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stainable Specimen Collection Problem (SSCP), in which diagnostic specimens are
P surgeries (doctor’s office/clinics) and subsequently transported to a hospital la
lysis using more sustainable transport modes, is introduced in this paper. Using a
ve function, we solve a new multi-objective problem using cycle consolidation to lim
nd the numbers of vans used whilst improving overall service quality, reducing
ns. This particular heterogeneous vehicle routing problem is explored and appli
rld case studies in the UK, where 97 and 22 sites (respectively) are currently serv
n generation based heuristic algorithm with some additional improvement heuris

demonstrated a potential improvement in the system’s maximum delivery time bet
% compared to business-as-usual activity using solely road vehicles. Road vehicle (v
e reduced by up to 40%, and the total driving time across the fleet by between
perational costs were estimated to increase by up to 38%, though additional wor

nomy cycle couriers and improvement in specimen quality and service reliability m
de-off worthwhile. Tailpipe CO2 emissions were also reduced by up to 43%. The
m was effective, reducing computational time by up to 99% whilst achieving an a
iation from optimality.

rds: multimodal, diagnostic specimens, routing, pathology, specimen collection p
mode, multi-objective, SSCP

roduction

s paper aims to improve the logistics of a local healthcare diagnostic specimen
by combining driving and cycling. The objective is to carry samples from co
are facilities to an analysis laboratory at a nearby hospital; reducing the time

in transit, whilst minimising the use of fossil fuelled vehicles as much as possible.

study focuses on two case studies based in the south of the UK in which collec
rom (i) up to 97 general practitioner (GP) clinics/surgeries (often known as docto
r countries, hereafter referred to as surgeries) using a fleet of 10 vehicles; and
eries served by a fleet of 3 vehicles, each day. In the current business-as-usual (B

, only road vehicles (vans) are used, and no cycling logistics is currently considered. The
s are based at the hospital and visit the majority of surgeries on regular rounds, whilst other
es are served by collections on an ad-hoc basis outside of this arrangement. In principle, this

submitted to Elsevier May 4, 2023
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somewhat aligns with a vehicle routing problem (VRP) where the objective is
gest route, the total number of vehicles used, and the total driving time across
ing no capacity constraints are applied to the vehicles). All specimens must be
r analysis and are currently based on a timetabled appointment schedule such tha
‘bled’ from patients after the final collection.

aim of using cycle couriers is to consolidate the specimens from certain surgerie
mary collection vans do not have to visit so many collection points, reducing time
lpipe emissions. Specific surgeries are chosen to act as consolidation points with cy
the localised surgeries around those consolidation points. To enable cyclists to b
oc basis in this, this problem considers the use of gig-economy cyclists, who can

uited on-demand via various providers to maintain flexibility over payment and
res, particularly in city areas where collection densities are higher. Outside of p
urs, work for these riders is often sparse (Lord et al., 2020), meaning that they ar
n be put to use in other services such as medical deliveries. Hence, one research
d in this paper is to identify what additional work can be generated for gig-econom
of peak hours to enhance their potential income. This business model is used
i) reducing the time samples spend in transit and the environmental impact of d
increasing off-peak work opportunities for gig-economy cyclists who are often no
pied time (Lord et al., 2020), typically outside of specific peak times of day (Ber
mand Workers Australia, 2018).

number of vehicles used in this problem also dictates the performance of the sys
to delivery times, congestion and emissions. Additional vehicles enable greater r

ery times, as fewer sites need to be served, whilst fewer vehicles cut congestion and
h reductions in stem mileage. The problem presented in this paper captures this

e formalise a new multi-objective problem using a weighted objective function, an
lgorithm capable of efficiently producing solutions. The key contributions of this p

ntifying the extent to which the delivery times of diagnostic specimens can be red
ourier supported delivery network; (ii) understanding the potential increased wor
-economy under such a system; and (iii) identifying the approximate costs and emi
y network would produce. The analysis also exposes some of the wider logistics c
y specimen collection systems using real-world data from the UK.

oblem Description

gnostic specimens (commonly referred to as ‘pathology’ or ‘laboratory’ ‘samples’
are routinely taken by primary care clinicians across the world to aid in the dia
ailments, with roughly 1 in 3 (29%) visits requiring a diagnostic test (Ngo et a
eing taken, samples require transportation to a nearby laboratory, often at a ho
s so that patients can be correctly diagnosed and effectively treated (Cherrett an
In the UK, specimen transport is traditionally carried out by Light Goods Vehicle
mples being taken from local surgeries to hospital laboratories using set vehicle rou
dman, 2020; NHS and Nixon, 2015). The routing problem could be simplified to
ons from a set of known nodes (surgeries/clinics) which are then delivered to a si

al).
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the proposed problem, we identify a new approach to serving these sites using
whereby a combination of vans and cargo cycles are used to collect samples w

ime constraints (detailed below), in an arrangement similar to that of a two-eche
wing on-demand cyclists to consolidate loads from multiple sites, and LGVs to sub
either via these consolidation sites or directly, the problem presents a novel ap
rarching collection logistics challenge.
ples typically have a fairly short time frame in which they must be analysed,

the day they are taken, and have specific requirements for storage and transportat
dman, 2020). As a result, samples should be delivered to the hospital promptly
iagnosis and maximise the effective use of laboratory staff undertaking the analy
College of Nursing in Wales (2020) identified that community COVID-19 testing
tly slower than in-hospital testing, with less than a third of community test resu
around the same day, as opposed to 80% in hospital. Part of the problem stems fro
rtation, with many collection systems limiting final sample submission to mid-
30 PM (Exeter Laboratory, 2017; Godfrey, 2020)) due to long end-to-end round d
s are not typically permitted to be taken after this point, and any which are wi
y taxi or other ad-hoc means (NHS and Sedman, 2020; Wessex Academic Healt
k, 2020).

suggested by previous studies and after anecdotal discussions with hospital staff (M
llan, 2019), there may be delaying factors within the surgeries and hospital (e.g

e, staff scheduling, etc.), but these are beyond the control of the logistics carrie
in this research. The period of greatest importance is the time spent travelli

as controlled conditions cannot be guaranteed, unlike at the origin surgeries and
boratory (Anaya-Arenas et al., 2016); thus, minimising the maximum delivery ti
l across all surgeries served was defined as the first objective. Reducing the du
ual rounds, the time to deliver all samples, and the time samples spend in transit
ential for more flexible collection scheduling and later final collections, as well as
degradation rates and the number of patients requiring repeat diagnostic tests a

hould be noted that this research does not explore the scheduling side of this ap
e it is understood that collections can be managed as discrete events and current s
ints are not known in sufficient detail due to commercial sensitivity. It is envis
tem could be used multiple times in a day, running the optimisation, shortly b
g the collections, for only those surgeries with loads available to collect at that t
r of daily collections would remain a contractual issue, but those surgeries which
amples would likely experience more frequent and later collections. This matter
ecision-maker dependent and could be a further development from the discretised
ch.

re is an increasing need to reduce congestion and emissions in urban areas which c
air quality, slow transit times, and anthropogenic climate change, (European Com
ith policy makers often stating a parallel aim to move to alternative, more su
rt modes (European Commission, 2013). Health care providers are responsible fo
the total national carbon dioxide footprint in developed nations (Pichler et al., 2019). Of
% of this contribution can be attributed to medicines, medical equipment, and other supply
ources (NHS, 2020a). The National Health Service (NHS) in the UK has set a goal to be

3
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o by 2040, and improving the efficiency of logistics operations will be key to achi
2020a). To support this target, changes to logistics systems are being explore
hift and adopting different supply-chain management strategies (NHS, 2020a).
s is key to successful patient care and supply chain operations in healthcare sys
nges made to existing transport systems to reduce environmental impacts should
rall level of service (Landry and Philippe, 2004; Buntak et al., 2019).
three-aim objective was therefore to: (i) reduce the maximum time to serve all

uce the number of vehicles needed to undertake the collections, and (iii) reduce
uration across the fleet. This is subsequently combined into a weighted-sum single
le decision-makers (e.g., NHS procurement teams and laboratory management)
re the problem according to their specific needs and aims, without the need for a
ters to define and solve a lexicographic or other multi-objective optimisation (M
per, the formulated problem is referred to as the Sustainable Specimen Collection
).

ilst emissions are not directly addressed in the objectives of this problem, unlike ot
(Demir et al., 2014; Kramer et al., 2015), the proposed model introduces cycle c
duce both the driven mileage and time, and the number of vehicles required, us
olidate loads at selected surgeries prior to collections by road vehicles. The introd
-echelon style system inherently improves the sustainability of deliveries, whilst t

e of the time benefits offered by road vehicles over longer distances (Gruber and N
onway et al., 2017; Anderluh et al., 2017). Figure 1 demonstrates this concept wit
of the case studies used in the present study, with road transport (vans) travell
icycles, on longer-distance journeys beyond the immediate urban environment.
orter distances in the urban environment, bicycles can travel faster, avoiding the
and congestion (TravelTime, 2021).

method by which cycles are introduced in this healthcare-specific logistics problem
t where cycle routes take preference over vans wherever possible, with the goal of m

time. They are therefore not contributing to the objective function as in the tw
routing problem, but are instead helping to minimise van driving time. The pro
from other similar routing problems addressed in the literature due to constrain
of routes, and the potential for waiting to be incurred if cargo cycles do not p
nise with van collections at consolidation sites.

ined cycle routes (i.e. one cycle route delivering to another to move samples clo
tion in further legs) have not been considered in this system due to reasons of pr
g the system to two echelons reduces any risk with respect to handling, security,

ody (Nybo et al., 2019).

icle costs may vary depending on pricing structures, and the balance of fixed (e.g. i
able costs (e.g. fuel), among other factors; and are therefore not directly address

objectives to limit the effect of uncertainties (FTA, 2020; Grasas et al., 2014). To
ber of objectives and simplify the problem, only the delivery time, number of veh

time are directly considered. Where savings may be made with respect to sample delivery

nock-on cost savings may be seen through better human resource and equipment use in the
g laboratory. Equally, quality of care may be improved, though this is somewhat difficult

4
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inutes travel time by cycle and car from the centroid -
vels further in urban environment.

(b) 45 minutes travel time by cycle and car from th
road vehicle travels further once outside of the urban e

: Travel time isochrones (distance travelled in fixed time) from the same fixed point; Southampt
l (Case Study 1). Red = road vehicle, indigo = bicycle. Green box indicates geographic pos
b). (TravelTime, 2021) (Base Map ©OpenStreetMap contributors)

e in terms of cost.
5
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lated Works - Medical Sample Logistics & Routing

ngland, the handling of diagnostic specimen collections is managed by a netw
gy networks (NHS, 2017). Each of those networks operates collaboratively, tra
s from the community surgeries to their assigned ‘spoke’ hospital for analysis, or o
b’ hospital if the sample requires more specialist analysis. Surgeries are allocated
pital laboratory and, at present, areas do not overlap for contractual reasons (NH
urgery which is allocated to Southampton’s laboratory cannot also be served by ano

Southampton GP network has previously been investigated with respect to its po
erved deliveries (Cherrett and Moore, 2020), although the core routing problem r
logistics was not addressed. The problem explored in this paper, the SSCP, is no

ith past research exploring the challenge of collecting diagnostic specimens, but w
ectives such as minimising cost, the number of vehicles used, or the laboratory’s
nald, 1972; Grasas et al., 2014; Smith et al., 2015). Table 1 summarises and com
ves and approaches of the previous studies in this area. In this table, it is evi

s and solutions can vary significantly; these problems and their differences are
The present study is also featured in the table for comparison, and is notably d
f the dynamics of the problem.

problem was first discussed by McDonald (1972), who proposed several possible o
ng the level of service to the patient, the time specimens spent in transit, and t
eration. Cost was selected, though total vehicle travel time of the fleet was u
imation as it was more easily quantifiable. Constraints were also applied, most n
ximum transit time to limit calculation time and satisfy clinician’s requirements. M
also suggested a procedure that formalised the problem and suggested that time
ints should be applied to maintain sample quality and limit expenditure.

ther study models the “Blood Sample Collection Problem” (BSCP) as a Capacita
ained Open Vehicle Routing Problem (CTCOVRP), with constraints relating to
e maximum route duration after the initial collection (Grasas et al., 2014). Onl
was set, to minimise the number of vehicles used; a pseudo-objective for cost. T
from the SSCP in that road vehicle capacity is assumed to be ‘unlimited’ in the SS
s are only lightly loaded in existing rounds (NHS, 2020b; Quadir et al., 2019). T
ntifies additional objectives relating to reducing driving time, and the delivery tim
esults from the BSCP study were produced using a genetic-based algorithm with a
, and achieved improvements over the BAU with run-times of less than 30 second
014) found that the cost of existing operations could be reduced by 20-30% annua
r route time limit. Where a single objective has been used in the BSCP, decisio
vided with a solution which only addresses cost; however, it may be more benefici
flexibility of choice in this setting, given the difficulty in defining quality-of-care
he NHS Confederation et al., 2016).

ith et al. (2015) proposed the concept of specimen transport as a new problem,
same overall challenge as the SSCP and BSCP, with a variation in the objectiv
ed problem; aiming to minimise transport costs, balance workloads between laboratories,
workloads between vehicles, and minimise the number of vehicles used. In the SSCP, the
balance workloads between laboratories is not needed, as it is assumed that the current

6
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et al., and con-
straint ally, take
imprac s vary by
day, lo to change
routes linics are
beyond more, de-
mand f ct (Allan,
2019).

Sim specimen
deliver mples by
optimis ere ready
to colle cheduling
elemen und were
often o of time.

The as et al.
(2016) iven time
window e sample
can be onstraint,
sample d be min-
imised. pital staff
(Allan, eloped to
limit d nstraints
are app r working
time (A ough the
study h
of the
Jo
ur

na
l P

re
-p

ro
of

stic networks have been created such that the demands of feeder surgeries can b
ssociated laboratory. With respect to sample lifespan, Smith et al.’s proposed rout
tured collection/delivery time windows from each surgery to limit sample travel t
ar to the SSCP, where a schedule of collections is assumed and travel time is limite
2015) did not test the model with experimental or case study data, noting that
taheuristics would be required to reach good solutions.

lding on this concept, Elalouf et al. (2018) optimised their ‘Blood Sample Supp
s sample expiry and cost through minimising the number of samples that were
of a time window after the point of production, in addition to the cost of the o
multiple approaches (heuristic, tabu search, etc.), it was found that a heuristi

ffective in terms of the trade off between solution quality and computational time

urther study investigated the potential to balance workloads in the diagnostic labo
ise the total number of daily processed samples, and minimise laboratory idle and
e as a primary objective (Yücel et al., 2013a). In a hierarchical optimisation, a s
ve, to minimise transport costs, was also applied; initially as a single-vehicle opt

(Yücel et al., 2013a), and, subsequently, as a multi-vehicle optimisation proble
2013b). Compared to the SSCP, there are significantly more decision variables
s which, while providing solutions that address the broader problem more holistic
tical lengths of time to solve (c. 4 hrs). Where demands from individual surgerie
ads are not always predictable, hence more flexibility through shorter run times
may be required. As suggested by McDonald (1972), delays within hospitals and c
the scope of the logistics provider, and are ignored by the present study. Further

rom within the hospital can also be quite changeable and can be difficult to predi

ilar to this research, the Vehicle Routing and Scheduling Algorithm (VeRSA) for
ies proposed by Zabinsky et al. (2020) sought to reduce the delivery time of sa
ing the final delivery time across all routes after an initial point when samples w
ct. Zabinsky et al.’s study also addressed the matter of vehicle re-use through a s
t of the problem. Using an effective branch and bound approach, the solutions fo
ptimal, though in some larger instances, the approach took a considerable length

Biomedical Sample Transportation Problem (BSTP) proposed by Anaya-Aren
sought to minimise travel distance whilst serving the demands of clinics, within g
s, under the general assumption that at the origin surgery or destination lab, th
held in controlled conditions. This meant that whilst time was not an immediate c
s should not be waiting for more than a few hours, and their time in transit shoul

A similar assumption is also used in the SSCP, based on discussions with hos
2019), and reinforced by Wilson (1996) who suggested transport should be dev

amage to samples through prompt delivery and controlled intermediate storage. Co
lied to limit the maximum transportation time (180 mins) and maximum drive
naya-Arenas et al., 2016). In a series of experiments, solutions were found, th

ighlighted the computational demands of large numbers of instances limiting the success

system (within a 1-hour time limit).

7
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SSCP most closely aligns with the BSTP study by Anaya-Arenas et al. (2016),
tions around temporary sample holding, and the importance of transit time bei
to solving the problem. It should be noted that the SSCP simplifies the schedulin
problem where computational time is important to enable recalculation based o
xperienced at the time of use. Naji-Azimi et al. (2016) further developed part of
ya-Arenas et al. (2016) by testing alternative approaches and introducing a con

t overloading the laboratory with samples at any point.

light variation on the core medical specimen problem was explored by Kergos
with samples being taken at patients’ homes by nurses. The objective of the s

mise the routing of nurses who take the samples in terms of minimising cost a
hilst maximising the number of samples processed. Like many of the other stud
ints were applied, though, in this instance, they were only given to critical sample
irect comparison to the research in this paper, this does highlight the need for lim
mples spend in transit and out of controlled conditions.

er medical collection-delivery optimisation problems have focused on blood stock
rian disaster relief, where the core objective has been to maximise the quantities
reducing costs (Lodree et al., 2016), often involving constraints on transit time. Do
2008) discussed the movement of blood donations for processing and delivery to
odelled the problem of collections as one of multiple interdependent time wind

in constraint being donations requiring urgent processing throughout the day, wit
ve of minimising cost (Doerner and Hartl, 2008).

er medical-related studies have also sought to improve on the environmental effe
such as Ettazi et al. (2021), who considered fuel consumption in their routing pr
e care. The problem required synchronisation and precedence and used a meta
e instances. The main limitation of the approach was that feasible solutions we
when solving large instances. In a similar vein, Liu et al. (2013) investigated
care deliveries, optimising for the cost of the overall operation using a genetic
the problem, with a consideration of precedence when coordinating patients and m

er relevant problems, such as do C. Martins et al. (2021) discussed the speedy opt
echelon VRPs in a medical/aid context using a heuristic approach to solve large
rapid deployment was important, such as in humanitarian disaster relief. In a
instances, the problem was solved within a few seconds, whilst larger test cas

nutes. The study used only aerial drones as the mode, making the decision pr
ging, unlike the SSCP, where multiple modes are considered. Nonetheless, the nee
tation is still relevant to the SSCP if the use of discrete collections is to be adopt

ba et al. (2019) modelled the collection of pharmacological waste as a clustered V
us complexities, solving the problem using a Bat algorithm. A key feature of their
of a cost constraint to limit the maximum cost of a route and the clustering of site

maximum delivery time concept and cycle consolidation approach applied in the S

ed solution approach generated effective solutions, though the absence of multiple modes
this method less applicable to the present study.

8
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Comparison of previous investigations of the specimen collection problem (and similar). MOO
e optimisation. *= for maximum number of instances tested.

r(s) Problem Title Key Dynamics Objective(s) Formulation,
Approach

C
R

ald VRP Case Study -
Specimen Collection

Vans Only, Time
Constrained

Total Travel Time Single Objec-
tive, Heuristic

N

l.
Blood Sample Col-
lection Problem
(BSCP)

Vans Only, Capac-
itated, Time Con-
strained

No. of Vehs. Single Objec-
tive, Genetic
Algorithm

<

l.
Pathology Labora-
tory Service Delivery

Vans Only, Capac-
itated, Sample/Lab
Type Constrained

Cost, Lab Work-
load, Veh. Work-
load, No. of Vehs.

Hierarchical
MOO, Theo-
rised

T
O

l.
)

Vehicle Collection for
Processing Problem
(CfPP)

Vans Only, Single
Vehicle, Time Con-
strained, Lab Capac-
ity Limit

Lab Performance,
Transport Costs

Hierarchical
MOO, Heuristic

c.

l.
)

Multiple Vehicle Col-
lection for Processing
Problem (mCfPP)

Vans Only, Time
Constrained, Lab
Capacity Limit

Lab Performance,
Transport Costs

Hierarchical
MOO, Theo-
rised

T
O

-

l.

Biomedical Sam-
ple Transportation
Problem (BSTP)

Vans Only, Several
Time Constraints,
Uncapacitated

Travelled Distance Single Objec-
tive, Heuristic

1

l.
Home Healthcare
Problem (HHC),
variant of VRP
with simultaneous
pickup and delivery
and time windows
(VRPSDPTW)

Vans Only, Time
Constrained, Prece-
dence

Cost Single Objec-
tive, Genetic
Algorithm with
Tabu Search

72
th
lik

ky
l.

Vehicle Routing
and Scheduling
Algorithm (VeRSA)

Vans Only, Time
Constrained, Vehi-
cles Re-Used

Total Duration
from Goods Ready
to Delivery

Single Objec-
tive, Branch
and Bound

2

l.

Vehicle Routing
Problem with Desyn-
chronized Arrivals
(VRPDA)

Vans Only, Time
Constrained, Unca-
pacitated, Synchro-
nised Laboratory
Arrival Penalty

Travelled Distance,
Sum of Travel
Times, Number
Deliveries within
Any Time Period

Weighted
(Multi-Term)
Objective,
Heuristic

1

f
l.

Blood Sample Supply
Chain

Vans Only, Time
Constrained, Late
Laboratory Arrival
Penalty

Cost and Number
of Samples Deliv-
ered On-Time

Multi-
Objective,
Heuris-
tic/Tabu/Bisection
Search/Advanced
Heuristic

U
m

l.

t

Sustainable Specimen
Collection Problem

Vans and gig-
economy cycles,
Time Constrained,
Multi-Echelon

Longest Collection
Round Duration,
Number of Vehs.,
Total Travel Time

Weighted
(Multi-Term)
Objective, Col-
umn Generation
with Improve-
ment Heuristics

c.
9
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lated Works - Heterogeneous Logistics & Routing

this study, multi-modal, or heterogeneous logistics systems relate to the use of
(e.g., van and cycle), to transport goods from one point to another. Cycle logistic
een seen to offer significant environmental and cost benefits in urban delivery
i and Targa, 2020; ECF, 2012; Marujo et al., 2018). In late 2019, a Newcastle ba

ompany trialled a service with the NHS to deliver light goods, including diagno
(NHS, 2020b). A single cargo cycle covered 25 stops across an 8-mile route ove
period, reducing carbon output by 212kg and costs by £6,250 (an approximate
g and £25,000 per annum, respectively).

e benefits can also be seen when using cycle couriers in urban logistics. Conw
found that cargo cycles in New York were capable of achieving competitive trave
ases, though this did depend on the road layout, route, and cycle type. A further

and Narayanan (2019), based on trips in Germany indicated similar trends, w
avourable during working-day hours (up to 7 pm), and vehicles being favourable ov
es (>a few km) or over hilly terrain. Replacing large vehicles with two-wheeled
ycles on busy routes offered the best savings in terms of time and emissions (Conw
ruber and Narayanan, 2019).

en combining cargo cycles with traditional road vehicles, there are often fixed or t
ns used for trans-shipment activities (Marujo et al., 2018). Verlinde et al. (2014) an
2018) investigated the potential for mobile depots and de-consolidation style del

the urban environment which could be likened to a reversal of the proposed c
e SSCP. Both studies identified significant emissions savings from using such setu
onal costs associated with the mobile depot systems were generally higher than t
To reduce this cost impact, situating depots in areas of higher consignee density

roved performance (Marujo et al., 2018). It was also noted that there was a slig
delay from additional loading/unloading activities, but consignees did not notice
ormance (Verlinde et al., 2014).

of the challenges when using cargo cycles for consolidation, in combination wit
this requires some type of synchronisation or pairwise temporal precedence. In (B
nnqvist, 2008) the authors proposed a general mathematical programming model
the standard (homogeneous) vehicle routing problem to include the scheduling as

indows and temporal constraints between routes. In (Anderluh et al., 2021) th
ed a large neighborhood search algorithm to solve the two-echelon vehicle routing
hicle synchronization, where the two routes should coincide simultaneously. The
ed has multiple objectives, considering terms capturing the economic cost as w
nd environmental benefits by including greenhouse gas emissions and disturbanc

nother study, walking porters and cyclists were combined with traditional road
ore dynamic setup, varying routes depending on demand, parcel sizes/weight, and
ensity (McLeod et al., 2020). Emissions reductions of 45% and cost savings of u

U were made if 50% of parcels were served by cyclists/porters, enabling a reduct

r of road vehicles required. McLeod et al. (2020) also proposed that casual workers from
-economy could be used to support a multi-modal system when workers are not occupied
g-economy deliveries due to varying demand (e.g. takeaway riders could deliver parcels in

10
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peak periods). The concept could enable more sustained and reliable employme
s where they would undertake medical deliveries alongside traditional food deliv
ted in this research, where the costs for using cycle couriers has been taken fr
y provider. Additionally, range limits are applied to cycle couriers to prevent th
sts and excessive cycling durations. In many cases, it is likely that the resultant
use will improve the sustainability of specimen collection rounds, however, care
o ensure delivery times are not significantly delayed by the introduction of con

problem addressed in this research has some similarities with the min-max Ge
Routing Problem (GVRP), which is an extension of the well known Capacitate

g Problem (CVRP). The GVRP was first proposed by Ghiani and Improta (2
hen there have been several works proposing new integer linear formulations and

s (Bektaş et al., 2011; Pop et al., 2012), as well as metaheuristic algorithms (
iesinger et al., 2018). A common feature considered in the GVRP is that only

ach cluster can be visited and the clusters do not overlap. In the case of the S
s are not pre-defined and are determined by the algorithm during the optimisation
urgery has a defined catchment area, based on the surgeries within a given cyclin
ecimens from surgeries in the same catchment area can eventually be collected by
only one surgery in the area, if the samples have previously been collected from

es in the same catchment.

two-echelon vehicle routing problem considers two different levels (echelons) in w
vehicle types can be used and solved using various mathematical models, exact a
h-based heuristics (Perboli et al., 2011; Baldacci et al., 2013; Cuda et al., 2015). I
that if the surgeries are considered as the potential intermediate facilities where
other surgeries might be kept, then the problem can be viewed as a two-echelon

er, both (i) the objective addressed by the SSCP; and (ii) the possibility of drivin
urgeries, instead of visiting them using cycle routes defines a new problem that is
ted into a traditional two-echelon problem. The objective of the SSCP seeks to
y times by minimising the largest time across the network.

erogeneous two-echelon problems with multiple objectives are also not widely exp
xample of this was by Eitzen et al. (2017), in a theorised problem that looked to
le stakeholders in an urban delivery system, with respect to costs, the number of
issions. It was found that improvements could be achieved across all objectives, d

cation of the two-echelon and heterogeneity.

al-World Case Studies

o case studies involving current patient specimen delivery services were used in this
mpton, UK, and the Isle of Wight (IOW), UK. Both cases featured specimen d
samples were routinely collected from a set of known surgeries and delivered to

y point at the major local hospital, within the ‘South 6 pathology network’ in southern
d (Figure 2a). The findings from the Southampton study were used to support the formu-
f the problem, and the development and original testing of the algorithm. The IOW study

11
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d in further testing of the algorithm to understand its effectiveness in other collec
ring scale and geography.

ase Study 1: Southampton

Southampton case study used the diagnostic specimen network delivering to th
ory at Southampton General Hospital, UK as its case study (Figure 2a). Two
ts were provided by Southampton General Hospital Pathology; one providing t
imens produced by 78 feeder surgeries during November 2018, and the other det
chedules during September 2018. When combined, the BAU operations sugge
ens were collected from 97 GP surgeries (postcodes) (Figure 2b), and a collectio
ed to service all of these sites in a single day. It should be noted that postcodes
geo-coded more reliably instead of site names, even though it is possible for more
to share a postcode, this was not common, and such sites were found to be clos

ey could transfer goods internally without causing delays. Other sites were also
ounds for collection/delivery of other items such as internal mail and paper recor

his study, only the sample collections were of interest due to the core objective of
e from when the patient was bled to when the sample was received at the hosp
y delivery services covered by these rounds (internal mail, paper medical reco

tood to be less urgent, of low volume, or were due to be phased out. To enabl
ison between the BAU and computational results, a modified version of the BAU

any ancillary service stops were removed and stop times adjusted where sites were
ollection only. A comparison of the Key Performance Indicators (KPI) of the two
n in Table 2. The values described below were from the modified schedule.

England Trust Locations (box contains South 6 network
lent area) (NHS, 2019)

(b) GP surgery locations in the Southampton area. Blu
points indicate surgeries from which specimens must be c
surgeries are currently visited by the rounds for purpos
specimen collection. The green star indicates SGH.

: Solent area GP surgeries and NHS trust locations in the wider UK context (Base Map ©Open

tors)

vehicles, primarily medium-sized LGVs (Vauxhall Vivaro or Ford Transit), served the

12
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mpton-based surgeries on weekdays, whilst only two were used on weekends (Qua
On weekdays, vehicles covered an average of 113km per day, stopping 20 time

of 4 hours 13 minutes. Each surgery was visited an average of 1.96 times per day

specifications of vehicles varied, though all were assumed to be “Vans of 3.5 ton
” defined under the Manager’s Guide to Distribution Costs for the purposes o
2020). Calculations used a per-mile rate (£0.464 /mi) for vehicle costs to cover fu
nance, tax, insurance, depreciation, and overheads, a per hour rate (£10.78/hr)
and a per-mile rate (0.45 kg/mi) for CO2 tailpipe emissions. As a result, on each

ehicle was emitting approximately 31.8kg of CO2; a daily total of 318kg across
2020). Collectively, the rounds cost approximately £782 each day.
aximum time between departing Southampton General Hospital and returning
y interval) was 285 minutes with the mean duration (per collection) being 135 m
t driving route was taken, each surgery was an average of 12 minutes 15 seconds d
om the hospital and a quicker and more effective transit option should have been
Hopper, 2020). Not every surgery produced the same volume of samples, howeve
be visited to ensure a collection was made during the day. Figure 3 demonst
n, with thicker lines indicating a greater number of samples.

: Flowline map of feeder surgeries. Surgeries with sample production information are conne
by a line with thickness relative to the load produced (some flows are significantly smaller so li
n this plot; all blue points produce specimens.)

ly sites from the sample production dataset are shown. (Base Map ©OpenStree

contributors).
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h regards to the timing of collections, every surgery was typically served by a mo
on collection which correlated with a surge in observed samples received just afte
ain at around 17:00 (Figure 4a). There was minimal variation in the peaks of whe
ken (Figure 4b), with an average of 79% of each day’s samples taken by practit
. Only 12% of samples would have been checked-in to the hospital by the sam
ere still in transit. It should be noted that the tail on the plots, particularly th
related to samples in the dataset that were marked as taken or received outside o
ue to either (i) errors in the dataset; (ii) where samples had been taken at the
igned to the surgery; or (iii) where samples had been checked in late. The last
y of samples from any surgery to the hospital was 18:35.

ording to laboratory staff, check-in processes required at the hospital accounted
delays seen in the ‘receipt’ peak, though unfavourable routing was responsible fo
f this delay (Allan, 2019). It was assumed that the check-in procedure took a fixe
, and in order to enhance the receipt times at the diagnostic lab, delivery times
ed. Following discussions with local clinicians, there appeared to be limited scop
ings of when samples were taken due to surgery opening hours, though there

d for later final collections, in addition to the existing timetabled collections, to
patient service offering (Wessex Academic Health Science Network, 2020). Th
e suggestions made by McDonald (1972) and Anaya-Arenas et al. (2016), highligh
g the transit time and the time to deliver all samples are critical considerations.

arison of sample production time and receipt time. Most
re produced in the morning but are received in the after-

(b) Change in sample production across each day. A
seen in the mid-morning. Average production is show

: Southampton - Plots of sample production/receipt over time. Last delivery to the hospital is
ond this time may be erroneous.

ase Study 2: Isle of Wight

second case study in this research was used to test the algorithm’s performance i
ting. The case study was based on the Isle of Wight (IOW), also in the Solent reg
igure 2a). Surgeries on the island are more sparsely distributed than in Southam

lysis laboratory is at St. Mary’s Hospital near the centre of the island (Figure 5a). As in the
mpton case study, historic round and sample collection data were made available, enabling
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arison of how the algorithm performed in other areas with different characteristics a

the time of the study, 22 sites (postcodes) were served by 3 vehicles on a daily b
eries receiving an average of 1.64 collections per day. The data covered a 5-day

020, where a total of 1637 samples were produced; an average of 327 across the i
15 per surgery per day. In BAU routing, three vehicles each travelled an average
y. Assuming the same vehicle type as in Southampton case study, this resulted
being generated across the fleet each day; 25.2kg per vehicle. Including service

ng breaks), vehicle rounds took an average of 3 hours 17 minutes at a cost of £
he maximum time between departure and return to St. Mary’s Hospital (i.e. th
l) was 125 minutes with the mean duration being 112 minutes. As with the Sout
udy, a lag between taking and receiving the samples was also observed (Figure 5b

urgery locations on the IOW. The green star indicates
y’s Hospital, where samples are analysed. (Base Map
treetMap contributors).

(b) Comparison of sample production time and rece
with the main case study, most samples are produced
ing but are received in the afternoon. Two clear deliv
seen.

Figure 5: Isle of Wight Case Study

usiness-as-usual Summary

two case studies used in this paper are summarised in Table 2. It should be noted
tational experiments produced results based on a single collection at all surgeries
s departing simultaneously (as detailed in the problem description), whilst the ca
additional collections. In reality, the model would be used multiple times per day

erent collection rounds for varying smaller instances. Table 2 reflects these multi-co
unds being scaled to an equivalent of 1 collection at each surgery. Average van dri
ken as the total driving time divided by the number of vans, whilst the average
time was the mean duration between laboratory drops per stop served.

onsultation with NHS diagnostics laboratory staff took place to discuss the challe
eing faced during day-to-day operations. The key concern that was highlighted w
rove failed samples through an improvement in the arrival times. Pressures fro
ement to manage costs and environmental impacts were also important. The o

for optimisation (max. round time, qty. of vehicles, total fleet time) were chosen

n Table 2 following the consultation, after the availability of reliable data was considered.
objectives, such as the average stops per van are somewhat incidental from the optimised
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389
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eanwhile, costs are noisy approximations based on a per mile and per hour basi
ed as a rough indicator.

Summary of KPIs seen in the Case Studies. Scaling is used to make rounds representative
n at all surgeries. Soton = Southampton

rio Maximum
Sample
Coll.
Round
Time
(mins)

Number
of Ve-
hicles
(qty.)

Total
Fleet
Round
Time
(mins)

Avg.
Van
Driving
Time
(mins)

Avg.
Col-
lection
Round
Time
(mins)

Avg.
Stops
Per Van

Total
Costs
(driver+
vehicle)

al
N/A 10 4380 438 N/A 28.9 £1,188

285 10 2530 253 135 19.6 £782

)

285 10 1291 129 135 10 £399

al
125 3 592 197 112 10.7 £184

)

125 3 361 120 112 6.5 £112

factoring each parameter by the average number of visits at each site to make it the equi
n. Southampton average collections/day = 1.96, IOW = 1.64. Spec. only refers to a modified
oves stops that are not for specimen collections.

thematical Formulation

rder to enhance the time of arrival of samples at the diagnostics lab, a new ap
d in this paper. This uses a combination of road vehicles (vans/LGVs), and ped
dal cycles start at a surgery or the hospital and collect from surgeries local to them
es) before returning to their origin surgery (the consolidation point). The road
te longer distance rounds starting from the hospital, serving the consolidation p
ers which fall outside of the range of consolidation rounds, taking advantage of

speeds and lower carbon impact of cycling in short distance urban environmen
ining the benefit of faster trunk mileage from road vehicles. The introduction
way has not been proposed previously, though cargo cycles have been used in
ons in the past (NHS, 2020b).
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aster Problem

BAU activity presents a problem in which a set of known locations/nodes produc
ed transporting to a single location/node as fast as possible without incurring exce
ion, or environmental impact.
S be the set of surgeries that require a collection, and H as the Target Hospital

s are delivered and vans are based. An individual surgery is denoted by s ∈ S. T
es, including the target hospital is defined as S ′ = S ∪ {H}.

o modes are available in this problem, V , which represents a van; and C, which r
. Subsequently, the set of van routes is defined as RV , and the set of cycle routes

We define T as the service time required at each stop in a route, and the time
n a pair of surgeries (i, j) as tVi,j for a van, and tCi,j for a cycle.

rv = (H, s1, . . . , snv , H) ∈ RV be a van route, where nv denotes the number of
isited, si ∈ S, ∀i ∈ {1, . . . , nv}. Note that all vans are based at the Hospital H
to H. Additionally, ns

v denotes the number of stops from the hospital to surgery
an route has an associated time, denoted by trv . The sum of all durations between
and the sum of all service times, trv , is calculated as trv = tVH,s1

+
∑nv−1

i=1 tVi,i+1 + tVsnv

ld be highlighted that trv excludes any delays caused by cycle routes, and T is e
value.

ilarly, let rsc = (s, s1, . . . , snc , s) ∈ RC be a cycle route based on surgery s in
es {s1, . . . , snc} are being served by cycle, and the samples are delivered to surge
the number of surgeries being visited as nc. Cyclists are capacity constrained
nnot carry more than three surgeries’ worth of samples in one round, based on
nomy backpack (Deliveroo, 2020); nc ≤ 3. It is worth highlighting that the cy
start and end at the same surgery s ∈ S.
ycle route also has an associated time, denoted by trsc . The sum of all durations

es visited and the sum of all service times, trsc , is calculated as trsc = tCs,s1 +
∑nc

i=

ncT . It should be noted that T is embedded in trsc . Additionally, cycle routes ar
e constraint of 25 minutes or less to ensure the cycle elements can be managed a

nomy tasks (Allen et al., 2021); trsc ≤ 25 minutes.

define a collection round, r = (rv, R
C
v ), as the combination of a single van rout

subset of cycle routes RC
v ⊆ RC such that for any given cycle route rsc ∈ RC

v

s, it is satisfied that s ∈ rv, i.e, any cycle route in RC
v is based in a surger

isited by a van route rv. Furthermore, other than surgery s where each rsc beg
le routes in RC

v do not share any other surgeries; i.e. no surgery is served by
We define the set of all the collection rounds as R, and each collection round is d

v, R
C
v )| rv ∈ RV , RC

v ⊆ RC}, r ∈ R. Note that, since RC
v could be empty, then i

hat RV ⊆ R. The set of surgeries served by all of the constituent routes of r is deno

le routes that start and end at the hospital are permitted in order to serve the c
the hospital directly. To account for this in the model formulation, a dummy v

V , is created. Starting and ending at the hospital, with no intermediate stops (rv0 = (H,H))
ravel time of zero (trv0 = 0), rv0 enables a collection round where surgeries are cycle served

17



Journal Pre-proof

only, r

In a (r, s), as
the diff on of the
van rou e, w(r, s),
is only m of the
travel t surgery s
is defin trv ,H ; i.e.
the tim ting time
incurre

Col 1972), to
ensure onstraint
is not m Vans are
assume a waiting
time is rease the
collecti duration
is equa Table 3.

Table 3: at the first
stop, ot stated. CR
= Collec

Scena Dura-

Van +
cle, va
layed

mins

Van +
cles, n
delay

mins

Van
cycles
van d

mins

Cycle
rect
hospit

mins

A b

xr =

{

Jo
ur

na
l P

re
-p

ro
of

0.

collection round, we define the waiting time for the van at a given surgery, w
erence between the durations of the cycle routes based on s, trsc , and the durati
te (including any previous waiting time) up to surgery s, trv ,s. The waiting tim
considered when it is positive (i.e. the cycle takes longer than the van). The su
imes, service times, and waiting times from the start of the van route in r up to
ed as trv ,s, whilst tr denotes the total collection round duration and is equal to
e for the vehicle to return to the hospital after first departure, including any wai
d.

w(r, s) = max{trsc − trv ,s ∀rsc ∈ RC
v s ∈ rv, 0}

trv ,s = tVH,s1
+

s∑

i=1

tVi,i+1 + ns
vT +

s∑

i=0

w(r, s)

lection rounds are subject to a time constraint of 90 minutes or less (McDonald,
timely delivery of samples; tr ≤ 90 minutes. It should be noted that whilst this c
et in business-as-usual rounds, staff have expressed a desire to meet this criteria.

d to depart at the same time; thus, the durations all commence at this point. If
incurred due to a longer cycle route, this will slow the van’s progress and inc

on round duration. If there is no waiting time incurred, then the collection round
l to the van route duration. Some example collection round scenarios are given in

Example collection round scenarios, illustrating potential delays. Delays only demonstrated
her delays may occur. All cycle routes deliver to first stop in these examples unless otherwise
tion Round

rio Van Route
in CR

Cycle
Routes in
CR, trsc

Time to
First Stop

Delay at
First Stop

Van Route
Duration

CR
tion

1 cy-
n de-

(H,s1,s2,s3,H)(s1,s4,s5,s1),
25 mins

20 mins 5 mins 80 mins 85

2 cy-
o van

(H,s1,s2,s3,H)(s1,s5,s1),
15 mins;
(s1,s4,s1),
10 mins

20 mins 0 mins 80 mins 80

+ no
, no
elay

(H,s6,s7,s8,H)- 30 mins 0 mins 85 mins 85

di-
to

al

H,H (H,s9,s10,H),
23 mins

0 mins 23 mins 0 mins 23

inary decision variable, xr is introduced to select collection rounds:
1 if the collection round is used in the solution

0 otherwise;
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master problem is a multi-objective problem in which a balance between (i) the
imes of samples (first term in (1)); (ii) the number of collection rounds (vans) use
(1)); and (iii) the total driving and servicing time (last term in (1)) must be fou

n. These three objectives are combined by weighting with coefficients α1, α2, an
3.2 we explain how these weights are set by taking into consideration the BAU,

proach we aim to solve the problem using a single objective function (Section 4)

capture the maximum collection round duration across all rounds/surgeries, a c
e u is introduced (Equation 2). The latest delivery time/interval to the Hospit
s of any surgery is denoted by u and is based on the tr values for all rounds.

l collection round durations were used, as opposed to only the duration after the fir
cycling being handled by a 3PL. It has been assumed that the 3PL have the flex
te cycle collections at any time after the collection rounds are permitted to start
if rounds (all van routes and cycle routes) are permitted to start at 09:00, sampl

ected any earlier; however, the 3PL flexibility means cycles can complete their
e before the vans depart the target consolidation site.

ng the full collection round duration enables a conservative upper bound to be
contractual arrangements allow full control over the departure times at all sites
d cycles, the term tVH,s1

could be removed from the calculation of trv ,s for a more
tion of the time samples spend in transit. Where waiting time is included in the ca
, the duration of the cycle rounds contributes to tr if waiting times are incurr
t is demonstrated in Figure 6.

Figure 6: Demonstration of the critical path that governs the maximum duration, u.

ensure all sites are served, a further constraint is also added (Equation 3), wh
on 4 must be binary.
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min α1u+ α2

∑

r,r 6=r0

xr + α3

∑

r,r 6=r0

trxr

u ≥ trxr, ∀r ∈ R.
∑

r;i∈Sr

xr ≥ 1 ∀i ∈ S

xr ∈ {0, 1}, ∀r ∈ R

bjective Function Calibration

generalised multi-objective problem is modelled with a weighted multi-term
n (Equation 1), enabling a Pareto front of solutions to be found by varying the co
term. The values of the business-as-usual case were used to define and normalise
and α3, whilst a multiplier varied the relative importance of each term:

α1 =
w1

û
α2 =

w2∑
r,r 6=r0

x̂r
α3 =

w3∑
r,r 6=r0

t̂rxr

w1, w2, and w3 are the multipliers, and û,
∑

r,r 6=r0
x̂r, and

∑
r,r 6=r0

t̂rxr are the val
ve function terms under the business-as-usual case.

real-world application of the model, the multipliers could be user-defined to allow
to weight the relative importance of each objective and achieve a balanced outco
their requirements.
s step is seen in Figure 9, noted by a superscript 2. The calculated α values d
ve weights.

eries of objective function weights ratios were tested to understand the sensitiv
s-as-usual inputs and identify a Pareto front of solutions, whilst also demonstr
ffs decision-makers could make.

lumn Generation Based Heuristic Model

master problem presented by the SSCP has been solved in this study using a col
based heuristic, whereby all the surgeries being visited by the same vehicle in o
; i.e., one column is one collection round. These surgeries can either be visited d
d vehicle or indirectly by using any combination of cycle couriers and the road ve
ng this information in columns, efficient computation and processing was achieved

could be solved quickly using an initial set of heuristically generated routes w
ely improved using further heuristics.

he implementation explored in this study, van routes are constructed such that
op once in each cycle-able catchment area; i.e., during construction, if a van stops a
cycle route can exist to the van’s next stop (s2) as it is out of cycling range (F

ssumption was made to (a) enable van routes to be solved independently of cycle routes
t as combined collection rounds); and (b) reduce the number of van routes in the solution
nd improve calculation times whilst still aligning with the objective function. The approach
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the number of required van stops in each route; thus, the driving time of each rou
ed in the solution.

h case studies are explored in this paper, using a ‘worst case’ scenario, in which
that all surgeries require visiting, even though this may vary slightly day-to-da
ctivity, road vehicles are already in use, however cycle couriers are not. As a
aged that an existing 3PL provider would be responsible for the cycle logistics,

o increase the off-peak (i.e. mid-morning and mid-afternoon) job offerings for thei
t peaks - lunchtime, dinnertime), which have often been cited as insufficient for th
ers signed-up (Lord et al., 2020; Bernal, 2020). The model explores single collecti

ed to be scheduled throughout the day; most likely at the times which are low-de
kers. Modelling assumes cost constraints based on existing operations of the gig
company, “Stuart” (Stuart, 2020).

Figure 7: Example of collection round structures used in the modelled approach to the SSCP

itial Route Generation Heuristic

he modelling process, two initial sets of routes are generated prior to solving. On
e cycle route options whilst the other contains the road vehicle route options. In t
thampton study, the problem’s parameters result in a set of 3170 cycle routes, so
fully enumerated without issue. As part of the cycle route generation, a list of

ll in the ‘catchment’ of each surgery is defined using the maximum cycle time an
nabling the model to be solved for vans routes, before post-processing for exact cyc
lowing the calculation of cycle catchments, the vehicle routes are generated using a greedy-
euristic under the constraints within the master problem (Equations 2-4), in addition to the
g constraints:
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n initial maximum number of stops, or shorter (maximum changes during heur
esses);

he surgery catchment lists for each surgery (produced in the cycle route generati

maximum number of surgeries to shortlist for each next stop during generation.

the first stop from the hospital, all surgeries are tested to ensure a route exist
urgery (Algorithm 1, Line 3). For subsequent stops, up to a maximum numbe
, new routes are made (Algorithm 1, Line 6) with additional surgeries within ran

in the cycle catchment already served (Algorithm 1, Line 5). This is handled by A
re a recursive function is called until the maximum stops criteria is reached, or
e sites in range. The additional sites are selected (Algorithm 3) from two subset
N (N ≤ nmax) sites; (ii) those not within the N closest. From the closest, L
ly selected, and from the others, O sites are selected. The position of this sta
m is seen in Figure 9, noted by a superscript 1.

hould be noted that the route generation in this study allows vehicle routes to b
vans arrive at consolidation surgeries before some cycle routes are completed, m
s incurred in the vehicle route. This could be prevented in the vehicle route ge
r the cycle route(s) which cause the delay may not be selected by the algorith
ing the van routes, the waiting times for each route are calculated using the cy
ted for each stop on the van route. This approach is loosely related to the Coverin
g Problem (Buluc et al., 2022; Semet and Taillard, 1993), but the overall problem i
the second echelon affecting the main vehicle routes.

completion of the route construction and waiting time calculations, the routes are i
bi optimisation environment and solved using a branch and bound optimisation a

thm 1 Initial Van route construction

S: Set of surgeries to serve, H: Target Hospital; Tmax: Maximum route durati
um route stops; M : O-D time matrices for {S,H}; L: shortlist sites; N : shor
; O: other sites selected;

{}
Surgery s ∈ S do
r ← (H, s,H) . Create out-and-b
R = R ∪ {r}
nextSites← toTestF ilter(r, S,M,L,N,O) . Identify potential next site
orithm 3.
newRoutes(r, R, nextSites, Tmax, nmax,M,L,N,O) . Alg

d for
urn R
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thm 2 Recursive function: newRoutes. Van route construction - subsequent site a

r: previous route; R: route list; S: set of possible surgeries; Tmax: Maximum route
Maximum route stops; M : O-D time matrices for {S,H}; L: shortlist sites; N :
lected; O: other sites selected;

.length < nmax and S 6= ∅ then . Maximum stops not bee
for a ∈ S do

q ← (H, ..., a,H) . Create route with a inserted int
R = R ∪ {q}
S ← toTestF ilter(q, S, Tmax,M,L,N,O) . Identify potential next site

orithm 3
newRoutes(q, R, S, nmax,M)

end for
e
return R

d if

thm 3 Next stops options function: toTestFilter. Van route construction - identify
ops.

r: previous route; S: set of surgeries; Tmax: Maximum route duration;M : O
s for {S,H}; L: shortlist size; N : shortlist sites selected; O: other sites selected;

S \ {r} . List of sites not already covered by the exist
t Ŝ by duration required to add to route r
move from Ŝ all the sites outside of the range ( > Tmax) of the current route r
rtList← Ŝ[0 : L] . Copying first L elements of Ŝ to
erList← Ŝ \ shortList
est = {}
i=0 To N do
Select s randomly from shortList
toTest = toTest ∪ {s}
shortList = shortList \ {s}

d for
j = 0 To O do
Select s randomly from otherList
toTest = toTest ∪ {s}
otherList = otherList \ {s}

d for
urn toTest
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provement Heuristics

er the first iteration of solving is completed (Figure 9, noted by a superscript 2)
ist is ‘cleaned’ to eliminate all routes from the previous iteration that are longer
route/shorter than the shortest route/fewer stops than the shortest route from the
. All cycle routes are kept for all iterations. Subsequently, two heuristic methods a
e routing options available for solutions; the longest route redistribution heuristic
e shortest route redistribution heuristic (SRRH). Both create new route variants b
surgeries between van routes and positioning them in the target route at the locat
the smallest increase in route duration (Figure 8). One surgery is added per rou

ration. Other variants are made by rearranging the position of surgeries within
or where a later road vehicle arrival may mean u is reduced due to better timing
of cycle routes at consolidation surgeries.

: Representation of the positioning of a redistributed surgery stop. Dotted lines indicate possib
tional surgery. Solid orange lines indicate the new path of the lengthened route.

Longest Route Redistribution Heuristic (LRRH)

reasing the length of the longest vehicle routes generally reduces the time from th
hospital (Objective 1). The “Longest Route Redistribution” heuristic (LRRH
the surgeries served by the longest route(s) to the shorter routes, thus elimin
route(s). This heuristic can be applied to the surgeries directly served by th

) (faster; fewer surgeries), or the surgeries within the catchment of the longest rou
e surgeries served by the longest collection round). Surgeries that are redistri

ned in each route at the point which causes the least increase in route duration (F
sition of this stage of the algorithm is seen in Figure 9, noted by a superscript
all solutions presented in this study, this algorithm was applied to those routes w
than the average route selected in the previous iteration.

Shortest Route Redistribution Heuristic (SRRH)

reasing the length of the shortest vehicle routes increases the average length of th
potentially eliminating a vehicle from the solution (Objective 3), decreasing
time (Objective 2), and spreading loads between drivers more evenly. The “Short
ibution” heuristic (SRRH) aims to spread the surgeries served by the shortest ro

ger routes, thus eliminating the shortest route(s). This heuristic can be applied to the
es directly served by the shortest route(s) (faster; fewer surgeries), or the surgeries within
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chment of the shortest route’s stops (i.e. the surgeries served by the shortest
. Surgeries that are redistributed are positioned in each route at the point whi
st increase in route duration. The position of this stage of the algorithm is seen
d by a superscript 4. In the case of all solutions presented in this study, this
plied to those routes which were shorter than the average route selected in the
n.

st-Processing Cycle Selection

each surgery, the algorithm assumes that the least favourable feasible set of cy
d (with respect to delivery time) based on the same surgery when calculating
ve step that gives an upper bound of the u term (and total driving, if delays occ
ve, captured through complete enumeration. This assumption was been made fo
choice of cycle routing is controlled by the 3PL provider and as such may not b
spect to delivery times; and (ii) routes which incur delays are less likely to be

is favourable with respect to the objective function. Where no delay is incurred,
nowledge of the exact cycle selection is less important.

assumption that all sites within a cycle-able distance of van stops are served may
tion of cycle effort if a site occurs in multiple collection rounds, potentially at the
core objective. To prevent duplicate service, post-processing is used to select the fi

(within the delays identified in the core vehicle selection) and minimise the n
used, as a 3PL might. Post-processing also enables more accurate cost estima
ed. The position of this stage of the algorithm is seen in Figure 9, noted by a supe

euristic Process Flow

method followed by the algorithm (Figure 9) starts with the initial route genera
e approach using the SRRH and LRRH then occurs in tandem with the cleanin
inate ineffective routes, until the solution stagnates and is no longer dominate
ns. The selected vehicle routes are then input to the cycle route post-processin
ne iteration is required at this point due to the cycle routes being fully enumera
nt of generation.
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: Process flow of the optimisation algorithm. Superscript values indicate the position of the
escribed throughout this chapter.

mputational Experiments

eries of computational experiments were undertaken to optimise the model and id
ters which provided the best solutions. All tests were conducted on a system ru
yzen 5 3500U 2.1 GHz processor with 16GB RAM (Windows 10, 64-bit). Tests w
in Java v13 in an Eclipse Development Environment, and were solved using Guro

he sensitivity testing of different objective function coefficients, the ratios betwee
were varied. In the experiments to test the heuristic performance, the number
generated prior to solving was varied by changing the maximum number of stops

number of next stop options tested. Other parameters and weightings remained fi
ty of tests were carried out on the more complex case study, Southampton. Fur

the weighting of the objective function were undertaken using the IOW case
tand the algorithm’s application to other areas and data sets.

rameters

allow for practicality constraints and limit computational time, several parameter
4). Transit times and distances were specified by a locally hosted GraphHopper
which provided an asymmetric O-D time matrix (GraphHopper, 2020). The as

ted for turn restrictions and elevation changes. The ‘car’ and ‘racing-bike’ profiles were used
esent the two modes; ‘racing-bike’ was chosen over ‘bike’ to ensure routing prefers roads
acks (GraphHopper, 2020; Reid, 2018). It was assumed riders do not have pedal assistance

26



Journal Pre-proof

which ng’. The
service tions into
freight ) project
(Allen

The l tests, in
order t t on final
results shortlist’
value ( vents the
shortlis the next
stop he

It i plete the
vehicle sions rate
have b /mi, 0.45
kg CO inutes to
emulat the same
guidan ture that
is assu .75).

Param
Initia
Initia
Next
Stops
Other
Vehic
Wage
Cost
CO2 p 1

Servic
*Para
1 (FT

5.2. So

Wh its of the
solutio the max-
imum v ed by the
travel t hospital,
with no e Milford
Medica e consid-
ered, h minutes).

The
eries in
Jo
ur

na
l P

re
-p

ro
of

would further enhance their speed profile. Traffic was assumed to be ‘free-flowi
time was assumed to be 2.5 minutes per stop, approximately based on investiga
driver dwell times carried out under the Freight Traffic Control 2050 (FTC2050
et al., 2018).

next-stop shortlist size (L in Algorithm 3) of 5 remains constant throughout al
o maintain route building speed. This parameter is unlikely to cause much impac
as the selection of the next stops from the shortlist is dictated by the ‘Stops from
N in Algorithm 3). The ‘Other stops in range’ value (O in Algorithm 3) also pre
t length affecting results. Both of these supporting values vary between tests of
uristic parameters but remain at 2 and 1, respectively, for all other tests.

s envisaged that the current provider for the NHS vehicles would be used to com
rounds. For the purposes of this study, an hourly pay rate, mileage rate, and emis

een assumed based on the FTA Distribution Manager’s cost guide (£10.78, £0.464

2/mi) (FTA, 2020). Round durations have been rounded up to the nearest 15 m
e realistic payment practicalities. Vehicle costs have also been assumed based on
ce. Gig cycle couriers are often paid on a per-job basis (Lord et al., 2020); a struc
med for modelling cost estimation purposes (i.e. one route equates to one job, £6

Table 4: Run parameters used in tests.

eter Value
l maximum surgeries per round - weight tests (vehicle)* 5
l maximum surgeries per round - algorithm tests (vehicle) 4
nearest stop shortlist 5
from shortlist tested* 2
stops in range tested* 1

le Cost incurred per mile £0.464 1

Cost incurred per driving hour £10.78 1

incurred per cycle job £6.75 2

roduction rate per vehicle mile 0.45 kg CO2/mile
e Time per stop 2.5 minutes 3

meter used during weight value tests, varied during heuristic parameter tests
A, 2020), 2 (Stuart, 2020), 3 (Allen et al., 2018)

lution Limits

ere the weighting of the objective function is varied during experiments, the lim
ns are governed by each of the three objective terms. Under the given constraints,
alue for u (the maximum time to delivery) is 90 minutes. The minimum is limit
ime by road vehicle to the surgery which is furthest (wrt. travel time) from the
cycle consolidation options. In the case of the Southampton case study, this is th

l Centre, with a return journey time of 70.24 minutes. The service time also must b
ence the minimum u falls at 75.24 minutes (70.24 mins + 2×(2.5 minutes) = 75.24
number of collection rounds,
∑

r,r 6=r0
xr, has an upper limit equal to the number of surg-

S. There is no clear lower bound whilst other constraints limit the maximum journey time
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p limit. Should these limits be removed, the lower limit is 1 round, with the solut
velling salesman problem.

total collection round time,
∑

r,r 6=r0
trxr, has an upper limit dictated by the su

journey times and service times when one vehicle is used per surgery. There is
ound whilst other constraints limit the maximum journey time and stop limit. Sho
e removed, the lower limit is the travel time and service time of the single-vehicle
n problem.

he subsequent tests using the Isle of Wight data, a lower limit for u of 43.98 minut
travel time + service time = 38.98 mins + 2×(2.5 mins) = 43.98 mins). This tim
Grove House Surgery, Ventnor, or the Ventnor Medical Centre, Ventnor. Both
n the same, one-way street; thus, have the same transit time to the hospital.
minimum achievable number of collection rounds (i.e. vehicles), objective 2,

time, objective 3, are not easily determined. This is due to the problem being a g
the Capacitated Vehicle Routing Problem (CVRP), and the Travelling Salesman
with added complexities from the introduction of cycle consolidation, meaning th
re not initially known.

Table 5: Upper and lower limits of objective function outcomes. Soton = Southampton

Objective Lower Limit
(Soton)

Upper Limit
(Soton)

Lower Limit
(IOW)

Upper Limit
(IOW)

u 75.24 mins 115 mins 43.98 mins 115 mins∑
r,r 6=r0

xr Indeterminate 97 rounds Indeterminate 23 rounds∑
r,r 6=r0

trxr Indeterminate 2854 mins Indeterminate 382 mins

bjective Input Sensitivity Analysis

ere the master problem presents multiple objectives, many different solutions
ess these and offer decision-makers the choice of trade-offs towards each, the weig
bjective function (Equation 1), w1, w2, and w3, can be modified to favour the differe
sensitivity tests were carried out in which weights were independently varied, wit
ing from 0 to 10, and w3 from 1 to 10. This allowed testing of the algorithm’s r

sured that it could be used in any combination of weighting. Testing w1 with w
so allowed understanding of the relationship between the constraining u and ob
lst setting w2 to 0 allowed understanding of the relationship between the second
ves, which are closely linked.

Southampton

ng the same initially generated set of routes, one full run (including heuristic st
ted for each weight using the Southampton area data. The results of the even we
2-2, 2-2-4, etc.) are tabulated in Table A.10 (Appendix Appendix A).

objective weightings that produced dominating solutions (i.e. better than all o

one or more objective terms) were identified to produce a Pareto front of solutions (Table

res 10a, c, e). They could be offered to decision-makers to assist in choosing a weighting

28



Journal Pre-proof

that be lated and
display e or more
terms o (e.g. cost
and em

Inte elled ob-
jective t to 0, in
practic o achieve
the sam of the 0-
5-5 we es, which
somew nd dura-
tions. F 0-0-1 will
have o se. In use
cases w portant.

Gen r,r 6=r0
xr

and
∑

’s expec-
tation ginal; for
examp .33 mins)
reducti (£27.35)
more. he fastest
u value .87 mins)
reducti

Table 6: 2, and w3,
are the n.

w1 w O2 (kg)

0 2.19
4 1.02
10 8.33
Jo
ur

na
l P

re
-p

ro
of

st suits their needs. The configurations which gave dominating solutions were iso
ed in Figures 10b, d, and f. Where some configurations give better solutions in on
f the objective function, their benefits in other potential performance indicators
issions) may be more limited.

restingly, the dominant solutions in the Southampton dataset all featured a mod
function with a zero-weighted term. Whilst in these tests the weighting was se
e they could be set to a negligible value when compared to the other objectives t
e result; thus, these solutions are still relevant to this problem. The selection

ighted objective solution achieves a minimum in the second and third objectiv
hat align; though, the 90-minute constraint on u prevents excessive collection rou
urthermore, the other dominating solutions from objective weightings 4-0-2 and 1

ccurred due to the second and third objectives aligning sufficiently in this use ca
ith a greater sensitivity to the second objective, the weighting w2 would be more im

erally, increasing w2 and w3 relative to w1 results in a higher u result, and a lower
∑

r,r 6=r0
trxr, as expected. In turn this reduces costs and CO2, confirming McDonald

(McDonald, 1972). In some cases the trade-off decision makers must make is mar
le, the dominating solution resulting from the 4-0-2 weighting makes only a 3.9% (3
on in u compared to the cheapest solution weighting (0-5-5), whilst costing 5.6%
Equally, u in the 4-0-2 solution is 10.4% (7.79 mins) longer than the solution with t

(10-1-1); however, this trade-off enables a reduction of 1 round and an 12.7% (64
on in total driving time.

Solutions from the weight testing results for the Southampton data set. The coefficients, w1, w
ratios used to weight objectives in each test. Only dominating solution configurations are show

2 w3 u (mins)
∑

r,r 6=r0
xr (qty)

∑
r,r 6=r0

trxr (mins) Run Cost (£) Run C

5 5 86.36 6 420.47 486.57 9
0 2 83.03 6 445.12 513.92 10
0 1 75.24 7 509.99 550.92 12
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ions with respect to objective function terms (all solu-
ne indicates Pareto front found in testing.

(b) Solutions with respect to objective function terms
solutions only).

um time to delivery (u) vs. Total Solution Costs (all
.

(d) Maximum time to delivery (u) vs. Total Solution
inating solutions only).

collection round time (
∑

r,r 6=r0
trxr) vs. Total Solution

solutions).

(f) Total collection round time (
∑

r,r 6=r0
trxr) vs. T

Costs (dominating solutions only).

0: Southampton Objective Function Weight Tests. Marker shapes indicate the number of rou
tion (

∑
r,r 6=r0

xr). Left = all solutions from tests, right = dominating solutions only.
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0 6.34
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Isle of Wight

test the robustness of the algorithm and demonstrate its effectiveness in a varie
ments, the investigation of the objective function weighting was repeated for the I
e dominating solutions are shown in Table 7. Table A.11 (Appendix Appendix A

l results for the even weight values.

IOW data produced a wider range of vehicle options, likely due to the low de
tion of the surgeries covered by the delivery service. The algorithm determine

umber of rounds (3) under the timing constraints, whilst the lower limit of u is onl
here are more rounds (9). This is due to the surgery distribution causing large q

mileage. As with the Southampton dataset, there are many cases of marginal
ecided on by the decision-maker. No dominating solution with 6 or 8 rounds exis
which limits u in these solutions can be served by solutions with 5 or 7 rounds, res

with the Southampton tests, there are some dominating solutions which were achie
weighting was used on one of the objective terms. As previously alluded to, if th
ve weights are similar, some solutions may be achieved with multiple weight comb
as the case with the IOW study, with many weight ratios producing the same route
ne example for each key solution is shown). The selection of the 0-6-5 weighted
n achieves a minimum in the largely aligning second and third objectives, whilst the
e 1-2-6 and 3-3-1 weightings allow a greater balance to be struck between the o
portance of the second objective is seen in the dominating solution from the 4-0-1 w
the sensitivity to the number of vans used is demonstrated and a somewhat exces
ns are used.

Dominating solutions from the weight testing results for the IOW data set. Many weight ratio
e route selection; only one example for each key solution is shown.

2 w3 u (mins)
∑

r,r 6=r0
xr (qty)

∑
r,r 6=r0

trxr (mins) Run Cost (£) Run C

6 5 74.08648 3 213.12 125.39 4
2 6 61.65555 4 215.41 129.87 4
3 1 61.18522 4 223.47 136.48 5
0 1 43.98037 9 354.79 194.21 8
0 3 54.04353 5 238.3 144.27 5
1 1 50.42818 6 290.98 167.05 7
31



Journal Pre-proof

(a) Objec
found in

only).

(c) Maxim
solutions)

Costs (dom-

(e) Total

Costs (all

otal Solution

Figure 1 he solution
(
∑

r,r 6=r
Jo
ur

na
l P

re
-p

ro
of

tive Function (all solutions). Line indicates Pareto front
testing.

(b) Objective function (dominating solutions

um time to delivery (u) vs. Total Solution Costs (all
.

(d) Maximum time to delivery (u) vs. Total Solution
inating solutions only).

collection round time (
∑

r,r 6=r0
trxr) vs. Total Solution

solutions).

(f) Total collection round time (
∑

r,r 6=r0
trxr) vs. T

Costs (dominating solutions only).

1: IOW Objective Function Weight Tests. Marker shapes indicate the number of rounds used in t

0
xr). Left = all solutions from tests, right = dominating solutions only.
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onstruction Heuristic Parameterisation

ying the number of routes produced in the initial generation stage of the algorithm
of the performance of the heuristic methods and identify the settings which pro

ffective balance of computational time and solution quality. The variation in th
es was achieved through (i) changing the initial maximum stop limit, or (ii) cha
r of stop options tested at each stop using the next stop shortlist selection and ot
e parameters. Each set of parameters was run 10 times, and an average of the re
Table 8, Figure 12). The Southampton dataset and objective function weights o
, w3 = 2 were used, based on the sensitivity tests conducted, to give a reasonabl
n the objectives. The redistribution heuristics were applied to the longest and
(relative to the average route) in the existing solution.

ults indicated a positive correlation between the number of initial vehicle routes an
the VRP algorithm (Figure 12a). As the next stop parameter values are increa
tes will be made using similar surgery combinations which serve almost the sa
ent area, resulting in a longer run time in the optimisation environment. As the m
lue increases, the routes are able to visit a wider range of surgeries beyond th
catchment, therefore with fewer options for the same surgeries but more route

ncreasing the initial number of routes using the maximum stop value generally re
un-time per route than using the next stop parameters.

al solutions contained a higher percentage of routes originating from the SRRH, s
e SRRH was more effective than the LRRH in all cases (Figure 12b. The number
ed by the LRRH was also lower than the SRRH. In an isolated series of 5 test ru
op = 5, next stop parameters = 2, 2) an average of 4 routes and 13 routes were
LRRH for the longest and second-longest routes, respectively, in the first iter
ison, 77 routes and 59 routes were generated by the SRRH for the shortest an
t routes, respectively. New routes beyond the time length of the current maxim
mitted, hence many LRRH routes were discarded, accounting for the disparity.
sts with fewer initial routes contained a higher percentage of routes that origina
ristic methods, whilst more initially generated routes led to lower usage of heurist

en varying the initial maximum number of stops, the best value for the first objec
achieved when the maximum was set to 2 stops or 3 stops (75.24 mins) (Figure 1
lues for the second and third objective terms,

∑
r,r 6=r0

xr and
∑

r,r 6=r0
trxr, were

he maximum was set to a maximum of 6 stops (6 rounds/438.02 mins) (Figures
hile, the best objective function value was achieved when the maximum stop p
to 3, though a general trend of a lower objective function result as the maximum

r increased was observed. These results were likely due to shorter routes favourin
y, meanwhile longer routes favour the use of fewer vehicles and a reduced stem dri

from the hospital site).

he case of varying the next stop parameters, the best value for the first objective
hieved when the next stop parameters were set to 1 (75.24 mins) (Figure 12d).∑ ∑

for the second and third objective terms, r,r 6=r0

xr and r,r 6=r0
trxr, were seen when next

rameters were set to 2 (6 rounds, 437.6 minutes) (Figures 12f, 12h). Meanwhile, the best
ve function value was achieved when the next stop parameters were set to 4. These findings
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Table 8: earest stop
shortlist

Initial
Max
Stops

Mean
Redist.
Shorter
Heur.

2 87.5%
3 71.3%
4 63.9%
5 37.6%
6 4.3%
7 16.7%
5 53.8%
5 35.2%
5 23.8%
5 2.9%
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be expected, as testing a greater number of stop combinations will likely prod
ble solutions.

findings presented in Figures 12c-12h suggest that the heuristic parameters ca
to improve computational time and results, though beyond a certain value ther
seen. In the maximum stop parameter, values up to 5 stops generally clustere
ntimes of approximately 30 seconds, and the difference seen in the objectives (r
t solutions) was less than 6%. At values higher than this, runtimes more than

rage. A similar trend was seen in the next stop parameter tests, though with
ement in the second/third objective results and a decrement in results in the fi
ults between 1 and 2, and a significant increase in runtime above 2 with little

n quality. Based on these results, it could be suggested that the best outcomes
chieved with a maximum stop parameter of 5, and next stop parameters of 1 or
d in the subsequent algorithm performance tests (Section 5.5).

Mean results of the heuristic performance tests. Each run was completed 10 times. The n
length was a maximum of 10 surgeries across all tests.

Shortlist
Stops
Tested

Other
Stops
in
Range
Tested

Mean
Run
Time
(mm:ss)

Mean
Initial
No. Of
Veh
Routes

Mean

u

(mins)

Mean
∑

r,r 6=r0

xr

(qty)

Mean
∑

r,r 6=r0

trxr

(mins)

Mean
Orig-
inal
Gener-
ation

Mean
Redist.
Longer
Heur.

2 1 00:36 87 75.24 8 542.37 12.5% 0.0%
2 1 00:24 348 77.75 7.1 501.86 18.5% 10.2%
2 1 00:29 1123 80.28 6.9 491.53 30.4% 5.7%
2 1 00:36 3252 78.41 6.9 491.09 61.0% 1.4%
2 1 01:20 8896 81.21 6.6 480.28 95.7% 0.0%
2 1 03:30 23611 78.99 6.5 478.49 83.3% 0.0%
1 1 00:24 1221 77.33 7.5 530.97 41.3% 5.0%
2 2 00:57 6692 79.71 6.7 479.61 64.8% 0.0%
3 3 02:26 19923 79.39 6.7 477.22 76.2% 0.0%
4 4 06:30 44334 78.39 7 483.62 97.1% 0.0%
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VRP Run-time vs. Initial Number of Routes (b) Route Origins vs. Initial Number of

(c) Max. Stop VRP Run-time vs. u (d) Next Stop VRP Run-time vs. u

) Max. Stop VRP Run-time vs.
∑

r,r 6=r0
xr (f) Next Stop VRP Run-time vs.

∑
r,r 6=

Max. Stop VRP Run-time vs.
∑

r,r 6=r0
trxr (h) Next Stop VRP Run-time vs.

∑
r,r 6=
2: Heuristic Performance test results. Symbols indicate the parameter that was varied, e.g., maximum
of stops or next stop options tested in the initial route generation.
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lgorithm Performance

validate the performance of the algorithm, a series of small test cases were used
meration of all van and cycle routes to ensure the optimal solution was found w
del presented in Section 4.3. The tests selected 10, 15, or 20 surgeries at random
mpton dataset, generating routes for those surgeries only. The 10 surgery and 1
ere completed 10 times each, and the 20 surgery test was completed 5 times. The

to have an initial maximum stop parameter of 4 nodes, nearby next stop shor
next stop selection parameter of 2, and other next stop selection parameter of 1.

ll tests the algorithm performed well, reducing the computational time by up to 9
ng an average 5% difference from the optimal solution (Table 9). As would be exp
m generally achieved closer to optimal solutions on smaller test cases, though ma
vings on larger test cases. The reason for this behaviour is that in small cases th
outes generated would have been a greater proportion of the fully enumerated set
g in a better initial objective function from which to converge and a lower depen
selections.

e tests saw larger deviations from optimality, primarily due to differences in th
f the objective function results (Figure 13). The presented algorithm resulted i
wards the maximum collection round duration when compared to the optimal
this resulted in improvements in this component of up to 8%, the trade-off in ter

r of vehicles and driving time resulted in an overall deviation from optimality. To
ely that the length of the routes initially generated by the algorithm favour this
ate this skew.

algorithm was seen to produce consistently good results, with some solutions dev
n 1% from optimal (Figure 14). The distribution of results relative to the objec

d vary, suggesting there is scope to improve the consistency of the algorithm in ter
ve function in the chosen solutions, possibly through further exploration of the w
rameterisation. Meanwhile, runtimes became more consistent as the test sizes i
ing that larger use cases will offer reliable savings to planners who may wish to cre
t notice, similar to how do C. Martins et al. (2021) highlighted the importance o
hicle route planning in a related problem.

h a short-notice planning approach, a rapid response time is important. Hence,
of the absolute values produced in the tests (Figure 15), it was seen that enu

d an exponential distribution as the case size increases, whilst the algorithm perfo
atively more linear relationship. This relationship is key for solving the SSCP, w
tions (e.g. Southampton case study area) of this problem potentially requiring im
of time to solve to optimality. It should also be noted that the algorithm re

y requirements for solving when compared to enumeration, meaning that larger
processed more universally.
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15 Su / 26.98
20 Su 301.53
All Te / 82.16
10 Su 9%
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Mean results of the algorithm performance tests. 10 surgery and 15 surgery tests were complete
ries was completed 5 times. Absolute values show Algorithm / Optimal results, respectively. P
e difference from the optimal solution.

Max. Coll. Round Qty. Vans Van Duration Obj. Fn. VRP
rgeries (Avg) 62.95 / 64.27 3 / 2.5 159.63 / 147.06 3.46 / 3.36 0.29
rgeries (Avg.) 70.1 / 76.23 4 / 2.7 242.36 / 196.69 4.24 / 4.03 0.35
rgeries (Avg.) 74.43 / 73.24 4.4 / 3.4 270.04 / 239.28 4.57 / 4.24 0.54 /
sts (Avg.) 68.35 / 70.94 3.71 / 2.78 216.93 / 187.43 4.02 / 3.82 0.37

rgeries (Avg.) -2% 20% 8% 3% -6
rgeries (Avg.) -8% 50% 24% 5% -9
rgeries (Avg.) 2% 30% 13% 8% -9
sts (Avg.) -3% 34% 15% 5% -8

3: Mean results of each set of algorithm performance test relative to optimal results, comparin
es, overall objective function value, and runtime.

(a) Objective function comparison (b) Runtime comparison
4: Box plot of algorithm performance test results distribution, relative to full cycle and van enumeration
Pattern indicates test case size.
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Figure 15: Comparison of absolute computational times with forecast exponential trend lines
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mparison to Business-as-usual

results of the computational experiments were analysed through a comparison
ase study to identify the effectiveness of the algorithm. In addition to the three
ective function (u,

∑
r,r 6=r0

xr, and
∑

r,r 6=r0
trxr), eight further Key Performance I

have been used to quantify the success of the algorithm. These KPIs include th

time of the selected van routes (
∑

r,r 6=r0
trxr∑

r,r 6=r0
xr

), the average time to delivery per sur

rxr ∀i ∈ S, where S ∈ Sr), the average number of stops per van route, the costs a
e vehicle (running costs + driver costs), and total operating costs. Where the BA
re widely spread with intermediate deliveries, the duration from the previous st
l to the next is used for the equivalent value for tr.

ilst the solutions generally present improvements over the BAU in terms of the co
t should be highlighted that this is somewhat expected due to the newly imposed
duration and the introduction of cargo cycles which are absent in the BAU cases

paring exactly the same conditions, the results typically show a potential for imp
core objectives, though are reflected by significant changes in costs, and make
pare directly. This highlights the possible trade-offs that could occur and the s
s different BAU inputs. Nevertheless, the comparisons should be interpreted wit
hanges in mind.

uthampton

he Southampton case study (Figure 16a), the algorithm solutions out-performed
all areas except total cost, where no cycle costs were incurred due to the operat

sed only. The average stops per van were considerably reduced; where each vehicle
2x the number of surgeries compared to the algorithm’s solutions (5 stops averag

h respect to the objective function terms, all of the dominant solutions from the
ed the BAU case. The maximum time to delivery (u) was reduced by 70% in

nd 74% in the best case (285 mins vs. 86 mins vs. 75 mins). The number of roun
sed (

∑
r,r 6=r0

xr) was reduced by 30% in the worst case, and 40% in the best case
ehs. vs. 6 vehs.). The total driving time (

∑
r,r 6=r0

trxr) was reduced by 58% in
nd 65% in the best case (1205 mins vs. 509 mins vs. 420 mins).

average of 49 cycle courier tasks were introduced in each of the dominating solut
g £331 to the cost of the proposed solutions. It should be noted that whilst 4
ere generated, this does not necessarily correspond to 49 couriers, as this depen

ion by the 3PL provider.

overall cost was increased by between 22% (best case) and 38% (worst case) w
o the BAU case (£399 vs. £487 vs. £551), with the additional cost of the cycle ta
ly offset by a 45% (worst case) to 58% (best case) reduction in driving and veh
vs. £220 vs. £169). The shift towards cleaner transportation was also seen to re

by up to 43% (162kg vs. 92kg).
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hould be remembered that the BAU rounds complete other services, such as inte
ies, and the comparisons in this study were made with respect to a modified versio
in which only specimen collection stops were considered; thus, the comparison is n

heless, this study does highlight the inefficiency of the current route planning wit
imens, especially when many of the ancillary services are not required on a daily
ng phased out. Thus, the algorithm outputs still represent the potential savings
rounds.

thampton - BAU scaled from 1.96 collections/day avg. (b) Isle of Wight - BAU scaled from 1.64 collection

6: Radar plot KPI Comparison of key solutions from weight sensitivity testing (numbered plots)
(red plots). BAU is shown in red. Green plots dominate the BAU in the objective function term

lues scaled with maximums shown at 100%. Smaller is ‘better’ with the exception of ‘Avg Stop
tivity scaled from multi-collection rounds to compare like-for-like.

le of Wight

he Isle of Wight case study, the algorithm’s results also suggested an improvemen
ase (Figure 16b), though not to the same extent as the Southampton study. Impr
nsistently observed across all dominant solutions with respect to u (max. time to

0
trxr (total driving time), and average round time. Only one solution was seen to

U case in all three objective terms (1 in Figure 16b), whilst the other solutions d
s of u and

∑
r,r 6=r0

trxr, but not
∑

r,r 6=r0
xr as they exceeded three vehicles in their

dominant solution (1), a 41% improvement in u was observed (125 mins vs. 74 m∑
r,r 6=r0

trxr (360 mins vs. 213 mins), but no change in terms of
∑

r,r 6=r0
xr was s

cycle courier tasks were introduced in the dominating solution, contributing £40
s a result, the overall cost increased by 12% when compared to the BAU case
with the additional cost of the cycle tasks being mostly offset by a 24% reduction
hicle costs (£112 vs. £85).
IOW BAU case was not completing any ancillary services and was handling sample col-
and delivery only, making their routes more effective for this purpose. This may partly
the disparity in the algorithm’s effectiveness between the two case studies.
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nclusions

s paper presents the Sustainable Specimen Collection Problem (SSCP) for the col
stic specimens from GP surgeries to a hospital laboratory, and solves it using a
ve function and a column generation based heuristic algorithm with some addit
ent heuristics.
algorithm used was effective in producing solutions that improved on the BAU
to the maximum round duration, the number of rounds (vans), and the total driv

hted multi-objective function with a column generation approach was used to id
front, with results suggesting that the approach used was robust for a range of in
e configured to a decision-maker’s needs. A set of solutions was produced, some
the lower bounds of the objective, minu; meanwhile, performance tests indicated

ed algorithm was efficient and reduced computational time by up to 99% whilst
age of 5% deviation from optimality.

en using cycle courier consolidation, results suggest that sample delivery times
ed by between 41% and 74%, based on a comparison with two real-world cas

provements could be achieved using either the same fleet of vehicles or a redu
ing on the locality and selected solution, a reduction in fleet size of up to 40% w
simultaneous reduction in driving time between 41% and 65% was also observed

odel. The proposed system benefits were dependent on the introduction of cycl
ered significant benefits in dense urban areas, with the Southampton case study

ng an average of 49 courier tasks to be completed, whilst IOW solutions required on

h the requirement to pay for multiple new cycle courier tasks, proposed solutio
ant price increases of up to 38% in some cases. A proportion of these new rider c
y van and driver reductions, though in reality, these costs are likely to be sligh
the additional requirement to manage the system, as well as fees charged by gig
s providers. Additional benefits are seen in the reduced CO2 tailpipe emissions
key factor in urban areas where there is a need to reduce emissions from logistics
ean Commission, 2013). Consistent reductions in the number of simultaneously
s will allow fleet sizes to be reduced, having knock on effects for congestion and
eyond those explored in the BAU comparisons.

modelled improvements can offer better utilisation of assets, cleaner transporta
ential to improve quality of care in communities through faster and less damaging
ies, whilst also enabling the possibility of later final collections from surgeries. H
be noted that the possible damaging effects (e.g. vibration) of multi-modal trans
itive goods, such as diagnostic specimens, has not been widely explored and shoul
tood before such a heterogeneous model is implemented (Nybo et al., 2019; Oak
Equally, security of goods and dangerous goods authorisation should be important
in the use of multiple modes (Grote et al., 2021; Oakey et al., 2022), as is the case th

tential for Application
algorithm described in Section 4 and explored in Section 5 has further application beyond
e studies described in Section 2. The algorithm could be applied to other localities in which
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stic specimens need timely delivery. Some areas may have multiple laboratory si
delivered to, though the SSCP model could be adapted to encompass such a
the model would remain the same, with the exception of routes being genera

e surgeries from each hospital. The constraints in place should subsequently elimi
ns.

additional costs associated with the introduction of the cyclists may not be the
e proposition for decision-makers, though the additional flexibility and speed o
by this system may be sufficient to warrant the extra cost. Whilst beyond the sco
future work could account for the cost of introducing the cyclists in the problem
t increase.

er situations in which timely delivery is required at a single regional point follo
from a known set of points include delivery of blood donations to a blood manu
or ballot boxes during an election or referendum, though security could be a c
del due to the additional parties involved.

uld the problem be reversed; i.e. delivering from a single point to multiple site
d consolidation model, it could be seen that the system could be implemented
old-chain logistics where parties are looking to reduce their social and environm
or example, COVID-19 vaccine distribution is carried out using insulated contai

ed lifespan to local surgeries and vaccination points. However, there is significant
ribute vaccines in a sustainable, affordable and timely manner, particularly in d
es with reduced access to reliable vehicles (University of Birmingham, 2020). Eq
ns such as hot meal distribution could also follow the reversed SSCP concept.

mitations and Further Development

he problem posed by the SSCP, scheduling was not explicitly considered due to su
y staff (Wessex Academic Health Science Network, 2020); however, should som

ling be addressed, there is scope to reduce the number of rounds required. For ex
ons are between 9 am-12 pm and 3-6 pm, these periods could be divided into 2x 9
ch, meaning that vehicles could work one round and then another on completion
ber of required vehicles. Naturally, more complex collection schedules could be

rther benefits, though there may be larger challenges in practically applying this
agement of appointments and opening hours. As mentioned in the problem descrip
could be developed to manage loads day-to-day, though this may be data and

dependent.

tests only considered a worst-case scenario in which all surgeries which could p
collection were served. Further analysis of a full data set, in which routing an

lign, could simulate a ‘live’ scenario in which the routing selections are varied
ing on the sample production at each surgery. This would identify the efficien
ed system if dynamic (day-by-day) routing was possible. Additionally, in the ca

d in this paper, surgeries only send samples to one hospital site due to contractual reasons.
oposed problem could be adapted to be capable of multi-hospital delivery, provided routes
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ll hospitals are made at the initial route generation phase.

online version of the model could also take account of any routing delays, e.g.,
o consolidation points, enabling routes to be reconstructed whilst they progress
iting vans to continue. Furthermore, whilst more sophisticated optimisation ap
ave been used, the approach tested in this paper appeared to be fairly effecti

gh exploration of the Pareto front using other methods would be a potential futu
h. The results in this paper present a strong base from which to compare future res

evident improvements offered by the algorithm’s outputs would suggest that it i
esign, though the sensitivity towards each of the coefficients suggest that some

differently to others. The greater difference seen in the Southampton case stu
that the algorithm performs better in areas that feature greater surgery densities

er share of the load to be cyclist consolidated. In even denser areas, such as cen
cle routes may be capable of completing most or possibly all of the rounds faster
s. Cycle route heuristics may be needed to account for the larger number of poten
if enumeration is not feasible.

ilst tests using the more rural IOW case study showed cycle consolidation can
enefits, should the density of surgeries drop below a point at which cycle consol
sible, it is unlikely this routing algorithm will offer many benefits over the BAU. T
e further tested and developed using real data from both more dense and more s
ents to understand the limits of its functionality.

tests use routing provided by a locally hosted GraphHopper Routing engine w
traffic as ‘free-flowing’. Such a state is evidently not a guaranteed representati
ns seen in the case studies, particularly in the urban areas which are more pron
(GraphHopper, 2020; TomTom, 2021). Based on the times at which samples are

ons are likely to be mid-morning and mid-afternoon; thus, avoiding the peak tim
the Isle of Wight case study and more rural parts of the Southampton study, the

tion is also less likely to be of issue. Cycling times are also less likely to be affect
lity for cyclists to ride through congestion. The modelled results using the Grap
engine will be slightly biased towards faster travel times, meaning magnitudes of

may be slightly inflated; though the general findings will remain largely the same

he Southampton case study, ancillary services, such as internal mail deliveries/co
egarded in the design of the routes. Whilst it has been indicated that many of thes
ng phased out, there may be need for such services to be considered in the design
their lower importance with respect to delivery time, a weighting between load t
nsideration.

ther to the above limitations and improvements, the introduction of other modes
s could be introduced to enhance deliveries further. Drone deliveries of medical
ng increasingly prevalent, particularly in response to the COVID-19 pandemic (L

They are seen to offer significant benefits in areas where land logistics are difficult or slow,
may present high costs and consume significant quantities of energy if they serve each
individually. The consolidation model may open the benefits offered by drones whilst im-
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practicalities. Range and charging/refuelling, as well as routing and weather w
onsidered. Electric vehicles could also be considered in further developments of
hilst not a major change, tailpipe emissions will be eliminated, though range li

need to be addressed. Electrically assisted bicycles and cargo cycles may also be a
t, offering the potential for a wider reach and/or more stops in cycle routes, red
r as many vehicle served sites.

ximising vehicle asset use may be a further consideration in future model deve
s of similar sensitive nature heading in similar directions could be handled simul
vehicle in a variant of the multi-vehicle VRP with Pickup and Delivery (VRP

rs et al., 2002). Given the many services acting simultaneously but independently
ere may be scope to combine logistics movements. Combining non-urgent patie

with diagnostics specimens and un-processed blood donations could be an examp
oration.

ther area of potential interest may be in the investigation of adjusting opening h
tment scheduling to affect the demands produced by surgeries. This may not be

implement but may have potentially beneficial effects.
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- New multi-objective problem using cycle consolidation to deliver patient samples 
- Potential improvement in maximum delivery time, fleet size and driving time  
- Increased operational costs from cycles but potential benefits to healthcare 
- Effective algorithm reduced computational time with little change from optimality 
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