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We model a decision maker who can exert costly effort to adapt her risk assessments, thereby
optimizing the value of her risky prospects. We provide an axiomatic characterization of the model
and show how costs of adaption can be elicited and compared across individuals. In a moral hazard
problem, we show that adapting risk assessments can weaken the effect of monetary incentives for
effort provision, which has important implications for agency problems. We provide several examples
to illustrate how adapting risk assessments can rationalize many well-known choice anomalies.
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1. Introduction

A standard economic agent evaluates a risky prospect by its
xpected utility. For instance, when considering effort provision,
nsurance purchase, or portfolio choice, a standard agent assesses
er options with a single expected utility function. A direct impli-
ation of this idea is that the agent has a stable fixed assessment
f risk that she applies whenever she encounters a risky prospect.
here are, however, many factors –informational, psychological,
r environmental– that can affect the agent’s risk assessments
pon their realizations. In fact, there is strong evidence that
he wealth level, internal stress, or exogenous shocks –among
any others– can change an agent’s risk assessments.1 A rational
gent would like to mitigate the adverse effects of these factors.
or instance, an agent can acquire information to better control
ealth prospects; or can exercise introspection to better regu-

ate erratic stress; or can pay attention to environmental cues
o better prepare for future shocks, thereby adjusting her risk
ssessments so as to improve her welfare.2
In this paper, we investigate how the ability of adapting risk

ssessments can affect choice behavior, and how observed choice
ehavior can reveal the adaption problem. To study these ques-
ions, we model a decision maker (DM) who can exert costly

E-mail address: k.ozbek@soton.ac.uk.
1 For a survey article that examines a growing body of literature on the

instability of risk preferences, see Schildberg-Horisch (2018).
2 In a similar vein, an agent can purchase durable goods or engage in a

mortgage contract to lower the volatility of her wealth, stabilize state of mind,
and better absorb possible shocks (see, e.g., Chetty and Szeidl, 2007) or Grossman
and Laroque, 1990).
https://doi.org/10.1016/j.jmateco.2023.102843
0304-4068/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
effort to adapt her risk assessments, thereby improving her eval-
uation of risky prospects. We show that our model can provide a
general framework to rationalize a wide variety of choice behav-
ior under risk, while having enough structure to elicit meaningful
parameters from choice data. In particular, our model provides a
rationale to many choice anomalies that have been widely docu-
mented in experiments (e.g., the common consequence, certainty,
or magnitude effects), which cannot be explained by the standard
model.

A key feature of our model is that the DM responds to incen-
tives when choosing her adaption strategy. To illustrate, consider
a simple moral hazard problem. Suppose the DM receives a trans-
fer t > 0 in case of completion of a risky task. The DM receives
utility from the transfer t by a function v(t, θ ), where θ denotes
a utility parameter. In this setting, adaption can be viewed as a
strategy the DM can follow to change her utility parameter by
way of choosing θ ∈ [θ, θ̄ ], but at a cost c(θ ). Anticipating that
the value of her future problem will be v(t, θ ), the DM then faces
the following adaption choice problem: max

θ∈[θ,θ̄ ]

[v(t, θ ) − c(θ )].

By adapting her utility, the DM is able to improve her potential
benefit from the transaction. However, she must balance this
benefit against the adaption cost c(θ ). In particular, the solution
to this adaption problem depends on the incentives that she faces.
For instance, we argue in Section 2 that adaption can weaken
the effect of monetary incentives, which impact the way the DM
responds to changes in the transfer. For a wide range of model
parameters, the DM decreases effort provision in response to an
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jmateco.2023.102843
https://www.elsevier.com/locate/jmateco
http://www.elsevier.com/locate/jmateco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmateco.2023.102843&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:k.ozbek@soton.ac.uk
https://doi.org/10.1016/j.jmateco.2023.102843
http://creativecommons.org/licenses/by/4.0/


K. Ozbek Journal of Mathematical Economics 106 (2023) 102843

i

e
c
s
i
i
a
s
h

ncrease in the transfer level.3 This negative effect, which is driven
by the ability of the DM to adapt her utility, can impact the
viability of instruments aimed at encouraging effort provision
behavior.

In well-known models of decision making under risk, such as
the expected utility model, there is no opportunity for the DM
to exert effort to affect her risk assessments. As a result, these
models do not generate the type of responses to incentives that
arise under the adaption model. Other economic settings where
adaption can have important implications for choice behavior
include insurance-purchase or portfolio-choice problems. For in-
stance, in an insurance-purchase problem, a change in income
may alter the DM’s incentives to adapt her risk assessments,
thereby affecting the amount of coverage the DM purchases. In a
portfolio-choice problem, a change in wealth may alter the DM’s
incentives to adapt her risk assessments, thereby affecting the
share of income she invests in risky assets.

Our general model formalizes the idea of adjusting risk assess-
ments by identifying a novel parameter –the cost of adaption–
that determines how a DM is able to adapt her risk assessments.
We view these costs as subjective, and possibly encompassing
many forms of strategies. A challenge in identifying such costs
is that adaption itself may often be a hidden action, and therefore
not observable; for instance, when it represents a purely men-
tal effort. To overcome this challenge, we study the observable
implications of adaption in a framework where the DM chooses
between lotteries today, anticipating that she will exercise adap-
tion before an outcome realizes tomorrow. Our identifying as-
sumption is that the DM anticipates the benefits and costs of
adaption when she chooses a lottery, so that her preferences over
lotteries –which can be revealed by choice behavior– incorporate
her adaption problem. In this lottery-choice framework, we give
an axiomatic characterization of a general model of costly adap-
tion (Theorem 1), and show how adaption costs can be elicited
from choice-data (Theorem 2). We also show that a DM with
higher costs of adaption values basic lotteries more, establishing a
comparative measure of ability to adapt risk assessments in terms
of choice behavior (Theorem 3).

An evidence against using a single expected utility function to
represent the DM’s preferences for choice under risk is the Allais
(1953) paradox type choice behavior which results in a well-
known violation of the independence axiom. A strand of exper-
imental literature (e.g., Conlisk, 1989, Huck and Muller, 2012,
and Blavatskyy et al., 2021) investigates how robust these types
of paradoxes are. A key finding of this literature is that incentives
matter such that the subjects tend to violate the independence
axiom more when prizes are high, while less violations occur
when prizes are low. An important feature of our model is that
risk assessments are not necessarily fixed, and rather can be
changed by adaption as a response to changes in incentives
leading to Allais (1953) type choices (see Section 6).

In terms of preferences over lotteries, this feature of our model
induces a key behavior, Increasing Desire for Basic Lotteries, which
are lotteries that only yield the best or the worst outcome. This
behavior reflects the idea that rather than mixing the lotteries
themselves, it is better to mix their basic lottery equivalents. The
reason for this behavior is that although the DM is certain about

3 In fact, there is a sizeable body of literature employing lab or field
xperiments with similar implications documenting that monetary incentives
an backfire. For instance, Alfitian et al. (2021) conduct a field experiment
howing that monetary bonuses increase employee absenteeism in a retail chain
n Germany by 45%; Klor et al. (2014)) show in a lab experiment that an increase
n monetary rewards induce agents to exert lower effort in the completion of
joint task; Wagner et al. (2020) conduct a field experiment and show that

tronger financial incentives can lead to substantially less effort by community
ealth workers in Uganda.
2

the values of the best and worst outcomes (where no adaption
is needed), she may not be certain about the relative values
of intermediate outcomes (where she needs adaption). As such,
when lotteries are mixed, since (i) the number of intermediate
outcomes increases, it becomes harder to adapt her risk assess-
ments, and since (ii) the likelihoods of intermediate outcomes
decrease, it becomes less appealing to adapt risk assessments.
As a result, relative to the mixture of the basic lottery equiva-
lents, the mixture of the lotteries both makes it harder to utilize
adapting risk assessments and reduces the potential benefit of
adaption.

Our model of adaptive risk assessments belongs to the liter-
ature on decision making under risk, where the strong indepen-
dence axiom is replaced with a weaker counterpart. Axiomatic
work on a strand of this literature was pioneered by the works
of Dekel (1986), Chew (1989), and Gul (1991) to rationalize
observed violations of the independence axiom. A key implication
of these models is the betweenness axiom which induces that the
DM’s risk assessments are locally fixed and therefore cannot be
changed along each indifference set. We show that betweenness
preferences and our model overlap whenever risk assessments
are globally fixed, and so the overlapping preferences assume an
expected utility representation (Proposition 2).

A related model to our static model of preferences with adap-
tive risk assessments is the dynamic mixture-averse preferences
of Sarver (2018). Although both his model (in a dynamic setting)
and ours (in a static setting) are convex functions of lotteries, the
characterizations are significantly different such that while his
axioms imply the existence of certainty equivalents, ours imply
basic lottery equivalents. Importantly while dynamic mixture-
averse preferences are more general and can therefore have mul-
tiple equivalent representations, our adaptive risk assessments
preferences essentially have a unique representation and its pa-
rameters can be elicited from choice data. In particular, benefits
and costs of adaption are separated in our model allowing to
conduct viable comparative statics, welfare and policy analysis.
There are other models in the literature that are concave func-
tions of lotteries and therefore can imply a decrease in desire
for mixtures with basic lotteries (e.g., Maccheroni, 2002, Cerreia-
Vioglio, 2009, and Cerreia-Vioglio et al., 2015). The overlap of
these models and our model implies no desire for basic lotteries
and therefore the overlap is equivalent to the expected utility
model (Proposition 2). We provide a detailed discussion of the
related literature after developing our model (see Section 5).

Several experiments with decision making under risk show
that individuals exhibit increasing relative risk aversion (see,
e.g., Holt and Laury, 2002). While the expected utility model
can explain this behavior with many possible Bernoulli utilities
(e.g., the constant absolute risk averse utility function), it typically
runs into the problem of inducing very high levels of risk aversion
when stakes are scaled up (see, e.g., Rabin, 2000). In Section 6,
we argue briefly that our model of adaptive risk assessments
can accommodate simultaneously both increasing relative and
decreasing absolute risk aversion behavior providing a rationale
for experimental choices without yielding absurd levels of risk
aversion. Finally, our work is related to an applied literature
which try to understand why monetary incentives may backfire
when encouraging individuals to modify their choice behavior
(see Gneezy et al., 2011 or Kamenica, 2012 for survey articles). A
key implication in this literature is that the DM’s extrinsic incen-
tives can come into conflict with intrinsic motivations stemming
from individual or social concerns (e.g., reputation). In this regard,
our work provides a novel rationale for the negative reaction of
individuals towards monetary incentives as we illustrate with a
simple example in the next section.

The paper is organized as follows. Section 2 presents the
moral hazard problem in more detail, and shows how ability to
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dapt risk assessments can generate unintended effects on effort
rovision. In Section 3, we introduce the framework and define
references over lotteries induced by a general model of adaptive
isk assessments. Section 4 presents the axioms and contains our
esults on representation, elicitation, and comparative statics. We
lso characterize two special cases of the model where adaption
trategy is constrained or fixed. Section 5 provides a review of
he related literature. In Section 6, we provide several examples
o illustrate some choice implications of the adaptive risk assess-
ents model for decision making under risk. Section 7 concludes.
roofs are given in an Appendix.

. Application: a principal–agent problem

To illustrate our general model, we consider a simple moral
azard problem with an agent who can adapt her risk assess-
ents. We show that the ability to adapt risk assessments can

ead to unintended effects in effort inducing settings that have
mportant implications for agency problems aimed at improving
fficiency.
gent’s problem. Suppose that there is a project that can end
n either success or failure, which stochastically depends on how
uch effort e ∈ [0, 1] an agent exerts. Specifically, let p(e) = eα
ith α ∈ (0, 1) be the probability of success when the agent
xerts an effort level e ∈ [0, 1]. Suppose exerting effort is costly
o the agent which is given by the function k(e) = λeβ for some
> 0 and β > 1.
The agent receives an amount of transfer t ∈ [0, T ] for some
> 0 in case of a success, otherwise there is no transfer

ade. Suppose the agent receives payoff from any transfer t by
n increasing utility function uθ (t) for some θ ∈ [θ, θ̄ ], where
< θ < θ̄ < 1. Thus, given an amount of transfer t > 0

and a utility function uθ (t), the agent chooses an optimal level
of effort by the following choice problem max

e∈[0,1]
[p(e) uθ (t) − k(e)].

Given our assumptions, the solution of this problem can be given
by an optimal effort function e∗

θ (t) = [
α
λβ

uθ (t)]
1

β−α which is
ncreasing in t . Let v(t, θ ) be the value of agent’s optimal effort
hoice problem; that is, v(t, θ ) = p(e∗

θ (t)) uθ (t) − k(e∗

θ (t)).
By adapting her risk assessments θ ∈ [θ, θ̄ ], the agent can

optimize her valuation of the risky transfers subject to some cost
given by a function c(θ ), which is assumed to be increasing in
θ . As such, given an amount of transfer t > 0, the agent faces
the following adaption choice problem, max

θ∈[θ,θ̄ ]

[v(t, θ ) − c(θ )], as

discussed in the Introduction.
Principal’s problem. Now consider the problem of the principal
who wants to offer an optimal transfer t in order to incentivize
the agent to provide more effort. Suppose that the principal
receives a payoff of z when the project is successful and oth-
erwise receives no payoff. Given that the agent exerts effort by
e∗

θ (t) as defined above, the principal faces the following transfer
choice problem, max

t∈[0,T ]

[
p(e∗

θ (t)) (z − t)
]
. The optimal solution to

this problem t(z, θ ) satisfies the equality uθ (t)
u′
θ
(t) =

α
β−α

[z − t].
uppose uθ (t) is an increasing concave function; that is, u′

θ (t) > 0
and u′′

θ (t) ≤ 0. Then the optimality condition implies that as the
value of the project increases (i.e., z goes up), the principal should
increase the level of optimal transfer t(z, θ ) in order to extract
more effort from the agent.

This policy, however, may cause –contrary to its objective–
less effort provision (i.e., e∗ goes down) when the agent can adapt
her risk assessments by way of adjusting θ . The reason is that
when t increases the agent becomes relatively well-off. Thus, the
marginal benefit of adaption diminishes, and the agent therefore
wants to choose a lower level of θ which can, in turn, induce her
to provide less effort. In fact, when the optimal effort e∗ is elastic
 o

3

enough, the indirect effect of raising t , through e∗, can overcome
its direct effect, and can overall lead to a decrease in the level of
effort provided.

To make this argument more concrete, suppose without loss
of generality that T = 1 and assume that uθ (t) belongs to the
following class of piecewise linear utility functions: for each θ ∈

[θ, θ̄ ], let uθ (t) = θ t for all t < 1 and uθ (1) = 1. Moreover,
uppose that cost of adaption is such that c(θ ) = rθγ for some
> 0 and γ > 1. Using these functions, we can set the adaption
hoice problem, max

θ∈[θ,θ̄ ]

[v(t, θ ) − c(θ )], as defined above and find

the optimal parameter θ as a function of transfer t as θ∗(t) =

m t
β

γ (β−α)−β , where m > 0 is a constant which depends only on
exogenous parameters of the problem.4 Thus, whenever γ <
β

β−α
, optimal parameter θ∗(t) decreases as transfer t increases.

But this means, as transfer t increases, likelihood of success
p(e∗

θ (t)) = [
α
λβ

m]
α

β−α t
γα

γ (β−α)−β drops since optimal level of effort
∗

θ (t) = [
α
λβ
θ t]

1
β−α = [

α
λβ

m t
γ (β−α)

γ (β−α)−β ]
1

β−α = [
α
λβ

m]
1

β−α t
γ

γ (β−α)−β

falls whenever γ < β

β−α
.

Discussion. To set a viable policy goal, it is therefore important
to identify whether the agent can adapt her risk assessments,
and how elastic her adaptions are to incentives. A main factor
which affects the elasticity of adapting risk assessments is the
agent’s cost of adaption (e.g., γ is a key parameter in our simple
example above, which determines how sensitive the agent’s costs
are to the changes in adaption levels). Our identification result,
Theorem 2, provides a method for eliciting costs under a general
adaptive risk assessments model (see Section 4.3). To avoid incur-
ring adaption costs, the agent in the moral hazard problem would
be willing to pay a premium for the option to have the maximum
payment (e.g., by becoming a residual claimant). Intuitively, the
premium the agent would be willing to pay should depend on
her costs of adaption, where higher costs should reflect in a
willingness to pay a higher premium. In this regard, our compar-
ative statics result, Theorem 3, provides a comparative measure
of ability to adapt risk assessments in terms of desire for basic
lotteries under a general adaptive risk assessments model (see
Section 4.4). Most models of decision making under risk, such as
the expected utility model, cannot generate the type of negative
effects that arise under the adaptive risk assessments model.
In these models, a change in the transfer can only scale up or
down the value of the agent’s problem without invoking negative
effects. Unintended negative effects arise in our model because
the DM exhibits an increasing desire for basic lotteries, and our
characterization result, Theorem 1, provides a way of testing such
behavioral responses under a general adaptive risk assessments
model (see Section 4.2).

3. Preliminaries

In this section, we describe the framework and define the pref-
erences induced by a general model of adaptive risk assessments.

3.1. Framework

In the following, X is a finite set of n prizes, with typical
lements x, y, z ∈ X called outcomes; P is the set of all probability
istributions on X , with typical elements p, q, r ∈ P called lotter-
es.5 We also sometimes represent a lottery p ∈ P more explicitly

4 To be precise, we have m = [
( α
λβ

)
α

β−α −λ( α
λβ

)
β
β−α

rγ ×
β

β−α
]

β−α
γ (β−α)−β which is

ositive since β > α and all exogenous parameters are positive.
5 Our results can be extended to a setting where there is a continuum of
utcomes. We consider a finite set of outcomes for ease of exposition.
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n the form of p = (x, [p(x)] ; . . . ; z, [p(z)]), where p(y) ∈ [0, 1]
denotes the probability of an outcome y ∈ X under lottery p. For
any given outcome x ∈ X , we denote the degenerate lottery which
gives x for sure by δx. For any α ∈ [0, 1], let α p + (1 − α) q ∈ P
enote a mixed-lottery r ∈ P , which is the mixture of lotteries p
nd q, where r(x) = α p(x) + (1 − α) q(x) for all x ∈ X .
Our primitive is a binary relation ≿ on the set of lotteries P ,

with asymmetric part denoted ≻ and symmetric part denoted ∼.
We interpret the binary relation ≿ as the preference relation of
a DM who chooses a lottery, anticipating that she will adapt her
risk assessments towards the lottery when consuming it later. We
say a functional V : P → R represents ≿ when, for all lotteries p
nd q, p ≿ q if and only if V (p) ≥ V (q).
Let ▷1 denote the first-order stochastic dominance relation

ssociated with ≿, which is a strict partial order such that p ▷1 q
f
∑

δx≿δz
p(x) ≥

∑
δx≿δz

q(x) for all z ∈ X and
∑

δx≿δz
p(x) >

δx≿δz
q(x) for some z ∈ X .

Since X is finite, whenever ≿ is complete, there must be a pair
f best and worst outcomes b, w ∈ X such that δb ≿ δx ≿ δw for
ny x ̸= b, w. For simplicity, we will assume that δb ≻ δx ≻ δw
or any x ̸= b, w and so both b and w will be unique. We call an
utcome x ∈ X intermediate if x ̸= b, w, and denote by Xi the set

of intermediate outcomes in X . Let Pbw = {p ∈ P : p(x) = 0 if x ∈

Xi} be the set of basic lotteries whose supports consist of only
the best or worst outcomes. A lottery is non-basic if it assigns
positive probability to an intermediate outcome. For any given
lottery p ∈ P , let bp ∈ Pbw denote a basic lottery equivalent of it;
that is, p ∼ bp and let b(p) denote in short the probability weight
on the best outcome in bp. Notice that, in general, there can be
multiple basic lottery equivalents, but whenever ≿ is monotone
with respect to first-order stochastic dominance, then the basic
lottery equivalent is unique.6

For any two vectors u, v ∈ Rn, let u · v denote the dot product
of u and v. An expected utility function on P can be identified with
an element of Rn; hence, if u ∈ Rn and p ∈ P , we use u·p and u(p)
interchangeably. Note that for any u ∈ Rn representing ≿ over X ,
we can let, without loss of generality, that u(δw) = 0 and u(δb) =

1. Let U =
{
u ∈ Rn

: u(δw) = 0, u(δb) = 1, u(δx) ≥ u(δy) iff δx ≿ δ
e the set of utilities, which represent ≿ over X with typical
lements u, v ∈ U .

.2. The model

We view adaption of risk assessments as a strategy the DM
an follow to alter her risk assessments so as to make a better
valuation of risky outcomes. Exercising adaption, however, re-
uires effort, and so the DM must incur the costs in order to
xploit the benefits. These costs are represented by a function
: U → [0,∞], where c(u) can be interpreted as a measure of

he effort required to adapt risk assessments to u. We say a cost
unction c is proper whenever c(u) < ∞ for some u ∈ U , and
im inf
u→v

c(u) ≥ c(v) for every v ∈ U , where convergence is defined
ith respect to the weak*-topology.
A preference order with adaptive risk assessments reflects

he behavior of a DM who acts as if she anticipates exerting
n optimal level of adaption effort before consuming a risky
utcome.

6 In the following, we will assume that the DM’s preferences are non-trivial
eak order, which are monotone with respect to the first order stochastic
ominance, and which are mixture-continuous. As such, given that we have
unique pair of best and worst outcomes b, w ∈ X such that δb ≻ δx ≻ δw

for any x ∈ X with x ̸= b, w, by monotonicity, δb ≿ p ≿ δw for any
p ∈ P , and so by mixture continuity, the following (non-empty) sets, whose
union is equal to [0, 1], must be closed: {α ∈ [0, 1] : αδb + (1 − α)δw ≿ p} and
{α ∈ [0, 1] : p ≿ αδb + (1 − α)δw}. Since [0, 1] is connected, these two sets must
intersect; that is, there must exist some αp ∈ [0, 1] such that p ∼ αpδb + (1 −

αp)δw . In fact, by monotonicity, αp is unique. Let bp = αpδb + (1 − αp)δw ∈ P
and b(p) = α ∈ [0, 1].
p

4

Definition 1 (Adaptive Risk Assessments). A binary relation ≿ on
lotteries is an adaptive risk assessments (ARA) preference if there
exists a proper cost function c : U → [0,∞] such that the
functional V : P → R, defined by

V (p) = max
u∈U

[u(p) − c(u) ] ,

represents ≿. In this case, we also say that ≿ is represented by c.

The ARA model admits a natural interpretation, in which the
utility V (p) represents the anticipated net utility gained from
lottery p after an optimal assessment of risk is chosen through a
costly cognitive process.7 Notice that although each u ∈ U agrees
on the value of best and worst outcomes, they may disagree on
the value of intermediate outcomes. As such, the DM’s objective is
to adjust the evaluation of the intermediate outcomes by way of
a costly process. Notice also that, in general, the DM can consider
all utilities in U as part of her optimization problem. However, the
DM could also consider only a subset U ⊂ U . Such constraints can
always be incorporated by setting c(u) = ∞ for any u /∈ U , which
s observationally equivalent to excluding u in Definition 1.

.3. Adaption costs

Properness is a minimal property of a cost function to ensure
hat the adaption problem is well-defined. We impose no other
priori restrictions on the cost function. On the other hand,

here are a number of intuitive properties that, without loss of
enerality, can be imposed on an adaptation cost function (see
orollary 1 in Section 4.3).

efinition 2 (Canonical Costs). We say a cost function c is canon-
cal if it is (i) grounded: c(u) = 0 for some u ∈ U , (ii) convex:
(αu + (1 − α)v) ≤ αc(u) + (1 − α)c(v) for all u, v ∈ U and
∈ (0, 1), and (iii) monotone: c(u) ≥ c(v) for all u, v ∈ U with
≥ v.

Groundedness reflects the idea that the DM has the option
ot to exercise an adaption strategy, thereby incurring no cost.
onvexity means that randomizing between two adaption strate-
ies cannot lower the costs. Monotonicity captures the idea that
dapting risk assessments towards a higher valuation is more
ostly.

. Analysis

In this section, we provide our analysis of the ARA model. We
irst discuss behavioral implications of the model. We then pro-
ide our main findings: a representation theorem, an elicitation
rocedure, and a comparative statics result. We also characterize
wo special cases of the adaption model, where adaption efforts
re constrained or fixed.

.1. Axioms

The following three axioms are standard in the literature.

xiom 1 (Non-trivial Weak Order). For all lotteries p, q, r ∈ P ,
i) p ≿ q or q ≿ p, and (ii) p ≿ q and q ≿ r implies p ≿ q. There
xist outcomes, b, w ∈ X , such that δb ≻ δx ≻ δw for all x ̸= b, w.

xiom 2 (Mixture Continuity). For all lotteries p, q, r ∈ P , the
ollowing sets are closed: {α ∈ [0, 1] : αp + (1 − α)q ≿ r} and
α ∈ [0, 1] : r ≿ αp + (1 − α)q}.

7 Following Kahneman (1994), one can call V (p) as the ‘‘decision utility’’
eflecting the desirability of lottery p as inferred from the DM’s decisions, while
ach u(p) as the ‘‘experience utility’’ reflecting the DM’s realized welfare from

lottery p.
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xiom 3 (Monotonicity). For all lotteries p, q ∈ P , if p ▷1 q, then
≻ q.

Axiom 1 requires that the preference order is non-trivial, com-
lete, and transitive. Axiom 2 imposes continuity for preferences
ver mixtures of lotteries. Axiom 3 says that the preference order
s monotone with respect to first-order stochastic dominance re-
ation. The following two axioms are key behavioral implications
f the adaptive risk assessments model.

xiom 4 (Basic Lottery Independence). For all lotteries p, q ∈ P ,
asic lotteries r, s ∈ Pbw , and α ∈ (0, 1), if αp + (1 − α)r ≿
q + (1 − α)r , then αp + (1 − α)s ≿ αq + (1 − α)s.

Axiom 4 reflects the idea that adaption of risk assessments is
nly relevant for non-basic lotteries and not for basic lotteries.
he reason is that possible adaptions of the DM’s risk assessments
ill agree on the value of basic lotteries since they all value best
nd worst outcomes in the same way. As such, when adapting
er risk assessments, the DM only considers non-basic lotteries
nd disregards the information about basic lotteries. Hence, when
on-basic lotteries and their weights are fixed across mixtures,
he preferences over lotteries do not alternate.

xiom 5 (Increasing Desire for Basic Lotteries). For all lotteries
, q ∈ P , basic lotteries r, s ∈ Pbw , and α ∈ (0, 1), if p ∼ r and
∼ s, then αr + (1 − α)s ≿ αp + (1 − α)q.

Axiom 5 reflects the idea that the DM values basic lotteries
ore when mixing; that is, when lotteries are mixed, her desire

or basic lotteries increases. The reason is that when non-basic
otteries are mixed –relative to each lottery– the number of inter-
ediate outcomes increases while their likelihood decreases. But

hen, since the number of intermediate outcomes increases, it be-
omes harder to adapt risk assessments and since their likelihood
ecreases, it becomes less incentivizing to adapt risk assessments.
n the other hand, when basic lotteries are mixed, the mixture
ottery is still a basic lottery and the mixing does not create any
dditional difficulty in terms of adapting risk assessments. As a
esult, the value of mixing basic lotteries stays above the value of
ixing equally good non-basic lotteries.

.2. Characterization

The following theorem shows that Axioms 1–5 characterize
he behavior of a DM who chooses among lotteries ‘‘as if’’ she
nticipates adapting her risk assessments before consuming a
ottery. Thus, Axioms 1–5 are both necessary and sufficient to test
he ARA model using preferences over lotteries.

heorem 1. A binary relation on lotteries ≿ is an ARA preference if
nd only if it satisfies Axioms 1–5.

roof sketch: Necessity part of the proof is straightforward to
how. For sufficiency, Lemma 1 (Appendix A.2) shows that if
binary relation ≿ satisfies Axioms 1–5, then there exist an

daption cost function c : U → [0,∞] such that c represents
. In particular, Axioms 1–5 imply that every lottery p ∈ P has
basic lottery equivalent bp ∈ Pbw such that p ∼ bp. Using basic

ottery equivalents, then a functional I over the set Φ = {φp :

→ R | φp(u) = u(p), ∀u ∈ U, ∀p ∈ P} can be defined
uch that, for all lotteries p and q, we have p ≿ q if and only
f I(φp) ≥ I(φq). The remainder of the proof uses Axioms 1–5 to
how that I is monotone, continuous and convex, and employs
uality arguments to establish the desired representation.
5

.3. Elicitation

In general, it is not possible to identify a unique cost function
ince, for instance, if an ARA preference ≿ is represented by c ,
hen cλ also represents ≿ for any λ > 0, where cλ(u) = c(u) + λ

for all u ∈ U . The following result shows that, for each ARA
preference, there is a unique minimal cost function.

Theorem 2. Let ≿ be an ARA preference. Then, the function c∗
:

U → [0,∞], defined by c∗(u) = supp∈P u(p) − b(p) for all p ∈ P, is
the unique minimal cost function which represents ≿.

Theorem 2 shows that ARA preferences can always be rep-
resented by a unique minimal cost function c∗. In particular,
the minimal cost function c∗ can be constructed from data on
basic lottery equivalents; since c∗(u) ≥ u(p) − b(p) for any
lottery p, the basic lottery equivalent bp can be used to determine
u(p) − b(p) as a lower bound on the cost of u. Using basic lottery
equivalents for other lotteries then leads to a more precise lower
bound. Theorem 2 shows that this procedure approximates c∗(u)
arbitrarily closely, thereby establishing a direct connection be-
tween the adaptation cost function and lottery-choice behavior.
As the following corollary shows, c∗ satisfies the properties in
Definition 2.

Corollary 1. Let c∗ be the minimal cost function for a given
ARA preference ≿. Then c∗ satisfies groundedness, convexity, and
monotonicity.

We see by this corollary that the minimal cost function c∗ is
canonical, and therefore, we refer to c∗ as the canonical represen-
tation of ≿.

4.4. Comparative statics

As an application of our identification result, we consider a
measure of comparative adaption. We say that DM2 is less able
to adapt than DM1 when adaption is costlier for DM2 than DM1;
that is, c∗

2 ≥ c∗

1 . Intuitively, when DM2 is less able to adapt her
risk assessments, she should find the option of having a basic
lottery –which eliminates the need to adapt– more valuable than
DM1. The following comparative defines when DM2 finds basic
lotteries more valuable than DM1.

Definition 3 (Comparative Desire for Basic Lotteries). Let ≿1 and
≿2 be binary relations on the set of lotteries P . Then ≿2 has a
stronger desire for basic lotteries than ≿1 if, for all lotteries p ∈ P
and q ∈ Pbw , whenever q ≻1 p, then q ≻2 p.

The following theorem shows that the comparative in
Definition 3 characterizes when DM2 is less able to adapt her risk
assessments than DM1.

Theorem 3. Let ≿1 and ≿2 be ARA preferences with canonical costs
c∗

1 and c∗

2 , respectively. Then, ≿2 has a stronger desire for basic
lotteries than ≿1 if and only if c∗

2 ≥ c∗

1 .

Theorem 3 provides a behavioral measure of comparative
ability to adapt risk assessments. In particular, Theorem 3 implies
that the utility difference between a lottery and its basic lottery
equivalent is higher for a DM who is less able to adapt. As such,
the DM will be willing to pay a higher premium for the option to
have the basic lottery, thereby avoiding higher adaption costs.
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.5. Special cases

We conclude this section by characterizing two special cases
f the ARA model.
onstrained adaption. A special case of our model is one where

the DM’s adaption effort is constrained, rather than costly. This
special case is characterized by the following axiom.

Axiom. [Neutral Desire for Basic Lotteries] For each lottery p ∈ P
nd q ∈ Pbw , if p ∼ q, then q ∼ αp + (1 − α)q for all α ∈ (0, 1).

Neutral Desire for Basic Lotteries (NeDBL) reflects the idea
hat the DM’s desire for basic lotteries does not change when a
ottery is mixed with its basic lottery equivalent. The reason is
hat when a lottery is mixed with a basic lottery, the likelihood of
ts outcomes change, but not the set of its intermediate outcomes.
s such, whenever the DM incurs no cost of adapting risk assess-
ents, but is constrained, she will keep choosing the same risk
ssessments if the lottery is mixed with a basic lottery. As a result,
he will be indifferent between the lottery and its mixtures with
basic lottery equivalent. In fact, the following result shows that
RA preferences satisfy NeDBL if and only if the DM’s adaption
hoices are costless, but constrained.

roposition 1. Let ≿ be an ARA preference. Then ≿ satisfies Neutral
esire for Basic Lotteries if and only if there exists a set U ⊂ U such
hat for all p, q ∈ P, p ≿ q if and only if max

u∈U
u(p) ≥ max

u∈U
u(q).

Relative to the expected utility model where the risk assess-
ent is fixed, for the representation in Proposition 1 adaption
hoices can vary across lotteries, but are restricted to a constraint
et. Note that choice set U above can be taken, without loss of
enerality, as a closed convex set which can be constructed using
he equation given in Theorem 2.
o adaption. Expected utility model is naturally an important
pecial case of our ARA model, where the risk assessment is
ixed. This special case is characterized by the following stronger
eutral desire for basic lotteries axiom.

xiom (No Desire for Basic Lotteries). For all lotteries p, q ∈ P , if
∼ q, then p ∼ αp + (1 − α)q for all α ∈ (0, 1).

No Desire for Basic Lotteries (NoDBL) reflects the idea that the
M’s desire for basic lotteries does not change when a lottery is
ixed with another lottery. When a lottery is mixed with another

ottery, the mixture lottery has more intermediate outcomes with
ower likelihoods. But if the DM’s risk assessment is fixed, then
uch mixtures do not affect the DM’s choice of a risk assessment.
s a result, she will be indifferent between a lottery and its
ixture with an equivalent lottery, regardless of whether the
quivalent lottery is basic or not. In fact, the following result
hows that ARA preferences satisfy NoDBL if and only if there is
common solution to the DM’s adaption choice problem.

roposition 2. Let ≿ be an ARA preference. Then ≿ satisfies No
esire for Basic Lotteries if and only if there exists a unique u ∈ U
uch that for all p, q ∈ P, p ≿ q if and only if u(p) ≥ u(q).

Proposition 2 shows that the expected utility model can be re-
overed as a special case of the ARA preferences. This result shows
hat any non-expected utility model satisfying the betweenness
xiom can overlap with the ARA preferences only when they
gree with the expected utility model. The next section provides
closer inspection of the relation of the ARA preferences with

ome other non-expected utility models given in the literature.
6

. Related literature

erreia-Vioglou (2009). The ARA model V given in Definition 1
s a convex function of lotteries; that is, V (αp + (1 − α)q) ≤

V (p)+(1−α)V (q) for any p, q ∈ P and α ∈ [0, 1]. Cerreia-Vioglio
(2009) studies a general quasi-concave model of risk preferences.
As such, the dual of his model, which can be given as

v(p) = sup
u∈V

U(u(p), u),

represents a general class of mixture averse preferences under
risk. Hence, the dual of Cerreia-Vioglio (2009)’s model naturally
contains our model of ARA preferences as a special case.
Sarver (2018). Another model of risk preferences which extends
our ARA model is Sarver (2018)’s model of mixture averse prefer-
ences. Sarver (2018) considers Epstein and Zin (1989) preferences
in a dynamic setting of consumption and saving, and identify
an important class of risk preferences by imposing a Mixture
Aversion axiom. Restricted to the static setting and focusing on
preferences over consumption lotteries, his Optimal Risk Attitude
(ORA) model is also a convex function of lotteries which can be
written in our static setting as

v(p) = sup
φ∈Φ

φ(p).

Clearly, the ORA model extends our model of ARA preferences
in the static setting. To see this, note that for any u ∈ U and p ∈ P ,
we can transform the objective function u(p)−c(u) in Definition 1
to φ(p), where φ(p) =

∑
φ(δx)p(x) such that φ(δx) = u(δx) − c(u)

for each x ∈ X . However, this is not the only way of embedding
costs into the transformed utilities. For instance, for any two
outcomes x, y ∈ X , we can have φϵ(δx) = φ(δx) − ϵ and also
have φϵ(δy) = φ(δy) +

px
py
ϵ for some ϵ > 0, while for any other

z ∈ X we can let φϵ(δz) = φ(δz). If we let φϵ(p) =
∑
φϵ(δx)p(x),

then by construction we have φ(p) = φϵ(p) showing that the ARA
preferences can have non-unique ORA representations.

While this is the case, our discussions in Section 4.3 show that
there is essentially a unique representation for ARA preferences
given by the cost function c∗. More importantly, we have shown
that this parameter can be elicited from choice data using basic
lottery equivalents. As a result, our axiomatic characterization
and elicitation results identify an important class of Mixture
Averse preferences in the static setting which can be uniquely
constructed using choice data. As we discussed with our moral
hazard example, unique elicitation of the parameters is important
to conduct viable comparative statics, welfare and policy analysis.
Quiggin (1982). Another related non-expected utility model of
risk preferences is the rank dependent utility (RDU) model first
proposed by Quiggin (1982). According to this model, the value
of lottery p is given by the expected utility

v(p) =

∑
u(x)π (p(x)),

where u ∈ U and π (p(x)) = w(
∑

δx≿δz
p(z)) − w(

∑
δx≻δz

p(z)) for
all x ∈ X with w : [0, 1] → [0, 1] satisfying w(0) = 0 and w(1) =

1. Sarver (2018) shows that risk averse RDU model is a special
case of his Mixture Averse preferences. In this case, w must be
concave (see, Chew et al., 1987). We now argue that the overlap
between the risk averse RDU model and the constrained ARA
preferences is the expected utility model. To see this, note that
our Axioms 1–3 and Quiggin (1982)’s first three axioms coincide,
while risk averse RDU implies our Axiom 5. On the other hand,
the risk averse RDU model has to agree with the expected utility
model whenever it satisfies our Axiom 4 and Axiom NeDBL. To see
the validity of this claim, let p = (w, [p1]; b, [p2]) and q = (x; [1])
for some x ∈ Xi such that p ∼ q. Then, by Axiom 4 and Axiom
NeDBL, αp+ (1− α)δ ∼ αq+ (1− α)δ for any α ∈ (0, 1). These
b b
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wo indifference relations imply that u(b)(1 − w(p1)) = u(x) and
(b)(1−w(αp1)) = u(x)w(α)+u(b)(1−w(α)), respectively, which
ogether imply w(α)w(p1) = w(αp1). Since p1 and α are arbitrary,
e deduce that w(a.b) = w(a).w(b) for all a, b ∈ (0, 1). Thus,
y Aczel (1966, Theorem 3, p.41), for all a ∈ (0, 1), we must have
(a) = ak for some k ≥ 0. Moreover, we must have k ≤ 1 since
is concave.
Again, αp + (1 − α)δw ∼ αq + (1 − α)δw for any α ∈ (0, 1)

by Axiom 4 and Axiom NeDBL. This indifference implies that
u(b)(1 − w(αp1 + 1 − α)) = u(x)(1 − w(1 − α)). Since we also
have u(b)(1 − w(p1)) = u(x) from above, we derive that

w(αp1 + 1 − α) + w(p1)w(1 − α) = w(p1) + w(1 − α),

for all p1 and α in (0, 1). Let p1 =
1
2 and α =

1
2 and use the fact

hat w(a) = ak in above equation. Then we have ( 34 )
k
+ ( 14 )

k
=

( 12 )
k. Clearly this equation is true only when k = 0 or k = 1.8

Since w(a) is non-constant, we deduce that k = 1, and so w(a) =

for all a ∈ [0, 1] showing that constrained ARA preferences and
isk averse RDU preferences overlap only when they both agree
ith the expected utility model.
erreia-Vioglou, Dillenberger, and Ortoleva (2015). A promi-
ent model of preferences under risk is the Cautious Expected
tility (CEU) model of Cerreia-Vioglio et al. (2015). CEU is a quasi-
oncave model of risk preferences, and it therefore belongs to
he class studied in Cerreia-Vioglio (2009). As such, the overlap
f CEU and ARA preferences is the expected utility model. While
his is the case, the dual of CEU, which satisfies

(p) = sup
u∈W

u−1
[

∑
u(x)p(x)],

is a quasi-convex model of risk preferences, and it can have non-
trivial overlap with the ARA preferences. The following argument
shows that the two models overlap only for the expected utility
model. To see this, note that both the CEU model and its dual
implies that for any p ∈ P and x ∈ X with p ∼ δx, one must
ave αp + (1 − α)δx ∼ p. If we impose this condition on the ARA
references, we obtain u(p)−c(u) = v(δx)−c(v) and w(αp+ (1−

)δx)− c(w) = u(p)− c(u), where u, v, w are optimal utilities for
, δx, and αp + (1 − α)δx, respectively. As a result, we must have
(p) − c(w) ≤ u(p) − c(u) and w(δx) − c(w) ≤ v(δx) − c(v). But
iven that w(αp+ (1− α)δx)− c(w) = u(p)− c(u) = v(δx)− c(v)
s true, each inequality above must be an equality. But since p, x,
nd α are arbitrary, this means that there must be a unique utility
hat is feasible and therefore the ARA preferences must have an
xpected utility representation.
accheroni (2002). Another related model to our model of ARA
references is the Maxmin under Risk (MUR) model of Mac-
heroni (2002). MUR is also a quasi-concave model of risk pref-
rences and therefore belongs to the class studied by Cerreia-
ioglio (2009). As a result, its overlap with ARA preferences is
he expected utility model. The dual of MUR, on the other hand,
an be written for each p ∈ P as:

(p) = max
u∈U

∑
u(x)p(x),

hich is a quasi-convex model of risk preferences and which has
ssentially non-trivial overlap with the constrained ARA prefer-
nces that we characterized in Proposition 1. Note that the model
e characterized in Proposition 1 cannot generate the type of

ncentive effects discussed in our moral hazard application. The
RA preferences (or its dual model in general) can generate such
ncentive effects only because of the variable cost parameter.

8 In fact, by Aczel (1966, Theorem 1, p.43), the most general solution to
ensen’s Equation, f ( x+y

2 ) =
f (x)+f (y)

2 , is such that f (x) = cx+d for some c, d ∈ R.
his is compatible with w(a) = ak only when k = 0 or k = 1.
 m

7

Thus, our Axiom 4 is crucial to allow these richer choice behav-
ior. Importantly, our identification result, Theorem 2, provides a
method to elicit these cost parameters.
Maccheroni, Marinacci, and Rustichini (2006). Another related
model to our ARA preferences is the Variational Model of Mac-
cheroni et al. (2006). The variational model is a quasi-concave
model of preferences under uncertainty proposed to study am-
biguity aversion. It belongs to the general class of Uncertainty
Averse Preferences considered by Cerreia-Vioglio et al. (2011). It
is not hard to draw a structural parallel between the variational
model and the dual of our ARA preferences, which can be given
as follows:

min
u∈U

u(p) + c(u).

hile choice variables in the variational model are belief func-
ions which represent the likelihood of states, choice variables in
he ARA preferences (or its dual) are utility transformations which
hange the value of outcomes. As a result, there are significant
ifferences between our proof methods. For instance, we do not
se certainty equivalents unlike Maccheroni et al. (2006) since
hese equivalences do not reflect the evaluation of outcomes by
he same utility function. To establish equivalences, we rather use
asic lotteries for which there is no uncertainty about their value.
e believe considering basic lottery equivalents can be useful in
eveloping related theories.

. Choice implications

In this section, we provide examples to illustrate some pos-
ible implications of the adaption of risk assessments model for
hoice between lotteries. These examples show that adaption of
isk assessments can lead to systematic violations of the expected
tility model, which have been widely documented in experi-
ents. We start our discussion by illustrating that the ability to
dapt risk assessments can generate the common consequence
ffect.
ommon consequence effect. Let w = 0, b = 2500, and x =

400. Suppose the DM has ARA preferences ≿. In particular, let c
epresent ≿ where c(u) = 0 for u ∈ U such that u(δx) = 0.69,
hile c(v) = 0.15 for v ∈ U such that v(δx) = 0.99, and
(v′) = ∞ for all v′

∈ U \{u, v}. Consider lotteries p = (2400, [1])
nd q = (2500, [0.33] ; 2400, [0.66] ; 0, [0.01]), and lotteries
′
= (2400, [0.34] ; 0, [0.66]) and q′

= (2500, [0.33] ; 0, [0.67]).
ahneman and Tversky (1979) observe that most subjects prefer
over q, and q′ over p′, exhibiting the common consequence

ffect as a violation of the independence axiom.
Given the adaption costs, we observe that p ≻ q and q′

≻
′ verifying the common consequence effect. This is true since
(δx) − c(v) = 0.84 > 0.69 = u(δx) − c(u), the DM adapts
er risk preferences to v when evaluating p. Hence, we have
(p) = 0.84. We also have 0.33 + 0.66 v(δx) − c(v) ≈ 0.83 >
.64 = 0.33 + 0.66 u(δx) − c(u). Hence, V (q) ≈ 0.83 implying
hat p ≻ q. When it comes to evaluating p′, we observe that
.34 u(δx) − c(u) ≈ 0.23 > 0.19 ≈ 0.34 v(δx) − c(v). Thus, we
ave V (p′) ≈ 0.23. And finally, we have V (q′) = 0.33, and so
′
≻ p′, as desired. □
Next we consider a simple example that illustrates that the

bility to adapt risk assessments can generate the common ratio
ffect.
ommon ratio effect. Let w = 0, b = 4000, and x = 3000.
uppose the DM has ARA preferences ≿ with c defined as in
ommon consequence effect example above. Consider lotteries
= (3000, [1]) and q = (4000, [0.8] ; 0, [0.2]), and lotteries p′

=

3000, [0.25] ; 0, [0.75]) and q′
= (4000, [0.2] ; 0, [0.8]). Kahne-
an and Tversky (1979) observe that most subjects prefer p over
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, and q′ over p′, exhibiting the common ratio effect as a violation
of the independence axiom.

Given the adaption costs, we observe that p ≻ q and q′
≻ p′

erifying the common ratio effect. This is true since v(δx)−c(v) =

.84 > 0.69 = u(δx)−c(u), the DM adapts her risk assessments to
when evaluating p. Hence, we have V (p) = 0.84. On the other
and, we have V (q) = 0.8 implying that p ≻ q. When it comes to
valuating p′, we observe that 0.25 u(δx) − c(u) ≈ 0.17 > 0.10 ≈

.25 v(δx)−c(v). Thus, we have V (p′) ≈ 0.17. And finally, we have
V (q′) = 0.2 implying that q′

≻ p′, as desired. □
Next we consider another simple example that illustrates that

the ability to adapt risk assessments can generate the magnitude
effect.
Magnitude effect. The magnitude effect refers to the choice situ-
ations where the DM is risk seeking for small gains, while turning
progressively to risk aversion as magnitude of the outcomes
increase. More formally, following Prelec and Lowenstein (1991),
let p = (x, [α] ; 0, [1 − α]) and q = (y, [β] ; 0, [1 − β]), as well
as let q′

= (λy, [β] ; 0, [1 − β]) and p′
= (λx, [α] ; 0, [1 − α])

where λ > 1, x > y > 0 and α < β . Prelec and Lowenstein
(1991) define the magnitude effect as the choice behavior such
that p ∼ q implies q′

≻ p′. Note that, loosely speaking, lottery p
s riskier than q and lottery p′ is riskier than q′.

Let w = 0, b = 100. Suppose the DM has ARA preferences ≿
ith a cost function c defined as follows: (i) c(u) = 0 for u ∈ U
here u(δx) = ( x+40

150 )3 for x ∈ (0, 100), (ii) c(v) = 0.1 for v ∈ U
here v(δx) = ( x

100 )
0.9 for x ∈ (0, 100), and (iii) c(v′) = ∞ for all

′
∈ U \ {u, v}. Consider lotteries p = (20, [0.45] ; 0, [0.55]) and

= (15, [0.6] ; 0, [0.4]). Since 0.45×(0.2)0.9−0.1 < 0.45×(0.4)3,
e have V (p) = 0.45 × (0.4)3 ≈ 0.029. Since 0.6 × (0.15)0.9 −

.1 < 0.6 × (0.366)3, we have V (q) = 0.6 × (0.366)3 ≈ 0.029.
hus, we have p ∼ q. Now let λ = 4, and consider lotteries
′

= (80, [0.45] ; 0, [0.55]) and q′
= (60, [0.6] ; 0, [0.4]). Since

.45 × (0.8)0.9 − 0.1 > 0.45 × (0.8)3, we have V (p′) = 0.45 ×

0.8)0.9 − 0.1 ≈ 0.268. Since 0.6 × (0.6)0.9 − 0.1 > 0.6 × (0.66)3,
e have V (q′) = 0.6 × (0.6)0.9 − 0.1 ≈ 0.279. Hence, we have

′
≻ p′ demonstrating the magnitude effect. □
In particular, we have just demonstrated that for small risks,

he DM might have risk seeking preferences measured by a con-
ex function like u, while for large risks, she may have risk averse
references measured by a concave function like v.9 Finally, we
onsider an argument about the possibility of accommodating
oth increasing relative and decreasing absolute risk aversion by
RA preferences.
elative and absolute risk aversion. Holt and Laury (2002) ar-
ue that in order to avoid absurd levels of high risk aversion
hen stakes are high while allowing also for increasing rela-
ive risk aversion (as several experiments suggest) one needs
o have a model of risk preferences exhibiting decreasing abso-
ute risk aversion. For this purpose, they consider the expected
tility model with the hybrid ‘‘power-expo’’ function U(x) =

1−exp(−αx1−r )
α

and show that this model fits the data well. While
this two parameter model can serve their purpose, we now argue
that a two parameter specification of our ARA model can provide
an alternative to explain the data. For this, suppose that the
DM has ARA preferences and receives utility from each outcome
x ∈ [0, 1] by an iso-elastic concave utility function u(x) = x1−θ (x)
where θ (x) : [0, 1] → [0, 1] is an increasing function of x such
hat θ (x)/x is decreasing. Then, since θ (x) is determined by an
optimization problem, a standard envelope theorem argument
implies that we have −

u′′(x) x
u′(x) = θ (x) and −

u′′(x)
u′(x) =

θ (x)
x showing

hat the ARA model can capture both increasing relative and
ecreasing absolute risk aversion. Moreover, the cost function c
an provide additional freedom to help fit the data better. □

9 This is basically a special case of the Hypothesis II phenomenon that
achina (1982) defines using a generalized expected utility model.
8

7. Conclusion

In this paper, we analyze the behavior of a DM who can exer-
cise costly effort to adapt her risk assessments, thereby improving
the evaluation of her risky prospects. We provide an axiomatic
characterization of the ARA preferences and show how the costs
of adaption can be elicited and compared across individuals. We
also show that the ARA preferences are related to many well-
known models of decision making under risk and argue that
adaption can also be relevant in a variety of other settings, includ-
ing decision making about effort provision, insurance purchase,
and portfolio choice.

We show that adaption of risk assessments (i) induces an
increase in desire for basic lotteries, leading to systematic viola-
tions of the independence axiom, (ii) provides a novel source for
well documented violations of expected utility model (e.g., the
common consequence, common ratio, and magnitude effect),
(iii) generates unintended negative effects in a moral hazard
problem, and (iv) provides a flexible framework to fit experimen-
tal data. The ARA preferences model is therefore sufficiently gen-
eral to rationalize a wide variety of choices under risk, while hav-
ing enough structure to identify viable parameters from choice
data.

Data availability

No data was used for the research described in the article

Appendix

A.1. Preliminaries

Let Σ denote the Borel sigma-algebra over U , and let B(Σ)
be the set of bounded Σ-measurable functions mapping U to
R. When endowed with the sup-norm metric, B(Σ) is a Banach
space. The topological dual of B(Σ) is the space ba(Σ) of all
bounded and finitely-additive set functions µ : Σ → R, the
duality being ⟨ϕ,µ⟩ =

∫
U ϕ(u)µ(du) for all ϕ ∈ B(Σ) and all

µ ∈ ba(Σ) (see, e.g., Dunford and Schwartz, 1958, p. 258). For
, ψ ∈ B(Σ), we write ϕ ≥ ψ if ϕ(u) ≥ ψ(u) for all u ∈ U . Let
(U) be the set of all finitely-additive Borel probability measures
n U , with a typical element π ∈ ∆(U).
Let Φ be a non-empty subset of B(Σ), and Φc be the constant

unctions in Φ . Set Φ is called a tube if Φ = Φ + R. A functional
: Φ → R is (i) normalized if I(k) = k for all k ∈ Φc , (ii) monotone
f ϕ ≥ ψ implies I(ϕ) ≥ I(ψ) for all ϕ,ψ ∈ Φ , (iii) translation
nvariant if I(αϕ+(1−α)k) = I(αϕ)+(1−α)k for all ϕ ∈ Φ , k ∈ Φc ,
nd α ∈ [0, 1], such that αϕ, αϕ + (1 − α)k ∈ Φ , (iv) vertically
nvariant if I(ϕ+ k) = I(ϕ)+ k for all ϕ ∈ Φ and k ∈ Φc such that
+ k ∈ Φ , and a (v) niveloid if I(ϕ) − I(ψ) ≤ sup

u∈U
(ϕ(u) − ψ(u))

or all ϕ,ψ ∈ Φ .10
For notational convenience, we denote αp + (1 − α)q by pαq

or p, q ∈ P and α ∈ [0, 1]. Let Po
= {p ∈ P : p(w) > 0} be the

et of lotteries whose supports consist of the worst outcome w.
or p ∈ P , define φp : U → R by φp(u) = u(p) for all u ∈ U . Since
(p) ∈ [0, 1] for all u ∈ U , φp ∈ B(Σ, [0, 1]), where B(Σ, [0, 1])
enotes the functions in B(Σ) which assume values in [0, 1]. Let
= {φp : p ∈ P} and Φo

= {φp : p ∈ Po
}. Clearly 0 ∈ Φo and

o
⊆ Φ . Moreover, since φpαq = αφp + (1−α)φq for any p, q ∈ P

nd α ∈ [0, 1], both Φ and Φo are convex sets.

10 Clearly, a niveloid is Lipschitz continuous. Moreover, Cerreia-Vioglio et al.
(2014) show that a niveloid is a monotone vertically invariant functional, while
the converse is true whenever its domain is a tube.
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.2. Lemmas

In this Section, we state and prove two lemmas that are used
o establish the results in the text. The first lemma provides a
epresentation for a binary relation satisfying Axioms 1–5. The
econd lemma establishes that there is a common solution to the
daption choice problem for a collection of lotteries if and only if
he DM is neutral with respect to the mixture of these lotteries.
mplications of Axioms 1–5: The following lemma obtains sev-
ral results which we use in proving Theorems 1 and 2 in the
ext:

emma 1. Let ≿ be a binary relation on P that satisfies Axioms 1–5.
Then:

(1) Every lottery p ∈ P has a basic lottery equivalent bp ∈ Pbw
such that p ≿ q if and only if b(p) ≥ b(q).

(2) The function c∗ defined on U by c∗(u) = supp∈P u(p)−b(p) for
all u ∈ U is non-negative lower-semicontinuous and c∗(u) <
∞ for some u ∈ U .

(3) The functional W : P → R, defined by W (p) = maxu∈U u(p)−
c∗(u) for all p ∈ P represents ≿.

roof. Let ≿ be a binary relation on A that satisfies Axioms 1–5.
Part (i)]: Since X is a finite set, we have a unique pair of best
nd worst outcomes b, w ∈ X such that δb ≻ δx ≻ δw for any
∈ X with x ̸= b, w. Clearly, by Axiom 3, δb ≿ p ≿ δw for any
∈ P , and so by Axiom 2, the following (non-empty) sets, whose
nion is equal to [0, 1], must be closed: {α ∈ [0, 1] : δbαδw ≿ p}
nd {α ∈ [0, 1] : p ≿ δbαδw}. Since [0, 1] is connected, these two
ets must intersect; that is, there must exist some αp ∈ [0, 1] such
hat p ∼ δbαpδw . By Axiom 3, αp must be unique. Let bp ∈ Pbw
e equal to this unique basic lottery δbαpδw and call the unique
ixture weight b(p). Note that by Axiom 3, p ≿ q if and only if
(p) ≥ b(q).
Part (ii)]: For any u ∈ U and p ∈ Pbw , u(p) − b(p) = 0, and
o c∗ is non-negative. Since c∗ is the supremum of continuous
unctions, it is lower semicontinuous. Finally, since u(p) ∈ [0, 1]
or any u ∈ U and p ∈ P , it follows that u(p)− b(p) ∈ [−1, 1], and
o c∗(u) ∈ [−1, 1] showing that c∗(u) < ∞ for some u ∈ U .
Part (iii)]: To establish the desired representation, we show that
here is a monotone normalized convex niveloid I : Φ → R
uch that, for all lotteries p and q, p ≿ q if and only if I(φp) ≥

(φq). Following the approach in Maccheroni et al. (2006), an
pplication of Fenchel–Moreau duality then establishes I(φp) =

axu∈U u(p) − c∗(u) for all p ∈ P . We start the proof by defining
functional Io on Φo, and then use Axiom 2 to extend the

unctional to Φ .
Let Io : Φo

→ R be a functional defined by Io(φp) = b(p) for
ll p ∈ P , where bp ∈ Pbw denotes a basic lottery equivalent of
. For any two lotteries p, q ∈ Po with basic lottery equivalents
p and bq, p ≿ q if and only if bp ≿ bq, and so Io(φp) ≥ Io(φq) if
nd only if p ≿ q by part (i). Note that for any p, q ∈ P , if p ̸= q,
hen we can easily find some u ∈ U such that u(p) ̸= u(q), and so
p ̸= φq. Thus, whenever φp = φq, we must have p = q implying
hat Io is well-defined.

For the rest of the proof, we proceed in steps to establish that
o is a monotone normalized convex niveloid.
tep 1 (Io is monotone): Let p, q ∈ P such that φp ≥ φq. By
efinition, u(p) ≥ u(q) for all u ∈ U . But this can happen only
hen either p = q or p ▷1 q. In the first case, we have Io(φp) =

o(φq) and in the second case, we have Io(φp) > Io(φq) by Axiom 3
nd the fact that p ≻ q if and only if Io(φp) > Io(φq). Thus, φp ≥ φq
mplies Io(φp) ≥ Io(φq).
tep 2 (Io is normalized): Let k ∈ R such that k ∈ Φo. This implies
here is a basic lottery p ∈ Pbw such that k = φp = b(p). Hence,
o(k) = Io(φ ) = b(p) = k.
p

9

Step 3 (Io is convex): Let p, q ∈ Po and α ∈ [0, 1]. Note that pαq ∈

Po and so φpαq ∈ Φo. By part (i) there exist some bp, bq ∈ Pbw . By
Axiom 5, we have bpαbq ≿ pαq, and so

αIo(φp) + (1 − α)Io(φq) = αb(p) + (1 − α)b(q) = Io(φbpαbq )
≥ Io(φpαq) = Io(αφp + (1 − α)φq).

Step 4 (Io is translation invariant): Let p ∈ Po, q ∈ Pbw with
b(q) = k, and α ∈ (0, 1). By Axiom 3, we have δbαδw ≿ pαδw ≿
δwαδw . The argument used in the proof of part (i) above yields
a β ∈ [0, 1] such that pαδw ∼ (δbαδw)β(δwαδw). Thus, letting
r = δbβδw ∈ Pbw implies pαδw ∼ rαδw . By Axiom 4, it follows
that pαq ∼ rαq, and so
o(αφp + (1 − α)k) = Io(φpαq) = Io(φrαq)

= αu(r) + (1 − α)u(q) = αu(r) + (1 − α)k
= αu(r) + (1 − α)u(δw) + (1 − α)k
= Io(φrαδw ) + (1 − α)k = Io(φpαδw ) + (1 − α)k
= Io(αφp + (1 − α)φδw ) + (1 − α)k
= Io(αφp) + (1 − α)k,

establishing that Io is translation invariant.
Step 5 (Io is vertically invariant): The result follows from Step 1
of the proof of Lemma 20 in Maccheroni et al. (2004) once we
show that for all p ∈ Po and k ∈ R such that φp + k ∈ Φo, there
exists some α ∈ (0, 1) satisfying φp

α
,
φp+k
α

∈ Φo. To see this, let
pθ = θp + (1 − θ )δw for any p ∈ P and θ > 0. Note that for any
given p ∈ Po there exists some θ > 1 such that pθ ∈ Po. Clearly
if pθ ∈ Po, then pθ

′

∈ Po for any θ ′ < θ .
Let p ∈ Po and k ∈ R such that φp + k ∈ Φo. Pick any θ > 1

such that pθ ∈ Po, and call it θp. Since φp + k ∈ Φo, there exists
some q ∈ Po such that φq = φp+k. Since q ∈ Po, there exists some
θ > 1 such that qθ ∈ Po. Pick any such θ > 1 for q ∈ Po, and call it
θq. Let θ∗ = min{θp, θq}. Observe that u·pθ = θ (u·p) for any u ∈ U ,
p ∈ P , and θ > 0. Therefore, we have φpθ∗ = θ∗ · φp ∈ Φo and
φqθ∗ = θ∗ · φq ∈ Φo. Let α = 1/θ∗. We have shown φp

α
,
φp+k
α

∈ Φo

as desired.
Step 6 (Io is a niveloid): Since Io is vertically invariant, functional
I∗ : Φo

+ R → R, defined by I∗(φ + k) = Io(φ) + k for all
φ ∈ Φo, is the unique vertically invariant extension of I∗ to
the tube generated by Φo (Maccheroni et al., 2004, Lemma 22).
Moreover, since Φo is a convex set and Io is a convex functional,
the obvious adaption of the arguments in Maccheroni et al. (2004,
Lemma 22) establishes that I∗ is also convex. We now show that
I∗ must also be monotone. By the first paragraph in the proof
of Maccheroni et al. (2004, Lemma 24), it is sufficient to show
that if φ,ψ ∈ Φo and φ + k ≥ ψ , then I∗(φ + k) ≥ I∗(ψ).

Let p, q ∈ Po and k ∈ R such that φp + k ≥ φq. Clearly
there exists α ∈ (0, 1) such that α(φp + k) + (1 − α)φq =

αφp + (1 − α)φq + αk ∈ Φo. Moreover, since φp + k ≥ φq,
α(φp + k) + (1 − α)φq ≥ φq. Now assume, for contradiction, that
I∗(φp + k) < I∗(φq). Since I∗ is convex, this would imply

Io(φq) = αI∗(φq) + (1 − α)I∗(φq) > αI∗(φq + k) + (1 − α)I∗(φq)
≥ I∗(α(φp + k) + (1 − α)φq) = Io(α(φp + k) + (1 − α)φq),

which contradicts that Io is monotone, and thus I∗ must be
monotone.

Since Io is vertically invariant, and its unique vertically invari-
ant extension to the tube generated by Φo, I∗, is monotone, Io is a
niveloid by Maccheroni et al. (2004, Lemma 23). In sum, we have
shown that Io is a normalized convex niveloid.

We now extend Io to Φ . For any lottery p ∈ P and number
m ∈ N, define pm = pm−1

m δw and denote ϕm
p = ϕpm . Note that for

all p ∈ P andm ∈ N, pm ∈ Po and φm
p → φp uniformly asm → ∞.

Define a functional I : Φ → R by I(φ ) = lim Io(φm) for
p m→∞ p
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ll p ∈ P . Since Io is a niveloid, it is a continuous function, and
o Io preserves convergence. Thus, for any lottery p ∈ P , the
equence {Io(φm

p )}m∈N converges to a point in [0, 1] showing that
is well-defined. The following arguments show that I preserves
he properties of Io, i.e., it is also a normalized convex niveloid.

Since Io is a niveloid, we have Io(φm
p )−Io(φm

q ) ≤ max
(
φm
p − φm

q

)
or any p, q ∈ P , and m ∈ N. Thus we obtain,

(φp) − I(φq) = lim
m→∞

(
Io(φm

p )
)
− lim

m→∞

(
Io(φm

q )
)

= lim
m→∞

(
Io(φm

p ) − Io(φm
q )
)

≤ lim
m→∞

(
max

(
φm
p − φm

q

))
= lim

m→∞

m − 1
m

(
max

(
φp − φq

))
= max

(
φp − φq

)
,

establishing that I is a niveloid.
Clearly I is normalized. Now let p, q ∈ P , and α ∈ [0, 1]. Since
is a convex set, αφp + (1 − α)φq ∈ Φ , and so by convexity of

o we have

(αφp + (1 − α)φq) = lim
m→∞

(
Io(φm

pαq)
)

= lim
m→∞

(
Ioαφm

p + (1 − α)φm
q

)
≤ lim

m→∞

(
αIo(φm

p ) + (1 − α)Io(φm
q )
)

= α lim
m→∞

Io(φm
p ) + (1 − α) lim

m→∞
Io(φm

q )

= αI(φp) + (1 − α)I(φq),

showing that I is convex. As a result, I is a normalized convex
niveloid which assumes values in [0, 1].

Since Φ is a convex subset of B(Σ, [0, 1]) and I is a normalized
convex niveloid, the obvious adaption of the arguments in the
proof of Maccheroni et al. (2004, Lemma 27) establishes that
I(φ) = maxπ∈∆(U) (⟨φ, π⟩ − c(π )) for all ϕ ∈ Φ , where c :

∆(U) → [0,∞] is defined as c(π ) = supp∈P
(⟨
φp, π

⟩
− b(p)

)
.

Note that for any given π ∈ ∆(U), we have uπ (p) =
∫
u(p)d(π )

for some uπ ∈ U for all p ∈ P . Thus, for any p ∈ P , we have
I(φp) = maxu∈U

(
φp(u) − c∗(u)

)
, where c∗

: U → [0,∞] is
defined as in part (ii) above which satisfies c∗(uπ ) = c(π ).

It remains to show that, for all p, q ∈ P , p ≿ q if and only if
I(φp) ≥ I(φq). We establish the contrapositive for each direction.

First, suppose that p ≻ q. Using part (i), we can find r, s ∈ Pbw
such that p ≻ r ≻ s ≻ q. Then by Axiom 2, there exists some
M ∈ N such that for all m ≥ M , pm ≿ r ≻ s ≿ qm.

Otherwise, it must be the case that r ≿ p or q ≿ s, a
ontradiction. Thus, for all m ≥ M , we must have Io(ϕm

p ) ≥ b(r) >
(s) ≥ Io(ϕm

q ). As such, we obtain I(ϕp) ≥ b(r) > b(s) ≥ I(ϕq) since
weak inequalities are preserved in the limit, and so I(φp) > I(φq).

For the converse, suppose that I(φp) > I(φq). By construction,
1 ≥ I(φp) and I(φ1) ≥ 0. Hence, there exist r, s ∈ Pbw such that
I(φp) > b(r) > b(s) > I(φq).

Since I is continuous, Io(φm
p ) ≥ b(r) > b(s) ≥ Io(φm

q ) for
all m ≥ M for some M ∈ N implying that for all m ≥ M ,
pm ≿ r ≻ s ≿ qm. Hence, by Axiom 2, it follows that p ≿ r ≻ s ≿ q,
and so p ≻ q.

As a result, the function W : P → R, defined by W (p) = I(φp)
represents ≿. □

Neutral desire for basic lotteries: The next lemma is used in the
proofs of Propositions 1 and 2. It characterizes when there is a
common solution to the choice of adaption problem for a given
finite collection of lotteries.

Let W : P → R and D : P ↠ U represent, respectively, the
value function and policy correspondence of the adaption choice
problem with parameters (u, c) as identified in Lemma 1. That
10
is, for any p ∈ P let W (p) = maxu∈U
(
φp(u) − c(u)

)
and D(p) =

argmaxu∈U
(
φp(u) − c(u)

)
. We observe that W has the following

onvexity property, W (
∑

i αipi) ≤
∑

i αiW (pi) for p1, . . . , pN ∈ P
nd α1, . . . , αN ∈ (0, 1) such that

∑N
i=1 αi = 1.

emma 2. Let p1, . . . , pN ∈ P and α1, . . . , αN ∈ (0, 1) such
hat

∑N
i=1 αi = 1. Then, W (

∑
i αipi) =

∑
i αiW (pi) if and only if

i D(pi) ̸= ∅.

roof (Necessity).: Let p1, . . . , pN ∈ P and α1, . . . , αN ∈ (0, 1)
ith

∑N
i=1 αi = 1 and W (

∑
i αipi) =

∑
i αiW (pi). We proceed

y induction on N . If N = 1, then the result trivially holds. Now
uppose that N > 1, and the implication holds for N − 1.
Without loss of generality, let α1 = mini αi, and set q =

α2
1−α1

p2 + · · · +
αN

1−α1
pN . Since αi/(1− α1) ≤ 1 for all i = 2, . . . ,N ,

we have q ∈ P . By the convexity property of W , we have W (q) ≤∑N
i=2

(
αi

1−α1

)
W (pi) and

∑
i

αiW (pi) = W

(∑
i

αipi
)

= W
(
p1α1q

)
≤ α1W (p1) + (1 − α1)W (q).

Hence,
∑N

i=2 αiW (pi) = (1 − α1)W (q) and α1W (p1) + (1 −

α1)W (q) = W (p1α1q). Now choose some u ∈ D(p1α1q). Then,

α1φp1 (u)+ (1− α1)φq(u)−W
(
p1α1q

)
= c(u) ≥ φp1 (u)−W

(
p1
)
.

eplacing W (p1) with 1
α1

W
(
p1α1q

)
−

1−α1
α1

W (q), and rearranging,
e get

1−α1)φq(u)−
1 − α1

α1
W (q) ≥ (1−α1)φp1 (u)−

1 − α1

α1
W
(
p1α1q

)
.

Multiplying both sides of the inequality by α1/(1−α1) and adding
(1 − α1)φq(u), we get φq(u) − W (q) ≥ α1φp1 (u) + (1 − α1)φq(u) −
W
(
p1α1q

)
which implies that φq(u) − W (q) ≥ c(u), and so u ∈

D(q).
By an analogous argument, u ∈ D(p1) and thus, D

(
p1α1q

)
⊂

(p1) ∩ D(q). Since
∑N

i=2 αiW (pi) = (1 − α1)W (q), by the in-
uctive assumption, D(q) ⊂ D(pi) for all i = 2, . . . ,N , and so(∑

i αipi
)

⊂ D(pi) for all i = 1, . . . ,N . Since D
(∑

i αipi
)

̸= ∅,
e have

⋂
i D(pi) ̸= ∅.

Sufficiency]: Let u ∈
⋂

i D
(
pi
)
. Then

∑
i αiW (pi) =

∑
i αiφpi (u)−

(u) implying
∑

i αiW (pi) ≤ W
(∑

i αipi
)
. On the other hand, the

onvexity property of W implies
∑

i αiW (pi) ≥ W
(∑

i αipi
)
, and

o W (
∑

i αipi) =
∑

i αiW (pi). □

.3. Proofs for the results in the text

roof of Theorem 1. It is straightforward to show that an adap-
ive risk assessment preference satisfies Axioms 1–5. For the
onverse, let ≿ be a binary relation that satisfies Axioms 1–5.
hen by Lemma 1, c∗ represents ≿ and so ≿ is an adaptive risk
ssessment preference. □

roof of Proposition 1. It is straightforward to prove that a pref-
rence ≿ defined in Proposition 1 is an adaptive risk assessment
reference which satisfies the NeDBL axiom.
For the converse, suppose ≿ is an adaptive risk assessment

reference which satisfies the NeDBL axiom. Let W : P → R be
iven by W (p) = maxu∈U φp(u) − c(u) which represents ≿ with
he minimal cost function c as identified in Lemma 1.

Let p ∈ P and q ∈ Pbw be such that p ∼ q. By NeDBL,
∼ αp+ (1− α)q for any α ∈ (0, 1), and so W (αp+ (1− α)q) =

W (p) + (1 − α)W (q). As such, by Lemma 2, there exists some
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p ∈ D(p) ∩ D(q), where D : P ↠ U is the policy correspondence
efined as in Lemma 1. Since c is the minimal cost function, it
s grounded and so c(up) = 0. Hence, W (p) = φp(up) − c(up) =

axu∈U φp(u) where U = {u ∈ U : c(u) = 0}. □

roof of Proposition 2. Let ≿ be an adaptive risk assessment
reference with a representation c. It is straightforward to show
hat if there is a common solution u ∈ U to the adaption problem
f ≿ for each lottery p ∈ P , then ≿ satisfies the NoDBL axiom.
or the converse, define the value function W : P → R as
n Lemma 1. Let p, q ∈ P and α ∈ (0, 1), and let bp and bq
e basic lottery equivalents of p and q, respectively. By NoDBL,
pαbq ∼ bpαq ∼ pαq. Thus, W (pαq) = αW (p) + (1 − α)W (q). By
nduction, for lotteries p1, . . . ., pN ∈ P and α1, . . . ., αN ∈ [0, 1]
uch that

∑
i αi = 1, W (

∑
i αipi) =

∑
i αiW (pi).

Let D : P ↠ U be the policy correspondence defined as in
emma 1. By Lemma 2, it follows that

⋂
i D(pi) ̸= ∅. Hence, the

ollection of closed sets {D(p) : p ∈ P} has the finite intersection
roperty. Since U is compact, it follows that there exists some
∈
⋂

p∈P D(p), and so V (p) = φp(u) − c(u) for all lotteries
∈ P . Thus, p ≿ q if and only if φp(u) ≥ φq(u) for all lotteries
, q ∈ P . Clearly, u must be unique. Otherwise, there is some
∈
⋂

p∈P D(p) with v ̸= u. Hence, there is some x ∈ X such
hat u(δx) ̸= v(δx) implying that δx ≁ δx, a contradiction. □

roof of Theorem 2. Let ≿ be an adaptive risk assessment pref-
rence represented by c. By Lemma 1, c∗ also represents ≿. It
herefore remains to show that c ≥ c∗ (establishing c∗ as the
inimal cost function). By way of contradiction, suppose c(u) <

∗(u) for some u ∈ U . Then, by definition of c∗, there exists a
ottery p ∈ P such that φp(u)−b(p) > c(u), i.e., φp(u)−c(u) > b(p).
ence, φp(u) − c(u) > maxv∈U φp(v) − c(v), a contradiction. □

roof of Corollary 1. Let c∗ be a representation for an adaptive
isk assessment preference where c∗ is the minimal cost function.
n the proof of Lemma 1, part (ii), we show that c∗ is grounded.
ince c∗ is the supremum over linear functions, c∗ is convex.
inally, to establish monotonicity, let u, v ∈ U with u ≥ v.
or all p ∈ P , φp(u) ≥ φp(v), and so supp∈P

(
φp(u) − b(p)

)
≥

upp∈P
(
φp(v) − b(p)

)
implying c∗(u) ≥ c∗(v). □

roof of Theorem 3. Let ≿1 and ≿2 be adaptive risk assessment
references with canonical representations c∗

1 and c∗

2 , respec-
ively.
Necessity]: Suppose ≿2 has a stronger desire for simplicity than
1. Consider a lottery p and let b1p ∼1 p and b2p ∼2 p. Since ≿2

as a stronger desire for simplicity than ≿1, b1p ≿1 b2p and so
1(p) ≥ b2(p). As a result, for any u ∈ U ,
∗

2 (u) = sup
p∈P

(
φp(u) − b2(p)

)
≥ sup

p∈P

(
φp(u) − b1(p)

)
= c∗

1 (u).

Sufficiency]: Suppose that c∗

1 ≤ c∗

2 . Let q ≻1 p for some p ∈ P
nd q ∈ Pbw . Then q ≻2 p follows since,

(b) > max
u∈U

(
ϕp(u) − c1(u)

)
≥ max

u∈U

(
ϕp(u) − c2(u)

)
. □
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