine learning (ML) (Awada et al., 2021a;
Pham et al., 2020; Nadeem et al., 2019; Khan et al., 2022), incre-
mental learning (IL) (Hilman et al., 2018), scheduling (Venkataraman
et al., 2016; Peng et al., 2018; Zhou et al., 2022) and statistical
models (Delimitrou and Kozyrakis, 2014). Our previous works (Awada
et al., 2021b,a) focused on of multi-dependent tasks orchestration in
autonomous drone-enabled edge computing system, while considering
the drones’ flight time, so as to avoid loss of jobs (Faraci et al., 2020).
Specifically, in Awada et al. (2021b), we have proposed a multi-output
linear regression model based on CL to estimate multi-dependent task’s
resource requirement and execution time, to select the closest drone
deployment having matching resource availability and flight time to
execute ready tasks at a given time. In Awada et al. (2021a), we
have proposed a ML based multi-dependent tasks dispatching over a
federated autonomous drone-enabled edge computing platform, using
the total estimated value of the multi-dependent tasks’ execution time
to select a suitable drone.

With limited edge resources, is it also important to avoid any
form of resource wastage, i.e., resource under utilization. Efficiently
managing edge resources directly dictates service quality and perfor-
mance (Cherrueau et al., 2018). As a result, task co-location has gained
attention both in academia and industry as an optimal solution for
improving resource utilization and system throughput in distributed
systems. However, effective task co-location is a non-trivial task, as
it requires an understanding of the computing resource requirement
of the co-running tasks, in order to determine how many of them
can be co-located. To this end, a tasks co-location mechanism was
proposed in Marco et al. (2017), where it was showed that by ac-

curately estimating the resource level needed, a co-location scheme
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Fig. 2. (a) Locations of end devices needing EC services, (b) drones assignment together with their optimal routes.
can effectively determine how many tasks can be co-located on the
same host to improve the system throughput, by taking into consid-
eration the memory and CPU requirements of co-running tasks. With
the aim to maximize the resource utilization, the authors of Li et al.
(2020) utilized reinforcement learning to co-locate interactive services
with batched ML workloads. Our previous works (Awada and Barker,
2017b,a) focused on workload co-location in cloud environment, rather
than edge systems. To further improve edge resource management,
a resource management scheme was proposed in Awada and Zhang
(2020), Cao et al. (2020) which unifies distributed edge resources, such
that they are holistically managed. Our previous work (Awada and
Zhang, 2020) proposed a dependency-aware task scheduling in such
unified system. Modern applications are usually structured with inter-
task dependencies, whereby a task depends on an input from other
task(s). A huge number of existing works, i.e., Shu et al. (2020), Liu
and Shen (2016), Lee et al. (2020), Liu et al. (2020a) have tackled
the problem scheduling such inter-dependent tasks or multi-dependent
tasks, and their common goal is to formulate a scheduling decision that
minimizes the average completion time of such tasks.

Existing works on UAV-enabled approaches for task offloading and
execution in multi-edge deployments do not jointly consider tasks
dependencies, do not unify service entities and distributed edge re-
sources, such that they are holistically managed and monitored from
a single control plan (CP), where such information can be utilized to
co-schedules multi-drone, co-locate multi-task effectively . This mo-
tivates our research to extend existing schemes by proposing Edge-
Drones. Specifically, we propose a learning-based multi-drone route
scheduling through a unified system, which include all service entities
and resources running across the multi-drone, location of end devices
and their applications. We further propose a variant bin-packing opti-
mization approach through gang-scheduling of multi-dependent tasks,
which quickly co-schedules and co-locate tasks firmly on available
nodes, so as to avoid delay and resource wastage. We finally show
that EdgeDrones is capable of minimizing the actual completion time
of multi-dependent tasks using minimum resources through extensive
experiments and comparison.

3. A case study on a smart city

We consider a smart city scenario, where multiple IoT and other
end devices are deployed across the city to improve life standards
of its citizens. For example, Toyota Motor Corporation has recently
embarked on a new smart city project called Woven City,7 where
new technologies such as smart construction and manufacturing, smart

7 https://www.woven-city.global/
4

homes, robotics, connectivity through AI, autonomy, etc are being
deployed. EC provides a promising way of enabling these technologies
by offering computing resources with low latency. Smart city solutions
are increasingly integrating UAVs or drone-enabled EC for enhanced
performance (Khan et al., 2020). Suppose at time 𝑡, there are updates
from devices at multiple locations in the city, as shown in Fig. 2(a),
drones equipped with EC devices can fly to these locations to render
needed services in a timely manner. However, how to select, assign
and route flight paths for drones to accomplish these tasks effectively is
a major challenge. To address this, each task’s resource requirement in
terms of CPU and memory at each location 𝐿𝑖 is estimated, i.e., ⟨𝑐𝑖, 𝑚𝑖⟩,
as well as its execution time 𝐸𝑒𝑥𝑖 . These values, as well as the lo-
cation coordinates are utilized to select suitable drones (i.e., drones
with sufficient flight time 𝑓𝑖 and resource capacity ⟨𝑐, 𝑚⟩), such that
their optimal routes to visit the locations are scheduled, as shown in
Fig. 2(b). Nevertheless, a routing problem with many locations can take
a long time to solve. Therefore, for such problems, it is better to set a
search limit which terminates the search after a specific length of time
or number of solutions is returned.

Most importantly, as the drones embark on their missions, effi-
cient scheduling strategy for complex applications at each location
𝐿𝑖 is absolutely necessary to guarantee high application performance
and successful completion of each drone’s mission. For example, in
Fig. 2(b), Drone 1 is assigned 4 locations (𝐿1, 𝐿2, 𝐿3 and 𝐿4).
Suppose at these locations, we have complex applications in the form
of directed acyclic graphs (DAGs), as shown in Figs. 2(a), (b), (c) and
(d), respectively, where each job typically consists of several tasks
whose dependencies are expressed by DAG, i.e., the job in Fig. 1(a)
consists of inter-task dependency depth 𝛾 of 12, i.e., (𝑇1, 𝑇2,. . . , 𝑇12).
Such complex inter-task dependencies with multi-dimensional resource
demands, i.e., various amounts of CPU and memory resources, and
communication requirements, make resource management in such a
drone-enabled EC system very challenging. Knowledge about these
tasks characteristics, i.e., resource demands and dependencies, is nec-
essary to pack or co-locate them effectively in available resources,
ultimately to minimize their collective response times and improve
the resource utilization (Awada et al., 2021b,a). Clearly, tasks 𝑇1, 𝑇2
and 𝑇3 are independent task, i.e., no dependency, and they can be
started without waiting for any other task(s), while tasks 𝑇4 and 𝑇5
depend on the completion of task 𝑇1. Similarly, task 𝑇10 depends on
the completion of tasks 𝑇6, 𝑇7 and 𝑇8. Hence a key objective of our
EdgeDrones is to reduce the collective execution time of such tasks
and improve resource utilization by considering the inter-task depen-
dency and resource demands. Therefore, given the 𝑛 multi-dependent
tasks 𝑇1, 𝑇2,… , 𝑇𝑛, as shown in Fig. 2, EdgeDrones adopts the gang-
scheduling (Awada et al., 2021b,a; Han et al., 2020) strategy and
a variant bin-packing optimization to efficiently co-schedule and co-
locate them in the attached edge nodes. We consider EdgeDrones as a

https://www.woven-city.global/
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Table 1
Scheduling orders and units of various schemes.

Scheme Scheduling order Scheduling units

EdgeDrones {𝑇1 , 𝑇2 , 𝑇3 , 𝑇4 , 𝑇5 , 𝑇6 , 𝑇7 , 𝑇8 , 𝑇9 , 𝑇10 , 𝑇11 , 𝑇12} 1
PDNP 𝑇3 → 𝑇2 → {𝑇1 , 𝑇4} → {𝑇6 , 𝑇8} → {𝑇5 , 𝑇7} → {𝑇10 , 𝑇11} → {𝑇12 , 𝑇9} 7
PDFP 𝑇1 → 𝑇2 → 𝑇3 → {𝑇4 , 𝑇5} → {𝑇6 , 𝑇7 , 𝑇8 , 𝑇9} → {𝑇10 , 𝑇11 , 𝑇12} 6
NDFP {𝑇1 , 𝑇2 , 𝑇3 , 𝑇4 , 𝑇5 , 𝑇6} → {𝑇7 , 𝑇8 , 𝑇9 , 𝑇10 , 𝑇11 , 𝑇12} 2
Random 𝑇1 → 𝑇2 → 𝑇3 → 𝑇4 → 𝑇5 → 𝑇6 → 𝑇7 → 𝑇8 → 𝑇9 → 𝑇10 → 𝑇11 → 𝑇12 12
Fig. 3. Orchestration overview of EdgeDrones.
Full Dependency and Full Packing (FDFP) scheduling approach. Thus,
the scheduling time can be expressed as:
𝑚
∑

𝑧=1

𝑘𝑧
∑

𝑖=1
𝑆𝑐ℎ𝑧𝑖

∕𝑘𝑧, (1)

where 𝑚 is the number of scheduling units, 𝑘𝑧 is the number of tasks
within the 𝑧th scheduling unit having the tasks

{

𝑇𝑧1 , 𝑇𝑧2 ,… , 𝑇𝑧𝑘𝑧
}

.
We illustrate the advantage of the scheduling approach in Edge-

Drones over three other existing schemes as follows; (i) a scheduling
approach which does not consider tasks’ dependencies, but schedules
50% of any given multi-dependent tasks by mainly focusing on task
co-location, we refer to this scheduling approach as No Dependency
and Full Packing (NDFP), and it is similar to the approach in Grandl
et al. (2014); (ii) a scheduling approach which schedules up to 15% of
any given multi-dependent tasks at a time, but does not consider task
co-location, we refer to this scheduling approach as Partial Dependency
and No Packing (PDNP), and it is similar to the approach in Hu et al.
(2019); (iii) a scheduling approach which schedules up to 40% of
any given multi-dependent tasks with task co-location, we consider
this scheduling approach as a Partial Dependency and Full Packing
(PDFP), and it is similar to the approach in Grandl et al. (2016);
and (iv) the Random approach, which does not consider both tasks’
dependencies and task co-location, we refer to this scheduling approach
as No Dependency and No Packing (NDNP). It is important to note
that delay in scheduling inter-dependent tasks directly impacts their
collective execution time. For the multi-dependent tasks of Fig. 1 with
𝑛 = 12 tasks, Table 1 lists the scheduling orders and scheduling units
for the schemes compared. EdgeDrones only needs one scheduling unit
(𝑚=1) which has 𝑘1=12 tasks, and it also achieves the lowest execution
time of 1

12
∑12

𝑖=1𝐸𝑒𝑥𝑖 . By contrast, Random has 𝑚=12 scheduling units,
each having a single task. Hence it has the highest execution time
of ∑12

𝑖=1𝐸𝑒𝑥𝑖 . Thus, EdgeDrones achieves the lowest scheduling and
execution time. PDNP, PDFP and NDFP deploy individual or subsets
of the tasks at a time. Generally, delay in scheduling dependent tasks
directly impacts job completion time, and utilizing gang scheduling is
beneficial for overall performance.

4. System model, problem formulation and algorithm framework

In this section, we detail our proposed EdgeDrones for achieving
optimal routing scheduling for drones aerial missions, high resource
5

utilization and minimizing the execution times of applications deployed
on an integrated edge computing system. The system model is shown
in Fig. 3.

4.1. System model

At the city center, we have a depot 𝐿0 with coordinate {𝑥0, 𝑦0},
where a fleet of drones DR = {1,… ,𝑁} are stationed and ready
for aerial computing missions. Each drone has flight time availabil-
ity 𝑓 𝑎𝑣𝑎𝑙

𝑖 and resource capacity ⟨𝑐,𝑚⟩
𝑖 , in terms of CPU and mem-

ory resources. Then, at time 𝑡 > 0, we have a set of end devices
D = {1,… ,𝑀} requesting EC services across multi-location L =
{𝐿1,… , 𝐿𝑀} with their coordinates 𝐿1 = {𝑥1, 𝑦1},…, 𝐿𝑀 = {𝑥𝑀 , 𝑦𝑀}
within the city. The edge federated system EF consists of all service
entities in the 𝑁 drones 𝑖, 1 ≤ 𝑖 ≤ 𝑁 , and 𝑀 end devices 𝑖,
1 ≤ 𝑖 ≤ 𝑀 , i.e.,

EF = DR
⋃

D. (2)

A set of multi-task T = {𝑇1,… , 𝑇𝑁} from the end device(s) at each loca-
tion 𝐿𝑖 ∈ L require an amount of CPU and memory resources ⟨𝑐,𝑚⟩

𝑖
for execution. These resource requirements along with execution times
are first estimated using linear regression ML model. The multi-task
features 𝒇mt (𝜔, 𝜖, 𝛾), where 𝜔 is the number of instances, 𝜖 is type of
tasks, 𝛾 is dependency depth, are fed into the model 𝛩⋆ to estimate the
values of the resource requirement and execution times according to

𝒇mt ⋅ 𝛩
⋆ =

[

𝐸𝑒𝑥1𝑇
⟨𝑐,𝑚⟩
1 𝐸𝑒𝑥2𝑇

⟨𝑐,𝑚⟩
2 ⋯𝐸𝑒𝑥𝑁 𝑇 ⟨𝑐,𝑚⟩

𝑁

]

, (3)

where 𝑇 ⟨𝑐,𝑚⟩
𝑖 and 𝐸𝑒𝑥𝑖 are the estimated resource requirement (in terms

of CPU and memory ⟨𝑐, 𝑚⟩) and estimated execution time for task
𝑖, respectively. We show that with these estimated values, suitable
drones can be assigned and multi-dependent tasks can be intelligently
scheduled with the aim of minimizing their actual completion time,
while maximizing available resources. Assuming that 𝒇mt ∈ R1×𝑑 is a
𝑑-dimensional vector (tensor), then 𝛩 is a (𝑑×𝜖)-dimensional parameter
matrix. To build this predictor 𝛩, we train it using historical data from
previously executed tasks/jobs based on Keras.8 Keras is a library which

8 https://keras.io/

https://keras.io/
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wraps TensorFlow9 complexity into simple and user-friendly API. The
dataset ={(𝒙𝑖, 𝒚𝑖)}𝑛𝑖=1 contain 𝑑-dimensional tensors of data features
𝒙𝑖 ∈R1×𝑑 and 𝜖-dimensional tensors of labels (actual execution times)
𝒚𝑖∈R1×𝜖 . The learning problem is to solve the following optimization:

𝛩⋆ = arg min
𝛩∈R𝑑×𝜖

1
2𝑛

𝑛
∑

𝑖=1
‖𝒙𝑖𝛩 − 𝒚𝑖‖22 +

𝜆
2
‖𝛩‖

2
𝐹 , (4)

here 𝜆 is the regularization parameter and ‖⋅‖𝐹 denotes the Frobenius
orm. The optimization (4) is solved using gradient-descent, where the
odel is updated iteratively until convergence, i.e., 𝛩𝑡+1=𝛩𝑡−𝜂

( 1
𝑛𝒈(𝛩

𝑡)+
𝛩𝑙), in which 𝜂 is the learning rate, 𝒈(𝛩)= 1

𝑛𝑿
T(𝑿𝛩−𝒀

)

denotes the
gradient of the loss function, 𝑿=

[

𝒙T1 ⋯𝒙T𝑛
]T and 𝒀 =

[

𝒚T1 ⋯ 𝒚T𝑛
]T are the

eature set and label set, respectively. These estimation values 𝑇 ⟨𝑐,𝑚⟩

nd 𝐸𝑒𝑥 are important information for selecting suitable drones from
he depot for the missions. The target location coordinates 𝐿𝑖 = {𝑥𝑖, 𝑦𝑖}
nd depot coordinates 𝐿0 = {𝑥0, 𝑦0} are used to compute the distance
atrix to also aid with the selection of suitable drones. The distance
atrix is an array of distances between these locations. These distances

an be obtained using the Manhattan Distance,10 in which the distance
etween two locations 𝐿𝑖 = {𝑥𝑖, 𝑦𝑖} and 𝐿𝑗 = {𝑥𝑗 , 𝑦𝑗} is given as:

𝐿𝑖,𝑗 = |𝑥𝑖 − 𝑥𝑗 | + |𝑦𝑖 − 𝑦𝑗 |. (5)

hese distances can also be obtained using Google Distance Matrix
PI.11 Hence, the distance matrix is given as;

M =

⎡

⎢

⎢

⎢

⎢

⎣

𝑑𝐿0,0 𝑑𝐿0,1 𝑑𝐿0,2 … 𝑑𝐿0,𝑛

𝑑𝐿1,0 𝑑𝐿1,1 𝑑𝐿1,2 … 𝑑𝐿1,𝑛

⋮ ⋮ ⋮ ⋱ ⋮
𝑑𝐿𝑚,0 𝑑𝐿𝑚,1 𝑑𝐿𝑚,2 … 𝑑𝐿𝑚,𝑛

⎤

⎥

⎥

⎥

⎥

⎦

. (6)

he number of rows of the DM indicates the number of target locations
nd the depot inclusive. Autonomous drone systems have tools to help
hem estimate flight travel time for distances between locations (Awada
t al., 2021b,a). A drone’s power has a capacity P, which is used for
he flights (i.e., traveling and hovering) at a constant energy-efficient
peed 𝑠. Note that the attached edge device(s) does not depend on the
rone’s power, instead, it is powered by its on-board power supply. For
xample, AWS Snowcone can be powered by any standard USB-C power
ank and can deliver up to 14 trillion operations per seconds (TOPs)
ith as little as 10 W of power. Therefore, the flight travel time for 𝑑𝐿𝑖,𝑗

s given as 𝑓𝐿𝑖,𝑗 , and the flight hovering time at 𝐿𝑖 is given as 𝑓ℎ𝑜𝑣𝑒𝑟.
s the actual execution time is unknown at this point, we assume that

he flight hovering time is equivalent to the multi-task execution time
stimation, i.e., 𝑓ℎ𝑜𝑣𝑒𝑟 ≈

∑𝑁
𝑖=1 𝐸𝑒𝑥𝑖 . Suppose that a drone travels from

𝑖 to 𝐿𝑗 in one step of its route, and that:

• The drone’s cumulative flight travel time upon arrival at 𝐿𝑖, given
as 𝑓𝐿𝑖 is 60 s.

• The drone’s cumulative flight travel time upon arrival at 𝐿𝑗 , given
as 𝑓𝐿𝑗 is 130 s.

• The drone’s flight travel time 𝑓𝐿𝑖,𝑗 is 50 s.

bviously, the drone cannot depart location 𝐿𝑖 immediately upon
rrival, otherwise its cumulative flight travel time 𝑓𝐿𝑗 upon arrival at
𝑗 would be 110 s. Instead, the drone must hover and execute the tasks
t 𝐿𝑖 for 20 s before departing for 𝐿𝑗 . In other words, the execution
ime also constitutes a drone’s flight travel time. On the other hand,
ote that a drone’s resource capacity ⟨𝑐,𝑚⟩ does not accumulate as it
ravels along its route. This is because, after executing its tasks at 𝐿𝑖,
he results are immediately and deterministically communicated back
o the end device at 𝐿𝑖, and its resources becomes available for its next

9 https://www.tensorflow.org/
10 https://en.wikipedia.org/wiki/Taxicab_geometry
11 https://cloud.google.com/blog/products/maps-platform/how-use-
istance-matrix-api
6

task execution at location 𝐿𝑗 . Also, a drone can be assigned multiple
disjointed locations as part of its mission, giving that it has sufficient
resource availability, i.e., compute resources and flight time. Hence,
a drone’s total distance and flight travel time for its entire mission is
given as;

𝑑𝑡𝑜𝑡𝑎𝑙 =
𝑛
∑

𝑖=0

𝑚+1
∑

𝑗=𝑖+1
𝑑𝐿𝑖,𝑗 (7)

and

𝑓 𝑡𝑜𝑡𝑎𝑙 =
𝑛
∑

𝑖=0

𝑚+1
∑

𝑗=𝑖+1
𝑓𝐿𝑖,𝑗 + 𝑓ℎ𝑜𝑣𝑒𝑟

𝑗 , (8)

respectively. Since, a drone can be assigned multiple disjointed 𝑚 loca-
tions, it must start and end its missions at the depot 𝐿0. For uniformity,
we denote the starting and the ending depot location in its route as 𝐿0
and 𝐿𝑚+1, respectively. Therefore, given a federated system EF con-
sisting of drone-enabled EC deployments DR, where each participating
drone 𝑖 is attached with container-optimized nodes, and a set end
devices D requesting EC services across multiple locations in a city,
an update state information from the CP which include each drones’
fight time availability 𝑓 𝑎𝑣𝑎𝑙

𝑖 , its total resource capacity ⟨𝑐,𝑚⟩
𝑖 , each

end device 𝑖 inter-dependent tasks execution and resource demand
estimation 𝐸𝑒𝑥𝑖𝑇

⟨𝑐,𝑚⟩
𝑖 , location coordinates 𝐿𝑖 = {𝑥𝑖, 𝑦𝑖} and distance

matrix DM, is needed to select, assign and schedule optimal routes
𝑟𝑜𝑢𝑡𝑒

𝑖 for drones to visit these locations and execute the tasks, such
that

𝑟𝑜𝑢𝑡𝑒
𝑖 = arg min

𝑖∈DR

{

𝑑𝑡𝑜𝑡𝑎𝑙𝑖 ∶ 𝑓 𝑡𝑜𝑡𝑎𝑙
𝑖 < 𝑓 𝑎𝑣𝑎𝑙

𝑖 ,⟨𝑐,𝑚⟩
𝑖 sufficient

}

. (9)

A drone must execute a set of inter-dependent tasks T at each of
its assigned location before it returns to its depot. EdgeDrones utilizes
the gang scheduling (Han et al., 2020) strategy to co-schedule all tasks
𝑇𝑖 ∈ T at a time, i.e.,

T ⇒ 𝑖. (10)

For a task 𝑇𝑖 ∈ T, its actual starting time and completion time are
denoted as 𝐸𝑠𝑡 and 𝐸𝑐𝑝, respectively. Thus, its actual execution time
is given as:

𝐸𝑒𝑥 = 𝐸𝑐𝑝 − 𝐸𝑠𝑡. (11)

Hence the collective actual execution time of a multi (𝑛)-task T is given
as ∑𝑛

𝑖=1
𝐸𝑒𝑥𝑖
𝑛 . Given a cluster of container-instances or nodes 𝐼𝑝 in the

edge device(s) attached to 𝑖, let 𝐼 ⟨𝑐,𝑚⟩𝑝 denote the 𝑝th node’s resource
capacity. The estimated resource demands of 𝑘-dependent tasks to be
orchestrated ∑𝑘

𝑞=1 𝑇
⟨𝑐,𝑚⟩
𝑞 and the resource capacity of each node is

important information needed in order to make an efficient scheduling
and co-location decision on 𝐼𝑝 at time 𝑡. Our system extends to handle
bulk requests from multiple end devices at the same location. Suppose
at 𝑡, there are 𝑛 service requests from multiple end devices at the
same location 𝐿𝑖, where each device 𝑖 is offloading T. The collective
𝑛 requests from the end devices can be scheduled as a multi-Job J,
where J =

∑𝑛
𝑖=1 T𝑖, with collective resource demand estimation of each

job denoted as ∑𝑘
𝑞=1𝑇

⟨𝑐,𝑚⟩
𝑞 = 𝑇 ⟨𝑐,𝑚⟩′, and the aggregate execution time

stimation of each job as ∑𝑘
𝑞=1𝐸𝑒𝑥𝑞 = 𝐸𝑒𝑥′. We can gang-schedule and

o-locate J effectively on 𝑖:

⇒ 𝑖, (12)

y considering the estimated total resource demand of J:
∑

𝐽∈J
𝑇 ⟨𝑐,𝑚⟩′ = 𝑇 ⟨𝑐,𝑚⟩′

total , (13)

nd 𝑖 resource capability ⟨𝑐,𝑚⟩
𝑖 . Hence, the total estimated execu-

ion time of J at 𝐿𝑖 is given as:
∑

𝐸𝑒𝑥′ = 𝐸total
𝑒𝑥′ . (14)
𝐽∈J

https://www.tensorflow.org/
https://en.wikipedia.org/wiki/Taxicab_geometry
https://cloud.google.com/blog/products/maps-platform/how-use-distance-matrix-api
https://cloud.google.com/blog/products/maps-platform/how-use-distance-matrix-api
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Table 2
Common notations.

Notation Description

EF Federated edge deployments
DR A fleet of autonomous drones
D A set of end devices
L A set of disjointed locations
T A set of containerized inter-dependent applications
DM Distance matrix among the depot and target locations
𝑇 Individual application or task
𝑇 ⟨𝑐,𝑚⟩ Task resource requirements estimation
𝑇 ⟨𝑐,𝑚⟩′
total Estimated total resource requirements for jobs

𝐼𝑖 Container-instance or node attached to a drone
𝐼 ⟨𝑐,𝑚⟩
𝑖 Resource capacity or availability of a node
𝑖 Individual drone-enabled EC deployment
⟨𝑐,𝑚⟩

𝑖 Resource capacity in a drone attached edge devices
⟨𝑐,𝑚⟩

𝑖𝑈
The total resources actually assigned for jobs

𝑎𝑠𝑠𝑖𝑔𝑛
𝑖 A drone’s set of assigned locations

𝑟𝑜𝑢𝑡𝑒
𝑖 The route for a drone’s mission

⟨𝑐,𝑚⟩
𝑖𝑈 Actual resources used for execution of jobs

⟨𝑐,𝑚⟩
𝑖𝐴𝑅𝑈 The actual resource usage of a cluster

𝜌⟨𝑐,𝑚⟩𝑖
Actual resource utilization of jobs

𝜌⟨𝑐,𝑚⟩𝑖
Estimated resource utilization of jobs

𝜌⟨𝑐⟩𝑖
, 𝜌⟨𝑚⟩𝑖

Actual cluster CPU, memory resource utilization
𝐸𝑠𝑡, 𝐸𝑐𝑝 Application/task starting, completion time
𝐸𝑒𝑥 Application or task execution time
𝐸 total

𝑒𝑥′ Actual total execution time for jobs
𝐸𝑒𝑥 Application or task execution time estimation
𝐸 total

𝑒𝑥′ Estimated total execution time for jobs
𝐿0 , 𝐿𝑖 Drone’s depot and destination location
𝑓 𝑎𝑣𝑎𝑙
𝑖 Drone’s flight time availability

𝑓ℎ𝑜𝑣𝑒𝑟
𝑖 Drone’s hovering time at location

𝑑𝑡𝑜𝑡𝑎𝑙
𝑖 Total distance of a drone’s mission/trip

𝑓 𝑡𝑜𝑡𝑎𝑙
𝑖 Total flight travel time of a drone’s mission/trip

𝑑𝐿𝑖,𝑗 Travel distance of a drone from location 𝑖 to 𝑗
𝑓𝐿𝑖,𝑗 Flight travel time of a drone from location 𝑖 to 𝑗
𝜔𝐽 Number of instances of a Job
𝜖𝐽 The type of job
𝛾𝐽 Dependency depth of a job
𝒇mt Set of multi-task runtime parameters
𝛩 Multi-output linear regression model
𝐽 , J A Job, A set of Jobs

Therefore, estimated resource utilization of 𝑖 for multi-job J at 𝐿𝑖
s given by

𝜌⟨𝑐,𝑚⟩𝑖
=

𝑇 ⟨𝑐,𝑚⟩′
total

⟨𝑐,𝑚⟩
𝑖

. (15)

or a drone 𝑖, let the aggregate of the actual execution time of
ulti-job J at 𝐿𝑖 be

∑

𝐽∈J

𝑘
∑

𝑞=1

𝐸𝑒𝑥𝑞

𝑘
=

∑

𝐽∈J
𝐸𝑒𝑥′ = 𝐸total

𝑒𝑥′ , (16)

nd the total resources actually assigned for multi-job J at 𝐿𝑖 be
⟨𝑐,𝑚⟩

𝑖𝑈
. Under the condition that estimated total resource demand

̃⟨𝑐,𝑚⟩′
total is accurate, i.e., 𝑇 ⟨𝑐,𝑚⟩′

total ≈⟨𝑐,𝑚⟩
𝑖𝑈

, then ⟨𝑐,𝑚⟩
𝑖𝑈

will not exceed
⟨𝑐,𝑚⟩

𝑖 . Similarly, under the condition that estimated total estimated
execution time 𝐸total

𝑒𝑥′ is accurate, i.e., 𝐸total
𝑒𝑥′ ≈𝐸total

𝑒𝑥′ , then the drone 𝑖
will have sufficient flight time availability 𝑓 𝑎𝑣𝑎𝑙

𝑖 for its entire mission.
Our learning-based approach has significant advantages over non-

learning based counterparts. By accurately estimating the resource
requirement and execution times of multi-tasks/multi-jobs, our scheme
can intelligently select suitable drones having requisite resource and
flight time availability for the missions, and co-locate multi-dependent
tasks in their attached edge nodes, such that the dependent tasks can
communicate and execute faster, ultimately to minimize the response
times and improve resource utilization, hence guarantees the entire
mission completion. The accuracy of the estimated resource require-
ment and execution times can be ensured by constructing multiple
7

training datasets for different classes of multi-tasks/multi-jobs from
historical data to learn multiple models, one for a class of multi-
tasks/multi-jobs. Given the multi-tasks/multi-jobs to be deployed, the
model that is most similar to them is employed to estimate the resource
requirement and execution times. Since the estimated total resource
demand 𝑇 ⟨𝑐,𝑚⟩′

total and execution time 𝐸total
𝑒𝑥′ are accurate estimates of the

actual total resource need to be allocated ⟨𝑐,𝑚⟩
𝑖𝑈

and actual execution
time 𝐸total

𝑒𝑥′ , it is unlikely that the selected drone edge 𝑖 will not have
sufficient resources. In other words, it is very unlikely that

𝑓 total
𝑖 > 𝑓 𝑎𝑣𝑎𝑙

𝑖 and/or ⟨𝑐,𝑚⟩
𝑖𝑈

> ⟨𝑐,𝑚⟩
𝑖 , (17)

which would lead to loss of job and jeopadize the entire mission.
By contrast, standard non-learning based schemes have no means to
intelligently select appropriate drones for ensuring that they will have
sufficient resources, and the probability of (17) occurring can be much
higher than our intelligent learning approach. There also exists simple
and effective measure to guard against estimation error. It is obvious
that loss of job may only occur in under estimation scenario. Instead of
using the estimates of resource demand and execution time for selecting
drones, we can add the two standard deviations of the estimation to the
corresponding estimates and use these ‘modified’ or ‘overly’ estimated
values to select the drones. This will reduce the probability of (17) oc-
curring to almost zero. It is straightforward to provide both the estimate
and estimation standard deviation by dividing the training data into
multiple subsets and running the estimation procedure multiple times
to provide the average estimate and estimation standard deviation.

4.2. Problem formulation

The notations adopted are listed in Table 2. Our Multi-Location
Capacitated Mission Scheduling Problem (MLCMSP) is summarized as:
Given a federated system EF consisting of a fleet of autonomous drones
𝑖, 1 ≤ 𝑖 ≤ 𝑁 , and a set of end devices 𝑖, 1 ≤ 𝑖 ≤ 𝑀 with their
computing activities to be performed across multi-location L = {𝐿1,… , 𝐿𝑀}
within a city, the objectives are to co-schedule suitable drones, i.e., drones
with sufficient flight time and computing resource availability, onto optimal
mission routes among the locations, then co-locate the corresponding inter-
dependent tasks on each drone’s attached edge nodes at each location, such
that all the activities are successful. Particularly, we present EdgeDrones,
which intelligently co-schedules and co-locates multi-dependent tasks firmly
on nodes, while considering task dependencies in order to minimize the
overall actual execution time and maximize the actual resource utilization,
subject to certain constraints.

4.2.1. Constraints
At time 𝑡 > 0, a set of end devices at different locations in the city

require EC services, then a set of suitable drones are selected and co-
schedule for EC missions. A drone can be assigned multiple disjointed
locations as part of its mission, i.e., 𝑎𝑠𝑠𝑖𝑔𝑛

𝑖 = {𝐿1,… , 𝐿𝑛} ⊆ L. For a
drone 𝑖, its trip route is given as:

𝑟𝑜𝑢𝑡𝑒
𝑖 =

(

𝐿0 → 𝐿1 →,⋯ ,→ 𝐿𝑛,→ 𝐿0

)

, (18)

and no location is assigned twice within a mission, i.e.,

𝜗
[

𝑎𝑠𝑠𝑖𝑔𝑛
𝑖 , 𝐿𝑖

]

=
{

1, if 𝐿𝑖 is assigned to 𝑖,
0, otherwise, (19)

such that;

𝑎𝑠𝑠𝑖𝑔𝑛
𝑖 ∩𝑎𝑠𝑠𝑖𝑔𝑛

𝑘 = ∅,∀𝑖, 𝑘. (20)

This is to ensure that a location is mapped to just one drone, and that
no location is assigned twice within the missions, where the indicator
𝜗
[

𝑎𝑠𝑠𝑖𝑔𝑛
𝑖 , 𝐿𝑖

]

= 1 indicates that location 𝐿𝑖 is assigned to the drone

𝑖; otherwise 𝜗
[

𝑎𝑠𝑠𝑖𝑔𝑛
𝑖 , 𝐿𝑖

]

= 0, all selected drones must start and
end their missions at the depot 𝐿0, i.e.,
𝑛
∑

𝑚+1
∑

𝑑𝐿𝑖,𝑗 −
𝑚
∑

𝑛+1
∑

𝑑𝐿𝑗,𝑖 = 0,∀𝑖 ∈ DR, (21)

𝑖=0𝑗=𝑖+1 𝑗=0𝑖=𝑗+1
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and they must complete all their tasks at any location 𝐿𝑖 before
departing for another location 𝐿𝑗 , i.e.,

∀𝑖 ∈ DR, 𝜑
(

𝐿𝑖→𝐿𝑗
𝑖

)

=
{

1, if J ∈ [𝐸𝑐𝑝],
0, if J ∉ [𝐸𝑐𝑝],

(22)

where the indicator 𝜑
(

𝐿𝑖→𝐿𝑗
𝑖

)

=1 indicates that the drone 𝑖 has
completed the execution of J, and sent the results back to the devices
t 𝐿𝑖. Hence it can depart 𝐿𝑖 for 𝐿𝑗; otherwise 𝜑

(

𝐿𝑖→𝐿𝑗
𝑖

)

= 0.
The collective resource demand estimation of J at any of the locations
assigned to each drone, cannot exceed its resource capacity. Recall that
a drone’s resource capacity ⟨𝑐,𝑚⟩ does not accumulate as it travels
along its route. This is because, after executing its tasks at any location
𝐿𝑖, the results are sent back to the device(s) at 𝐿𝑖, and its resources
becomes available again for the jobs at its next location 𝐿𝑗 . Since the
actual total resources that needs to be assigned to the multi-job at 𝐿𝑖 is
unknown at the scheduling stage, we use the estimated total resource
demand 𝑇 ⟨𝑐,𝑚⟩′

total to replace it:

̃⟨𝑐,𝑚⟩′
total ≤ ⟨𝑐,𝑚⟩

𝑖 , ∀𝑖 ∈ DR. (23)

uring the multi-task scheduling, unused or inactive attached nodes
𝑖∈𝑖 in a selected drone would be shut down. All the nodes can be
xpressed in one of these two states: Active and Inactive. An Active node
s a node that is running and is currently considered for allocation or
as at least a job being started, executing or completing. An Inactive
ode is a node that is not running and is not currently considered for
llocation and not having at least a job that is being started, executing
r completing. These two states can be expressed as follows:

𝑐, 𝑚 𝛽
(

𝐼𝑖
)

=
{

1, 𝐴𝑐𝑡𝑖𝑣𝑒 if 𝐽𝑖 ∈ [𝐸𝑠𝑡, 𝐸𝑐𝑝, 𝐸𝑒𝑥],
0, 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒 if 𝐽𝑖 ∉ [𝐸𝑠𝑡, 𝐸𝑐𝑝, 𝐸𝑒𝑥],

(24)

here the indicator 𝛽
(

𝐼𝑖
)

= 1 indicates that the node 𝐼𝑖 is ready to
ccept new jobs, and at least a job 𝐽𝑖 is being started, executing or
ompleting, i.e., 𝐽𝑖∈[𝐸𝑠𝑡, 𝐸𝑐𝑝, 𝐸𝑒𝑥], on 𝐼𝑖; otherwise 𝛽

(

𝐼𝑖
)

=0.
The aggregate actual execution time of J at all locations assigned to

ach drone ∑𝑛
𝐿=𝑖 𝐸

total
𝑒𝑥𝑖′

and the total flight travel time ∑𝑛
𝑖=0

∑𝑚+1
𝑗=𝑖+1𝑓

𝐿𝑖,𝑗

annot exceed its flight time availability 𝑓 𝑎𝑣𝑎𝑙
𝑖 . Since the aggregate

ctual execution time ∑𝑛
𝐿=𝑖 𝐸

total
𝑒𝑥𝑖′

is unavailable at the scheduling stage,
e replace it with the estimate ∑𝑛

𝐿=𝑖 𝐸
total
𝑒𝑥𝑖′

≈ 𝑓ℎ𝑜𝑣𝑒𝑟′:

𝑡𝑜𝑡𝑎𝑙
𝑖 =

𝑛
∑

𝑖=0

𝑚+1
∑

𝑗=𝑖+1
𝑓𝐿𝑖,𝑗 + 𝑓ℎ𝑜𝑣𝑒𝑟′

𝑗 , (25)

herefore,
𝑡𝑜𝑡𝑎𝑙
𝑖 ≤ 𝑓 𝑎𝑣𝑎𝑙

𝑖 , ∀𝑓 𝑎𝑣𝑎𝑙
𝑖 ∈ DR. (26)

.2.2. Optimization formulation
Suitable drones are selected and co-schedule with the least total

istance to visit and execute tasks at target locations:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞 𝑑𝑡𝑜𝑡𝑎𝑙𝑖 ∀𝑖 ∈ DR, (27)

𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜗
[

𝑎𝑠𝑠𝑖𝑔𝑛
𝑖 , 𝐿𝑖

]

∈ {0, 1}, ∃, (28)

𝑎𝑠𝑠𝑖𝑔𝑛
𝑖 ∩𝑎𝑠𝑠𝑖𝑔𝑛

𝑘 = ∅,∀𝑖, 𝑘, (29)
𝑛
∑

𝑖=0

𝑚+1
∑

𝑗=𝑖+1
𝑑𝐿𝑖,𝑗 −

𝑚
∑

𝑗=0

𝑛+1
∑

𝑖=𝑗+1
𝑑𝐿𝑗,𝑖 = 0, (30)

𝜑
(

𝐿𝑖→𝐿𝑗
𝑖

)

∈ {0, 1},∀𝑖 ∈ DR, ∃, (31)

𝑇 ⟨𝑐,𝑚⟩′
total ≤ ⟨𝑐,𝑚⟩

𝑖 , ∀𝑖 ∈ DR, (32)

𝑓 total
𝑖 ≤ 𝑓 𝑎𝑣𝑎𝑙

𝑖 , ∀𝑓 𝑎𝑣𝑎𝑙
𝑖 ∈ DR. (33)

he objective function (27) is to minimize the total distance 𝑑𝑡𝑜𝑡𝑎𝑙 =
𝑛
𝑖=0

∑𝑚+1
𝑗=𝑖+1𝑑

𝐿𝑖,𝑗 of each drone’s route to visit its assigned locations.
onstraints (28) to (30) and condition (31) ensure that no location is
ssigned twice within the missions, all drones must start and finish
8

their trip at the depot, and each drone must execute all its task at
any location before it departs for another location. Constraint (32)
guarantees that 𝑇 ⟨𝑐,𝑚⟩′

total of J at any assigned location for 𝑖 would not
xceed its resource capacity ⟨𝑐,𝑚⟩

𝑖 . Constraint (33) also guarantees
hat each drones’ total flight travel time 𝑓 total

𝑖 for any mission would
ot exceed its flight time availability 𝑓 𝑎𝑣𝑎𝑙

𝑖 . The details of our optimal
ission and route planning is given in Section 4.3 and in Algorithm 2.

As the actual resource utilization of a cluster/edge is unknown, we
aximize the estimated resource utilization:

𝐚𝐱𝐢𝐦𝐢𝐳𝐞 𝜌⟨𝑐,𝑚⟩𝑖
, (34)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 J ⇒ 𝑖, ∃, (35)

𝑇 ⟨𝑐,𝑚⟩′
total ≤ ⟨𝑐,𝑚⟩

𝑖 , ∀𝑖 ∈ DR, (36)

𝑓 total
𝑖 ≤ 𝑓 𝑎𝑣𝑎𝑙

𝑖 , ∀𝑓 𝑎𝑣𝑎𝑙
𝑖 ∈ DR, (37)

𝜑
(

𝐿𝑖→𝐿𝑗
𝑖

)

∈ {0, 1},∀𝑖 ∈ DR, ∃, (38)

𝛽
(

𝐼𝑖
)

∈ {0, 1}, ∀𝑐, 𝑚, ∃. (39)

Provided that the estimated resource utilization 𝜌⟨𝑐,𝑚⟩𝑖
is accurate, little

optimality will be lost. The constraints (35) to (37) indicate the dis-
patching of multi-job J at each assigned location to 𝑖, given that
ts resources and flight time availability is sufficient. More specifically,
35) is the multi-job J deployment constraint, guaranteeing that J
s gang-scheduled onto 𝑖 attached resources, such that dependent
asks within each 𝐽 ∈ J can communicate and execute faster. The
onstraint (36) guarantees that 𝑇 ⟨𝑐,𝑚⟩′

total of J would not exceed ⟨𝑐,𝑚⟩
𝑖

f 𝑖, and constraint (37) guarantees that 𝑓 total
𝑖 would not exceed

𝑎𝑣𝑎𝑙
𝑖 of any 𝑖 ∈ DR. The condition (38) ensures that each drone
ust execute all its task at any location before it departs for another

ocation. The condition (39) guarantees that active nodes
(

𝛽
(

𝐼𝑖
)

=1
)

ould be used for execution, and inactive nodes
(

𝛽
(

𝐼𝑖
)

=0
)

would be
hut down. Hence, our aim is to minimize the number of active nodes
sed for execution by co-locating jobs tightly on each node in order
o maximize resource utilization. We shall discuss the details of our
ulti-job co-location principle in Section 4.3 and Algorithm 3.

Then again, 𝐸total
𝑒𝑥′ of J can be minimized depending on scheduling:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞 𝐸total
𝑒𝑥′ , (40)

𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 J ⇒ 𝑖⋆ , ∃, (41)

𝑇 ⟨𝑐,𝑚⟩′
total ≤ ⟨𝑐,𝑚⟩

𝑖 , ∀𝑖 ∈ DR, (42)

𝑓 total
𝑖 ≤ 𝑓 𝑎𝑣𝑎𝑙

𝑖 , ∀𝑓 𝑎𝑣𝑎𝑙
𝑖 ∈ DR, (43)

𝜑
(

𝐿𝑖→𝐿𝑗
𝑖

)

∈ {0, 1},∀𝑖 ∈ DR, ∃. (44)

Note that the actual overall execution time 𝐸total
𝑒𝑥′ is unknown at this

stage, and we use the estimated overall execution 𝐸total
𝑒𝑥′ to replace it in

the optimization. Again, provided that the estimate 𝐸total
𝑒𝑥′ is accurate,

little optimality will be lost. The constraint (41) guarantees that J at
any location is dispatched to 𝑖, such that dependent tasks within
each 𝐽 ∈ J can communicate and execute faster. The constraint (42)
guarantees that 𝑇 ⟨𝑐,𝑚⟩′

total of J would not exceed ⟨𝑐,𝑚⟩
𝑖 of 𝑖, and

constraint (43) guarantees that 𝑓 total
𝑖 would not exceed 𝑓 𝑎𝑣𝑎𝑙

𝑖 of any
𝑖 ∈ DR. The condition (44) ensures that each drone must execute
ll its task at any location before it departs for another location.

.3. EdgeDrones algorithm framework

Our EdgeDrones approach consists of linear regression estimation,
ptimal route planning for multi-drone, and gang scheduling of tasks.
hese three components aim at providing optimal solution for our
ulti-Location Capacitated Mission Scheduling Problem (MLCMSP).

articularly, the optimization (27), (34) and (40) aim at ensuring least
ravel distance for drones to visit their assigned locations, and every
ask at each location is fast executed given the available resources,
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Algorithm 1 Linear Regression Estimation
Input: At 𝑡 > 0, J at 𝐿𝑖; 𝒇mt are fed into 𝛩⋆

utput: 𝑇 ⟨𝑐,𝑚⟩′
total and 𝐸total

𝑒𝑥′
1: for 𝐽𝑖 ∈ J do
2: Type of Job 𝐽 = 𝜖𝐽
3: Number of instances of Job 𝐽 = 𝜔𝐽
4: Dependency depth of Job 𝐽 = 𝛾𝐽
5: for 𝑇𝑖 ∈ 𝐽𝑖 do
6: 𝒇mt (𝜔, 𝜖, 𝛾) ⋅ 𝛩⋆ =

[

𝑇 ⟨𝑐,𝑚⟩
𝑖 𝐸𝑒𝑥𝑖

]

7: end for
8: 𝑇 ⟨𝑐,𝑚⟩′

𝑖 = 𝑇 ⟨𝑐,𝑚⟩′
𝑖 + 𝑇 ⟨𝑐,𝑚⟩

𝑖
9: 𝐸𝑒𝑥𝑖′ = 𝐸𝑒𝑥𝑖′ + 𝐸𝑒𝑥𝑖
0: end for

Algorithm 2 Mission Planning

Input: At 𝑡 > 0; 𝐿𝑖 ∈L; 𝑇 ⟨𝑐,𝑚⟩′
total ∈𝐿𝑖; 𝐸total

𝑒𝑥′ ∈𝐿𝑖; 𝑖 ∈DR; 𝑓 𝑎𝑣𝑎𝑙 ∈𝑖;
⟨𝑐,𝑚⟩∈𝑖; and DM
Output: 𝑎𝑠𝑠𝑖𝑔𝑛

𝑖 and 𝑟𝑜𝑢𝑡𝑒
𝑖

1: for 𝑖 ∈ DR do
2: Initialize total flight travel time 𝑓 𝑡𝑜𝑡𝑎𝑙

𝑖 for 𝑖
3: Initialize total travel distance 𝑑𝑡𝑜𝑡𝑎𝑙𝑖 for 𝑖
4: 𝑓 𝑎𝑣𝑎𝑙

𝑖 = Flight travel time availability of 𝑖

5: ⟨𝑐,𝑚⟩
𝑖 = Resource capacity of 𝑖

6: L = Target locations
7: 𝐿𝑖 = route start for 𝑖
8: while 𝐿𝑖 ≠ end of route do
9: 𝑇 ⟨𝑐,𝑚⟩′

total = Resource demand at 𝐿𝑖

10: 𝐸total
𝑒𝑥′ = Execution time estimation at 𝐿𝑖

11: 𝑓 𝑡𝑜𝑡𝑎𝑙
𝑖 = 𝑑𝑡𝑜𝑡𝑎𝑙𝑖 + 𝐸total

𝑒𝑥′

12: if 𝑓 𝑡𝑜𝑡𝑎𝑙
𝑖 ≤ 𝑓 𝑎𝑣𝑎𝑙

𝑖 ; 𝜗
[

𝑎𝑠𝑠𝑖𝑔𝑛
𝑖 , 𝐿𝑖

]

= 0; and 𝑇 ⟨𝑐,𝑚⟩′
total ≤ ⟨𝑐,𝑚⟩

𝑖
then

13: 𝜗
[

𝑎𝑠𝑠𝑖𝑔𝑛
𝑖 , 𝐿𝑖

]

=1
14: 𝐿𝑗 = next feasible neighbor
15: 𝐿𝑖 = 𝐿𝑗
16: else
17: 𝐿𝑗 = next feasible neighbor
18: 𝐿𝑖 = 𝐿𝑗
19: end if
20: 𝑑𝑡𝑜𝑡𝑎𝑙𝑖 = 𝑑𝑡𝑜𝑡𝑎𝑙𝑖 + 𝑑𝐿𝑖,𝑗

21: end while
22: end for

such that the missions are accomplished. The values of the linear
regression estimations are required by the router, as well as the up-
date state of the drones’ flight time availability for effective route
planning and assignment, while our gang-scheduling approach involves
co-scheduling and co-locating tasks firmly on available resources. We
detail the procedures of the three components of EdgeDrones as follows:

4.3.1. Resource and execution time estimation
Algorithm 1 describes the resource and execution time estimations

for multi-job. As J are released, their collective resource requirement
𝑇 ⟨𝑐,𝑚⟩′
total and execution time 𝐸total

𝑒𝑥′ are estimated. The set of runtime
parameters 𝒇mt (𝜔, 𝜖, 𝛾), where 𝜔 is the number of instances, 𝜖 is type of
tasks, 𝛾 is dependency depth, are fed into the model 𝛩⋆ to produce the
estimation values (line 2∼9). Once the estimation values are produced,
they are used in the assignment and route planning.

4.3.2. Mission planning
Given the update state from the CP, i.e., all ready drones 𝑖 ∈

DR at the depot 𝐿0 (which include each drones’ flight time avail-
𝑎𝑣𝑎𝑙 ⟨𝑐,𝑚⟩
9

ability 𝑓𝑖 and resource capacity 𝑖 ), all end devices at target
Algorithm 3 Multi-job Co-location
Input: J gang-scheduled onto 𝑖⋆ , resource demand estimation
∑

𝐽∈J 𝑇
⟨𝑐,𝑚⟩′
𝐽 , resource availability 𝐼 ⟨𝑐,𝑚⟩𝑖 of all nodes 𝐼𝑖∈𝑖⋆

Output: J is co-located, such that Minimize∑𝐼𝑖∈𝑖⋆
𝐼𝑖

1: for 𝐼𝑖 ∈ 𝑖⋆ do
2: if 𝛽

(

𝐼𝑖
)

= 1 then
3: 𝐼 ⟨𝑐,𝑚⟩𝑖 = ⟨𝑐, 𝑚⟩, i.e., initial resource available
4: for 𝐽 ∈ J do
5: if 𝛤

[

𝐽 , 𝐼𝑖
]

=0 and 𝑇 ⟨𝑐,𝑚⟩′
𝐽 ≤𝐼 ⟨𝑐,𝑚⟩𝑖 then

6: 𝐽 ⇒ 𝐼𝑖
7: 𝛤

[

𝐽 , 𝐼𝑖
]

= 1
8: 𝐼 ⟨𝑐,𝑚⟩𝑖 = 𝐼⟨𝑐,𝑚⟩𝑖 − 𝑇 ⟨𝑐,𝑚⟩′

𝐽
9: end if
0: if 𝐼 ⟨𝑐,𝑚⟩𝑖 close to zero then
1: break
2: end if
3: end for
4: end if
5: end for

locations 𝐿𝑖 ∈ L (which include each device set of inter-dependent
tasks resource requirement 𝑇 ⟨𝑐,𝑚⟩′

total and execution time 𝐸total
𝑒𝑥′ estimation),

and the distance matrix DM, such that starting from 𝐿0, a route is
teratively built and assigned to a drone 𝑖, by selecting from among
he nearest locations which meet the constraints, i.e., 𝐿1 whose its end

device(s) 𝑇 ⟨𝑐,𝑚⟩′
total and 𝐸total

𝑒𝑥′ does not exceed the drone’s ⟨𝑐,𝑚⟩
𝑖 and 𝑓 𝑎𝑣𝑎𝑙

𝑖 ,
espectively, and whose flight travel time 𝑓 𝑡𝑜𝑡𝑎𝑙

1 does not exceed the
rone’s 𝑓 𝑎𝑣𝑎𝑙

𝑖 . This process resumes from 𝐿1 to find 𝐿2, and so on until
there is no feasible neighbor (line 6∼17). 𝐿0 is finally added to conclude
the route. This procedure is repeated to find other routes until all the
possible target locations are chosen. This mission planning also aims
to optimized and minimize the distance traveled by each drone, which
lets us find an optimal solution from the given Algorithm 2. To solve
this mission scheduling problem, we have adopted the CP-SAT solver
and the MPSolver wrapper.

4.3.3. Co-location
In the edge resources attached to each drone 𝑖, our co-location

algorithm uses the 𝐼 ⟨𝑐,𝑚⟩𝑖 and 𝑇 ⟨𝑐,𝑚⟩′
𝑖 of each 𝐽𝑖 ∈ J to provide efficient

o-location, such that fewer nodes are used for execution at each loca-
ion. Specifically, the gang scheduling approach is adopted alongside
ur bin-packing optimization to co-schedule and co-locate J at a time.

Bin-packing is one the of the most popular packing problems. The goal
is to minimize the number of nodes used as given in optimization
(45). Unlike other approaches, such as first fit bin packing problem
(FFBPP) (Rampersaud and Grosu, 2017), it requires the next 𝐽𝑖 to be
placed on the active node, otherwise, it is placed on a new node. Our
approach scans all 𝐽 ∈ J and maps 𝐽𝑖 to active nodes in full utilization.
All 𝐽 ∈ J are co-located firmly on active nodes, so that resource wastage
is avoided and fewer nodes are used to execute all jobs concurrently.
Hence our co-location strategy is to find the solution to the problem:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞
∑

𝐼𝑖∈𝑖⋆

𝐼𝑖, (45)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 J ⇒ 𝑖⋆ , ∃, (46)
∑

𝐽∈J
𝛤
[

𝐽 , 𝐼𝑖
]

⋅ 𝑇 ⟨𝑐,𝑚⟩′
𝐽 ≤ 𝐼 ⟨𝑐,𝑚⟩𝑖 , ∀𝑐, 𝑚, (47)

where

𝛤
[

𝐽 , 𝐼𝑖
]

=
{

1, if 𝐽 ⇒ 𝐼𝑖,
0, otherwise. (48)

The constraint (46) is the multi-job J deployment constraint, guarantee-
ing that J is gang-scheduled to  , such that dependent tasks within
𝑖⋆
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each 𝐽 ∈ J can communicate and execute faster. The constraint (47)
indicates that the total estimated resource requirements of co-located
jobs ∑𝑁

𝑖=1 𝑇𝑖
⟨𝑐,𝑚⟩′ cannot exceed 𝐼 ⟨𝑐,𝑚⟩𝑖 , the node resource availability.

The condition (48) means that if job 𝐽𝑖 is placed on the node 𝐼𝑖,
then 𝛤

[

𝐽𝑖, 𝐼𝑖
]

= 1; otherwise, 𝛤
[

𝐽𝑖, 𝐼𝑖
]

= 0. This is to guarantee
hat each 𝐽 ∈ J is placed in exactly one node. To solve this multi-
ob packing problem, we have adopted the solving Constraint Integer
rograms (SCIP) solver, which is currently one of the fastest mathemat-
cal programming (MP) solvers for this problem (Awada et al., 2021a).
lgorithm 3 describes the co-location strategy which co-locates multi-
ependent tasks firmly on nodes, such that for any given jobs, resource
astage is avoided and fewer nodes are used for execution. It takes the

esource demand estimation of multi-task/job and resource availability
f nodes as input, then scans all 𝐽 ∈ J and maps them to active nodes
n full utilization (line 2∼7).

.3.4. Connection with optimization objectives
As stated previously, our objectives are to minimize the number of

elected drones and total distance traveled by each drone, maximize
he actual edge cluster resource utilization, and to minimize the overall
ctual execution time of the task-dependent multi-jobs. Algorithms 1,
and 3 together achieve these objectives. By gang-dispatching the

ask-dependent multi-jobs to an edge having the sufficient resource for
he jobs and flight time availability, Algorithm 2 ensures that drones
ssigned for missions allocates the sufficient actual resources needed for
obs execution ⟨𝑐,𝑚⟩

𝑖𝑈 , such that the dependent tasks can be executed
aster, ultimately leading to a smaller actual aggregate execution time
total
𝑒𝑥′ and better actual cluster resource utilization. By intelligently
acking dependent tasks tightly on nodes, Algorithm 3 is capable of
ully utilizing available resources at edge clusters, ultimately leading to
he actual resource assigned to the execution of jobs ⟨𝑐,𝑚⟩

𝑖𝑈 as small
s possible while guaranteeing it is sufficient for the multi-jobs. More
pecifically, the actual resource usage (ARU) of the cluster for multi-job
deployment is given by

⟨𝑐,𝑚⟩
𝑖𝐴𝑅𝑈 =

⟨𝑐,𝑚⟩
𝑖𝑈

⟨𝑐,𝑚⟩
𝑖

. (49)

t can be seen that solving the optimization (45) is directly linked to
inimize the ARU (49). Let the actual CPU resource and the actual
emory resource assigned for J be ⟨𝑐⟩

𝑖𝑈 and ⟨𝑚⟩
𝑖𝑈 , respectively.

urther denote the actual CPU consumed and the actual memory con-
umed in executing J as ∑

𝐽∈J 𝑇
⟨𝑐⟩′ and ∑

𝐽∈J 𝑇
⟨𝑚⟩′, respectively. Then

the actual CPU utilization 𝜌⟨𝑐⟩𝑖
and the actual memory utilization 𝜌⟨𝑚⟩𝑖

are defined respectively by

𝜌⟨𝑐⟩𝑖
=
∑

𝐽∈J 𝑇
⟨𝑐⟩′

⟨𝑐⟩
𝑖𝑈

, (50)

𝜌⟨𝑚⟩𝑖
=
∑

𝐽∈J 𝑇
⟨𝑚⟩′

⟨𝑚⟩
𝑖𝑈

. (51)

Algorithms 2 and 3 are directly connected with minimizing 𝑑𝑡𝑜𝑡𝑎𝑙,
inimizing 𝐸total

𝑒𝑥′ as well as maximizing 𝜌⟨𝑐⟩ and maximizing 𝜌⟨𝑚⟩.

. Performance evaluation

In this section, we described our experimental setup including clus-
er resource configuration, the Alibaba cluster data traces used, and
he comparison baselines. We perform extensive experiments to com-
are EdgeDrones against some existing schemes. We will also compare
he performance of EdgeDrones against existing schemes in individual
rones. We show that EdgeDrones can achieve minimized actual exe-
ution time of multi-dependent tasks, achieve high resource utilization,
chieve load balancing, use fewer cluster resources and avoid loss of job
n an aerial edge computing system.
10
.1. Experimental setup

Drone’s Mission Scheduling and Resources: Our MLCMSP is im-
lemented using Google OR Tools.12 It uses MPSolver wrapper for
olving LP and MIP problems. We perform experiments for a set of
rones with computing resource and flight time constraints, among
set of 16 target locations in a city. At each of these locations are

nd devices, with multi-dependent tasks/jobs needed to be executed.
ur linear regression ML model, as given in Algorithm 1 estimates

he resource demands and execution time of tasks at each location (as
hown in Table 3).

Each of the drones has different payload capacity. The payload is the
eight a drone can carry in the air. The total weight of the payload has
great impact on the flight time of the drone. For example, the Aurelia
8 Standard drone13 with a payload of 8 kg, has a net flight time of 25
in. However, with a maximum payload capacity, the maximum flight

ime availability of the drone will be 12 min. It has a maximum flight
peed 𝑠 of 15 m∕s and a maximum wind resistance speed of 9 m∕s. Also,
or the Aurelia X6 Pro drone, its net flight time is 55 min, however, with
ts full payload of 5 kg, it will have a 30 min flight time availability.
ence, the flight time availability of the selected drones, as well as their

esource capacities is given in Table 4.
The optimal routes of the selected drones is also given in Table 4.

hese optimal routes are derived using Algorithm 2. The entire missions
overed a distance of 6552 m, with total flight travel time of 3659 s,
iven that each drone is traveling at a constant flight speed 𝑠 of 13 m∕s.
Multi-dependent Tasks: We employ the v-2018 version of Alibaba

luster trace,14 which records the activities of about 4000 machines in
period of 8 days. The entire trace contains more than 14 million tasks
ith more than 12 million dependencies, and more than 4 million jobs.
mong which we have deployed 54 jobs with total of 238 tasks (in-
luding dependencies) for our experiments. The number of tasks within
ach job ranges from (1, 5], while the task dependency depth among
he jobs ranges from (1, 4]. The multi-task dependencies in the data
race is valuable for our investigation. Researchers have thoroughly
nvestigated v-2018 version of Alibaba cluster trace and used it for
arious task scheduling problems (Awada et al., 2021b,a; Guo et al.,
019; Wu et al., 2019).
Comparison Baselines: We compare the scheduling approach of

dgeDrones (ED) with the following three existing schemes and the
andom approach, fixing each drone’s routes to that of EdgeDrones, as
ollows:

1. An approach which does not consider tasks’ dependencies, but
schedules 50% of any given multi-dependent tasks by mainly
focusing on task co-location. We refer to this approach as No
Dependency and Full Packing (NDFP), and it is similar to the
approach in Grandl et al. (2014).

2. An approach which schedules up to 40% of any given multi-
dependent tasks with task co-location. We consider this ap-
proach as a Partial Dependency and Full Packing (PDFP), and
it is similar to the approach in Grandl et al. (2016).

3. An approach which schedules up to 15% of any given multi-
dependent tasks at a time, but does not consider task co-location.
We refer to this approach as Partial Dependency and No Packing
(PDNP), and it is similar to the approach in Hu et al. (2019).

4. An approach which schedules tasks according to their resource
requests for execution, i.e., the more resource demand, the
higher priority for the task to be scheduled and allocate re-
sources. We refer to this strategy as Resource Priority (RP), and
it is similar to the approach in Liao et al. (2022).

5. Random (RD) approach schedules a single task individually and
assumes a node can only execute a task at a time.

12 https://developers.google.com/optimization
13 https://aurelia-aerospace.com/our-drones/
14
 https://github.com/alibaba/clusterdata

https://developers.google.com/optimization
https://aurelia-aerospace.com/our-drones/
https://github.com/alibaba/clusterdata
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Table 3
Multi-job across multiple disjointed locations in a city, where the actual resource consumed for multi-job execution 𝑇 ⟨𝑐,𝑚⟩′

total and the actual
execution time 𝐸 total

𝑒𝑥′ are taken from the original Alibaba data, while the estimated resource demand 𝑇 ⟨𝑐,𝑚⟩′
total and execution time 𝐸 total

𝑒𝑥′ are
calculated by Algorithm 1.
L J T 𝑇 ⟨𝑐,𝑚⟩′

total 𝑇 ⟨𝑐,𝑚⟩′
total NAEE 𝐸 total

𝑒𝑥′ (𝑠) 𝐸 total
𝑒𝑥′ (𝑠) NAEE

𝐿1 2 10 ⟨570.18, 1.98⟩ ⟨595, 1.92⟩ ⟨0.04, 0.03⟩ 173.46 148 0.17
𝐿2 3 12 ⟨625.06, 2.37⟩ ⟨540, 1.85⟩ ⟨0.15, 0.28⟩ 189.03 164 0.15
𝐿3 2 9 ⟨478.02, 1.73⟩ ⟨340, 0.96⟩ ⟨0.4, 0.8⟩ 167.8 142 0.18
𝐿4 2 8 ⟨398.42, 1.71⟩ ⟨445, 1.42⟩ ⟨0.1, 0.2⟩ 56.69 44 0.28
𝐿5 5 21 ⟨1135.11, 4.13⟩ ⟨1035, 3.38⟩ ⟨0.09, 0.22⟩ 355.68 309 0.15
𝐿6 5 23 ⟨1228.72, 4.56⟩ ⟨1080, 3.4⟩ ⟨0.13, 0.3⟩ 370.27 311 0.19
𝐿7 5 19 ⟨1005.85, 3.89⟩ ⟨1070, 3.39⟩ ⟨0.05, 0.14⟩ 236.95 198 0.19
𝐿8 3 15 ⟨773.7, 3.02⟩ ⟨655, 2.13⟩ ⟨0.18, 0.4⟩ 211.06 178 0.18
𝐿9 2 10 ⟨570.18, 1.98⟩ ⟨595, 1.92⟩ ⟨0.04, 0.03⟩ 173.46 148 0.17
𝐿10 3 14 ⟨727.81, 2.8⟩ ⟨670, 2.1⟩ ⟨0.08, 0.3⟩ 202.45 172 0.17
𝐿11 3 15 ⟨773.7, 3.02⟩ ⟨655, 2.13⟩ ⟨0.18, 0.4⟩ 211.06 178 0.18
𝐿12 4 17 ⟨876.45, 3.44⟩ ⟨785, 2.38⟩ ⟨0.11, 0.4⟩ 224.49 188 0.19
𝐿13 5 19 ⟨1025.99, 3.7⟩ ⟨885, 2.88⟩ ⟨0.15, 0.28⟩ 341.79 298 0.14
𝐿14 3 17 ⟨925.32, 3.48⟩ ⟨990, 3.14⟩ ⟨0.06, 0.1⟩ 341.79 182 0.87
𝐿15 3 14 ⟨727.81, 2.8⟩ ⟨670, 2.1⟩ ⟨0.08, 0.33⟩ 202.45 172 0.17
𝐿16 4 15 ⟨773.7, 3.02⟩ ⟨655, 2.13⟩ ⟨0.18, 0.4⟩ 202.45 178 0.13
Table 4
Drones assigned locations, optimal routes and resources.
𝑖 𝑟𝑜𝑢𝑡𝑒

𝑖 𝑑𝑡𝑜𝑡𝑎𝑙
𝑖 (𝑚) 𝑓ℎ𝑜𝑣𝑒𝑟′

𝑖 (𝑠) Attached Edge Devices and total weight ⟨𝑐⟩
𝑖 ⟨𝑚⟩

𝑖 𝑓 𝑎𝑣𝑎𝑙
𝑖 (𝑠)

1 {𝐿0 → 𝐿12 → 𝐿13 → 𝐿0} 936 566 Huawei AR502H Series x3 = 3.3 kg 12 Cores 6 GiB 600
2 {𝐿0 → 𝐿9 → 𝐿14 → 𝐿16 → 𝐿8 → 𝐿7 → 𝐿0} 1712 1165 HIVECELL x2 = 2.72 kg 12 Cores 16 GiB 1200
3 {𝐿0 → 𝐿1 → 𝐿4 → 𝐿3 → 𝐿15 → 𝐿11 → 𝐿0} 2192 811 HIVECELL + Huawei AR502H Series = 2.46 kg 10 Cores 8 GiB 900
4 {𝐿0 → 𝐿10 → 𝐿2 → 𝐿6 → 𝐿5 → 𝐿0} 1712 1117 Azure Stack Edge mini = 3.17 kg 16 Cores 48 GiB 1200
5
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5.2. Deployment results and performance comparison

Our investigation focuses on CPU and memory usage/utilization,
task deployment, scheduling time, execution time and successful mis-
sion completion. The results obtained by ED, NDFP, PDFP, PDNP, RP
and RD are compared.

5.2.1. Resource and execution time estimation accuracy
As detailed in the previous section, to implement the proposed

learning based intelligent drone routing and multi-task co-location
strategy, we train a linear regression model from a training dataset. In
the real-time application experiments, the trained model is used to esti-
mate the resource requirement and execution time (Algorithm 1). The
estimated resource requirement and execution time are then employed
to aid our optimal route planning and intelligent multi-task scheduling
strategy (Algorithms 2 and 3). Clearly, the accuracy of Algorithm 1
impacts the achievable performance of our EdgeDrones. Therefore, we
first investigate the accuracy of our trained linear regression model.

The multi-job execution information across the federated deploy-
ments, obtained according to Alibaba data, are listed in Table 3, where
the estimated resource demand 𝑇 ⟨𝑐,𝑚⟩′

total and the estimated execution
time 𝐸total

𝑒𝑥′ are calculated using Algorithm 1, while the actual resource
consumed for the multi-job execution 𝑇 ⟨𝑐,𝑚⟩′

total and the actual execution
time 𝐸total

𝑒𝑥′ are taken from the original data. The normalized absolute
estimate error (NAEE), defined as

NAEE =
|

|

|

estimated value − actual value||
|

actual value , (52)

s also listed in Table 3 for both resource consumed and execution
ime, which serves as the estimation accuracy measure for the trained
ulti-output linear regression model. The average NAEE across 16

ocations is 0.13 for CPU resource, 0.28 for memory resource, and
.22 for execution time. From Tables 3 and 4, it can be seen that
̃⟨𝑐,𝑚⟩′
total < ⟨𝑐,𝑚⟩, 𝑇 ⟨𝑐,𝑚⟩′

total < ⟨𝑐,𝑚⟩
𝑖 and 𝑓 𝑡𝑜𝑡𝑎𝑙 < 𝑓 𝑎𝑣𝑎𝑙 ∀𝑖, given

hat each drone is traveling at a constant flight speed 𝑠 of 13 m∕s. In
ther words, each drone has sufficient resource to execute its multi-
obs assigned to it. This further indicates the suitability or accuracy
f the trained ML model to provide the necessary information for our
ntelligent co-location strategy.
11

t

.2.2. Performance comparison across integrated edge resources
After completing the optimal route planning, as shown in Table 4,

e are now ready to co-schedule the drones for their missions, apply
ur EdgeDrones to orchestrate 54 jobs with 238 tasks among the four
rones and compare its performance with those of the benchmark
chemes. We first investigate the CPU utilization across the assigned
ocations of the four drones, depicted in Figs. 4(a), 5(a), 6(a) and
(a). It can be observed that both EdgeDrones (ED) achieved the highest
PU utilization across the entire missions. Specifically, in Drone-1’s
ission, as shown in Fig. 4(a), EdgeDrones achieves an average of 98%
PU utilization across Drones-1’s assigned locations. This is followed
y the NDFP, PDFP and PDNP schemes, which achieves the same
verage of 92.5%. The remaining two schemes, RP and RD achieves
he lowest CPU utilization across the same assigned locations of Drone-
. RP achieves an average of 79.5%, while RD obviously achieves
n average of 69.5%. It can also be seen that Edgedrones achieves
he highest CPU utilization, according to Figs. 5(a), 6(a) and 7(a)
or Drone-2, Drone-3 and Drone-4, respectively. Edgedrones is able
o intelligently gang-schedule and co-locate all task tightly on nodes,
esulting in higher resource utilization. In Figs. 5(a), 6(a) and 7(a),
dgeDrones achieves the highest average CPU utilization of 96.6, 92.6
nd 94.5, respectively, compared to other schemes. In particular, NDFP
chieves the second highest average CPU utilization across the assigned
ocations of the drones, i.e., it achieves an average CPU utilization of
.4%, 4.8% and 3% less than EdgeDrones across Drone-2. Drone-3 and
rone-4 missions, respectively. PDFP and PDNP schemes performed
veragely in terms of CPU utilization compared to EdgeDrones and
DFP, i.e., PDFP and PDNP achieve 9.2%, 14.6%; 14%, 18%; and
%, 8.25% less than EdgeDrones across Drone-2, Drone-3 and Drone-4
issions, respectively. However, RP and RD schemes performed poorly
ainly due to their resource under-utilization, i.e., both RP and RD

chieve an average CPU utilization of 19.8%, 28.2%; 25.8%, 37.4%;
nd 18.25%, 44.25% less than EdgeDrones across Drone-2, Drone3 and
rone4 missions, respectively.

Figs. 4(b), 5(b), 6(b) and 7(b) compares the Memory Utilization of
dgeDrones with those of the four baseline schemes and the random ap-
roach. Note that all the tasks executed across the assigned locations of

he four drones are CPU intensive tasks, hence, the memory utilization
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Fig. 4. Activities and utilities of Drone-1’s mission.
across the locations are lower compared to the CPU utilizations. Never-
theless, EdgeDrones outperforms all the benchmark schemes, including
the random approach. For example, across Drone-1’s activities at its
assigned locations, EdgeDrones is superior in achieving higher memory
utilization with 3.5%, 6.5%, 6.5%, 12% and 18% more memory uti-
lizations than NDFP, PDFP, PDNP, RP and RD, respectively. It achieves
23.4% average memory utilization across Drone-2’s activities, which
surpasses NDFP, PDFP, PDNP, RP and RD by 1%, 2.2%, 3.6%, 4.8%
and 7.2%, respectively. EdgeDrones also outperforms all the baseline
schemes and random approach across Drone-3 and Drone-4 assigned
locations. It achieves an average of 30.2% and 17% memory utilization
at Drone-3 and Drone-4 activities, respectively. NDFP came second at
both drones memory utilization (with 1.6% and 1.25% less compared
to EdgeDrones at Drone-3 and Drone-4, respectively). PDFP and PDNP
came third and fourth, respectively. PDFP achieves 4.6% and 1.5% less
in memory utilization compared to EdgeDrones at Drone-3 and Drone-4
activities, respectively, while PDNP achieves 5.8% and 1.75% less com-
pared to EdgeDrones at Drone-3 and Drone-4 activities, respectively. RP
and RD performance are the worst compared to all other schemes. In
particular, the random approach (RD) achieves an average of 17.6%
and 11.25% memory utilization across the assigned locations of Drone-
3 and Drone-4, respectively, which is 12.6% and 5.75% less than
EdgeDrones’ achievement across the two drones activities. RP on the
other hand, achieves an average of 8.6% less compared to EdgeDrones
across Drone-3 assigned locations, and an average of 3.5% less than
EdgeDrones across Drone-4 assigned locations.

Figs. 4(c), 5(c), 6(c) and 7(c) compares the actual resource usage
⟨𝑐,𝑚⟩

𝑖𝐴𝑅𝑈 of EdgeDrones with those of the four baseline schemes and
the random approach. It can be seen that solving the optimization
(45) is directly linked to minimize the ARU (49), by packing or co-
locating tasks firmly on available resources. Hence, it can be seen that
EdgeDrones consumes the fewest resources across the integrated drones
activities with NPFP as the very close second best, while Random
uses all the resources across almost all the drones activities with RP
as the second worst. PDFP ranks in the middle, in terms of resource
usage across the drones activities. Again, EdgeDrones and NDFP are
superior than PDFP, PDNP, RD and Random, and they achieve the
highest and close second highest resource utilization across the inte-
grated drones activities, respectively. For example, across Drone-1’s
assigned locations, EdgeDrone uses the fewest resources amounting to
an average of 71% compared to NDFP, PDFP, PDNP and RP, which
use 4%, 8%, 8%, 16.5% more than EdgeDrones, respectively. However,
12
RD uses all available resources, i.e., 100%, due to its inability to co-
locate tasks on nodes. Across Drone-2, Drone-3 and Drone-4’s assigned
locations, it can also be seen that EdgeDrones uses fewer resources, up
to an average of 37% less compared to other baseline schemes and the
random approach.

Three other key metrics are the actual multi-tasks/job scheduling
time ∑

𝐽∈J
∑𝑚

𝑧=1
∑𝑘𝑧

𝑖=1𝑆𝑐ℎ𝑧𝑖
∕𝑘𝑧, where 𝑚 is the number of scheduling

units, 𝑘𝑧 is the number of tasks within the 𝑧th scheduling unit, and more
importantly, the actual multi-tasks/jobs execution time 𝐸total

𝑒𝑥′ and total
flight travel time 𝑓 𝑡𝑜𝑡𝑎𝑙. Figs. (4(d), 5(d), 6(d), 7(d)); (4(e), 5(e), 6(e),
7(e)); and (4(f), 5(f), 6(f), 7(f)) compares the actual multi-tasks/jobs
scheduling time, multi-tasks/job execution time and total flight travel
time of EdgeDrones with those of the four benchmarks and random
approach, respectively. The results show that EdgeDrones is the best,
NDFP is the second best, and PDFP is the third best, PDNP is fourth
best, while RP and Random is the worst and RP the second worst, in
terms of actual task scheduling times, actual task execution times and
drone’s total flight time. The superior performance of EdgeDrones over
the other benchmarks is overwhelmingly clear.

5.2.3. Performance comparison in individual drones
Figs. 4∼7 show the performance of the schemes in terms of resource

utilization, actual resource usage, actual task scheduling times, actual
task execution times and actual flight total travel times across the
integrated drones. We now delve into the individual drone to examine
the performance of all the schemes.

Drone-1 is attached with three Huawei AR502H Series edge
devices, with total resource capacity of 12 Cores and 6 GiB for CPU
and memory, respectively. The entire weight of the devices is ≈3.3 kg.
Its assigned locations 𝑎𝑠𝑠𝑖𝑔𝑛

1 = {𝐿12, 𝐿13}; its route 𝑟𝑜𝑢𝑡𝑒
1 = 𝐿0 →

𝐿12 → 𝐿13 → 𝐿0; and its flight time availability 𝑓 𝑎𝑣𝑎𝑙 = 700(𝑠). We de-
ploy 9 jobs with a total of 36 tasks, where the job has a task dependency
depth 𝛾 (1, 5]. Utilizing the gang scheduling strategy, EdgeDrones co-
schedules and co-locates all the 9 jobs at a time in the attached edge
devices as possible to minimize the overall used nodes. These jobs
are tightly co-located, which enables dependent tasks to communicate
and share data effectively. As a result, EdgeDrones achieves the fastest
scheduling time and execution time compared to NDFP, PDFP, PDNF,
RP and the random approach. In addition, EdgeDrones only uses an
average 71% of resources to execute the jobs. Using the same resource
capacity, NPFP, PDFP, PDNP and RP utilize an average of 75%, 79%,
79% and 87.5% of the resources, respectively, as shown in Fig. 4(c).
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Fig. 5. Activities and utilities of Drone-2’s mission.
The random approach uses all available resources. It is observed that
EdgeDrones is 1.7 times and 2 times faster than the second best NDFP in
both the scheduling time and execution time, respectively. EdgeDrones
is more than 3 times and more than 3 times faster than PDFP as well
as more than 5 times and more than 4 times faster than PDNP in the
scheduling time and execution time, as shown in Figs. 4(d) and 4(e),
respectively. EdgeDrones is 6 times and 5 times faster than the RP,
as well as 47 times and 18 times faster than the random approach in
the scheduling and execution times, respectively. The most important
is the total flight travel time 𝑓 𝑡𝑜𝑡𝑎𝑙 of Drone-1, such that if along the
drone’s mission 𝑓 𝑡𝑜𝑡𝑎𝑙 becomes greater than its flight time availability
𝑓 𝑎𝑣𝑎𝑙, then it might lead to loss of job or mission failure. Recall that
𝑓 𝑡𝑜𝑡𝑎𝑙 =

∑𝑛
𝑖=0

∑𝑚
𝑗=𝑖+1𝑓

𝐿𝑖,𝑗 + 𝑓ℎ𝑜𝑣𝑒𝑟
𝑗 , where ∑𝑚

𝑗=0 𝑓
ℎ𝑜𝑣𝑒𝑟
𝑗 = 𝐸total

𝑒𝑥′ . Hence,
EdgeDrones is bale to quickly schedule and execute all the 9 jobs at each
13
assigned location, resulting to a successful mission, and the fastest 𝑓 𝑡𝑜𝑡𝑎𝑙

(upto 2.7 times faster) compared to the four baseline schemes and the
random approach, as shown in Fig. 4(f). The random approach could
not successfully schedule and execute all the jobs within the drone’s
𝑓 𝑎𝑣𝑎𝑙, thereby leading to a failed mission.

Like Drone-1, Drone-2 is attached with two HIVECELL portable
edge devices with total weight of ≈2.72 kg, and total resource capacity
of 12 Cores and 16 GiB for CPU and memory, respectively. Its assigned
locations 𝑎𝑠𝑠𝑖𝑔𝑛

1 = {𝐿7, 𝐿8, 𝐿9, 𝐿14, 𝐿16}; it has to visit and execute
tasks on route: 𝑟𝑜𝑢𝑡𝑒

1 = 𝐿0 → 𝐿9 → 𝐿14 → 𝐿16 → 𝐿8 → 𝐿7 → 𝐿0; and
its flight time availability 𝑓 𝑎𝑣𝑎𝑙 = 1200(𝑠). Here, we deploy a total of
J = 17, where each 𝐽 ∈ J has a task dependency in the range of (1, 4].
The total number of tasks in ∑

J is 76. We ensure that the attached edge
resources are fully utilized by co-locating the jobs tightly on them. As
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Fig. 6. Activities and utilities of Drone-3’s mission.
discussed earlier, application container provides isolation to co-located
tasks, thereby eliminating interference and resource contentions in the
cluster. A single node is capable of running several containerized tasks,
given that available resources are sufficient. In this drone’s activities,
Edgedrones consume an average of 5.2% fewer resources than NDFP, an
average of 6.8%, 11.8%, 16.8% and 28.4% fewer resources than PDFP,
PDNP, RP and Random. EdgeDrones, also gain an average of upto
28.2% higher CPU utilization over NDFP, PDFP, PDNP, RP and Random
(as shown in Fig. 5(a)), as well as an average of upto 7.2% higher
memory utilization than NDFP, PDFP, PDNP, RP and Random, as shown
in Fig. 5(b). More significantly, EdgeDrones is 2, 3.7, 5, 7.4 and 42.5
times faster in the scheduling time than NDFP, PDFP, PDNP, RP and the
random approach respectively, while it is 2, 3, 4, 5 and 14.8 times faster
in the execution time than NDFP, PDFP, PDNP, RP and the random
14
approach, respectively across the assigned locations. Although all the
schemes, except for the random approach were able to complete their
task within the drone’s flight time availability, nonetheless, EdgeDrones
achieves the faster mission completion time, which is much more less
than the drone’s flight time availability. It can be seen in Fig. 5(f) that
EdgeDrones is upto 2.7 times faster than other schemes.

Drone-3 is attached with one HIVECELL and one Huawei
AR502H Series portable edge devices with total weight of ≈2.46 kg.
Its total resource capacity is 10 Cores and 8 GiB of CPU and memory,
respectively. Its assigned locations 𝑎𝑠𝑠𝑖𝑔𝑛

1 = {𝐿1, 𝐿3, 𝐿4, 𝐿11, 𝐿15};
flight travel route 𝑟𝑜𝑢𝑡𝑒

1 = {𝐿0 → 𝐿1 → 𝐿4 → 𝐿3 → 𝐿15 → 𝐿11 → 𝐿0};
and flight time availability 𝑓 𝑎𝑣𝑎𝑙 = 900(𝑠). In this cluster, we deploy
J = 12 in total of 56 tasks, where each 𝐽 ∈ J has a task dependency
depth 𝛾 range (2, 5]. Across this drone’s activities, EdgeDrones achieve



Journal of Network and Computer Applications 215 (2023) 103632U. Awada et al.
Fig. 7. Activities and utilities of Drone-4’s mission.
reduced ⟨𝑐,𝑚⟩
𝑖𝐴𝑅𝑈 by 3.8%, 9.4%, 13%, 20.4% and 37% compared

with NDFP, PDFP, PDNP, RD and Random, respectively (as shown in
Fig. 6(c)). EdgeDrones achieve 4.8%, 14%, 18%, 25.8% and 37.4%
higher CPU utilization as well as 1.6%, 4.6%, 5.8%, 8.6% and 12.6%
higher memory utilization compared to NDFP, PDFP, PDNP, RD and
Random, respectively. In terms of scheduling, EdgeDrones is about 2.3
times, 4.2 times, 6.5 times, 9.6 times and 34 times faster than NDFP,
PDFP, PDNP, RD and Random, respectively (as shown in Fig. 6(d)).
It achieves approximately 2 times, 3 times, 4 times, 5 times and 11
times faster execution times than NDFP, PDFP, PDNP, RD and Random,
respectively (as shown in Fig. 6(e)). Not surprisingly, Random has
the worst scheduling time and execution time performance, resulting
to incomplete mission (since its 𝑓 𝑡𝑜𝑡𝑎𝑙 > 𝑓 𝑎𝑣𝑎𝑙). On the other hand,
15
EdgeDrones achieves the faster mission completion time, which is upto
1.4 times faster than NDFP, PDFP, PDNP and RD, as shown in Fig. 6(f).

Drone-4 is attached with 𝙰𝚣𝚞𝚛𝚎 𝚂𝚝𝚊𝚌𝚔 𝙴𝚍𝚐𝚎 𝚖𝚒𝚗𝚒 memory inten-
sive edge device, with resource capacity of 16 Cores and high memory
capacity of 48 GiB. It is four locations 𝑎𝑠𝑠𝑖𝑔𝑛

1 = {𝐿2, 𝐿5, 𝐿6, 𝐿10},
where there are total of 16 jobs made up of 70 tasks to be executed.
Its flight travel route 𝑟𝑜𝑢𝑡𝑒

1 = {𝐿0 → 𝐿10 → 𝐿2 → 𝐿6 →

𝐿5}, and flight time availability 𝑓 𝑎𝑣𝑎𝑙 = 1200(𝑠). It is observed that
EdgeDrones consumes the fewest resources at an average of 61.5%,
followed by NDFP at 64%. PDFP consumes an average of 65.5%, PDNP
consumes an average of 67%, RP consumes an average 75.75% of the
resources, while the Random approach uses all the available resources
at 𝐿 ,𝐿 𝑎𝑛𝑑𝐿 locations, but consumes an average of 93.75% of
10 6 5
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resources across the assigned locations. EdgeDrones also achieves 3%,
5%, 8.25%, 18.25% and 44.25% higher CPU utilization over NDFP,
PDFP, PDNP, RP and Random, respectively (as shown in Fig. 7(a)). Note
the edge device attached to this drone is memory intensive, i.e., it has
huge memory capacities compared to the memory resource request of
jobs at the assigned locations. Therefore, the jobs can only consume
few such capacities, as shown in Fig. 7(b). In terms of scheduling
time, EdgeDrones is approximately 1.6 times, 1.5 times, 4.3 times, 5.8
times and 41.7 times faster than NDFP, PDFP, PDNP, RP and random
respectively (Fig. 7(d)). In terms of execution time, EdgeDrones is about
2 times, 3 times, 4.2 times, 5 times and 17.6 times faster than NDFP,
PDFP, PDNP, RP and the random approach respectively (Fig. 7(e)).
Importantly, Drone-4 completed its mission with the fastest time under
EdgeDrones strategy, with up to 1.5 times faster compared to the
baseline schemes, as shown in Fig. 7(f)).

5.3. Discussion

Overall, EdgeDrones has demonstrated better performance in an in-
tegrated edge computing system. It has consistently outperform existing
schemes (NDFP, PDFP, PDNP, RP and Random) by achieving faster
scheduling times and execution times, while using fewer resources.
Most importantly, effective multi-tasks scheduling and execution of
EdgeDrones across the locations, enables faster tasks response times
and mission completion times. EdgeDrones achievements is attributed
to its effective orchestration strategy, gang-deployment and co-location
of multi-jobs, which allows inter-dependent tasks within each job to
communicate and share data faster. Such fast execution is crucial
for modern applications to perform better. The existing schemes do
not consider task’s dependencies or multi-tasks co-location, leading to
limited edge resource wastage through under utilization, as well as
causing execution delay.

6. Conclusions

This paper has presented a novel Multi-Location Capacitated Mis-
sion Scheduling Problem (MLCMSP) that selects suitable drones and
co-schedules their flight routes with the least total distance to visit
and execute tasks at the target locations. We proposed an intelli-
gent multi-dependent tasks orchestration scheme called EdgeDrones,
a variant bin-packing optimization approach through gang-scheduling
of multi-dependent tasks, that co-schedules and co-locate tasks firmly
on available nodes, so as to avoid resource wastage. Evaluations using
real world workloads from Alibaba clusters, shows that EdgeDrones is
Superior compared to the baseline schemes. Importantly, EdgeDrones
is able to avoid loss of jobs in aerial edge computing missions. In
our future research, we can further integrate cost models to MLCMSP
by assigning an operational cost per drone’s mission, and convert the
MLCMSP into a profit maximization problem. In addition, we can also
deploy on-premise (fog-based computing) alongside with the drones
(aerial-based computing) to form a hybrid deployment.
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