
Energy-Efficient Memory Tracing for State Retention

in Transient Computing Systems

Theodoros D. Verykios1*, Domenico Balsamo2, Geoff V. Merrett1

1School of Electronics and Computer Science, University of Southampton, Southampton, UK.
2MicroSystems Research Group, School of Engineering, Newcastle University, Newcastle, UK.

*T.Verykios@soton.ac.uk

Abstract—Transient computing systems, also known as inter-
mittent computing systems, are batteryless systems powered by
energy harvesting (EH) sources that do not require large energy
storage for system operations. Instead, they rely on retaining
their state, i.e. a snapshot, in non-volatile memory (NVM) in
the event of a power outage and restoring it when the power
recovers. In this paper, we first discuss the limitations of state-
of-the-art techniques that attempt to minimize the amount of
system state saved to NVM. Therefore, we propose a novel
energy-efficient system-level approach for state retention through
memory tracing based on a custom hardware module named
MeTra that traces changes in the main (volatile) memory between
power outages. MeTra allows the voltage threshold that activates
the state retention process to be dynamically adjusted according
to the energy requirement of each snapshot. Thus, a great
proportion of the energy harvested can be spent on useful
operations. Experimental results show that the system’s active
time can be extended up to 17x for Flash-based systems and
92.2% for FRAM-based systems, compared to saving the entire
system state, with an area overhead of as little as 2.48%.

Index Terms—Transient computing, state retention, memory
tracing, energy harvesting, energy efficiency.

I. INTRODUCTION

Energy harvesting (EH) can help operate sensor systems

by harnessing electrical energy from environmental sources,

making them self-powered [1]. However, the intermittent and

varying nature of these sources makes EH unreliable for per-

forming sensing, processing and transmitting tasks. Therefore,

self-powered systems usually require large energy storage

to flatten the mismatch between EH output and systems’

consumption. However, this storage increases their volume,

weight and cost and requires a long time to charge, delaying

system startup, which is not ideal for smart electronics [2].

Transient computing, also known as intermittent computing,

allows operations to span across power outages, thereby min-

imizing the size of the required energy storage [3]. To ensure

the forward progress of system operations, a snapshot of the

system state is saved in non-volatile memory (NVM) in the

event of a power outage and restored when power recovers.

This means that the contents of the core and general purpose

registers and main (volatile) memory, i.e. RAM, are saved to

and restored from NVM, e.g. Flash or FRAM.

The system state can be saved periodically, which can result

in significant energy overhead for redundant checkpoints.

Alternatively, snapshots can be saved on-demand when the

system voltage, Vsys, reaches a hibernation threshold, Vh,

indicating that a power outage is imminent (Vsys ≤ Vh) [4],

[5]. Therefore, the content needed to resume the operation

from a specific point in time is stored in NVM, and forward

execution can be achieved when power recovers.

Software-based approaches have mainly been proposed

to implement transient computing, e.g. Mementos [3], Har-

vOS [6], Hibernus [7], Hibernus++ [8], and QuickRecall [9].

However, these “blindly” save the entire system state without

distinguishing between useful and redundant content in RAM,

or use NVM inefficiently. The term useful here refers to data

that has changed between two power outages, whilst redundant
is content that has not changed. Saving the entire state each

time reduces the system’s active time, which in turn leads to a

reduction in energy efficiency. Different techniques have been

proposed to address this challenge and reduce the amount of

RAM content saved in NVM [10], [11]. However, most of

them rely on the main processor (CPU) to trace changes in

RAM, meaning that the CPU cannot be fully used for useful

operations. Also, even though some of these can trace changes

in RAM, they cannot dynamically adjust Vh.

In this paper, we propose a novel energy-efficient system-

level approach to retaining the system state based on a custom

module called MeTra that traces changes in RAM between

power outages while minimizing the amount of state that needs

to be saved. MeTra allows Vh to be adjusted at run-time,

based on the useful data to be saved in NVM. As a result, the

system’s active time increases, and the number of snapshots

decreases, thereby increasing overall energy efficiency.

The novel contributions of this paper are:

• The analysis of the state retention process in transient

computing systems, with particular attention to energy

efficiency aspects (Sec. III);

• The design and implementation of MeTra, our hardware

module, to minimize redundant RAM when saving a

snapshot of the system state to NVM (Sec. IV);

• The integration of MeTra with a low-power CPU archi-

tecture (ARM Cortex-M0) typically used in sensor system

applications (Sec. IV), and evaluation of energy efficiency

gains and system-level benefits (Sec. V).

II. RELATED WORK AND MOTIVATION

In this section, we discuss different techniques to reduce

the amount of RAM state saved in NVM, and thus provide

the motivation for our approach.979-8-3503-3694-8/23/$31.00 ©2023 IEEE

Several software-based techniques for minimising the state

saved in NVM have been proposed in the literature. Bhatti

et al. [12] presented a selective state retention policy that

identifies unallocated space in RAM (also called free space)

and saves only the allocated, i.e. used by the main application,

parts to Flash. However, current sensor system applications

typically use most of the available RAM; therefore, unallo-

cated space can represent only a small portion. Also, most

of the data in RAM will remain unchanged between power

cycles, but this is not captured by this technique, meaning

that unchanged RAM will be saved to the NVM, even if it

already exists from a previous snapshot. Finally, this technique

has only been applied to Flash-based sensor systems, offering

little benefit due to the high erasure cost.

Verykios et al. [13] have proposed a number of software

techniques, such as Multiple Allocated State Images, Updated
Blocks and Multiple Updated Blocks, to address the above

challenges, which exploit the individual characteristics of

different types of NVM technologies (e.g. symmetry and era-

sure requirements). However, in these techniques, identifying

unallocated RAM or changed RAM between EH cycles does

not occur until a preset Vh is reached, meaning that the

system cannot efficiently use excess energy. Sliper et al. [14]

proposed ManagedState, a page-based memory manager for

tracing allocated RAM and changed data at run-time, and thus

dynamically adjusting Vh. However, this manager relies on the

CPU to trace changes in RAM using a specific set of APIs.

Also, the granularity in tracing changes is limited by the size

of the page, which can result in redundant data being saved to

NVM depending on the locality property of the application.

Pala et al. [15] proposed a first attempt based on a hardware

technique. Their backup controller, named Freezer, can save

a reduced snapshot of the system state in the event of a

power outage by monitoring RAM accesses during program

execution and then committing the changes to NVM. How-

ever, this controller was only simulated in isolation with no

measurable system-level benefits. In addition, Freezer does

not implement any dynamic threshold voltage adjustment for

Vh, which means that excess energy is not used efficiently,

despite the reduced snapshot size. The authors also speculate

that the frequency between power outages can be up to 100Hz;

however, this is not realistic for typical EH sources [6]. Finally,

the tracing mechanism offers granularity of up to 256 bytes,

which is a large block size, given that a typical low-power

sensor system contains 4-32KB of RAM1.

Limitations of existing approaches: While we provide some

examples of software-based techniques and only a hardware-

based approach, the issues mentioned are valid field-wise.

Therefore, we believe that the ideal solution would need to:

(a) offer an adjustable Vh without significantly sacrificing the

system application active time, (b) provide fine-grained RAM

tracing to minimise the number of redundant NVM writes,

and (c) enable comparable performance across all application

1STM32G081xB - Arm Cortex-M0+ 32-bit Microcontroller datasheet.
Available at https://www.st.com/resource/en/datasheet/stm32g081rb.pdf

workloads, regardless of RAM spatial and temporal locality.

Hence, we propose an energy-efficient system-level module

for memory tracing (MeTra), which provides fine-grained

RAM tracing and dynamically adjusts Vh, minimizing the CPU

time for state retention and maximizing the system application

active time. Details regarding each part of MeTra and how

this is integrated within a low-power CPU architecture (ARM

Cortex-M0) are provided in the following sections.

III. ANALYSIS OF STATE RETENTION PROCESS

This section discusses the retention process in transient sys-

tems, emphasizing aspects that affect system energy efficiency,

and justifying the need for a hardware solution to trace changes

in RAM for more efficient state retention.

Depending on the control strategy, the system state can

be saved periodically with different checkpoint granularity,

e.g. after completing a task, or saved on-demand, i.e. when

Vh is reached [16]. In the former case, applications can be

organised into tasks (sensing, processing, and transmitting),

each of which must be completed within one EH cycle such

that a snapshot can be saved in NVM for transition to the

next task. However, this strategy requires that the energy

storage, Cstore, is sized for the task that consumes the most

energy to ensure high reliability in task execution (application

dependent), or it can result in significant system energy

overhead for redundant checkpoints, e.g. when the application

is divided into micro-tasks. Conversely, tasks do not need to

be completed in one EH cycle with on-demand schemes since

the system state is saved before a power outage occurs, i.e.

when V sys ≤ Vh. This allows to divide the execution of the

task into consecutive EH cycles, minimizing Cstore, whose

size depends only on the energy needed to save the system

state. This strategy is particularly suitable for tasks involving

extended processing operations. At the same time, it is not

ideal for tasks that cannot be split among EH cycles, such as

sensing or transmission.

We focus on tasks involving extensive processing operations

(e.g. Fast Fourier Transform (FFT) or Advanced Encryption

Standard (AES)), i.e. those that may be spread over consec-

utive EH cycles and potentially require a number of state

retention operations. The energy, Etask, required to complete

one iteration of each task with a stable supply can be described

by Etask = Ptask · ttask, where Ptask is the average power

consumption while running the task, and ttask the time re-

quired to complete it. If power outages occur before the task is

completed, the system state must be retained in NVM. Hence,

the total energy per task becomes Etotal = Etask + Esnap,

where Esnap is the total energy overhead associated with

saving and restoring system state a number of times, s, equal

to the number of power outages, defined as

Esnap =
i=s∑
i=0

mi · Esave + Eres (1)

Here, mi is the amount of RAM changed and thus saved -

from 0 (no updates in RAM) to 1 (entire RAM updated) per

each snapshot i, and Esave and Eres are, the energy required

to save and restore the system state, respectively.

On the one hand, for transient systems that save the entire

system state, mi always equals 1, the total size of the RAM.

Therefore, the total cost depends solely on s. On the other

hand, the aforementioned techniques (see Sec. II) can ideally

reduce mi but cannot use the excess energy, Eexc, for task

execution. Consequently, using a hardware module to trace

changes in RAM can provide a solution to minimize mi

for every snapshot i and use Eexc efficiently, i.e. for task

execution. Here, Eexc can be defined as

Eexc =

i=s∑
i=0

(1−mi) · Esave (2)

When considering hardware solutions such as a memory

tracing module, additional overheads that contribute to the

total energy must also be considered. These are (a) the energy,

Etrace, used to power the module and trace changes in RAM

while running tasks, and (b) the energy, Eacq , to read from

the module the RAM that has changed and needs to be saved

to NVM at snapshot time. Thus, Etotal can be rewritten as

Etotal = Ptask · ttask + Etrace︸ ︷︷ ︸
Energy during active time

+

i=s∑
i=0

(mi · Esave + Eres + Eacq)

︸ ︷︷ ︸
Esnap

(3)

Since the state retention process must be application-

independent, attempting to optimize Ptask and ttask is beyond

the scope of this work. Also, Eres cannot be improved, as

the entire system state must be restored after a power outage.

Thus, the justification for designing a memory tracing module

lies in the trade-off between Eexc and Etrace.

Here, Eexc directly depends on mi, which in turn relates

to the ability of a memory tracing module to adjust Vh

dynamically and hence extend the active time for the task.

This feature is not currently available in today’s state-of-the-

art solutions. In addition, mi also depends on the tracing gran-

ularity of the memory module. For example, tracing changes

in RAM at a single-byte level significantly reduces the amount

of redundant data when saving state to NVM. Conversely,

high tracing granularity comes at the cost of increased area

(in terms of hardware) and energy to trace the changes in

E s
na

p
+

E t
ra

ce

Active Time

Task1 Task2 Task3

Full State Retention

x1 x1x2
dominated byd i d b

slope/overhead

Esnap Etrace

Fig. 1: Illustration of overheads (Esnap + Etrace) vs active

time using a memory tracing approach for processing tasks.

ARM
Cortex-M0

MeTra

NVMMain Memory
(RAM) Timer

shut_down

ra
m

_a
dd

r
ra

m
_w

en

counter
overflow int.

data_out

AHB-APB
Bridge

ARM
Cortex-M0

MeTra

NVMMain Memory
(RAM) Timer

shut_down

ra
m

_a
dd

r
ra

m
_w

en

counter
overflow int.

data_out

AHB-APB
Bridge

ah
b_

cl
k

Fig. 2: Block diagram including the ARM Cortex-M0 sub-

system with MeTra.

RAM at a finer resolution. This results in a trade-off between

tracing granularity and energy/area, which must be considered

at design time and has not been explored in other works.

Fig. 1 shows a conceptual illustration of how typical tasks

(Task1, Task2 and Task3) involving processing operations

use RAM, and how this affects saving a snapshot using mem-

ory tracing. These tasks may heavily change data in RAM at

the beginning, i.e. when they first initialize their variables, but

then the changes are less frequent. This behaviour is captured

by the change in profile slope in Fig. 1, indicating that RAM

changes flatten out over time. This is mainly due to reusing

the same RAM locations until the execution of the tasks is

completed (spatial and temporal locality). Consequently, using

a memory tracing module, while Etrace increases linearly with

the time the system is active, Esnap only increases initially and

then flattens out. Here, the vertical dotted black line indicates

the limits within which the contribution between Esnap and

Etrace dominates overheads as a function of time; the longer

the time the system is active, the more overhead is due to

Etrace and vice versa. Finally, assuming that the time the

system is active is extended significantly, a task can potentially

change a more significant portion of the RAM. Therefore, the

overhead for RAM tracing may outweigh the benefits of using

a memory tracing module over saving the entire system state

to NVM. This is captured in Fig. 1 via the cross-over points

x1, x2 and x3, showing that these can differ for different tasks

depending on how RAM is used.

IV. METRA DESIGN

This section describes our custom hardware memory tracing

module MeTra while also taking into account the energy

efficiency aspects discussed in Sec. III.

Fig. 2 shows a system-level diagram of an ARM Cortex-

M0 architecture (typically used for sensor system applications)

incorporating MeTra, and Fig. 3 illustrates the general hard-

ware design of MeTra based on three main parts: a trace

memory, two bit-shift modules and a dedicated counter. MeTra
operates by “sniffing” RAM base addresses when data is being

written and storing this information in the trace memory.

In the case of ARM architecture, this is accomplished by

accessing the advanced high-performance bus (AHB) used to

en

#b
its

ram_wen
shift

en

#b
its

ram_wen
shift

en

#b
its

ram_wen
shift row_sel

col_sel
Trace memoryTrace memory

row1
row2
row3
row4
row5
row6

rowN

co
l1

co
l2

co
l3

co
l4

co
l5

co
l6 ... co
lN

Trace memory

row1
row2
row3
row4
row5
row6

rowN

co
l1

co
l2

co
l3

co
l4

co
l5

co
l6 ... co
lN

Trace memory

row1
row2
row3
row4
row5
row6

rowN

co
l1

co
l2

co
l3

co
l4

co
l5

co
l6 ... co
lN

Counter

ram_addr

MeTra

data_out

en

#b
its

ram_wen
shift row_sel

col_sel
Trace memory

row1
row2
row3
row4
row5
row6

rowN

co
l1

co
l2

co
l3

co
l4

co
l5

co
l6 ... co
lN

Counter

ram_addr

MeTra

data_out

#b
its

en

shut_down

counter overflow interrupt

ahb_clk

shift

Fig. 3: General hardware design of MeTra.

transfer data between the CPU and RAM so that MeTra can

acquire RAM accesses for write operations and the base RAM

address of the location being written. Thus, the AHB address

line (ram_addr), together with the AHB clock (ahb_clk),

which synchronises read/write operations, and the control

signal (ram_wen), which distinguishes RAM writes from

other operations, are routed to MeTra.

RAM is divided into blocks of equal size, and each block

is mapped to a bit of trace memory (tracing granularity in

Sec. III). When a RAM write (change in RAM) occurs, MeTra
locates the corresponding cell in the trace memory and tags the

bit-cell from 0 to 1, indicating that the content in that RAM

block has changed. As shown in Fig. 3, the trace memory is a

bit addressable, two-dimensional array which requires a set of

coordinates to identify the bit to be tagged, in the form of row

(row) and column (col), derived from ram_addr. MeTra
uses two bit-shift modules to convert the RAM base address

to these coordinates via row_sel and col_sel. The CPU

can read the trace memory using the advanced peripheral bus

(APB) before saving a snapshot, such that only changed blocks

of RAM previously mapped into this memory (data_out)

are saved to NVM at snapshot time.

MeTra uses a counter to count the number of RAM blocks

that consequently need to be saved to NVM at snapshot time.

At the rising edge of the clock, row_sel and col_sel are

obtained, and the current value of the corresponding bit-cell in

the trace memory is first saved in a buffer at the falling edge of

the clock, before being updated to 1. If the buffer value is 0, it

means that the RAM block has not been changed previously,

so the counter should take this into account. Therefore, the

counter is incremented only when (a) a write operation is

enabled (ram_wen is 1) and (b) the bit was not previously

changed (buffer value is 0). This counter is then used to adjust

Vh and ensure that changed RAM blocks are reliably saved to

NVM at snapshot time.

The value of Vh is stored in the RAM, and therefore to

adjust this value MeTra uses the counter overflow interrupt

to notify the CPU that Vh must be adjusted (this operation

typically takes only a few CPU cycles to be processed). Every

time a counter overflow happens, meaning that it reaches its

limit (i.e. value 0x1F for a 5-bit counter), the overflow interrupt

is issued. The maximum value of this counter, cmax, is based

on the size of the RAM block, the total size of the RAM and

the intended number of Vh,i steps. The value of Vh,i, at each

counter overflow interrupt, i, is updated based on

i · cmax · Eblock = Cstore · Vh,i
2 − Vsys,min

2

2
(4)

where Eblock is the energy required for saving a single RAM

block to NVM, while Vsys,min is the minimum system voltage.

Eblock can be obtained experimentally depending on the NVM

technology and the size of the RAM block. Eq. 4 can be

implemented in the form of a look-up table that can be used

at run-time to update Vh. When deciding the size of the RAM

block, which in turn affects the size of the trace memory

and the counter, it is necessary to take into account the CPU

architecture. For example, a 32-bit microcontroller (MCU)

would require data to be written to RAM in four-byte blocks,

and thus minimum trace granularity would be one bit to be

mapped to a four-byte RAM block. Lower tracing granularity

(larger block size mapped to a single bit), which would

minimize hardware area and energy costs, can be effective with

an application that uses RAM locations consecutively (spatial

locality). Otherwise, higher granularity would be required.

MeTra also includes a shutdown option (shut_down),

therefore, allowing the CPU to shut down MeTra when the

overhead Esnap+Etrace outweighs the benefits of using MeTra
over saving the entire system state (discussed in Sec. III).

Fig. 4 shows the execution flow between MeTra and the CPU

for each EH cycle (excluding the system state restore process,

which does not involve MeTra). This also includes shutting

down MeTra when the CPU issues an interrupt, after detecting

that a crosspoint has been reached. Crosspoint checking is

done on the CPU whenever MeTra sends the counter overflow

interrupt. This interrupt is therefore used to: (a) adjust Vh, and

(b) calculate the energy overhead (Esnap+Etrace) based on the

Convert
ram_addr into

row/col
Read first and then

update bit-cell

Increase
counter

Adjust VH and
calculate

Esnap + Etrace

Shut down
MeTra

Wait until a RAM
write occurs

Yes

Yes

Pause task
execution

Execution Flow

RAM write MeTra

CPU

Continue task
execution

unless Vsys ≤Vh

No

Counter overflow
interrupt

Trace Memory

System
state

retention

System power
outage Vsys ≤Vsys,min

Power
available

Wait Until Power
available

Counter

Crosspoint
 occur?

Read trace
memory

shut_down

overflow?

Was
bit-cell
0?

Fig. 4: Execution flow between MeTra and ARM Cortex-M0.

1.5
2.0
2.5
3.0
3.5

V
h

(V
)

Vsys,min

EH Cycle 1 EH Cycle 2
Snapshot

Vsys,min 0
20
40
60
80

R
em

ai
ni

ng
tim

e
(m

s)

C
ou

nt
er

FFT128 Complete

Counter overflow int.
0x00

0x0F

0x1F

(a)

(b)

(c)

0 10 20 80 90 100
1.5
2.0
2.5
3.0
3.5

Time (ms)

V
h

(V
)

Vsys,min

EH Cycle 1

Vh,max

0
100
200
300
400

R
em

ai
ni

ng
tim

e
(m

s)

Fig. 5: Behaviour of MeTra when running FFT128, with RAM block size of 4 bytes, fsource of 2Hz and Flash as NVM.

current value of Vh as well as the active time measured by a

timer (see Fig. 2), to determine if the overhead is greater than

retaining the entire state. If so, the CPU can use an interrupt

(shut_down) to shut down MeTra immediately afterwards

until the next EH cycle. Otherwise, upon reaching Vh, the CPU

reads the trace memory to determine which RAM blocks need

to be saved in NVM, thus starting the state retention process.

V. EVALUATION

This section analyzes the performance and benefits of using

MeTra considering different NVM types (Flash or FRAM),

RAM block sizes (4, 8, 16 and 32 bytes with total RAM of

4KB), and processing tasks performed on the ARM Cortex-

M0. These are as follows: (1) Advanced Encryption Standard

(AES128), a 128-bit encryption algorithm generally used to

protect classified information; (2) Cyclic Redundancy Check

(CRC32), a 32-bit checksum generation algorithm typically

used for error detection in communication; and (3) Fast Fourier

Transform (FFT128), a 128-bit time-domain to frequency-

domain transform algorithm used in signal processing.

The energy (time) required to complete each task (profiled

on an ARM Cortex-M0), Etask and ttask, is 73μJ (100ms)

for FFT128, 60μJ (82ms) for AES128 and 47μJ (64ms)

for CRC32, where the maximum voltage Vsys,max is 3.2V,

and minimum voltage Vsys,min is 1.8V. We emulate an EH

cycle with a variable frequency synthesised source, where the

amplitude is 3.2V, and the interruption frequency, fsource, can

vary from 2Hz to 20Hz for testing purposes. The active time

spent executing the task before saving a snapshot for each EH

cycle depends on fsource and Vh,; therefore with a constant

value of fsource, the active time depends exclusively on Vh.

We first performed the tasks without using MeTra to obtain

the maximum value of Vh,max to save the entire system state

to NVM, considering both Flash and FRAM. Here, Vh,max is

3.1V for Flash using a Cstore of 100μF to ensure the entire

system state is reliably saved with a profiled Esnap of 328μJ.

In contrast, Vh,max is 2.6V for FRAM using a Cstore of 10μF,

and Esnap of 17μJ. We can state that retaining the entire

system state requires a significant amount of energy compared

to Etask for all tasks with both types of NVM, reducing the

active time and the system’s overall energy efficiency. We then

profiled our tasks using MeTra to evaluate the benefits in terms

of additional active time per EH cycle based on adjusting Vh.

Fig. 5 shows the FFT128 as an example, first performing

without MeTra and then with MeTra, with a constant fsource
of 2Hz and using Flash as NVM. In Fig. 5(a) (without MeTra),

Vh is constant over time (Vh,max = 3.1V, green line), and the

remaining active time (outstanding time until the end of the

EH cycle, red line) decreases linearly until it reaches 0, when

a snapshot is saved. To complete the task, one snapshot is

required. Here, we do not show the time between a power

outage and power recovery. We then illustrate the case with

MeTra in Fig. 5(b), where, whenever the counter overflow

interrupt is issued (with a 4-byte RAM block size, a 5-bit

counter is required with maximum value 0x1F), the value of

Vh is adjusted using Eq. 4, as well as the remaining active

time until a snapshot is saved, if needed (Fig. 5(c)). Contrary

to the case without MeTra, the FFT128 completes within one

EH cycle without requiring snapshots and with a remaining

active time of 300ms after completion. Over time, the number

of RAM blocks changed increases in the first part but then

remains constant. This behaviour is because the FFT128 uses

the same RAM blocks after the first 14ms, which are then

periodically updated over time. A similar behaviour can be

observed with FRAM and different values of fsource.

Fig. 6 shows the total active time (y-axis) profiled per

EH cycle as a function of fsource (x-axis) without MeTra
(marked as “default”) and with MeTra while performing

FFT128, CRC32 and AES128, for both FRAM (top) and

Flash (bottom). Here, the active time per EH cycle is extended

between 25.8% and 92.2% for the FRAM-based system, while

the system featuring Flash shows an increase that ranges from

5x to 17x. The reason for this significant increase is the

reduction of Vh from 3.1V (fixed Vh,max) to a maximum

of 2.065V for the Flash and 1.975V for FRAM. Therefore,

thanks to MeTra, the active time per EH cycle has significantly

increased. As a result, the system may reduce the number of

snapshots required during task execution or complete the task

without saving any snapshots. Thus, the total energy required

0
20
40
60
80

100

A
ct

iv
e

tim
e

(m
s)

CRC AES FFT Default25.8%

92
.2

%

5x 17
x

2 4 6 8 10 12 14 16 18 20
0

100
200
300
400
500

fsource (Hz)

CRC AES FFT Default

Fig. 6: Total active time per EH cycle with varying fsource
from 2Hz to 20Hz, using FRAM (top) and Flash (bottom).

to retain the state until the task is completed is significantly

reduced. This is shown in Fig. 7, where Esnap is profiled

with and without MeTra while performing AES128, CRC32

and FFT128, with fsource equal to 20Hz, which is the worst

case for MeTra. Here, Esnap is significantly lower when using

MeTra for two main reasons: reduced number of snapshots and

reduced energy mi ·Esave per each snapshot. In particular, the

energy spent for saving the state is reduced between 15x-20x,

compared to not using MeTra, across all benchmarks.

Finally, Table I shows the power consumption and hardware

area (and relative overheads) of MeTra with different block

sizes with a total RAM of 4KB. It can be observed that

the area overhead, compared to the total design area of the

ARM Cortex-M0 (0.15mm2), ranges between 2.48%-12.21%,

while the additional power consumption of MeTra ranges

between 16.1μW-19.3μW; an overhead of 2.20%-2.63%, when

compared to the power consumption of the ARM-Cortex-M0

(730μW power consumption at 8MHz, without peripherals).

VI. CONCLUSION

This paper proposes a custom hardware module, MeTra, that

traces changes in the main memory between power outages

for efficient system state retention. MeTra allows the state

retention process to be activated dynamically by adjusting

Vh) at run-time based on the energy requirement of each

snapshot. This maximises the system’s active time and the

energy available to perform tasks. MeTra was integrated to a

low-power embedded architecture (ARM Cortex-M0), and its

functionality was verified using various benchmarks. Experi-

mental results show that active time within an EH cycle can be

FFT AES CRC
0

10
20
30
40
50
60
70

E s
na

p
(μ

J)

Benchmark

MeTra
Default

18
x

20
x

15
x

Fig. 7: Esnap while performing FFT128, AES128 and CRC32

with fsource = 20Hz (worst case) and using FRAM as NVM.

RAM Block Power (μW) Area (μm2)
4 19.3 (2.63%) 18329 (12.21%)
8 18.4 (2.51%) 9364 (6.24%)
16 17.1 (2.33%) 5509 (3.67%)
32 16.1 (2.20%) 3716 (2.48%)

TABLE I: Power and area overheads for MeTra with different

RAM block sizes.

extended up to 17x (Flash-based) and 92.2% (FRAM-based),

compared to saving the entire system state. MeTra incurs an

area overhead of 2.48%-12.21% (assuming a RAM of 4kB),

while its power consumption is 19.3μW (2.63% overhead) for

the highest tracing granularity (4-byte RAM block).

ACKNOWLEDGMENT

This work was supported by the UK EPSRC grants

EP/W022877/1, EP/P010164/1 and EP/K034448/1. Experi-

mental data can be found at DOI:10.5258/SOTON/D2596

(https://doi.org/10.5258/SOTON/D2596).

REFERENCES

[1] T. Becker et al., “Energy harvesting for a green internet of things,”
PSMA, NJ, USA, White Paper, 2021.

[2] D. Balsamo et al., “A control flow for transiently powered energy
harvesting sensor systems,” IEEE Sensors Journal, vol. 20, no. 18, pp.
10 687–10 695, 2020.

[3] B. Ransford et al., “Mementos: System support for long-running com-
putation on RFID-scale devices,” in ASPLOS XVI. New York, USA:
Association for Computing Machinery, 2011, p. 159–170.

[4] A. Rodriguez Arreola et al., “Approaches to transient computing for
energy harvesting systems: A quantitative evaluation,” in ENSsys’15.
New York, USA: Association for Computing Machinery, 2015, p. 3–8.

[5] U. Senkans et al., “Applications of energy-driven computing: A
transiently-powered wireless cycle computer,” in Proceedings of the Fifth
ACM International Workshop on Energy Harvesting and Energy-Neutral
Sensing Systems, ser. ENSsys’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 1–7.

[6] N. A. Bhatti and L. Mottola, “HarvOS: Efficient code instrumentation
for transiently-powered embedded sensing,” in IPSN’17. New York,
USA: Association for Computing Machinery, 2017, p. 209–219.

[7] D. Balsamo et al., “Hibernus: Sustaining computation during intermittent
supply for energy-harvesting systems,” IEEE Embedded Syst. Lett.,
vol. 7, no. 1, pp. 15–18, 2015.

[8] D.Balsamo et al., “Hibernus++: A self-calibrating and adaptive system
for transiently-powered embedded devices,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 35, no. 12, pp. 1968–1980, 2016.

[9] H. Jayakumar et al., “Quickrecall: A HW/SW approach for computing
across power cycles in transiently powered computers,” J. Emerg.
Technol. Comput. Syst., vol. 12, no. 1, aug 2015.

[10] T. D. Verykios et al., “Exploring energy efficient state retention in
transiently-powered computing systems,” Proceedings of the IDEA
League Doctoral School on Transiently Powered Computing, 2017.

[11] S. Ahmed et al., “A survey on program-state retention for transiently-
powered systems,” Journal of Systems Architecture, vol. 115, 2021.

[12] N. A. Bhatti and L. Mottola, “Efficient state retention for transiently-
powered embedded sensing.” in EWSN’16, 2016, pp. 137–148.

[13] T. D. Verykios et al., “Selective policies for efficient state retention
in transiently-powered embedded systems: Exploiting properties of nvm
technologies,” Sustainable Computing: Informatics and Systems, vol. 22,
pp. 167 – 178, 2019.

[14] S. T. Sliper et al., “Efficient state retention through paged memory
management for reactive transient computing,” in DAC’19. New York,
USA: ACM, 2019, p. 6.

[15] D. Pala et al., “Freezer: A specialized nvm backup controller for inter-
mittently powered systems,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 40, no. 8, pp. 1559–1572, 2021.

[16] A. Rodriguez Arreola et al., “Federated time persistency in intermittently
powered IoT systems,” Journal of Systems Architecture, vol. 130, p.
102667, 2022.

