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Abstract

The Sustainable Specimen Collection Problem (SSCP), in which diagnostic specimens are collected
from GP surgeries (doctor’s office/clinics) and subsequently transported to a hospital laboratory
for analysis using more sustainable transport modes, is introduced in this paper. Using a weighted
objective function, we solve a new multi-objective problem using cycle consolidation to limit driving
time and the numbers of vans used whilst improving overall service quality, reducing costs and
emissions. This particular heterogeneous vehicle routing problem is explored and applied to two
real-world case studies in the UK, where 97 and 22 sites (respectively) are currently served, using
a column generation based heuristic algorithm with some additional improvement heuristics. The
results demonstrated a potential improvement in the system’s maximum delivery time between 41%
and 74% compared to business-as-usual activity using solely road vehicles. Road vehicle (van) fleets
could be reduced by up to 40%, and the total driving time across the fleet by between 41% and
65%. Operational costs were estimated to increase by up to 38%, though additional workloads for
gig-economy cycle couriers and improvement in specimen quality and service reliability may make
this trade-off worthwhile. Tailpipe CO2 emissions were also reduced by up to 43%. The proposed
algorithm was effective, reducing computational time by up to 99% whilst achieving an average of
5% deviation from optimality.

Keywords: multimodal, diagnostic specimens, routing, pathology, specimen collection problem,
mixed-mode, multi-objective, SSCP

1. Introduction

This paper aims to improve the logistics of a local healthcare diagnostic specimen collection
system by combining driving and cycling. The objective is to carry samples from community
healthcare facilities to an analysis laboratory at a nearby hospital; reducing the time samples
spend in transit, whilst minimising the use of fossil fuelled vehicles as much as possible.

The study focuses on two case studies based in the south of the UK in which collections are
made from (i) up to 97 general practitioner (GP) clinics/surgeries (often known as doctor’s offices
in other countries, hereafter referred to as surgeries) using a fleet of 10 vehicles; and (ii) up to
22 surgeries served by a fleet of 3 vehicles, each day. In the current business-as-usual (BAU) op-
eration, only road vehicles (vans) are used, and no cycling logistics is currently considered. The
vehicles are based at the hospital and visit the majority of surgeries on regular rounds, whilst other
surgeries are served by collections on an ad-hoc basis outside of this arrangement. In principle, this
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problem somewhat aligns with a vehicle routing problem (VRP) where the objective is to reduce
the longest route, the total number of vehicles used, and the total driving time across the fleet
(assuming no capacity constraints are applied to the vehicles). All specimens must be collected
daily for analysis and are currently based on a timetabled appointment schedule such that samples
are not ‘bled’ from patients after the final collection.

The aim of using cycle couriers is to consolidate the specimens from certain surgeries so that
the primary collection vans do not have to visit so many collection points, reducing time, mileage,
and tailpipe emissions. Specific surgeries are chosen to act as consolidation points with cycle routes
serving the localised surgeries around those consolidation points. To enable cyclists to be used on
an ad-hoc basis in this, this problem considers the use of gig-economy cyclists, who can typically
be recruited on-demand via various providers to maintain flexibility over payment and workforce
structures, particularly in city areas where collection densities are higher. Outside of peak meal-
time hours, work for these riders is often sparse (Lord et al., 2020), meaning that they are an asset
that can be put to use in other services such as medical deliveries. Hence, one research question
explored in this paper is to identify what additional work can be generated for gig-economy workers
outside of peak hours to enhance their potential income. This business model is used with the
aim of: i) reducing the time samples spend in transit and the environmental impact of deliveries,
and ii) increasing off-peak work opportunities for gig-economy cyclists who are often not paid for
unoccupied time (Lord et al., 2020), typically outside of specific peak times of day (Bernal, 2020;
On-Demand Workers Australia, 2018).

The number of vehicles used in this problem also dictates the performance of the system with
regards to delivery times, congestion and emissions. Additional vehicles enable greater reductions
in delivery times, as fewer sites need to be served, whilst fewer vehicles cut congestion and emissions
through reductions in stem mileage. The problem presented in this paper captures this trade-off,
where we formalise a new multi-objective problem using a weighted objective function, and propose
a new algorithm capable of efficiently producing solutions. The key contributions of this paper are:
(i) quantifying the extent to which the delivery times of diagnostic specimens can be reduced by a
cycle courier supported delivery network; (ii) understanding the potential increased workload for
the gig-economy under such a system; and (iii) identifying the approximate costs and emissions the
delivery network would produce. The analysis also exposes some of the wider logistics challenges
faced by specimen collection systems using real-world data from the UK.

1.1. Problem Description

Diagnostic specimens (commonly referred to as ‘pathology’ or ‘laboratory’ ‘samples’ or ‘spec-
imens’) are routinely taken by primary care clinicians across the world to aid in the diagnosis of
patient ailments, with roughly 1 in 3 (29%) visits requiring a diagnostic test (Ngo et al., 2017).
After being taken, samples require transportation to a nearby laboratory, often at a hospital, for
analysis so that patients can be correctly diagnosed and effectively treated (Cherrett and Moore,
2020). In the UK, specimen transport is traditionally carried out by Light Goods Vehicles (LGVs),
with samples being taken from local surgeries to hospital laboratories using set vehicle rounds (NHS
and Sedman, 2020; NHS and Nixon, 2015). The routing problem could be simplified to one with
collections from a set of known nodes (surgeries/clinics) which are then delivered to a single node
(hospital).
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In the proposed problem, we identify a new approach to serving these sites using multiple-
modes, whereby a combination of vans and cargo cycles are used to collect samples within the
given time constraints (detailed below), in an arrangement similar to that of a two-echelon VRP.
By allowing on-demand cyclists to consolidate loads from multiple sites, and LGVs to subsequently
collect either via these consolidation sites or directly, the problem presents a novel approach to
the overarching collection logistics challenge.

Samples typically have a fairly short time frame in which they must be analysed, generally
within the day they are taken, and have specific requirements for storage and transportation (NHS
and Sedman, 2020). As a result, samples should be delivered to the hospital promptly to enable
swift diagnosis and maximise the effective use of laboratory staff undertaking the analyses. The
Royal College of Nursing in Wales (2020) identified that community COVID-19 testing was sig-
nificantly slower than in-hospital testing, with less than a third of community test results being
turned around the same day, as opposed to 80% in hospital. Part of the problem stems from sample
transportation, with many collection systems limiting final sample submission to mid-afternoon
(e.g. 3:30 PM (Exeter Laboratory, 2017; Godfrey, 2020)) due to long end-to-end round durations.
Samples are not typically permitted to be taken after this point, and any which are will have to
travel by taxi or other ad-hoc means (NHS and Sedman, 2020; Wessex Academic Health Science
Network, 2020).

As suggested by previous studies and after anecdotal discussions with hospital staff (McDonald,
1972; Allan, 2019), there may be delaying factors within the surgeries and hospital (e.g. admin-
istrative, staff scheduling, etc.), but these are beyond the control of the logistics carrier and are
ignored in this research. The period of greatest importance is the time spent travelling in the
vehicle as controlled conditions cannot be guaranteed, unlike at the origin surgeries and destina-
tion laboratory (Anaya-Arenas et al., 2016); thus, minimising the maximum delivery time to the
hospital across all surgeries served was defined as the first objective. Reducing the durations of
individual rounds, the time to deliver all samples, and the time samples spend in transit may offer
the potential for more flexible collection scheduling and later final collections, as well as reducing
sample degradation rates and the number of patients requiring repeat diagnostic tests as a result.

It should be noted that this research does not explore the scheduling side of this application
because it is understood that collections can be managed as discrete events and current scheduling
constraints are not known in sufficient detail due to commercial sensitivity. It is envisaged that
the system could be used multiple times in a day, running the optimisation, shortly before per-
forming the collections, for only those surgeries with loads available to collect at that time. The
number of daily collections would remain a contractual issue, but those surgeries which produce
more samples would likely experience more frequent and later collections. This matter is some-
what decision-maker dependent and could be a further development from the discretised collection
approach.

There is an increasing need to reduce congestion and emissions in urban areas which contribute
to poor air quality, slow transit times, and anthropogenic climate change, (European Commission,
2011) with policy makers often stating a parallel aim to move to alternative, more sustainable
transport modes (European Commission, 2013). Health care providers are responsible for around
5% of the total national carbon dioxide footprint in developed nations (Pichler et al., 2019). Of
this, 62% of this contribution can be attributed to medicines, medical equipment, and other supply
chain sources (NHS, 2020a). The National Health Service (NHS) in the UK has set a goal to be
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net-zero by 2040, and improving the efficiency of logistics operations will be key to achieving this
(NHS, 2020a). To support this target, changes to logistics systems are being explored such as
mode-shift and adopting different supply-chain management strategies (NHS, 2020a). Effective
logistics is key to successful patient care and supply chain operations in healthcare systems and
any changes made to existing transport systems to reduce environmental impacts should not affect
the overall level of service (Landry and Philippe, 2004; Buntak et al., 2019).

The three-aim objective was therefore to: (i) reduce the maximum time to serve all surgeries,
(ii) reduce the number of vehicles needed to undertake the collections, and (iii) reduce the total
round duration across the fleet. This is subsequently combined into a weighted-sum single objective
to enable decision-makers (e.g., NHS procurement teams and laboratory management) to easily
configure the problem according to their specific needs and aims, without the need for additional
parameters to define and solve a lexicographic or other multi-objective optimisation (MOO). In
this paper, the formulated problem is referred to as the Sustainable Specimen Collection Problem
(SSCP).

Whilst emissions are not directly addressed in the objectives of this problem, unlike other green
VRPs (Demir et al., 2014; Kramer et al., 2015), the proposed model introduces cycle couriers to
help reduce both the driven mileage and time, and the number of vehicles required, using riders
to consolidate loads at selected surgeries prior to collections by road vehicles. The introduction of
the two-echelon style system inherently improves the sustainability of deliveries, whilst taking ad-
vantage of the time benefits offered by road vehicles over longer distances (Gruber and Narayanan,
2019; Conway et al., 2017; Anderluh et al., 2017). Figure 1 demonstrates this concept with respect
to one of the case studies used in the present study, with road transport (vans) travelling faster
than bicycles, on longer-distance journeys beyond the immediate urban environment. Equally,
over shorter distances in the urban environment, bicycles can travel faster, avoiding the effects of
traffic and congestion (TravelTime, 2021).

The method by which cycles are introduced in this healthcare-specific logistics problem is of key
interest where cycle routes take preference over vans wherever possible, with the goal of minimising
driving time. They are therefore not contributing to the objective function as in the two-echelon
vehicle routing problem, but are instead helping to minimise van driving time. The problem also
differs from other similar routing problems addressed in the literature due to constraints on the
length of routes, and the potential for waiting to be incurred if cargo cycles do not precede or
synchronise with van collections at consolidation sites.

Chained cycle routes (i.e. one cycle route delivering to another to move samples closer to the
destination in further legs) have not been considered in this system due to reasons of practicality.
Limiting the system to two echelons reduces any risk with respect to handling, security, and chain
of custody (Nybo et al., 2019).

Vehicle costs may vary depending on pricing structures, and the balance of fixed (e.g. insurance)
to variable costs (e.g. fuel), among other factors; and are therefore not directly addressed in the
problem objectives to limit the effect of uncertainties (FTA, 2020; Grasas et al., 2014). To minimise
the number of objectives and simplify the problem, only the delivery time, number of vehicles, and
driving time are directly considered. Where savings may be made with respect to sample delivery
time, knock-on cost savings may be seen through better human resource and equipment use in the
receiving laboratory. Equally, quality of care may be improved, though this is somewhat difficult
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(a) 10 minutes travel time by cycle and car from the centroid -
cycle travels further in urban environment.

(b) 45 minutes travel time by cycle and car from the centroid -
road vehicle travels further once outside of the urban environment.

Figure 1: Travel time isochrones (distance travelled in fixed time) from the same fixed point; Southampton General
Hospital (Case Study 1). Red = road vehicle, indigo = bicycle. Green box indicates geographic position of (a)
within (b). (TravelTime, 2021) (Base Map ©OpenStreetMap contributors)

to define in terms of cost.
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1.2. Related Works - Medical Sample Logistics & Routing

In England, the handling of diagnostic specimen collections is managed by a network of 29
pathology networks (NHS, 2017). Each of those networks operates collaboratively, transporting
samples from the community surgeries to their assigned ‘spoke’ hospital for analysis, or onward to
the ‘hub’ hospital if the sample requires more specialist analysis. Surgeries are allocated to a sin-
gle hospital laboratory and, at present, areas do not overlap for contractual reasons (NHS, 2021);
i.e., a surgery which is allocated to Southampton’s laboratory cannot also be served by another one.

The Southampton GP network has previously been investigated with respect to its potential for
drone served deliveries (Cherrett and Moore, 2020), although the core routing problem relating to
ground logistics was not addressed. The problem explored in this paper, the SSCP, is not entirely
new, with past research exploring the challenge of collecting diagnostic specimens, but with differ-
ent objectives such as minimising cost, the number of vehicles used, or the laboratory’s workload
(McDonald, 1972; Grasas et al., 2014; Smith et al., 2015). Table 1 summarises and compares the
objectives and approaches of the previous studies in this area. In this table, it is evident that
problems and solutions can vary significantly; these problems and their differences are discussed
below. The present study is also featured in the table for comparison, and is notably different in
terms of the dynamics of the problem.

The problem was first discussed by McDonald (1972), who proposed several possible objectives,
including the level of service to the patient, the time specimens spent in transit, and the cost of
the operation. Cost was selected, though total vehicle travel time of the fleet was used as an
approximation as it was more easily quantifiable. Constraints were also applied, most notably on
the maximum transit time to limit calculation time and satisfy clinician’s requirements. McDonald
(1972) also suggested a procedure that formalised the problem and suggested that time and cost
constraints should be applied to maintain sample quality and limit expenditure.

Another study models the “Blood Sample Collection Problem” (BSCP) as a Capacitated Time-
Constrained Open Vehicle Routing Problem (CTCOVRP), with constraints relating to capacity,
and the maximum route duration after the initial collection (Grasas et al., 2014). Only one ob-
jective was set, to minimise the number of vehicles used; a pseudo-objective for cost. The BSCP
differs from the SSCP in that road vehicle capacity is assumed to be ‘unlimited’ in the SSCP, given
vehicles are only lightly loaded in existing rounds (NHS, 2020b; Quadir et al., 2019). The SSCP
also identifies additional objectives relating to reducing driving time, and the delivery time of sam-
ples. Results from the BSCP study were produced using a genetic-based algorithm with a heuristic
method, and achieved improvements over the BAU with run-times of less than 30 seconds. Grasas
et al. (2014) found that the cost of existing operations could be reduced by 20-30% annually, under
a 2-hour route time limit. Where a single objective has been used in the BSCP, decision-makers
are provided with a solution which only addresses cost; however, it may be more beneficial to offer
greater flexibility of choice in this setting, given the difficulty in defining quality-of-care in a cost
form (The NHS Confederation et al., 2016).

Smith et al. (2015) proposed the concept of specimen transport as a new problem, address-
ing the same overall challenge as the SSCP and BSCP, with a variation in the objectives of the
proposed problem; aiming to minimise transport costs, balance workloads between laboratories,
balance workloads between vehicles, and minimise the number of vehicles used. In the SSCP, the
need to balance workloads between laboratories is not needed, as it is assumed that the current
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diagnostic networks have been created such that the demands of feeder surgeries can be met by
their associated laboratory. With respect to sample lifespan, Smith et al.’s proposed routing prob-
lem featured collection/delivery time windows from each surgery to limit sample travel time. This
is similar to the SSCP, where a schedule of collections is assumed and travel time is limited. Smith
et al. (2015) did not test the model with experimental or case study data, noting that heuristics
and metaheuristics would be required to reach good solutions.

Building on this concept, Elalouf et al. (2018) optimised their ‘Blood Sample Supply Chain’
towards sample expiry and cost through minimising the number of samples that were received
outside of a time window after the point of production, in addition to the cost of the operation.
Testing multiple approaches (heuristic, tabu search, etc.), it was found that a heuristic was the
most effective in terms of the trade off between solution quality and computational time.

A further study investigated the potential to balance workloads in the diagnostic laboratory to
maximise the total number of daily processed samples, and minimise laboratory idle and process-
ing time as a primary objective (Yücel et al., 2013a). In a hierarchical optimisation, a secondary
objective, to minimise transport costs, was also applied; initially as a single-vehicle optimisation
problem (Yücel et al., 2013a), and, subsequently, as a multi-vehicle optimisation problem (Yücel
et al., 2013b). Compared to the SSCP, there are significantly more decision variables and con-
straints which, while providing solutions that address the broader problem more holistically, take
impractical lengths of time to solve (c. 4 hrs). Where demands from individual surgeries vary by
day, loads are not always predictable, hence more flexibility through shorter run times to change
routes may be required. As suggested by McDonald (1972), delays within hospitals and clinics are
beyond the scope of the logistics provider, and are ignored by the present study. Furthermore, de-
mand from within the hospital can also be quite changeable and can be difficult to predict (Allan,
2019).

Similar to this research, the Vehicle Routing and Scheduling Algorithm (VeRSA) for specimen
deliveries proposed by Zabinsky et al. (2020) sought to reduce the delivery time of samples by
optimising the final delivery time across all routes after an initial point when samples were ready
to collect. Zabinsky et al.’s study also addressed the matter of vehicle re-use through a scheduling
element of the problem. Using an effective branch and bound approach, the solutions found were
often optimal, though in some larger instances, the approach took a considerable length of time.

The Biomedical Sample Transportation Problem (BSTP) proposed by Anaya-Arenas et al.
(2016) sought to minimise travel distance whilst serving the demands of clinics, within given time
windows, under the general assumption that at the origin surgery or destination lab, the sample
can be held in controlled conditions. This meant that whilst time was not an immediate constraint,
samples should not be waiting for more than a few hours, and their time in transit should be min-
imised. A similar assumption is also used in the SSCP, based on discussions with hospital staff
(Allan, 2019), and reinforced by Wilson (1996) who suggested transport should be developed to
limit damage to samples through prompt delivery and controlled intermediate storage. Constraints
are applied to limit the maximum transportation time (180 mins) and maximum driver working
time (Anaya-Arenas et al., 2016). In a series of experiments, solutions were found, though the
study highlighted the computational demands of large numbers of instances limiting the success
of the system (within a 1-hour time limit).
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The SSCP most closely aligns with the BSTP study by Anaya-Arenas et al. (2016), with the
assumptions around temporary sample holding, and the importance of transit time being funda-
mental to solving the problem. It should be noted that the SSCP simplifies the scheduling element
of this problem where computational time is important to enable recalculation based on the de-
mand experienced at the time of use. Naji-Azimi et al. (2016) further developed part of the work
by Anaya-Arenas et al. (2016) by testing alternative approaches and introducing a constraint to
prevent overloading the laboratory with samples at any point.

A slight variation on the core medical specimen problem was explored by Kergosien et al.
(2014), with samples being taken at patients’ homes by nurses. The objective of the study was
to optimise the routing of nurses who take the samples in terms of minimising cost and travel
time, whilst maximising the number of samples processed. Like many of the other studies, time
constraints were applied, though, in this instance, they were only given to critical samples. Whilst
not a direct comparison to the research in this paper, this does highlight the need for limiting the
time samples spend in transit and out of controlled conditions.

Other medical collection-delivery optimisation problems have focused on blood stocks and hu-
manitarian disaster relief, where the core objective has been to maximise the quantities delivered
whilst reducing costs (Lodree et al., 2016), often involving constraints on transit time. Doerner and
Hartl (2008) discussed the movement of blood donations for processing and delivery to hospitals.
They modelled the problem of collections as one of multiple interdependent time windows, with
the main constraint being donations requiring urgent processing throughout the day, with the sole
objective of minimising cost (Doerner and Hartl, 2008).

Other medical-related studies have also sought to improve on the environmental effects of lo-
gistics, such as Ettazi et al. (2021), who considered fuel consumption in their routing problem for
at-home care. The problem required synchronisation and precedence and used a meta-heuristic
to solve instances. The main limitation of the approach was that feasible solutions were not re-
turned when solving large instances. In a similar vein, Liu et al. (2013) investigated at-home
health care deliveries, optimising for the cost of the overall operation using a genetic algorithm
to solve the problem, with a consideration of precedence when coordinating patients and medicines.

Other relevant problems, such as do C. Martins et al. (2021) discussed the speedy optimisation
of two-echelon VRPs in a medical/aid context using a heuristic approach to solve large instances,
where rapid deployment was important, such as in humanitarian disaster relief. In a small set
of test instances, the problem was solved within a few seconds, whilst larger test cases took a
few minutes. The study used only aerial drones as the mode, making the decision process less
challenging, unlike the SSCP, where multiple modes are considered. Nonetheless, the need for fast
computation is still relevant to the SSCP if the use of discrete collections is to be adopted.

Osaba et al. (2019) modelled the collection of pharmacological waste as a clustered VRP with
numerous complexities, solving the problem using a Bat algorithm. A key feature of their study was
the use of a cost constraint to limit the maximum cost of a route and the clustering of sites, similar
to the maximum delivery time concept and cycle consolidation approach applied in the SSCP. The
presented solution approach generated effective solutions, though the absence of multiple modes
makes this method less applicable to the present study.
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Table 1: Comparison of previous investigations of the specimen collection problem (and similar). MOO = Multi-
objective optimisation. *= for maximum number of instances tested.

Author(s) Problem Title Key Dynamics Objective(s) Formulation,
Approach

Calculation
Runtime*

McDonald
(1972)

VRP Case Study -
Specimen Collection

Vans Only, Time
Constrained

Total Travel Time Single Objec-
tive, Heuristic

Not Stated

Grasas
et al.
(2014)

Blood Sample Col-
lection Problem
(BSCP)

Vans Only, Capac-
itated, Time Con-
strained

No. of Vehs. Single Objec-
tive, Genetic
Algorithm

<30 secs

Smith
et al.
(2015)

Pathology Labora-
tory Service Delivery

Vans Only, Capac-
itated, Sample/Lab
Type Constrained

Cost, Lab Work-
load, Veh. Work-
load, No. of Vehs.

Hierarchical
MOO, Theo-
rised

Theorised
Only

Yücel
et al.
(2013a)

Vehicle Collection for
Processing Problem
(CfPP)

Vans Only, Single
Vehicle, Time Con-
strained, Lab Capac-
ity Limit

Lab Performance,
Transport Costs

Hierarchical
MOO, Heuristic

c. 4 hrs

Yücel
et al.
(2013b)

Multiple Vehicle Col-
lection for Processing
Problem (mCfPP)

Vans Only, Time
Constrained, Lab
Capacity Limit

Lab Performance,
Transport Costs

Hierarchical
MOO, Theo-
rised

Theorised
Only

Anaya-
Arenas
et al.
(2016)

Biomedical Sam-
ple Transportation
Problem (BSTP)

Vans Only, Several
Time Constraints,
Uncapacitated

Travelled Distance Single Objec-
tive, Heuristic

1 hr (limit)

Liu
et al.
(2013)

Home Healthcare
Problem (HHC),
variant of VRP
with simultaneous
pickup and delivery
and time windows
(VRPSDPTW)

Vans Only, Time
Constrained, Prece-
dence

Cost Single Objec-
tive, Genetic
Algorithm with
Tabu Search

72 hr limit,
though
likely less

Zabinsky
et al.
(2020)

Vehicle Routing
and Scheduling
Algorithm (VeRSA)

Vans Only, Time
Constrained, Vehi-
cles Re-Used

Total Duration
from Goods Ready
to Delivery

Single Objec-
tive, Branch
and Bound

2 hr (limit)

Naji-
Azimi
et al.
(2016)

Vehicle Routing
Problem with Desyn-
chronized Arrivals
(VRPDA)

Vans Only, Time
Constrained, Unca-
pacitated, Synchro-
nised Laboratory
Arrival Penalty

Travelled Distance,
Sum of Travel
Times, Number
Deliveries within
Any Time Period

Weighted
(Multi-Term)
Objective,
Heuristic

1 hr (limit)

Elalouf
et al.
(2018)

Blood Sample Supply
Chain

Vans Only, Time
Constrained, Late
Laboratory Arrival
Penalty

Cost and Number
of Samples Deliv-
ered On-Time

Multi-
Objective,
Heuris-
tic/Tabu/Bisection
Search/Advanced
Heuristic

Up to 30-40
minutes

Oakey
et al.
(2022,
present
study)

Sustainable Specimen
Collection Problem

Vans and gig-
economy cycles,
Time Constrained,
Multi-Echelon

Longest Collection
Round Duration,
Number of Vehs.,
Total Travel Time

Weighted
(Multi-Term)
Objective, Col-
umn Generation
with Improve-
ment Heuristics

c. 30 secs
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1.3. Related Works - Heterogeneous Logistics & Routing

In this study, multi-modal, or heterogeneous logistics systems relate to the use of multiple
modes (e.g., van and cycle), to transport goods from one point to another. Cycle logistics systems
have been seen to offer significant environmental and cost benefits in urban delivery networks
(Sibilski and Targa, 2020; ECF, 2012; Marujo et al., 2018). In late 2019, a Newcastle based cargo
cycle company trialled a service with the NHS to deliver light goods, including diagnostic spec-
imens (NHS, 2020b). A single cargo cycle covered 25 stops across an 8-mile route over a three
month period, reducing carbon output by 212kg and costs by £6,250 (an approximate reduction
of 848kg and £25,000 per annum, respectively).

Time benefits can also be seen when using cycle couriers in urban logistics. Conway et al.
(2017) found that cargo cycles in New York were capable of achieving competitive travel times in
some cases, though this did depend on the road layout, route, and cycle type. A further study by
Gruber and Narayanan (2019), based on trips in Germany indicated similar trends, with cycles
being favourable during working-day hours (up to 7 pm), and vehicles being favourable over longer
distances (>a few km) or over hilly terrain. Replacing large vehicles with two-wheeled or small
cargo cycles on busy routes offered the best savings in terms of time and emissions (Conway et al.,
2017; Gruber and Narayanan, 2019).

When combining cargo cycles with traditional road vehicles, there are often fixed or temporary
locations used for trans-shipment activities (Marujo et al., 2018). Verlinde et al. (2014) and Marujo
et al. (2018) investigated the potential for mobile depots and de-consolidation style delivery sys-
tems in the urban environment which could be likened to a reversal of the proposed concept to
solve the SSCP. Both studies identified significant emissions savings from using such setups, whilst
operational costs associated with the mobile depot systems were generally higher than traditional
setups. To reduce this cost impact, situating depots in areas of higher consignee density resulted
in improved performance (Marujo et al., 2018). It was also noted that there was a slight opera-
tional delay from additional loading/unloading activities, but consignees did not notice any drop
in performance (Verlinde et al., 2014).

One of the challenges when using cargo cycles for consolidation, in combination with vehicles
is that this requires some type of synchronisation or pairwise temporal precedence. In (Bredström
and Rönnqvist, 2008) the authors proposed a general mathematical programming model which ex-
panded the standard (homogeneous) vehicle routing problem to include the scheduling aspect with
time windows and temporal constraints between routes. In (Anderluh et al., 2021) the authors
developed a large neighborhood search algorithm to solve the two-echelon vehicle routing problem
with vehicle synchronization, where the two routes should coincide simultaneously. The problem
addressed has multiple objectives, considering terms capturing the economic cost as well as the
social and environmental benefits by including greenhouse gas emissions and disturbance.

In another study, walking porters and cyclists were combined with traditional road vehicles
in a more dynamic setup, varying routes depending on demand, parcel sizes/weight, and delivery
drop density (McLeod et al., 2020). Emissions reductions of 45% and cost savings of up to 39%
over BAU were made if 50% of parcels were served by cyclists/porters, enabling a reduction in the
number of road vehicles required. McLeod et al. (2020) also proposed that casual workers from
the gig-economy could be used to support a multi-modal system when workers are not occupied
with gig-economy deliveries due to varying demand (e.g. takeaway riders could deliver parcels in
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the off-peak periods). The concept could enable more sustained and reliable employment for gig
workers where they would undertake medical deliveries alongside traditional food deliveries, and
is adopted in this research, where the costs for using cycle couriers has been taken from a gig-
economy provider. Additionally, range limits are applied to cycle couriers to prevent the overuse
of cyclists and excessive cycling durations. In many cases, it is likely that the resultant reduction
in van use will improve the sustainability of specimen collection rounds, however, care must be
taken to ensure delivery times are not significantly delayed by the introduction of consolidation
points.

The problem addressed in this research has some similarities with the min-max Generalised
Vehicle Routing Problem (GVRP), which is an extension of the well known Capacitated Vehicle
Routing Problem (CVRP). The GVRP was first proposed by Ghiani and Improta (2000) and
since then there have been several works proposing new integer linear formulations and exact al-
gorithms (Bektaş et al., 2011; Pop et al., 2012), as well as metaheuristic algorithms (Hà et al.,
2014; Biesinger et al., 2018). A common feature considered in the GVRP is that only one node
from each cluster can be visited and the clusters do not overlap. In the case of the SSCP, the
clusters are not pre-defined and are determined by the algorithm during the optimisation process.
Each surgery has a defined catchment area, based on the surgeries within a given cycling radius.
The specimens from surgeries in the same catchment area can eventually be collected by a vehicle,
visiting only one surgery in the area, if the samples have previously been collected from the other
surgeries in the same catchment.

The two-echelon vehicle routing problem considers two different levels (echelons) in which dif-
ferent vehicle types can be used and solved using various mathematical models, exact algorithms
or math-based heuristics (Perboli et al., 2011; Baldacci et al., 2013; Cuda et al., 2015). It is worth
noting that if the surgeries are considered as the potential intermediate facilities where the sam-
ples of other surgeries might be kept, then the problem can be viewed as a two-echelon problem.
However, both (i) the objective addressed by the SSCP; and (ii) the possibility of driving directly
to the surgeries, instead of visiting them using cycle routes defines a new problem that is not easily
translated into a traditional two-echelon problem. The objective of the SSCP seeks to improve
delivery times by minimising the largest time across the network.

Heterogeneous two-echelon problems with multiple objectives are also not widely explored. An
early example of this was by Eitzen et al. (2017), in a theorised problem that looked to appease
multiple stakeholders in an urban delivery system, with respect to costs, the number of vehicles,
and emissions. It was found that improvements could be achieved across all objectives, despite the
complication of the two-echelon and heterogeneity.

2. Real-World Case Studies

Two case studies involving current patient specimen delivery services were used in this research;
Southampton, UK, and the Isle of Wight (IOW), UK. Both cases featured specimen delivery in
which samples were routinely collected from a set of known surgeries and delivered to a single
delivery point at the major local hospital, within the ‘South 6 pathology network’ in southern
England (Figure 2a). The findings from the Southampton study were used to support the formu-
lation of the problem, and the development and original testing of the algorithm. The IOW study
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was used in further testing of the algorithm to understand its effectiveness in other collection areas
of differing scale and geography.

2.1. Case Study 1: Southampton

The Southampton case study used the diagnostic specimen network delivering to the analysis
laboratory at Southampton General Hospital, UK as its case study (Figure 2a). Two separate
data sets were provided by Southampton General Hospital Pathology; one providing the details
of specimens produced by 78 feeder surgeries during November 2018, and the other detailing the
route schedules during September 2018. When combined, the BAU operations suggested that
specimens were collected from 97 GP surgeries (postcodes) (Figure 2b), and a collection service
may need to service all of these sites in a single day. It should be noted that postcodes were used
as they geo-coded more reliably instead of site names, even though it is possible for more than one
surgery to share a postcode, this was not common, and such sites were found to be close enough
that they could transfer goods internally without causing delays. Other sites were also visited by
some rounds for collection/delivery of other items such as internal mail and paper records.

In this study, only the sample collections were of interest due to the core objective of reducing
the time from when the patient was bled to when the sample was received at the hospital. The
ancillary delivery services covered by these rounds (internal mail, paper medical records) were
understood to be less urgent, of low volume, or were due to be phased out. To enable a closer
comparison between the BAU and computational results, a modified version of the BAU was used
where any ancillary service stops were removed and stop times adjusted where sites were for spec-
imen collection only. A comparison of the Key Performance Indicators (KPI) of the two versions
is shown in Table 2. The values described below were from the modified schedule.

(a) NHS England Trust Locations (box contains South 6 network
in the Solent area) (NHS, 2019)

(b) GP surgery locations in the Southampton area. Blue and purple
points indicate surgeries from which specimens must be collected. Red
surgeries are currently visited by the rounds for purposes other than
specimen collection. The green star indicates SGH.

Figure 2: Solent area GP surgeries and NHS trust locations in the wider UK context (Base Map ©OpenStreetMap
contributors)

Ten vehicles, primarily medium-sized LGVs (Vauxhall Vivaro or Ford Transit), served the
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Southampton-based surgeries on weekdays, whilst only two were used on weekends (Quadir et al.,
2019). On weekdays, vehicles covered an average of 113km per day, stopping 20 times, over a
period of 4 hours 13 minutes. Each surgery was visited an average of 1.96 times per day.

The specifications of vehicles varied, though all were assumed to be “Vans of 3.5 tonnes GVW
–diesel” defined under the Manager’s Guide to Distribution Costs for the purposes of analysis
(FTA, 2020). Calculations used a per-mile rate (£0.464 /mi) for vehicle costs to cover fuel, tyres,
maintenance, tax, insurance, depreciation, and overheads, a per hour rate (£10.78/hr) for driver
wages, and a per-mile rate (0.45 kg/mi) for CO2 tailpipe emissions. As a result, on each weekday
each vehicle was emitting approximately 31.8kg of CO2; a daily total of 318kg across the fleet
(FTA, 2020). Collectively, the rounds cost approximately £782 each day.
The maximum time between departing Southampton General Hospital and returning (i.e. the
delivery interval) was 285 minutes with the mean duration (per collection) being 135 minutes. If
a direct driving route was taken, each surgery was an average of 12 minutes 15 seconds drive (one-
way) from the hospital and a quicker and more effective transit option should have been possible
(GraphHopper, 2020). Not every surgery produced the same volume of samples, however, all sites
had to be visited to ensure a collection was made during the day. Figure 3 demonstrates this
variation, with thicker lines indicating a greater number of samples.

Figure 3: Flowline map of feeder surgeries. Surgeries with sample production information are connected to the
hospital by a line with thickness relative to the load produced (some flows are significantly smaller so lines are not
visible on this plot; all blue points produce specimens). Only sites from the sample production dataset are shown.
(Base Map ©OpenStreetMap contributors).

With regards to the timing of collections, every surgery was typically served by a morning and
afternoon collection which correlated with a surge in observed samples received just after midday,
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and again at around 17:00 (Figure 4a). There was minimal variation in the peaks of when samples
were taken (Figure 4b), with an average of 79% of each day’s samples taken by practitioners by
midday. Only 12% of samples would have been checked-in to the hospital by the same time as
they were still in transit. It should be noted that the tail on the plots, particularly the ‘taken’
curve, related to samples in the dataset that were marked as taken or received outside of working
hours due to either (i) errors in the dataset; (ii) where samples had been taken at the hospital
but assigned to the surgery; or (iii) where samples had been checked in late. The last scheduled
delivery of samples from any surgery to the hospital was 18:35.

According to laboratory staff, check-in processes required at the hospital accounted for some
of the delays seen in the ‘receipt’ peak, though unfavourable routing was responsible for the ma-
jority of this delay (Allan, 2019). It was assumed that the check-in procedure took a fixed amount
of time, and in order to enhance the receipt times at the diagnostic lab, delivery times must be
improved. Following discussions with local clinicians, there appeared to be limited scope to alter
the timings of when samples were taken due to surgery opening hours, though there was often
demand for later final collections, in addition to the existing timetabled collections, to enable a
better patient service offering (Wessex Academic Health Science Network, 2020). This aligned
with the suggestions made by McDonald (1972) and Anaya-Arenas et al. (2016), highlighting that
reducing the transit time and the time to deliver all samples are critical considerations.

(a) Comparison of sample production time and receipt time. Most
samples are produced in the morning but are received in the after-
noon.

(b) Change in sample production across each day. A clear peak is
seen in the mid-morning. Average production is shown in red.

Figure 4: Southampton - Plots of sample production/receipt over time. Last delivery to the hospital is 18:35; thus,
data beyond this time may be erroneous.

2.2. Case Study 2: Isle of Wight

The second case study in this research was used to test the algorithm’s performance in a differ-
ent setting. The case study was based on the Isle of Wight (IOW), also in the Solent region of the
UK (Figure 2a). Surgeries on the island are more sparsely distributed than in Southampton, and
the analysis laboratory is at St. Mary’s Hospital near the centre of the island (Figure 5a). As in the
Southampton case study, historic round and sample collection data were made available, enabling
a comparison of how the algorithm performed in other areas with different characteristics and stops.
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At the time of the study, 22 sites (postcodes) were served by 3 vehicles on a daily basis with
all surgeries receiving an average of 1.64 collections per day. The data covered a 5-day period in
June 2020, where a total of 1637 samples were produced; an average of 327 across the island per
day, or 15 per surgery per day. In BAU routing, three vehicles each travelled an average of 90km
each day. Assuming the same vehicle type as in Southampton case study, this resulted in 75.7kg
of CO2 being generated across the fleet each day; 25.2kg per vehicle. Including service time (but
excluding breaks), vehicle rounds took an average of 3 hours 17 minutes at a cost of £184 each
day. The maximum time between departure and return to St. Mary’s Hospital (i.e. the delivery
interval) was 125 minutes with the mean duration being 112 minutes. As with the Southampton
case study, a lag between taking and receiving the samples was also observed (Figure 5b).

(a) GP surgery locations on the IOW. The green star indicates
St. Mary’s Hospital, where samples are analysed. (Base Map
©OpenStreetMap contributors).

(b) Comparison of sample production time and receipt time. As
with the main case study, most samples are produced in the morn-
ing but are received in the afternoon. Two clear delivery peaks are
seen.

Figure 5: Isle of Wight Case Study

2.3. Business-as-usual Summary

The two case studies used in this paper are summarised in Table 2. It should be noted that the
computational experiments produced results based on a single collection at all surgeries, with all
vehicles departing simultaneously (as detailed in the problem description), whilst the case studies
feature additional collections. In reality, the model would be used multiple times per day, generat-
ing different collection rounds for varying smaller instances. Table 2 reflects these multi-collections,
with rounds being scaled to an equivalent of 1 collection at each surgery. Average van driving time
was taken as the total driving time divided by the number of vans, whilst the average collection
round time was the mean duration between laboratory drops per stop served.

A consultation with NHS diagnostics laboratory staff took place to discuss the challenges that
were being faced during day-to-day operations. The key concern that was highlighted was a need
to improve failed samples through an improvement in the arrival times. Pressures from senior
management to manage costs and environmental impacts were also important. The objectives
selected for optimisation (max. round time, qty. of vehicles, total fleet time) were chosen from the
KPIs in Table 2 following the consultation, after the availability of reliable data was considered.
Other objectives, such as the average stops per van are somewhat incidental from the optimised
KPIs; meanwhile, costs are noisy approximations based on a per mile and per hour basis and are
only used as a rough indicator.

15



Table 2: Summary of KPIs seen in the Case Studies. Scaling is used to make rounds representative of a single
collection at all surgeries. Soton = Southampton

Scenario Maximum
Sample
Coll.
Round
Time
(mins)

Number
of Ve-
hicles
(qty.)

Total
Fleet
Round
Time
(mins)

Avg.
Van
Driving
Time
(mins)

Avg.
Col-
lection
Round
Time
(mins)

Avg.
Stops
Per Van

Total
Costs
(driver+
vehicle)

CO2

(kg)

Soton
Original

N/A 10 4380 438 N/A 28.9 £1,188 389

Soton
Spec.
Only

285 10 2530 253 135 19.6 £782 318

Soton
Scaled
Spec.
Only
(1.96x)

285 10 1291 129 135 10 £399 162

IOW
Original

125 3 592 197 112 10.7 £184 75.6

IOW
Scaled
(1.64x)

125 3 361 120 112 6.5 £112 46.1

Scaled = factoring each parameter by the average number of visits at each site to make it the equivalent of 1
collection. Southampton average collections/day = 1.96, IOW = 1.64. Spec. only refers to a modified BAU case
that removes stops that are not for specimen collections.

3. Mathematical Formulation

In order to enhance the time of arrival of samples at the diagnostics lab, a new approach is
explored in this paper. This uses a combination of road vehicles (vans/LGVs), and pedal cycles.
The pedal cycles start at a surgery or the hospital and collect from surgeries local to them (satellite
surgeries) before returning to their origin surgery (the consolidation point). The road vehicles
complete longer distance rounds starting from the hospital, serving the consolidation points and
any others which fall outside of the range of consolidation rounds, taking advantage of the faster
travel speeds and lower carbon impact of cycling in short distance urban environments whilst
maintaining the benefit of faster trunk mileage from road vehicles. The introduction of cycles
in this way has not been proposed previously, though cargo cycles have been used in specimen
collections in the past (NHS, 2020b).

3.1. Master Problem

The BAU activity presents a problem in which a set of known locations/nodes produce samples
that need transporting to a single location/node as fast as possible without incurring excessive cost,
congestion, or environmental impact.
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Let S be the set of surgeries that require a collection, and H as the Target Hospital to which
samples are delivered and vans are based. An individual surgery is denoted by s ∈ S. The set of
all nodes, including the target hospital is defined as S ′ = S ∪ {H}.

Two modes are available in this problem, V , which represents a van; and C, which represents
a cycle. Subsequently, the set of van routes is defined as RV , and the set of cycle routes is defined
as RC . We define T as the service time required at each stop in a route, and the time to travel
between a pair of surgeries (i, j) as tVi,j for a van, and tCi,j for a cycle.

Let rv = (H, s1, . . . , snv , H) ∈ RV be a van route, where nv denotes the number of surgeries
being visited, si ∈ S, ∀i ∈ {1, . . . , nv}. Note that all vans are based at the Hospital H and must
return to H. Additionally, ns

v denotes the number of stops from the hospital to surgery s in rv.
Each van route has an associated time, denoted by trv . The sum of all durations between surgeries
visited and the sum of all service times, trv , is calculated as trv = tVH,s1

+
∑nv−1

i=1 tVi,i+1 + tVsnv ,H
+nvT .

It should be highlighted that trv excludes any delays caused by cycle routes, and T is embedded
in the value.

Similarly, let rsc = (s, s1, . . . , snc , s) ∈ RC be a cycle route based on surgery s in which all
surgeries {s1, . . . , snc} are being served by cycle, and the samples are delivered to surgery s. We
denote the number of surgeries being visited as nc. Cyclists are capacity constrained such that
they cannot carry more than three surgeries’ worth of samples in one round, based on a typical
gig-economy backpack (Deliveroo, 2020); nc ≤ 3. It is worth highlighting that the cycle route
should start and end at the same surgery s ∈ S.
Each cycle route also has an associated time, denoted by trsc . The sum of all durations between

surgeries visited and the sum of all service times, trsc , is calculated as trsc = tCs,s1 +
∑nc−1

i=1 tCi,i+1 +
tCsnc ,s

+ ncT . It should be noted that T is embedded in trsc . Additionally, cycle routes are subject
to a time constraint of 25 minutes or less to ensure the cycle elements can be managed as discrete
gig-economy tasks (Allen et al., 2021); trsc ≤ 25 minutes.

We define a collection round, r = (rv, R
C
v ), as the combination of a single van route rv ∈ RV

with a subset of cycle routes RC
v ⊆ RC such that for any given cycle route rsc ∈ RC

v based at
surgery s, it is satisfied that s ∈ rv, i.e, any cycle route in RC

v is based in a surgery that is
being visited by a van route rv. Furthermore, other than surgery s where each rsc begins/ends,
the cycle routes in RC

v do not share any other surgeries; i.e. no surgery is served by multiple
cycles. We define the set of all the collection rounds as R, and each collection round is denoted by
r = {(rv, RC

v )| rv ∈ RV , RC
v ⊆ RC}, r ∈ R. Note that, since RC

v could be empty, then it can sat-
isfied that RV ⊆ R. The set of surgeries served by all of the constituent routes of r is denoted by Sr.

Cycle routes that start and end at the hospital are permitted in order to serve the catchment
area of the hospital directly. To account for this in the model formulation, a dummy van route,
rv0 ∈ RV , is created. Starting and ending at the hospital, with no intermediate stops (rv0 = (H,H))
and a travel time of zero (trv0 = 0), rv0 enables a collection round where surgeries are cycle served
only, r0.

In a collection round, we define the waiting time for the van at a given surgery, w(r, s), as
the difference between the durations of the cycle routes based on s, trsc , and the duration of the
van route (including any previous waiting time) up to surgery s, trv ,s. The waiting time, w(r, s),
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is only considered when it is positive (i.e. the cycle takes longer than the van). The sum of the
travel times, service times, and waiting times from the start of the van route in r up to surgery s
is defined as trv ,s, whilst tr denotes the total collection round duration and is equal to trv ,H ; i.e.
the time for the vehicle to return to the hospital after first departure, including any waiting time
incurred.

w(r, s) = max{trsc − trv ,s ∀r
s
c ∈ RC

v s ∈ rv, 0}

trv ,s = tVH,s1
+

s∑
i=1

tVi,i+1 + ns
vT +

s∑
i=0

w(r, s)

Collection rounds are subject to a time constraint of 90 minutes or less (McDonald, 1972), to
ensure timely delivery of samples; tr ≤ 90 minutes. It should be noted that whilst this constraint
is not met in business-as-usual rounds, staff have expressed a desire to meet this criteria. Vans are
assumed to depart at the same time; thus, the durations all commence at this point. If a waiting
time is incurred due to a longer cycle route, this will slow the van’s progress and increase the
collection round duration. If there is no waiting time incurred, then the collection round duration
is equal to the van route duration. Some example collection round scenarios are given in Table 3.

Table 3: Example collection round scenarios, illustrating potential delays. Delays only demonstrated at the first
stop, other delays may occur. All cycle routes deliver to first stop in these examples unless otherwise stated. CR
= Collection Round

Scenario Van Route
in CR

Cycle
Routes in
CR, trsc

Time to
First Stop

Delay at
First Stop

Van Route
Duration

CR Dura-
tion

Van + 1 cy-
cle, van de-
layed

(H,s1,s2,s3,H)(s1,s4,s5,s1),
25 mins

20 mins 5 mins 80 mins 85 mins

Van + 2 cy-
cles, no van
delay

(H,s1,s2,s3,H)(s1,s5,s1),
15 mins;
(s1,s4,s1),
10 mins

20 mins 0 mins 80 mins 80 mins

Van + no
cycles, no
van delay

(H,s6,s7,s8,H)- 30 mins 0 mins 85 mins 85 mins

Cycle di-
rect to
hospital

H,H (H,s9,s10,H),
23 mins

0 mins 23 mins 0 mins 23 mins

A binary decision variable, xr is introduced to select collection rounds:

xr =

{
1 if the collection round is used in the solution

0 otherwise;

The master problem is a multi-objective problem in which a balance between (i) the latest de-
livery times of samples (first term in (1)); (ii) the number of collection rounds (vans) used (second
term in (1)); and (iii) the total driving and servicing time (last term in (1)) must be found in any
solution. These three objectives are combined by weighting with coefficients α1, α2, and α3. In
Section 3.2 we explain how these weights are set by taking into consideration the BAU, and with
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that approach we aim to solve the problem using a single objective function (Section 4).

To capture the maximum collection round duration across all rounds/surgeries, a continuous
variable u is introduced (Equation 2). The latest delivery time/interval to the Hospital for the
samples of any surgery is denoted by u and is based on the tr values for all rounds.

Full collection round durations were used, as opposed to only the duration after the first pickup,
due to cycling being handled by a 3PL. It has been assumed that the 3PL have the flexibility to
complete cycle collections at any time after the collection rounds are permitted to start. For ex-
ample, if rounds (all van routes and cycle routes) are permitted to start at 09:00, samples cannot
be collected any earlier; however, the 3PL flexibility means cycles can complete their deliveries
any time before the vans depart the target consolidation site.

Using the full collection round duration enables a conservative upper bound to be captured.
Should contractual arrangements allow full control over the departure times at all sites for both
vans and cycles, the term tVH,s1

could be removed from the calculation of trv ,s for a more accurate
calculation of the time samples spend in transit. Where waiting time is included in the calculation
of trv ,s, the duration of the cycle rounds contributes to tr if waiting times are incurred. This
concept is demonstrated in Figure 6.

Figure 6: Demonstration of the critical path that governs the maximum duration, u.

To ensure all sites are served, a further constraint is also added (Equation 3), whilst xr in
Equation 4 must be binary.

min α1u+ α2

∑
r,r 6=r0

xr + α3

∑
r,r 6=r0

trxr (1)

u ≥ trxr, ∀r ∈ R. (2)∑
r;i∈Sr

xr ≥ 1 ∀i ∈ S (3)

xr ∈ {0, 1}, ∀r ∈ R (4)
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3.2. Objective Function Calibration

The generalised multi-objective problem is modelled with a weighted multi-term objective
function (Equation 1), enabling a Pareto front of solutions to be found by varying the coefficients
of each term. The values of the business-as-usual case were used to define and normalise the terms
α1, α2, and α3, whilst a multiplier varied the relative importance of each term:

α1 =
w1

û
α2 =

w2∑
r,r 6=r0

x̂r
α3 =

w3∑
r,r 6=r0

t̂rxr

where w1, w2, and w3 are the multipliers, and û,
∑

r,r 6=r0
x̂r, and

∑
r,r 6=r0

t̂rxr are the values of the
objective function terms under the business-as-usual case.

In a real-world application of the model, the multipliers could be user-defined to allow decision-
makers to weight the relative importance of each objective and achieve a balanced outcome which
satisfy their requirements.

This step is seen in Figure 9, noted by a superscript 2. The calculated α values define the
objective weights.

A series of objective function weights ratios were tested to understand the sensitivity of the
business-as-usual inputs and identify a Pareto front of solutions, whilst also demonstrating the
trade-offs decision-makers could make.

4. Column Generation Based Heuristic Model

The master problem presented by the SSCP has been solved in this study using a column gen-
eration based heuristic, whereby all the surgeries being visited by the same vehicle in one single
column; i.e., one column is one collection round. These surgeries can either be visited directly by
the road vehicle or indirectly by using any combination of cycle couriers and the road vehicle. By
including this information in columns, efficient computation and processing was achieved, and the
problem could be solved quickly using an initial set of heuristically generated routes which were
iteratively improved using further heuristics.

In the implementation explored in this study, van routes are constructed such that they can
only stop once in each cycle-able catchment area; i.e., during construction, if a van stops at surgery
s1, no cycle route can exist to the van’s next stop (s2) as it is out of cycling range (Figure 7).
This assumption was made to (a) enable van routes to be solved independently of cycle routes
(i.e., not as combined collection rounds); and (b) reduce the number of van routes in the solution
space and improve calculation times whilst still aligning with the objective function. The approach
reduces the number of required van stops in each route; thus, the driving time of each route is also
decreased in the solution.

Both case studies are explored in this paper, using a ‘worst case’ scenario, in which it is as-
sumed that all surgeries require visiting, even though this may vary slightly day-to-day. Under
BAU activity, road vehicles are already in use, however cycle couriers are not. As a result, it
is envisaged that an existing 3PL provider would be responsible for the cycle logistics, enabling
them to increase the off-peak (i.e. mid-morning and mid-afternoon) job offerings for their workers
(current peaks - lunchtime, dinnertime), which have often been cited as insufficient for the number
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of workers signed-up (Lord et al., 2020; Bernal, 2020). The model explores single collections which
will need to be scheduled throughout the day; most likely at the times which are low-demand for
gig-workers. Modelling assumes cost constraints based on existing operations of the gig-economy
courier company, “Stuart” (Stuart, 2020).

Figure 7: Example of collection round structures used in the modelled approach to the SSCP.

4.1. Initial Route Generation Heuristic

In the modelling process, two initial sets of routes are generated prior to solving. One set con-
tains the cycle route options whilst the other contains the road vehicle route options. In the case of
the Southampton study, the problem’s parameters result in a set of 3170 cycle routes, so all routes
can be fully enumerated without issue. As part of the cycle route generation, a list of surgeries
that fall in the ‘catchment’ of each surgery is defined using the maximum cycle time and service
time, enabling the model to be solved for vans routes, before post-processing for exact cycle routes.

Following the calculation of cycle catchments, the vehicle routes are generated using a greedy-
style heuristic under the constraints within the master problem (Equations 2-4), in addition to the
following constraints:

• An initial maximum number of stops, or shorter (maximum changes during heuristic pro-
cesses);

• The surgery catchment lists for each surgery (produced in the cycle route generation stage);

• A maximum number of surgeries to shortlist for each next stop during generation.

For the first stop from the hospital, all surgeries are tested to ensure a route exists to serve
every surgery (Algorithm 1, Line 3). For subsequent stops, up to a maximum number of stops
(nmax), new routes are made (Algorithm 1, Line 6) with additional surgeries within range (Tmax)
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but not in the cycle catchment already served (Algorithm 1, Line 5). This is handled by Algorithm
2, where a recursive function is called until the maximum stops criteria is reached, or there are
no more sites in range. The additional sites are selected (Algorithm 3) from two subsets: (i) the
closest N (N ≤ nmax) sites; (ii) those not within the N closest. From the closest, L sites are
randomly selected, and from the others, O sites are selected. The position of this stage of the
algorithm is seen in Figure 9, noted by a superscript 1.

It should be noted that the route generation in this study allows vehicle routes to be created
where vans arrive at consolidation surgeries before some cycle routes are completed, meaning a
delay is incurred in the vehicle route. This could be prevented in the vehicle route generation,
however the cycle route(s) which cause the delay may not be selected by the algorithm. After
generating the van routes, the waiting times for each route are calculated using the cycle routes
associated for each stop on the van route. This approach is loosely related to the Covering Vehicle
Routing Problem (Buluc et al., 2022; Semet and Taillard, 1993), but the overall problem is different
due to the second echelon affecting the main vehicle routes.

On completion of the route construction and waiting time calculations, the routes are input into
a Gurobi optimisation environment and solved using a branch and bound optimisation approach.

Algorithm 1 Initial Van route construction

Input: S: Set of surgeries to serve, H: Target Hospital; Tmax: Maximum route duration; nmax:
Maximum route stops; M : O-D time matrices for {S,H}; L: shortlist sites; N : shortlist sites
selected; O: other sites selected;

1: R ← {}
2: for Surgery s ∈ S do
3: r ← (H, s,H) . Create out-and-back route
4: R = R ∪ {r}
5: nextSites← toTestF ilter(r, S,M,L,N,O) . Identify potential next sites to test,

Algorithm 3.
6: newRoutes(r, R, nextSites, Tmax, nmax,M,L,N,O) . Algorithm 2.
7: end for
8: return R
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Algorithm 2 Recursive function: newRoutes. Van route construction - subsequent site additions.

Input: r: previous route; R: route list; S: set of possible surgeries; Tmax: Maximum route duration;
nmax: Maximum route stops; M : O-D time matrices for {S,H}; L: shortlist sites; N : shortlist
sites selected; O: other sites selected;

1: if r.length < nmax and S 6= ∅ then . Maximum stops not been reached
2: for a ∈ S do
3: q ← (H, ..., a,H) . Create route with a inserted into route r
4: R = R ∪ {q}
5: S ← toTestF ilter(q, S, Tmax,M,L,N,O) . Identify potential next sites to test,

Algorithm 3
6: newRoutes(q, R, S, nmax,M)
7: end for
8: else
9: return R

10: end if

Algorithm 3 Next stops options function: toTestFilter. Van route construction - identify potential
next stops.

Input: r: previous route; S: set of surgeries; Tmax: Maximum route duration;M : O-D time
matrices for {S,H}; L: shortlist size; N : shortlist sites selected; O: other sites selected;

1: Ŝ = S \ {r} . List of sites not already covered by the existing route
2: Sort Ŝ by duration required to add to route r
3: Remove from Ŝ all the sites outside of the range ( > Tmax) of the current route r
4: shortList← Ŝ[0 : L] . Copying first L elements of Ŝ to shortList
5: otherList← Ŝ \ shortList
6: toTest = {}
7: for i=0 To N do
8: Select s randomly from shortList
9: toTest = toTest ∪ {s}

10: shortList = shortList \ {s}
11: end for
12: for j = 0 To O do
13: Select s randomly from otherList
14: toTest = toTest ∪ {s}
15: otherList = otherList \ {s}
16: end for
17: return toTest
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4.2. Improvement Heuristics

After the first iteration of solving is completed (Figure 9, noted by a superscript 2), the van
route list is ‘cleaned’ to eliminate all routes from the previous iteration that are longer than the
longest route/shorter than the shortest route/fewer stops than the shortest route from the potential
options. All cycle routes are kept for all iterations. Subsequently, two heuristic methods are used to
improve routing options available for solutions; the longest route redistribution heuristic (LRRH),
and the shortest route redistribution heuristic (SRRH). Both create new route variants by moving
served surgeries between van routes and positioning them in the target route at the location where
there is the smallest increase in route duration; i.e. the best-insertion (Figure 8). One surgery
is added per route variant per iteration. Other variants are made by rearranging the position of
surgeries within routes to allow for where a later road vehicle arrival may mean u is reduced due
to better timing with the arrival of cycle routes at consolidation surgeries.

Figure 8: Representation of the best insertion of a redistributed surgery stop. Dotted lines indicate possible paths
to the additional surgery. Solid orange lines indicate the new path of the lengthened route.

4.2.1. Longest Route Redistribution Heuristic (LRRH)

Decreasing the length of the longest vehicle routes generally reduces the time from the surgery
to the hospital (Objective 1). The “Longest Route Redistribution” heuristic (LRRH) aims to
spread the surgeries served by the longest route(s) to the shorter routes, thus eliminating the
longest route(s). This heuristic can be applied to the surgeries directly served by the longest
route(s) (faster; fewer surgeries), or the surgeries within the catchment of the longest route’s stops
(i.e. the surgeries served by the longest collection round). Surgeries that are redistributed are
positioned in each route at the point which causes the least increase in route duration (Figure 8).
The position of this stage of the algorithm is seen in Figure 9, noted by a superscript 3. In the
case of all solutions presented in this study, this algorithm was applied to those routes which were
longer than the average route selected in the previous iteration.

4.2.2. Shortest Route Redistribution Heuristic (SRRH)

Increasing the length of the shortest vehicle routes increases the average length of the selected
routes, potentially eliminating a vehicle from the solution (Objective 3), decreasing the total
vehicle time (Objective 2), and spreading loads between drivers more evenly. The “Shortest Route
Redistribution” heuristic (SRRH) aims to spread the surgeries served by the shortest route(s) to
the longer routes, thus eliminating the shortest route(s). This heuristic can be applied to the
surgeries directly served by the shortest route(s) (faster; fewer surgeries), or the surgeries within
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the catchment of the shortest route’s stops (i.e. the surgeries served by the shortest collection
round). Surgeries that are redistributed are positioned in each route at the point which causes
the least increase in route duration. The position of this stage of the algorithm is seen in Figure
9, noted by a superscript 4. In the case of all solutions presented in this study, this algorithm
was applied to those routes which were shorter than the average route selected in the previous
iteration.

4.3. Post-Processing Cycle Selection

For each surgery, the algorithm assumes that the least favourable feasible set of cycle routes
are used (with respect to delivery time) based on the same surgery when calculating tr; a con-
servative step that gives an upper bound of the u term (and total driving, if delays occur) in the
objective, captured through complete enumeration. This assumption was been made for because
(i) the choice of cycle routing is controlled by the 3PL provider and as such may not be optimal
with respect to delivery times; and (ii) routes which incur delays are less likely to be selected,
which is favourable with respect to the objective function. Where no delay is incurred, tr = trv ;
thus, knowledge of the exact cycle selection is less important.

The assumption that all sites within a cycle-able distance of van stops are served may result in
duplication of cycle effort if a site occurs in multiple collection rounds, potentially at the detriment
to the core objective. To prevent duplicate service, post-processing is used to select the final cycle
routing (within the delays identified in the core vehicle selection) and minimise the number of
riders used, as a 3PL might. Post-processing also enables more accurate cost estimates to be
produced. The position of this stage of the algorithm is seen in Figure 9, noted by a superscript 5.

4.4. Heuristic Process Flow

The method followed by the algorithm (Figure 9) starts with the initial route generation. An
iterative approach using the SRRH and LRRH then occurs in tandem with the cleaning process
to eliminate ineffective routes, until the solution stagnates and is no longer dominated by new
solutions. The selected vehicle routes are then input to the cycle route post-processing model.
Only one iteration is required at this point due to the cycle routes being fully enumerated from
the point of generation.
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Figure 9: Process flow of the optimisation algorithm. Superscript values indicate the position of the algorithm
stages described throughout this chapter.

5. Computational Experiments

A series of computational experiments were undertaken to optimise the model and identify the
parameters which provided the best solutions. All tests were conducted on a system running an
AMD Ryzen 5 3500U 2.1 GHz processor with 16GB RAM (Windows 10, 64-bit). Tests were coded
and run in Java v13 in an Eclipse Development Environment, and were solved using Gurobi v9.5.1.

In the sensitivity testing of different objective function coefficients, the ratios between w1, w2,
and w3 were varied. In the experiments to test the heuristic performance, the number of routes
initially generated prior to solving was varied by changing the maximum number of stops per route,
or the number of next stop options tested. Other parameters and weightings remained fixed. The
majority of tests were carried out on the more complex case study, Southampton. Further tests
varying the weighting of the objective function were undertaken using the IOW case study to
understand the algorithm’s application to other areas and data sets.

5.1. Parameters

To allow for practicality constraints and limit computational time, several parameters were set
(Table 4). Transit times and distances were specified by a locally hosted GraphHopper Routing
engine which provided an asymmetric O-D time matrix (GraphHopper, 2020). The asymmetry
accounted for turn restrictions and elevation changes. The ‘car’ and ‘racing-bike’ profiles were used
to represent the two modes; ‘racing-bike’ was chosen over ‘bike’ to ensure routing prefers roads
over tracks (GraphHopper, 2020; Reid, 2018). It was assumed riders do not have pedal assistance
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which would further enhance their speed profile. Traffic was assumed to be ‘free-flowing’. The
service time was assumed to be 2.5 minutes per stop, approximately based on investigations into
freight driver dwell times carried out under the Freight Traffic Control 2050 (FTC2050) project
(Allen et al., 2018).

The next-stop shortlist size (L in Algorithm 3) of 5 remains constant throughout all tests, in
order to maintain route building speed. This parameter is unlikely to cause much impact on final
results as the selection of the next stops from the shortlist is dictated by the ‘Stops from shortlist’
value (N in Algorithm 3). The ‘Other stops in range’ value (O in Algorithm 3) also prevents the
shortlist length affecting results. Both of these supporting values vary between tests of the next
stop heuristic parameters but remain at 2 and 1, respectively, for all other tests.

It is envisaged that the current provider for the NHS vehicles would be used to complete the
vehicle rounds. For the purposes of this study, an hourly pay rate, mileage rate, and emissions rate
have been assumed based on the FTA Distribution Manager’s cost guide (£10.78, £0.464/mi, 0.45
kg CO2/mi) (FTA, 2020). Round durations have been rounded up to the nearest 15 minutes to
emulate realistic payment practicalities. Vehicle costs have also been assumed based on the same
guidance. Gig cycle couriers are often paid on a per-job basis (Lord et al., 2020); a structure that
is assumed for modelling cost estimation purposes (i.e. one route equates to one job, £6.75).

Table 4: Run parameters used in tests.

Parameter Value
Initial maximum surgeries per round - weight tests (vehicle)* 5
Initial maximum surgeries per round - algorithm tests (vehicle) 4
Next nearest stop shortlist 5
Stops from shortlist tested* 2
Other stops in range tested* 1
Vehicle Cost incurred per mile £0.464 1

Wage Cost incurred per driving hour £10.78 1

Cost incurred per cycle job £6.75 2

CO2 production rate per vehicle mile 0.45 kg CO2/mile 1

Service Time per stop 2.5 minutes 3

*Parameter used during weight value tests, varied during heuristic parameter tests
1 (FTA, 2020), 2 (Stuart, 2020), 3 (Allen et al., 2018)

5.2. Solution Limits

Where the weighting of the objective function is varied during experiments, the limits of the
solutions are governed by each of the three objective terms. Under the given constraints, the max-
imum value for u (the maximum time to delivery) is 90 minutes. The minimum is limited by the
travel time by road vehicle to the surgery which is furthest (wrt. travel time) from the hospital,
with no cycle consolidation options. In the case of the Southampton case study, this is the Milford
Medical Centre, with a return journey time of 70.24 minutes. The service time also must be consid-
ered, hence the minimum u falls at 75.24 minutes (70.24 mins + 2×(2.5 minutes) = 75.24 minutes).

The number of collection rounds,
∑

r,r 6=r0
xr, has an upper limit equal to the number of surg-

eries in S. There is no clear lower bound whilst other constraints limit the maximum journey time
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and stop limit. Should these limits be removed, the lower limit is 1 round, with the solution being
the travelling salesman problem.

The total collection round time,
∑

r,r 6=r0
trxr, has an upper limit dictated by the sum of the

return journey times and service times when one vehicle is used per surgery. There is no clear
lower bound whilst other constraints limit the maximum journey time and stop limit. Should these
limits be removed, the lower limit is the travel time and service time of the single-vehicle travelling
salesman problem.

In the subsequent tests using the Isle of Wight data, a lower limit for u of 43.98 minutes applies
(return travel time + service time = 38.98 mins + 2×(2.5 mins) = 43.98 mins). This time is given
by the Grove House Surgery, Ventnor, or the Ventnor Medical Centre, Ventnor. Both surgeries
reside on the same, one-way street; thus, have the same transit time to the hospital.

The minimum achievable number of collection rounds (i.e. vehicles), objective 2, and total
driving time, objective 3, are not easily determined. This is due to the problem being a generalisa-
tion of the Capacitated Vehicle Routing Problem (CVRP), and the Travelling Salesman Problem
(TSP) with added complexities from the introduction of cycle consolidation, meaning the vehicle
stops are not initially known.

Table 5: Upper and lower limits of objective function outcomes. Soton = Southampton

Objective Lower Limit
(Soton)

Upper Limit
(Soton)

Lower Limit
(IOW)

Upper Limit
(IOW)

u 75.24 mins 115 mins 43.98 mins 115 mins∑
r,r 6=r0

xr Indeterminate 97 rounds Indeterminate 23 rounds∑
r,r 6=r0

trxr Indeterminate 2854 mins Indeterminate 382 mins

5.3. Objective Input Sensitivity Analysis

Where the master problem presents multiple objectives, many different solutions can exist.
To access these and offer decision-makers the choice of trade-offs towards each, the weights of the
multi-objective function (Equation 1), w1, w2, and w3, can be modified to favour the different terms.
Weight sensitivity tests were carried out in which weights were independently varied, with w1 and
w2 varying from 0 to 10, and w3 from 1 to 10. This allowed testing of the algorithm’s robustness
and ensured that it could be used in any combination of weighting. Testing w1 with weights set
to 0 also allowed understanding of the relationship between the constraining u and objectifying
it, whilst setting w2 to 0 allowed understanding of the relationship between the second and third
objectives, which are closely linked.

5.3.1. Southampton

Using the same initially generated set of routes, one full run (including heuristic stages) was
completed for each weight using the Southampton area data. The results of the even weight tests
(e.g. 2-2-2, 2-2-4, etc.) are tabulated in Table A.10 (Appendix Appendix A).

The objective weightings that produced dominating solutions (i.e. better than all other solu-
tions in one or more objective terms) were identified to produce a Pareto front of solutions (Table
6, Figures 10a, c, e). They could be offered to decision-makers to assist in choosing a weighting
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that best suits their needs. The configurations which gave dominating solutions were isolated and
displayed in Figures 10b, d, and f. Where some configurations give better solutions in one or more
terms of the objective function, their benefits in other potential performance indicators (e.g. cost
and emissions) may be more limited.

Interestingly, the dominant solutions in the Southampton dataset all featured a modelled ob-
jective function with a zero-weighted term. Whilst in these tests the weighting was set to 0, in
practice they could be set to a negligible value when compared to the other objectives to achieve
the same result; thus, these solutions are still relevant to this problem. The selection of the 0-
5-5 weighted objective solution achieves a minimum in the second and third objectives, which
somewhat align; though, the 90-minute constraint on u prevents excessive collection round dura-
tions. Furthermore, the other dominating solutions from objective weightings 4-0-2 and 10-0-1 will
have occurred due to the second and third objectives aligning sufficiently in this use case. In use
cases with a greater sensitivity to the second objective, the weighting w2 would be more important.

Generally, increasing w2 and w3 relative to w1 results in a higher u result, and a lower
∑

r,r 6=r0
xr

and
∑

r,r 6=r0
trxr, as expected. In turn this reduces costs and CO2, confirming McDonald’s expec-

tation (McDonald, 1972). In some cases the trade-off decision makers must make is marginal; for
example, the dominating solution resulting from the 4-0-2 weighting makes only a 3.9% (3.33 mins)
reduction in u compared to the cheapest solution weighting (0-5-5), whilst costing 5.6% (£27.35)
more. Equally, u in the 4-0-2 solution is 10.4% (7.79 mins) longer than the solution with the fastest
u value (10-1-1); however, this trade-off enables a reduction of 1 round and an 12.7% (64.87 mins)
reduction in total driving time.

Table 6: Solutions from the weight testing results for the Southampton data set. The coefficients, w1, w2, and w3,
are the ratios used to weight objectives in each test. Only dominating solution configurations are shown.

w1 w2 w3 u (mins)
∑

r,r 6=r0
xr (qty)

∑
r,r 6=r0

trxr (mins) Run Cost (£) Run CO2 (kg)

0 5 5 86.36 6 420.47 486.57 92.19
4 0 2 83.03 6 445.12 513.92 101.02
10 0 1 75.24 7 509.99 550.92 128.33
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(a) Solutions with respect to objective function terms (all solu-
tions). Line indicates Pareto front found in testing.

(b) Solutions with respect to objective function terms (dominating
solutions only).

(c) Maximum time to delivery (u) vs. Total Solution Costs (all
solutions).

(d) Maximum time to delivery (u) vs. Total Solution Costs (dom-
inating solutions only).

(e) Total collection round time (
∑

r,r 6=r0
trxr) vs. Total Solution

Costs (all solutions).

(f) Total collection round time (
∑

r,r 6=r0
trxr) vs. Total Solution

Costs (dominating solutions only).

Figure 10: Southampton Objective Function Weight Tests. Marker shapes indicate the number of rounds used in
the solution (

∑
r,r 6=r0

xr). Left = all solutions from tests, right = dominating solutions only.
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5.3.2. Isle of Wight

To test the robustness of the algorithm and demonstrate its effectiveness in a variety of test
environments, the investigation of the objective function weighting was repeated for the IOW data
set. The dominating solutions are shown in Table 7. Table A.11 (Appendix Appendix A) displays
the full results for the even weight values.

The IOW data produced a wider range of vehicle options, likely due to the low density and
distribution of the surgeries covered by the delivery service. The algorithm determined a mini-
mum number of rounds (3) under the timing constraints, whilst the lower limit of u is only reached
when there are more rounds (9). This is due to the surgery distribution causing large quantities
of stem mileage. As with the Southampton dataset, there are many cases of marginal trade-offs
to be decided on by the decision-maker. No dominating solution with 6 or 8 rounds exists, as the
surgery which limits u in these solutions can be served by solutions with 5 or 7 rounds, respectively.

As with the Southampton tests, there are some dominating solutions which were achieved when
a zero-weighting was used on one of the objective terms. As previously alluded to, if the relative
objective weights are similar, some solutions may be achieved with multiple weight combinations.
This was the case with the IOW study, with many weight ratios producing the same route selection
(only one example for each key solution is shown). The selection of the 0-6-5 weighted objective
solution achieves a minimum in the largely aligning second and third objectives, whilst the solutions
from the 1-2-6 and 3-3-1 weightings allow a greater balance to be struck between the objectives.
The importance of the second objective is seen in the dominating solution from the 4-0-1 weighting,
where the sensitivity to the number of vans used is demonstrated and a somewhat excessive total
of 9 vans are used.

Table 7: Dominating solutions from the weight testing results for the IOW data set. Many weight ratios produced
the same route selection; only one example for each key solution is shown.

w1 w2 w3 u (mins)
∑

r,r 6=r0
xr (qty)

∑
r,r 6=r0

trxr (mins) Run Cost (£) Run CO2 (kg)

0 6 5 74.08648 3 213.12 125.39 46.34
1 2 6 61.65555 4 215.41 129.87 48.19
3 3 1 61.18522 4 223.47 136.48 52.28
4 0 1 43.98037 9 354.79 194.21 87.16
7 0 3 54.04353 5 238.3 144.27 54.78
10 1 1 50.42818 6 290.98 167.05 70.09
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(a) Objective Function (all solutions). Line indicates Pareto front
found in testing.

(b) Objective function (dominating solutions only).

(c) Maximum time to delivery (u) vs. Total Solution Costs (all
solutions).

(d) Maximum time to delivery (u) vs. Total Solution Costs (dom-
inating solutions only).

(e) Total collection round time (
∑

r,r 6=r0
trxr) vs. Total Solution

Costs (all solutions).

(f) Total collection round time (
∑

r,r 6=r0
trxr) vs. Total Solution

Costs (dominating solutions only).

Figure 11: IOW Objective Function Weight Tests. Marker shapes indicate the number of rounds used in the solution
(
∑

r,r 6=r0
xr). Left = all solutions from tests, right = dominating solutions only.
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5.4. Construction Heuristic Parameterisation

Varying the number of routes produced in the initial generation stage of the algorithm enabled
testing of the performance of the heuristic methods and identify the settings which provided the
most effective balance of computational time and solution quality. The variation in the number
of routes was achieved through (i) changing the initial maximum stop limit, or (ii) changing the
number of stop options tested at each stop using the next stop shortlist selection and other stops
in range parameters. Each set of parameters was run 10 times, and an average of the results was
taken (Table 8, Figure 12). The Southampton dataset and objective function weights of w1 = 4,
w2 = 0, w3 = 2 were used, based on the sensitivity tests conducted, to give a reasonable balance
between the objectives. The redistribution heuristics were applied to the longest and shortest
routes (relative to the average route) in the existing solution.

Results indicated a positive correlation between the number of initial vehicle routes and the run
time of the VRP algorithm (Figure 12a). As the next stop parameter values are increased, more
van routes will be made using similar surgery combinations which serve almost the same cycle
catchment area, resulting in a longer run time in the optimisation environment. As the maximum
stop value increases, the routes are able to visit a wider range of surgeries beyond the current
surgery catchment, therefore with fewer options for the same surgeries but more routes overall.
Thus, increasing the initial number of routes using the maximum stop value generally results in a
faster run-time per route than using the next stop parameters.

Final solutions contained a higher percentage of routes originating from the SRRH, suggesting
that the SRRH was more effective than the LRRH in all cases (Figure 12b. The number of routes
generated by the LRRH was also lower than the SRRH. In an isolated series of 5 test runs (initial
next stop = 5, next stop parameters = 2, 2) an average of 4 routes and 13 routes were generated
by the LRRH for the longest and second-longest routes, respectively, in the first iteration. In
comparison, 77 routes and 59 routes were generated by the SRRH for the shortest and second
shortest routes, respectively. New routes beyond the time length of the current maximum were
not permitted, hence many LRRH routes were discarded, accounting for the disparity. Solutions
from tests with fewer initial routes contained a higher percentage of routes that originated from
the heuristic methods, whilst more initially generated routes led to lower usage of heuristic routes.

When varying the initial maximum number of stops, the best value for the first objective term,
u, was achieved when the maximum was set to 2 stops or 3 stops (75.24 mins) (Figure 12c). The
best values for the second and third objective terms,

∑
r,r 6=r0

xr and
∑

r,r 6=r0
trxr, were achieved

when the maximum was set to a maximum of 6 stops (6 rounds/438.02 mins) (Figures 12e, 12g).
Meanwhile, the best objective function value was achieved when the maximum stop parameter
was set to 3, though a general trend of a lower objective function result as the maximum stop pa-
rameter increased was observed. These results were likely due to shorter routes favouring quicker
delivery, meanwhile longer routes favour the use of fewer vehicles and a reduced stem driving total
(to and from the hospital site).

In the case of varying the next stop parameters, the best value for the first objective term, u,
was achieved when the next stop parameters were set to 1 (75.24 mins) (Figure 12d). The best
values for the second and third objective terms,

∑
r,r 6=r0

xr and
∑

r,r 6=r0
trxr, were seen when next

stop parameters were set to 2 (6 rounds, 437.6 minutes) (Figures 12f, 12h). Meanwhile, the best
objective function value was achieved when the next stop parameters were set to 4. These findings
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were to be expected, as testing a greater number of stop combinations will likely produce more
favourable solutions.

The findings presented in Figures 12c-12h suggest that the heuristic parameters can be ad-
justed to improve computational time and results, though beyond a certain value there is little
benefit seen. In the maximum stop parameter, values up to 5 stops generally clustered around
with runtimes of approximately 30 seconds, and the difference seen in the objectives (relative to
the best solutions) was less than 6%. At values higher than this, runtimes more than doubled
on average. A similar trend was seen in the next stop parameter tests, though with a marked
improvement in the second/third objective results and a decrement in results in the first objec-
tive results between 1 and 2, and a significant increase in runtime above 2 with little benefit in
solution quality. Based on these results, it could be suggested that the best outcomes are likely
to be achieved with a maximum stop parameter of 5, and next stop parameters of 1 or 2. This is
reflected in the subsequent algorithm performance tests (Section 5.5).

Table 8: Mean results of the heuristic performance tests. Each run was completed 10 times. The nearest stop
shortlist length was a maximum of 10 surgeries across all tests.

Initial
Max
Stops

Shortlist
Stops
Tested

Other
Stops
in
Range
Tested

Mean
Run
Time
(mm:ss)

Mean
Initial
No. Of
Veh
Routes

Mean

u

(mins)

Mean∑
r,r 6=r0

xr

(qty)

Mean∑
r,r 6=r0

trxr

(mins)

Mean
Orig-
inal
Gener-
ation

Mean
Redist.
Longer
Heur.

Mean
Redist.
Shorter
Heur.

2 2 1 00:36 87 75.24 8 542.37 12.5% 0.0% 87.5%
3 2 1 00:24 348 77.75 7.1 501.86 18.5% 10.2% 71.3%
4 2 1 00:29 1123 80.28 6.9 491.53 30.4% 5.7% 63.9%
5 2 1 00:36 3252 78.41 6.9 491.09 61.0% 1.4% 37.6%
6 2 1 01:20 8896 81.21 6.6 480.28 95.7% 0.0% 4.3%
7 2 1 03:30 23611 78.99 6.5 478.49 83.3% 0.0% 16.7%
5 1 1 00:24 1221 77.33 7.5 530.97 41.3% 5.0% 53.8%
5 2 2 00:57 6692 79.71 6.7 479.61 64.8% 0.0% 35.2%
5 3 3 02:26 19923 79.39 6.7 477.22 76.2% 0.0% 23.8%
5 4 4 06:30 44334 78.39 7 483.62 97.1% 0.0% 2.9%
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(a) VRP Run-time vs. Initial Number of Routes (b) Route Origins vs. Initial Number of Routes

(c) Max. Stop VRP Run-time vs. u (d) Next Stop VRP Run-time vs. u

(e) Max. Stop VRP Run-time vs.
∑

r,r 6=r0
xr (f) Next Stop VRP Run-time vs.

∑
r,r 6=r0

xr

(g) Max. Stop VRP Run-time vs.
∑

r,r 6=r0
trxr (h) Next Stop VRP Run-time vs.

∑
r,r 6=r0

trxr

Figure 12: Heuristic Performance test results. Symbols indicate the parameter that was varied, e.g., maximum
number of stops or next stop options tested in the initial route generation.
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5.5. Algorithm Performance

To validate the performance of the algorithm, a series of small test cases were used, allowing
full enumeration of all van and cycle routes to ensure the optimal solution was found when using
the model presented in Section 4.3. The tests selected 10, 15, or 20 surgeries at random from the
Southampton dataset, generating routes for those surgeries only. The 10 surgery and 15 surgery
tests were completed 10 times each, and the 20 surgery test was completed 5 times. The algorithm
was set to have an initial maximum stop parameter of 4 nodes, nearby next stop shortlist of 5,
nearby next stop selection parameter of 2, and other next stop selection parameter of 1.

In all tests the algorithm performed well, reducing the computational time by up to 99% whilst
achieving an average 5% difference from the optimal solution (Table 9). As would be expected, the
algorithm generally achieved closer to optimal solutions on smaller test cases, though made larger
time savings on larger test cases. The reason for this behaviour is that in small cases the original
set of routes generated would have been a greater proportion of the fully enumerated set of routes,
resulting in a better initial objective function from which to converge and a lower dependency on
random selections.

Some tests saw larger deviations from optimality, primarily due to differences in the compo-
nents of the objective function results (Figure 13). The presented algorithm resulted in a slight
bias towards the maximum collection round duration when compared to the optimal solution.
Whilst this resulted in improvements in this component of up to 8%, the trade-off in terms of the
number of vehicles and driving time resulted in an overall deviation from optimality. To this end,
it is likely that the length of the routes initially generated by the algorithm favour this objective
and create this skew.

The algorithm was seen to produce consistently good results, with some solutions deviating by
less than 1% from optimal (Figure 14). The distribution of results relative to the objective func-
tion did vary, suggesting there is scope to improve the consistency of the algorithm in terms of the
objective function in the chosen solutions, possibly through further exploration of the weightings
and parameterisation. Meanwhile, runtimes became more consistent as the test sizes increased,
suggesting that larger use cases will offer reliable savings to planners who may wish to create plans
at short notice, similar to how do C. Martins et al. (2021) highlighted the importance of speed in
agile vehicle route planning in a related problem.

With a short-notice planning approach, a rapid response time is important. Hence, on inves-
tigation of the absolute values produced in the tests (Figure 15), it was seen that enumeration
followed an exponential distribution as the case size increases, whilst the algorithm performed in a
comparatively more linear relationship. This relationship is key for solving the SSCP, with larger
applications (e.g. Southampton case study area) of this problem potentially requiring impractical
lengths of time to solve to optimality. It should also be noted that the algorithm reduces the
memory requirements for solving when compared to enumeration, meaning that larger case sizes
can be processed more universally.
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Table 9: Mean results of the algorithm performance tests. 10 surgery and 15 surgery tests were completed 10 times,
20 surgeries was completed 5 times. Absolute values show Algorithm / Optimal results, respectively. Percentages
show the difference from the optimal solution.

Test Max. Coll. Round Qty. Vans Van Duration Obj. Fn. VRP Runtime
10 Surgeries (Avg) 62.95 / 64.27 3 / 2.5 159.63 / 147.06 3.46 / 3.36 0.29 / 5.71
15 Surgeries (Avg.) 70.1 / 76.23 4 / 2.7 242.36 / 196.69 4.24 / 4.03 0.35 / 26.98
20 Surgeries (Avg.) 74.43 / 73.24 4.4 / 3.4 270.04 / 239.28 4.57 / 4.24 0.54 / 301.53
All Tests (Avg.) 68.35 / 70.94 3.71 / 2.78 216.93 / 187.43 4.02 / 3.82 0.37 / 82.16
10 Surgeries (Avg.) -2% 20% 8% 3% -69%
15 Surgeries (Avg.) -8% 50% 24% 5% -95%
20 Surgeries (Avg.) 2% 30% 13% 8% -99%
All Tests (Avg.) -3% 34% 15% 5% -86%

Figure 13: Mean results of each set of algorithm performance test relative to optimal results, comparing the three
objectives, overall objective function value, and runtime.

(a) Objective function comparison (b) Runtime comparison

Figure 14: Box plot of algorithm performance test results distribution, relative to full cycle and van enumeration
results. Pattern indicates test case size.
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Figure 15: Comparison of absolute computational times with forecast exponential trend lines.
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6. Comparison to Business-as-usual

The results of the computational experiments were analysed through a comparison with the
BAU case study to identify the effectiveness of the algorithm. In addition to the three terms of
the objective function (u,

∑
r,r 6=r0

xr, and
∑

r,r 6=r0
trxr), eight further Key Performance Indicators

(KPIs) have been used to quantify the success of the algorithm. These KPIs include the average

driving time of the selected van routes (
∑

r,r 6=r0
trxr∑

r,r 6=r0
xr

), the average time to delivery per surgery (i.e.,

Mean trxr ∀i ∈ S, where S ∈ Sr), the average number of stops per van route, the costs associated
with the vehicle (running costs + driver costs), and total operating costs. Where the BAU rounds
are more widely spread with intermediate deliveries, the duration from the previous stop at the
hospital to the next is used for the equivalent value for tr.

Whilst the solutions generally present improvements over the BAU in terms of the core objec-
tives, it should be highlighted that this is somewhat expected due to the newly imposed limits on
round duration and the introduction of cargo cycles which are absent in the BAU cases. Despite
not comparing exactly the same conditions, the results typically show a potential for improvement
in the core objectives, though are reflected by significant changes in costs, and make it harder
to compare directly. This highlights the possible trade-offs that could occur and the sensitivity
towards different BAU inputs. Nevertheless, the comparisons should be interpreted with the im-
posed changes in mind.

6.1. Southampton

In the Southampton case study (Figure 16a), the algorithm solutions out-performed the BAU
case in all areas except total cost, where no cycle costs were incurred due to the operation being
van-based only. The average stops per van were considerably reduced; where each vehicle was seen
to visit 2x the number of surgeries compared to the algorithm’s solutions (5 stops average vs. 10).

With respect to the objective function terms, all of the dominant solutions from the tests out-
performed the BAU case. The maximum time to delivery (u) was reduced by 70% in the worst
case, and 74% in the best case (285 mins vs. 86 mins vs. 75 mins). The number of rounds (vehi-
cles) used (

∑
r,r 6=r0

xr) was reduced by 30% in the worst case, and 40% in the best case (10 vehs.
vs. 7 vehs. vs. 6 vehs.). The total driving time (

∑
r,r 6=r0

trxr) was reduced by 58% in the worst
case, and 65% in the best case (1205 mins vs. 509 mins vs. 420 mins).

An average of 49 cycle courier tasks were introduced in each of the dominating solutions, con-
tributing £331 to the cost of the proposed solutions. It should be noted that whilst 49 courier
tasks were generated, this does not necessarily correspond to 49 couriers, as this depends on the
allocation by the 3PL provider.

The overall cost was increased by between 22% (best case) and 38% (worst case) when com-
pared to the BAU case (£399 vs. £487 vs. £551), with the additional cost of the cycle tasks being
partially offset by a 45% (worst case) to 58% (best case) reduction in driving and vehicle costs
(£399 vs. £220 vs. £169). The shift towards cleaner transportation was also seen to reduce CO2

output by up to 43% (162kg vs. 92kg).
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It should be remembered that the BAU rounds complete other services, such as internal mail
deliveries, and the comparisons in this study were made with respect to a modified version of these
rounds in which only specimen collection stops were considered; thus, the comparison is not exact.
Nevertheless, this study does highlight the inefficiency of the current route planning with respect
to specimens, especially when many of the ancillary services are not required on a daily basis, or
are being phased out. Thus, the algorithm outputs still represent the potential savings offered to
future rounds.

(a) Southampton - BAU scaled from 1.96 collections/day avg. (b) Isle of Wight - BAU scaled from 1.64 collections/day avg.

Figure 16: Radar plot KPI Comparison of key solutions from weight sensitivity testing (numbered plots) with BAU
activity (red plots). BAU is shown in red. Green plots dominate the BAU in the objective function terms, grey do
not. Values scaled with maximums shown at 100%. Smaller is ‘better’ with the exception of ‘Avg Stops Per Van’.
BAU activity scaled from multi-collection rounds to compare like-for-like.

6.2. Isle of Wight

In the Isle of Wight case study, the algorithm’s results also suggested an improvement over the
BAU case (Figure 16b), though not to the same extent as the Southampton study. Improvements
were consistently observed across all dominant solutions with respect to u (max. time to delivery),∑

r,r 6=r0
trxr (total driving time), and average round time. Only one solution was seen to dominate

the BAU case in all three objective terms (1 in Figure 16b), whilst the other solutions dominated
in terms of u and

∑
r,r 6=r0

trxr, but not
∑

r,r 6=r0
xr as they exceeded three vehicles in their solutions.

In a dominant solution (1), a 41% improvement in u was observed (125 mins vs. 74 mins), and
41% in

∑
r,r 6=r0

trxr (360 mins vs. 213 mins), but no change in terms of
∑

r,r 6=r0
xr was seen.

Six cycle courier tasks were introduced in the dominating solution, contributing £40.50 to the
cost. As a result, the overall cost increased by 12% when compared to the BAU case (£112 vs.
£125), with the additional cost of the cycle tasks being mostly offset by a 24% reduction in driving
and vehicle costs (£112 vs. £85).

The IOW BAU case was not completing any ancillary services and was handling sample col-
lection and delivery only, making their routes more effective for this purpose. This may partly
explain the disparity in the algorithm’s effectiveness between the two case studies.
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7. Conclusions

This paper presents the Sustainable Specimen Collection Problem (SSCP) for the collection of
diagnostic specimens from GP surgeries to a hospital laboratory, and solves it using a weighted
objective function and a column generation based heuristic algorithm with some additional im-
provement heuristics.

The algorithm used was effective in producing solutions that improved on the BAU case with
respect to the maximum round duration, the number of rounds (vans), and the total driving time.
A weighted multi-objective function with a column generation approach was used to identify the
Pareto front, with results suggesting that the approach used was robust for a range of inputs, and
could be configured to a decision-maker’s needs. A set of solutions was produced, some of which
reached the lower bounds of the objective, minu; meanwhile, performance tests indicated that the
proposed algorithm was efficient and reduced computational time by up to 99% whilst achieving
an average of 5% deviation from optimality.

When using cycle courier consolidation, results suggest that sample delivery times could be
improved by between 41% and 74%, based on a comparison with two real-world case studies.
Such improvements could be achieved using either the same fleet of vehicles or a reduced fleet.
Depending on the locality and selected solution, a reduction in fleet size of up to 40% was possi-
ble. A simultaneous reduction in driving time between 41% and 65% was also observed through
this model. The proposed system benefits were dependent on the introduction of cycle couriers
who offered significant benefits in dense urban areas, with the Southampton case study solutions
requiring an average of 49 courier tasks to be completed, whilst IOW solutions required only 6 tasks.

With the requirement to pay for multiple new cycle courier tasks, proposed solutions caused
significant price increases of up to 38% in some cases. A proportion of these new rider costs were
offset by van and driver reductions, though in reality, these costs are likely to be slightly larger
due to the additional requirement to manage the system, as well as fees charged by gig-economy
logistics providers. Additional benefits are seen in the reduced CO2 tailpipe emissions of up to
43%; a key factor in urban areas where there is a need to reduce emissions from logistics activities
(European Commission, 2013). Consistent reductions in the number of simultaneously operating
vehicles will allow fleet sizes to be reduced, having knock on effects for congestion and operating
cost, beyond those explored in the BAU comparisons.

The modelled improvements can offer better utilisation of assets, cleaner transportation, and
the potential to improve quality of care in communities through faster and less damaging specimen
deliveries, whilst also enabling the possibility of later final collections from surgeries. However, it
should be noted that the possible damaging effects (e.g. vibration) of multi-modal transportation
on sensitive goods, such as diagnostic specimens, has not been widely explored and should be fully
understood before such a heterogeneous model is implemented (Nybo et al., 2019; Oakey et al.,
2021). Equally, security of goods and dangerous goods authorisation should be important consider-
ations in the use of multiple modes (Grote et al., 2021; Oakey et al., 2022), as is the case this model.

7.1. Potential for Application

The algorithm described in Section 4 and explored in Section 5 has further application beyond
the case studies described in Section 2. The algorithm could be applied to other localities in which
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diagnostic specimens need timely delivery. Some areas may have multiple laboratory sites which
can be delivered to, though the SSCP model could be adapted to encompass such a variation.
Largely the model would remain the same, with the exception of routes being generated to all
possible surgeries from each hospital. The constraints in place should subsequently eliminate poor
solutions.

The additional costs associated with the introduction of the cyclists may not be the most at-
tractive proposition for decision-makers, though the additional flexibility and speed of delivery
offered by this system may be sufficient to warrant the extra cost. Whilst beyond the scope of this
paper, future work could account for the cost of introducing the cyclists in the problem to limit
the cost increase.

Other situations in which timely delivery is required at a single regional point following col-
lection from a known set of points include delivery of blood donations to a blood manufacturing
centre, or ballot boxes during an election or referendum, though security could be a concern in
this model due to the additional parties involved.

Should the problem be reversed; i.e. delivering from a single point to multiple sites using a
localised consolidation model, it could be seen that the system could be implemented for short
term cold-chain logistics where parties are looking to reduce their social and environmental im-
pact. For example, COVID-19 vaccine distribution is carried out using insulated containers with
a limited lifespan to local surgeries and vaccination points. However, there is significant pressure
to distribute vaccines in a sustainable, affordable and timely manner, particularly in developing
countries with reduced access to reliable vehicles (University of Birmingham, 2020). Equally, ap-
plications such as hot meal distribution could also follow the reversed SSCP concept.

7.2. Limitations and Further Development

In the problem posed by the SSCP, scheduling was not explicitly considered due to suggestions
made by staff (Wessex Academic Health Science Network, 2020); however, should some level of
scheduling be addressed, there is scope to reduce the number of rounds required. For example, if
collections are between 9 am-12 pm and 3-6 pm, these periods could be divided into 2x 90-minute
slots each, meaning that vehicles could work one round and then another on completion, halving
the number of required vehicles. Naturally, more complex collection schedules could be produced
with further benefits, though there may be larger challenges in practically applying this in terms
of management of appointments and opening hours. As mentioned in the problem description, this
system could be developed to manage loads day-to-day, though this may be data and decision-
maker dependent.

The tests only considered a worst-case scenario in which all surgeries which could potentially
require collection were served. Further analysis of a full data set, in which routing and sample
data align, could simulate a ‘live’ scenario in which the routing selections are varied each day
depending on the sample production at each surgery. This would identify the efficiency of the
proposed system if dynamic (day-by-day) routing was possible. Additionally, in the case studies
explored in this paper, surgeries only send samples to one hospital site due to contractual reasons.
The proposed problem could be adapted to be capable of multi-hospital delivery, provided routes
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from all hospitals are made at the initial route generation phase.

An online version of the model could also take account of any routing delays, e.g., cycles de-
layed to consolidation points, enabling routes to be reconstructed whilst they progress, allowing
any waiting vans to continue. Furthermore, whilst more sophisticated optimisation approaches
could have been used, the approach tested in this paper appeared to be fairly effective. More
thorough exploration of the Pareto front using other methods would be a potential future area of
research. The results in this paper present a strong base from which to compare future results with.

The evident improvements offered by the algorithm’s outputs would suggest that it is effective
in its design, though the sensitivity towards each of the coefficients suggest that some areas will
perform differently to others. The greater difference seen in the Southampton case study would
suggest that the algorithm performs better in areas that feature greater surgery densities, enabling
a greater share of the load to be cyclist consolidated. In even denser areas, such as central Lon-
don, cycle routes may be capable of completing most or possibly all of the rounds faster than road
vehicles. Cycle route heuristics may be needed to account for the larger number of potential cycle
routes if enumeration is not feasible.

Whilst tests using the more rural IOW case study showed cycle consolidation can still offer
some benefits, should the density of surgeries drop below a point at which cycle consolidation is
not possible, it is unlikely this routing algorithm will offer many benefits over the BAU. The model
could be further tested and developed using real data from both more dense and more sparse en-
vironments to understand the limits of its functionality.

The tests use routing provided by a locally hosted GraphHopper Routing engine which con-
siders traffic as ‘free-flowing’. Such a state is evidently not a guaranteed representation of the
situations seen in the case studies, particularly in the urban areas which are more prone to con-
gestion (GraphHopper, 2020; TomTom, 2021). Based on the times at which samples are collected,
collections are likely to be mid-morning and mid-afternoon; thus, avoiding the peak time conges-
tion. In the Isle of Wight case study and more rural parts of the Southampton study, the free-flow
assumption is also less likely to be of issue. Cycling times are also less likely to be affected due to
the ability for cyclists to ride through congestion. The modelled results using the GraphHopper
routing engine will be slightly biased towards faster travel times, meaning magnitudes of improve-
ments may be slightly inflated; though the general findings will remain largely the same.

In the Southampton case study, ancillary services, such as internal mail deliveries/collections,
are disregarded in the design of the routes. Whilst it has been indicated that many of these services
are being phased out, there may be need for such services to be considered in the design of routes.
Given their lower importance with respect to delivery time, a weighting between load types may
be a consideration.

Further to the above limitations and improvements, the introduction of other modes and tech-
nologies could be introduced to enhance deliveries further. Drone deliveries of medical goods are
becoming increasingly prevalent, particularly in response to the COVID-19 pandemic (Loughran,
2020). They are seen to offer significant benefits in areas where land logistics are difficult or slow,
though may present high costs and consume significant quantities of energy if they serve each
surgery individually. The consolidation model may open the benefits offered by drones whilst im-
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proving practicalities. Range and charging/refuelling, as well as routing and weather would need
to be considered. Electric vehicles could also be considered in further developments of the prob-
lem. Whilst not a major change, tailpipe emissions will be eliminated, though range limitations
would need to be addressed. Electrically assisted bicycles and cargo cycles may also be an area of
interest, offering the potential for a wider reach and/or more stops in cycle routes, reducing the
need for as many vehicle served sites.

Maximising vehicle asset use may be a further consideration in future model developments.
Cargoes of similar sensitive nature heading in similar directions could be handled simultaneously
by the vehicle in a variant of the multi-vehicle VRP with Pickup and Delivery (VRPPD) (De-
saulniers et al., 2002). Given the many services acting simultaneously but independently in health
care, there may be scope to combine logistics movements. Combining non-urgent patient move-
ments with diagnostics specimens and un-processed blood donations could be an example of such
a collaboration.

Another area of potential interest may be in the investigation of adjusting opening hours and
appointment scheduling to affect the demands produced by surgeries. This may not be practical
to fully implement but may have potentially beneficial effects.
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Appendix A. Objective Function Coefficient Tests Results Tables

Table A.10: Weight testing results for the Southampton data set. The objective coefficient values are the ratios
used to weight objectives in each test. Only even value weights are shown below.

w1 w2 w3 u (mins)
∑

r,r 6=r0
xr (qty)

∑
r,r 6=r0

trxr (mins) Run Cost (£) Run CO2 (kg) w1 w2 w3 u (mins)
∑

r,r 6=r0
xr (qty)

∑
r,r 6=r0

trxr (mins) Run Cost (£) Run CO2 (kg)

0 0 2 86.36 6 428.43 500.19 92.32 6 0 2 75.24 8 553.14 543.87 126.63
0 0 4 86.36 6 430.52 485.72 91.31 6 0 4 86.36 6 438.95 499.96 92.08
0 0 6 86.36 6 437.05 499.96 92.08 6 0 6 86.36 6 427.89 500.03 92.16
0 0 8 86.36 6 426.22 500.02 92.15 6 0 8 86.36 6 438.95 499.96 92.08
0 0 10 86.36 6 427.89 500.03 92.16 6 0 10 86.36 6 444.68 493.30 92.17
0 2 2 86.36 6 445.51 486.69 92.32 6 2 2 83.03 6 465.20 514.78 104.72
0 2 4 86.36 6 427.89 500.03 92.16 6 2 4 86.36 6 427.89 500.03 92.16
0 2 6 86.36 6 439.50 500.11 92.24 6 2 6 86.36 6 427.89 500.03 92.16
0 2 8 86.36 6 427.89 500.03 92.16 6 2 8 86.36 6 430.52 485.72 91.31
0 2 10 86.36 6 438.95 499.96 92.08 6 2 10 86.36 6 427.89 500.03 92.16
0 4 2 86.36 6 438.95 499.96 92.08 6 4 2 83.03 6 464.65 514.63 104.56
0 4 4 86.36 6 430.52 485.72 91.31 6 4 4 86.36 6 427.89 500.03 92.16
0 4 6 86.36 6 449.19 485.96 91.56 6 4 6 86.36 6 427.89 500.03 92.16
0 4 8 86.36 6 437.29 499.95 92.07 6 4 8 86.36 6 437.59 500.11 92.24
0 4 10 86.36 6 439.15 479.10 91.45 6 4 10 86.36 6 428.43 500.19 92.32
0 6 2 86.36 6 428.43 500.19 92.32 6 6 2 83.03 6 464.65 514.63 104.56
0 6 4 86.36 6 432.51 500.79 92.95 6 6 4 86.36 6 428.43 500.19 92.32
0 6 6 86.36 6 457.10 472.93 92.05 6 6 6 86.36 6 427.89 500.03 92.16
0 6 8 86.36 6 438.95 499.96 92.08 6 6 8 86.36 6 427.89 500.03 92.16
0 6 10 86.36 6 434.41 479.95 92.33 6 6 10 86.36 6 438.95 499.96 92.08
0 8 2 86.36 6 428.41 485.93 91.53 6 8 2 83.03 6 464.65 514.63 104.56
0 8 4 86.36 6 426.52 500.19 92.32 6 8 4 86.36 6 428.43 500.19 92.32
0 8 6 86.36 6 443.71 479.16 91.51 6 8 6 86.36 6 446.39 479.98 92.36
0 8 8 86.36 6 437.05 499.96 92.08 6 8 8 86.36 6 437.85 500.10 92.23
0 10 10 86.36 6 427.89 500.03 92.16 6 10 10 86.36 6 437.29 499.95 92.07
0 10 2 86.36 6 430.52 485.72 91.31 6 10 2 83.03 6 465.20 514.78 104.72
0 10 4 86.36 6 438.68 485.88 91.48 6 10 4 86.36 6 438.95 499.96 92.08
0 10 6 86.36 6 443.71 479.16 91.51 6 10 6 86.36 6 427.89 500.03 92.16
0 10 8 86.36 6 427.89 500.03 92.16 6 10 8 86.36 6 438.95 499.96 92.08
0 10 10 86.36 6 427.89 500.03 92.16 6 10 10 86.36 6 437.29 499.95 92.07
2 0 2 86.36 6 427.89 500.03 92.16 8 0 2 75.24 8 545.02 559.13 128.47
2 0 4 86.36 6 422.94 479.82 92.20 8 0 4 83.03 6 460.30 514.97 102.11
2 0 6 86.36 6 438.95 499.96 92.08 8 0 6 86.36 6 439.50 500.11 92.24
2 0 8 86.36 6 427.89 500.03 92.16 8 0 8 86.36 6 455.75 493.22 92.09
2 0 10 86.36 6 439.48 485.86 91.46 8 0 10 86.36 6 428.43 500.19 92.32
2 2 2 86.36 6 438.95 499.96 92.08 8 2 2 83.03 6 465.20 514.78 104.72
2 2 4 86.36 6 428.43 500.19 92.32 8 2 4 86.36 6 427.89 500.03 92.16
2 2 6 86.36 6 439.48 485.86 91.46 8 2 6 86.36 6 443.95 485.88 91.48
2 2 8 86.36 6 427.89 500.03 92.16 8 2 8 86.36 6 427.89 500.03 92.16
2 2 10 86.36 6 427.89 500.03 92.16 8 2 10 86.36 6 437.29 499.95 92.07
2 4 2 86.36 6 433.92 501.33 93.51 8 4 2 83.03 6 470.69 515.93 105.91
2 4 4 86.36 6 438.12 486.03 91.63 8 4 4 86.36 6 426.22 500.02 92.15
2 4 6 86.36 6 455.75 493.22 92.09 8 4 6 86.36 6 427.89 500.03 92.16
2 4 8 86.36 6 440.71 486.09 91.70 8 4 8 86.36 6 438.95 499.96 92.08
2 4 10 86.36 6 427.89 500.03 92.16 8 4 10 86.36 6 437.29 499.95 92.07
2 6 2 86.36 6 438.12 486.03 91.63 8 6 2 83.03 6 464.65 514.63 104.56
2 6 4 86.36 6 459.22 485.81 91.40 8 6 4 86.36 6 438.95 499.96 92.08
2 6 6 86.36 6 427.71 478.98 91.32 8 6 6 86.36 6 433.92 501.33 93.51
2 6 8 86.36 6 438.95 499.96 92.08 8 6 8 86.36 6 428.84 472.86 91.98
2 6 10 86.36 6 439.50 500.11 92.24 8 6 10 86.36 6 428.43 500.19 92.32
2 8 2 86.36 6 427.89 500.03 92.16 8 8 2 83.03 6 464.65 514.63 104.56
2 8 4 86.36 6 439.48 485.86 91.46 8 8 4 86.36 6 445.51 486.69 92.32
2 8 6 86.36 6 427.89 500.03 92.16 8 8 6 86.36 6 430.52 485.72 91.31
2 8 8 86.36 6 428.43 500.19 92.32 8 8 8 86.36 6 427.89 500.03 92.16
2 10 10 86.36 6 427.89 500.03 92.16 8 10 10 86.36 6 427.89 500.03 92.16
2 10 2 86.36 6 427.89 500.03 92.16 8 10 2 83.03 6 464.65 514.63 104.56
2 10 4 86.36 6 426.22 500.02 92.15 8 10 4 86.36 6 438.95 499.96 92.08
2 10 6 86.36 6 428.43 500.19 92.32 8 10 6 86.36 6 427.89 500.03 92.16
2 10 8 86.36 6 427.89 500.03 92.16 8 10 8 86.36 6 427.89 500.03 92.16
2 10 10 86.36 6 427.89 500.03 92.16 8 10 10 86.36 6 427.89 500.03 92.16
4 0 2 83.03 6 445.12 513.92 101.02 10 0 2 75.24 8 539.53 557.99 127.28
4 0 4 86.36 6 438.95 499.96 92.08 10 0 4 83.03 6 448.30 500.57 101.17
4 0 6 86.36 6 433.92 501.33 93.51 10 0 6 86.36 6 445.79 485.65 91.24
4 0 8 86.36 6 430.74 479.02 91.36 10 0 8 86.36 6 438.12 486.03 91.63
4 0 10 86.36 6 438.78 478.91 91.25 10 0 10 86.36 6 443.03 485.92 91.51
4 2 2 86.36 6 438.95 499.96 92.08 10 2 2 83.03 6 470.69 515.93 105.91
4 2 4 86.36 6 433.92 501.33 93.51 10 2 4 83.03 6 464.65 514.63 104.56
4 2 6 86.36 6 427.89 500.03 92.16 10 2 6 86.36 6 426.52 500.19 92.32
4 2 8 86.36 6 459.22 485.81 91.40 10 2 8 86.36 6 439.50 500.11 92.24
4 2 10 86.36 6 420.69 479.86 92.24 10 2 10 86.36 6 427.89 500.03 92.16
4 4 2 86.36 6 427.89 500.03 92.16 10 4 2 83.03 6 465.20 514.78 104.72
4 4 4 86.36 6 444.68 493.30 92.17 10 4 4 83.03 6 464.65 514.63 104.56
4 4 6 86.36 6 434.40 493.45 92.33 10 4 6 86.36 6 428.43 500.19 92.32
4 4 8 86.36 6 430.74 479.02 91.36 10 4 8 86.36 6 444.68 493.30 92.17
4 4 10 86.36 6 427.89 500.03 92.16 10 4 10 86.36 6 428.43 500.19 92.32
4 6 2 86.36 6 438.95 499.96 92.08 10 6 2 83.03 6 464.65 514.63 104.56
4 6 4 86.36 6 427.89 500.03 92.16 10 6 4 83.03 6 470.69 515.93 105.91
4 6 6 86.36 6 427.89 500.03 92.16 10 6 6 86.36 6 438.95 499.96 92.08
4 6 8 86.36 6 443.95 485.88 91.48 10 6 8 86.36 6 427.71 478.98 91.32
4 6 10 86.36 6 427.89 500.03 92.16 10 6 10 86.36 6 433.92 501.33 93.51
4 8 2 86.36 6 437.29 499.95 92.07 10 8 2 83.03 6 465.20 514.78 104.72
4 8 4 86.36 6 439.50 500.11 92.24 10 8 4 83.03 6 464.65 514.63 104.56
4 8 6 86.36 6 427.89 500.03 92.16 10 8 6 86.36 6 427.89 500.03 92.16
4 8 8 86.36 6 427.89 500.03 92.16 10 8 8 86.36 6 437.85 500.10 92.23
4 10 10 86.36 6 441.83 473.00 92.13 10 10 10 86.36 6 428.43 500.19 92.32
4 10 2 86.36 6 438.95 499.96 92.08 10 10 2 83.03 6 464.65 514.63 104.56
4 10 4 86.36 6 428.43 500.19 92.32 10 10 4 83.03 6 464.65 514.63 104.56
4 10 6 86.36 6 433.92 501.33 93.51 10 10 6 86.36 6 433.92 501.33 93.51
4 10 8 86.36 6 428.43 500.19 92.32 10 10 8 86.36 6 438.95 499.96 92.08
4 10 10 86.36 6 441.83 473.00 92.13 10 10 10 86.36 6 428.43 500.19 92.32
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Table A.11: Weight testing results for the IOW data set. The objective coefficients are the ratios used to weight
objectives in each test. Only even value weights are shown below.

w1 w2 w3 u (mins)
∑

r,r 6=r0
xr (qty)

∑
r,r 6=r0

trxr (mins) Run Cost (£) Run CO2 (kg) w1 w2 w3 u (mins)
∑

r,r 6=r0
xr (qty)

∑
r,r 6=r0

trxr (mins) Run Cost (£) Run CO2 (kg)

0 0 2 74.09 4 223.47 130.66 49.02 6 0 2 50.43 6 290.98 167.05 70.09
0 0 4 74.09 4 223.47 130.66 49.02 6 0 4 61.66 4 215.41 129.87 48.19
0 0 6 74.09 4 223.47 130.66 49.02 6 0 6 61.66 4 215.41 129.87 48.19
0 0 8 74.09 4 223.47 130.66 49.02 6 0 8 61.66 4 217.37 131.12 49.50
0 0 10 74.09 4 223.47 130.66 49.02 6 0 10 61.66 4 215.41 129.87 48.19
0 2 2 74.09 4 223.47 130.66 49.02 6 2 2 61.19 4 227.44 136.69 52.49
0 2 4 74.09 4 223.47 130.66 49.02 6 2 4 61.66 4 215.41 129.87 48.19
0 2 6 74.09 4 223.47 130.66 49.02 6 2 6 61.66 4 215.41 129.87 48.19
0 2 8 74.09 4 223.47 130.66 49.02 6 2 8 61.66 4 215.41 129.87 48.19
0 2 10 74.09 4 223.47 130.66 49.02 6 2 10 61.66 4 217.37 131.12 49.50
0 4 2 74.09 4 223.47 130.66 49.02 6 4 2 61.19 4 223.74 136.00 51.77
0 4 4 74.09 4 223.47 130.66 49.02 6 4 4 61.66 4 215.41 129.87 48.19
0 4 6 74.09 4 223.47 130.66 49.02 6 4 6 61.66 4 217.37 131.12 49.50
0 4 8 74.09 4 223.47 130.66 49.02 6 4 8 61.66 4 215.41 129.87 48.19
0 4 10 74.09 4 223.47 130.66 49.02 6 4 10 61.66 4 217.37 131.12 49.50
0 6 2 74.09 4 223.47 130.66 49.02 6 6 2 61.19 4 227.44 136.69 52.49
0 6 4 74.09 4 223.47 130.66 49.02 6 6 4 61.66 4 215.41 129.87 48.19
0 6 6 74.09 4 223.47 130.66 49.02 6 6 6 61.66 4 217.37 131.12 49.50
0 6 8 74.09 4 223.47 130.66 49.02 6 6 8 61.66 4 215.41 129.87 48.19
0 6 10 74.09 4 223.47 130.66 49.02 6 6 10 61.66 4 217.37 131.12 49.50
0 8 2 74.09 4 223.47 130.66 49.02 6 8 2 61.19 4 227.70 136.20 51.99
0 8 4 74.09 4 223.47 130.66 49.02 6 8 4 61.66 4 215.41 129.87 48.19
0 8 6 74.09 3 213.45 126.15 47.13 6 8 6 61.66 4 215.41 129.87 48.19
0 8 8 74.09 4 223.47 130.66 49.02 6 8 8 61.66 4 215.41 129.87 48.19
0 10 10 74.09 4 223.47 130.66 49.02 6 10 10 61.66 4 217.37 131.12 49.50
0 10 2 74.09 4 223.47 130.66 49.02 6 10 2 61.19 4 227.44 136.69 52.49
0 10 4 74.09 4 223.47 130.66 49.02 6 10 4 61.66 4 215.41 129.87 48.19
0 10 6 74.09 4 223.47 130.66 49.02 6 10 6 61.66 4 217.37 131.12 49.50
0 10 8 74.09 4 223.47 130.66 49.02 6 10 8 61.66 4 215.41 129.87 48.19
0 10 10 74.09 4 223.47 130.66 49.02 6 10 10 61.66 4 217.37 131.12 49.50
2 0 2 61.66 4 215.41 129.87 48.19 8 0 2 43.98 9 354.79 194.21 87.16
2 0 4 61.66 4 215.41 129.87 48.19 8 0 4 54.04 5 239.68 142.55 55.79
2 0 6 61.66 4 215.41 129.87 48.19 8 0 6 61.66 4 215.41 129.87 48.19
2 0 8 61.66 4 217.37 131.12 49.50 8 0 8 61.66 4 215.41 129.87 48.19
2 0 10 61.66 4 215.41 129.87 48.19 8 0 10 61.66 4 217.37 131.12 49.50
2 2 2 61.66 4 215.41 129.87 48.19 8 2 2 61.19 4 223.47 136.48 52.28
2 2 4 61.66 4 215.41 129.87 48.19 8 2 4 61.66 4 215.41 129.87 48.19
2 2 6 61.66 4 215.41 129.87 48.19 8 2 6 61.66 4 215.41 129.87 48.19
2 2 8 61.66 4 215.41 129.87 48.19 8 2 8 61.66 4 217.37 131.12 49.50
2 2 10 61.66 4 217.37 131.12 49.50 8 2 10 61.66 4 217.37 131.12 49.50
2 4 2 61.66 4 215.41 129.87 48.19 8 4 2 61.19 4 223.74 136.00 51.77
2 4 4 61.66 4 215.41 129.87 48.19 8 4 4 61.66 4 215.41 129.87 48.19
2 4 6 61.66 4 217.37 131.12 49.50 8 4 6 61.66 4 215.41 129.87 48.19
2 4 8 61.66 4 215.41 129.87 48.19 8 4 8 61.66 4 217.37 131.12 49.50
2 4 10 61.66 4 217.37 131.12 49.50 8 4 10 61.66 4 217.37 131.12 49.50
2 6 2 61.66 4 215.41 129.87 48.19 8 6 2 61.19 4 227.44 136.69 52.49
2 6 4 61.66 4 217.37 131.12 49.50 8 6 4 61.66 4 217.37 131.12 49.50
2 6 6 61.66 4 217.37 131.12 49.50 8 6 6 61.66 4 217.37 131.12 49.50
2 6 8 61.66 4 215.41 129.87 48.19 8 6 8 61.66 4 217.37 131.12 49.50
2 6 10 61.66 4 217.37 131.12 49.50 8 6 10 61.66 4 217.37 131.12 49.50
2 8 2 61.66 4 215.41 129.87 48.19 8 8 2 61.19 4 227.44 136.69 52.49
2 8 4 61.66 4 215.41 129.87 48.19 8 8 4 61.66 4 215.41 129.87 48.19
2 8 6 61.66 4 215.41 129.87 48.19 8 8 6 61.66 4 215.41 129.87 48.19
2 8 8 61.66 4 217.37 131.12 49.50 8 8 8 61.66 4 215.41 129.87 48.19
2 10 10 61.66 4 215.41 129.87 48.19 8 10 10 61.66 4 215.41 129.87 48.19
2 10 2 61.66 4 215.41 129.87 48.19 8 10 2 61.19 4 223.74 136.00 51.77
2 10 4 61.66 4 217.37 131.12 49.50 8 10 4 61.66 4 215.41 129.87 48.19
2 10 6 61.66 4 215.41 129.87 48.19 8 10 6 61.66 4 215.41 129.87 48.19
2 10 8 61.66 4 217.37 131.12 49.50 8 10 8 61.66 4 217.37 131.12 49.50
2 10 10 61.66 4 215.41 129.87 48.19 8 10 10 61.66 4 215.41 129.87 48.19
4 0 2 54.04 5 239.68 142.55 55.79 10 0 2 43.98 9 354.79 194.21 87.16
4 0 4 61.66 4 215.41 129.87 48.19 10 0 4 54.04 5 238.30 144.27 54.78
4 0 6 61.66 4 217.37 131.12 49.50 10 0 6 54.04 5 239.68 142.55 55.79
4 0 8 61.66 4 215.41 129.87 48.19 10 0 8 61.66 4 217.37 131.12 49.50
4 0 10 61.66 4 217.37 131.12 49.50 10 0 10 61.66 4 217.37 131.12 49.50
4 2 2 61.66 4 215.41 129.87 48.19 10 2 2 61.19 4 223.74 136.00 51.77
4 2 4 61.66 4 217.37 131.12 49.50 10 2 4 61.66 4 217.37 131.12 49.50
4 2 6 61.66 4 215.41 129.87 48.19 10 2 6 61.66 4 215.41 129.87 48.19
4 2 8 61.66 4 217.37 131.12 49.50 10 2 8 61.66 4 215.41 129.87 48.19
4 2 10 61.66 4 217.37 131.12 49.50 10 2 10 61.66 4 215.41 129.87 48.19
4 4 2 61.66 4 215.41 129.87 48.19 10 4 2 61.19 4 227.44 136.69 52.49
4 4 4 61.66 4 215.41 129.87 48.19 10 4 4 61.66 4 215.41 129.87 48.19
4 4 6 61.66 4 217.37 131.12 49.50 10 4 6 61.66 4 215.41 129.87 48.19
4 4 8 61.66 4 215.41 129.87 48.19 10 4 8 61.66 4 215.41 129.87 48.19
4 4 10 61.66 4 215.41 129.87 48.19 10 4 10 61.66 4 217.37 131.12 49.50
4 6 2 61.66 4 215.41 129.87 48.19 10 6 2 61.19 4 227.44 136.69 52.49
4 6 4 61.66 4 215.41 129.87 48.19 10 6 4 61.66 4 217.37 131.12 49.50
4 6 6 61.66 4 215.41 129.87 48.19 10 6 6 61.66 4 217.37 131.12 49.50
4 6 8 61.66 4 215.41 129.87 48.19 10 6 8 61.66 4 217.37 131.12 49.50
4 6 10 61.66 4 217.37 131.12 49.50 10 6 10 61.66 4 217.37 131.12 49.50
4 8 2 61.66 4 215.41 129.87 48.19 10 8 2 61.19 4 223.47 136.48 52.28
4 8 4 61.66 4 217.37 131.12 49.50 10 8 4 61.66 4 217.37 131.12 49.50
4 8 6 61.66 4 215.41 129.87 48.19 10 8 6 61.66 4 217.37 131.12 49.50
4 8 8 61.66 4 217.37 131.12 49.50 10 8 8 61.66 4 215.41 129.87 48.19
4 10 10 61.66 4 215.41 129.87 48.19 10 10 10 61.66 4 215.41 129.87 48.19
4 10 2 61.66 4 217.37 131.12 49.50 10 10 2 61.19 4 227.44 136.69 52.49
4 10 4 61.66 4 217.37 131.12 49.50 10 10 4 61.66 4 215.41 129.87 48.19
4 10 6 61.66 4 215.41 129.87 48.19 10 10 6 61.66 4 217.37 131.12 49.50
4 10 8 61.66 4 215.41 129.87 48.19 10 10 8 61.66 4 217.37 131.12 49.50
4 10 10 61.66 4 215.41 129.87 48.19 10 10 10 61.66 4 215.41 129.87 48.19
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