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Abstract
Purpose  This study tests the feasibility of using a submersible spectrophotometer as a novel method to trace and apportion 
suspended sediment sources in situ and at high temporal frequency.
Methods  Laboratory experiments were designed to identify how absorbance at different wavelengths can be used to un-mix 
artificial mixtures of soil samples (i.e. sediment sources). The experiment consists of a tank containing 40 L of water, to 
which the soil samples and soil mixtures of known proportions were added in suspension. Absorbance measurements made 
using the submersible spectrophotometer were used to elucidate: (i) the effects of concentrations on absorbance, (ii) the 
relationship between absorbance and particle size and (iii) the linear additivity of absorbance as a prerequisite for un-mixing.
Results  The observed relationships between soil sample concentrations and absorbance in the ultraviolet visible (UV–VIS) 
wavelength range (200–730 nm) indicated that differences in absorbance patterns are caused by soil-specific properties and 
particle size. Absorbance was found to be linearly additive and could be used to predict the known soil sample proportions in 
mixtures using the MixSIAR Bayesian tracer mixing model. Model results indicate that dominant contributions to mixtures 
containing two and three soil samples could be predicted well, whilst accuracy for four-soil sample mixtures was lower (with 
respective mean absolute errors of 15.4%, 12.9% and 17.0%).
Conclusion  The results demonstrate the potential for using in situ submersible spectrophotometer sensors to trace suspended 
sediment sources at high temporal frequency.

Keywords  Sediment fingerprinting · UV–VIS spectrophotometer · High temporal frequency · In situ measurements · 
Sediment source tracing · MixSIAR

1  Introduction

Suspended sediment (SS) plays an essential role in the 
hydrological, geomorphological and ecological function-
ing of aquatic ecosystems (Owens et al. 2005; Bilotta and 
Brazier 2008; Wohl et al. 2015; Vercruysse et al. 2017). 
Suspended sediment export is mainly driven by hydro-
meteorological variables (Vercruysse and Grabowski 2019) 
and factors such as hillslope erosion, sediment delivery to 
stream channels and stream channel bank or bed erosion 
(Fryirs 2012; Mukundan et al. 2012). However, excessive 
amounts of SS can degrade aquatic ecosystems by causing 
siltation, habitat deterioration or pollution, linked to the key 
role of SS in the transportation of contaminants and nutri-
ents (e.g. House 2003; Kronvang et al. 2003; Carter et al. 
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2006; Affandi and Ishak 2019). Hence, the need to identify 
the sources of SS is increasingly recognised as a priority to 
support management strategies for stream ecology, geomor-
phology and water quality issues (Walling and Collins 2008; 
Mukundan et al. 2012; Collins et al. 2017) in alignment with 
environmental policies (e.g. European Commission 2000).

Sediment fingerprinting is one direct approach to estimat-
ing SS contributions from catchment sources. This approach 
compares properties of potential source materials with prop-
erties of SS, using distinct diagnostic signatures or so-called 
composite fingerprints comprising several constituent proper-
ties (e.g. Oldfield et al. 1979; Peart and Walling 1988, 1986; 
Walling and Woodward 1992). These properties are selected 
on the basis that they are clearly distinctive between individual 
sources, allowing for the un-mixing of SS to estimate source 
proportions.

Despite the fingerprinting approach being increasingly 
adopted globally (see reviews by Haddadchi et al. 2013; 
Owens et al. 2016; Collins et al. 2017, 2020; Guan et al. 
2017; Tang et al. 2019), there remain some major limitations 
that continue to hamper its use as either a scientific or man-
agement tool. These limitations include the pre-selection 
of the most robust fingerprints for different environmental 
settings (Koiter et al. 2013; Collins et al. 2020) and methods 
for SS sampling (Haddadchi et al. 2013). Robust fingerprint 
properties must both differentiate between potential SS 
sources and behave conservatively during mobilisation and 
delivery to the river, stream or lake (Walling et al. 1993). 
Conservative behaviour is important because erosion and 
SS transport processes are particle size selective which, in 
turn, influences sediment properties and the reliability of 
the direct comparisons between source materials and target 
SS samples (e.g. Collins et al. 2017; Laceby et al. 2017). 
A major limitation associated with common SS sampling 
methods concerns the limited insights they provide on how 
sediment sources change over short (i.e. minutes) time inter-
vals and during longer (e.g. seasons or years) periods (e.g. 
Navratil et al. 2012; Vercruysse et al. 2017; Collins et al. 
2020). The commonplace deployment of time-integrating 
samplers (Phillips et al. 2000), for example, is limited with 
regard to the temporal resolution of the SS source estimates 
generated (often limited to one or a small number of sam-
ples per event; Collins and Walling 2004). Furthermore, 
sediment particle size and geochemical properties might 
be altered during sampling deployment and sample storage 
prior to analysis (e.g. due to adsorption/desorption; Smith 
and Owens 2014). The collection and use of high frequency 
instantaneous SS samples are constrained by the associated 
analytical costs for many fingerprint properties/tracers com-
monly used in source fingerprinting investigations (Collins 
and Walling 2004; Haddadchi et al. 2013). High frequency 
observations (minutes) for prolonged periods could contrib-
ute to the understanding of catchment sediment dynamics 

(e.g. which SS sources are active under what conditions), 
which is key to eventually taking suitable countermeas-
ures against excessive sediment input to rivers and streams 
(Navratil et al. 2012; Vercruysse et al. 2017).

The current absence of well-established methods to meas-
ure SS properties in situ at high frequency compounds the 
current limited capacity to document SS source contributions 
over short time intervals for longer durations of measurement. 
Thus far, attempts to overcome this limitation still rely on the 
collection of physical samples in the field at high frequency, 
in conjunction with subsequent laboratory analyses of tracer 
properties. Such work has included the use of diffuse reflec-
tance infrared Fourier transform spectrometry (e.g. Poulenard 
et al. 2012; Cooper et al. 2015, 2014), spectral reflectance 
analysis of sediment chemical properties on samples placed on 
glass fibre filters (Martínez-Carreras et al. 2010a; Cooper et al. 
2014), colour parameters obtained from spectro-colorimetry 
(Martínez-Carreras et al. 2010b), colour parameters derived 
from office scanners (Pulley and Rowntree 2016) and deploy-
ment of handheld XRF instruments (Smith and Blake 2014). 
Whilst these procedures reduce resource needs for the analy-
sis of tracer properties in numerous target sediment samples,  
they do not overcome the resource needs pertaining to high  
frequency collection of such samples.

Submersible spectrophotometer sensors, widely used 
for drinking water quality monitoring (e.g. D’Acunha and 
Johnson 2019; González-Morales et al. 2020; Prairie et al. 
2020), may, however, offer a reliable means to provide data 
on SS fingerprint properties at high frequency. Bass et al. 
(2011) and Martínez-Carreras et al. (2016) used submers-
ible spectrophotometer sensors, measuring absorbance in the 
ultraviolet visible (UV–VIS) range, to estimate SS properties 
in situ. The former used such a sensor to estimate particulate 
organic carbon content, whilst the latter estimated sediment 
loss-on-ignition, with both studies calibrating the sensor 
readings using physical samples. This work demonstrated 
the potential value of such sensors to discriminate between 
sediment sources with contrasting tracer properties and for 
un-mixing source proportions. The ability of these sensors 
to measure in situ suggests limited physical SS sampling is 
only required for sensor validation. Furthermore, given the 
facility to measure at high frequency (e.g. minutes) for long 
duration, since maintenance needs of the sensor are low, a 
spectrophotometer sensor has the potential to resolve current 
constraints pertaining to both sediment sampling and ensuing 
tracer analysis.

When the influence of dissolved species in water is 
negligible, absorbance measurements are mainly affected 
by SS concentration (Thomas et al. 2017) and the size 
of the SS particles (Berho et al. 2004). Thomas et al. 
(2017) reported that absorbance increases with SS con-
centrations. Berho et al. (2004) showed that smaller par-
ticles resulted in higher absorbance values than coarser 
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particles with the same minerology. These studies clearly 
demonstrated that the exact relationships between absorb-
ance and both concentration and particle size warrant 
detailed investigation to determine if, and to what extent, 
absorbance values need to be compensated to facilitate 
high frequency sediment source fingerprinting.

Given the above context and the ongoing need to con-
tinue testing devices for assembling high temporal reso-
lution data on SS properties in situ, we conjecture that 
the absorbance readings of a submerged spectrophotom-
eter can be used as sediment fingerprints to estimate SS 
sources. Herein, we present a proof-of-concept laboratory 
experiment where we use absorbance data to un-mix artifi-
cial mixtures of soil samples sieved to three different par-
ticle size fractions. To this end, we tested how the absorb-
ance data is influenced by SS concentration and particle 
size distribution, as well as the suitability of the absorb-
ance data for estimating sediment source proportions.

2 � Materials and methods

Experimental assessment of the submersible spectrophotom-
eter was undertaken in a series of laboratory tests. Soil sam-
ples of known origin and composition were used to create a 

series of water samples containing SS of differing composi-
tion and concentration; measurements of absorbance spectra 
in situ could then be interpreted in relation to the compo-
sition and concentration, and to the expected outcomes in 
terms of the spectra.

2.1 � Soil samples and artificial mixtures

Six soil samples were collected in Luxembourg based on 
differences in colour (visual inspection) and differences in 
underlying geology (Fig. 1). Soils were air-dried at room 
temperature before being disaggregated manually using a 
pestle and mortar. Samples were then dry sieved to three 
different size fractions: < 32 μm, 32–63 μm and 63–125 μm. 
Due to its particle size distribution, retrieving the 63–125 μm 
fraction of soil 6 was not possible and this soil sample was 
therefore omitted, resulting in 17 size-fractionated soil 
samples. The fractions were selected based on commonly 
used upper particle size boundaries in sediment fingerprint-
ing studies (see Laceby et al. 2017). Minerology of the soil 
samples is shown in Table A1.

From the resulting 17 size-fractionated soil samples, we 
created artificial mixtures of two, three and four different 
samples. Mixtures were classified into two groups: (i) mix-
tures of soil samples sieved to the same particle size fraction 

Fig. 1   Soil sampling locations within Luxembourg a and images of the six collected soils b. Source N.W. Europe map a adapted from: ArcGIS 
online (Europe_data_WG_NPS); source geological map of Luxembourg a: Service Géologique du Luxembourg
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and (ii) mixtures of soil samples sieved to different size frac-
tions. The soil sample contributions to the artificial mixtures 
were based on having either a clearly dominant sample or 
more equal contributions (see Table A2).

2.2 � Sensors

Laboratory experiments used the S::can spectro::lyser™ 
probe (Scan Messtechnik GmbH, Vienna, Austria) submers-
ible spectrophotometer. This sensor measures transmittance 
of a light beam (i.e. xenon-flash light) after contact with 
water in the optical measurement window, which is then 
converted to absorption over the UV–VIS wavelength range 
(200–730 nm, at 2.5-nm intervals). The detector is located 
at the opposite side of the optical window. Measurement 
frequency was set at 2-min intervals, which is the small-
est interval possible. Measured absorbance data were saved 
onto the corresponding Con::cube logger (Scan Messtechnik 
GmbH, Vienna, Austria).

In tandem with the spectrophotometer, a LISST-200X 
laser diffraction (Agrawal and Pottsmith 2000) sensor 
(Sequoia Scientific, Bellevue, WA, USA) was used to meas-
ure particle size distribution. This instrument works on the 
principle of laser diffraction with a laser beam emitted by a 
laser diode (Agrawal and Pottsmith 2000). The LISST sensor 
assigns the diffracted laser beams into one of 36 sediment 
size classes, providing estimates of particle size distribution 
and average particle size. Measurements were taken at 1.5-s 
intervals using the random shape model algorithm (Sequoia 
Scientific 2018).

2.3 � Laboratory setup

The laboratory setup consisted of a 75.4-L capacity, round 
tank. The spectrophotometer and LISST sensor were 
installed in a horizontal orientation to prevent sedimentation 
of particles on the measuring windows (Fig. 2a, c). Using 
40 L of demineralised water, both sensors were located 
more than 10 cm below the water surface as advised by the 
manufacturers.

Homogeneous concentrations inside the tank were estab-
lished using a Fundamix vibromixer (DrM, Dr. Mueller AG, 
Switzerland), a vibrating device. This method avoids cone 
and vortex formation which are possible with rotational 
stirring techniques (Orlewski et al. 2018). To test homo-
geneity of concentrations during the experiments, water 
samples were collected at three locations within the tank 
setup (Fig. 2c) using a pipette (see Fig. A1, A2 and A3 for 
initial testing on vibromixer speed and position, and homo-
geneity of concentrations at different depth and locations; 
supplementary material). These samples were subsequently 

transferred into pre-weighted aluminium buckets, dried and 
weighed again to determine concentrations. These con-
centrations (hereafter referred to as ‘measured concentra-
tions’) were determined for all theoretical concentrations 
(10 concentrations in total; 100–1000 mg L−1 at 100 mg L−1 
increments) for all experiments (20 values associated with 
erroneous measurements were omitted). Selected theoreti-
cal concentrations are representative of SS concentrations 
values measured across Luxembourgish rivers (Martínez-
Carreras 2010). The experiments consisted of testing the 17 
soil samples individually, followed by testing the 25 artificial 
soil sample mixtures (see Table A2 for a detailed overview 
of the experiments and known soil sample contributions in 
the artificial mixtures and Protocol A1 for more detail of the 
steps adopted during the experiments and specific equipment 
settings).

2.4 � Data pre‑treatment

LISST background measurements, taken before each exper-
iment, were saved onto the instrument and automatically 
compensated for by the LISST software during subsequent 
measurements. Accordingly, the spectrophotometer absorb-
ance data were compensated by using the data collected 
before the start of the actual experiment (i.e. subtracting the 
background readings from all consecutive absorbance data 
readings acquired during each experiment). Data obtained 
from the spectrophotometer and LISST sensors were thus 
only affected by the soil sample materials added to the 
experimental tank, and not influenced by the properties of 
the demineralised water. Absorbance data were measured 
over a 10-min period at 2-min intervals; only the last four 
measurements were used for analysis (allowing time for the 
soil sample material to become fully mixed). LISST data 
were measured over the same 10-min period, with only the 
last 6 min of measurements used in subsequent analyses.

2.5 � Concentrations and their relationship 
with absorbance

Both theoretical and measured concentrations do not fully 
represent the actual concentrations inside the experimental 
tank. The former is subject to the settling of particles during  
mixing, whereas the latter is subject to uncertainties asso-
ciated with pipette sampling and the weighing of alumin-
ium cups. Three steps were used to quantify to what extent 
measured concentrations (see Sect. 2.3 ) deviated from  
theoretical concentrations, and if deviations differed for 
the three particle size fractions investigated (i.e. < 32 μm, 
32–63 μm and 63–125 μm). Firstly, differences between 
measured and theoretical concentrations were calculated 
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for the experiments using only soil samples. Measured con-
centrations were expressed as a percentage of theoretical 
concentrations, to assess whether there is a consistency in 
soil sample material losses. Secondly, ‘expected’ mixture 
concentrations were then calculated using a mass-balance 
(Eq. 1), using the measured concentrations of the soil sam-
ples and their known contributions to the artificial mixture. 
This value was then compared with the directly measured 
concentration of the mixture itself.

where wj is the relative contribution of each soil sample to 
the artificial mixture (j = 1 to n, with n being the number of 
soil samples mixed), and concj is the measured concentration 
for soil sample j (resulting from the individual soil sample 
experiments).

As a final step, we investigated the relationship of absorb-
ance with both concentration and sieved particle size. To 
analyse patterns in the absorbance spectra for the 17 soil 
samples, the responses to increasing concentrations and 
particle size were examined. Randomly selected absorbance 
values were used at low, medium and high range spectra 
(210 nm, 400 nm and 700 nm, respectively, example shown 
in Fig. A4; supplementary material). Besides these three 
randomly selected absorbance values, the average absorb-
ance value over the whole range of measured wavelengths 
(200–730 nm) was used. These values were scaled, dividing 
the absorbance values by their respective theoretical concen-
trations, to obtain average increases in absorbance per mg 
L−1 (n = 10, for the 10 concentrations) for each soil sam-
ple, with accompanying standard deviations. This process 
was designed to obtain more insight into how absorbance 
changes with concentration at the different selected wave-
lengths for all soil samples. These scaled absorbance values 
were then related to the particle size measured at every con-
centration in every experiment. Using the Mann–Whitney 
test, we tested if the absorbance values (n = 10, for the 10 
concentrations) from the 17 soil samples were significantly 
different (p < 0.05). This test was carried out for the aver-
age absorbance values, as well as for the absorbance val-
ues resulting from the three selected wavelengths (210 nm, 
400 nm and 700 nm). Absorbance data in this analysis were 
compensated for theoretical concentrations (see Sect. 3.1).

2.6 � Linear additivity

The directly measured absorbance values from the artificial mix-
tures were compared with the absorbance values resulting from 
the individual soil sample experiments to test if (i) absorbance 
behaves as a linearly additivity property and (ii) the combina-
tion of relative absorbance values of the individual soil samples, 

(1)Expected mixture concentration =

n
∑

j=1

wj × concj

as used in the artificial mixtures, results in similar absorbance 
values when directly measured on the mixture (Eq. 2).

where wj is the relative contribution of each soil sample to 
the artificial mixture (j = 1 to n), and Absj represents the 
absorbance value of that particular soil sample j when 
measured individually. The absorbance data over the whole 
wavelength range (200–730 nm) was used (example shown 
in Fig. A4). This comparison was undertaken for all 10 dif-
ferent concentrations, for each mixture experiment, and 
compared with the measured mixture absorbance data cor-
responding to the same theoretical concentrations.

2.7 � Un‑mixing the artificial mixtures using 
the MixSIAR model

The MixSIAR Bayesian un-mixing model (Stock and 
Semmens 2016; Stock et al. 2018) open-source R pack-
age was used to un-mix the artificial mixtures, and 
investigate how a well-established model for sediment 
fingerprinting (e.g. Upadhayay et al. 2020; Wynants et al. 
2020) deals with the highly collinear absorbance data. 
As model input, data obtained from the mixture experi-
ments (mixture data) were used, together with the absorb-
ance data from the single soil samples (i.e. soil source 
data). To investigate performances between concentra-
tions, only sources and mixture absorbance data from 
the same theoretical concentrations were used. Source 
data were represented by the mean, variance and sample 
size (Blake et al. 2018). The MixSIAR model calculates 
the relative average contributions of each sample mixed 
and the corresponding standard deviations. For all model 
runs, the Markov chain Monte Carlo parameters were 
used according to the predefined ‘short’ settings (chain 
length = 50,000, burn = 25,000, thin = 25, chains = 3). 
Model convergence was evaluated using the Gelman-
Rubin diagnostics (variables < 1.1). All models were run 
using the High Performance Computing facility at the 
Luxembourg Institute of Science and Technology. For the 
MixSIAR runs, the whole range of absorbance values was 
used, with each wavelength being regarded as a tracer. 
This resulted in 213 tracer values (wavelength range 
200–730 nm, with 2.5-nm intervals). The known source 
contributions to each artificial mixture were compared 
with the source contributions estimated by the model. 
This comparison was made by calculating the absolute 
error (AE); the absolute difference between the known 
soil source contributions and the predicted source con-
tributions was generated by MixSIAR.

(2)Expected mixture absorbance =

n
∑

j=1

w j × Absj
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3 � Results

3.1 � Concentrations and relationship 
with absorbance

The measured concentrations inside the tank were gen-
erally lower than the theoretical concentrations intended 
(Fig. 3); measured concentration decreased with increas-
ing particle size. The relationship between measured and 
theoretical concentrations varied little at increasing con-
centrations for all soil samples in the < 32-µm fraction 
(Fig. 3). Measured concentrations represented ~ 90% of 
the theoretical concentrations. Corresponding standard 
deviations ranged up to 4% (for 95% of all measured con-
centration values), with the remaining 5% of the values 
having higher deviations (observed at lower theoretical 
concentrations; i.e. 100–300 mg L−1).

For the two coarser fractions, measured concentrations 
showed larger deviations from the theoretical concentra-
tions (Fig. 3). For the 32–63-µm fraction, average meas-
ured concentrations mostly ranged between 60 and 90% 
of the theoretical concentrations. The average measured 
concentrations for the 63–125-µm fraction mostly ranged 
from 30 to 75%, with soil 5 giving very low measured 
concentrations compared with the other soil samples. 
Despite the larger differences, the relationship between 
measured and theoretical concentrations remained con-
stant with increasing concentrations for the separate soil 
samples (Fig. 3). These average values had low standard 
deviations (i.e. < 10% for 97.5% of the values and < 5% for 
81% of the values for the 32–63-µm fraction; < 10% for 
95% of the values and < 5% for 56% of the values for the 
63–125-µm fraction).

Deviations between expected and measured mixture 
concentrations (Eq. 1) are shown in Table 1. Around 50% 
of the expected mixture concentrations showed a deviation 
of < 5% compared with the measured mixture concentra-
tions. Around two-thirds of mixtures showed a devia-
tion < 10%, and around 90% a deviation < 20%. Further-
more, deviations between expected and measured mixture 
concentrations decreased slightly when the number of soil 
samples in the artificial mixtures was increased.

Both when using theoretical (Fig.  A5)  and meas-
ured (Fig. A6) concentrations, strong correlations with 

absorbance measured at the three selected wavelengths (i.e. 
210, 400, 700 nm) were observed, as well as for the average 
absorbance over all wavelengths. Using theoretical concen-
trations (Fig. A5), r2 values were > 0.99, with the exception 
of soil sample #5.3 (soil 5, 63–125 µm fraction), where the 
r2 values decreased to ~ 0.96–0.97.

Taking into consideration the finding that absorbance 
showed a slightly stronger correlation with theoretical con-
centration, together with the data presented above, it was 
decided to compensate absorbance data using the theo-
retical concentrations in the following final results of this 
laboratory experiment. For reference, figures using similar 
analysis as shown in Sect. 3.2 and Sect. 3.3 using meas-
ured rather than theoretical concentration are available for 
consultation in the supplementary material. Since devia-
tions between measured and theoretical concentrations are 
essentially constant for each tested soil sample (i.e. deviation 
percentages are independent of theoretical concentrations; 
see Fig. 3), the calculated ‘expected’ mixture concentrations 
and the measured mixture concentrations should correspond 
(Table 1). These results confirm that there is no need to com-
pensate absorbance readings for concentration effects when 
comparing soil samples and mixtures that are using the same 
theoretical concentrations.

3.2 � Patterns in absorbance spectra

Average increases in absorbance were found to be greater for 
smaller than for larger particle sizes (Fig. 4). Standard devia-
tions for all soil samples were relatively small, with val-
ues mostly < 10% compared with their average values. The 
exceptions here were standard deviations of 11.8%, 12.7% 
and 14.3% for soil samples #1.3, #6.2 and #5.3, respectively 
(Fig. 4a). Furthermore, soil sample #1.3 showed a devia-
tion exceeding 10% for the 210-nm (14.3%) and 400-nm 
(12.4%) wavelengths (Fig. 4b, c). For the 700-nm wave-
length (Fig. 4d), only soil sample #5.3 showed a deviation 
exceeding 10% (10.3%).

The Mann–Whitney test results (Table 2) showed that 
three pairs of soil samples were not significantly different 
(average of all wavelengths). Six pairs of samples were not 
significantly different for the 210-nm wavelength, and two 
pairs of samples were not significantly different for the 400-
nm and 700-nm wavelengths, respectively. These pairs of 

Table 1   Deviations between 
expected and measured artificial 
mixture concentrations

Total n values n values 
 < 5% deviation
(in %)

n values
 < 10% deviation (in %)

n values
 < 20% deviation (in %)

2-sample mixture 115 50 (43.5%) 71 (61.7%) 100 (87.0%)
3-sample mixture 65 30 (46.2%) 43 (66.1%) 60 (92.3%)
4-sample mixture 50 29 (58.0%) 35 (70.0%) 45 (90.0%)
All mixtures 230 108 (47.0%) 147 (63.9%) 201 (87.4%)
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soil samples (Table 2) were also not significantly different 
when analysing the average of all wavelengths. From the 
pairs shown in Table 2, only 1 combination (#3.1–#5.1) was 
used together in an artificial mixture (Table A2).

Finer particle sizes (i.e. a smaller mean effective parti-
cle size measured with the LISST 200X sensor) resulted in 
larger average increases in absorbance per mg L−1, whilst 
coarser particle sizes showed smaller average increases per 
mg L−1. This relationship appears to be logarithmic, with 
an r2 value of 0.78 (Fig. 5). Analyses performed when using 
measured concentrations, instead of theoretical concentra-
tions, showed rather similar outcomes (Fig. A7 and Fig. A8).

3.3 � Linear additivity

Comparison of expected and measured mixture absorbance 
(Eq. 2) generated deviations of generally < 20% (Fig. 6). 
This was true for all mixtures except for three values where 
the deviations were slightly higher. Furthermore, a high 
percentage of the values (57%, 63% and 82% for the two-, 
three- and four-soil sample mixtures, respectively) showed 

deviations of < 10%. Deviations of < 5% were noted for 35% 
(two-sample mixture), 25% (three-sample mixture) and 6% 
(four-sample mixture) of the artificial mixture values. Values 
can be positive or negative, indicating whether the expected 
absorbance (Formula 2) is higher or lower than the absorb-
ance measured directly for the artificial mixture. In Fig. A9, 
the deviations between the expected and measured absorb-
ance are shown, with absorbance being compensated for 
measured concentrations.

3.4 � Un‑mixing artificial mixtures (MixSIAR)

The MixSIAR calculations using the two-soil sample 
mixtures showed that dominant soil sample contributions 
were reliably predicted (Fig. 7, Fig. A10). MixSIAR pre-
dicted the correct dominant soil samples for ten out of 
eleven such mixtures. From these mixtures, eight showed 
an overestimation of the dominant soil sample. For mix-
ture 11, the dominant sample was not well predicted, 
with MixSIAR outputting equal contributions of the soil 
samples mixed. For the one mixture using equal (50%) 

Table 2   Mann–Whitney test results for soil samples that were not 
significantly different (p > 0.05) for the average of all wavelengths, 
210  nm, 400  nm and 700  nm. Soil samples are indicated by #soil.

fraction, with ‘soil’ representing the test soils (n = 6, Fig.  1), and 
‘fraction’ the sieved fraction size (.1 for < 32 μm; .2 for 32–63 μm; .3 
for 63–125 μm)

Average of all wavelengths p-value 210 nm p-value 400 nm p-value 700 nm p-value

#1.3 and #3.3
#1.3 and #5.2
#3.3 and #5.2

0.58
0.19
0.44

#2.1 and #4.1
#3.1 and #5.1
#1.2 and #4.2
#1.3 and #3.3
#1.3 and #4.3
#2.3 and #3.2

0.97
0.44
0.052
0.12
0.74
0.089

#1.3 and #3.3
#3.3 and #5.2

0.48
0.85

#1.3 and #3.3
#3.3 and #5.2

0.97
0.25

Fig. 2   Laboratory setup: a side view schematic representation with dimensions in cm; b top view schematic representation with water sampling 
locations #1, #2 and #3, and c photograph
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contributions (mixture 8), MixSIAR over-predicted (70%) 
and under-predicted (30%) the known relative contribu-
tions. The results of the tests using artificial mixtures with 
different particle size fractions (mixtures 10, 11 and 12) 
indicated there were no clear differences in MixSIAR pre-
dictions compared with those from the artificial mixtures 
using samples sieved to the same particle size fraction.

For the eight artificial mixtures using three soil sam-
ples, MixSIAR predicted the dominant soil sample contri-
bution well in six cases. From these six cases, MixSIAR 

over-predicted the contribution of the dominant soil for 
mixtures 18 and 20, whereas it under-predicted the contri-
bution of the dominant contributing soil sample for mix-
tures 14, 15, 16 and 17. Mixtures 18 and 20 were, together 
with mixture 17, the mixtures using samples sieved to dif-
ferent particle size fractions. In the case of mixture 19, 
MixSIAR predictions deviated from the known inputs, 
with the more dominant soil sample (50%) constantly 
being predicted by the model as the soil sample with least 
contribution.

Fig. 3   Average and standard 
deviation (n = 3) of measured 
concentrations inside the 
experimental tank expressed 
as a percentage of the theoreti-
cal concentrations for the six 
test soils (Fig. 1), sieved to 
a < 32 µm, b 32–63 µm and c 
63–125 µm. Error bars are plot-
ted adjacent to the dots which 
represent the mean values
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For the four-soil sample mixtures, four out of five were 
mixed to have a clearly dominant contributing (70%) soil 
sample. Dominant contributions in mixtures 21 (under- 
estimated compared to known input) and 25 (over-estimated 

compared to known input) were predicted by MixSIAR. 
For mixture 22, the model failed to predict a dominant soil 
sample, and for mixture 24, an erroneous soil sample was 
predicted as the dominant source. In the case of mixture 

Fig. 4   Average increases in absorbance per mg L−1 (absorbance val-
ues divided by theoretical concentrations) for average absorbance 
over a all wavelengths, b 210  nm, c 400  nm and d 700  nm, for all 
17 soil samples (indicated by #soil.fraction, with ‘soil’ represent-
ing the test soils (n = 6), and ‘fraction’ the sieved fraction size (.1 

for < 32 μm; .2 for 32–63 μm; .3 for 63–125 μm). Values inside the 
plot refer to the average (PSD) and standard deviation (SD) of meas-
ured particle size distributions per sample and dry sieved fraction 
measured with the LISST sensor inside the experimental tank

Fig. 5   Relationship between 
average increases in absorb-
ance per mg L−1 (absorbance 
values divided by theoretical 
concentrations) as a function of 
average particle size measured 
with the LISST sensor inside 
the experimental tank. Particle 
size values and corresponding 
standard deviations were calcu-
lated for every sample and for 
every concentration separately
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23, with known equal (25%) proportions for all four soil 
samples, the predictions from MixSIAR showed variable 
levels of agreement.

Table A3 presents an overview of the accuracy of the 
MixSIAR predictions relative to the known soil sample pro-
portions comprising the different artificial mixtures. Abso-
lute errors varied between 6 and 26.7% for the two-sample 
mixtures, between 1.8 and 41.0% for the three-sample 
mixtures, and between 2.8 and 48.8% for the four-sample 

mixtures. Standard errors for the MixSIAR predictions 
were also calculated, returning values ranging up to 6.2%, 
10.7% and 3.2% for the two-, three- and four-soil sample 
mixtures, respectively. Not all models passed the Gelman-
Rubin diagnostics, where variables exceeding the value of 
1.1 were observed in one or several concentrations within 
five out of eight three-sample mixtures and in all five four-
sample mixtures. Details on the Gelman-Rubin diagnostics 
are shown in Table A4.

Fig. 6   Deviations between 
measured absorbance and 
‘expected’ absorbance based on 
a single soil sample absorbance  
signal (mass-balance), shown 
for a two-, b three- and c four- 
soil sample mixtures. Red dots  
a indicate those situations in 
which absorbance values from 
the artificial mixtures are larger 
or smaller than the absorbance 
values measured for both indi-
vidual soil samples compris-
ing that mixture (concerned 
mixtures are indicated by * in 
the legend)
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4 � Discussion

4.1 � Specific considerations for using 
the high frequency spectrophotometer approach

Absorbance data are known to be influenced by concentra-
tion (Thomas et al. 2017). Our results show that concen-
trations are strongly linearly correlated with absorbance 

(Fig. A4 and A5). However, the correlations are soil sample-
dependent, which renders it necessary to correct the absorb-
ance data from each soil sample with its specific concentra-
tion when comparing different soil samples. As the aim here 
was to un-mix artificial mixtures into the known individual 
contributions of the constituent samples, it is essential to 
make sure that compensation is made for the correct con-
centrations in order to avoid over- or under-estimations of 

Fig. 7   Selection of un-mixing results for artificial mixtures of two 
soil samples (mixtures 1 and 12), three soil samples (mixtures 14 
and 20) and four soil samples (mixtures 22 and 25) using MixSIAR 
at increasing theoretical concentrations. Model predictions are com-

pared with the known proportions (theoretical input) of soil samples 
mixed (indicated by #soil.fraction, with ‘soil’ representing the test 
soils (n = 6), and ‘fraction’ the sieved fraction size (.1 for < 32 μm; .2 
for 32–63 μm; .3 for 63–125 μm)
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contributions. To this end, theoretical input concentrations 
were compared with measured concentrations. Theoretical 
concentrations are subject to the mixing processes inside the 
tank and the possible incomplete suspension of particles. 
This latter process seems to be important in the measured 
concentration results, showing that samples sieved at a larger 
mesh size deviate more from theoretical concentrations 
(Fig. 3). Despite this observation, and based on the data 
shown in Fig. 3 and Table 1, losses observed in measured 
concentrations were consistent. These concentrations were, 
however, subject to representative sampling and weighing 
errors, and show slightly weaker correlations with absorb-
ance, hence the use of theoretical concentrations in this 
study.

In addition to the influence of concentration, particle 
size affects absorbance readings (Berho et al. 2004). Finer 
particles, at the same concentrations, resulted in higher 
absorbance values over the whole range of wavelengths 
compared with particles with coarser sizes. Together with 
the influence that particle size can have on sediment prop-
erties (Collins et al. 2017; Laceby et al. 2017), different 
particle sizes can also induce different absorbance patterns 
over specific wavelength ranges, as certain wavelengths 
might be subject to specific SS properties (Byrne et al. 
2011). These differences were, however, found to be rather 
small in the present study (Figs. 4 and A7) when compared 
with the effects of concentration and particle size. Since 
the LISST sensor measurements showed that particle size 
is an intrinsic SS property remaining unchanged (assuming 
minimal dissolution of particles and minimal breakdown of 
particles in suspension) during the experiments presented 
here, the analysis focused more on the compensation of 
absorbance in relation to concentration so as to allow 
proper comparisons between the absorbance values of the 
soil sources and between the absorbance values of the soil 
sources and target SS.

Effective tracers or fingerprints should behave in a lin-
early additive manner (Walling et al. 1993; Lees 1997). Our 
results show that the absorbance readings of particles sus-
pended in distilled water are linearly additive (Fig. 6) and 
consistently so over the range of concentrations tested. Some 
deviations were found, however, at the lower concentrations, 
which are likely to be due to the smaller amounts of particles 
and thus larger relative errors where mixing is inconsist-
ent or incomplete. In testing the linear additivity, artificial 
mixtures containing samples sieved to the same or different 
particle size fractions were used. The two groups of samples 
did not show significantly different results for linear additiv-
ity (Fig. 6). Tests in which only finer or only coarser size 
fractions were used did not result in clear differences in the 
linear additivity.

The un-mixing results using the MixSIAR model fol-
lowed a similar pattern to the results for the linear additivity 

tests. Higher deviations between modelled and known soil 
sample proportions occurred at the lowest concentrations 
but were found to deviate less at higher concentrations. No 
significant difference in performance was found when un-
mixing soil samples sieved to the same or different particle 
size fractions (Table A3). These results contrast with obser-
vations reported by Gaspar et al. (2019), who found estima-
tions were less reliable at finer particle sizes. Gaspar et al. 
(2019) tested the un-mixing performance of artificial soil 
mixtures (dry material), looking at geochemical composi-
tion, using estimations from the FingerPro model. However, 
these authors only sieved one mixture to three different size 
fractions (with 10 replicates for each fraction) whereas the 
source samples were sieved to just one fraction (< 63 µm). 
On the contrary, in the present study, the soil sources were 
sieved to different size fractions (no replicates, with differ-
ent concentrations tested). Our approach thus results in a 
comparison between mixtures and sources with a common 
particle size range and helps to eliminate uncertainties in the 
un-mixing induced by particle size.

It is informative to compare results of the present study to 
others with respect to the accuracy of un-mixing, although 
it is important to acknowledge that un-mixing model struc-
tures vary and this can influence performance. Haddadchi 
et al. (2014) tested four different mixing models (Modi-
fied Hughes, Modified Collins, Landwehr and Distribution 
models) using the geochemical properties of sources and 
mixtures, with mixtures being artificially created. Maximum 
model deviations ranged from 10.8 to 29% depending on the 
model used, indicating that therefore the choice of the un-
mixing model is an important consideration, with the choice 
partially depending on the type of tracer used (Haddadchi 
et al. 2014). Gaspar et al. (2019) reported a maximum AE of 
10% for un-mixing using both dominant and non-dominant 
mixtures (using elemental geochemistry). The present study, 
in comparison, found AE > 10% in most of the 25 different 
mixtures (except 2 out of the 12 two-sample mixtures and 3 
out of the 8 three-sample mixtures), with maximum AE up 
to 26.7% for two-sample mixtures, 41.0% for three-sample 
mixtures and 48.8% for four-sample mixtures. The observed 
high AE for the three-sample mixtures is an extreme value 
however, since the second highest AE shows a value of 
27.7%. Furthermore, the extreme outlier in the three-sample 
mixtures was found in mixture 19 where soil sample contri-
butions added were rather equal (20%, 30%, 50%), whilst the 
extremes in the four-sample mixtures were found in mixtures 
22 and 24 where there was a clear dominant soil sample 
present (70%, with other soil sample contributions of 10%). 
These results suggest that the absorbance readings from a 
submerged spectrophotometer can be used as fingerprints 
and thus to estimate the soil sample contributions of two- 
and three-sample artificial mixtures with similar accuracy 
than the existent methods. However, some of the four-sample 
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artificial mixtures showed unacceptably high AE, showing 
the limitation of the method to distinguish four soil samples 
when these present similar absorbance signals.

Models for the three- and four-sample mixtures did not 
always converge, exceeding the Gelman-Rubin diagnostics 
threshold value. Tests showed that increasing the number of 
iterations (chain length) improved the diagnostics for cer-
tain mixtures. However, we decided not to extend beyond 
the selected ‘short’ settings due to long computation times 
(> 5 days for each model run). Furthermore, we observed 
that, for all but one mixture, certain concentrations satisfied 
the diagnostics. Combined with the consistency in modelling 
results over the different concentrations within each mixture, 
this indicated the reliability of the modelling outcomes for 
those situations in which the diagnostics were not satisfied.

These highest AE values found herein can be partly 
explained by examining the spectra in more detail. For the 
two source artificial mixtures, the high AE (20%) values 
were seen in situations where the mixture absorbance values 
did not fall in between the range of absorbance values of the 
individual soil samples mixed (i.e. the artificial mixture has 
lower or higher absorbance values compared to the values 
of the individual soil samples; see also red dots indicated in 
Fig. 6). Failures can be due to small deviations in concentra-
tions (e.g. settling), as expected and aimed concentrations 
slightly differ (Fig. 3). Such situations violate the so-called 
bracket or range test used as a conventional screening step in 
sediment source fingerprinting decision trees (Collins et al. 
2017). Failure of the bracket test was only observed in the 
case of mixtures using two soil samples (Fig. 6a; for 23% of 
the total values here). Using measured instead of theoreti-
cal concentrations did not improve this result, resulting in a 
larger number of violations (Fig. A9). In the three soil source 
mixtures, predicted soil source contributions seemed to vary 
between soil samples that show a similar course of absorb-
ance values over the whole range of measured wavelengths. 
This was, for example, observed for mixtures 13 and 16. 
MixSIAR failed to predict one clear dominant soil sample 
in these mixtures (i.e. 70% and 80% dominant soil samples 
used as input), but rather predicted two soil samples each 
with relatively high contributions around 40–50%. These 
two soil samples exhibit the same absorbance patterns (i.e. 
the absolute differences between the absorbance values of 
the soil samples are highly similar at all wavelengths tested); 
using the model to predict the dominant soil sample under 
such circumstances is problematic. The same pattern holds 
for the four-soil sample mixtures; in both mixtures 22 and 
24 (with the highest reported AE values), the model failed to 
predict the dominant soil source. Both these mixtures used 
soil samples 1.1 and 3.1, which had absorbance values that 
showed minimal deviations between them (absolute values) 
and followed the same patterns (i.e. small absolute differ-
ences between all wavelengths tested), making it difficult 

for the model to differentiate between these two soil source 
samples. Furthermore, the mixture absorbance data in both 
these mixtures plotted exactly in between the absorbance 
values of the two soil samples; this most likely caused the 
model to fail to predict the correct dominant soil source. 
This outcome can be observed in Fig. A10, where model 
predictions show more equal contributions for the artificially 
mixed soil samples (mixture 22) and a more dominant soil 
sample 1.1 (mixture 24) despite soil sample 3.3 being the 
dominant soil source in both mixtures.

Scaling up beyond the laboratory scale, it would be 
informative to use independent evidence to validate any 
source apportionment estimates using absorbance spectra 
(which need to be statistically significantly different for the 
individual sources in question). However, this requirement 
for independent evidence is difficult to fulfil meaning that 
many source fingerprinting studies continue to rely on the 
use of mixture tests as verification of predicted source pro-
portions (Collins and Walling 2004).

4.2 � Wider implications for SS fingerprinting

The use of sensors that measure spectrophotometrically at 
high frequency in situ substantially reduces the need for 
extensive analyses in the laboratory in conjunction with 
the collection of conventional physical water samples; such 
sensors thereby allow much faster acquisition of tracer data 
(Martínez-Carreras et al. 2016), due to the in situ measure-
ments. Therefore, despite the initial purchasing costs of the 
spectrophotometer (~ 20,000 USD), and the need to con-
trol for sensor drifts to validate the absorbance data results 
(Gamerith et al. 2011), total costs decrease over time. This is 
in contrast to classical sediment fingerprinting approaches, 
wherein laboratory analyses of all samples are required 
(e.g. different geochemistry analyses estimated at as much 
as ~ 1500–2000 USD per sample; Horowitz 2013), increasing 
both labour and analysis costs substantially when increasing 
measurement intervals and sampling campaign duration. The 
collection of absorbance data in situ could therefore improve 
the temporal resolution of sediment source fingerprinting 
and eventually give better insights into how sources of SS 
change over short time scales. This evidence gap has been 
highlighted by Navratil et al. (2012) and Vercruysse et al. 
(2017), who argued that a better understanding of sediment 
dynamics over short time scales is key to improving sedi-
ment transport modelling and for devising more robust solu-
tions to catchment sediment management problems. With 
regard to the present study, it clearly remains important to 
test the use of the spectrophotometer for un-mixing source 
contributions in real-world settings, including at catchment 
scales. In the experiments here, using Luxembourgish soil 
samples with differences in both colour and expected geo-
chemistry, absorbance data of the soil samples were in most 
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situations sufficiently different for un-mixing. It is therefore 
a prerequisite to investigate if absorbance spectra responses 
of potential SS sources in a real-world setting are sufficiently 
different enough to allow source discrimination.

Initial steps to identify areas or sources that could permit 
robust discrimination could be based on, for instance, dif-
ferences in underlying geology as was done in this study. 
Looking at the results presented herein, seeing the uncer-
tainties associated with four-sample mixtures, applying this 
approach in a field setting might require the selection of a 
limited number of potential sources to avoid poor discrimi-
nation and thus poor source apportionment results. Another 
approach that could potentially increase the ability to dif-
ferentiate between sediment sources could be achieved by 
selecting only a number of wavelengths (i.e. selecting those 
tracers that best discriminate between sources). Reducing 
the number of tracers could also overcome issues with the 
long model calculation times faced when using all wave-
lengths as tracers.

Dissolved compounds in natural waters (e.g. nitrates and 
DOC) will influence the absorbance readings of the spec-
trophotometer (D’Acunha and Johnson 2019). Furthermore, 
the composition of the water (which was compensated for in 
the present study by subtracting the blank water background 
signal from the absorbance data) may well fluctuate in field 
settings (Wilson et al. 2013). To establish this background 
signal in field conditions might be challenging and ways to 
overcome this remain to be investigated. One possible solu-
tion to this challenge might be to use only absorbance values 
from those wavelengths that are less responsive to dissolved 
compounds. This consideration warrants further research.

In our proof-of-concept laboratory experiments, the indi-
vidual soil sample (‘source’) absorbance spectra were suf-
ficiently able to un-mix the majority of the absorbance spec-
tra of the artificial soil mixtures. However, the absorbance 
signatures of potential SS sources (e.g. surface soils and 
channel banks) would be difficult to obtain because the spec-
trophotometer employed in this study is only able to measure 
whilst submerged. One approach here could be to sample 
material being mobilised and routed from potential sources 
towards the river channel (e.g. from rill erosion, or during/
immediately after rainfall events when clear patterns of ero-
sion or mobilisation of source materials have emerged). Such 
intermediate sampling would help address uncertainties 
associated with particle size selectivity (Laceby et al. 2017) 
and ensure, when measuring in a laboratory experiment as 
presented in this study, direct comparison of absorbance 
spectra representative of eroded material from individual 
sources with the spectra for SS. Clearly, however, the use 
of the approach reported herein would face challenges for 
some source types on this basis, with the obvious problem-
atic source being eroding channel banks. Given the juxtapo-
sition of banks to the river water, all particle size fractions 

are delivered to the water column, since there is no runoff 
pathway to result in selective delivery. Given this issue, it is 
more likely that the use of spectrophotometers in situ will 
be more relevant to un-mixing spatial SS sources using a 
confluence-based approach (e.g. Wynants et al. 2020). Here, 
sensors could be placed near the outlets of tributaries to 
create an archive of absorbance spectra of tributary-based 
spatial sources and on the main stem further downstream to 
represent the spectra of target SS. Concentration issues could 
be handled similarly to the laboratory experiment reported 
herein since by dividing the absorbance of both sources 
(i.e. tributaries) and the main stem measurements by the 
measured concentrations (which could be estimated using 
sediment rating curves, showing the relationships between 
SSC and turbidity using either turbidity meters or using the 
turbidity measured by the spectrophotometer itself), they 
can be scaled to the same SS concentrations (Fig. 4). Spec-
trophotometers can be equipped with an automatic brush 
(ruck::sack; Scan Messtechnik GmbH, Vienna, Austria) that 
cleans the sensor lens before every measurement. Next to 
that, optical sensors require regular maintenance to avoid 
instrument drifts caused by biofouling (e.g. bi-weekly clean-
ing as proposed by Martínez-Carreras et al. 2016).

5 � Conclusions

The following conclusions can be drawn from the laboratory 
experiments conducted herein:

(1)	 Absorbance data and concentration show a strong 
linear relationship. It is thus essential to compensate 
absorbance data with concentration to un-mix different 
sources in artificial mixtures.

(2)	 There is a logarithmic relationship between absorbance 
and particle size, with a strong influence of particle size 
on the absorbance data with increasing concentrations 
(e.g. finer particle sizes result in higher absorbance val-
ues per mg L−1).

(3)	 Absorbance data behave in a linearly additive man-
ner, with deviations between expected and measured 
absorbance for artificial mixtures being < 20% for all 
comparisons and < 10% for more than half of the cases.

(4)	 The MixSIAR model mostly successfully un-mixed the 
artificial soil sources (with an average AE of 14.9% for 
all soil samples in all mixtures), correctly predicting 
dominant soil samples in the mixtures. The MixSIAR 
model worked better for the two- and three-soil sam-
ple mixtures in the present study. Results for the four-
sample mixtures were less promising, but most likely 
inherent to the choice of soil samples used in those 
mixtures.
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To be able to use the approach described in field settings, 
the following issues must be addressed:

(1)	 There is a need to create robust methods to define sedi-
ment source absorbance signals. A key challenge here 
is the selection of the most appropriate sediment parti-
cle size to define source material absorbance. A prereq-
uisite is that the sediment sources result in absorbance 
signals that are sufficiently different to provide a basis 
for robust source discrimination and apportionment.

(2)	 Concentrations of SS need to be measured accurately. 
This information is needed to compensate the absorb-
ance data for concentration in order to compare source 
absorbance data with the corresponding target SS data.
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