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Abstract
Distortion risk measure (DRM) plays a crucial role in
management science and finance particularly actuarial
science. Various DRMs have been introduced but little
is discussed on which DRM at hand should be chosen to
address a decision maker’s (DM’s) risk preference. This
paper aims to fill out the gap. Specifically, we consider a
situation where the true distortion function is unknown
either because it is difficult to identify/elicit and/or
because the DM’s risk preference is ambiguous. We
introduce a preference robust distortion risk measure
(PRDRM), which is based on the worst-case distortion
function from an ambiguity set of distortion functions
to mitigate the impact arising from the ambiguity. The
ambiguity set is constructed under well-known general
principles such as concavity and inverse S-shapedness
of distortion functions (overweighting on events from
impossible to possible or possible to certainty and under-
weighting on those from possible to more possible) as
well as new user-specific information such as sensitivity
to tail losses, confidence intervals to some lotteries, and
preferences to certain lotteries over others. To calculate
the proposedPRDRM,weuse the convex and/or concave
envelope of a set of points to characterize the curvature
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390 WANG and XU

of the distortion function and derive a tractable refor-
mulation of the PRDRM when the underlying random
loss is discretely distributed.Moreover, we show that the
worst-case distortion function is a nondecreasing piece-
wise linear function and can be determined by solving a
linear programming problem. Finally, we apply the pro-
posed PRDRM to a risk capital allocation problem and
carry out some numerical tests to examine the efficiency
of the PRDRMmodel.

KEYWORDS
preference robust distortion risk measure, risk capital allocation,
worst-case distortion function, Yaari’s dual theory of choice

1 INTRODUCTION

Distortion risk measure (DRM), a widely used approach for pricing insurance risks, is a risk-
adjusted expected value where the underlying distribution of the risk is modified by a distortion
function (or equivalently a probability weighting function) reflecting the decisionmaker’s (DM’s)
risk preference.1 Since its introduction by Denneberg (1990) on premium calculation, DRM has
received extensive attention in that it enjoys some important properties such as monotonicity,
positive homogeneity, translation invariance, comonotonic additivity, and as such it covers a wide
range of monetary risk measures including VaR and CVaR. In actuarial science, a number of pop-
ular premium principles such as Gini’s principle (Denneberg, 1990), Wang’s proportional hazards
principle (Wang, 1995), and the cumulative residual entropy principle (Sordo et al., 2016), are all
proposed based on DRM. In the case when the probability weighting function is absolutely con-
tinuous, DRM can be reformulated as the weighted average of the quantile function of random
loss (Dhaene et al., 2012). In particular, if the distortion function is concave, then DRM reduces
to the well-known spectral risk measure (SRM) (Acerbi, 2002) where the derivative of the weight-
ing function is called the risk spectrum, see, for example, Yaari (1987), Tsanakas and Desli (2003),
and Henryk and Silvia (2006). Moreover, under some mild conditions, DRM/SRM can be used as
a basis for representing any law invariant coherent risk measures, see, for example, Pichler and
Shapiro (2015) and Wang and Xu (2020).
In the current research on behavioral economics and risk management, the distortion function

is assumed to be known or can be elicited through a tolerable amount of introspective question-
ing (Bleichrodt & Pinto, 2000; Tversky & Wakker, 1995). There have been a lot of efforts on how
to identify/elicit a probability weighting function for a DM including the design of surveys and
experiments for assessing the decision weights and measuring beliefs under uncertainty, see, for
example, Wu and Gonzalez (1996), Abdellaoui et al. (2021), and references therein. In practice,
however, there may be some ambiguity about a DM’s risk preference, which means that there is
not a clear-cut distortion function to characterize his/her risk preference precisely. Such ambi-
guity may arise from a lack of accurate description of human behavior, cognitive difficulty, or
incomplete information. The ambiguity may also arise from decision-making problems, which
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WANG and XU 391

involve several stakeholders who fail to reach a consensus. Under these circumstances, it might
be sensible to construct a set of plausible distortion functions representing the DM’s risk attitude
and then base the optimal decision on the worst-case distortion function from the ambiguity set.
This is the fundamental idea of the preference robust optimization (PRO) model.
Maccheroni (2002) seems to be the first to consider the worst-case utility evaluation among

many available utilities when a conservative DM faces uncertain outcomes of lotteries. He derives
necessary and sufficient conditions for the existence of this kind of robust decision-making frame-
work. Armbruster and Delage (2015) give a comprehensive treatment of the problem from an
optimization perspective by formally proposing a maximin PRO paradigm. Specifically, they con-
sider a class of utility functions, which are concave or S-shaped and discuss how aDM’s preference
may be elicited through pairwise comparisons. Moreover, they demonstrate that solving the PRO
is down to solving a linear programming problem under some mild conditions. Over the past
few years, there has been increasing attention to the PRO models, see Hu and Mehrotra (2015),
Haskell et al. (2016), Guo and Xu (2018), and Zhang et al. (2020) for the recent developments.
Delage and Li (2017) first consider a PRO model for monetary risk measures where the DM’s
choice of risk measure is ambiguous. They construct the ambiguity set of convex risk measures
by imposing some additional information such as scale invariance (also known as positive homo-
geneity), law invariance, and preference elicitation information from pairwise comparison, and
then develop tractable reformulations using the acceptance set representation of convex riskmea-
sure established by Föllmer and Schied (2002). Delage et al. (2022) consider a PRO model for
shortfall risk measures where the ambiguity set of convex loss functions is characterized using
risk preference information such as certainty equivalent and sensitivity to tail events and give the
tractable reformulations for theminimax optimization problemwhen the underlying random loss
is discretely distributed. More recently, Wang and Xu (2020) consider a PRO model for decision-
making problemswhere theDM’s risk preference is ambiguous and can be characterized via a risk
spectrum. They propose a robust spectral riskmodel (RSRM) where the ambiguity of the DM’s risk
preference is defined by a ball of risk spectra centered at a nominal risk spectrum. Guo and Xu
(2021) complement the model by considering pairwise comparison approaches for constructing
the ambiguity set and demonstrating how worst-case risk spectra converge to the truth as more
information about the DM’s preference is elicited.
In this paper, we follow up this stream of research by introducing a preference robust distortion

riskmeasure (PRDRM) to address a situation where the DM’s risk preference can be characterized
by DRM and there is incomplete information about the true distortion function. Differing from
the utility PROmodels, which are fundamentally built on VonNeumann–Morgenstein’s expected
utility theory (see, e.g., Von Neumann et al. (2007)), our PRDRM model is based on Yaari’s dual
theory of choice (Yaari, 1987).Wedo so not only becauseDRMs are naturally based on the latter but
also because there is a broad agreement among psychologists and economists that probabilities
in many decision-making problems are not linear, see, for instance, Allais paradox (Allais, 1953)
and Ellsberg paradox (Ellsberg, 1961). The main contributions of this paper can be summarized
as follows.
First, we propose a PRDRM model where a DM’s risk preference can be represented by a dis-

tortion function but information about such a function is incomplete. To hedge the risk arising
from the ambiguity, we consider the worst-case distortion function from a set of plausible distor-
tion functions for the calculation of distortion risk. In the case when the distortion functions are
concave and differentiable, the new PRDRM model recovers the preference robust SRM models
(Wang and Xu, 2020; Guo and Xu, 2021). Since distortion functions are not necessarily concave
or differentiable, the PRDRMmodel covers a much larger class of problems where the DM’s risk
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392 WANG and XU

preference can be represented by a DRM instead of a spectral risk measure. Second, we derive a
tractable reformulation to calculate the proposed PRDRMby characterizing the concave or inverse
S-shaped distortion function through the concave and/or convex envelope over a discrete set of
points. In particular, we show that the worst-case distortion function is a nondecreasing piece-
wise linear function when the underlying random loss is discretely distributed and demonstrate
through some simple examples how such a worst-case piecewise linear function can be identi-
fied. Third, we apply the proposed PRDRM to one-stage stochastic decision-making problems
and derive tractable formulations for solving the latter when distortion functions are concave.
We then apply the proposed robust model and computational scheme to a risk capital allocation
problem and report some numerical results.
The rest of the paper is organized as follows. Section 2 describes the PRDRMmodel, Section 3

details the construction of the ambiguity set, and Section 4 develops tractable reformulations for
the proposed PRDRMs. Section 5 applies the proposed PRDRM to optimal decision-making prob-
lems and proposes an alternating iterative algorithm for solving the latter. Section 6 reports the
application of the PRDRM to a risk capital allocation problem and some numerical test results.
Some technical details and supplementary results or statements are given in the appendices.

2 PROBLEM SETUP

Let𝑋 ∶ (Ω, , ℙ) → IR be a (non-negative) randomvariable,whereΩ is a sample spacewith sigma
algebra  and ℙ is a reference probability measure. Throughout the paper, 𝑋 represents financial
loss and the smaller value is preferred. For instance, 𝑋 may model the claims of an insurance
contract from the insurer’s point of view. Let 0 denote the set of all random variables mapping
from Ω to IR. For each 𝑋 ∈ 0, let 𝐹𝑋(𝑥) ∶= ℙ[𝑋 ≤ 𝑥] be its cumulative distribution function
(CDF) and 𝑆𝑋(𝑥) ∶= 1 − 𝐹𝑋(𝑥) its survival function. In the literature of economics,𝑋 is also called
“act” and 𝐹𝑋 is called “lottery.” For a given confidence level 𝛼 ∈ (0, 1), the generalized inverse of
the CDF for 𝑋 is defined as 𝐹←𝑋 (𝛼) ∶= inf {𝑥 ∈ IR ∶ 𝐹𝑋(𝑥) ≥ 𝛼}. 𝐹←𝑋 (𝛼) is also known as the value
at risk (VaR) or as a quantile function mapping from (0,1) to IR if 𝛼 is viewed as a variable.
Let 𝑋 ∈ 0 be a random loss and 𝑔 ∶ [0, 1] → [0, 1] be a distortion function, that is, 𝑔 is a non-

decreasing function with 𝑔(0) = 0 and 𝑔(1) = 1. Throughout the paper, we use  to denote the set
of all distortion functions. The DRM induced by 𝑔 is defined as

𝜌𝑔(𝑋) ∶= ∫
∞

0

𝑔(𝑆𝑋(𝑥))𝑑𝑥 + ∫
0

−∞

[𝑔(𝑆𝑋(𝑥)) − 1]𝑑𝑥, (1)

provided that at least one of the two integrals is finite. Equation (1) is a special Choquet integral if
we regard 𝑔◦ℙ as a “measure” over measurable space (Ω,) in which case 𝑔 may be interpreted
as a “distortion” function of ℙ. By the properties of Choquet integral, DRM is a law invariant,
positively homogeneous,monotone and comonotonic additive riskmeasure. In addition, it is easy
to verify that 𝜌𝑔(𝑋) is a coherent risk measure (satisfying monotonicity, subadditivity, positive
homogeneity, and translation invariance (Artzner et al., 1999)) if and only if 𝑔 is concave, see, for
example, Wirch and Hardy (2001) and Acerbi (2002). Furthermore, when the distortion function
𝑔 is left-continuous, Equation (1) can be alternatively represented as

𝜌𝑔(𝑋) = ∫
IR

𝑥𝑑𝑔(𝐹𝑋(𝑥)) = ∫
1

0

𝐹←𝑋 (𝑡)𝑑𝑔(𝑡) = ∫
1

0

𝐹←𝑋 (1 − 𝑡)𝑑𝑔(𝑡), (2)
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WANG and XU 393

where 𝑔(𝑡) = 1 − 𝑔(1 − 𝑡) and the integral is understood as the Lebesgue-Stieltjes integral, see, for
example, Dhaene et al. (2012). Similar representations can be easily derived when the distortion
function 𝑔 is right-continuous (Dhaene et al., 2012). The first equality in Equation (2) shows that
the probability of loss𝑋 is modified by 𝑔 and the second equality interprets 𝜌𝑔(𝑋) as the weighted
average of the quantile losses, which is also known as the spectral risk measurewhen 𝑔 is differen-
tiable (Acerbi, 2002). In this paper, our focus will be on the case that 𝑋 is a non-negative random
loss although all of the results developed in this paper can be applied to the random variables
without this restriction. Note that when 𝑋 is non-negative, DRM can be seen as a special loss-
based risk measure introduced by Cont et al. (2013). In Appendix A.1, we list a few well-known
DRMs in the literature.

2.1 Preference robust distortion risk measure

In the current research on behavioral economics and risk management, the distortion function in
DRM is assumed to be known or can be easily elicited by a tolerable number of questionnaires. In
practice, however, identifying/eliciting a unique distortion function, which precisely character-
izes a DM’s risk attitude, may turn out to be difficult either because the decision-making problem
involves several stakeholders who fail to reach a consensus or because the prospect space is too
complex and/or too large to elicit such a distortion function. Under these circumstances, it might
be sensible to use partially available information to construct a set of distortion functions to reflect
such uncertainty of a DM’s risk attitude and then consider theworst-case distortion function from
the ambiguity set for the DRM to mitigate the risk arising from the ambiguity of true distortion
function. Here we give a formal definition of preference robust DRM.

Definition 2.1 (Preference robust DRM). Let ′ denote the ambiguity set of distortion functions
constructed from the available preference information of a DM. The preference robust distortion
risk measure of a random loss 𝑋 based on ′ is defined as

(PRDRM) 𝜌′ (𝑋) ∶= sup
𝑔∈′

𝜌𝑔(𝑋), (3)

which is the worst-case DRM computed from the set of distortion functions ′.
Let 𝑔∗ denote the true distortion function. In the forthcoming discussions, wewill construct the

ambiguity set through queries for theDMand theDM’s responses to the queries are consistent.We
refer readers to Armbruster and Delage (2015) for PRO models with inconsistent response cases.
The definition reflects the DM’s conservatism on the risk in the absence of complete information
about 𝑔∗. In the case when the distortion functions 𝑔 in the set ′ are all continuous and piecewise
differentiable, the PRDRM coincides with the RSRM in Wang and Xu (2020). By definition, we
know immediately that PRDRM is a law invariant risk measure. When 𝑔 is a concave function,
𝜌𝑔(𝑋) is a coherent risk measure. In this case, PRDRM is also a coherent risk measure when all
distortion functions in the ambiguity set are concave because the “sup” operation preserves the
four axiomatic properties in the definition of coherent riskmeasure. Conversely, any law invariant
coherent risk measure can be represented as a PRDRM. We refer readers to Wang and Xu (2020)
for the related discussions.
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394 WANG and XU

2.2 Optimization with PRDRM

As amotivation as well as an application, wewill apply the proposed PRDRM to optimal decision-
making problems where the optimal decision is determined by minimizing the PRDRM, that is,

(PRDRM-Opt) min
𝑧∈𝑍

max
𝑔∈′ 𝜌𝑔(𝑓(𝑧, 𝜉)), (4)

where 𝑓 ∶ 𝑍 × IR𝑘 → IR is a continuous loss function, 𝑧 is a vector of decision variables, 𝑍 is a
compact convex set in IR𝑛 and 𝜉 is a vector of random variables. When ′ is compact with respect
to some weak topology, the inner maximum in (PRDRM-Opt) can be attained because 𝜌𝑔(⋅) is
continuous, in this case, the outer minimum can also be attained because 𝜌′ (𝑓(𝑧, 𝜉)) is contin-
uous in 𝑧 and 𝑍 is compact. Moreover, if 𝑓(𝑧, 𝜉) is convex in 𝑧 for every fixed 𝜉, then 𝜌𝑔(𝑓(𝑧, 𝜉))
is convex in 𝑧 given the fact that 𝜌𝑔(⋅) is monotone increasing. In this case, the optimal value of
the inner maximization problem of (PRDRM-Opt) is a convex function of 𝑧 and hence the outer
minimization problem of (PRDRM-Opt) is a convex program.

3 AMBIGUITY SET OF THE DISTORTION FUNCTIONS

The nature of the proposed PRDRM is determined by the information structure of the ambi-
guity set. In general, the ambiguity set should comprise two types of information: (a) generic
information such as being risk-averse, which is widely considered in the literature on behavioral
economics and being inverse S-shaped, which is observed by many empirical tests, and (b) user-
specific information such as preferring a lottery to another one, having “confidence” intervals to
some lotteries and being sensitive to tail losses. The former can be identified through subjective
judgment whereas the latter requires some careful elicitation process. In this section, we discuss
how to construct the ambiguity set.

3.1 Characterization of distortion functions using risk preference
information

In this subsection, we discuss various approaches for eliciting a DM’s risk preference and using
them to construct an ambiguity set of distortion functions. In particular, wewill investigate how to
account for information about preferring certain lotteries over other lotteries, about having some
“confidence” intervals for the risks of a list of random variables/prospects, about how sensitive the
DM is regarding events that occur in the tail of prospects, about whether the DRM is coherent,
and finally about the lower subadditivity and upper subadditivity, which are associated with the
possibility effect and certainty effect.
1. Pairwise comparison. Let {𝐺𝑚, 𝐵𝑚}𝑀𝑚=1 be a set of comparable prospects. The set 𝑝𝑎𝑖𝑟

denotes all of the distortion functions, which satisfy 𝜌𝑔(𝐺𝑚) ≤ 𝜌𝑔(𝐵𝑚) for 𝑚 = 1,… ,𝑀, that is,

𝑝𝑎𝑖𝑟 ∶= {𝑔 ∈  ∶ 𝜌𝑔(𝐺𝑚) ≤ 𝜌𝑔(𝐵𝑚), for𝑚 = 1,… ,𝑀}. (5)
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WANG and XU 395

In this approach, we presume that the DM prefers 𝐺𝑚 over 𝐵𝑚 for 𝑚 = 1,… ,𝑀 in order to
ensure that the constructed ambiguity set of 𝑝𝑎𝑖𝑟 is not empty. Otherwise, the constructed pair
of prospects should be deleted.
2. Certainty equivalent. Let {𝑊𝑘}

𝐾
𝑘=1

be a list of random variables with an associated set of
“confidence” intervals [𝑤−

𝑘
, 𝑤+

𝑘
] ⊆ [ess inf𝑊𝑘, ess sup𝑊𝑘] for the “certainty equivalent” of each

𝑊𝑘. The set 𝑐𝑒 denotes all of the distortion functions, which evaluate the risk of each𝑊𝑘 to be
larger than 𝑤−

𝑘
and lower than 𝑤+

𝑘
, that is,

𝑐𝑒 ∶= {
𝑔 ∈  ∶ 𝑤−

𝑘
≤ 𝜌𝑔(𝑊𝑘) ≤ 𝑤+

𝑘
, for 𝑘 = 1,… , 𝐾

}
. (6)

Note that a natural method that can be used to identify such two bounds for the riskiness of a
random variable𝑊𝑘 would take the form of questions such as:

∙ Upper bound𝑤+
𝑘
: “What is the smallest amount ofmoney that youwould decline to pay instead

of being exposed to the risk of𝑊𝑘?”
∙ Lower bound 𝑤−

𝑘
: “What is the largest amount of money that you would be willing to pay

instead of being exposed to the risk of𝑊𝑘?”

From the above questions, we can see that𝑤−
𝑘
≤ 𝑤+

𝑘
. Moreover, when the answers to both ques-

tions are such that 𝑤+
𝑘
= 𝑤−

𝑘
= 𝑤𝑘, it implies that we have identified the certainty equivalent of

𝑊𝑘, that is, 𝜌𝑔(𝑊𝑘) = 𝑤𝑘, yet in practice, it is more often the case that only an interval [𝑤−
𝑘
, 𝑤+

𝑘
]

will be obtained for this value. The certainty equivalent approach is well-known in the literature
of PRO, see Delage et al. (2022) and references therein.
To analyze how sensitive the distortion function is to a small probability, we consider the

following class of distortion functions based on Delage et al. (2022).
3. Sensitivity to large losses with a small probability. Let 𝜑 ∶ (0, 1) → IR+ be a nonin-

creasing convex function and {𝑍𝜖𝜑}𝜖<1 be a set of elementary lotteries with ℙ(𝑍𝜖𝜑 = 𝜑(𝜖)) = 𝜖 and
ℙ(𝑍𝜖𝜑 = 0) = 1 − 𝜖. Denote by 𝑏𝑛𝑑(𝜑) the set of distortion functions where for each 𝑔 ∈ 𝑏𝑛𝑑(𝜑),
𝜌𝑔 assigns to each random variable in the set {𝑍𝜖𝜑}𝜖<1 a value of the risk that is lower than the risk
of a certain loss of one:

𝑏𝑛𝑑(𝜑) ∶= {
𝑔 ∈  ∶ 𝜌𝑔(𝑍𝜖𝜑) = 𝜑(𝜖)𝑔(𝜖) ≤ 1, for 𝜖 ≤ 𝜖0

}
, (7)

where 𝜖0 is a very small positive number. Typically, 𝜖 is small whereas 𝜑(𝜖) is large. The distortion
functions defined as such effectively provide an upper bound for the true distortion function with
small probabilities, that is, 𝑔(𝜖) ≤ 1

𝜑(𝜖)
for 𝜖 ≤ 𝜖0. For example, if we choose 𝜑(𝜖) = −

1

ln(1−𝜖)
, then

we would have 𝑔(𝜖) ≤ − ln(1 − 𝜖) for 𝜖 ≤ 𝜖0. Practically speaking, identifying 𝜑 can be as difficult
as identifying the distortion function 𝑔. A general guideline is to require 𝜑(𝑡)𝑡 ≤ 1 for 𝑡 ∈ (0, 1)

and lim𝑡→0+ 𝜑(𝑡) = ∞. For instance, we may set 𝜑(𝑡) = 1

𝑡𝛼
for 𝛼 ∈ (0, 1).

We now discuss the structural properties of distortion functions. Wirch and Hardy (2001) show
that a DRM (𝜌𝑔) is subadditive if and only if 𝑔 is a concave function, see Theorem 2.2 there. Since
DRM ismonotone, positively homogeneous and translation invariant, it means that 𝜌𝑔 is coherent
if and only if 𝑔 is concave. Moreover, they relate the concavity of the distortion function 𝑔 to the
concept of second-order stochastic dominance (Hanoch&Levy, 1975), seeWirch andHardy (2001,
Theorem 3.1). The equivalence between the concavity of 𝑔 and coherence of 𝜌𝑔motivates us to pay
special attention to PRDRM with concave distortion functions.
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396 WANG and XU

4. Concave distortion functions. Let 𝑐𝑜ℎ be the set of distortion functions such that the
induced DRMs are coherent, that is,

𝑐𝑜ℎ ∶= {𝑔 ∈  ∶ 𝑔 is concave on [0, 1]}. (8)

In the literature on economics, many empirical tests show that the distortion function has the so-
called lower subadditivity and upper subadditivity, see, for example, Tversky and Wakker (1995),
Prelec (1998), and Bleichrodt and Pinto (2000). The lower subadditivity of the distortion func-
tion means that a lower interval [0, 𝑞] has more impact on a DM than an intermediate interval
[𝑝, 𝑝 + 𝑞], provided that𝑝 + 𝑞 is bounded away fromone.Alternatively stated, lower subadditivity
says that a change from impossible to possible has a stronger impact on an individual’s decision
than an equal change from possible to more possible. This effect is referred to as the possibility
effect. The upper subadditivity of the distortion functionmeans that an upper interval [1 − 𝑞, 1]has
more impact than an intermediate interval [𝑝, 𝑝 + 𝑞], provided that 𝑝 is bounded away from zero.
Hence, a change from possible to certain has more impact than an equal change from possible to
more possible. This effect is referred to as the certainty effect. The effect of lower subadditivity and
upper subadditivity is to produce an inverse S-shaped probability weighting function, overweight-
ing small and high probabilities and underweighting intermediate probabilities (Bleichrodt and
Pinto, 2000). This motivates us to consider PRDRM with S-shaped distortion functions.
5. S-shapeddistortion functions.Let �̃� ∈ (0, 1) be a fixed turning point and𝑆 be the set of all

inverse S-shaped distortion functions with the fixed turning point (from concavity to convexity),

𝑆 ∶= {𝑔 ∈  ∶ 𝑔(𝑡) is concave on [0, �̃�] and convex on [�̃�, 1]}. (9)

There are many classes of distortion functions that are inverse S-shaped for certain parameter
values and we list the most common ones with specified values of the parameters in Table 1 based
on Bleichrodt and Pinto (2000) and Baillon et al. (2020).

TABLE 1 Inverse S-shaped parametric distortion functions and their parametric estimates

Abbr Functional form References and parametric estimates
Tversky and Kahneman (1992): 𝛼 = 0.69 (losses),
𝛼 = 0.61 (gains)

TK 𝑔(𝑡) =
𝑡𝛼

[𝑡𝛼 + (1 − 𝑡)𝛼]
1

𝛼

, 𝛼 ∈ [0.28, 1) Wu and Gonzalez (1996): 𝛼 = 0.71 (gains)

Abdellaoui (2000): 𝛼 = 0.70 (losses), 𝛼 = 0.60 (gains)
Goldstein and Einhorn (1987)
Wu and Gonzalez (1996): 𝛼 = 0.68, 𝛽 = 0.84 (gains)

GE 𝑔(𝑡) =
𝛽𝑡𝛼

𝛽𝑡𝛼 + (1 − 𝑡)𝛼
, 𝛼, 𝛽 > 0, 𝛼 < 1 Gonzalez and Wu (1999): 𝛼 = 0.44, 𝛽 = 0.77 (gains)

Tversky and Wakker (1995): 𝛼 = 0.69, 𝛽 = 0.77

(gains)
Abdellaoui (2000): 𝛼 = 0.60, 𝛽 = 0.65 (gains);
𝛼 = 0.65, 𝛽 = 0.84 (losses)

Prelec 𝑔(𝑡) = exp(−𝛽(− ln 𝑝)𝛼), 𝛼, 𝛽 > 0 Prelec (1998): 𝛼 = 0.65, 𝛽 = 1 (losses)
Wu and Gonzalez (1996): 𝛼 = 0.74, 𝛽 = 1 (gains)

“Losses” means random loss, whereas “gains” means random gain.
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WANG and XU 397

F IGURE 1 The graphical illustration of distortion function: (a) concave case and (b) inverse S-shaped case.
[Color figure can be viewed at wileyonlinelibrary.com]

Example 3.1. To see how the shape of the distortion function is closely related to the DM’s risk
preference, we give a simple example to illustrate. Let 𝑋 ∈ 0 be fixed and 𝛼1, 𝛼2 ∈ (0, 1) with
𝛼1 ≤ 𝛼2. Define the higher risk event, medium risk event, and lower risk event as the follows:

𝛼1 ∶=
{
𝜔 ∈ Ω ∶ 𝑋(𝜔) > 𝐹←𝑋 (1 − 𝛼1)

}
,

𝛼1,𝛼2 ∶=
{
𝜔 ∈ Ω ∶ 𝐹←𝑋 (1 − 𝛼2) < 𝑋(𝜔) ≤ 𝐹←𝑋 (1 − 𝛼1)

}
,

and


𝛼2
∶=

{
𝜔 ∈ Ω ∶ 𝑋(𝜔) ≤ 𝐹←𝑋 (1 − 𝛼2)

}
.

Consider the case that 𝛼1 = 𝛼2. If the DM is risk-averse, then s/he would put more weight on
the higher risk event𝛼1 and less weight on the lower risk event𝛼2 . In this case, 𝑔 is concave.
Figure 1 a gives a graphical illustration of such a distortion function. From the figure, we can see
that the interval [0,0.25] on the 𝑡-axis is the range of the survival function values over the higher
risk event𝛼1 . Since 𝑔

′(𝑡) ≥ 1 over the interval, the probability of 𝑋 is scaled-up. In other words,
the DM overweighs the event 𝛼1 . Likewise, the distortion function scales down the probability
of 𝑋 over [0.25,1] (which corresponds to

𝛼2
). In this case, the DM underweighs the risk of event


𝛼2
.

Let us now consider the case when 𝛼1 < 𝛼2. If the DM is rational, then her/his distortion func-
tion would have the lower subadditivity and upper subadditivity as discussed earlier, that is, the
DM puts more weight on the high risk event 𝛼1 and the lower risk event 𝛼2

and less weight
on the medium risk event𝛼1,𝛼2 . This kind of risk preference leads to an inverse S-shaped distor-
tion risk function. Figure 1b gives a graphical illustration of such a distortion function. From the
figure, we can see that the distortion function is steep over the intervals [0,0.1019] and [0.8425, 1],
which correspond to the ranges of the survival function over 𝛼1 and 

𝛼2
. Hence, the underly-

ing probability of the random loss 𝑋 over these ranges is scaled-up, which means that the DM
overweighs the events 𝛼1 and 

𝛼2
. The distortion function is less steep over [0.1019, 0.8425],

which corresponds to 𝛼1,𝛼2 and the underlying probability of a random loss 𝑋 is scaled-down.
Consequently, the DM underweighs the event.
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398 WANG and XU

The slope of the tangent line at a point (𝑡0, 𝑔(𝑡0)) reflects a DM’s marginal distortion at loss 𝑥0
(𝑆𝑋(𝑥0) = 𝑡0), which is a scaling of the probability of the loss. The steeper the slope is, the more
significant will be the scaling. At point 𝑡 = 0 (which corresponds to the loss ess sup𝑋), the slope
might be infinity, which means that a very large scaling is posed on a very small probability of
large tail loss. If the slope of the graph of 𝑔 at some points or over some intervals is zero, then
the probability of loss is scaled to zero. For example, in the CVaR case (see Example A.1(ii)), the
related distortion function (𝑔𝛼) poses a constant scaling

1

1−𝛼
over the underlying probability of

higher risk event𝛼 and 0 over the rest.

3.2 Ambiguity set of distortion functions

In this paper, we will consider the following two types of ambiguity sets of distortion functions
for deriving the tractable reformulations of the proposed PRDRM.

1 = 𝑐𝑜ℎ ∩ 𝑝𝑎𝑖𝑟 ∩ 𝑐𝑒 ∩ 𝑏𝑛𝑑; 2 = 𝑆 ∩ 𝑝𝑎𝑖𝑟 ∩ 𝑐𝑒 ∩ 𝑏𝑛𝑑.
The reason why we specify the ambiguity set 1 is as follows: coherent risk measures are widely
used in finance both for theoretical analysis and practical use, by choosing 𝑐𝑜ℎ, we restrict our
attention to a specific class of DMs whose risk attitude can be characterized by concave distortion
functions; the other three specifications are related to elicitation process: “interval confidence” of
a list of lotteries can be easily estimated, pair-wise preference information can be easily obtained
in practice, and sensitivity to the tail prospects is always necessary to describe a DM’s risk attitude
towards tail events. The reason why we choose 2 is that many empirical studies eliciting the
probability weighting function indicate that the distortion function, which characterizes a DM’s
risk attitude, is always inverse S-shaped. Therefore, we believe that these two choices of ambiguity
set of distortion functions would have a great impact both in theory and application.

4 TRACTABLE REFORMULATION FOR PRDRM

In this section, we derive tractable reformulations for the proposed PRDRMbased on the ambigu-
ity sets 1 and 2, respectively. To this end, we first consider how to calculate DRM for a discrete
random variable and then derive the tractable reformulations.

4.1 Computation of DRM

We discuss how to compute DRM for a non-negative discretely distributed random loss. For
a continuously distributed random variable 𝑋, we can use sample average approximation to
discretize the probability distribution and then calculate DRM approximately with the latter, see,
for example, Acerbi (2002) and Guo and Xu (2021).
Let 𝑋 be a non-negative finitely distributed random loss with ℙ(𝑋 = 𝑥𝑖) = 𝑝𝑖 for 𝑖 = 1, … , 𝑛,

where 0 ≤ 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛. For the simplicity of notation, let 𝑥0 = 0, 𝑥𝑛+1 = ∞, and 𝜋0 =

0. The CDF of 𝑋 is a step-like function with 𝑛 breakpoints, that is, 𝐹𝑋(𝑥) = 𝜋𝑖, when𝑥 ∈
[𝑥𝑖, 𝑥𝑖+1), for 𝑖 = 0, 1, … , 𝑛, where 𝜋𝑖 =

∑
𝑗≤𝑖 𝑝𝑗 for 𝑖 = 1, 2, … , 𝑛. Consequently we follow from
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WANG and XU 399

Equation (1) to write the DRM of 𝑋 as

𝜌𝑔(𝑋) = ∫
∞

0

𝑔(𝑆𝑋(𝑥))𝑑𝑥 =

𝑛∑
𝑖=1

∫
𝑥𝑖

𝑥𝑖−1

𝑔(𝑆𝑋(𝑥))𝑑𝑥 =

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥𝑖−1)𝑔(1 − 𝜋𝑖−1)

=

𝑛∑
𝑖=1

𝑥𝑖[𝑔(1 − 𝜋𝑖−1) − 𝑔(1 − 𝜋𝑖)] =

𝑛∑
𝑖=1

𝑥𝑖𝜙𝑖, (10)

where 𝜙𝑖 = 𝑔(1 − 𝜋𝑖−1) − 𝑔(1 − 𝜋𝑖) ≥ 0 for 𝑖 = 1, … , 𝑛 and
∑𝑛

𝑖=1
𝜙𝑖 = 1. The last equation in

Equation (10) also confirms the fact that 𝜌𝑔(𝑋) is a weighted expected value of 𝑋.

4.2 Tractable reformulation of PRDRM under 𝟏

In this subsection, we consider tractable reformulation of PRDRM when the ambiguity set of
distortion functions is constructed as follows:

1 = 𝑐𝑜ℎ ∩ 𝑝𝑎𝑖𝑟 ∩ 𝑐𝑒 ∩ 𝑏𝑛𝑑 =
⎧⎪⎪⎨⎪⎪⎩
𝑔 ∈  ∶

𝑤−
𝑘
≤ 𝜌𝑔(𝑊𝑘) ≤ 𝑤+

𝑘
; for 𝑘 = 1,… , 𝐾;

𝜌𝑔(𝐺𝑚) ≤ 𝜌𝑔(𝐵𝑚); for𝑚 = 1,… ,𝑀;

𝑔(𝜖) ≤ 1

𝜑(𝜖)
, 𝜖 ≤ 𝜖0, and 𝑔 is concave.

⎫⎪⎪⎬⎪⎪⎭
, (11)

where 𝜖0 is a very small positive number.
To derive a tractable reformulation of PRDRM with ′ = 1, we need to establish an inter-

mediate technical issue. Let Θ ∶= {𝜃1, … , 𝜃𝐽} ⊂ IR be a discrete set in IR where 𝜃1 < ⋯ < 𝜃𝐽 and
𝑣1, … , 𝑣𝐽 ∈ IR be a set of numbers such that

𝑙(𝜃𝑗) = 𝑣𝑗, for 𝑗 = 1,… , 𝐽 (12)

for some nondecreasing concave function 𝑙(𝑡)mapping from IR to IR. Since 𝑙(⋅) is not unique, let
𝑣 denote the set of all such functions, where we write 𝑣 for (𝑣1, … , 𝑣𝐽). Next, we consider points
𝑡𝑖 ∈ IR, for 𝑖 = 1, … , 𝑛 (which can be any but must be fixed) and ask ourselves how we may find a
function 𝑙∗ ∈ 𝑣 such that

𝑛∑
𝑖=1

𝑎𝑖𝑙
∗(𝑡𝑖) = sup

𝑙∈𝑣

𝑛∑
𝑖=1

𝑎𝑖𝑙(𝑡𝑖), (13)

where 𝑎𝑖 , for 𝑖 = 1, … , 𝑛 are fixed positive constants. The next lemma states that such 𝑙∗ exists, has
a piecewise linear structure and can be obtained from solving a linear program.
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400 WANG and XU

Lemma 4.1. Consider the following linear program:

sup
𝑠,𝛽

𝑛∑
𝑖=1

𝑎𝑖𝑠𝑖 (14a)

s.t. 𝑣𝑗 + 𝛽𝑗(𝑡𝑖 − 𝜃𝑗) ≥ 𝑠𝑖, for 𝑗 = 1,… , 𝐽; 𝑖 = 1, … , 𝑛, (14b)

𝑣𝑗 + 𝛽𝑗(𝜃𝑗+1 − 𝜃𝑗) ≥ 𝑣𝑗+1, for 𝑗 = 1,… , 𝐽 − 1, (14c)

𝑣𝑗 + 𝛽𝑗+1(𝜃𝑗+1 − 𝜃𝑗) ≤ 𝑣𝑗+1, for 𝑗 = 1,… , 𝐽 − 1, (14d)

𝛽𝑗 ≥ 0, for 𝑗 = 1,… , 𝐽. (14e)

Let 𝜗∗ denote its optimal value. Then there exists a piecewise linear concave function 𝑙∗ ∈ 𝑣 such
that 𝜗∗ =

∑𝑛

𝑖=1
𝑎𝑖𝑙

∗(𝑡𝑖).

Proof. The thrust of the proof is to show problems (13) and (14) have the same optimal value. We
proceed the proof by showing that any feasible solution of the former can be used to construct
a feasible solution of the latter and conversely an optimal solution of the latter can be used to
construct a feasible solution of the former. Note that 𝑣 ≠ ∅ (which is our setup), 𝛽𝑗 is lower
bounded by 0 and upper bounded by constraints (14d). The latter ensures that 𝑠𝑖 is upper bounded
via inequalities (14b). Together with the fact that 𝑎𝑖 ≥ 0 for 𝑖 = 1, … , 𝑛, this further guarantees that
𝜗∗ < ∞ and the optimal value of the maximization problem (14) is attainable.
Let 𝑙 ∈ 𝑣. For 𝑗 = 1,… , 𝐽, define the support functions ℎ𝑗(𝜃) ∶= 𝑣𝑗 + 𝛽𝑗(𝜃 − 𝜃𝑗), which

majorizes 𝑙 at 𝜃𝑗 . By the concavity and nondecreasing property of 𝑙, the parameters (slopes) 𝛽𝑗 ,
for 𝑗 = 1,… , 𝐽, must satisfy inequalities (14c)–(14e). Moreover, the majorization property ensures
that ℎ𝑗(𝑡) ≥ 𝑙(𝑡) for any 𝑡 ∈ IR. Let 𝑠𝑖 ∶= 𝑙(𝑡𝑖), 𝑖 = 1, … , 𝑛. Then we have

ℎ𝑗(𝑡𝑖) = 𝑣𝑗 + 𝛽𝑗(𝑡𝑖 − 𝜃𝑗) ≥ 𝑠𝑖, for 𝑗 = 1,… , 𝐽; 𝑖 = 1, … , 𝑛

which give rise to constraint (14b). The discussions above imply that for 𝑠∶= (𝑠1, … , 𝑠𝑛) and 𝛽 ∶=
(𝛽1, … , 𝛽𝐽) chosen as such, (𝛽, 𝑠) forms a feasible solution to problem (14). This shows

𝜗∗ = sup
𝛽,𝑠

𝑛∑
𝑖=1

𝑎𝑖𝑠𝑖 ≥
𝑛∑
𝑖=1

𝑎𝑖𝑙(𝑡𝑖) and hence𝜗∗ ≥ sup
𝑙∈𝑣

𝑛∑
𝑖=1

𝑎𝑖𝑙(𝑡𝑖). (15)

Conversely, let (𝛽∗, 𝑠∗) be an optimal solution to problem (14). Then 𝜗∗ =
∑𝑛

𝑖=1
𝑎𝑖𝑠

∗. Let
ℎ∗
𝑗
(𝜃) = 𝑣𝑗 + 𝛽∗

𝑗
(𝜃 − 𝜃𝑗), for 𝑗 = 1,… , 𝐽 and 𝑙∗(𝑡) ∶= min𝑗=1,…,𝐽 ℎ

∗
𝑗
(𝑡). Since 𝛽∗

𝑗
≥ 0, then 𝑙∗ is a

nondecreasing piecewise linear concave function. In what follows, we show

𝑙∗(𝜃𝑗) = 𝑣𝑗, for 𝑗 = 1,… , 𝐽, and 𝑙∗(𝑡𝑖) = 𝑠∗
𝑖
, for 𝑖 = 1, … , 𝑛. (16)

Observe first that 𝛽∗
𝑗
satisfies

𝑣𝑗 + 𝛽∗
𝑗
(𝜃𝑘 − 𝜃𝑗) ≥ 𝑣𝑘, for 𝑘 = 1,… , 𝐽; 𝑗 = 1,… , 𝐽. (17)

To see this, we first show Equation (17) for fixed 𝑗 and 𝑘 = 𝑗 + 1,… , 𝐽. We do so by induction.
The inequality holds when 𝑘 = 𝑗 + 1 because it coincides with constraint (14c). Assume now the
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WANG and XU 401

inequality holds for 𝑘 = 𝑘′ ≥ 𝑗 + 1, thar is, 𝑣𝑗 + 𝛽∗
𝑗
(𝜃𝑘′ − 𝜃𝑗) ≥ 𝑣𝑘′ . We show it also holds for 𝑘 =

𝑘′ + 1. Since 𝛽∗
𝑘′

≤ 𝛽∗
𝑗
(themonotonicity of 𝛽∗

𝑗
is implied by a combination of constraints (14c) and

(14d) and 𝜃𝑗 is in an increasing order), then

𝑣𝑗 + 𝛽∗
𝑗
(𝜃𝑘′+1 − 𝜃𝑗) = 𝑣𝑗 + 𝛽∗

𝑗
(𝜃𝑘′+1 − 𝜃𝑘′) + 𝛽∗

𝑗
(𝜃𝑘′ − 𝜃𝑗)

≥ 𝛽∗
𝑘′
(𝜃𝑘′+1 − 𝜃𝑘′) + 𝑣𝑗 + 𝛽∗

𝑗
(𝜃𝑘′ − 𝜃𝑗)

≥ 𝑣𝑘′+1 − 𝑣𝑘′ + 𝑣𝑗 + 𝛽∗
𝑗
(𝜃𝑘′ − 𝜃𝑗) (by (14c))

≥ 𝑣𝑘′+1. (by assumption)

Likewise, we can also show Equation (17) holds for 𝑘 = 1,… , 𝑗 − 1 using constraint (14d) and
monotonicity of 𝛽∗

𝑗
. From Equation (17), we have

ℎ∗
𝑗
(𝜃𝑗′ ) = 𝑣𝑗 + 𝛽∗

𝑗
(𝜃𝑗′ − 𝜃𝑗) ≥ 𝑣𝑗′ , for 𝑗′ = 1, … , 𝐽, andℎ∗

𝑗′
(𝜃𝑗′ ) = 𝑣𝑗′ ,

which yield 𝑙∗(𝜃𝑗′ ) = min𝑗=1,…,𝐽 ℎ
∗
𝑗
(𝜃𝑗′ ) = 𝑣𝑗′ for 𝑗′ = 1, … , 𝐽 and hence 𝑙∗ ∈ 𝑣. On the other

hand, since problem (14) is a linear convex program, the optimal solution must be located at a
boundary of the feasible set. This means that there exist 𝑗𝑖 ∈ {1, … , 𝐽}, for 𝑖 = 1, … , 𝑛 such that

𝑣𝑗𝑖 + 𝛽∗
𝑗𝑖
(𝑡𝑖 − 𝜃𝑗𝑖 ) = 𝑠∗

𝑖
, for 𝑖 = 1, … , 𝑛, (18)

and hence ℎ∗
𝑗𝑖
(𝑡𝑖) = 𝑠∗

𝑖
, for 𝑖 = 1, … , 𝑛. Consequently, combining with constraint (14 b), we have

𝑙∗(𝑡𝑖) = min
𝑗=1,…,𝐽

ℎ∗
𝑗
(𝑡𝑖) = 𝑠∗

𝑖
. (19)

A combination of Equation (19) and the fact that 𝜗∗ =
∑𝑛

𝑖=1
𝑎𝑖𝑠

∗
𝑖
gives rise to

𝜗∗ =

𝑛∑
𝑖=1

𝑎𝑖𝑠
∗
𝑖
=

𝑛∑
𝑖=1

𝑎𝑖𝑙
∗(𝑡𝑖) ≤ sup

𝑙∈𝑣

𝑛∑
𝑖=1

𝑎𝑖𝑙(𝑡𝑖). (20)

The conclusion follows by combining Equations (15) and (20). □

In the follow-up discussions, we will use Θ to denote the set of all breakpoints of the quan-
tile functions of𝑊𝑘, 𝐺𝑚, and 𝐵𝑚 in certainty equivalent and pairwise comparison, respectively,
for 𝑘 = 1,… , 𝐾 and 𝑚 = 1,… ,𝑀 and label them in the increasing order of the values, that is, we
will use 𝜃𝑗 to denote the 𝑗th smallest element of set Θ and let 𝜃0 = 0. For clarity of the exposi-
tion, scenarios in Ω will be indexed by 𝑖 and elements in Θ will be indexed by 𝑗. Thus, the size
of the optimization problem will be determined by the number of pairwise comparisons 𝑀, the
number of certainty equivalent lotteries 𝐾, the size of scenarios |Ω| = 𝑛, and the size of the total
breakpoints 𝐽 = |Θ|.
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402 WANG and XU

The next theorem states that 𝜌1 (𝑋) can be computed by solving a finite-dimensional linear
program of reasonable size when 𝑋 is discretely distributed with finite outcomes.

Theorem4.2. Let𝑋 be finitely distributedwithℙ(𝑋 = 𝑥𝑖) = 𝑝𝑖 , for 𝑖 = 1, … , 𝑛, where 0 ≤𝑥1 < 𝑥2 <

… < 𝑥𝑛. Then 𝜌1 (𝑋) is the optimal value of the following linear program:

sup
𝑣,𝛽,𝑠,𝜁

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥𝑖−1)𝑠𝑖−1 (21a)

s.t. 𝑤−
𝑘
≤

𝐽∑
𝑗=1

[
𝐹←𝑊𝑘

(𝜃𝑗) − 𝐹←𝑊𝑘
(𝜃𝑗−1)

]
𝑣𝑗−1 ≤ 𝑤+

𝑘
, for 𝑘 = 1,… , 𝐾, (21b)

𝐽∑
𝑗=1

[
𝐹←
𝐺𝑚
(𝜃𝑗) − 𝐹←

𝐺𝑚
(𝜃𝑗−1)

]
𝑣𝑗−1 ≤

𝐽∑
𝑗=1

[
𝐹←𝐵𝑚

(𝜃𝑗) − 𝐹←𝐵𝑚
(𝜃𝑗−1)

]
𝑣𝑗−1, for𝑚 = 1,… ,𝑀,

(21c)

𝑣𝑗 ≤ 1

𝜑(1 − 𝜃𝑗)
, for 𝑗 = 1,… , 𝐽 such that 𝜃𝑗 ≥ 1 − 𝜖0, (21d)

𝑠𝑖 ≤ 1

𝜑(1 − 𝜋𝑖)
, for 𝑖 = 1, … , 𝑛 such that 𝜋𝑖 ≥ 1 − 𝜖0, (21e)

𝑣𝑗 + 𝛽𝑗(𝜃𝑗 − 𝜋𝑖) ≥ 𝑠𝑖, for 𝑖 = 0, 1, … , 𝑛; 𝑗 = 0, 1, … , 𝐽, (21f)

𝑣𝑗 + 𝛽𝑗(𝜃𝑗 − 𝜃𝑗+1) ≥ 𝑣𝑗+1, for 𝑗 = 0, 1, … , 𝐽 − 1, (21g)

𝑣𝑗 + 𝛽𝑗+1(𝜃𝑗 − 𝜃𝑗+1) ≤ 𝑣𝑗+1, for 𝑗 = 0, 1, … , 𝐽 − 1, (21h)

𝛽𝑗 ≥ 0, for 𝑗 = 0, 1, … , 𝐽, (21i)

𝑠𝑖 + 𝜁𝑖(𝜋𝑖 − 𝜃𝑗) ≥ 𝑣𝑗, for 𝑖 = 0, 1, … , 𝑛; 𝑗 = 0, 1, … , 𝐽, (21j)

𝑠𝑖 + 𝜁𝑖(𝜋𝑖 − 𝜋𝑖+1) ≥ 𝑠𝑖+1, for 𝑖 = 0, 1, … , 𝑛 − 1, (21k)

𝑠𝑖 + 𝜁𝑖+1(𝜋𝑖 − 𝜋𝑖+1) ≤ 𝑠𝑖+1, for 𝑖 = 0, 1, … , 𝑛 − 1, (21l)

𝜁𝑖 ≥ 0, for 𝑖 = 0, 1, … , 𝑛, (21m)

𝑠0 = 1, 𝑠𝑛 = 0, 𝑣0 = 1, 𝑣𝐽 = 0, (21n)

where 𝜋0 = 0 and 𝜋𝑖 =
∑
𝑙≤𝑖 𝑝𝑙 for 𝑖 = 1, … , 𝑛.

Problem (21) is a linear program with 2(𝐽 + 𝑛) variables and 2𝑛𝐽 + 5𝑛 +𝑀 + 2𝐾 + 5𝐽 + 2 con-
straints at most (not counting the non-negativity constraints). The objective function follows
from Equation (10) and constraint (21b) corresponds to the certainty equivalents 𝑤−

𝑘
≤ 𝜌𝑔(𝑊𝑘) ≤

𝑤+
𝑘
for 𝑘 = 1,… , 𝐾; constraint (21c) arises from pairwise comparisons 𝜌𝑔(𝐺𝑚) ≤ 𝜌𝑔(𝐵𝑚) for𝑚 =

1,… ,𝑀; constraints (21d) and (21e) represent the boundedness condition from 𝑔(𝜖) ≤ 1

𝜑(𝜖)
, 𝜖 ≤ 𝜖0;

finally constraints (21f)–(21m) characterize the monotonicity and concavity of 𝑔 and constraint
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WANG and XU 403

(21n) represents the normalization of 𝑔 because 𝑔 is a distortion function satisfying 𝑔(0) = 0 and
𝑔(1) = 1.

Proof. We use Lemma 4.1 to prove the result and do so in three steps.
Step 1. For each fixed 𝑣 = (𝑣0, 𝑣1, … , 𝑣𝐽) ∈ IR𝐽+1, we define the set

(𝑣) ∶= {𝑔 ∈  ∶ 𝑔(1 − 𝜃𝑗) = 𝑣𝑗, for 𝑗 = 0, 1, … , 𝐽}.

By the definition, (𝑣) ⊂ . Note that (𝑣) may be empty. A necessary and sufficient condition
for (𝑣) ≠ ∅ is that 𝑣0 = 1, 𝑣1 = 0, and 𝑣𝑗 for 𝑗 = 0, 1, … , 𝐽 is in nonincreasing order because  is
the set of all distortion functions. In the rest of discussions, we will only focus on the case that
(𝑣) ≠ ∅. On the other hand, for any 𝑔 ∈ , there exist 𝑣 ∈ IR𝐽+1 such that 𝑔 ∈ (𝑣). Thus

 = ⋃
𝑣∈IR𝐽+1

(𝑣) and 1 = ⋃
𝑣∈IR𝐽+1

(1 ∩ (𝑣))

and subsequently we can write 𝜌1 (𝑋) as

𝜌1 (𝑋) = sup
𝑣

𝜌1∩(𝑣)(𝑋)

s.t. (𝑣) ∩ 1 ≠ ∅.

Note that (𝑣) defines the set of all functions in  whose values on Θ are 𝑣 = (𝑣0, 𝑣1, … , 𝑣𝐽),
whereas 𝑐𝑒 is a set of specific functions in , which satisfy certainty equivalent conditions and
their values are determined by a subset of Θ. Moreover, since (𝑣) is determined by 𝑣, then
for fixed 𝑣, either 𝑣 satisfy the certainty equivalent conditions or not, which implies that either
(𝑣) is a subset of 𝑐𝑒 or is disjoint from it. The same is true for the sets 𝑝𝑎𝑖𝑟 and 𝑏𝑛𝑑. Since1 = 𝑐𝑜ℎ ∩ 𝑝𝑎𝑖𝑟 ∩ 𝑐𝑒 ∩ 𝑏𝑛𝑑,

𝜌1 (𝑋) = sup
𝑣

𝜌1∩(𝑣)(𝑋) (23a)

s.t. (𝑣) ∩ 𝑐𝑜ℎ ≠ ∅, (𝑣) ⊂ 𝑝𝑎𝑖𝑟, (𝑣) ⊂ 𝑐𝑒, (𝑣) ⊂ 𝑏𝑛𝑑. (23b)

Step 2. Let 𝑌 be a discretely distributed non-negative random variable with ℙ(𝑌 = 𝑦𝑙) = 𝑝𝑙
for 𝑙 = 1, … , 𝐿. We want to represent 𝜌𝑔(𝑌) via {(1 − 𝜃𝑗, 𝑣𝑗)}

𝐽
𝑗=0

if the breakpoints of the quantile
function of 𝑌 are contained in Θ. The quantile function of 𝑌 is a step-like function with

𝐹←𝑌 (𝑡) = 𝑦𝑙+1, for 𝑡 ∈ (𝜋𝑙, 𝜋𝑙+1] and 𝑙 = 0, 1, … , 𝐿,

where 𝑦0 = 0, 𝜋0 = 0, 𝜋𝐿+1 = 1, and 𝜋𝑙 =
∑
𝑗≤𝑙 𝑝𝑗 for 𝑙 = 1, … , 𝐿. Moreover, since 𝜋𝑙 ∈ Θ for 𝑙 =

1, … , 𝐿 + 1 and 𝜃𝑙 is the 𝑙th smallest element in set Θ, then by Equation (10), we have

𝜌𝑔(𝑌) =

𝐿∑
𝑙=1

(𝑦𝑙 − 𝑦𝑙−1)𝑔(1 − 𝜋𝑙−1) =

𝐽∑
𝑗=1

[
𝐹←𝑌 (𝜃𝑗) − 𝐹←𝑌 (𝜃𝑗−1)

]
𝑔(1 − 𝜃𝑗−1). (24)

Consequently, 𝜌𝑔(𝑊𝑘), 𝜌𝑔(𝐺𝑚), and 𝜌𝑔(𝐵𝑚) have the similar representations of Equation (24) for
𝑘 = 1,… , 𝐾 and𝑚 = 1,… ,𝑀.
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404 WANG and XU

Step 3.We are now ready to reformulate problem (23). By Equations (3) and (10), the objective
function of program (23) can be reformulated as

𝜌1∩(𝑣)(𝑋) = sup
𝑔

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥𝑖−1)𝑔(1 − 𝜋𝑖−1) (25a)

s.t. 𝑔 ∈ 1 ∩ (𝑣). (25b)

Note that 𝑣 in problem (25) is fixed and satisfies (23 b), thus 𝑝𝑎𝑖𝑟 and 𝑐𝑒 have no impact on
problem (25). Consequently, constraint (25 b) can be represented as 𝑔 ∈ 𝑐𝑜ℎ ∩ (𝑣) ∩ 𝑏𝑛𝑑. Prob-
lem (25) corresponds to the maximization of the objective function in Equation (21 a) w.r.t. 𝛽, 𝑠, 𝜁
under the constraints (21 e)–(21 m). To see this, we consider two cases.
Case 1. 1 − 𝜋𝑖 ∉ [0, 𝜖0] for 𝑖 = 1, … , 𝑛. In this case, constraint 𝑏𝑛𝑑 in problem (25) is not

invoked. Consequently, constraint (21e) will disappear and problem (25) reduces to Equation
(13) except that here 𝑣0, 𝑣1, … , 𝑣𝐽 and 1 − 𝜃0, 1 − 𝜃1, … , 1 − 𝜃𝐽 are both in nonincreasing order.
Let �̃�𝑗 ∶= 1 − 𝜃𝑗 for 𝑗 = 0, 1, … , 𝐽. Relabel the sequence �̃�0, �̃�1, … , �̃�𝐽 in nondecreasing order
and denote them by �̂�𝑗 , for 𝑗 = 0, 1, … , 𝐽. Then �̂�𝑗 = �̃�𝐽−𝑗, for 𝑗 = 0, 1, … , 𝐽. Let 𝑣𝑗 ∶= 𝑔(�̂�𝑗) =

𝑔(�̂�𝐽−𝑗) = 𝑔(1 − 𝜃𝐽−𝑗) ∶= 𝑣𝐽−𝑗 . Consequently, we can apply Lemma 4.1 with (𝑣𝑗, �̂�𝑗) for 𝑗 =
0, 1, … , 𝐽 and 𝑡𝑖 = 1 − 𝜋𝑖 for 𝑖 = 0, 1, … , 𝑛. To see how the application is spelt out, let us consider
constraint (14c). In this context, it implies

𝑣𝑗 + 𝛽𝑗(�̂�𝑗+1 − �̂�𝑗) ≥ 𝑣𝑗+1, for 𝑗 = 0, 1, … , 𝐽 − 1. (26)

Let 𝛽𝑗 = 𝛽𝐽−𝑗 for 𝑗 = 0, 1, … , 𝐽. Then, Equation (26) is equivalent to

𝑣𝐽−𝑗 + 𝛽𝐽−𝑗(𝜃𝐽−𝑗 − 𝜃𝐽−𝑗−1) ≥ 𝑣𝐽−𝑗−1, for 𝑗 = 0, 1, … , 𝐽 − 1. (27)

Let 𝑘 ∶= 𝐽 − 𝑗 − 1. Then, Equation (27) can be written as

𝑣𝑘+1 + 𝛽𝑘+1(𝜃𝑘+1 − 𝜃𝑘) ≥ 𝑣𝑘, for 𝑘 = 0, 1, … , 𝐽 − 1, (28)

which coincides with constraint (21h). Likewise, we are able to use constraint (14d) to derive
constraint (21g) and constraint (14b) to derive constraint (21f). Constraint (21i) corresponds to
Equation (14e). Constraints (21j)–(21m) are redundant in this case. To explain this, we note
that problem (25) corresponds to the maximization of the objective function in Equation (21 a)
w.r.t. 𝛽, 𝑠, 𝜁 under the constraints (21 e)–(21 m). Following a similar analysis to the converse part
of the proof of Lemma 4.1, we are able to show the optimal solutions of the program without
these constraints satisfy 𝑠𝑖 = 𝑔(1 − 𝜋𝑖) for 𝑖 = 1, … , 𝑛. Since 𝑔 is concave, and 𝑣𝑗 = 𝑔(1 − 𝜃𝑗) for 𝑗 =
0, 1, … , 𝐽, then these solutions satisfy (21j)–(21m), which means these constraints are redundant.
Case 2. There exists 𝑖 ∈ {1, … , 𝑛} such that 1 − 𝜋𝑖 ∈ [0, 𝜖0]. All arguments are the same as in

case 1 except that in this case, constraint 𝑏𝑛𝑑 is valid, see constraint (21e). Unfortunately, this
constraint may destroy the nondecreasing concavity of 𝑔. To address the issue, we add con-
straints (21 j)–(21 m) to reinforce the nondecreasing and concave properties of the worst-case
distortion function.
Now, we consider the constraints of program (23). Constraint (𝑣) ∩ 𝑐𝑜ℎ ≠ ∅means that there

exist 𝛽𝑗 ≥ 0 for 𝑗 = 0, 1, … , 𝐽 such that constraints (21 g) and (21 h) hold. Constraint (𝑣) ⊂ 𝑝𝑎𝑖𝑟
corresponds to Equation (21 c), (𝑣) ⊂ 𝑐𝑒 corresponds to constraint (21 b), and (𝑣) ⊂ 𝑏𝑛𝑑 cor-
responds to constraint (21 d). Constraint (21n) is the normalization condition because 𝑔 is a
distortion function satisfying 𝑔(0) = 0 and 𝑔(1) = 1. □
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WANG and XU 405

Remark 4.3. From the proof of Theorem 4.2, we know that if we drop the sensitivity condition
𝑏𝑛𝑑 in 1, then we may not require constraints (21 d)–(21 e) and (21 j)–(21 m) in problem (21).

The following example illustrates the curvature of the worst-case concave distortion function.

Example 4.4. Consider the case 1 = 𝑐𝑜ℎ ∩ 𝑐𝑒, where 𝑐𝑒 = {𝑔 ∈  ∶ 𝑤−
1 ≤ 𝜌𝑔(𝑊1) ≤ 𝑤+

1 },
Consider a random variable where 𝑃(𝑊1 = 1) =

1

2
, 𝑃(𝑊1 = 0) =

1

2
, and𝑤−

1 = 𝑤+
1 =

3

4
. We calcu-

late the PRDRMs of the following random losses𝑋1 and𝑋2 with 𝑃(𝑋1 = 𝑥) =
1

4
, 𝑃(𝑋1 = 𝜆𝑥) =

1

2
,

𝑃(𝑋1 = 𝜇𝑥) =
1

4
, 𝑃(𝑋2 = 𝑥) =

2

5
, 𝑃(𝑋2 = 𝜆𝑥) =

2

5
, 𝑃(𝑋2 = 𝜇𝑥) =

1

5
, where 𝜇 ≥ 𝜆 ≥ 1 and 𝑥 > 0,

on 1. By Equation (10), we have 1 = {𝑔 ∈ 𝑐𝑜ℎ ∶ 𝑔( 1
2
) =

3

4
}.

In this setup, since there is no pairwise comparison condition and the sensitivity condition,
then𝑀 = 0, 𝜑 = 0. There is only one certainty equivalent condition, thus 𝐾 = 1 and 𝐽 = 2 with
𝜃1 =

1

2
and 𝜃2 = 1. For 𝑋1, the quantile function has three breakpoints: 𝜋1 =

1

4
, 𝜋2 =

3

4
and 𝜋3 =

1. Let 𝜋0 = 0 and 𝜃0 = 0. By Theorem 4.2 and Remark 4.3, we can calculate 𝜌1 (𝑋1) by solving the
following linear program

sup
𝑠1,𝑠2;𝛽0,𝛽1,𝛽2

𝑥[𝑠0 + (𝜆 − 1)𝑠1 + (𝜇 − 𝜆)𝑠2] (29a)

s.t. 𝑣1 =
3

4
, (29b)

0 ≤ 𝛽0 ≤ 1

2
≤ 𝛽1 ≤ 3

2
≤ 𝛽2, (29c)

𝑠2 ≤ 1

4
𝛽2, 𝑠1 ≤ 3

4
𝛽2, (29d)

𝑠2 ≤ 3

4
−
1

4
𝛽1, 𝑠1 ≤ 3

4
+
1

4
𝛽1, (29e)

𝑠2 ≤ 1 −
3

4
𝛽0, 𝑠1 ≤ 1 −

1

4
𝛽0, (29f)

𝑣0 = 1, 𝑣2 = 0, 𝑠0 = 1, 𝑠3 = 0, (29g)

To see how the LP works, we consider two cases for𝑋1.Case 1: 𝜆 = 3, 𝜇 = 4. The optimal value
of the LP is 7

2
𝑥 and the optimal solution is 𝑠1 = 1, 𝑠2 =

1

2
, 𝛽0 = 0, 𝛽1 = 1, 𝛽2 = 2. Thus 𝜌1 (𝑋1) =

7

2
𝑥. Case 2: 𝜆 = 2, 𝜇 = 12. 𝜌1 (𝑋1) =

65

8
𝑥 with 𝑠1 =

7

8
, 𝑠2 =

5

8
, 𝛽0 =

1

2
, 𝛽1 =

1

2
, 𝛽2 =

5

2
.

Figure 2a depicts the worst-case concave distortion function associated with 𝑋1 with different
𝜆 and 𝜇 values. To explain how the worst-case concave distortion functions are determined, let us
note first that in this example, Θ = {0,

1

2
, 1} and 𝑣 = (0,

3

4
, 1). Thus, for any 𝑔 ∈ (𝑣), the graph of

𝑔 must pass through points (0,0), ( 1
2
,
3

4
), and (1,1). Moreover, by the concavity of 𝑔, the graph of

the worst-case distortion function must fall within the two shaded triangle areas.
Let us now look into the blue curve. The 𝑡-axis of Figure 2a depicts the range of the survival

function. For 𝑋1 in case 1, when 𝑡 ∈ [0, 0.25), the corresponding loss is 4𝑥, whereas when 𝑡 ∈
[0.25, 0.75), the corresponding loss is 3𝑥 and when 𝑡 ∈ [0.75, 1), the corresponding loss is 𝑥. From
Figure 2a, we can see that the worst-case distortion function over the interval [0.75,1] should be as
largest as possible, and the large possible value in the shaded triangle area is 𝑔(0.75) = 1 because
the difference of quantile losses at 𝑡 = 1 and 𝑡 = 0.75 is 2𝑥, which is larger than the difference of
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406 WANG and XU

F IGURE 2 Worst-case concave distortion functions: (a) for 𝑋1 and (b) for 𝑋2. [Color figure can be viewed at
wileyonlinelibrary.com]

quantile losses at 𝑡 = 0.75 and 𝑡 = 0.25 (is 𝑥). Since the worst-case distortion function is piecewise
linear by Lemma 4.1, then its concavity determines that the function passing through points (0,0),
(
1

2
,
3

4
), and (1,1) within the shaded triangle areas must be a straight line.

Next, we look into the red curve. For 𝑋1 in case 2, at 𝑡 = 0.25, the corresponding difference of
quantile loss is 12𝑥 − 2𝑥 = 10𝑥, whereas at 𝑡 = 0.75, the corresponding difference of quantile loss
is 2𝑥 − 𝑥 = 𝑥. The difference of quantile loss at 0.25 is much more significant than that at 0.75.
From Figure 2a, we can see that the worst-case distortion function over the interval [0, 1

4
] should

be as large as possible, and the largest possible value in the shaded triangle area is 𝑔(1
4
) =

5

8
. Since

the worst-case distortion function is piecewise linear by Lemma 4.1, then its concavity determines
that the functions passing through points (0,0), ( 1

2
,
3

4
), and (1,1) within the shaded triangle areas

must be a straight line.
For 𝑋2, we have 𝐾 = 1, 𝑀 = 0, 𝜑 = 0, 𝐽 = 2, and 𝑛 = 3; 𝜋0 = 0, 𝜋1 =

2

5
, 𝜋2 =

4

5
, and 𝜋3 = 1;

𝜃0 = 0, 𝜃1 =
1

2
, and 𝜃2 = 1. Similar to 𝑋1, we have the following:

∙ Case 1: 𝜆 = 3, 𝜇 = 4. In this case, 𝜌1 (𝑋2) =
31

10
𝑥 with 𝑠1 =

9

10
, 𝑠2 =

3

10
, 𝛽0 =

1

4
, 𝛽1 =

3

2
, 𝛽2 =

3

2
.

∙ Case 2: 𝜆 = 2, 𝜇 = 12. In this case, 𝜌1 (𝑋2) =
39

5
𝑥 with 𝑠1 =

4

5
, 𝑠2 =

3

5
, 𝛽0 =

1

2
, 𝛽1 =

1

2
, 𝛽2 = 3.

Figure 2b depicts the worst-case concave distortion function associated with 𝑋2 with different 𝜆
and 𝜇 values. Similar arguments apply to 𝑋2.

From Figure 2a, we can see that the worst-case distortion function in both cases can be piece-
wise linear. Note that they are not unique because we can revise their values, for example, over
interval (0, 1

4
) so long as the concavity andmonotonicity are preserved.We consider the piecewise

linear function only for simplicity. Moreover, the difference between the two curves indicates that
they depend on realizations of 𝑋1. Similar comments apply to Figure 2b. Furthermore, by com-
paring the graph of case 1 in Figure 2a and the graph of case 1 in Figure 2b, we can see that the
worst-case distortion function also depends on the probabilities of 𝑋1 and 𝑋2 even though have
the same realizations.
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WANG and XU 407

4.3 Tractable reformulation for PRDRM on 𝟐

In this subsection, we consider the tractable formulation for the proposed PRDRM where the
ambiguity set of distortion functions is 2. From our definition, we have

2 = 𝑆 ∩ 𝑝𝑎𝑖𝑟 ∩ 𝑐𝑒 ∩ 𝑏𝑛𝑑 =
⎧⎪⎪⎨⎪⎪⎩
𝑔 ∈  ∶

𝑤−
𝑘
≤ 𝜌𝑔(𝑊𝑘) ≤ 𝑤+

𝑘
for 𝑘 = 1,… , 𝐾;

𝜌𝑔(𝐺𝑚) ≤ 𝜌𝑔(𝐵𝑚) for𝑚 = 1,… ,𝑀;

𝑔(𝜖) ≤ 1

𝜑(𝜖)
𝜖 ≤ 𝜖0; and 𝑔 is inverse S-shaped

⎫⎪⎪⎬⎪⎪⎭
,

where 𝜖0 is a small positive number.
To derive tractable reformulation of PRDRMwith ambiguity set 2, we need to consider how to

determine the worst-case convex function through a set of points {(𝜃𝑗, 𝑣𝑗)}𝐽𝑗=1. As in Delage et al.
(2022), we will use the support function approach to reformulate the robust constraint, which is
convex over [�̃�, 1] as a linear programming problem, and then derive the tractable reformulation
of 𝜌2(X) for a discretely distributed non-negative random loss 𝑋.
In the follow-up discussions, we refer to Θ as the set of all breakpoints of quantile functions

of𝑊𝑘, 𝐺𝑚, and 𝐵𝑚 in certainty equivalent and pairwise comparison, respectively, for 𝑘 = 1,… , 𝐾

and𝑚 = 1,… ,𝑀, and label them in the increasing order of the values, that is, we use 𝜃𝑗 to denote
the 𝑗th smallest entry of Θ and 𝜃0 = 0. To ease the exposition, we will include 1 − �̃� in Θ and
define the sets  = {1, … , 𝐽},  − = {𝑗 ∈  ∶ 1 − 𝜃𝑗 ≤ �̃�}, and  + = {𝑗 ∈  ∶ 1 − 𝜃𝑗 ≥ �̃�}, where
𝐽 = |Θ|. The next theorem states that 𝜌2 (𝑋) can be computed by solving a finite-dimensional
linear program of reasonable size when 𝑋 is finitely distributed, that is, 𝑋 has 𝑛 different realiza-
tions. The linear program has 2(𝐽 + 𝑛) variables and 2𝑛𝐽 + 5𝑛 +𝑀 + 2𝐾 + 5𝐽 + 2 constraints at
most (not counting the non-negativity constraints). Since the proof is similar to Theorem 4.2, we
defer it to Appendix A.2.

Theorem 4.5. Let𝑋 be finitely distributed withℙ(𝑋 = 𝑥𝑖) = 𝑝𝑖 , for 𝑖 = 1, … , 𝑛 with 0 < 𝑥1 < 𝑥2 <

… < 𝑥𝑛. Then 𝜌2 (𝑋) is the optimal value of the following linear program:

sup
𝑣,𝛽,𝑠,𝜁,𝛼,𝑏

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥𝑖−1)[𝑠𝑖−1𝟏{1 − 𝜋𝑖−1 < �̃�} + (𝛼𝑖−1(1 − 𝜋𝑖−1) + 𝑏𝑖−1)𝟏{1 − 𝜋𝑖−1 ≥ �̃�}] (30a)

s.t. 𝑤−
𝑘
≤

𝐽∑
𝑗=1

[
𝐹←𝑊𝑘

(𝜃𝑗) − 𝐹←𝑊𝑘
(𝜃𝑗−1)

]
𝑣𝑗−1 ≤ 𝑤+

𝑘
, for 𝑘 = 1,… , 𝐾, (30b)

𝐽∑
𝑗=1

[
𝐹←
𝐺𝑚
(𝜃𝑗) − 𝐹←

𝐺𝑚
(𝜃𝑗−1)

]
𝑣𝑗−1 ≤

𝐽∑
𝑗=1

[
𝐹←𝐵𝑚

(𝜃𝑗) − 𝐹←𝐵𝑚
(𝜃𝑗−1)

]
𝑣𝑗−1, for𝑚 = 1,… ,𝑀,

(30c)

𝑣𝑗 ≤ 1

𝜑(1 − 𝜃𝑗)
, for 𝑗 ∈  , such that 𝜃𝑗 ≥ 1 − 𝜖0, (30d)

𝑠𝑖 ≤ 1

𝜑(1 − 𝜋𝑖)
, for 𝑖 = 1, 2, … , 𝑛, such that 𝜋𝑖 ≥ 1 − 𝜖0, (30e)

𝑣𝑗 + 𝛽𝑗(𝜃𝑗 − 𝜋𝑖) ≥ 𝑠𝑖, for 𝑖 = 0, 1, … , 𝑛; 𝑗 ∈  −, (30f)
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408 WANG and XU

𝑣𝑗 + 𝛽𝑗(𝜃𝑗 − 𝜃𝑗+1) ≥ 𝑣𝑗+1, for 𝑗 ∈  − ⧵ {𝐽}, (30g)

𝑣𝑗 + 𝛽𝑗+1(𝜃𝑗 − 𝜃𝑗+1) ≤ 𝑣𝑗+1, for 𝑗 ∈  − ⧵ {𝐽}, (30h)

𝛼𝑖(1 − 𝜃𝑗) + 𝑏𝑖 ≤ 𝑣𝑗, for 𝑖 = 0, 1, … , 𝑛; 𝑗 ∈  +, (30i)

𝛼𝑖 ≥ 0, for 𝑖 = 0, 1, … , 𝑛, (30j)

𝑣𝑗 + 𝛽𝑗(𝜃𝑗 − 𝜃𝑗−1) ≤ 𝑣𝑗−1, for 𝑗 ∈  +, (30k)

𝑣𝑗 + 𝛽𝑗−1(𝜃𝑗 − 𝜃𝑗−1) ≥ 𝑣𝑗−1, for 𝑗 ∈  +, (30l)

𝛽𝑗 ≥ 0, for 𝑗 = 0, 1, … , 𝐽, (30m)

𝑠𝑖 + 𝜁𝑖(𝜋𝑖 − 𝜃𝑗) ≥ 𝑣𝑗, for 𝑗 ∈  −; 𝑖 = 0, 1, … , 𝑛 − 1, such that𝜋𝑖+1 ≥ 1 − �̃�, (30n)

𝑠𝑖 + 𝜁𝑖(𝜋𝑖 − 𝜋𝑖+1) ≥ 𝑠𝑖+1, for 𝑖 = 0, 1, … , 𝑛 − 1, such that𝜋𝑖+1 ≥ 1 − �̃�, (30o)

𝑠𝑖 + 𝜁𝑖+1(𝜋𝑖 − 𝜋𝑖+1) ≤ 𝑠𝑖+1, for 𝑖 = 0, 1, … , 𝑛 − 1, such that𝜋𝑖+1 ≥ 1 − �̃�, (30p)

𝜁𝑖 ≥ 0, for 𝑖 = 0, 1, … , 𝑛, such that𝜋𝑖+1 ≥ 1 − �̃�, (30q)

𝑣0 = 1, 𝑣𝐽 = 0, 𝑠0 = 1, 𝑠𝑛 = 0, (30r)

where 𝜋0 = 0 and 𝜋𝑖 =
∑
𝑙≤𝑖 𝑝𝑙 for 𝑖 = 1, … , 𝑛.

Remark 4.6. Similar to Remark 4.3, we know that if we drop the sensitivity condition 𝑏𝑛𝑑 in 2,
then we may not require constraints (30 d)–(30 e) and (21 n)–(21 q) in problem (30).

The next example illustrates the change of concavity and convexity in the worst-case
nondecreasing inverse S-shaped distortion functions.

Example 4.7. Consider the case 2 = 𝑆 ∩ 𝑐𝑒, where 𝑐𝑒 = {𝑔 ∈  ∶ 𝑤−
1 ≤ 𝜌𝑔(𝑊1) ≤ 𝑤+

1 , 𝑤
−
2 ≤

𝜌𝑔(𝑊2) ≤ 𝑤+
2 }, 𝑃(𝑊1 = 1) =

1

6
, 𝑃(𝑊1 = 0) =

5

6
, 𝑃(𝑊2 = 1) =

5

6
, 𝑃(𝑊2 = 0) =

1

6
, and𝑤−

1 = 𝑤+
1 =

2

5
,𝑤−

2 = 𝑤+
2 =

3

5
.We calculate the PRDRMsof the following random losses𝑌1 and𝑌2with𝑃(𝑌1 =

𝑥) =
1

8
, 𝑃(𝑌1 = 𝜆1𝑥) =

1

8
, 𝑃(𝑌1 = 𝜆2𝑥) =

1

2
, 𝑃(𝑌1 = 𝜆3𝑥) =

1

8
, 𝑃(𝑌1 = 𝜆4𝑥) =

1

8
, 𝑃(𝑌2 = 𝑥) =

1

12
,

𝑃(𝑌2 = 𝜆1𝑥) =
1

6
, 𝑃(𝑌2 = 𝜆2𝑥) =

1

2
, 𝑃(𝑌2 = 𝜆3𝑥) =

1

6
, 𝑃(𝑌2 = 𝜆4𝑥) =

1

12
, where 𝜆4 ≥ 𝜆3 ≥ 𝜆2 ≥

𝜆1 ≥ 1 and 𝑥 > 0. By Equation (10), we have

2 =
{
𝑔 ∈  ∶ 𝑔

(
1

6

)
=
2

5
, 𝑔
(5
6

)
=
3

5
, 𝑔 is concave on

[
0,
1

3

]
and convex on

[
1

3
, 1

]}
.

In this setup, since there is no pairwise comparison condition and the sensitivity condition,
then 𝑀 = 0, 𝜑 = 0. There are only two certainty equivalent conditions, thus 𝐾 = 2 and 𝐽 = 4

with 𝜃1 =
1

6
, 𝜃2 =

2

3
, 𝜃3 =

5

6
, and 𝜃4 = 1. In this case,  − = {2, 3, 4} and  + = {1, 2}. For 𝑌1, the

quantile function has five breakpoints: 𝜋1 =
1

8
, 𝜋2 =

1

4
, 𝜋3 =

3

4
, 𝜋4 =

7

8
, and 𝜋5 = 1. Let 𝜃0 = 0

and 𝜋0 = 0. By Theorem 4.5 and Remark 4.6, we can calculate 𝜌2 (𝑌1) by solving the following

 14679965, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12379 by U
niversity O

f Southam
pton, W

iley O
nline L

ibrary on [12/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



WANG and XU 409

linear program:

sup
𝑣,𝛽,𝑠,𝛼,𝑏

𝑥

[
(𝜆4 − 𝜆3)𝑠4 + (𝜆3 − 𝜆2)𝑠3 + (𝜆2 − 𝜆1)

(
3

4
𝛼2 + 𝑏2

)
+ (𝜆1 − 1)

(7
8
𝛼1 + 𝑏1

)
+ 𝛼0 + 𝑏0

]
s.t. 𝑣1 =

3

5
, 𝑣3 =

2

5
,

0 ≤ 𝛽1 ≤ 12

5
≤ 𝛽0, 0 ≤ 𝛽3 ≤ 12

5
≤ 𝛽4, 𝛽2 ≥ 0,

𝑣2 −
1

12
𝛽2 ≥ 𝑠3, 𝑣2 −

5

24
𝛽2 ≥ 𝑠4, 𝑣2 −

1

3
𝛽2 ≥ 0,

1

4
𝛽4 ≥ 𝑠3, 𝑣2 ≥ 0,

2

5
+

1

12
𝛽3 ≥ 𝑠3,

2

5
−

1

24
𝛽3 ≥ 𝑠4,

1

8
𝛽4 ≥ 𝑠4,

𝑣2 −
1

6
𝛽2 ≥ 2

5
, 𝑣2 −

1

6
𝛽3 ≤ 2

5
, 𝑣2 +

1

2
𝛽2 ≤ 3

5
, 𝑣2 +

1

2
𝛽1 ≥ 3

5
,

𝛼0 + 𝑏0 ≤ 1,
5

6
𝛼0 + 𝑏0 ≤ 3

5
,
1

3
𝛼0 + 𝑏0 ≤ 𝑣2,

𝛼1 + 𝑏1 ≤ 1,
5

6
𝛼1 + 𝑏1 ≤ 3

5
,
1

3
𝛼1 + 𝑏1 ≤ 𝑣2,

𝛼2 + 𝑏2 ≤ 1,
5

6
𝛼2 + 𝑏2 ≤ 3

5
,
1

3
𝛼2 + 𝑏2 ≤ 𝑣2,

𝑣0 = 1, 𝑣4 = 0, 𝑠0 = 1, 𝑠5 = 0.

To see how the LP works, we consider three cases for 𝑌1.

∙ Case 1: 𝜆1 = 2, 𝜆2 = 3, 𝜆3 = 4, 𝜆4 = 5. In this case, 𝜌2 (𝑌1) =
16

5
𝑥 with 𝑠4 =

3

10
, 𝑠3 =

3

5
, 𝑣2 =

3

5
,
3

4
𝛼2 + 𝑏2 =

3

5
,
7

8
𝛼1 + 𝑏1 =

7

10
, 𝛼0 + 𝑏0 = 1.

∙ Case 2: 𝜆1 = 2, 𝜆2 = 3, 𝜆3 = 4, 𝜆4 = 10. In this case, 𝜌2 (𝑌1) =
76

15
𝑥 with 𝑠4 =

2

5
, 𝑠3 =

2

5
, 𝑣2 =

17

30
,
3

4
𝛼2 + 𝑏2 =

3

5
,
7

8
𝛼1 + 𝑏1 =

7

10
, 𝛼0 + 𝑏0 = 1.

∙ Case 3: 𝜆1 = 2, 𝜆2 = 5, 𝜆3 = 6, 𝜆4 = 10. In this case, 𝜌2 (𝑌1) =
27

5
𝑥 with 𝑠4 =

419

1154
, 𝑠3 =

1195

2522
, 𝑣2 =

316

577
,
3

4
𝛼2 + 𝑏2 =

366

619
,
7

8
𝛼1 + 𝑏1 =

7

10
, 𝛼0 + 𝑏0 = 1.

Figure 3a depicts the worst-case inverse S-shaped distortion functions associated with 𝑌1 with
different 𝜆1, 𝜆2, 𝜆3, and 𝜆4 values. To see how the worst-case inverse S-shaped distortion func-
tions are determined, let us note first that in this example,Θ = {0,

1

6
,
1

3
,
5

6
, 1} and 𝑣 = (0,

2

5
, 𝑣2,

3

5
, 1).

Thus, for any 𝑔 ∈ (𝑣), the graph of 𝑔must pass through points (0,0), ( 1
6
,
2

5
), ( 5

6
,
3

5
), and (1,1).More-

over, by the increasing concavity of 𝑔 over the interval [0, 1
3
] and increasing convexity of 𝑔 over

the interval [ 1
3
, 1], the graph of the worst inverse S-shaped distortion functionmust fall within the

shaded area.
Let us now look into the blue curve. The 𝑡-axis of Figure 3a depicts the range of survival func-

tions. Since from Equation (10), the adjacent differences of the losses of 𝑌1 (sorted in increasing
order) are all equal to 𝑥, then the worst-case inverse S-shaped distortion function should be as
large as possible on the interval [ 1

3
, 1] and the largest value of 𝑔 at point 1

3
is 3

5
. Moreover, since
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410 WANG and XU

F IGURE 3 Worst-case inverse S-shaped distortion functions: (a) for 𝑌1 and (b) for 𝑌2. [Color figure can be
viewed at wileyonlinelibrary.com]

the distortion function on the interval [0, 1
3
] is concave and should pass through the points (0,0),

(
1

6
,
2

5
), and ( 1

3
,
3

5
), then the worst-case nondecreasing concave function over the interval may be

the one such that the value of 𝑔 at point 1
4
is lifted to the largest possible value (which is 3

5
), and

this in turn forces the part over the interval [0, 1
6
] to take a linear form. Similar arguments can be

applied to cases 2 and 3 for 𝑌1.
For 𝑌2, we have 𝐾 = 2,𝑀 = 0, 𝜑 = 0, 𝐽 = 4, and 𝑛 = 5; 𝜋0 = 0, 𝜋1 =

1

12
, 𝜋2 =

1

4
, 𝜋3 =

3

4
, 𝜋4 =

11

12
, and 𝜋5 = 1; 𝜃0 = 0, 𝜃1 =

1

6
, 𝜃2 =

2

3
, 𝜃3 =

5

6
, and 𝜃4 = 1;  − = {2, 3, 4} and  + = {1, 2}. Then

similar to 𝑌1, we have the following:

∙ Case 1: 𝜆1 = 2, 𝜆2 = 3, 𝜆3 = 4, 𝜆4 = 5, then 𝜌2 (𝑌1) =
16

5
𝑥 with 𝑠4 =

855

3134
, 𝑠3 =

1212

2299
, 𝑣2 =

3

5
,
3

4
𝛼2 + 𝑏2 =

3

5
,
11

12
𝛼1 + 𝑏1 =

4

5
, 𝛼0 + 𝑏0 = 1;

∙ Case 2: 𝜆1 = 2, 𝜆2 = 3, 𝜆3 = 4, 𝜆4 = 10, then 𝜌2 (𝑌1) =
31

6
𝑥 with 𝑠4 =

2

5
, 𝑠3 =

2

5
, 𝑣2 =

17

30
,
3

4
𝛼2 +

𝑏2 =
3

5
,
11

12
𝛼1 + 𝑏1 =

4

5
, 𝛼0 + 𝑏0 = 1;

∙ Case 3: 𝜆1 = 2, 𝜆2 = 3, 𝜆3 = 9, 𝜆4 = 10, then 𝜌2 (𝑌1) =
31

5
𝑥 with 𝑠4 =

1

5
, 𝑠3 =

3

5
, 𝑣2 =

3

5
,
3

4
𝛼2 +

𝑏2 =
3

5
,
7

8
𝛼1 + 𝑏1 =

4

5
, 𝛼0 + 𝑏0 = 1;

Figure 3b depicts the worst-case inverse S-shaped distortion functions associated with 𝑌2 with
different 𝜆1, 𝜆2, 𝜆3, and 𝜆4 values.

Similar to the comments after Example 4.4, from Example 4.7, especially from Figure 3a,b,
we can see that the worst-case nondecreasing inverse S-shaped distortion functions for 𝑌1 and
𝑌2 in these three cases depend on both the probability distribution and the realization of the
random losses. Therefore, we conclude that theworst-case piecewise linear nondecreasing inverse
S-shaped distortion function for 𝜌2 (𝑌) depends on 𝑌.
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WANG and XU 411

5 PREFERENCE ROBUST DISTORTION RISK OPTIMIZATION

We now move on to discuss how to solve the optimal decision-making problem (4) with ambi-
guity set 1. To do so, we assume that the underlying uncertainty 𝜉 is discretely distributed with
𝑃(𝜉 = 𝜉𝑖) = 𝑝𝑖 for 𝑖 = 1, … , 𝑛. In the case when 𝜉 is continuously distributed, we may discrete it
with standard methods in stochastic programming such as sample average approximation, see,
for example, Shapiro et al. (2014) and Guo and Xu (2021).
The main challenge that we have to tackle is the ordered statistics of {𝑓(𝑧, 𝜉𝑖), for 𝑖 = 1, … , 𝑛},

which depends on the decision variable 𝑧. Wang and Xu (2020) propose the alternating iter-
ative algorithm for solving a minimax spectral risk optimization problem. Here we continue
to use the approach but under a significantly different setup. We begin with the case that
𝑝𝑖 =

1

𝑛
for 𝑖 = 1, … , 𝑛 before moving to the general case not only because it is relatively easy to

handle but also because in the data-driven problems, empirical data are often assumed to be
uniformly distributed.

5.1 Discrete uniform distribution case

Let 𝑝𝑖 =
1

𝑛
for 𝑖 = 1, … , 𝑛 and 𝜙0 = 0. For each fixed 𝑧 ∈ 𝑍 and 𝑔 ∈ , it follows from Equation

(10) that

𝜌𝑔(𝑓(𝑧, 𝜉)) =

𝑛∑
𝑖=1

𝑓(𝑧, 𝜉𝑖)𝜙𝑖 =

𝑛∑
𝑖=1

(𝜙𝑖 − 𝜙𝑖−1)

(
𝑛∑
𝑗=𝑖

𝑓(𝑧, 𝜉𝑗)

)

=

𝑛∑
𝑖=1

(𝜙𝑖 − 𝜙𝑖−1)(𝑛 − 𝑖 + 1)

(
1

𝑛 − 𝑖 + 1

𝑛∑
𝑗=𝑖

𝑓(𝑧, 𝜉𝑗)

)

=

𝑛∑
𝑖=1

𝛾𝑖CVaR𝛽𝑖 (𝑓(𝑧, 𝜉)), (32)

where 𝛾𝑖 = (𝜙𝑖 − 𝜙𝑖−1)(𝑛 − 𝑖 + 1), 𝛽𝑖 =
𝑖−1

𝑛
, and𝜙𝑖 = 𝑔(

𝑛−𝑖+1

𝑛
) − 𝑔(

𝑛−𝑖

𝑛
) for 𝑖 = 1, … , 𝑛. The simple

derivation shows that 𝜌𝑔(𝑓(𝑧, 𝜉)) can be represented as a linear combination of CVaR𝛽𝑖 (𝑓(𝑧, 𝜉)).
The derivation requires ordered statistics 𝑓(𝑧, 𝜉1) < 𝑓(𝑧, 𝜉2) < ⋯ < 𝑓(𝑧, 𝜉𝑛) but the representa-
tion does not depend on the ordered statistics. Recall that CVaR can be reformulated as a convex
minimization problem

CVaR𝛼(𝑋) = inf
𝜂∈IR

{
𝜂 +

1

1 − 𝛼
𝔼[(𝑋 − 𝜂)+]

}
, (33)

where (𝑎)+ = max{𝑎, 0} and the infimum is attained, see, for example, Pflug (2000) and Rockafel-
lar and Uryasev (2002). In the rest of this section, we will discuss how to solve the PROmodel (4)
with the ambiguity set 1.
For 𝑔 ∈ 1, since 𝑔 is nondecreasing and concave, then 𝛾𝑖 ≥ 0 for 𝑖 = 1, … , 𝑛. Consequently, we

combine Equations (32) and (33) and obtain

𝜌𝑔(𝑓(𝑧, 𝜉)) = inf
𝜂1, … ,𝜂𝑛

𝑛∑
𝑖=1

𝛾𝑖

{
𝜂𝑖 +

1

1 − 𝛽𝑖
𝔼[(𝑓(𝑧, 𝜉) − 𝜂𝑖)+]

}
. (34)
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412 WANG and XU

For fixed 𝑧, this is a separable convex program with respect to variables 𝜂𝑖 , 𝑖 = 1, … , 𝑛. By intro-
ducing auxiliary variables 𝜏𝑘

𝑖
∶= (𝑓(𝑧, 𝜉𝑘) − 𝜂𝑖)+ and 𝜇𝑖 for 𝑘 = 1,… , 𝑛 and 𝑖 = 1, … , 𝑛, we can

reformulate problem (34) as

inf
𝜇,𝜂,𝜏

𝑛∑
𝑖=1

𝛾𝑖𝜇𝑖 (35a)

s.t. 𝜇𝑖 ≥ 𝜂𝑖 +
1

1 − 𝛽𝑖

𝑛∑
𝑘=1

1

𝑛
𝜏𝑘
𝑖
, for 𝑖 = 1, … , 𝑛, (35b)

𝜏𝑘
𝑖
≥ 𝑓(𝑧, 𝜉𝑘) − 𝜂𝑖, for 𝑖 = 1, … , 𝑛; 𝑘 = 1,… , 𝑛, (35c)

𝜏𝑘
𝑖
≥ 0, for 𝑖 = 1, … , 𝑛; 𝑘 = 1,… , 𝑛. (35d)

The equivalence of the two formulations is evident by the fact that an optimal solution to one pro-
gram can be used to construct a feasible solution to the other program. For example, let (𝜂∗1 , … , 𝜂

∗
𝑛)

be an optimal solution to the problem (34). Then we can define 𝜇∗
𝑖
∶= 𝜂∗

𝑖
+

1

1−𝛽𝑖

∑𝑛

𝑘=1

1

𝑛
(𝜏𝑘
𝑖
)∗,

(𝜏𝑘
𝑖
)∗ ∶= (𝑓(𝑧, 𝜉𝑘) − 𝜂∗

𝑖
)+ and easily verify that (𝜇∗, 𝜂∗, 𝜏∗) is a feasible solution to the problem

(35). Based on Equation (35), we can effectively recastmin𝑧∈𝑍 𝜌𝑔(𝑓(𝑧, 𝜉)) as

inf
𝑧,𝜇,𝜂,𝜏

𝑛∑
𝑖=1

𝛾𝑖𝜇𝑖 (36a)

s.t. 𝜇𝑖 ≥ 𝜂𝑖 +
1

1 − 𝛽𝑖

𝑛∑
𝑘=1

1

𝑛
𝜏𝑘
𝑖
, for 𝑖 = 1, … , 𝑛, (36b)

𝜏𝑘
𝑖
≥ 𝑓(𝑧, 𝜉𝑘) − 𝜂𝑖, 𝑖 = 1, … , 𝑛; for 𝑘 = 1,… , 𝑛, (36c)

𝜏𝑘
𝑖
≥ 0, for 𝑖 = 1, … , 𝑛; 𝑘 = 1,… , 𝑛, (36d)

𝑧 ∈ 𝑍, (36e)

which is a convex program and can be easily solved by using, for example, fmincon or CVX
in MATLAB.
Since for each fixed 𝑧 ∈ 𝑍, the ordered statistics of {𝑓(𝑧, 𝜉𝑖), for 𝑖 = 1, … , 𝑛} can be sorted out,

then from Theorem 4.2, the worst-case concave distortion function (which is determined by the
reference points and test points 𝑖

𝑛
for 𝑖 = 1, … , 𝑛) for 𝜌1 (𝑓(𝑧, 𝜉)) can be solved by a linear pro-

gram (21). Moreover, once the worst-case distortion function is determined, then 𝛾𝑖 is fixed for
𝑖 = 1, … , 𝑛, and the optimal 𝑧 ∈ 𝑍 for minimizing the distortion risk can be obtained by solving a
convex program (36). Therefore, the resulting decision-making problem (4) on 1 is essentially a
saddle point problem motivates us to consider the following procedures based on the alternating
iterative algorithm for solving this saddle point problem.
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WANG and XU 413

Algorithm 5.1 (Computational procedures for solving Problem (4) with ambiguity set
𝟏)
Step 0. Choose some initial 𝑧0 ∈ 𝑍. For 𝑗 = 1, 2, …, do the following steps.
Step 1. Sort the function values {𝑓(𝑧𝑗−1, 𝜉𝑖) ∶ for 𝑖 = 1, … , 𝑛} in nondecreasing order and denote

the sorted values by 𝑓(𝑧𝑗−1, 𝜉[1]) ≤ 𝑓(𝑧𝑗−1, 𝜉[2]) ≤⋯ ≤ 𝑓(𝑧𝑗−1, 𝜉[𝑛]).
Step 2. Based on the sorted order of function values, solve the following problem:

max
𝑣,𝛽,𝑠,𝜁

𝑛∑
𝑖=1

[
𝑓(𝑧𝑗−1, 𝜉[𝑖]) − 𝑓(𝑧𝑗−1, 𝜉[𝑖−1])

]
𝑠𝑖−1

s.t. (21𝑏) − (21𝑛),

where 𝜋0 = 0 and 𝜋𝑖 =
𝑖

𝑛
for 𝑖 = 1, … , 𝑛 in constraints (21e)–(21f) and (21j)–(21l). Denote

the optimal solution of the component 𝑠 by 𝑠𝑗 .
Step 3. Let 𝜙𝑖 = 𝑠

𝑗

𝑖−1
− 𝑠

𝑗

𝑖
for 𝑖 = 1, … , 𝑛 (consequently, 𝛾𝑖 = (𝜙𝑖 − 𝜙𝑖−1)(𝑛 − 𝑖 + 1) is fixed). Solve

problem (36) and let 𝑧𝑗 denote the 𝑧-component of the optimal solution.
Step 4. Stop when 𝑧𝑗 = 𝑧𝑗−1 and 𝑠𝑗 = 𝑠𝑗−1

The next proposition states convergence of Algorithm 5.1.

Proposition 5.1. Consider Algorithm 5.1 for solving problem (4) with ′ = 1. Suppose that for each
fixed 𝜉, 𝑓 is convex in 𝑧 over 𝑍. Then the algorithm either terminates in a finite number of steps with
a solution to the problem or generates a sequence {(𝑧𝑗, 𝑠𝑗)}whose cluster points are optimal solutions
to the problem.

The proof is similar to that ofWang and Xu (2020, Proposition 3.1). For the completeness of this
paper, we give a proof in Appendix A.3. For the discussions of the inverse S-shaped preference
robust distortion risk optimization, we refer readers to an online version of this paper (Wang &
Xu, 2021).

5.2 Discrete nonuniform distribution case

In the case that 𝜉 is not uniformly distributed, we assume without loss of generality that 𝑝𝑖 , for
𝑖 = 1, … , 𝑛, are rational numbers given the fact that rational numbers are dense on [0,1]. Conse-
quently, we can find a least commonmultiple, denoted by𝑀, to the denominators for all of the 𝑝𝑖s
such that they have the same denominator𝑀. We then add some auxiliary scenarios to {𝜉1, … , 𝜉𝑛}
such that there are 𝑀 scenarios in total denoted by {�̂�1, … , �̂�𝑀} and each scenario has an equal
probability, that is,ℙ(�̂� = �̂�𝑗) =

1

𝑀
for 𝑗 = 1,… ,𝑀. With this treatment, wemay duplicate 𝑓(𝑧, 𝜉𝑖)

for 𝑝𝑖𝑀 times for 𝑖 = 1, … , 𝑛 to generate a new random variable 𝑓(𝑧, �̂�) with realizations as
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414 WANG and XU

follows:

𝑓(𝑧, �̂�𝑗) =

⎧⎪⎪⎨⎪⎪⎩

𝑓(𝑧, 𝜉1), for 𝑗 = 1,… , 𝑝1𝑀,

𝑓(𝑧, 𝜉2), for 𝑗 = 𝑝1𝑀 + 1,… , 𝑝2𝑀,

⋮ ⋮

𝑓(𝑧, 𝜉𝑛), for 𝑗 = (1 − 𝑝𝑛)𝑀 + 1,… ,𝑀.

(38)

For example, if 𝑛 = 4, ℙ(𝜉 = 𝜉1) = 𝑝1 =
1

5
, ℙ(𝜉 = 𝜉2) = 𝑝2 =

1

2
, ℙ(𝜉 = 𝜉3) = 𝑝3 =

1

4
and ℙ(𝜉 =

𝜉4) = 𝑝4 =
1

20
, then we can find the least common multiple to the denominators of all these

four rational numbers, which is 𝑀 = 20. Consequently, we can construct a new random vari-
able �̂� which has 20 scenarios with ℙ(�̂� = �̂�𝑖) =

1

20
for 𝑖 = 1, … , 20. Since 𝑝1 =

4

20
, 𝑝2 =

10

20
, 𝑝3 =

5

20
, and 𝑝4 =

1

20
, then we may duplicate 𝑓(𝑧, 𝜉1) such that 𝑓(𝑧, �̂�1) = ⋯ = 𝑓(𝑧, �̂�4) = 𝑓(𝑧, 𝜉1),

𝑓(𝑧, 𝜉2) such that 𝑓(𝑧, �̂�5) = ⋯ = 𝑓(𝑧, �̂�14) = 𝑓(𝑧, 𝜉2), and so on. In this way, we can use the arti-
ficially new random variable �̂�, which is uniformly distributed for solving problem (4) with the
computational procedures proposed in Section 5.1.
It is important to note that introducing an auxiliary random variable 𝑓(𝑧, �̂�) to replace 𝑓(𝑧, 𝜉)

will introduce a large number of additional variables to the problem (36). However, since the
worst-case distortion function is piecewise linear, most of the 𝛾𝑖 values are zero, and consequently,
the scale of the problem (36) is not large when the number of the scenarios for 𝜉 is small. The next
proposition states this.

Proposition 5.2. Let 𝑧 ∈ 𝑍 and consider maximization problem

sup
𝑔∈

𝜌𝑔(𝑓(𝑧, 𝜉)) (39)

where is1 or2, let 𝑔∗ be an optimal solution to the problem. Let𝑓(𝑧, �̂�𝑗) be defined as in Equation
(38) for 𝑗 = 1,… ,𝑀. Then,

𝜌𝑔∗(𝑓(𝑧, 𝜉)) =

𝑀∑
𝑗=1

𝛾𝑗CVaR𝛽𝑗 (𝑓(𝑧, �̂�)) (40)

where 𝛾𝑗 = (𝜙𝑗 − 𝜙𝑗−1)(𝑀 − 𝑗 + 1), 𝛽𝑗 =
𝑗−1

𝑀
, and 𝜙𝑗 = 𝑔∗(

𝑀−𝑗+1

𝑀
) − 𝑔∗(

𝑀−𝑗

𝑀
) for 𝑗 = 1,… ,𝑀.

Moreover, 𝛾𝑗 ≠ 0 if and only if 1 − 𝛽𝑗 is a breakpoint of 𝑔∗ and hence the number of nonzero 𝛾𝑗
coincides with the number of breakpoints of 𝑔∗.

Proof. From Equation (32), we see that for 𝑔 = 𝑔∗,

𝜌𝑔∗(𝑓(𝑧, 𝜉)) = 𝜌𝑔∗(𝑓(𝑧, �̂�)) =

𝑀∑
𝑗=1

𝛾𝑗CVaR𝛽𝑗 (𝑓(𝑧, �̂�)) =
𝑀∑
𝑗=1

𝛾𝑗CVaR𝛽𝑗 (𝑓(𝑧, 𝜉)),

where 𝑓(𝑧, �̂�𝑗) is defined via Equation (38), 𝛾𝑗 ∶= (𝜙𝑗 − 𝜙𝑗−1)(𝑀 − 𝑗 + 1), 𝜙𝑗 ∶= 𝑔∗(
𝑀−𝑗+1

𝑀
) −

𝑔∗(
𝑀−𝑗

𝑀
) for 𝑗 = 1,… ,𝑀 with 𝜙0 = 0 and 𝛽𝑗 ∶=

𝑗−1

𝑀
. This gives rise to Equation (40). Note that

the first and the third equalities are due to the law invariant property of DRM and the second one
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WANG and XU 415

is fromEquation (32). Consequently, we can use Equation (5.2) to calculate 𝜌𝑔(𝑓(𝑧, 𝜉)) for discrete
nonuniform distribution cases.
Next, we show the rest of the claims. For fixed 𝑧, it follows by Theorems 4.2 and 4.5 that a

worst-case distortion function can be piecewise linear for both concave case and inverse S-shaped
case. The breakpoints of 𝑔∗(𝑡) lie in the set {1 − 𝜋1, 1 − 𝜋2, … , 1 − 𝜋𝑛; 1 − 𝜃1, 1 − 𝜃2, … , 1 − 𝜃𝐽},
where 𝜋𝑖 =

∑
𝑙≤𝑖 𝑝𝑙 for 𝑖 = 1, … , 𝑛, 𝜃𝑗 is the 𝑗th smallest of the set consisting of all breakpoints

of the quantile functions of𝑊𝑘, 𝐺𝑚, and 𝐵𝑚 for 𝑘 = 1,… , 𝐾 and 𝑚 = 1,… ,𝑀. To ease the expo-
sition, let us consider the case that 𝑔∗(𝑡) has a linear piece over interval [1 − 𝜋1, 1 − 𝜋2]. If the
consecutive three points 𝑀−𝑗−1

𝑀
,
𝑀−𝑗

𝑀
,
𝑀−𝑗+1

𝑀
fall in the interval [1 − 𝜋1, 1 − 𝜋2], then 𝜙𝑗 =

𝑔∗(
𝑀−𝑗+1

𝑀
) − 𝑔∗(

𝑀−𝑗

𝑀
) = 𝑔∗(

𝑀−𝑗

𝑀
) − 𝑔∗(

𝑀−𝑗−1

𝑀
) = 𝜙𝑗−1 and subsequently 𝛾𝑗 = 0. This means that

𝛾𝑗 ≠ 0 if and only if when the middle point 𝑀−𝑗

𝑀
lies in set {1 − 𝜋1, 1 − 𝜋2, … , 1 − 𝜋𝑛; 1 −

𝜃1, 1 − 𝜃2, … , 1 − 𝜃𝐽}. This implies that the number of nonzero 𝛾𝑗 coincides with the number of
breakpoints of 𝑔∗. □

6 NUMERICAL RESULTS

In this section, we apply the proposed PRDRM model to the capital allocation problem of a
life insurance company, which holds portfolios of life annuities and death benefit insurance.
This application is based on the case study investigated by Van Gulick et al. (2012) and Wang
et al. (2023). We use the same example to examine the performance of our proposed model and
computational procedures.

6.1 Setup

Let us start by describing the capital allocation problem in a life insurance company and introduc-
ing some notation. Analogous to Van Gulick et al. (2012) and Wang et al. (2023), we consider the
case that there are two portfolios of life annuities and one death benefit insurance in an insurance
company. To make the background of the case study clearer, we extract some basic definitions of
the life insurance portfolios from Van Gulick et al. (2012):

∙ the (deferred) single life annuity that yields a yearly payment in every year that the insured is
alive and older than 65;

∙ the survivor annuity that yields a yearly payment every year that the spouse outlives the insured
if the insured dies before age 65;

∙ the death benefit insurance that yields a single payment in the year the insured die, if the insured
dies before age 65.

Let 𝑋𝑖 , 𝑖 ∈  = {sl, surv, db} denote the present value of the payments to all insureds in portfolio
𝑖. For the completeness of the paper, we provide details about how to get the insurance liability
data set for portfolios considered in Appendix B. From there, we can see that there are at most
78 scenarios for each insurance liability and consequently throughout this section, we have Ω =

{1, 2, … , 78}.
Suppose that we have an amount of risk capital, denoted by 𝑧, to be allocated among 𝑋sl, 𝑋surv,

and 𝑋db. In practice, the total amount of risk capital is always determined by a risk measure,
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416 WANG and XU

denoted by 𝜌, see, for example, Bauer and Zanjani (2016). Here we use CVaR99% to estimate 𝑧
because it is widely accepted to calculate the amount of risk capital in the literature, see, for exam-
ple Van Gulick et al. (2012). Let 𝑧𝑖, 𝑖 ∈ , denote the amount of risk capital allocated to portfolio 𝑖
and 𝑧 = (𝑧1, 𝑧2, 𝑧3)

T ∈ 𝑍 ⊂ IR3, where 𝑍 represents the set of all feasible risk capital allocations:

𝑍 ∶=

{
𝑧 ∈ IR3 ∶

∑
𝑖∈

𝑧𝑖 = 𝑧, 𝑧𝑖 ≥ 0, for 𝑖 ∈ 
}
. (41)

Our first experiment is to determine the risk capital held by each portfolio if it is isolated from
the insurance company and the risk capital held for the aggregated portfolio 𝑋 =

∑
𝑖∈ 𝑋𝑖 under

the proposed PRDRM. Meanwhile, we will determine the curvature of the worst-case distortion
functions for 𝑋𝑖 and 𝑋 on the ambiguity sets 1 and 2, respectively.
Next, we proceed to define the risk capital allocation problem. For a particular allocation strat-

egy 𝑧 ∈ 𝑍, we follow Van Gulick et al. (2012) to define the cost of mis-allocation to the portfolio
𝑖 by

𝐶𝑖(𝑧) = (𝑋𝑖 − 𝑧𝑖)+, for 𝑖 ∈ ,
where (𝑎)+ = max{𝑎, 0} for 𝑎 ∈ IR. The quantity 𝐶𝑖(𝑧) can be viewed as the shortfall to portfolio
𝑖 for 𝑖 ∈ . To simplify the discussion, we adopt the main decision criterion in Van Gulick et al.
(2012) to determine the capital allocation byminimizing the aggregate shortfall. In this numerical
study, we consider three models. The first one is allocation strategy based on CVaR:

min
𝑧∈𝑍

CVaR𝛼

(∑
𝑖∈

𝐶𝑖(𝑧)

)
, (42)

where 𝛼 ∈ (0, 1) is the level of confidence and in applications, one typically sets 𝛼 = 0.95 or 0.99,
see, for example, Rockafellar and Uryasev (2002). The second one is the DRM model where the
true distortion function 𝑔∗1 is given:

min
𝑧∈𝑍

𝜌𝑔∗
1

(∑
𝑖∈

𝐶𝑖(𝑧)

)
. (43)

The last one is our PRDRMmodel on 1:

min
𝑧∈𝑍

𝜌1
(∑
𝑖∈

𝐶𝑖(𝑧)

)
. (44)

6.2 Construction of the ambiguity sets

In this subsection, we consider how to construct ambiguity sets 𝑙, for 𝑙 = 1, 2, of the distortion
functions using the pairwise comparison approach, certainty equivalent approach, and sensitivity
conditions that we discussed in Section 4. Let,

𝑔∗1(𝑡) =
√
𝑡, for 𝑡 ∈ [0, 1] and 𝑔∗2(𝑡) =

0.84𝑡0.65

0.84𝑡0.65 + (1 − 𝑡)0.65
, for 𝑡 ∈ [0, 1].
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WANG and XU 417

Since we do not have a real DM in this numerical study, we assume that 𝑔∗
𝑙
is the DM’s true

distortion function for the construction of 𝑙, that is, we use 𝑔∗𝑙 to determine which prospect is
preferred in pairwise comparison and the confidence interval in certainty equivalent. For exam-
ple, we design a pair of prospects: 𝑌1 and 𝑌2 and then examine whether 𝜌𝑔∗

𝑙
(𝑌2) ≤ 𝜌𝑔∗

𝑙
(𝑌1). If the

inequality holds, then we say the DM prefers 𝑌2 over 𝑌1.
For the simplification of notation, we here use elementary lotteries to elicit the DM’s attitude

and reduce the ambiguity. An elementary lottery is defined as

𝑌 =

{
𝑥, w.p.𝑝,
0, w.p. 1 − 𝑝.

(45)

Here 𝑥 > 0 is randomly generated from a given distribution and 𝑝 ∈ (0, 1) is also randomly gen-
erated from the uniform distribution on (0,1), in other words, for each pair of (𝑥, 𝑝), we determine
a lottery. For such a lottery, the DRM of 𝑋 induced by 𝑔 is 𝜌𝑔(𝑋) = 𝑥𝑔(𝑝). In order to make the
elicited data comparable with the random loss of each insurance liability and their aggregated
liability, we generate the loss 𝑥 from the uniform distribution on[

𝑟1 × min
𝑖∈;𝜔∈Ω𝑋𝑖(𝜔), 𝑟2 × max

𝑖∈,𝜔∈Ω𝑋𝑖(𝜔)
]

where 𝑟1 < 1 < 𝑟2 and 𝑋𝑖 is 𝑖th portfolio in the insurance company for 𝑖 ∈ . In our experiment,
we set 𝑟1 =

1

2
, 𝑟2 = 1.2 and then the range of 𝑥 to be [0,370610]. The outline of questionnaires to

be asked and elicited data set example are given in Appendix C.

6.3 Experiments

We divide the experiments into five sets: (i) determining the worst-case distortion functions for
both concave and inverse S-shaped cases; (ii) calculating risk capital allocation under different
strategies; (iii) analyzing the impact of elicitation information on the risk capital allocation policy;
(iv) investigating the scalability of the PRDRM model; and finally (v) checking the sensitivity of
ourmodel to data perturbation. All of the experiments are carried out onMATLAB 2018b installed
on a Macbook Pro (i5-5257 CPU, 2.90GHz dual core processor, 8GB memory).

6.3.1 Worst-case distortion functions

In this experiment, we examine the impact of the number of the certainty equivalent constraints
and the pairwise comparison constraints on the worst-case distortion function in the proposed
PRDRM with ambiguity set 1 and 2, respectively for the three liabilities and their aggregated
liability in an insurance company. Specifically, we may choose the number of pairwise compar-
isons 𝑀 ∈ {2, 50, 200} and the number of certainty equivalent pairs 𝐾 ∈ {2, 10, 20} to conduct
the experiments.
Figure 4a depicts the change of the worst-case concave distortion function w.r.t. increase of the

number of certainty equivalent pairs for𝑋sl when the number of pairwise comparisons is fixed by
𝑀 = 2. Figure 4b depicts the change of the worst-case concave distortion functions w.r.t. increase
of the number of pairwise comparisons for𝑋sl when the number of certainty equivalent is fixed by
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418 WANG and XU

F IGURE 4 Worst-case concave distortion functions for 𝑋sl: (a) w.r.t. the number of certainty equivalent
pairs and (b) w.r.t. the number of pair-wised comparisons. [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Worst-case inverse S-shaped distortion functions for 𝑋sl: (a) w.r.t. the number of certainty
equivalent pairs and (b) w.r.t. the number of pair-wised comparisons. [Color figure can be viewed at
wileyonlinelibrary.com]

𝐾 = 2. FromFigure 4a, we can see that for fixed𝑀 = 2, theworst-case concave distortion function
moves closer and closer to the true one as the number of certainty equivalent pairs increases.
This is because the ambiguity set 1 becomes smaller as the number of certainty equivalent pairs
increases. Likewise, from Figure 4b, for fixed 𝐾 = 2, the worst-case concave distortion function
moves closer to the true one as the number of pair-wised comparisons increases. In both cases,
the worst-case distortion function is bounded by

√
𝑡 over the interval [0,0.05], this is because the

sensitivity constraint (7) is valid over the interval, see the left -hand side of the vertical dashed line
(at 𝑡 = 0.05).
Figure 5a depicts the worst-case inverse S-shaped distortion functions w.r.t. the number of

certainty equivalent pairs for 𝑋sl when the number of pairwise comparisons is fixed by 𝑀 = 2,
and Figure 5b depicts the worst-case inverse S-shaped distortion functions w.r.t. the number of
pairwise comparisons for 𝑋sl when the number of certainty equivalent is fixed by 𝐾 = 10. From
Figure 5a, we can see that for fixed 𝑀 = 2, the worst-case inverse S-shaped distortion function
moves closer and closer to the true one as the number of certainty equivalent pairs increases.
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WANG and XU 419

This is because the ambiguity set 2 becomes smaller as the number of certainty equivalent
pairs increases and hence a more precise distortion function may be obtained. Similarly, from
Figure 5b, for fixed 𝐾 = 10, the worst-case inverse S-shaped distortion function also moves closer
to the true one as the number of pair-wised comparisons increases. In both cases, the worst-case
distortion function is bounded by 𝑔∗2(𝑡) over the interval [0,0.05], this is because the sensitivity con-
straint (7) is valid over the interval, see the left-hand side of the vertical dashed line (at 𝑡 = 0.05).
The figures of the worst-case concave distortion functions and the worst-case inverse S-shaped
distortion functions for 𝑋surv, 𝑋db, and 𝑋 can be similarly obtained, here we omit them.

6.3.2 Risk capital allocation strategy

In this experiment, we carry out comparative studies on risk capital allocations among three
liabilities (single life annuities, survivor annuity, and death benefit insurance) in an insurance
company based on the CVaR model (42), DRMmodel (43), and PRDRMmodel (44). To this end,
we first calculate the risk capital held by each liability if it is isolated from the insurance company
and the risk capital held for the aggregated liability under different risk measures: CVaR, DRM,
and PRDRM. Specifically, the risk capital based on CVaR is calculated via Equation (33) with
𝛼 = 0.95 and 0.99, respectively, the risk capital based on DRM is calculated via Equation (10) with
𝑔(𝑡) = 𝑔∗1(𝑡) for the concave case and with 𝑔(𝑡) = 𝑔∗2(𝑡) for inverse S-shaped case, and finally, the
risk capital based on PRDRM is calculated via Equation (21) for the concave case and via Equa-
tion (30) for the inverse S-shaped case with 𝑀 = 50,𝐾 = 10. Table 2 summarizes the statistical
information of three liabilities and their aggregated liability. From Table 2, we see that

𝜌1 (𝑋𝑖) > 𝜌𝑔∗
1
(𝑋𝑖) and 𝜌2 (𝑋𝑖) > 𝜌𝑔∗

2
(𝑋𝑖), for 𝑖 ∈ .

This is because 𝑔∗
𝑙
∈ 𝑙 and PRDRM is defined as the maximum of DRM over set 𝑙 for 𝑙 = 1, 2.

Note that

𝜌2 (𝑋𝑖) < 𝜌1 (𝑋𝑖) < CVaR95%(𝑋𝑖) < CVaR99%(𝑋𝑖), for 𝑖 ∈ .
Intuitively speaking, this may be because the distortion function 𝑔𝛼(𝑡) of CVaR𝛼(⋅) defined in
Example A.1(ii) dominates both 𝑔∗1(𝑡) and 𝑔

∗
2(𝑡) for a large 𝛼 in a point-wise sense. Moreover, by

TABLE 2 The information on three liabilities and their aggregated liability

Description Single life ann. (𝑿sl) Surv.ann. (𝑿surv) Death benefit (𝑿db) Total (𝑿)
𝔼(𝑋𝑖) 207,460 11,020 9,620 228,094
𝜎(𝑋𝑖)∕𝔼(𝑋𝑖)* 0.43 3.10 2.11 0.32
Corr(𝑋𝑖, 𝑋) 0.80 0.05 −0.02 1
CVaR95%(𝑋𝑖) 305,630 144,130 79,350 312,890
CVaR99%(𝑋𝑖) 308,840 217,570 101,000 324,390
𝜌𝑔𝑎1 (𝑋𝑖) 231,620 35,227 23,524 245,510
𝜌𝑔𝑎2 (𝑋𝑖) 179,790 19,224 13,487 201,330
𝜌1 (𝑋𝑖) 255,122 48,880 30,961 269,305
𝜌2 (𝑋𝑖) 190,461 23,487 15,574 212,601

*𝜎(𝑋𝑖) is the standard deviation for 𝑋𝑖 .
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420 WANG and XU

TABLE 3 Amount of risk capital allocated to the three liabilities under three models

Allocation strategy Single life ann. (𝑿sl) Surv.ann. (𝑿surv) Death benefit (𝑿db)
(42) with 𝛼 = 75% 293,740 28,720 1,930
(42) with 𝛼 = 90% 250,530 58,250 15,600
(42) with 𝛼 = 95% 208,580 63,610 52,200
(42) with 𝛼 = 99% 154,710 98,170 71,510
(43) with 𝑙 = 1 260,740 37,100 26,550
(44) with 𝑙 = 1 263,760 36,240 24,390

simple calculations, we can see that the quantities satisfy the inequality:

𝜌(𝑋sl) + 𝜌(𝑋surv) + 𝜌(𝑋db) > 𝜌(𝑋) (46)

for 𝜌 = 𝜌1 , 𝜌2 , 𝜌𝑔∗1 , 𝜌𝑔∗2 ,CVaR95%,CVaR99%. This is guaranteed in theory by subadditivity of
coherent risk measure for 𝜌1 , 𝜌𝑔∗1 ,CVaR95%, and CVaR99%. However, it is not theoretically guar-
anteed for 𝜌2 and 𝜌𝑔∗2 . The inequality (46) happens to hold perhaps because of interdependence
among 𝑋sl, 𝑋surv, and 𝑋db.
Next, we calculate the risk capitals to be allocated to the three liabilities: 𝑋sl, 𝑋surv, and 𝑋db. In

the current insurance regulation, the total amount of risk capital is usually calculated by CVaR𝛼
with𝛼 = 0.99. Therefore, we set the total amount of risk capital to be �̄� = 324, 390. Table 3 displays
the amount of risk capital allocated to three liabilities (single life annuity, survival annuity, and
death benefit) under three models: CVaRmodel (42) with different parameters, DRMmodel (43),
and PRDRMmodel (44). From Table 3, we can see that most risk capital is allocated to the single
life annuity under threemodels because it has the largest risk compared with the survival annuity
and death benefit (see Table 2). As we can see, the amount of risk capital allocated to the single life
annuity reduces from 293,740 to 154,710 under CVaR𝛼 when 𝛼 increases from 0.75 to 0.99. This is
because CVaR𝛼 captures larger average tail risks and𝑋sl dominates the tail losses of𝑋surv and𝑋db
(see Figure B.2a). The change in allocations under DRMmodel to the proposed PRDRMmodel is
less drastic. This is because in this experiment, we use the relative larger elicitation information
(i.e., the smaller ambiguity set of 1). Moreover, the allocations under DRM model and the pro-
posed PRDRM model seem to be the weighted average of the allocations of these CVaRs. This is
because DRM and PRDRM are both the weighted average of CVaR theoretically.

6.3.3 Effect of the number of pairwise comparisons on risk capital allocation
for concave case

In this experiment, we consider the impact of the number of pairs for eliciting the ambiguity
set 1 on the amount of risk capital allocated to the three liabilities: single life annuity, survival
annuity, and death benefit. Specifically, we fix the number of certainty equivalents with 𝐾 = 10

and increase the number of pairwise comparisons𝑀 from 2 to 5, 10, 20, 50, and 100. We solve the
correspondingminimax optimization problem (44) to examine the impact of the increase of𝑀 on
the allocated risk capital among 𝑋sl, 𝑋surv, and 𝑋db. The results are depicted in Figure 6a.
From Figure 6a, we can see that the optimal solutions (allocations) of PRDRM (44) converge

to the true optimal solution based on the DRM (see the last column in the figure) where the
true distortion function is used. Moreover, it seems that an increase in the number of pairwise
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WANG and XU 421

F IGURE 6 (a) Effect of increase of𝑀 on the optimal allocated risk capital for concave case. (b) CPU time
w.r.t. the number of pairwise comparisons𝑀 for the concave case. [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 7 (a) Worst-case concave distortion functions for 𝑋sl w.r.t. change of 𝑟2 for𝑀 = 2,𝐾 = 2. (b)
Worst-case inverse S-shaped distortion functions for 𝑋sl w.r.t. change of 𝑟2 for𝑀 = 2, 𝐾 = 2. [Color figure can be
viewed at wileyonlinelibrary.com]

comparisons𝑀 does not have a significant impact on the optimal allocated risk capital for each
liability, which means the optimal solution of PRDRMmodel is not very sensitive to the increase
of preference information. Similar results for the effect of the number of certainty equivalent on
risk capital allocation can be obtained and so we skip them.

6.3.4 CPU time w.r.t. the number of pairs for concave case

In this experiment, we look into the computational time for solving the PRDRM model (44) for
concave case in terms of CPU time as the number of pairwise comparisons 𝑀 increases from 2
to 5, 8, 10, 12, 25, 40, 60, 80, and 100 for a fixed number of certainty equivalent 𝐾 = 10. For fixed
𝑀 (e.g.,𝑀 = 2), we generate two pairs of pairwise comparison questionnaires and then solve the
PRDRM model (44) with linprog in MATLAB to solve the LPs and record the CPU time. Since

 14679965, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12379 by U
niversity O

f Southam
pton, W

iley O
nline L

ibrary on [12/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



422 WANG and XU

F IGURE 8 (a) Worst-case concave distortion functions for 𝑋sl w.r.t. the change of 𝑟2 for𝑀 = 2, 𝐾 = 2. (b)
Worst-case inverse S-shaped distortion functions for 𝑋sl w.r.t. the change of 𝑟2 for𝑀 = 2, 𝐾 = 2. [Color figure can
be viewed at wileyonlinelibrary.com]

the questionnaires are generated randomly, the resulting PRDRM model varies from simulation
to simulation and so does the CPU time. To offset the fluctuations, we calculate the average CPU
time over 100 simulations and depict the changes in the CPU time as𝑀 increases in Figure 6b. As
we can see from Figure 6b, the CPU time changes from 13 s (with𝑀 = 2) to 70 s (with𝑀 = 100),
which means the𝑀 increases by 49-folds whereas the CPU time increases by about 4.4-folds. The
results show that the PRDRMmodel is fairly scalable w.r.t. the change of𝑀.

6.3.5 Results for other specifications: sensitivity tests

The questionnaires for eliciting a DM’s risk attitude are designed by using elementary lotteries
(45). By a simple calculation, we know that

min
𝑖∈;𝜔∈Ω𝑋𝑖(𝜔) = 0 and max

𝑖∈,𝜔∈Ω𝑋𝑖(𝜔) = 308, 840.

This means that only the value of 𝑟2 affects the range of the outcomes of the elementary lot-
teries. We generate the elementary lotteries as described in Section 6.2 for each 𝑟2 where 𝑟2 ∈
{1.0, 1.2, 1.5, 2.0, 3.0} and set the number of pairwise comparisons 𝑀 from 2 to 10,50, the num-
ber of certainty equivalent 𝐾 from 2 to 10,20 and solve the problem (21) and (30), respectively.
We divide the experiments into two parts: (i) The corresponding probabilities for the elemen-
tary lotteries are fixed. (ii) The corresponding probabilities for the elementary lotteries are also
randomly generated.
Figure 7a,b depicts the sensitivity results of the worst-case distortion function (𝑀 = 2, 𝐾 = 2)

w.r.t. change of 𝑟2 for 𝑋sl in concave case and inverse S-shaped case, respectively, in the part (i) of
the tests. It seems that the change of 𝑟2 does not have an observable effect on the learning of the
true distortion function (convergence of the worst-case distortions to the true) as the number of
questionnaires increases. The similar results are also obtained for other choices of𝑀 ∈ {2, 10, 50}

and 𝐾 ∈ {2, 10, 20} and here we skip them.
In the case that 𝑝 is also randomly generated, the results are depicted in Figure 8a,b. We can

see that the change of the value 𝑟2 has a more significant effect. Moreover, as𝑀 and 𝐾 increase,

 14679965, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12379 by U
niversity O

f Southam
pton, W

iley O
nline L

ibrary on [12/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



WANG and XU 423

we find that the effect diminishes under both (i) and (ii), see Appendix D. Comparing Figures 7
and 8, we find that it is the probability of the elementary lottery rather than the value of the lottery
has a more significant effect on the worst-case distortion function for both concave and inverse
S-shaped cases.

7 CONCLUDING REMARKS

In this paper, we explore a preference robust distortion risk model for decision-making problems
where the information of the true distortion function is incomplete.We propose various ways how
to construct an ambiguity set of distortion functions with elicited information about the DM’s
risk preferences. To compute the proposed PRDRM, we derive tractable formulations where the
PRDRM can be calculated via solving a linear programming problem and show through some
simple examples how the worst-case distortions may be identified. Finally, we apply the proposed
robust DRM to the risk capital allocation problem in insurance.
The robust distortion model complements the current distortion model by allowing ambiguity.

Obviously, the smaller the ambiguity set, the less conservative the PRDRMmodel will impose. It
would, therefore, be interesting to link the degree of ambiguity to the level of conservatism of the
model. We leave this for future research.
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APPENDIX A: SUPPLEMENTARYMATERIAL

A.1 Some known examples of distortion risk measures
Example A.1. In this example, we assume that 𝑋 is a non-negative random variable.
(i) Value at Risk (VaR). Let 𝑔𝜈(𝑡) = 𝟏(1−𝜈,1](𝑡), where 𝟏𝐶(𝑡) is the indicator function over
𝐶 and 𝜈 ∈ (0, 1). Observe that 𝐹𝑋(𝑥) ∈ [0, 𝜈) iff 𝑆𝑋(𝑥) ∈ (1 − 𝜈, 1], that is, 𝑥 ∈ [0, 𝐹←𝑋 (𝜈)) iff
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𝑔𝜈(𝑆𝑋(𝑥)) = 1. Consequently, it follows from (1) that

𝜌𝑔𝜈 (𝑋) = ∫
𝐹−1
𝑋
(𝜈)

0

𝑑𝑥 = 𝐹−1𝑋 (𝜈) =∶ VaR𝜈(𝑋).

(ii) Conditional Value at Risk (CVaR) (also called Expected Shortfall (Tasche, 2002)). Let 𝑔𝛼(𝑡) =
min{

𝑡

1−𝛼
, 1}with 𝛼 ∈ (0, 1). From (1), using integration by parts of Lebesgue-Stieltjes integral, see,

e.g., Merkle et al. (2014), we have

𝜌𝑔𝛼 (𝑋) = ∫
𝐹←
𝑋
(𝛼)

0

1𝑑𝑥 + ∫
∞

𝐹←
𝑋
(𝛼)

𝑆𝑋(𝑥)

1 − 𝛼
𝑑𝑥

= 𝐹←𝑋 (𝛼) +
1

1 − 𝛼

[
𝑆𝑋(𝑥)𝑥||∞𝐹←

𝑋
(𝛼)−

− ∫
∞

𝐹←
𝑋
(𝛼)

𝑥𝑑𝑆𝑋(𝑥)

]

=
1

1 − 𝛼

{
𝔼[𝑋𝟏𝑋≥𝐹←

𝑋
(𝛼)] − 𝐹←𝑋 (𝛼)[𝑃(𝑋 < 𝐹←𝑋 (𝛼)) − 𝛼]

}
=∶ ES𝛼(𝑋) = CVaR𝛼(𝑋), (A.1)

where (⋅)− = lim𝛿↓0(⋅ − 𝛿) and the third equality is due to the fact that lim𝑥→∞ 𝑥𝑔(𝑆𝑋(𝑥)) = 0.
The relation can also be derived from (2), where we have

𝜌𝑔𝛼 (𝑋) = ∫
1

0

𝐹←𝑋 (𝑡)𝑑𝑔𝛼(𝑡) =
1

1 − 𝛼 ∫
1

𝛼

𝐹←𝑋 (𝑡)𝑑𝑡 =∶ CVaR𝛼(𝑋), (A.2)

which is shown in Acerbi (2002).
From an insurance premium point of view, it might be more advantageous to have a non-flat

tail distortion function because the whole loss distribution will be utilized, see, e.g., Wang (1995).

(iii) Proportional hazards transform risk measure (Wang, 1995). Let 𝑔𝛾(𝑡) = 𝑡
1

𝛾 for 𝛾 > 1. Then

𝜌𝑔𝛾 (𝑋) = ∫
∞

0

𝑆𝑋(𝑥)
1

𝛾 𝑑𝑥 =∶ 𝜌PH(𝑋).

(iv) Gini’s risk measure (Denneberg, 1990). Let 𝑔𝑠(𝑡) = 𝑡 − 𝑠(𝑡2 − 𝑡) for 𝑠 ∈ (0, 1). Then from (2),

𝜌𝑔𝑠 (𝑋) = ∫
1

0

𝐹←𝑋 (1 − 𝑡)𝑑𝑔𝑠(𝑡) = ∫
1

0

𝐹←𝑋 (1 − 𝑡)[1 − 𝑠(2𝑡 − 1)]𝑑𝑡

= ∫
1

0

𝐹←𝑋 (1 − 𝑡)𝑑𝑡 − 𝑠 ∫
1

0

𝐹←𝑋 (1 − 𝑡)(2𝑡 − 1)𝑑𝑡

= 𝔼[𝑋] + 𝑠 ∫
1

0

𝐹←𝑋 (𝑡)(2𝑡 − 1)𝑑𝑡 = 𝔼[𝑋] +
1

2
𝑠𝔼[|𝑋 − 𝑋′|] =∶ Gini𝑠(𝑋),

where𝑋′ is an independent copy of𝑋. The second last equality is due to the fact that𝔼[|𝑋 − 𝑋′|] =
2 ∫ 1

0
(2𝑡 − 1)𝐹←𝑋 (𝑡)𝑑𝑡 (can be calculated easily with Fubini’s Theorem, or see, e.g., Furman et al.

(2017)), which is called the Gini’s mean difference and is closely related to stochastic dominance,
see, e.g., Yitzhaki (1982).
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A.2 Proof of Theorem 4.2
The proof requires some theoretical results onmajorization of convex function. Tomake the paper
self-contained, we begin by recalling the results. Let 𝑓 ∶ ℝ𝑛 → ℝ be a convex function. A function
𝑔 is said to bemajorized by 𝑓 if

𝑔(𝑥) ≤ 𝑓(𝑥), ∀𝑥 ∈ dom 𝑓.

𝑔 is a support function of 𝑓 at 𝑥 ∈ ℝ𝑛 if 𝑔 is majorized by 𝑓 and 𝑔(𝑥) = 𝑓(𝑥). A vector 𝑠 ∈ ℝ𝑛 is
called a subgradient of 𝑓 at 𝑥 ∈ ℝ𝑛 if

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨𝑠, 𝑦 − 𝑥⟩, ∀𝑦 ∈ dom 𝑓,

where ⟨𝑎, 𝑏⟩denotes the scalar product of two vectors𝑎 and 𝑏. Let 𝜕𝑓(𝑥)denote the set of subgradi-
ents of 𝑓 at 𝑥, which is known as subdifferential of 𝑓 at 𝑥. When 𝑓 is convex and subdifferentiable
at 𝑥, the linear function

𝑙(𝑦) = 𝑓(𝑥) + ⟨𝑎, 𝑦 − 𝑥⟩
is a support function of 𝑓 at 𝑥 for any 𝑎 ∈ 𝜕𝑓(𝑥). The next theorem states some properties of
support functions and their relationship to convex functions.
Lemma A.2 (Convex majorization). Let 𝑓 ∶ ℝ𝑛 → ℝ. The following assertions hold:

(i) 𝑓 is a convex function if and only if there exists an index set  such that

𝑓(𝑥) = sup
𝑗∈

𝑙𝑗(𝑥), ∀𝑥 ∈ 𝑑𝑜𝑚𝑓,

where  is possibly infinite and 𝑙𝑗(𝑥) = ⟨𝑎𝑗, 𝑥⟩ + 𝑏𝑗 for all 𝑗 ∈  .
(ii) For any finite set Θ ⊂ ℝ𝑛 and values {𝑣𝜃}𝜃∈Θ ⊂ ℝ, 𝑓 ∶ ℝ𝑛 → ℝ defined by

𝑓(𝑥) = max
𝑎,𝑏

{⟨𝑎, 𝑥⟩ + 𝑏 ∶ ⟨𝑎, 𝜃⟩ + 𝑏 ≤ 𝑣𝜃, ∀𝜃 ∈ Θ} (A.3)

is convex and 𝑓 majorizes any convex functions passing {(𝜃, 𝑣𝜃)}𝜃∈Θ.

These results are well known, see e.g., Boyd and Vandenberghe (2004). Part (i) states that a
convex function can be recovered by taking the supremum of its support functions, and Part (ii)
gives conditions for constructing the largest convex function majorized by {𝑣𝜃}𝜃∈Θ.
Proof of Theorem 4.2. Let 𝑣 = (𝑣0, 𝑣1, … , 𝑣𝐽). We start by defining (𝑣) = {𝑔 ∈  ∶ 𝑔(1 − 𝜃𝑗) =

𝑣𝑗 for 𝑗 = 0, 1, … , 𝐽}. Then we can write 𝜌2 (𝑋) as

𝜌2 (𝑋) = sup
𝑣

𝜌2∩(𝑣)(𝑋)

s.t. (𝑣) ∩ 2 ≠ ∅.

Since (𝑣) is determined by 𝑣, then for each fixed 𝑣, either (𝑣) is a subset of 𝑐𝑒 or is disjoint
from it. The same is true for the sets 𝑝𝑎𝑖𝑟 and 𝑏𝑛𝑑. Since 2 = 𝑆 ∩ 𝑝𝑎𝑖𝑟 ∩ 𝑐𝑒 ∩ 𝑏𝑛𝑑, it follows
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428 WANG and XU

that

𝜌2 (𝑋) = sup
𝑣

𝜌𝑆∩(𝑣)(𝑋) (A.5a)

s.t. (𝑣) ∩ 𝑆 ≠ ∅,(𝑣) ⊂ 𝑝𝑎𝑖𝑟,(𝑣) ⊂ 𝑐𝑒,(𝑣) ⊂ 𝑏𝑛𝑑. (A.5b)

Following a similar analysis to the proof of Theorem 4.2 and Lemma A.2, we can reformulate the
objective function of problem (A.5) as

sup
𝛽,𝑠,𝜁,𝛼,𝑏

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥𝑖−1)[𝑠𝑖−1𝟏{1 − 𝜋𝑖−1 < �̃�} + (𝛼𝑖−1(1 − 𝜋𝑖−1) + 𝑏𝑖−1)𝟏{1 − 𝜋𝑖−1 ≥ �̃�}] (A.6a)

s.t. (30𝑒) − (30𝑗) and (30𝑚) − (30𝑞). (A.6b)

Now, we consider the constraints of problem (A.5). Constraint (𝑣) ∩ 𝑆 ≠ ∅ means that there
exist 𝛽𝑗 ≥ 0 for 𝑗 = 0, 1, … , 𝐽 such that (30 g)-(30 h) and (30 k)-(30 l) hold. Constraint (𝑣) ⊂ 𝑝𝑎𝑖𝑟
corresponds to (30 c), constraint (𝑣) ⊂ 𝑐𝑒 to (30 b), and constraint (𝑣) ⊂ 𝑏𝑛𝑑 to (30 d). The
last constraint (30 r) is a normalization condition.

A.3 Proof of Proposition 5.1
Proof. Let 𝑔 ∈ 1 be fixed and 𝑠𝑖 = 𝑔(1 − 𝜋𝑖) = 𝑔(1 −

𝑖

𝑛
) for 𝑖 = 0, 1, … , 𝑛. To ease the notation, we

set 𝑠−1 ∶= 𝑠0. Based on (32), we define

𝑣(𝑧, 𝑠) ∶=

𝑛∑
𝑖=1

𝛾𝑖CVaR𝛽𝑖 (𝑓(𝑧, 𝜉)),

where 𝛽𝑖 =
𝑖−1

𝑛
, 𝛾𝑖 = (𝜙𝑖 − 𝜙𝑖−1)(𝑛 − 𝑖 + 1), 𝜙𝑖 = 𝑠𝑖−1 − 𝑠𝑖 for 𝑖 = 1, … , 𝑛. In other words, we have

𝛾𝑖 = (2𝑠𝑖−1 − 𝑠𝑖 − 𝑠𝑖−2)(𝑛 − 𝑖 + 1), for 𝑖 = 1, … , 𝑛.

Since 𝑓(𝑧, 𝜉) is a convex function in 𝑧 for every fixed 𝜉 and the operator CVaR𝛽𝑖 (⋅) is non-
decreasing and convex, then CVaR𝛽𝑖 (𝑓(𝑧, 𝜉)) is a convex function of 𝑧. Moreover, since 𝑔 ∈ 1,
then 𝛾𝑖 ≥ 0 for 𝑖 = 1, … , 𝑛. Thus, 𝑣(𝑧, 𝑠) is a convex function in 𝑧 for every fixed 𝑠 (depending on
𝑔). On the other hand, for fixed 𝑧 ∈ 𝑍, 𝑣(𝑧, 𝑠) is linear in 𝑠. Since 𝑠𝑖 ∈ [0, 1] for any 𝑔 ∈ 1, then
we can write problem (4) in this context as

min
𝑧∈𝑍

max
𝑠∈𝑆

𝑣(𝑧, 𝑠), (A.7)

where 𝑍 is a convex and compact set of IR𝑘 and 𝑆 ⊂ [0, 1]𝑛 is a convex and compact set of IR𝑛. By
Fan (1953, Theorem 1 (ii)),

min
𝑧∈𝑍

max
𝑠∈𝑆

𝑣(𝑧, 𝑠) = max
𝑠∈𝑆

min
𝑧∈𝑍

𝑣(𝑧, 𝑠), (A.8)

which, by Karlin (1959, Corollary 1.3.1), is sufficient and necessary for the existence of a saddle
point. Let (𝑧∗, 𝑠∗) denote the saddle point. Then

𝑣(𝑧∗, 𝑠) ≤ 𝑣(𝑧∗, 𝑠∗) ≤ 𝑣(𝑧, 𝑠∗). (A.9)
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WANG and XU 429

Weare now ready to show the convergence of the sequence {(𝑧𝑗, 𝑠𝑗)} generated byAlgorithm 5.1.
For 𝑗 = 1, 2, …, it follows from Step 2 of Algorithm 5.1,

𝑣(𝑧𝑗−1, 𝑠𝑗) ≥ 𝑣(𝑧𝑗−1, 𝑠), for all 𝑠 ∈ 𝑆. (A.10)

Likewise, it follows from Step 3 of the algorithm

𝑣(𝑧𝑗, 𝑠𝑗) ≤ 𝑣(𝑧, 𝑠𝑗), for all 𝑧 ∈ 𝑍. (A.11)

In the case when the algorithm terminates in finite steps, we have 𝑧𝑗−1 = 𝑧𝑗 and 𝑠𝑗−1 = 𝑠𝑗 for
some 𝑗 and consequently (𝑧𝑗, 𝑠𝑗) satisfies (A.9).
Next, we consider the case that the algorithm generates an infinite sequence {(𝑧𝑗, 𝑠𝑗)}. Let (�̂�, 𝑠)

be a cluster point of {(𝑧𝑗, 𝑠𝑗)}. By taking a subsequence if necessary, we assume for the simplicity
of notation that (𝑧𝑗, 𝑠𝑗) → (�̂�, 𝑠) as 𝑗 → ∞. Assume for the sake of a contradiction that (�̂�, 𝑠) is not
a solution to the problem (A.7). Then (�̂�, 𝑠)would violate one of the inequalities in (A.9). Consider
the case that the second inequality of (A.9) is violated. Then there exists 𝑧0 ∈ 𝑍 such that

𝑣(�̂�, 𝑠)>𝑣(𝑧0, 𝑠).

Since 𝑣 is continuous, the inequality means that for 𝑗 sufficiently large,

𝑣(𝑧𝑗, 𝑠𝑗)>𝑣(𝑧0, 𝑠
𝑗),

which contradicts (A.11). Likewise, we can show that (�̂�, 𝑠) satisfies the first inequality in (A.9).
This completes the proof. □

APPENDIX B: INSURANCE LIABILITY DATA SET
Similar to the settings of the numerical illustration in Van Gulick et al. (2012), we assume that the
annual benefit level of the single life annuity is normalized to 1, the annual benefit level of the
survivor annuity is set to 0.75, and the (lump-sum) benefit level of the death benefit insurance is
set to 7.5. For simplicity, we also assume that for each of the three portfolios, each insured has the
same insured rights. Therefore, each of the life insurance portfolios yields an uncertain stream of
payments at future dates and the present date is Dec 31, 2018. Let 𝑋𝑖 , 𝑖 ∈ {sl, surv, db} denote the
present value of the payments to all insureds in portfolio 𝑖, i.e.,

𝑋sl =

𝑁sl∑
𝑗=1

100−𝑥sl,𝑗∑
𝜏=max{65−𝑥sl,𝑗 ,0}

𝟏(𝑇sl,𝑗≥𝜏)
(1 + 𝑟)𝜏

, (B.1)

𝑋surv = 0.75 ⋅

𝑁surv∑
𝑗=1

100−𝑥
′

surv,𝑗∑
𝜏=0

𝟏(𝑇surv,𝑗<min{𝜏,65−𝑥surv,𝑗 })𝟏(𝑇′surv,𝑗≥𝜏)
(1 + 𝑟)𝜏

, (B.2)

𝑋db = 7.5 ⋅

𝑁db∑
𝑗=1

max{65−𝑥db,𝑗 }∑
𝜏=1

𝟏(𝜏−1≤𝑇db,𝑗<𝜏)
(1 + 𝑟)𝜏

, (B.3)
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430 WANG and XU
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F IGURE B . 1 Age composition: Percentage insureds as a function of age. For the portfolio of survivor
annuities, the partner of the (male) insured is assumed to be three years younger than the insured. [Color figure
can be viewed at wileyonlinelibrary.com]

where𝑁𝑖, 𝑖 ∈ {sl, surv, db}, denotes the number of the insureds in portfolio 𝑖, 𝑥𝑖,𝑗(𝑥′𝑖,𝑗) denotes the
age of insured 𝑗 (the partner of insured 𝑗) in portfolio 𝑖, 𝑇𝑖,𝑗(𝑇′𝑖,𝑗) denotes the remaining lifetime of
insured 𝑗 (the partner of insured 𝑗) in portfolio 𝑖, and 𝑟 denotes the discount rate (see, e.g., Gerber
(2013)). We present numerical results for a single life annuity portfolio with 45 000 male insureds
(𝑁sl = 45000), a survivor annuity portfoliowith 15 000male insureds (𝑁surv = 15000), and a death
benefit insurance portfolio with 15 000 male insureds (𝑁db = 15000). The age composition of the
three products is identical, and given in Figure B.1. In addition, we assume that the maximum life
span for all insureds is 100. The discount rate is equal to 𝑟 = 3%.
From Figure B.1, we can see that the age of the insureds ranges from 22 to 68, so the remaining

lifetime of the insureds varies from 1 to 78=100-22, which means that the values of 𝑇𝑖,𝑗 lie in the
set {1, 2, … , 78} for insured 𝑗 and 𝑖 ∈ {sl, surv, db}.
Scenarios for future survival probabilities of all insureds are generated by a standard Lee and

Carter (1992) model, estimated on the historical data of the age-specific mortality rates in the UK
from 1980 to 2017 in the national life tables from the National Statistics2. Since the remaining life-
time for an insured is mainly determined by her/his age (statistically speaking), then the random
variable 𝑇sl,𝑗 (𝑇surv,𝑗 or 𝑇db,𝑗) is identical if the age of insured 𝑗 is the same. Thus, there are totally
47=68-22+1 different random variables conditional on the age of the insured and for each such
randomvariable, there are 78 different values atmost. Since themaximum life span for all insureds
is 100 and the age of all insureds is from 22 to 68, then there are precisely 2585 =

∑68

𝑖=22
(100 − 𝑖)

scenarios for the remaining lifetime conditional on the age of the insured. From the above dis-
cussions and (B.1), we see that the present value of the payment to insured 𝑗, i.e., the random
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WANG and XU 431

F IGURE B . 2 (a) The value of the random variables 𝑋sl, 𝑋surv and 𝑋db as a function of remaining lifetime 𝑇.
(b) The probability that remaining lifetime 𝑇. [Color figure can be viewed at wileyonlinelibrary.com]

variable

100−𝑥sl,𝑗∑
𝜏=max{65−𝑥sl,𝑗 ,0}

𝟏(𝑇sl,𝑗≥𝜏)
(1 + 𝑟)𝜏

has 78 different realizations atmost depending on the realizations of𝑇sl. Note that the realizations
of the present value of the payment for different insured in single life annuity are in the same set,
i.e.,

{
1

1 + 𝑟
,

1

1 + 𝑟
+

1

(1 + 𝑟)2
, … ,

78∑
𝜏=1

1

(1 + 𝑟)𝜏

}
.

Therefore, wemay divide 2585 scenarios (for all insureds buying single life annuity) into 78 classes
based on the realizations of the present value of the payment to each insured. With a slight abuse
of notation, we use 𝑇 to denote these classes. Note that the range of 𝑇 is from 1 to 78 and we regard
the values of 𝑇 as our considered scenarios: “remaining lifetime”. Since there are 𝑁sl insureds
buying single life annuity, then the sum of present value of the payments to all insureds in single
life annuity is a compound random variable. The realization of 𝑋sl for each scenario is calculated
via (B.1) based on the age composition, which is a weighted sum of the realizations of the present
values of the payments for insureds aging from 22 to 78 for each scenario. Similar explanations
apply to 𝑋surv and 𝑋db.
Next, we consider how to obtain the probability of 𝑇 at each scenario. Since 𝑇 is determined

by merging 2585 scenarios (scenarios of remaining lifetime conditional on the age of the insured)
into 78 classes based on the realizations of the present value of the payment, then the probability
of scenario 𝑇 = 𝑗 is the weighted average of the (age conditional) probabilities of insureds whose
remaining lifetime is 𝑗, where the weighting is the percentage age composition of insureds. Since
the age composition of the three products is identical, then the probability of scenario 𝑗 for each
product is the same. Figure B.2 shows the value and the probability of the random variables 𝑋sl,
𝑋surv and 𝑋db as a function of remaining lifetime 𝑇 taking on a value in 1, 2, … , 78.
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432 WANG and XU

APPENDIX C: QUESTIONNAIRES AND ELICITED DATA SET EXAMPLE
The questionnaires to be asked are designed as follows.

Q1. Is the DM risk-averse?
If the answer is yes, then we use the ambiguity set 1, otherwise, we use 2.

Q2. Which risky lottery from each of the 𝑚-th pairs of lotteries does the DM prefer for 𝑚 =

1,… ,𝑀?
The preferred lottery is denoted by𝐺𝑚 and the other is denoted by𝐵𝑚. Note that when gener-
ating such lotteries, we require that the difference between the DRMs of each pair of lotteries
is greater than the specified threshold, denoted by 𝜅, to ensure that the compared lotteries
have a significant difference and the DM can easily choose which one s/he prefers to. In the
numerical tests, we set 𝜅 = 1. The decision is made based on the values of DRMs for each
pair of the lotteries induced by the true distortion function 𝑔∗1 .

Q3. What is the smallest amount of money, denoted by 𝑤+
𝑘
, that the DM would decline to pay

instead of being exposed to the risk of𝑊𝑘 and what is the largest amount of money, denoted
by 𝑤−

𝑘
, that the DM would be willing to pay instead of being exposed to the risk of𝑊𝑘 for

𝑘 = 1,… , 𝐾?
In this kind of questionnaire, we assume that𝑤+

𝑘
and𝑤−

𝑘
are determined based on the values

of DRMs for each lottery induced by the true distortion function 𝑔∗1 as follows:

𝑤+
𝑘
= (1 + 𝑟)𝑤𝑘𝑔

∗
1(𝑝𝑘), 𝑤−

𝑘
= (1 − 𝑟)𝑤𝑘𝑔

∗
1(𝑝𝑘),

where 𝑤𝑘 and 𝑝𝑘 determine the elementary lottery 𝑊𝑘 through (45) and 𝑟 is randomly
generated from the uniform distribution on [0, 5%].

Q4. How sensitive is the DM to large losses with a small probability? Here we may treat the
probability which is less than 5% as a small probability.
For simplicity, we assume that the sensitivity function is defined as 𝜑(𝜖) = 1

𝑔∗
1
(𝜖)
with 𝜖 ≤ 5%.

We give an example of the generated data set in Table C.1.

TABLE C . 1 Generated data set example.

𝟏 𝟐

𝑮𝒎 𝑩𝒎 𝑾𝒌 𝑮𝒎 𝑩𝒎 𝑾𝒌

No. 𝒙 𝒑 𝒙 𝒑 𝒙 𝒑 𝒙 𝒑 𝒙 𝒑 𝒙 𝒑

1 269,184 0.25 339,867 0.36 332,487 0.39 17,452 0.49 73,233 0.59 351,747 0.12
2 268,199 0.13 164,189 0.46 119,308 0.46 3,193 0.69 276,701 0.31 261,657 0.44
3 66,982 0.21 55,857 0.39 73,477 0.81 18,087 0.22 226,438 0.85 198,852 0.58
4 109,711 0.95 256,891 0.40 278,295 0.05 71,882 0.75 144,167 0.56 6,571 0.50
5 208,140 0.12 226,130 0.18 113,867 0.05 247,103 0.62 281,560 0.97 87,763 0.81

APPENDIX D: RESULTS FOR SENSITIVITY TEST
In this section, we report the results for sensitivity test w.r.t. the change of 𝑟2 only for the case
(ii), i.e., the probability is also randomly generated because the results for the case (i) have no
observable difference with Figure 7. Similar results are observed for 𝑋surv, 𝑋db, and 𝑋, here we
omit them due to limitation of space.
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WANG and XU 433

F IGURE D. 1 (a)Worst-case concave distortion functions for 𝑋sl w.r.t. the value of 𝑟2 for
𝑀 = 2,𝐾 = 10. (b)Worst-case inverse S-shaped distortion functions for 𝑋sl w.r.t. the value of 𝑟2 for𝑀 = 2 and
𝐾 = 10. [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE D. 2 (a)Worst-case concave distortion functions for 𝑋sl w.r.t. the value of 𝑟2 for𝑀 = 2,𝐾 = 20.
(b)Worst-case inverse S-shaped distortion functions for 𝑋sl w.r.t. the value of 𝑟2 for𝑀 = 2 and 𝐾 = 20. [Color
figure can be viewed at wileyonlinelibrary.com]

 14679965, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12379 by U
niversity O

f Southam
pton, W

iley O
nline L

ibrary on [12/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



434 WANG and XU

F IGURE D. 3 (a)Worst-case concave distortion functions for 𝑋sl w.r.t. the value of 𝑟2 for
𝑀 = 10, 𝐾 = 2. (b)Worst-case inverse S-shaped distortion functions for 𝑋sl w.r.t. the value of 𝑟2 for𝑀 = 10 and
𝐾 = 2. [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE D. 4 (a)Worst-case concave distortion functions for 𝑋sl w.r.t. the value of 𝑟2 for
𝑀 = 10, 𝐾 = 10. (b)Worst-case inverse S-shaped distortion functions for 𝑋sl w.r.t. the value of 𝑟2 for𝑀 = 10 and
𝐾 = 10. [Color figure can be viewed at wileyonlinelibrary.com]
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