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Abstract:  This paper proposes a methodology for an alternative history matching process enhanced by the incorporation of a 

simplified binary interpretation of reservoir saturation logs (RST) as objective function. Incorporating fluids saturation logs 

during the history matching phase unlocks the possibility to adjust or select models that better represent the near wellbore 

waterfront movement, which is particularly important for uncertainty mitigation during future well interference assessments 

in water driven reservoirs. For the purposes of this study, a semi-synthetic open-source reservoir model was used as base case to 

evaluate the proposed methodology. The reservoir model represents a water driven, highly heterogenous sandstone reservoir 

from Namorado field in Brazil. To effectively compare the proposed methodology against the conventional methods, a com-

mercial reservoir simulator was used in combination with a state-of-the-art benchmarking workflow based on the Big LoopTM 

approach. A well-known group of binary metrics were evaluated to be used as the objective function, and the Matthew correla-

tion coefficient (MCC) has been proved to offer the best results when using binary data from water saturation logs. History 

matching results obtained with the proposed methodology allowed the selection of a more reliable group of reservoir models, 

especially for cases with high heterogeneity. The methodology also offers additional information and understanding of sweep 

behaviour behind the well casing at specific production zones, thus revealing full model potential to define new wells and res-

ervoir development opportunities. 

Key words:  geological modeling; reservoir model; objective function; binary classification; history matching; saturation logs 

Introduction 

Reservoir simulation is traditionally required as a de-

cision-making tool in reservoir management studies, as it 

provides the physical representation of static character-

istics and dynamic behaviour of a hydrocarbon reservoir, 

while considering a large number of known uncertainties. 

The history matched model is essential for reservoir 

management to assess different strategies maximizing 

hydrocarbon recovery. History matching is the model 

calibration exercise, which relies on the fact that if a 

model can accurately reproduce the production history or 

observed data, it will be useful to predict the future per-

formance of the reservoir. One of the main challenges for 

reservoir engineers during the history matching process  

is to reproduce detailed information about the fluid dis-

placement in the porous media in order to identify the 

time of water breakthrough for each well and each pay 

zone in a production well. On that topic, Benlacheheb et 

al. [1] highlighted the advantages of incorporating addi-

tional monitoring data as part of the history matching 

process to allow more detailed outcome related to vertical 

heterogeneity of reservoir properties in the validated 

model. This research aims to develop a complementary 

methodology to improve the results obtained from the 

history matching process by incorporating binary satura-

tions logs as a part of the evaluation parameters. The 

proposed methodology leads to a more robust and reli-

able reservoir model. 

http://crossmark.crossref.org/dialog/?doi=10.1016/S1876-3804(23)60400-8&domain=pdf
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The novelty of the methodology proposed in this paper 

lies in its flexibility to include new evaluation parameters 

independent of the type of data. Besides, the methodol-

ogy also provides a simplification of the matching re-

sponses by transforming the original format into binary 

output, which opens the possibility to use more complex 

frameworks to accelerate the matching process such as 

machine learning. 

1.  Theoretical basis 

1.1  Objective functions 

The history matching quality of a model is often ex-

pressed in terms of its global objective function. The ob-

jective function is a mathematical function that allows a 

measure of the misfit between simulated and observed 

data [2]. Most of the existing formulations can be written 

as a function of a point-by-point difference between sim-

ulated and historical data.  

In a conventional history matching process, all reser-

voir data is gathered to create a 3D model through the 

reservoir characterisation process. Then, by using dy-

namic simulation and the observed data, the model is 

used to predict historical results. Finally, simulated re-

sults are compared to the observed data using the objec-

tive function to determine the history matching quality of 

the model. More holistic approaches have been intro-

duced into geomodelling processes by unlocking the po-

tential of assessing a significant number of possible 

combinations of inputs used to create the 3D model, and 

creating a wide range of alternative solutions [3–4]. These 

alternative solutions are commonly described as repre-

sentative group of models. The final representative group 

of models are selected from a bigger equally probable 

ensemble which is derived from the combination of all 

related uncertainties in an uncertainty analysis. The se-

lection of the representative group of models is based on 

their history matching quality. The rationale of these 

original approaches is based on the nature of the history 

matching as an inverse problem optimisation which 

means that there is no unique solution to the problem 

and hence different sets of inputs could lead to almost 

the same outcome.  

The incorporation of the geologist’s interpretation data 

as part of the whole process provides the results with 

more information about the most representative reser-

voir models and uncertainties about static reservoir 

data [5–6]. The selection of the different objective func-

tions used for the evaluation of model’s performance and 

efficiency was reviewed by Mata-Lima [2]. Further findings 

from published data show that root mean squared error 

(RMSE) as well as mean of the deviations (AE) are the 

most widely used in history matching, considering the 

linear nature of the parameters commonly used in the 

process. However, many of these deviation-based statis-

tics differ from each other in the way that differences 

between observed and simulated results are evaluated.  

1.2.  Limitation of conventional objective function 

calculations 

In conventional history matching workflows, the ob-

jective function is commonly calculated using well level 

production data such as production rates (oil, gas, water, 

or total liquid rates), gauge pressures and production 

ratios such as well water cut. It is well known that for any 

model-built process, the more the number of key per-

formance indicators (KPIs) the model managed to repre-

sent, the better the quality of the model. Hence, matching 

a reservoir model using only limited data may not be 

enough to define a satisfactory representation of the res-

ervoir in order to predict its future performance [7]. One 

of the main challenges of using well production data to 

validate the models is to accurately capture the correct 

saturation changes in individual producing zones in com-

mingled production wells. Frequent practice evokes two 

methods to measure near-wellbore water saturation changes, 

that is, saturation logs and 4D seismic. The use of 4D 

seismic technology has positively contributed to a better 

interpretation of fluid displacement [8–9]. However, this 

technology can lead to some difficulties which require 

additional algorithms and statistical analysis to predict 

fluid saturations. Besides, 4D seismic data is not always 

available and has additional economic implications on 

the budget. On the other hand, saturation logs are com-

monly obtained during regular surveillance interventions.  

1.3.  Classification metrics 

Several classification techniques have been applied in 

different fields of sciences depending on the nature of the 

problem and the classification output (binary or mul-

ti-class) [10].  

1.3.1  Confusion matrix 

The confusion matrix (CM) is defined as a table that 

allows the user to analyze results and performance of a 

specific algorithm which classifies data. The confusion 

matrix is one of the most common tools used to assess 

binary classifiers. A CM contains information about ac-

tual and predicted classifications done by a classification 

system [11]. The performance of such systems is commonly 

evaluated using the data in the matrix. Fig. 1 shows an 

example of the confusion matrix for a two-class classifier. 

A wide portfolio of metrics used for binary classifica-

tion assessments can be found in the literature and most 

of these metrics are derived from the CM. However, many 

of these metrics can be only applied to specific problems 

due to their biases and limitations as noted by Powers [12]. 

Fig. 1 summarizes the applicability and limitations of 

some of the more widely used binary metrics. 
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Fig. 1.  The confusion matrix for two-class classification 
problem. a—the number of correct predictions for a negative 
instance or true negatives (TN); b—the number of incorrect 
predictions for the negative instance or False Positives 
(FP); c—the number of incorrect predictions for a positive 
instance or False Negatives (FN); d—the number of correct 
predictions for the positive instance or True Positives (TP). 

1.3.2.  The Matthews correlation coefficient (MCC) 

The MCC is a confusion matrix derived metric which 

was introduced by Brian W. Matthews in 1975 when 

comparing chemical structures [13]. MCC represents the 

correlation between the observed and predicted classifi-

cations with the advantage of overcoming problems gen-

erated for cases with imbalanced data by comparison 

with different confusion matrix metrics [14]. As others 

confusion matrix metrics, MCC can be calculated using 

predicted instances of the confusion matrix (TP, TN, FP 

and FN). 

The MCC outcomes goes from −1 to 1, where a coeffi-

cient 1 indicates a perfect prediction or perfect match, −1 

represents total disagreement between prediction and 

true values, and zero means no better than a random 

prediction. MCC is the only binary classification metric 

that generates a high score only if the binary predictor is 

able to correctly predict most positive and negative data 

instances. According to previous statistical studies and 

data science applications [14], in most of the cases, MCC 

can provide more reliable statistical results than other 

imbalanced binary metrics such as F-measure and Accu-

racy. 

Although the classification metrics defined in Table 1 

have been widely applied for data science and engineer-

ing problems, there is not public evidence of their appli-

cability as part of history matching objective functions. 

2.  Methodology 

In order to evaluate the advantages and quality en-

hancement of the proposed methodology compared with 

a conventional history matching whose objective function 

only uses the production rate, a semi-synthetic geological 

model developed by UNISIM-M [15] was used in combina-

tion with a benchmarking workflow.  

2.1.  Benchmarking the proposed methodology 

To benchmark the proposed methodology, a modified 

“Big Loop” workflow was used (Fig. 2). This benchmark-

ing workflow differs from the original presented by 

Kumar [3] as it only uses the first iteration of the loop to 

Table 1.  Metrics used for binary classification, adapted from Tharwat [10] 

Binary Metric Key features Application Formulae 

Confusion  
Matrix (CM) 

CM measures the correlation between the 
observed and predicted data as quality of a 

binary response (true/false), (positive/negative).

The CM allows the application of the 
different metrics to correlate the data. 

 
  
 

TP FN
CM

FP TN
 

False Positive  
Rate (FPR) 

FPR represents the proportion of positive cases 
that are incorrectly classified as positive from 

the total number of negative outcomes. 

Also recognized as fallout and false 
alarm rate. This metric is not affected  

by imbalanced data.  


FP
FPR

FP TN+
 

True Negative  
Rate (TNR) 

TNR represents the proportion of negative 
cases that are properly identified as negative 
from the total number of negative outcomes.

It is also called specificity or inverse 
recall. This metric is less affected  

by imbalanced data.  


TN
TNR

FP TN+
 

False Negative  
Rate (FNR) 

FNR represents the proportion of negative 
cases that are incorrectly identified as negative 

from the total number of negative outcomes.

It is also called miss rate or inverse 
recall. This metric is less affected  

by imbalanced data.  


FN
FNR

TP FN+
 

Precision (P) 
Represents the ratio of correct predictions 

that are relevant. When the prediction  
is yes, how often is it correct? 

It is also called “confidence” metric.  
It does not consider the number  

of true negatives.  


TP
P

TP FP+
 

Recall (R) 
Measure the accuracy on the positive class. 

Thus, when the correct prediction is yes,  
how often does it predict yes? 

The metric is valuable to measure the 
real positive cases that are predicted. 
The metric is represented as a rate of 

discovery of positive classifiers. 
 


TP

R
TP FN+

 

F-Measure  
(FM) 

It is the ratio of metrics Precision/Recall.  
It is the harmonic mean of precision  

and recall metrics. 

It considers the ratio of True Positives to 
the arithmetic mean of predicted positives 
and real positives. This metric is sensi-
tive to changes in the class distribution. 

 


2TP
FM

2TP FN+FP +

Accuracy (A) 
Represents the ratio between correct  
predictions to all predictions. The best  

value is 1 and the worst value is 0. 

The metric is not reliable for imbalanced 
data. It can provide an overoptimistic 

estimation of the classifier. 

 
 


TP TN

A
TP FN

+
+ TN+FP +

Matthew’s  
correlation  
coefficient  
(MCC) 

Represents the relation between the  
observed and predicted classes. 

The outcome ranges from +1 to 1, +1 
represents a perfect prediction and 1 

total disagreement. The metric is  
sensitive to imbalance data. 




A B
MCC

CDEF
 

Where: 
A=TP*TN  B=FP*FN 
C=TP+FP  D=TP+FN
E=TN+FP  F=TN+FN
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Fig. 2.  Modified “Big Loop” workflow. 

generate the ensemble of models and it does not iterate 

to improve the history matching quality of the ensembles. 

The modified workflow is divided in two stages: Stage 1, 

or pre-loop, which is used to generate a base or control case 

to represent the real reservoir outcomes or “observed” 

data. In the Stage 2, a final ensemble of models is created 

from the base case. The final ensemble of model is later 

used to benchmark the proposed methodology by com-

paring the performance of both, conventional and enhanced 

proposed approaches in a model selection assessment. 

Stage 1 includes the base reservoir model building (or 

observed data case) using all available data. Geological 

and dynamic inputs are analysed and included in the 

workflow. Variables and ranges of uncertainty are defined 

and analysed. The initial ensemble of models is generated 

as result of an uncertainty analysis loop using Monte-

Carlo permutation in combination with a Latin-hyper-

cube sampling method. After the base case is generated, 

key producers are identified to evaluate the methodology. 

In real applications, this step will depend on the data 

available in terms of number of saturation logs per well. 

For the purpose of this study, all producer wells existing 

in the model were considered, and one reservoir satura-

tion (RST) logs per year per well were generated. 

To generate the final ensemble of models in Stage 2, a 

second uncertainty analysis loop is performed using the 

same inputs and variables defined in the previous stage. 

The difference between stages 1 and 2 uncertainty analy-

ses is that the observed data used in Stage 2 correspond 

to the simulation data of the base case selected in Stage 1. 

After the final ensemble of models is generated, both, 

traditional and proposed methodologies are used to se-

lect the best history matching models from the ensemble. 

To select the models, the traditional approach uses an 

objective function calculation based on producer’s water 

cut. The proposed RST approach methodology uses bi-

nary RST logs and a confusion matrix metric to select the 

group of best matching cases. To assess the history 

matching quality of individual cases in each group, dif-

ferent key performance indicators (KPIs) such as the well 

and layer production rates are used to compare the se-

lected cases against the base case.  

2.2.  Proposed RST approach methodology  

The proposed methodology is an add-in module that 

can be used as an additional validation step in any his-

tory matching process as indicated previously in Fig. 2. 

By incorporating reservoir water saturation change, 

which is derived from cased hole saturation logs, into the 

history matching process; the proposed methodology 

improved the fitting precision in terms of matching water 

saturation changes around producers. The new proposed 

methodology for enhanced history matching process us-

ing RST logs is represented in more details in Fig. 3 and 

each step is explained on this section. 

2.2.1.  Estimation of observed binary interpretation of 

reservoir saturation logs  

The location and movement of the waterfront or sweep 

for each producer well is a key uncertainty in under-

standing and modelling the behaviour of an oil reservoir 

through production. Water saturation changes in the 

reservoir can be monitored by acquiring cased hole 

saturation logs. The standard interpretation approach for 

estimating cased hole saturation changes is based on log 

analysis of the cased hole log data. The process requires 

the use of a formation evaluation model that includes 

rock and fluid properties to interpret the log responses, 

and additional parameters to model the borehole con-

figuration. The purpose of this interpretation is to esti-

mate the water saturation. The results obtained from this 

interpretation approach contain high uncertainty, as 

there are many unknown parameters in the formation 

evaluation model, and the data can be noisy, which rep-

resents some challenges in the use of this data as a 

history matching parameter.  



APONTE Jesus Manuel et al. / Petroleum Exploration and Development, 2023, 50(2): 450–463 

 

  454 

�

Fig. 3.  Methodology proposed for enhanced history matching process using RST logs. 

The proposed approach overcomes some of the chal-

lenges associated with the use of saturations logs for 

history matching by creating an interpreted binary 

(yes/no) “sweep” flag that represents the break-through 

of the waterfront. Although this binary sweep interpreta-

tion approach is a simplification of the normal process, it 

can be a valid characterisation of the saturation in several 

ways. The simplification reduces the grade of uncertainty 

created to determine a specific saturation value which is 

usually well defined when the waterfront has arrived. 

Analysis of time-lapse saturation logs shows that for any 

specific depth interval, there is a single and appreciable 

change of water saturation from a lower initial value to a 

higher one, corresponding to the arrival of the waterfront. 

This large, one-time change in water saturation is fol-

lowed by little subsequent changes. Given this observed 

behaviour of the waterfront, it becomes reasonable to 

simplify the existing interpretation of the saturation log 

response by defining the waterfront arrival at the time 

and interval when the sigma log response changes. One 

limitation for this approach resides on the need of a pre-

vious comparable log, to define a baseline. As the timing 

of the arrival of the waterfront varies at different inter-

vals depending on reservoir properties and vertical het-

erogeneities, these are the key adding observations for 

the history matching objective function. This method of 

characterisation of the “style of sweep” in a reservoir is 

consistent with the observed behaviour of many special 

core analysis tests in which water breakthrough occurs in 

a “piston-like” type behaviour. Gradual changes in water 

saturation are not usually observed in core flood experi-

ments or in actual production surveillance observation 

data.  

In the example shown in Fig. 4, the water saturation 

changes in the reference case simulation model are cap-

tured at discrete times (January 2004, 2011, 2012 and 

2013). These water saturation scenarios are then forward 

modelled to create synthetic “sigma” cased hole satura-

tion responses. This process simulates or reproduces the 

observation data that would be available in an actual 

field development with reservoir surveillance monitoring. 

Besides, in Fig. 4 the sigma data is analysed to create a 

series of binary interpretation data that show the sweep 

response of the reservoir at the different time steps. 

Through this process, the binary interpretation is used to 

represent the most significant changes in saturation in 

the reservoir. Simplification of the changes in water sat-

uration from a continuous variable to a binary variable 

has the additional benefit of mitigating the inherent un-

certainty in the precise change in saturation, which may 

be unknowable from cased hole saturation logs. Recent 

improvements to this technology have reduced the un-

certainty in saturation estimates. The innovative inter-

pretation approach proposed on this research opens the 

possibility to use diverse sources of well logging inter-

pretation data (including open-hole interpretations from 

new infill wells), to define waterfront arrival times over 

decades of field development, irrespective of the data 

logging technology. 

2.2.2.  Generating synthetic saturation logs for each 

equiprobable model 

As spatial fluid property changes are recorded for each 

individual grid cell, changes of water and oil saturations 

near the wellbore are also recorded, thus allowing the 

estimation of synthetic saturation well logs at any time 

during the simulation period. Synthetic saturation logs 

can capture the fluid saturation for each grid block lo-

cated along the path of a specific well.  

Information from saturation logs is critical in produc-

ers because an increase in water saturation, above a spe-

cific threshold, can be related to water breakthrough. Fig. 

5 shows an example of a 2D vertical section of water 

saturation profile along the well trajectory of a pair of 

producer and injector at a specific point in time during 

the simulation. Fig. 5 also shows a well log view of the 

corresponding synthetic water saturation log of the pro-

ducer well at the same simulation time step. 
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Fig. 4.  Illustration of water saturation changes in the reservoir, as identified by cased hole saturation logs and interpreted 
in “sweep” binary log.  

�

Fig. 5.  (a) 2D vertical section of water saturation profile along the well trajectory of a producer and an injector, and (b) the 
producer synthetic water saturation log. 

As also captured in Fig. 5, the injected water in the in-

jector well INJ017V has created preferential paths to-

wards the producer RJS19 at the top and the bottom of 

the reservoir. These preferential waterfront paths are also 

captured as high-water saturation intervals in the pro-

ducer synthetic water saturation log. 

For the proposed workflow, synthetic saturation logs 

are generated for all producers with available saturation 

logs, providing an additional evaluation parameter for 

validation of the simulation model. 

2.2.3.  Transforming saturation logs into binary logs 

using a threshold 

To transform the previously generated synthetic satu-

rations logs into binary simulation logs, a water satura-

tion threshold is used. This threshold represents the 

minimum water saturation of the near-wellbore cells, at 

the moment the waterfront arrives at the producer well. 

Classifications in the binary saturation log are obtained 

as follow: (1) Swept class (after waterfront has arrived). A 



APONTE Jesus Manuel et al. / Petroleum Exploration and Development, 2023, 50(2): 450–463 

 

  456 

log segment is classified as swept when the water satura-

tion in specific zones is above the threshold. (2) Un-swept 

class (dry production). A log segment is classified as 

un-swept when the water saturation has not yet reached 

the threshold. 

Threshold value of saturation at water breakthrough 

can be estimated either empirically or analytically, de-

pending on the field data available.  

(1) Analytical Method. When special core analysis 

(SCAL) data is available, the fractional flow curve can be 

used in combination with the Welge method [16] to esti-

mate the average water saturation at the waterfront. The 

common procedure to estimate the average water satura-

tion at the waterfront is by drawing a tangent line to the 

fractional flow curve from the initial water saturation, 

and the water saturation corresponding to the tangent 

point is the threshold value. This method relies on the 

availability of core samples for the different type of rocks 

and SCAL results from laboratory experiments, and is 

affected by reservoir characteristics, fluid and reservoir 

properties and pressure draw-down. The saturation de-

termined from the Welge method is an average saturation 

and from the mathematical point of view, there are some 

limitations to determine the exactly tangent point when 

the fractional curve does not show appreciable changes 

with water saturation. Results reported by Iscan [17] 

showed a good match between water saturation values 

estimated by fractional flow and production logging tools 

PLT for different rock types. 

(2) Empirical Method. As previously captured, water 

saturation threshold is the near-wellbore water saturation 

of the producers when water arrives to the well, hence if a 

saturation log has been recorded at the point of time 

when a specific well starts producing water, the maximum 

water saturation in the log can be used as the threshold. 

This method relies on the availability of water saturation 

logs at the time the well started producing water. 

Fig. 6a shows swept and un-swept areas of a vertical 

section of a model, highlighting the producer RJS19 and 

the closest injector INJ017V at a specific time step. Fig. 6b 

also shows the corresponding synthetic binary RST log, 

the equivalent saturation log and the applied threshold to 

transform saturation log into binary RST, for this exam-

ple 20% was used. 

2.2.4.  Comparing match quality between observed vs 

synthetic logs by generating a confusion matrix log 

Each binary synthetic saturation log, derived from in-

dividual models, can be directly compared with the ob-

served binary RST log. The direct comparison process is 

performed using the confusion matrix classification met-

rics, after segmenting both observed and synthetic logs in 

depth units. As a result, a confusion matrix log is created 

for the entire log depth. Example of Model 1 confusion 

matrix log and its corresponding confusion matrix table 

is shown in Fig. 7. 

2.2.5.  Assessing history matching quality of individual 

models using binary confusion matrix derived metrics 

During the development of the proposed methodology, 

the top five widely recommended confusion matrix met-

rics were assessed to identify the most suitable to address 

the binary RST mismatch. As result of this assessment, 

the Matthew Correlation Coefficient (MCC) was selected 

as the only metric that could numerically represent sim-

ilarities between observed and synthetic saturation logs. 

The MCC metric is calculated for all the models in the 

ensemble. Afterwards, all models are ranked by the MCC 

metric results, and the best ranked model is selected. 

2.3.  Geological model used 

The UNISIM semisynthetic 3D reservoir model from  

�

Fig. 6.  Swept and un-swept areas of a 2D reservoir model slice highlighting the producer RJS19 and the closest injector at 
a specific time step. 
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Fig. 7.  Confusion matrix log of Model 1 and its corresponding 
confusion matrix table. 

UNICAMP was used to evaluate the applicability of the 

new methodology. The chosen geological model was a 

case study project developed by Cepetro educational 

centre (UNICAMP University, Brazil). UNISIM is a black 

oil semi-synthetic sector model built in a high-resolution 

3D grid using public data from the Namorado Field, lo-

cated in Campos Basin (offshore Brazil). One of the main 

objectives of the development of UNISIM was ensuring 

that all relevant reservoir geological details were cap-

tured to makes UNISIM one of the best benchmarking 

models to evaluate new methodologies. The Namorado 

reservoir is located in an anticlinal trap with a bottom 

driven active aquifer. The field is divided in three main 

flooding units defined by three depositional sequences 

separated by discontinuous sequences of marls with poor 

vertical connection. The reservoir is divided in two main 

compartments, separated by a sealing fault with two 

oil-water contacts. The developing strategy of the field 

considers water injection as pressure support mechanism, 

with 14 producers, 11 injectors and 7 years of historical 

production.  

A modified high resolution water flooding UNISIM 

model was used to assess method feasibility and reservoir 

heterogeneity impact. Modifications introduced to the 

original UNISIM-I-H model were aimed to increase het-

erogeneity and waterflooding applicability. Relevant 

modifications are explained as follow: (1) Model vertical 

resolution increased. In order to incorporate more het-

erogeneity to the model, which allows better representa-

tion of the reservoir fluid movement, the model grid was 

subdivided in three separated zones and the vertical cell 

resolution was increased 2 times in all the zones. (2) Well 

trajectories. Existing well trajectories were changed from 

horizontal to vertical to simplify the model for the wa-

terfront monitoring study. In order to expand the model 

usability and incorporate a more general view of the res-

ervoir development, well trajectories and injection pat-

terns were changed (Fig. 8). (3) Porosity and net-to-gross 

(NTG) log correction. After improving vertical grid reso-

lution and changing the well path to vertical, original 

porosity and NTG property logs became obsolete. As po-

rosity and NTG logs are inputs required in the stochastic 

model-built workflow, missing logs were regenerated 

using data from vertical wells in conjunction with a 

neural network algorithm. This modification to the model 

also improves stratigraphic resolution and better vertical 

NTG can be obtained. 

After all model enhancements were done, an uncer-

tainty matrix was created considering the most relevant 

UNISIM model uncertainties captured by Gaspar [15]. 

Model modifications and uncertainty ranges defined in 

the uncertainty analysis were sufficient to generate a 

diverse initial ensemble of 160 3D models. Fig. 9 shows 

porosity and permeability diversity of four randomly se-

lected models from one of the ensembles. 

After initial ensemble was generated and the base case 

(case 127) was selected, a final ensemble of 200 models 

was generated in the second stage of the benchmarking 

workflow.  

To mitigate the uncertainty associated to aggregation 

methods, one producer observation well and one RST 

date were identified to be used in the assessment and 

evaluation of classification metrics. Well RJS19 was se-

lected for this assessment due to its high vertical perme- 

 

Fig. 8.  Injectors and producers well trajectory modification. 
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Fig. 9.  Porosity and permeability diversity of four randomly selected models from the modified case ensemble. 

ability contrast and the date 08/08/2013 was selected as 

RST date to ensure that the waterfront has already ar-

rived to the well at least in one zone. Additionally, both 

analytical and empirical threshold calculation were used 

in this assessment in order to mitigate the uncertainty 

associated to threshold estimation. 

For the empirical method, the water saturation thresh-

old of the observation well RJS19 was estimated using 

water saturation log and water production data from the 

base case. For the analytical method, synthetic UNISIM 

SCAL data was extracted from the base case saturation 

model and used in combination with Welge method to 

estimate the threshold. 

Fig. 10 shows empirical threshold estimation using the 

base case water saturation log at the time of water 

breakthrough obtained from the water production data. 

Fig. 11 shows analytical average water saturation at 

breakthrough using saturation model extracted from base 

case. After estimating the thresholds, synthetic water 

saturation logs were created and converted to binary logs 

for Well RJS19 in all ensemble models as well as the base 

cases. Subsequently, confusion matrix logs were generated  

 
Fig. 10.  Empirical threshold estimation using base case 
water saturation log at the time of water breakthrough. 

 

Fig. 11.  Water saturation threshold using Welge method. 

for all model cases. 

3.  Method application and discussion 

3.1.  Assessment and evaluation of classification metrics 

This preliminary assessment incorporated the testing 

and evaluation of the top binary metrics derived from the 

confusion matrix to quantify the matching quality of 

saturation logs. As mentioned before, for the binary met-

ric assessment, the observation well RSJ19 was selected 

to be used as representative well. As a result of this 

analysis the best binary metric was selected to be used 

with the proposed methodology.  

In order to capture the threshold uncertainty impact 

into the metric selection, empirical and analytical thre-

sholds estimation methods were used to transform water 

saturation logs into binary sweep logs for the 200 cases 

ensemble (defined as Group A and B, respectively). To 

evaluate the matching quality, individual metrics were 

used to calculate the RST mismatch and all cases were 

compared and ranked in each threshold group. After the 

ranking, the top ten best matching cases were selected 

from the ranked list to visually compare with the ob-

served RST log for final qualitative analysis of the se-

lected cases.  

3.1.1.  Precision  

For the Group A (empirical threshold), a complete 
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subset of ten cases was selected using precision metrics 

after the 200 cases were ranked as it is showed in Fig. 12. 

However, the expected selection of the top ten best cases 

was not possible for the group B (analytical threshold) as 

the first 14 cases shared the maximum precision score as 

it is showed in Fig. 13. As has been highlighted by Pow-

ers [12] and then corroborated in this analysis, precision 

metric or True Positive Rate tends to be biased by the 

positive category, in the RST binary context, the un-swept 

category.  

3.1.2.  Accuracy, F-Measure and Recall 

Like when using the Precision metric, it was not always 

possible to select a group of ten cases when using Accu-

racy, F-Measure or Recall metrics. For some of them a 

maximum group of six cases was able to be selected. 

However, it was a norm along these metrics that most of 

the cases in the ensemble tend to share the same calcu-

lated value, which makes impossible to rank the models 

and select a representative case. 

3.1.3.  Matthew correlation coefficient  

Opposite to the other assessed metrics, a full subset of 

ten cases were selected using the MCC metric in the  

 

Fig. 12.  Precision scores of all 200 models in Group A. 

 

Fig. 13.  Precision scores of all 200 models in Group B. 

 

Fig. 14.  MCC scores of all 200 models in Group A. 

 

Fig. 15.  MCC scores of all 200 models in Group B. 

group A, and the difference in case scores in the MCC 

subset allowed the selection of a representative case with 

the best matching quality (case 37, Fig. 14). This metric 

also allowed the selection of a reduced group of cases if 

needed. In the Group B, only six cases were able to be 

selected (Fig. 15).  

3.1.4.  Binary metrics assessment summary. 

A visual comparison of the observed and predicted bi-

nary logs for the selected cases using both threshold 

groups is presented in Fig. 16. On this figure, dashed yel-

low lines indicate boundaries between the two categories 

“swept” and “un-swept”. For the Group A, all the selected 

cases using the precision metric perfectly match the 

un-swept category; however, the matching quality of the 

swept category is inaccurate. Comparable results were 

observed for the Group B for selected cases using the 

Recall metric. However, all cases perfectly matched the 

swept category but show inconsistent results for the 

un-swept category matching. Unpredicted results were 

also found for the accuracy and F-measure metrics when 

comparing both threshold groups. For Group A, both 

metrics present inaccurate matching for both swept and  
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Fig. 16.  Evaluation of selected model cases for each metric vs. observed binary RST logs. 

un-swept categories. For both, empirical and analytical 

threshold groups, Accuracy, F-measure and MCC metrics 

selected the same model (37) as top case with best 

matching quality among the entire ensemble of cases. 

However, MCC metric is the only metric which selected 

cases 154 (in Group A), and 166 (in Group B) within the 

top selected models. Both 154 and 166 cases seem to be 

visually similar to the observed RST logs, hence they have 

better history matching quality than other selected cases. 

MCC metric presented the most balanced results between 

swept and un-swept classes when compared to observed 

binary RST, independently of the threshold used. 

This assessment demonstrated that MCC metric is the 

best to be used as history matching quality metric when 

two equally important categories are assessed. Besides, 

results indicate that the MCC metric can mitigate any 

category bias by considering all categories equally im-

portant to be matched. MCC score distinction adds extra 

flexibility to the model selection when incorporating ad-

ditional KPIs into the selection process. 

3.2.  Comparing proposed RST methodology versus 

conventional history matching approach 

For traditional approach, the selection of the subset of 

ten cases was performed using a water-cut well based 

objective function. The objective function was created 

using standardised RMSE calculation method. For the 

RST methodology approach, the best ten cases were se-

lected using the MCC metric. For this comparison, data 

from all producers were included, and for both, conven-

tional and proposed methodologies, global misfits were 

calculated as cumulative error of individual wells. To 

facilitate the comparison, global misfits were normalised 

(0–1). Calculation of the global misfits of the 200 cases 

and selection of the 10 cases with the best history 

matching quality was performed for both methods and 

results are showed in Figs. 17 and 18. There are two cases 

which were commonly selected by both methods, the top  
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Fig. 17.  Global misfits of 200 cases using proposed 
method. 

 
Fig. 18.  Global misfits of 200 cases using conventional 
method. 

ranked case (case 37) and case 151 which was ranked dif-

ferently in both subsets. 

Select cases 105 and 110 ranking second in proposed 

and conventional methods respectively for fitting quality 

analysis with the base case. For illustration purposes, 

three representative wells were selected to show history 

matching quality results of the top ranked cases. Wells 

NA2, NA3D and PROD021V were selected based on their 

field location and stratigraphic column in order to cap-

ture different heterogeneity degrees of the reservoir 

properties. Wells NA2 and NA3D have thick and good 

quality sands, divided by a poor sand interlayer, and 

PROD021V has poor vertically connected thin sands, 

separated by small shale layers. Full stratigraphic column 

of selected wells can be seen in Fig. 19. As well as the 

comparison of the base case RST log against RST logs of 

the two top ranked cases selected from the different 

methodologies. As expected, near-wellbore saturation of 

the case selected by using RST methodology (case 105) 

seems to have a better history matching quality. 

Well level water cut results from 3 representative wells 

are showed in Figs. 20–22. From Well NA2 results, both 

selected cases seem to have reasonable high-quality 

match. However, the proposed methodology case seems 

to outperform the conventional method in wells NA3D 

and PROD021V. 

Fig. 23 shows zonal level results of selected wells for 

both cases compared to the observed data. As expected, 

the proposed methodology performs better over the con-

ventional method when selecting cases with better zonal 

history matching quality. 

A global analysis of the obtained results suggests that 

although the conventional method exceeds on selecting 

cases where the total water cut of a well is closer to the 

observed data, it fails to identify the waterfront arrival at 

different zones as the zonal match is poor. Depending 

upon model objectives, having a better representation of 

the actual zonal and intra-zonal water displacement 

could potentially provide critical information for the de-

cision-making process. For instance, if the purpose of the 

model is to assess the value of adding or closing well 

perforations to reduce water production, having a model 

with detailed representation of the water displacement 

from different zones is crucial. 

 

Fig. 19.  Binary RST logs of top raked cases for the representative wells. 
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Fig. 20.  Well NA2 water cut. 

 

Fig. 21.  Well PROD021V water cut. 

 

Fig. 22.  Well NA3D water cut. 

4.  Conclusions  

The proposed methodology has been successfully 

evaluated using a high-resolution 3D gridding, from pub-

lic data from the Brazilian Namorado Field model, and 

saturation logs data to assess the history matching qual-

ity in order to understand and select models with better 

match of sweep pattern. The main conclusions are sum-

marized below: 

(1) The history matching quality of a reservoir model 

can be measured using statistical analysis metrics derived 

from the confusion matrix, such as the Matthew Correlation  

 

Fig. 23.  Water cut per zone for wells NA2, NA3D and PROD021V using conventional and proposed methodologies. 
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Coefficient MCC. MCC metric can mitigate any category 

bias as it considers all categories as equally important, 

allowing the selection of more category balanced groups 

of cases.  

(2) The use of binary RST logs as matching parameter 

improves the selection of models with better history 

matching quality at zonal/sands level. Reservoir hetero-

geneity seems to play a significant role when selecting 

different history matching methodologies. Thus, the use 

of RST logs as matching parameter contributed the most 

in highly heterogeneous waterflooded reservoirs. 

(3) As expected, the quality of the match when using 

RST as a matching criteria is highly correlated to the 

number of RSTs available per well. Approach is less ef-

fective when scarce data is available. The history match-

ing quality by well using RST logs for the selected cases 

relies on the number of RST samples available and the 

dates when they were taken. Having a better distributed 

set of RST logs along the history will positively impact 

selecting a model with better matching quality through-

out the entire historical period.  

(4) Further studies should be performed when merging 

both conventional and proposed methodology for history 

matching processes.  
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