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Abstract

Purpose This study tests the feasibility of using a submersible spectrophotometer as a novel method to trace and apportion
suspended sediment sources in situ and at high temporal frequency.

Methods Laboratory experiments were designed to identify how absorbance at different wavelengths can be used to un-mix
artificial mixtures of soil samples (i.e. sediment sources). The experiment consists of a tank containing 40 L of water, to
which the soil samples and soil mixtures of known proportions were added in suspension. Absorbance measurements made
using the submersible spectrophotometer were used to elucidate: (i) the effects of concentrations on absorbance, (ii) the
relationship between absorbance and particle size and (iii) the linear additivity of absorbance as a prerequisite for un-mixing.
Results The observed relationships between soil sample concentrations and absorbance in the ultraviolet visible (UV-VIS)
wavelength range (200—730 nm) indicated that differences in absorbance patterns are caused by soil-specific properties and
particle size. Absorbance was found to be linearly additive and could be used to predict the known soil sample proportions in
mixtures using the MixSIAR Bayesian tracer mixing model. Model results indicate that dominant contributions to mixtures
containing two and three soil samples could be predicted well, whilst accuracy for four-soil sample mixtures was lower (with
respective mean absolute errors of 15.4%, 12.9% and 17.0%).

Conclusion The results demonstrate the potential for using in situ submersible spectrophotometer sensors to trace suspended
sediment sources at high temporal frequency.

Keywords Sediment fingerprinting - UV-VIS spectrophotometer - High temporal frequency - In situ measurements -
Sediment source tracing - MixSIAR

1 Introduction

Suspended sediment (SS) plays an essential role in the
hydrological, geomorphological and ecological function-
ing of aquatic ecosystems (Owens et al. 2005; Bilotta and
< Niels F. Lake Brazier 2008; Wohl et al. 2015; Vercruysse et al. 2017).
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2006; Affandi and Ishak 2019). Hence, the need to identify
the sources of SS is increasingly recognised as a priority to
support management strategies for stream ecology, geomor-
phology and water quality issues (Walling and Collins 2008;
Mukundan et al. 2012; Collins et al. 2017) in alignment with
environmental policies (e.g. European Commission 2000).

Sediment fingerprinting is one direct approach to estimat-
ing SS contributions from catchment sources. This approach
compares properties of potential source materials with prop-
erties of SS, using distinct diagnostic signatures or so-called
composite fingerprints comprising several constituent proper-
ties (e.g. Oldfield et al. 1979; Peart and Walling 1988, 1986;
Walling and Woodward 1992). These properties are selected
on the basis that they are clearly distinctive between individual
sources, allowing for the un-mixing of SS to estimate source
proportions.

Despite the fingerprinting approach being increasingly
adopted globally (see reviews by Haddadchi et al. 2013;
Owens et al. 2016; Collins et al. 2017, 2020; Guan et al.
2017; Tang et al. 2019), there remain some major limitations
that continue to hamper its use as either a scientific or man-
agement tool. These limitations include the pre-selection
of the most robust fingerprints for different environmental
settings (Koiter et al. 2013; Collins et al. 2020) and methods
for SS sampling (Haddadchi et al. 2013). Robust fingerprint
properties must both differentiate between potential SS
sources and behave conservatively during mobilisation and
delivery to the river, stream or lake (Walling et al. 1993).
Conservative behaviour is important because erosion and
SS transport processes are particle size selective which, in
turn, influences sediment properties and the reliability of
the direct comparisons between source materials and target
SS samples (e.g. Collins et al. 2017; Laceby et al. 2017).
A major limitation associated with common SS sampling
methods concerns the limited insights they provide on how
sediment sources change over short (i.e. minutes) time inter-
vals and during longer (e.g. seasons or years) periods (e.g.
Navratil et al. 2012; Vercruysse et al. 2017; Collins et al.
2020). The commonplace deployment of time-integrating
samplers (Phillips et al. 2000), for example, is limited with
regard to the temporal resolution of the SS source estimates
generated (often limited to one or a small number of sam-
ples per event; Collins and Walling 2004). Furthermore,
sediment particle size and geochemical properties might
be altered during sampling deployment and sample storage
prior to analysis (e.g. due to adsorption/desorption; Smith
and Owens 2014). The collection and use of high frequency
instantaneous SS samples are constrained by the associated
analytical costs for many fingerprint properties/tracers com-
monly used in source fingerprinting investigations (Collins
and Walling 2004; Haddadchi et al. 2013). High frequency
observations (minutes) for prolonged periods could contrib-
ute to the understanding of catchment sediment dynamics

(e.g. which SS sources are active under what conditions),
which is key to eventually taking suitable countermeas-
ures against excessive sediment input to rivers and streams
(Navratil et al. 2012; Vercruysse et al. 2017).

The current absence of well-established methods to meas-
ure SS properties in situ at high frequency compounds the
current limited capacity to document SS source contributions
over short time intervals for longer durations of measurement.
Thus far, attempts to overcome this limitation still rely on the
collection of physical samples in the field at high frequency,
in conjunction with subsequent laboratory analyses of tracer
properties. Such work has included the use of diffuse reflec-
tance infrared Fourier transform spectrometry (e.g. Poulenard
et al. 2012; Cooper et al. 2015, 2014), spectral reflectance
analysis of sediment chemical properties on samples placed on
glass fibre filters (Martinez-Carreras et al. 2010a; Cooper et al.
2014), colour parameters obtained from spectro-colorimetry
(Martinez-Carreras et al. 2010b), colour parameters derived
from office scanners (Pulley and Rowntree 2016) and deploy-
ment of handheld XRF instruments (Smith and Blake 2014).
Whilst these procedures reduce resource needs for the analy-
sis of tracer properties in numerous target sediment samples,
they do not overcome the resource needs pertaining to high
frequency collection of such samples.

Submersible spectrophotometer sensors, widely used
for drinking water quality monitoring (e.g. D’Acunha and
Johnson 2019; Gonzalez-Morales et al. 2020; Prairie et al.
2020), may, however, offer a reliable means to provide data
on SS fingerprint properties at high frequency. Bass et al.
(2011) and Martinez-Carreras et al. (2016) used submers-
ible spectrophotometer sensors, measuring absorbance in the
ultraviolet visible (UV-VIS) range, to estimate SS properties
in situ. The former used such a sensor to estimate particulate
organic carbon content, whilst the latter estimated sediment
loss-on-ignition, with both studies calibrating the sensor
readings using physical samples. This work demonstrated
the potential value of such sensors to discriminate between
sediment sources with contrasting tracer properties and for
un-mixing source proportions. The ability of these sensors
to measure in situ suggests limited physical SS sampling is
only required for sensor validation. Furthermore, given the
facility to measure at high frequency (e.g. minutes) for long
duration, since maintenance needs of the sensor are low, a
spectrophotometer sensor has the potential to resolve current
constraints pertaining to both sediment sampling and ensuing
tracer analysis.

When the influence of dissolved species in water is
negligible, absorbance measurements are mainly affected
by SS concentration (Thomas et al. 2017) and the size
of the SS particles (Berho et al. 2004). Thomas et al.
(2017) reported that absorbance increases with SS con-
centrations. Berho et al. (2004) showed that smaller par-
ticles resulted in higher absorbance values than coarser
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particles with the same minerology. These studies clearly
demonstrated that the exact relationships between absorb-
ance and both concentration and particle size warrant
detailed investigation to determine if, and to what extent,
absorbance values need to be compensated to facilitate
high frequency sediment source fingerprinting.

Given the above context and the ongoing need to con-
tinue testing devices for assembling high temporal reso-
lution data on SS properties in situ, we conjecture that
the absorbance readings of a submerged spectrophotom-
eter can be used as sediment fingerprints to estimate SS
sources. Herein, we present a proof-of-concept laboratory
experiment where we use absorbance data to un-mix artifi-
cial mixtures of soil samples sieved to three different par-
ticle size fractions. To this end, we tested how the absorb-
ance data is influenced by SS concentration and particle
size distribution, as well as the suitability of the absorb-
ance data for estimating sediment source proportions.

2 Materials and methods
Experimental assessment of the submersible spectrophotom-

eter was undertaken in a series of laboratory tests. Soil sam-
ples of known origin and composition were used to create a

a)

Belgium

France

[: Sandstone and conglomerates

- Sandstone (dolomite and marls)

- Marls and sandstone

[ Calcereous sandstone (Luxembourg sandstone)
]_ Marls and limestone

- Fluvial sediments

- Marls and argillites

- Sandstone (marls and dolomite)

]_ Calcareous sandstone

- Mudstone, marl, sandstone, conglomerate
I Marls, argilites and iron ore

- Qolitic iron stone (Minette)

series of water samples containing SS of differing composi-
tion and concentration; measurements of absorbance spectra
in situ could then be interpreted in relation to the compo-
sition and concentration, and to the expected outcomes in
terms of the spectra.

2.1 Soil samples and artificial mixtures

Six soil samples were collected in Luxembourg based on
differences in colour (visual inspection) and differences in
underlying geology (Fig. 1). Soils were air-dried at room
temperature before being disaggregated manually using a
pestle and mortar. Samples were then dry sieved to three
different size fractions: <32 pm, 32-63 pm and 63—125 pm.
Due to its particle size distribution, retrieving the 63—125 pm
fraction of soil 6 was not possible and this soil sample was
therefore omitted, resulting in 17 size-fractionated soil
samples. The fractions were selected based on commonly
used upper particle size boundaries in sediment fingerprint-
ing studies (see Laceby et al. 2017). Minerology of the soil
samples is shown in Table A1l.

From the resulting 17 size-fractionated soil samples, we
created artificial mixtures of two, three and four different
samples. Mixtures were classified into two groups: (i) mix-
tures of soil samples sieved to the same particle size fraction

b)

N Soil sampling locations
A O soil
Lithology
- Schist, sandstone and quartzite
Germany - Schists, and siliceous sandstones Soil 1 Soil 2

Soil 3 Soil 4

Soil 5

Soil 6

Kilometers

20 30 40

Fig. 1 Soil sampling locations within Luxembourg a and images of the six collected soils b. Source N.-W. Europe map a adapted from: ArcGIS
online (Europe_data_ WG_NPS); source geological map of Luxembourg a: Service Géologique du Luxembourg
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and (i) mixtures of soil samples sieved to different size frac-
tions. The soil sample contributions to the artificial mixtures
were based on having either a clearly dominant sample or
more equal contributions (see Table A2).

2.2 Sensors

Laboratory experiments used the S::can spectro::lyser™
probe (Scan Messtechnik GmbH, Vienna, Austria) submers-
ible spectrophotometer. This sensor measures transmittance
of a light beam (i.e. xenon-flash light) after contact with
water in the optical measurement window, which is then
converted to absorption over the UV-VIS wavelength range
(200-730 nm, at 2.5-nm intervals). The detector is located
at the opposite side of the optical window. Measurement
frequency was set at 2-min intervals, which is the small-
est interval possible. Measured absorbance data were saved
onto the corresponding Con::cube logger (Scan Messtechnik
GmbH, Vienna, Austria).

In tandem with the spectrophotometer, a LISST-200X
laser diffraction (Agrawal and Pottsmith 2000) sensor
(Sequoia Scientific, Bellevue, WA, USA) was used to meas-
ure particle size distribution. This instrument works on the
principle of laser diffraction with a laser beam emitted by a
laser diode (Agrawal and Pottsmith 2000). The LISST sensor
assigns the diffracted laser beams into one of 36 sediment
size classes, providing estimates of particle size distribution
and average particle size. Measurements were taken at 1.5-s
intervals using the random shape model algorithm (Sequoia
Scientific 2018).

2.3 Laboratory setup

The laboratory setup consisted of a 75.4-L capacity, round
tank. The spectrophotometer and LISST sensor were
installed in a horizontal orientation to prevent sedimentation
of particles on the measuring windows (Fig. 2a, c). Using
40 L of demineralised water, both sensors were located
more than 10 cm below the water surface as advised by the
manufacturers.

Homogeneous concentrations inside the tank were estab-
lished using a Fundamix vibromixer (DrM, Dr. Mueller AG,
Switzerland), a vibrating device. This method avoids cone
and vortex formation which are possible with rotational
stirring techniques (Orlewski et al. 2018). To test homo-
geneity of concentrations during the experiments, water
samples were collected at three locations within the tank
setup (Fig. 2¢) using a pipette (see Fig. A1, A2 and A3 for
initial testing on vibromixer speed and position, and homo-
geneity of concentrations at different depth and locations;
supplementary material). These samples were subsequently

transferred into pre-weighted aluminium buckets, dried and
weighed again to determine concentrations. These con-
centrations (hereafter referred to as ‘measured concentra-
tions’) were determined for all theoretical concentrations
(10 concentrations in total; 100-1000 mg L™" at 100 mg L~!
increments) for all experiments (20 values associated with
erroneous measurements were omitted). Selected theoreti-
cal concentrations are representative of SS concentrations
values measured across Luxembourgish rivers (Martinez-
Carreras 2010). The experiments consisted of testing the 17
soil samples individually, followed by testing the 25 artificial
soil sample mixtures (see Table A2 for a detailed overview
of the experiments and known soil sample contributions in
the artificial mixtures and Protocol A1 for more detail of the
steps adopted during the experiments and specific equipment
settings).

2.4 Data pre-treatment

LISST background measurements, taken before each exper-
iment, were saved onto the instrument and automatically
compensated for by the LISST software during subsequent
measurements. Accordingly, the spectrophotometer absorb-
ance data were compensated by using the data collected
before the start of the actual experiment (i.e. subtracting the
background readings from all consecutive absorbance data
readings acquired during each experiment). Data obtained
from the spectrophotometer and LISST sensors were thus
only affected by the soil sample materials added to the
experimental tank, and not influenced by the properties of
the demineralised water. Absorbance data were measured
over a 10-min period at 2-min intervals; only the last four
measurements were used for analysis (allowing time for the
soil sample material to become fully mixed). LISST data
were measured over the same 10-min period, with only the
last 6 min of measurements used in subsequent analyses.

2.5 Concentrations and their relationship
with absorbance

Both theoretical and measured concentrations do not fully
represent the actual concentrations inside the experimental
tank. The former is subject to the settling of particles during
mixing, whereas the latter is subject to uncertainties asso-
ciated with pipette sampling and the weighing of alumin-
ium cups. Three steps were used to quantify to what extent
measured concentrations (see Sect. 2.3 ) deviated from
theoretical concentrations, and if deviations differed for
the three particle size fractions investigated (i.e. <32 pum,
32-63 pm and 63-125 pm). Firstly, differences between
measured and theoretical concentrations were calculated
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for the experiments using only soil samples. Measured con-
centrations were expressed as a percentage of theoretical
concentrations, to assess whether there is a consistency in
soil sample material losses. Secondly, ‘expected’ mixture
concentrations were then calculated using a mass-balance
(Eq. 1), using the measured concentrations of the soil sam-
ples and their known contributions to the artificial mixture.
This value was then compared with the directly measured
concentration of the mixture itself.

n

Expected mixture concentration = Z w; X conc; (D

j=1
where w; is the relative contribution of each soil sample to
the artificial mixture (j=1 to n, with n being the number of
soil samples mixed), and conc; is the measured concentration
for soil sample j (resulting from the individual soil sample
experiments).

As afinal step, we investigated the relationship of absorb-
ance with both concentration and sieved particle size. To
analyse patterns in the absorbance spectra for the 17 soil
samples, the responses to increasing concentrations and
particle size were examined. Randomly selected absorbance
values were used at low, medium and high range spectra
(210 nm, 400 nm and 700 nm, respectively, example shown
in Fig. A4; supplementary material). Besides these three
randomly selected absorbance values, the average absorb-
ance value over the whole range of measured wavelengths
(200-730 nm) was used. These values were scaled, dividing
the absorbance values by their respective theoretical concen-
trations, to obtain average increases in absorbance per mg
L! (n=10, for the 10 concentrations) for each soil sam-
ple, with accompanying standard deviations. This process
was designed to obtain more insight into how absorbance
changes with concentration at the different selected wave-
lengths for all soil samples. These scaled absorbance values
were then related to the particle size measured at every con-
centration in every experiment. Using the Mann—Whitney
test, we tested if the absorbance values (n= 10, for the 10
concentrations) from the 17 soil samples were significantly
different (p <0.05). This test was carried out for the aver-
age absorbance values, as well as for the absorbance val-
ues resulting from the three selected wavelengths (210 nm,
400 nm and 700 nm). Absorbance data in this analysis were
compensated for theoretical concentrations (see Sect. 3.1).

2.6 Linear additivity

The directly measured absorbance values from the artificial mix-
tures were compared with the absorbance values resulting from
the individual soil sample experiments to test if (i) absorbance
behaves as a linearly additivity property and (ii) the combina-
tion of relative absorbance values of the individual soil samples,
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as used in the artificial mixtures, results in similar absorbance
values when directly measured on the mixture (Eq. 2).

n

Expected mixture absorbance = Z W ; X Abs; 2)
J=1

where w; is the relative contribution of each soil sample to
the artificial mixture (j=1 to n), and Absj represents the
absorbance value of that particular soil sample j when
measured individually. The absorbance data over the whole
wavelength range (200-730 nm) was used (example shown
in Fig. A4). This comparison was undertaken for all 10 dif-
ferent concentrations, for each mixture experiment, and
compared with the measured mixture absorbance data cor-
responding to the same theoretical concentrations.

2.7 Un-mixing the artificial mixtures using
the MixSIAR model

The MixSIAR Bayesian un-mixing model (Stock and
Semmens 2016; Stock et al. 2018) open-source R pack-
age was used to un-mix the artificial mixtures, and
investigate how a well-established model for sediment
fingerprinting (e.g. Upadhayay et al. 2020; Wynants et al.
2020) deals with the highly collinear absorbance data.
As model input, data obtained from the mixture experi-
ments (mixture data) were used, together with the absorb-
ance data from the single soil samples (i.e. soil source
data). To investigate performances between concentra-
tions, only sources and mixture absorbance data from
the same theoretical concentrations were used. Source
data were represented by the mean, variance and sample
size (Blake et al. 2018). The MixSIAR model calculates
the relative average contributions of each sample mixed
and the corresponding standard deviations. For all model
runs, the Markov chain Monte Carlo parameters were
used according to the predefined ‘short’ settings (chain
length =50,000, burn =25,000, thin =25, chains = 3).
Model convergence was evaluated using the Gelman-
Rubin diagnostics (variables < 1.1). All models were run
using the High Performance Computing facility at the
Luxembourg Institute of Science and Technology. For the
MixSIAR runs, the whole range of absorbance values was
used, with each wavelength being regarded as a tracer.
This resulted in 213 tracer values (wavelength range
200-730 nm, with 2.5-nm intervals). The known source
contributions to each artificial mixture were compared
with the source contributions estimated by the model.
This comparison was made by calculating the absolute
error (AE); the absolute difference between the known
soil source contributions and the predicted source con-
tributions was generated by MixSIAR.
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3 Results

3.1 Concentrations and relationship
with absorbance

The measured concentrations inside the tank were gen-
erally lower than the theoretical concentrations intended
(Fig. 3); measured concentration decreased with increas-
ing particle size. The relationship between measured and
theoretical concentrations varied little at increasing con-
centrations for all soil samples in the <32-pum fraction
(Fig. 3). Measured concentrations represented ~90% of
the theoretical concentrations. Corresponding standard
deviations ranged up to 4% (for 95% of all measured con-
centration values), with the remaining 5% of the values
having higher deviations (observed at lower theoretical
concentrations; i.e. 100-300 mg L™1).

For the two coarser fractions, measured concentrations
showed larger deviations from the theoretical concentra-
tions (Fig. 3). For the 32—-63-um fraction, average meas-
ured concentrations mostly ranged between 60 and 90%
of the theoretical concentrations. The average measured
concentrations for the 63—125-um fraction mostly ranged
from 30 to 75%, with soil 5 giving very low measured
concentrations compared with the other soil samples.
Despite the larger differences, the relationship between
measured and theoretical concentrations remained con-
stant with increasing concentrations for the separate soil
samples (Fig. 3). These average values had low standard
deviations (i.e. < 10% for 97.5% of the values and < 5% for
81% of the values for the 32—-63-um fraction; < 10% for
95% of the values and < 5% for 56% of the values for the
63—125-um fraction).

Deviations between expected and measured mixture
concentrations (Eq. 1) are shown in Table 1. Around 50%
of the expected mixture concentrations showed a deviation
of <5% compared with the measured mixture concentra-
tions. Around two-thirds of mixtures showed a devia-
tion < 10%, and around 90% a deviation < 20%. Further-
more, deviations between expected and measured mixture
concentrations decreased slightly when the number of soil
samples in the artificial mixtures was increased.

Both when using theoretical (Fig. A5) and meas-
ured (Fig. A6) concentrations, strong correlations with

absorbance measured at the three selected wavelengths (i.e.
210, 400, 700 nm) were observed, as well as for the average
absorbance over all wavelengths. Using theoretical concen-
trations (Fig. AS), 7 values were > 0.99, with the exception
of soil sample #5.3 (soil 5, 63—125 um fraction), where the
#* values decreased to~0.96-0.97.

Taking into consideration the finding that absorbance
showed a slightly stronger correlation with theoretical con-
centration, together with the data presented above, it was
decided to compensate absorbance data using the theo-
retical concentrations in the following final results of this
laboratory experiment. For reference, figures using similar
analysis as shown in Sect. 3.2 and Sect. 3.3 using meas-
ured rather than theoretical concentration are available for
consultation in the supplementary material. Since devia-
tions between measured and theoretical concentrations are
essentially constant for each tested soil sample (i.e. deviation
percentages are independent of theoretical concentrations;
see Fig. 3), the calculated ‘expected’ mixture concentrations
and the measured mixture concentrations should correspond
(Table 1). These results confirm that there is no need to com-
pensate absorbance readings for concentration effects when
comparing soil samples and mixtures that are using the same
theoretical concentrations.

3.2 Patterns in absorbance spectra

Average increases in absorbance were found to be greater for
smaller than for larger particle sizes (Fig. 4). Standard devia-
tions for all soil samples were relatively small, with val-
ues mostly < 10% compared with their average values. The
exceptions here were standard deviations of 11.8%, 12.7%
and 14.3% for soil samples #1.3, #6.2 and #5.3, respectively
(Fig. 4a). Furthermore, soil sample #1.3 showed a devia-
tion exceeding 10% for the 210-nm (14.3%) and 400-nm
(12.4%) wavelengths (Fig. 4b, ¢). For the 700-nm wave-
length (Fig. 4d), only soil sample #5.3 showed a deviation
exceeding 10% (10.3%).

The Mann—Whitney test results (Table 2) showed that
three pairs of soil samples were not significantly different
(average of all wavelengths). Six pairs of samples were not
significantly different for the 210-nm wavelength, and two
pairs of samples were not significantly different for the 400-
nm and 700-nm wavelengths, respectively. These pairs of

Table 1 Deviations between
expected and measured artificial
mixture concentrations

Total n values  n values n values n values
<5% deviation <10% deviation (in %)  <20% deviation (in %)
(in %)
2-sample mixture 115 50 (43.5%) 71 (61.7%) 100 (87.0%)
3-sample mixture 65 30 (46.2%) 43 (66.1%) 60 (92.3%)
4-sample mixture 50 29 (58.0%) 35 (70.0%) 45 (90.0%)
All mixtures 230 108 (47.0%) 147 (63.9%) 201 (87.4%)
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Table2 Mann—Whitney test results for soil samples that were not
significantly different (p>0.05) for the average of all wavelengths,
210 nm, 400 nm and 700 nm. Soil samples are indicated by #soil.

fraction, with ‘soil’ representing the test soils (n=6, Fig. 1), and
“fraction’ the sieved fraction size (.1 for <32 pm; .2 for 32-63 pm; .3
for 63-125 pm)

Average of all wavelengths p-value 210 nm p-value 400 nm p-value 700 nm p-value
#1.3 and #3.3 0.58 #2.1 and #4.1 0.97 #1.3 and #3.3 0.48 #1.3 and #3.3 0.97
#1.3 and #5.2 0.19 #3.1 and #5.1 0.44 #3.3 and #5.2 0.85 #3.3 and #5.2 0.25
#3.3 and #5.2 0.44 #1.2 and #4.2 0.052

#1.3 and #3.3 0.12

#1.3 and #4.3 0.74

#2.3 and #3.2 0.089

soil samples (Table 2) were also not significantly different
when analysing the average of all wavelengths. From the
pairs shown in Table 2, only 1 combination (#3.1-#5.1) was
used together in an artificial mixture (Table A2).

Finer particle sizes (i.e. a smaller mean effective parti-
cle size measured with the LISST 200X sensor) resulted in
larger average increases in absorbance per mg L™, whilst
coarser particle sizes showed smaller average increases per
mg L~!. This relationship appears to be logarithmic, with
an 12 value of 0.78 (Fig. 5). Analyses performed when using
measured concentrations, instead of theoretical concentra-
tions, showed rather similar outcomes (Fig. A7 and Fig. A8).

3.3 Linear additivity

Comparison of expected and measured mixture absorbance
(Eq. 2) generated deviations of generally <20% (Fig. 6).
This was true for all mixtures except for three values where
the deviations were slightly higher. Furthermore, a high
percentage of the values (57%, 63% and 82% for the two-,
three- and four-soil sample mixtures, respectively) showed

a) b)

Side view

Vibromixer

60 Spectrophotometer

40

deviations of < 10%. Deviations of < 5% were noted for 35%
(two-sample mixture), 25% (three-sample mixture) and 6%
(four-sample mixture) of the artificial mixture values. Values
can be positive or negative, indicating whether the expected
absorbance (Formula 2) is higher or lower than the absorb-
ance measured directly for the artificial mixture. In Fig. A9,
the deviations between the expected and measured absorb-
ance are shown, with absorbance being compensated for
measured concentrations.

3.4 Un-mixing artificial mixtures (MixSIAR)

The MixSIAR calculations using the two-soil sample
mixtures showed that dominant soil sample contributions
were reliably predicted (Fig. 7, Fig. A10). MixSIAR pre-
dicted the correct dominant soil samples for ten out of
eleven such mixtures. From these mixtures, eight showed
an overestimation of the dominant soil sample. For mix-
ture 11, the dominant sample was not well predicted,
with MixSIAR outputting equal contributions of the soil
samples mixed. For the one mixture using equal (50%)

c)

Top view

Spectrophotometer

Fig.2 Laboratory setup: a side view schematic representation with dimensions in cm; b top view schematic representation with water sampling

locations #1, #2 and #3, and ¢ photograph
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Fig.3 Average and standard

a) Particle size fraction <32 pm

deviation (n=3) of measured
concentrations inside the
experimental tank expressed

as a percentage of the theoreti-
cal concentrations for the six
test soils (Fig. 1), sieved to
a<32 um, b 32-63 ym and ¢
63—125 pum. Error bars are plot-
ted adjacent to the dots which
represent the mean values
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contributions (mixture 8), MixSIAR over-predicted (70%)
and under-predicted (30%) the known relative contribu-
tions. The results of the tests using artificial mixtures with
different particle size fractions (mixtures 10, 11 and 12)
indicated there were no clear differences in MixSIAR pre-
dictions compared with those from the artificial mixtures
using samples sieved to the same particle size fraction.
For the eight artificial mixtures using three soil sam-
ples, MixSIAR predicted the dominant soil sample contri-
bution well in six cases. From these six cases, MixSIAR

over-predicted the contribution of the dominant soil for
mixtures 18 and 20, whereas it under-predicted the contri-
bution of the dominant contributing soil sample for mix-
tures 14, 15, 16 and 17. Mixtures 18 and 20 were, together
with mixture 17, the mixtures using samples sieved to dif-
ferent particle size fractions. In the case of mixture 19,
MixSIAR predictions deviated from the known inputs,
with the more dominant soil sample (50%) constantly
being predicted by the model as the soil sample with least
contribution.
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23, with known equal (25%) proportions for all four soil
samples, the predictions from MixSIAR showed variable
levels of agreement.

Table A3 presents an overview of the accuracy of the
MixSIAR predictions relative to the known soil sample pro-
portions comprising the different artificial mixtures. Abso-
lute errors varied between 6 and 26.7% for the two-sample
mixtures, between 1.8 and 41.0% for the three-sample
mixtures, and between 2.8 and 48.8% for the four-sample

mixtures. Standard errors for the MixSIAR predictions
were also calculated, returning values ranging up to 6.2%,
10.7% and 3.2% for the two-, three- and four-soil sample
mixtures, respectively. Not all models passed the Gelman-
Rubin diagnostics, where variables exceeding the value of
1.1 were observed in one or several concentrations within
five out of eight three-sample mixtures and in all five four-
sample mixtures. Details on the Gelman-Rubin diagnostics
are shown in Table A4.
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Fig.7 Selection of un-mixing results for artificial mixtures of two
soil samples (mixtures 1 and 12), three soil samples (mixtures 14
and 20) and four soil samples (mixtures 22 and 25) using MixSIAR
at increasing theoretical concentrations. Model predictions are com-

4 Discussion

4.1 Specific considerations for using
the high frequency spectrophotometer approach

Absorbance data are known to be influenced by concentra-

tion (Thomas et al. 2017). Our results show that concen-
trations are strongly linearly correlated with absorbance
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pared with the known proportions (theoretical input) of soil samples
mixed (indicated by #soil.fraction, with ‘soil’ representing the test
soils (n=6), and ‘fraction’ the sieved fraction size (.1 for<32 pm; .2
for 32-63 pm; .3 for 63—125 pm)

(Fig. A4 and AS5). However, the correlations are soil sample-
dependent, which renders it necessary to correct the absorb-
ance data from each soil sample with its specific concentra-
tion when comparing different soil samples. As the aim here
was to un-mix artificial mixtures into the known individual
contributions of the constituent samples, it is essential to
make sure that compensation is made for the correct con-
centrations in order to avoid over- or under-estimations of
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contributions. To this end, theoretical input concentrations
were compared with measured concentrations. Theoretical
concentrations are subject to the mixing processes inside the
tank and the possible incomplete suspension of particles.
This latter process seems to be important in the measured
concentration results, showing that samples sieved at a larger
mesh size deviate more from theoretical concentrations
(Fig. 3). Despite this observation, and based on the data
shown in Fig. 3 and Table 1, losses observed in measured
concentrations were consistent. These concentrations were,
however, subject to representative sampling and weighing
errors, and show slightly weaker correlations with absorb-
ance, hence the use of theoretical concentrations in this
study.

In addition to the influence of concentration, particle
size affects absorbance readings (Berho et al. 2004). Finer
particles, at the same concentrations, resulted in higher
absorbance values over the whole range of wavelengths
compared with particles with coarser sizes. Together with
the influence that particle size can have on sediment prop-
erties (Collins et al. 2017; Laceby et al. 2017), different
particle sizes can also induce different absorbance patterns
over specific wavelength ranges, as certain wavelengths
might be subject to specific SS properties (Byrne et al.
2011). These differences were, however, found to be rather
small in the present study (Figs. 4 and A7) when compared
with the effects of concentration and particle size. Since
the LISST sensor measurements showed that particle size
is an intrinsic SS property remaining unchanged (assuming
minimal dissolution of particles and minimal breakdown of
particles in suspension) during the experiments presented
here, the analysis focused more on the compensation of
absorbance in relation to concentration so as to allow
proper comparisons between the absorbance values of the
soil sources and between the absorbance values of the soil
sources and target SS.

Effective tracers or fingerprints should behave in a lin-
early additive manner (Walling et al. 1993; Lees 1997). Our
results show that the absorbance readings of particles sus-
pended in distilled water are linearly additive (Fig. 6) and
consistently so over the range of concentrations tested. Some
deviations were found, however, at the lower concentrations,
which are likely to be due to the smaller amounts of particles
and thus larger relative errors where mixing is inconsist-
ent or incomplete. In testing the linear additivity, artificial
mixtures containing samples sieved to the same or different
particle size fractions were used. The two groups of samples
did not show significantly different results for linear additiv-
ity (Fig. 6). Tests in which only finer or only coarser size
fractions were used did not result in clear differences in the
linear additivity.

The un-mixing results using the MixSIAR model fol-
lowed a similar pattern to the results for the linear additivity

tests. Higher deviations between modelled and known soil
sample proportions occurred at the lowest concentrations
but were found to deviate less at higher concentrations. No
significant difference in performance was found when un-
mixing soil samples sieved to the same or different particle
size fractions (Table A3). These results contrast with obser-
vations reported by Gaspar et al. (2019), who found estima-
tions were less reliable at finer particle sizes. Gaspar et al.
(2019) tested the un-mixing performance of artificial soil
mixtures (dry material), looking at geochemical composi-
tion, using estimations from the FingerPro model. However,
these authors only sieved one mixture to three different size
fractions (with 10 replicates for each fraction) whereas the
source samples were sieved to just one fraction (< 63 pm).
On the contrary, in the present study, the soil sources were
sieved to different size fractions (no replicates, with differ-
ent concentrations tested). Our approach thus results in a
comparison between mixtures and sources with a common
particle size range and helps to eliminate uncertainties in the
un-mixing induced by particle size.

It is informative to compare results of the present study to
others with respect to the accuracy of un-mixing, although
it is important to acknowledge that un-mixing model struc-
tures vary and this can influence performance. Haddadchi
et al. (2014) tested four different mixing models (Modi-
fied Hughes, Modified Collins, Landwehr and Distribution
models) using the geochemical properties of sources and
mixtures, with mixtures being artificially created. Maximum
model deviations ranged from 10.8 to 29% depending on the
model used, indicating that therefore the choice of the un-
mixing model is an important consideration, with the choice
partially depending on the type of tracer used (Haddadchi
et al. 2014). Gaspar et al. (2019) reported a maximum AE of
10% for un-mixing using both dominant and non-dominant
mixtures (using elemental geochemistry). The present study,
in comparison, found AE > 10% in most of the 25 different
mixtures (except 2 out of the 12 two-sample mixtures and 3
out of the 8§ three-sample mixtures), with maximum AE up
to 26.7% for two-sample mixtures, 41.0% for three-sample
mixtures and 48.8% for four-sample mixtures. The observed
high AE for the three-sample mixtures is an extreme value
however, since the second highest AE shows a value of
27.7%. Furthermore, the extreme outlier in the three-sample
mixtures was found in mixture 19 where soil sample contri-
butions added were rather equal (20%, 30%, 50%), whilst the
extremes in the four-sample mixtures were found in mixtures
22 and 24 where there was a clear dominant soil sample
present (70%, with other soil sample contributions of 10%).
These results suggest that the absorbance readings from a
submerged spectrophotometer can be used as fingerprints
and thus to estimate the soil sample contributions of two-
and three-sample artificial mixtures with similar accuracy
than the existent methods. However, some of the four-sample
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artificial mixtures showed unacceptably high AE, showing
the limitation of the method to distinguish four soil samples
when these present similar absorbance signals.

Models for the three- and four-sample mixtures did not
always converge, exceeding the Gelman-Rubin diagnostics
threshold value. Tests showed that increasing the number of
iterations (chain length) improved the diagnostics for cer-
tain mixtures. However, we decided not to extend beyond
the selected ‘short’ settings due to long computation times
(> 5 days for each model run). Furthermore, we observed
that, for all but one mixture, certain concentrations satisfied
the diagnostics. Combined with the consistency in modelling
results over the different concentrations within each mixture,
this indicated the reliability of the modelling outcomes for
those situations in which the diagnostics were not satisfied.

These highest AE values found herein can be partly
explained by examining the spectra in more detail. For the
two source artificial mixtures, the high AE (20%) values
were seen in situations where the mixture absorbance values
did not fall in between the range of absorbance values of the
individual soil samples mixed (i.e. the artificial mixture has
lower or higher absorbance values compared to the values
of the individual soil samples; see also red dots indicated in
Fig. 6). Failures can be due to small deviations in concentra-
tions (e.g. settling), as expected and aimed concentrations
slightly differ (Fig. 3). Such situations violate the so-called
bracket or range test used as a conventional screening step in
sediment source fingerprinting decision trees (Collins et al.
2017). Failure of the bracket test was only observed in the
case of mixtures using two soil samples (Fig. 6a; for 23% of
the total values here). Using measured instead of theoreti-
cal concentrations did not improve this result, resulting in a
larger number of violations (Fig. A9). In the three soil source
mixtures, predicted soil source contributions seemed to vary
between soil samples that show a similar course of absorb-
ance values over the whole range of measured wavelengths.
This was, for example, observed for mixtures 13 and 16.
MixSIAR failed to predict one clear dominant soil sample
in these mixtures (i.e. 70% and 80% dominant soil samples
used as input), but rather predicted two soil samples each
with relatively high contributions around 40-50%. These
two soil samples exhibit the same absorbance patterns (i.e.
the absolute differences between the absorbance values of
the soil samples are highly similar at all wavelengths tested);
using the model to predict the dominant soil sample under
such circumstances is problematic. The same pattern holds
for the four-soil sample mixtures; in both mixtures 22 and
24 (with the highest reported AE values), the model failed to
predict the dominant soil source. Both these mixtures used
soil samples 1.1 and 3.1, which had absorbance values that
showed minimal deviations between them (absolute values)
and followed the same patterns (i.e. small absolute differ-
ences between all wavelengths tested), making it difficult
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for the model to differentiate between these two soil source
samples. Furthermore, the mixture absorbance data in both
these mixtures plotted exactly in between the absorbance
values of the two soil samples; this most likely caused the
model to fail to predict the correct dominant soil source.
This outcome can be observed in Fig. A10, where model
predictions show more equal contributions for the artificially
mixed soil samples (mixture 22) and a more dominant soil
sample 1.1 (mixture 24) despite soil sample 3.3 being the
dominant soil source in both mixtures.

Scaling up beyond the laboratory scale, it would be
informative to use independent evidence to validate any
source apportionment estimates using absorbance spectra
(which need to be statistically significantly different for the
individual sources in question). However, this requirement
for independent evidence is difficult to fulfil meaning that
many source fingerprinting studies continue to rely on the
use of mixture tests as verification of predicted source pro-
portions (Collins and Walling 2004).

4.2 Wider implications for SS fingerprinting

The use of sensors that measure spectrophotometrically at
high frequency in situ substantially reduces the need for
extensive analyses in the laboratory in conjunction with
the collection of conventional physical water samples; such
sensors thereby allow much faster acquisition of tracer data
(Martinez-Carreras et al. 2016), due to the in situ measure-
ments. Therefore, despite the initial purchasing costs of the
spectrophotometer (~20,000 USD), and the need to con-
trol for sensor drifts to validate the absorbance data results
(Gamerith et al. 2011), total costs decrease over time. This is
in contrast to classical sediment fingerprinting approaches,
wherein laboratory analyses of all samples are required
(e.g. different geochemistry analyses estimated at as much
as~ 1500-2000 USD per sample; Horowitz 2013), increasing
both labour and analysis costs substantially when increasing
measurement intervals and sampling campaign duration. The
collection of absorbance data in situ could therefore improve
the temporal resolution of sediment source fingerprinting
and eventually give better insights into how sources of SS
change over short time scales. This evidence gap has been
highlighted by Navratil et al. (2012) and Vercruysse et al.
(2017), who argued that a better understanding of sediment
dynamics over short time scales is key to improving sedi-
ment transport modelling and for devising more robust solu-
tions to catchment sediment management problems. With
regard to the present study, it clearly remains important to
test the use of the spectrophotometer for un-mixing source
contributions in real-world settings, including at catchment
scales. In the experiments here, using Luxembourgish soil
samples with differences in both colour and expected geo-
chemistry, absorbance data of the soil samples were in most
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situations sufficiently different for un-mixing. It is therefore
a prerequisite to investigate if absorbance spectra responses
of potential SS sources in a real-world setting are sufficiently
different enough to allow source discrimination.

Initial steps to identify areas or sources that could permit
robust discrimination could be based on, for instance, dif-
ferences in underlying geology as was done in this study.
Looking at the results presented herein, seeing the uncer-
tainties associated with four-sample mixtures, applying this
approach in a field setting might require the selection of a
limited number of potential sources to avoid poor discrimi-
nation and thus poor source apportionment results. Another
approach that could potentially increase the ability to dif-
ferentiate between sediment sources could be achieved by
selecting only a number of wavelengths (i.e. selecting those
tracers that best discriminate between sources). Reducing
the number of tracers could also overcome issues with the
long model calculation times faced when using all wave-
lengths as tracers.

Dissolved compounds in natural waters (e.g. nitrates and
DOC) will influence the absorbance readings of the spec-
trophotometer (D’Acunha and Johnson 2019). Furthermore,
the composition of the water (which was compensated for in
the present study by subtracting the blank water background
signal from the absorbance data) may well fluctuate in field
settings (Wilson et al. 2013). To establish this background
signal in field conditions might be challenging and ways to
overcome this remain to be investigated. One possible solu-
tion to this challenge might be to use only absorbance values
from those wavelengths that are less responsive to dissolved
compounds. This consideration warrants further research.

In our proof-of-concept laboratory experiments, the indi-
vidual soil sample (‘source’) absorbance spectra were suf-
ficiently able to un-mix the majority of the absorbance spec-
tra of the artificial soil mixtures. However, the absorbance
signatures of potential SS sources (e.g. surface soils and
channel banks) would be difficult to obtain because the spec-
trophotometer employed in this study is only able to measure
whilst submerged. One approach here could be to sample
material being mobilised and routed from potential sources
towards the river channel (e.g. from rill erosion, or during/
immediately after rainfall events when clear patterns of ero-
sion or mobilisation of source materials have emerged). Such
intermediate sampling would help address uncertainties
associated with particle size selectivity (Laceby et al. 2017)
and ensure, when measuring in a laboratory experiment as
presented in this study, direct comparison of absorbance
spectra representative of eroded material from individual
sources with the spectra for SS. Clearly, however, the use
of the approach reported herein would face challenges for
some source types on this basis, with the obvious problem-
atic source being eroding channel banks. Given the juxtapo-
sition of banks to the river water, all particle size fractions

are delivered to the water column, since there is no runoff
pathway to result in selective delivery. Given this issue, it is
more likely that the use of spectrophotometers in situ will
be more relevant to un-mixing spatial SS sources using a
confluence-based approach (e.g. Wynants et al. 2020). Here,
sensors could be placed near the outlets of tributaries to
create an archive of absorbance spectra of tributary-based
spatial sources and on the main stem further downstream to
represent the spectra of target SS. Concentration issues could
be handled similarly to the laboratory experiment reported
herein since by dividing the absorbance of both sources
(i.e. tributaries) and the main stem measurements by the
measured concentrations (which could be estimated using
sediment rating curves, showing the relationships between
SSC and turbidity using either turbidity meters or using the
turbidity measured by the spectrophotometer itself), they
can be scaled to the same SS concentrations (Fig. 4). Spec-
trophotometers can be equipped with an automatic brush
(ruck::sack; Scan Messtechnik GmbH, Vienna, Austria) that
cleans the sensor lens before every measurement. Next to
that, optical sensors require regular maintenance to avoid
instrument drifts caused by biofouling (e.g. bi-weekly clean-
ing as proposed by Martinez-Carreras et al. 2016).

5 Conclusions

The following conclusions can be drawn from the laboratory
experiments conducted herein:

(1) Absorbance data and concentration show a strong
linear relationship. It is thus essential to compensate
absorbance data with concentration to un-mix different
sources in artificial mixtures.

(2) There is a logarithmic relationship between absorbance
and particle size, with a strong influence of particle size
on the absorbance data with increasing concentrations
(e.g. finer particle sizes result in higher absorbance val-
ues per mg L™1).

(3) Absorbance data behave in a linearly additive man-
ner, with deviations between expected and measured
absorbance for artificial mixtures being <20% for all
comparisons and < 10% for more than half of the cases.

(4) The MixSIAR model mostly successfully un-mixed the
artificial soil sources (with an average AE of 14.9% for
all soil samples in all mixtures), correctly predicting
dominant soil samples in the mixtures. The MixSIAR
model worked better for the two- and three-soil sam-
ple mixtures in the present study. Results for the four-
sample mixtures were less promising, but most likely
inherent to the choice of soil samples used in those
mixtures.
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To be able to use the approach described in field settings,
the following issues must be addressed:

(1) There is a need to create robust methods to define sedi-
ment source absorbance signals. A key challenge here
is the selection of the most appropriate sediment parti-
cle size to define source material absorbance. A prereq-
uisite is that the sediment sources result in absorbance
signals that are sufficiently different to provide a basis
for robust source discrimination and apportionment.

(2) Concentrations of SS need to be measured accurately.
This information is needed to compensate the absorb-
ance data for concentration in order to compare source
absorbance data with the corresponding target SS data.
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