
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier

Universal Decoding of Quantum
Stabilizer Codes via Classical
Guesswork
DARYUS CHANDRA1, ZEYNEP B. KAYKAC EGILMEZ1, YIFENG XIONG1, SOON XIN NG1,
ROBERT G. MAUNDER1, LAJOS HANZO1
1School of Electronics and Computer Science, University of Southampton, UK.

Corresponding author: Lajos Hanzo (email: lh@ecs.soton.ac.uk).

L. Hanzo would like to acknowledge the financial support of the Engineering and Physical Sciences Research Council projects
EP/W016605/1 and EP/X01228X/1 as well as of the European Research Council’s Advanced Fellow Grant QuantCom (Grant No. 789028)

ABSTRACT
A universal decoding scheme is conceived for quantum stabilizer codes (QSCs) by appropriately adapting
the ‘guessing random additive noise decoding’ (GRAND) philosophy of classical domain codes. We
demonstrate that the generalized quantum decoder conceived is eminently suitable for different QSC
decoding paradigms, namely for both stabilizer-measurement-based as well as the inverse-encoder-based
decoding. We then harness the resultant decoder for both quantum Bose-Chaudhuri-Hocquenghem (BCH)
codes and quantum polar codes and quantify both their quantum block error rate (QBLER), and QBLER
per logical qubits as well as their decoding complexity. Furthermore, we provide a parametric study of
the associated design trade-offs and offer design guideline for the implementation of GRAND-based QSC
decoders.

INDEX TERMS quantum error correction codes, quantum stabilizer codes, quantum noise, decoding

I. INTRODUCTION
Quantum error-correction codes (QECCs) [1]–[3] consti-
tute a potent solution of mitigating the quantum decoher-
ence prevalent in quantum systems. The primary concept
of QECCs is reminiscent of that of classical forward error-
correction (FEC) codes. Specifically, the quantum state of
logical qubits is mapped into the encoded state of physical
qubits by incorporating auxiliary qubits during the encoding
step. These auxiliary qubits are then exploited by the decoder
for determining the appropriate recovery operator. However,
due to the short coherence time of the quantum bits (qubits),
the QECCs encoding and decoding procedures should be
completed before the qubits decohere further. Unfortunately,
most of the QECCs available in the open literature require
a high number of physical qubits and exhibit a very low
quantum coding rate because, in contrast to classical FEC
codes, QECCs have to correct not only bit-flip errors, but also
phase-flip errors as well as the combination of both. Thus, it
is a challenge to conceive QECCs for a moderate number of
physical qubits, while maintaining a very low quantum bit
error ratio (QBER).

Although at first sight seemingly unrelated, the de-

velopment of ultra-reliable low-latency communications
(URLLCs) faces similar challenges to those encountered
in quantum error correction coding (QECCs) research. For
example, one of the challenges is that the decoding of the
QECC must be completed before the qubits start to lose
coherence, since the coherence time of the qubits is very
limited. In other words, similar to URLLC, QECCs also
require prompt and reliable decoding. Another challenge is
finding an error correction code with a short to moderate
length codeword that has a high error correction capability
and hence attains a low bit error ratio (BER).

In the classical regime, the powerful maximum-likelihood
(ML) decoder has been proposed for meeting the stringent
requirements imposed by URLLC. However, ML decoding
exhibits potentially excessive complexity, which hinders its
hardware implementation. As a remedy, an innovative de-
coder based on classical guesswork was proposed as an
attractive solution for short- to moderate-length classical
FEC codes, but without imposing the excessive complexity
of the standard ML decoder, which is referred to as guess-
ing random additive noise decoding (GRAND) [4]–[7]. The
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complexity reduction achievable by GRAND exploits the
classical guesswork concept, where the decoder generates
the channel induced error patterns from the most likely to
the least likely and in turns verifies whether the sequence
that remains after the error removal is part of the legitimate
codebook. As an additional benefit, GRAND is eminently
suitable for a large family of classical FEC codes, since it
operates in an error-pattern-centric manner. Thus, GRAND
might be utilized for a wide range of classical FEC codes
having no efficient decoder.

Inspired by this solution advocated in the classical domain,
we aim for conceiving a universal decoder for QECCs. As
a benefit of the classical-to-quantum isomorphism, a wide
range of classical FEC codes can be transplanted into the
quantum domain. More specifically, we focus our attention
on the family of quantum stabilizer codes (QSCs), which
constitute the family of syndrome-based QECCs [8]–[11].

Against this background, our contributions can be summa-
rized as follows:

1) We devise a universal decoding scheme for QSCs by
further evolving the GRAND decoding philosophy. We
demonstrate that the decoding scheme conceived may
be adopted for two different QSC decoding paradigms,
namely for both stabilizer-measurement-based as well
as the inverse-encoder-based decoding.

2) We then apply the resultant decoder for both quantum
BCH codes as well as quantum polar codes and quan-
tify their quantum block error ratio (QBLER), QBLER
per logical qubits as well as their decoding complexity.

3) We conclude with a parametric study of the associated
design trade-offs and provide the design guideline for
the implementation of Quantum-GRAND-aided QSC
decoding.1

The rest of this treatise is organized as follows. Section II
introduces the decoding classical FEC codes via guesswork
while Section III introduces the quantum stabilizer codes.
Then, a pair of Quantum-GRAND-aided QSC decoding
paradigms are discussed in Section IV, namely the stabilizer-
measurement-based decoder and the inverse encoder-based
decoder. Sections V provides simulation results for char-
acterizing the family of quantum BCH and polar codes.
Explicitly, we portray the performance versus complexity
of Quantum-GRAND-aided QSC decoders, relying on both
stabilizer-measurement-based as well as on inverse-encoder-
based schemes. Finally, Section VI offers our conclusions
and some future research directions.

II. DECODING CLASSICAL FEC CODES VIA
GUESSWORK
Let C(n, k, d) denote a classical FEC code mapping the
information word of length k bits into the codeword of length
n bits. Let cn denote the legitimate codeword c ∈ Fn

2 as
an input of the channel and yn denote the received word

1Please note that the similar term of QGRAND was used by the authors
of [12] to represent “quantized” GRAND in a different context.

after an error pattern en is inflicted by the channel. The
transformation can be explicitly written as

yn = xn ⊕ en, (1)

where ⊕ denotes modulo-2 addition. If the error pattern
en is known, the legitimate codeword cn is recoverable by
applying the following transformation:

xn = yn ⊕ en. (2)

In this scenario, the standard ML decoding is defined as

cn,∗ = arg max
cn
i

p(yn|cni ), ∀cni ∈ C, (3)

where cn,∗ is the codeword solution cn that maximizes the
conditional probability p(yn|cni ) over all possible values of
cni , so that cni is an element of the codebook C.

Based on (3), the number of evaluation of p(yn|cni ) re-
quired for finding the solution cn,∗ is equal to the cardinality
of the codebook C(n, k, d), which is given by C = |C| = 2k.
It is clear that exhaustive sequential evaluation of all entries
in the codebook C using ML decoder is excessively complex.

Recently, a new classical paradigm of ML decoding was
introduced by exploiting the concept of classical guess-
work [6], [7], which is formulated as follows:

• Given the received word yn, initialize i = 1 and set
gn to be the first guess based on the most likely error
pattern.

• While xn = yn ⊕ gn /∈ C, increase i by 1 and set gn to
be the next guess based on next most likely error pattern.

• The process ends when we find xn = yn ⊕ gn ∈ C in
this while loop and the final value of i determines the
computational complexity of this decoder.

A compelling benefit of hard-decision GRAND is its abil-
ity to verify whether the sequence left behind after the error
removal xn is part of the legitimate codebook. We can ob-
serve that since GRAND operates in an error-pattern-centric
manner, the decoder does not require the entire codebook to
be stored in memory. The decoder simply needs the parity
check matrices H or the generator matrices G or even only
the kernel of the codes in case of polar codes. It has been
proven in the seminal paper of GRAND [6] that the average
complexity of GRAND for the binary symmetric channel
(BSC) is given by

C = 2n·min{1−k/n,H1/2(p)}, (4)

where p is the flip probability of the BSC, and Hα = H1/2

is the Rényi entropy for α = 1/2 [13]. The complexity
expression of (4) demonstrates the significant complexity
reduction against the standard ML decoder. Furthermore, the
hardware complexity of the hard-decision GRAND has been
demonstrated to be appealingly low, as presented in [14].

To explicitly portray the complexity reduction achieved
by GRAND, Fig. 1 depicts the complexity of standard ML
decoding compared to the average complexity of GRAND
for classical FEC codes having codeword lengths of n =
{128, 64, 32} in the face of the BSC. The complexity is
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FIGURE 1: The complexity C of standard ML decoding
compared to the average complexity of ML GRAND for
classical error-correction codes having codeword length of
n = {128, 64, 32} over BSC.

portrayed as the function of coding rate r = k/n. Observe in
Fig. 1 that since GRAND is an error-pattern-centric decoder,
its complexity is driven by the channel’s error probability. For
the BSC, it is given by the flip probability p. For instance, let
us observe in Fig. 1 the average complexity of GRAND for
n = 128, which is significantly lower for p = 10−3 than that
of p = 10−2. Similar trends can also be observed for n = 64
and n = 32. For the BSC, the likelihood of the error patterns
is rank-ordered based on their Hamming weight. Thus, for
a lower value of p, the probability that the channel inflicts
an error sequence en having a high Hamming weight is ex-
tremely low. Consequently, the number of error patterns that
have to be evaluated before finding the legitimate codeword is
also lower, since it is far more likely that the channel inflicts
a lower Hamming weight error pattern than a higher one.

As the coding rate decreases, we can see that the complex-
ity of the standard ML decoding also decreases. Thus, we
can find the cross-over point below which the standard ML
decoder has a lower complexity than GRAND. For instance,
for n = 128, the ML decoder exhibits a lower complexity
when k < 34 for p = 10−2 and k < 12 for p = 10−3.
Similarly, for n = 64, we find that the complexity of the ML
decoder is lower than GRAND when k < 18 for p = 10−2

and k < 6 for p = 10−3. Finally, the cross-over point for
n = 32 is given by k < 9 and k < 3, for p = 10−2

and p = 10−3, respectively. In the region where the ML
decoder exhibits a lower complexity, the size of the legitimate
codebook C is significantly smaller than the average number
of evaluations required by GRAND for finding the correct
solution.

III. QUANTUM STABILIZER CODES
Since the concept of protecting quantum information is sim-
ilar to that of classical FEC codes, it is natural to aim for
transplanting the classical FEC codes philosophy into the
quantum domain. In this treatise, we focus our attention
on the QSCs, which constitute a class of syndrome-based
QECCs. Specifically, QSCs can be constructed by exploiting
the so-called classical-to-quantum isomorphism [8]–[11]. A
QSC denoted by C[[N,K,D]] maps K logical qubits having
the original quantum state |ψ⟩ into N physical qubits having
the encoded quantum state |ψ⟩ with the aid of (N − K)
auxiliary qubits. The minimum distance of the QSC is de-
noted by D and its error correction capability is given by
T = ⌊(D − 1)/2⌋.

In this treatise, we consider the class of quantum Pauli
channels for modeling the quantum decoherence imposed
on the encoded physical qubits. Explicitly, the qubit errors
imposed by the quantum Pauli channels may be described by
the linear combinations of Pauli matrices {I,X,Y ,Z} ∈ G,
where G denotes the Pauli group2. Physically, the Pauli X er-
ror constitutes a bit-flip error, the Pauli Z error represents the
phase-flip error, while the Pauli Y describes the simultaneous
bit-flip and phase-flip errors.

The encoded state of physical qubits are designed by
ensuring that it is projected onto the (+1) eigenspace of the
group of Pauli operators S ⊂ GN known as the stabilizer
group so that we have Si |ψ⟩ = (+1) |ψ⟩ for every stabilizer
operator Si ∈ S. If the encoded state of physical qubits is
subject to a Pauli error E that anti-commutes with a stabilizer
operator Sj ∈ S, the measurement of this stabilizer operator
will collapse the encoded state of the logical qubits onto its
(−1) eigenspace given by

SjE |ψ⟩ = (−1) |ψ⟩ . (5)

The results of the stabilizer measurements form a “syn-
drome” that can be used for determining the appropriate
recovery operator R.

A QSC C that encodes K logical qubits has a set of logical
operators L that are defined as operators that commute with
all of the stabilizer operators Si ∈ S, but they themselves
do not constitute stabilizer operators. The initial state of the
logical qubits |ψ⟩ will experience a so-called logical error if a
Pauli error constituted by a logical operator L is imposed on
the encoded state of the physical qubits |ψ⟩. The minimum
Pauli weight of the logical operator L therefore defines the
minimum distance D of the QSC C.

By exploiting the classical-to-quantum isomorphism [8]–
[11], we may perform the mapping of Pauli operators P ∈
GN to a classical binary vector in F2n

2 , which allows us
to transform various classes of classical FEC codes into
QSCs. More specifically, the Pauli-to-binary mapping may

2A single qubit Pauli group G1 = {I,X,Y ,Z} is constituted by the
following matrices: I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
and Z =[

1 0
0 −1

]
. The N -qubit Pauli group is given by GN =

⊗N
i=0 Gi.
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be explicitly defined as follows:

I 7→ (0|0) , X 7→ (1|0) , Y 7→ (1|1) , Z 7→ (0|1) . (6)

Therefore, an N -qubit Pauli operator P ∈ GN can be
mapped to a 2n-bit binary vector as follows:

P ∈ GN 7→ g = (gx|gz) ∈ F2n
2 , (7)

where gx is an n-bit binary vector having an element equal
to 1 in the particular location, where the Pauli operator P
has a Pauli matrix X . Similarly, gz is an n-bit binary vector
having an element equal to 1 in the specific location, where
Pauli the operator P having a Pauli matrix Z. Consequently,
a Pauli operator associated with a Pauli matrix Y results
in an element equal to 1 in the corresponding position of
both vectors gx and gz . As an example, the two-qubit Pauli
operator P = X ⊗ Y maps to the binary representation of
g = (11|01).

Again, by exploiting the classical-to-quantum isomor-
phism, a QSC can be derived from classical FEC codes.
Explicitly, given a pair of parity-check matrices (PCMs) Hx

and Hz , we may construct a QSC, whose binary PCM H is
formulated by

H =
[
Hz Hx

]
. (8)

To conceive a valid QSC, the pair of classical PCMs Hx and
Hz have to satisfy the symplectic criterion given by [3], [15]

Hz ·HT
x +Hx ·HT

z = 0. (9)

Thus, the stabilizer operators of a QSC can be written as
a binary PCM having M × 2N elements, where each row
corresponds to one of the M stabilizer operators. Now, let
us assume that a Pauli error operator E associated with the
corresponding binary vector eQ = (ex|ez) is inflicted by the
quantum channel P . Thus, the stabilizer measurements will
generate the syndrome vector given by

sQ = (ex|ez) · [Hz|Hx]
T
= (sx|sz) . (10)

The subscript x of sx implies that the syndrome vector is
used for determining the number and the location of Pauli
X errors and similarly, the subscript z of sz is for Pauli Z
errors.

The Calderbank-Shor-Steane (CSS)-type QSCs [2], [16]
constitutes a specific subset of QSCs that have disjoint X
and Z stabilizer operators such that the non-identity part of
each stabilizer operator is made up either exclusively of X
Pauli matrices or exclusively of Z Pauli operators. In the
binary representation, the PCM of a CSS-type QSC can be
expressed as

HCSS =

[
Hz 0
0 Hx

]
. (11)

For CSS-type QSC codes, the symplectic criterion can be
further simplified into

Hz ·Hx
T = 0. (12)

Furthermore, if the construction satisfies Hz = Hx, the

resultant QSC is referred to as dual-containing CSS-type
QSC.

By accounting for (10) and (11), the syndrome vector of
CSS-type QSCs can be obtained as follows:

sQ = ex ·Hz
T + ez ·Hx

T = (sx|sz) . (13)

Consequently, the syndrome vector sQ of CSS-type QSCs
allows the bit-flip and phase-flip errors to be corrected us-
ing separate classical FEC codes. Therefore, for the rest of
his treatise, we employ the classical GRAND for CSS-type
QSCs.

IV. DECODING QUANTUM STABILIZER CODES
In the previous section, we have explicitly demonstrated how
to transform classical FEC codes into their quantum domain
counterparts. Let us now discuss how to decode QSCs in the
presence of quantum impairments by exploiting GRAND.
Generally speaking, there is a pair of paradigms that can
be utilized for decoding QSCs. The first one is constituted
by stabilizer-measurement-based decoding [8], while the
second one is by inverse-encoder-based decoding [17]. The
stabilizer-measurement-based decoding is widely utilized in
the literature for QSCs, where the classical FEC codes form-
ing the basis of the QSCs exploit the symplectic condition
of the PCM formulation, as exemplified by quantum linear
block codes [18], quantum Bose-Chaudhuri-Hocquenghem
(BCH) codes [19], and quantum low-density parity-check
codes [20]. By contrast, the inverse-encoder-based decoding
is invoked for QSCs, whose classical FEC codes forming the
QSCs are defined by their corresponding encoders, such as
quantum convolutional codes [21], quantum turbo codes [17],
as well as quantum polar codes [22]. In this treatise, we
aim for demonstrating that by further evolving the classical-
domain GRAND philosophy of [6], we can further develop
this decoder for both decoding paradigms.

We will use the Steane’s 7-qubit code as an example for
both decoding paradigms, where a total of six stabilizer
operators are required for correcting a single-qubit error.
These stabilizer operators Si ∈ S are given as follows:

S1 = ZZIZZII,

S2 = ZIZZIZI,

S3 = IZZZIIZ,

S4 = XXIXXII,

S5 = XIXXIXI,

S6 = IXXXIIX. (14)

Thus, based on the Pauli-to-binary mapping of (6) and based
on the binary PCM of the CSS-type QSCs of (11), we have

Hz = Hx =




1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


 . (15)

Steane’s 7-qubit code has a quantum coding rate of rQ =
K/N = 1/7 and a minimum distance of D = 3, which
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V†P R

S

|ψ〉 |ψ̂〉 |ψ′〉

... ...

...

|ψ〉

|0〉
|0〉
|0〉
|0〉

|ψ′〉 = L|ψ〉

V
... |0〉⊗(n−k)

FIGURE 2: The general schematic of the encoding and
decoding of QSCs based on the stabilizer measurements.

means that it is capable of correcting a single-qubit error
(T = 1).

A. STABILIZER-MEASUREMENT-BASED DECODING

The general schematic of QSC encoding and decoding based
on stabilizer measurements is depicted in Fig. 2. The initial
state of K logical qubits is mapped into the encoded state of
N physical qubits with the aid of (N −K) auxiliary qubits
using the quantum encoder V , which can be formulated as
follows:

|ψ⟩ = V
(
|ψ⟩ ⊗ |0⟩⊗(N−K)

)
. (16)

The quantum channel P imposes errors represented by the
N -tupple Pauli operator E ∈ GN , which can be formally
expressed as

|ψ̂⟩ = E |ψ⟩ . (17)

The measurements of the stabilizer operators Si ∈ S
generate the eigenvalues of ±1, which are analogous to
the classical syndrome values as described in Section III.
We have also demonstrated how Pauli-to-binary mapping is
utilized for transforming the stabilizer operators Si ∈ S into
the binary PCM H. Finally, the error recovery R is applied
according to the specific syndrome values and decoding algo-
rithm utilized. Finally, the inverse encoder V† transforms the
corrected state of physical qubits |ψ′⟩ back to the corrected
state of logical qubits |ψ′⟩.

Based on the description of the classical-domain GRAND
philosophy in Section II, the observation of the of the re-
ceived word yn is pivotal in the evaluation process for de-
termining the legitimate codeword. However, in the quantum
domain, such measurements cannot be performed on the
physical qubits, since this would collapse the superposition
of the encoded quantum states to the classical values. Con-
sequently, the ML decoding of QSCs based on the measure-
ment of stabilizer operators may be reformulated as finding
the most likely error pattern e2n based on the syndrome value
sQ from the received quantum state as follows:

e2n,∗ = arg max
e2n
i

p(e2ni |sQ), ∀e2ni ∈ F2n
2 , (18)

where e2n,∗ is the most likely error pattern e2n imposed on
the physical qubits that maximizes the conditional probabil-
ity p(e2ni |sQ) over all possible values of e2ni , such that e2ni
is an element of F2n

2 .
For CSS-type QSCs, sQ = (sx|sz) may be obtained

using (13). Thus, instead of relying on the measurement
of the received quantum states, we may perform GRAND
by relying on the syndrome vector sQ obtained from the
stabilizer measurements. More specifically, the Quantum-
GRAND-aided QSC decoder relying on the stabilizer mea-
surements can be described as follows:

• Given the Pauli error operator E ∈ GN having the bi-
nary vector representation of e2n = (enx |enz ), calculate
ŝx = enx ·Hz

T and ŝz = enz ·Hx
T .

• Initialize i = 1 and set gn
x to be the initial guess based

on the most likely error vector for the Pauli X error
pattern and calculate sx = gn

x ·Hz
T .

• While ŝx ̸= sx, increase i by 1 and set gn
x to be the next

guess based on the next most likely error vector for the
Pauli X error pattern and calculate sx = gn

x ·Hz
T .

• The process ends when we find ŝx = sx in this while
loop and the final value of i determines the computa-
tional complexity of Pauli X error decoding.

• Initialize j = 1 and set gn
z to be the initial guess based

on the most likely error vector for the Pauli Z error
pattern and calculate sz = gn

z ·Hx
T .

• While ŝz ̸= sz , increase j by 1 and set gn
z to be the next

guess based on the next most likely error vector for the
Pauli Z error pattern and calculate sz = gn

z ·Hx
T .

• The process ends when we find ŝz = sz in this while
loop and the final value of j determines the computa-
tional complexity of Pauli Z error decoding.

• The recovery operator R ∈ GN is constituted by the
Pauli operator represented by the binary vector (gn

x |gn
z )

and the total complexity is given by C = i+ j.

Table 1 portrays the syndrome vector associated with the
most likely Pauli X and Pauli Z error patterns of Steane’s 7-
qubit code. We have a total of 16 syndromes for correcting
both the Pauli X and Pauli Z errors. Explicitly, seven of
them represent seven single-qubit bit-flip error patterns and
seven correspond to single-qubit phase-flip error patterns.
Additionally, we have a pair of (0 0 0) syndrome vectors
indicating the absence of bit-flip and phase-flip errors. Thus,
each of the syndrome vector is capable of identifying a
unique a single-qubit error pattern. The error pattern E in
Table 1 is rank-ordered based on their likelihood in the face of
quantum Pauli channels, which means the first error pattern
is constituted by the error-free pattern, followed by the single
qubit-error patterns. Since all the single-qubit error patterns
exhibit an equal probability of occurrence, they can be rank-
ordered arbitrarily.

Let us provide a small-scale example of Quantum-
GRAND-aided stabilizer-measurement-based QSC decoding
by utilizing Steane’s 7-qubit code, assuming that the quan-
tum Pauli channel P induces the error pattern of E =

VOLUME X, 20XX 5
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TABLE 1: Syndrome values and the associated error-recovery operator R.

Error operator Syndrome Error recovery Error operator Syndrome Error recovery
E sx R E sz R

IIIIIII (0 0 0) IIIIIII IIIIIII (0 0 0) IIIIIII

XIIIIII (1 1 0) XIIIIII ZIIIIII (1 1 0) ZIIIIII

IXIIIII (1 0 1) IXIIIII IZIIIII (1 0 1) IZIIIII

IIXIIII (0 1 1) IIXIIII IIZIIII (0 1 1) IIZIIII

IIIXIII (1 1 1) IIIXIII IIIZIII (1 1 1) IIIZIII

IIIIXII (1 0 0) IIIIXII IIIIZII (1 0 0) IIIIZII

IIIIIXI (0 1 0) IIIIIXI IIIIIZI (0 1 0) IIIIIZI

IIIIIIX (0 0 1) IIIIIIX IIIIIIZ (0 0 1) IIIIIIZ

IIXIIZI . Thus, by using the Pauli-to-binary mapping
of (6), the syndrome calculation of (13), and the binary PCM
of the Steane’s code 7-qubit of (15), we obtain ŝx = (0 1 1)
and ŝz = (0 1 0). Upon relying on these syndrome vectors,
GRAND will generate the error patterns commencing the
most likely to the least likely one and evaluates the syndrome
vector. This evaluation process will stop when the decoder fi-
nally finds the error pattern that produces the same syndrome
vector as ŝx and ŝz . In this example, GRAND will find the
specific Pauli X error pattern from Table 1 after four evalua-
tions (i = 4) and identify the Pauli Z error pattern after seven
evaluations (j = 7). Thus, the total complexity of GRAND
in this scenario is given by C = i + j = 4 + 7 = 11. In a
more complex scenario, where a QSC is capable of correcting
multiple qubits error, the evaluation process will continue
to the two-qubit error patterns, three-qubit error patterns,
and so on until GRAND finds the specific error pattern that
generates the same syndrome vector as the channel-induced
syndrome vector.

In our Quantum-GRAND-aided simulation of stabilizer-
measurement-based QSC decoding, the observation of er-
rors is carried out for the quantum state |ψ′⟩ after the er-
ror recovery operator R is applied as shown Fig. 2. For
the stabilizer-measurement-based QSC decoder, we declare
a quantum block error for every instance when we find
(enx |enz ) ̸= (gn

x |gn
z ). Thus, the quantum block error rate

(QBLER) Q is the ratio between the number of quantum
block errors observed to the total number of quantum blocks
simulated. Therefore, to compare the performance of various
QSCs having different quantum coding rates rQ as well as
different number of logical qubits K, we may utilize the
notion of normalized QBLER per logical qubits. The QBLER
per logical qubits P inferred from the QBLER Q observed
may be calculated as

P = 1− (1−Q)1/K . (19)

B. INVERSE-ENCODER-BASED DECODING
In contrast to Fig. 2, the general schematic of the QSC
encoding and decoding based on inverse encoding is depicted
in Fig. 3. The quantum encoder V and the quantum Pauli
channel P act in the same way as those in Fig. 2. The main
difference is that instead of applying stabilizer measurements

to the corrupted quantum state |ψ̂⟩, we apply the inverse
encoder V†. The effect of V† can be explicitly expressed as

V† (E |ψ⟩
)
= L |ψ⟩ ⊗ S |0⟩⊗(N−K)

. (20)

To elaborate briefly on the effect of the inverse encoder V†

in Fig. 3, it effectively decomposes the error operator E
into two components, namely the logical error component
L imposed on the K logical qubits and the auxiliary error
component S inflicted upon the (N − K) auxiliary qubits.
In this case, the measurement of the error operator contam-
inating the auxiliary qubits S |0⟩(N−K) may be carried out
either by using the computational (Z) basis {|0⟩ , |1⟩} or the
Hadamard (X) basis {|+⟩ , |−⟩}. The measurement results
represent the syndrome vector to be used by the inverse-
encoding-based decoder. More specifically, the measurement
results are constituted by a syndrome vector sQ = (sx|sz),
where sx is obtained from the measurement of error opera-
tors using the Z basis and sz is from the measurement using
the X basis3.

By exploiting the Pauli-to-classical mapping, the quantum
encoder V harnessed for creating N physical qubits from K
logical qubits can be unambiguously represented by a binary
matrix V having (2n × 2n) elements. Similarly, the inverse
encoder V† can be expressed as a binary matrix V −1 and the
measurement operators M can be represented by a binary
matrix M . Therefore, the effect of the Pauli error operator
E after the application of the inverse encoder V† and of the
measurement operators M can be represented in binary form
as

(ex|ez) · V −1 ·M = (lx : sx : 0 | lz : 0 : sz). (21)

Observe in (21) that there are zero components 0 within the
vector (lx : sx : 0) and (lz : 0 : sz). This is because the
measurements performed on the auxiliary qubits in the Z
basis make the auxiliary qubits inaccessible in the X basis
and vice versa.

Therefore, based on the results in (21), the ML decoding
process for inverse-encoder-based QSCs may be formulated
as finding the most likely logical error operator l = (lx|lz),

3The syndrome vector sx obtained from the measurement using the Z
basis is used for decoding the Pauli X errors because the Pauli Z operator
is anti-commute with Pauli X operator and vice versa
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V

|ψ〉

V†P

R

M

|0〉
|0〉
|0〉
|0〉

...

...|ψ〉 ...

...

... |ψ′〉 = L|ψ〉

|ψ̂〉 |ψ′〉

FIGURE 3: The general schematic of the encoding and
decoding of QSCs based on the inverse encoding philosophy.

given the syndrome vector extracted from the measurements
of the auxiliary qubits sQ = (sx|sz) as follows:

l2k,∗ = arg max
l2ki

p(l2ki |sQ), ∀l2ki ∈ F2k
2 , (22)

where l2k,∗ is the most likely logical error operator l2k

that maximizes the conditional probability p(l2ki |sQ) over all
possible values of l2ki , so that l2ki is an element of F2k

2 .
Thus, the Quantum-GRAND-aided inverse-encoder-based

QSC decoder is defined as follows:

• Given the Pauli error operator E ∈ GN having the
binary representation of e2n = (enx |enz ), calculate
(̂lx|ŝx|0z) = enx · V −1

x · Mz and (̂lz|0x|ŝz) = enz ·
V −1

z ·Mx.
• Initialize i = 1 and set gn

x to be the initial guess based
on the most likely error vector for the Pauli X error
pattern and calculate (lx|sx|0z) = gn

x · V −1
x ·Mz .

• While ŝx ̸= sx, increase i by 1 and set gn
x to be the

next guess based on the next most likely error vector for
the Pauli X error pattern and calculate (lx|sx|0z) =
gn
x · V −1

x ·Mz .
• The process ends when we find ŝx = sx in this while

loop and the final value of i determines the computa-
tional complexity of Pauli X error decoding.

• Initialize j = 1 and set gn
z to be the initial guess based

on the most likely error vector for the Pauli Z error
pattern and calculate (lz|0x|sz) = gn

z · V −1
z ·Mx.

• While ŝz ̸= sz , increase j by 1 and set gn
z to be the

next guess based on the next most likely error vector
for the Pauli Z error pattern and calculate (lz|0x|sz) =
gn
z · V −1

z ·Mx.
• The process ends when we find ŝz = sz in this while

loop and the final value of j determines the computa-
tional complexity of Pauli Z error decoding.

• The recovery operator R ∈ GK is constituted by the
Pauli operator represented by the binary vector (lx|lz)
and the total complexity is given by C = i+ j.

To provide a clearer picture of the Quantum GRAND-
aided inverse-encoder-based QSC decoder, Fig. 4 portrays
the circuit diagram of the quantum encoder V and of the
inverse encoder V† for Steane’s 7-qubit code based on the
PCM given in (15). For the inverse encoder V† illustrated in

Fig. 4, the binary matrix representation V −1 is given by

V −1 =

[
V −1

x 0

0 V −1
z

]
, (23)

where V −1
x and V −1

z are formulated as

V −1
x =




1 1 1 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 1 1 1 0 0
1 1 0 1 0 1 0
0 1 1 1 0 0 1




, (24)

V −1
z =




1 0 0 0 1 1 0
1 1 0 0 1 0 1
1 0 1 0 0 1 1
0 0 0 1 1 1 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




. (25)

For deeper insights on how to transform the PCM H of
CSS-type QSCs into the quantum encoder V and the inverse
encoder V† as well as their associated binary matrices V and
V −1, we refer enthusiastic readers to [20], [23].

For Steane’s 7-qubit code, the first qubit is allocated to
the logical qubit, the next three qubits are dedicated to the
auxiliary qubits, which are subject to the measurement in the
Z basis and finally, the next three qubits are the auxiliary
qubits measured in the X basis. Therefore, the measurement
operator M can be represented using the binary matrices
Mx and Mz formulated as follows:

Mx =




1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




, (26)

Mz =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




. (27)

Observe that the binary representation of the measurement
operator Mx of (26) is constituted by a specific identity
matrix having zero elements for those specific diagonal ele-
ment Mx,ii, where the i-th qubit is auxiliary qubit measured
in the Z basis. Similarly, the binary representation of the
measurement operator Mz (27) is represented by a specific
identity matrix having the element of Mz,jj set to zero,
where j-th qubit is auxiliary qubit measured in the X basis.

Let us assume that the quantum Pauli channel P induces
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TABLE 2: Syndrome values and the associated error-recovery operator R.

Error operator Syndrome Error recovery Error operator Syndrome Error recovery
P sx R P sz R

IIIIIII (0 0 0) I IIIIIII (0 0 0) I

XIIIIII (1 1 0) X ZIIIIII (1 1 0) Z

IXIIIII (1 0 0) I IZIIIII (1 0 1) Z

IIXIIII (0 1 0) I IIZIIII (0 1 1) Z

IIIXIII (0 0 1) I IIIZIII (1 1 1) I

IIIIXII (0 1 1) X IIIIZII (1 0 0) I

IIIIIXI (1 0 1) X IIIIIZI (0 1 0) I

IIIIIIX (1 1 1) I IIIIIIZ (0 0 1) I

(a) The quantum encoder V .

(b) The inverse-encoder V†.

FIGURE 4: The quantum encoder and inverse-encoder of
Steane’s 7-qubit code.

an error pattern of E = IZIIXII . Thus, by using the
Pauli-to-binary mapping of (6) and the syndrome calculation
of (21), we obtain sx = (0 1 1) and sz = (1 0 1). Relying
on these syndrome vectors, GRAND will generate the error
pattern commencing from the most likely to the least likely
and evaluates the syndrome vector. This evaluation process
will be terminated when the decoder finally finds the specific
error pattern that produces the same syndrome vector as ŝx
and ŝz . In this example, GRAND will find from Table 2 the
Pauli X error pattern after six evaluations (i = 6) and the
Pauli Z error pattern after three evaluations (j = 3). Thus,
the total complexity of GRAND in this example is given by
C = i+ j = 6 + 3 = 9.

In contrast to the GRAND simulation used for stabilizer-
measurement-based QSC decoding, the observation of errors
is carried out for the quantum state |ψ′⟩ after the inverse
encoder V† and error recovery operator R are applied, as
shown Fig. 3. For the inverse-encoder-based QSC decoder,
we declare a quantum block error for every instance, when
we find (̂lx |̂lz) ̸= (lx|lz). Furthermore, instead of perform-
ing normalization of the QBLER performance using (19), we
are able to measure the actual QBLER per logical qubits.
More specifically, the number of errors in the logical qubits
can be defined as

wt{(̂lx ⊕ lx) ∨ (̂lz ⊕ lz)}, (28)

where wt{·} denotes the Hamming weight of a vector, ⊕
represents the modulo-2 addition, and ∨ denotes the bit-
wise logical OR operation. Therefore, the QBLER per logical
qubits can be calculated as the ratio between the total num-
ber of errors divided by the total number of logical qubits
simulated.

V. RESULTS AND DISCUSSIONS
In this section, we present our Monte-Carlo simulation re-
sults for Quantum-GRAND-aided QSC decoding relying on
both decoding philosophies represented in Section IV. To
evaluate the decoding performance, we utilize the quantum
depolarizing channel represented by theN -tuple Pauli opera-
tor E ∈ GN , which is characterized by the depolarizing prob-
ability p. To elaborate a little further, each qubit within theN
physical qubits may independently experience a Pauli X er-
ror, a Pauli Z error, or a Pauli Y error, where the probability
of each qubit experiencing one of these errors is given by px,
pz , and py , respectively. Thus, we have px+pz+py = p and
px = pz = py = p/3. To demonstrate the generic nature of
our solution, we utilize quantum BCH codes for character-
izing the Quantum-GRAND-aided stabilizer-measurement-
based decoder and quantum polar codes for the Quantum-
GRAND-aided inverse-encoder-based decoder.

A. QUANTUM BCH CODES
In this treatise, we consider the dual-containing CSS-type
quantum BCH codes, whose PCM H is taken from the prim-
itive narrow-sense classical BCH codes. More specifically,
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the PCM of classical binary BCH codes H can be expressed
in the form of

HBCH =




α0 α1 α2 · · · αn−1

α0 (α3) (α3)2 · · · (α3)n−1

α0 (α5) (α5)2 · · · (α5)n−1

...
...

...
. . .

...
α0 (α2t−1) (α2t−1)2 · · · (α2t−1)n−1



,

(29)
where the entries αi of the PCM H are the elements of
GF (2m) written in binary column vector, n = 2m − 1 is
the length of classical codewords and t = ⌊(d − 1)/2)⌋ is
the error correction capability of the classical BCH codes.
Finally, the PCM of quantum BCH codes takes the form
of (11) with Hx = Hz = HBCH. We summarize the
quantum BCH codes used in our Monte-Carlo simulation in
Table 3.

B. QUANTUM POLAR CODES
Furthermore, we utilize the quantum polar code constructions
presented in [22]. The kernel of the quantum polar encoder
can be separated into two types, namely the kernel for the
Pauli X matrix – namely the quantum bit-flip channel and the
kernel for the Pauli Z matrix – namely the quantum phase-
flip channel. The Pauli Y matrix can be readily modeled as
the combination of the Pauli X and Z channel. The kernel
of the quantum polar encoder for the Pauli X matrix is given
by

G0,x =

[
0 1
1 1

]
. (30)

Therefore, the binary representation of the quantum polar
encoder V x having N = 2m physical qubits is given by

V x = G⊗m
0,x . (31)

By contrast, the kernel of the quantum polar encoder for the
for Pauli Z matrix channel is given by

G0,z =

[
1 1
0 1

]
. (32)

Therefore, the binary representation of the quantum polar
encoder V z having N = 2m physical qubits is represented
by

V z = G⊗m
0,z . (33)

Furthermore, the kernels of (30) and (32) are used for
determining the frozen qubits of the quantum polar encoder.
As detailed further in [22], the channel polarization of quan-
tum bit-flip (X) channels takes place in the reverse order of
the channel polarization of quantum phase-flip (Z) channels.
Therefore, the channel capacity of the qubit’s index for the
quantum phase-flip error can be inferred from the reverse
ordered rank of the quantum bit-flip channel.

We utilize the binary erasure channel (BEC) based ap-
proximation for determining the location of the frozen (aux-
iliary) qubits. Explicitly, we used the erasure probability
of ϵ = 0.5. It is important to note that, in the idealistic

implementation of quantum polar codes, the location of the
auxiliary qubits may be different for a different depolarizing
probability value. This also means that the encoder-decoder
pair of the quantum polar codes has the perfect knowl-
edge of the quantum channel’s depolarizing probability. In
this treatise, we are focusing only on the capability of our
Quantum-GRAND-aided inverse-encoder-based decoder to
decode quantum polar codes. Thus, optimizing the location
of the auxiliary qubits will be left for our future works. The
rank-ordered qubit’s index spanning from the most reliable
qubit to the least reliable are in the presence of a quantum
bit-flip (X) channel is portrayed in Table 4. Thus, the rank-
ordered qubit’s index for quantum phase-flip (Z) channels
can be determined by reverse-ordering the index presented in
Table 4.

C. QBLER AND QBLER PER LOGICAL QUBITS
In this section, we present the QBLER and QBLER per logi-
cal qubits performance results of both decoding philosophies
represented in Section IV, namely the quantum BCH codes
for characterizing the Quantum-GRAND-aided stabilizer-
measurement-based decoder and the quantum polar codes for
the Quantum-GRAND-aided inverse-encoder-based decoder.

As mentioned in Section IV, the QBLER is determined by
the ratio of quantum block errors observed to the total num-
ber of quantum blocks simulated. Figure 5a shows the perfor-
mance of various QSCs codes represented by C[[N,K,D]],
as well as having the quantum coding rates rQ of Table 3,
for quantum BCH codes relying on the Quantum-GRAND-
aided stabilizer-measurement-based decoder. As shown in
Figure 5a, when a fixed number of N physical qubits is con-
sidered such as N = 63, as in [[63, 51, 3]], [[63, 39, 5]] and
[[63, 27, 7]], the higher the minimum distance D, the better
the performance becomes. Hence, as expected [[63, 27, 7]]
outperforms the [[63, 51, 3]] and [[63, 39, 5]] schemes.

Additionally, Fig. 5b provides performance of the nor-
malized QBLER per logical qubits for the quantum BCH
codes, which is calculated using (19). This normalized metric
provides a fairer comparison than the QBLER of Fig. 5a.
Interestingly, quantum BCH [[63, 27, 7]] and quantum BCH
[[31, 1, 7]] have very similar error correction performances,
which have however vastly different quantum coding rates of
rQ = 0.43 and rQ = 0.03, respectively. Hence, the former is
much preferred for practical systems.

Furthermore, Fig. 6a characterizes the performance of
quantum polar codes for the Quantum-GRAND-aided
inverse-encoder-based decoder. It is important to highlight
that the minimum distance D is unknown for the quantum
polar codes. Observe in Fig. 6a when the same number
of N physical qubits is considered such as N = 64, as
in [[64, 32, D]], [[64, 16, D]] and [[64, 8, D]], the quantum
polar code having a lower quantum coding rates rQ attains a
better error correction performance. The best overall QBLER
performance is achieved by the [[16, 2, D]] having a quantum
coding rate of rQ = 0.125. Furthermore, we also quan-
tified the QBLER per logical qubit for the quantum polar
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TABLE 3: The list of quantum BCH codes considered in this treatise for evaluating the performance of Quantum-GRAND-aided
stabilizer-measurement-based decoding using Monte-Carlo simulations.

Power Primitive Error Code Classical Code
polynomial correction parameters codes rate

m p(X) t [[N,K,D]] (n, k, d) rQ

3 1 +X +X3 1 [[7, 1, 3]] (7, 4, 3) 0.14
4 1 +X +X4 1 [[15, 7, 3]] (15, 11, 3) 0.47

5 1 +X2 +X5

1 [[31, 21, 3]] (31, 26, 3) 0.68
2 [[31, 11, 5]] (31, 21, 5) 0.35
3 [[31, 1, 7]] (31, 16, 7) 0.03

6 1 +X +X6

1 [[63, 51, 3]] (63, 57, 3) 0.81
2 [[63, 39, 5]] (63, 51, 5) 0.62
3 [[63, 27, 7]] (63, 45, 7) 0.43

7 1 +X +X7

1 [[127, 113, 3]] (127, 120, 3) 0.89
2 [[127, 99, 5]] (127, 113, 5) 0.78
3 [[127, 85, 7]] (127, 106, 7) 0.67

TABLE 4: The rank-ordered qubit index spanning from the most reliable to the least reliable qubit in the presence of quantum
bit-flip (X) channels used for determining the location of auxiliary qubits in quantum polar codes. For quantum phase-flip (Z)
channel, the rank-ordered index of the qubit is reversed.

Number of physical qubits Rank-ordered qubit’s index
N i

8 1, 5, 3, 2, 7, 6, 4, 8

16 1, 9, 5, 3, 2, 13, 11, 7, 10, 6, 4, 15, 14, 12, 8, 16

32
1, 17, 9, 5, 3, 2, 25, 21, 13, 19, 11, 18, 7, 10, 29, 6

27, 4, 23, 26, 15, 22, 14, 20, 12, 8, 31, 30, 28, 24, 16, 32

64

1, 33, 17, 9, 5, 3, 49, 2, 41, 25, 37, 21, 13, 35, 19, 11

34, 57, 18, 7, 53, 10, 45, 51, 29, 6, 43, 27, 50, 4, 39, 42

23, 26, 61, 15, 38, 22, 59, 36, 14, 20, 55, 12, 58, 47, 8, 31

54, 46, 30, 52, 44, 28, 40, 24, 63, 16, 62, 60, 56, 48, 32, 64

codes using the Quantum-GRAND-aided inverse-encoder-
based decoder relying on (28). In this context, the best
performance is attained by the [[64, 8, D]] scheme associated
with rQ = 0.125.

D. COMPLEXITY
In this section, we present the complexity and complexity per
logical qubits of both the quantum BCH codes and of the
quantum polar codes. As mentioned in Section IV, in both
the Quantum-GRAND-aided stabilizer-measurement-based
decoder and the Quantum-GRAND-aided inverse-encoder-
based decoder, the complexity estimated in terms of the
number of guessing i and j, where the total complexity is
given by C = i+ j.

Figure 7a shows the Quantum-GRAND-aided decoder
complexity of the quantum BCH codes, which predominantly
depends on the N value. More specifically, as shown in the
Fig. 7a, a lower N requires fewer number of guesses to
find the correct decoded codeword and vice versa. Observe
in Fig. 7a, that [[127, 85, 7]] invokes the highest complexity,
while [[7, 1, 3]] imposes the lowest complexity. On the other
hand, in terms of the complexity per logical qubits, Fig. 7b
shows that [[127, 85, 7]] requires the highest complexity per

logical qubits and [[31, 21, 3]] induces the lowest normalized
complexity when p = 10−2.

Furthermore, Fig. 8a shows the Quantum-GRAND-aided
decoder complexity of the quantum polar codes, which again
predominantly depends on the N value. More specifically,
as shown in the Fig. 8a, a lower N requires fewer number
guesses to find the correct decoded codeword and vice versa.
Observe in Fig. 8a, that [[64, 8, D]] requires the highest,
while [[8, 4, D]] the lowest complexity. On the other hand,
in terms of the complexity per logical qubits, Fig. 8b shows
that [[64, 8, D]] requires the highest and [[8, 4, D]] the lowest
normalized complexity.

VI. CONCLUSIONS AND FUTURE WORKS
In conclusion, we devised a universal decoding scheme for
QSCs by further evolving the GRAND decoding philosophy
for employment in the quantum domain. We demonstrated
that the decoding scheme conceived may be adopted for
two different QSC decoding paradigms, namely for both
stabilizer-measurement-based as well as the inverse-encoder-
based decoding. We then applied the resultant decoder for
both quantum BCH codes and quantum polar codes and
quantified their QBLER, QBLER per logical qubits as well as
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(a) QBLER.

(b) QBLER per logical qubits.

FIGURE 5: The QBLER and QBLER per logical qubits of
quantum BCH codes.

their decoding complexity. We concluded with a parametric
study of the associated design trade-offs and provided design
guidelines for the implementation of Quantum-GRAND-
aided QSC decoders. Based on our QBLER simulations,
we demonstrated that when a fixed number of N physical
qubits is considered, the higher the minimum distance D,
the better the performance becomes. According to the list of
quantum BCH codes considered in Table 3, our simulations
showed that the quantum BCH [[63, 27, 7]] is much preferred
for practical systems upon applying the Quantum-GRAND-
aided stabilizer-measurement-based decoder. On the other
hand, for quantum polar codes relying on the Quantum-
GRAND-aided inverse-encoder-based decoder, the best over-
all QBLER performance is achieved by the [[16, 2, D]] hav-

(a) QBLER.

(b) QBLER per logical qubits.

FIGURE 6: The QBLER and QBLER per logical qubits of
quantum polar codes.

ing quantum coding rate of rQ = 0.125. Furthermore, based
on our simulations, the Quantum-GRAND-aided decoder
complexity of quantum BCH codes and quantum polar codes
is dominated by N , because a lower N requires a lower
number of guesses to find the correct decoded codeword. Our
future research might also explore the employment of soft-
information-aided GRAND [7], [24], [25], which can also be
done efficiently from the complexity point of view.

In this treatise, we have concentrated on using Quantum-
GRAND-aided QSC decoding for the family of CSS-type
QSCs. Our next goal is to expand the proposed decoding
method to the family of non-CSS codes, such as the QSCs
presented in [15], [26].

Our simulation results confirm the findings presented
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(a) Complexity.

(b) Complexity per logical qubits.

FIGURE 7: The complexity and the normalized complex-
ity of Quantum-GRAND-aided stabilizer-measurement-based
decoder for quantum BCH codes.

in [27], namely that quantum polar codes do not offer the
best error correction capability in the face of quantum de-
polarizing channels. This motivates us to explore the use of
Quantum-GRAND-aided QSC decoding for more realistic
scenarios. Firstly, quantum channels are inherently asym-
metric [28]. As a result, the number of frozen qubits in
quantum polar codes harnessed for the quantum bit-flip (X)
and quantum phase-flip (Z) channels can be made different.
Secondly, the encoding and decoding process of QSC is not
error-free [29]. Modeling the error proliferation within the
quantum error correction circuit is a complex task. There-
fore, performing quantum error correction decoding with
the knowledge that the quantum encoder and decoder of
QSCs are not error-free has been a long-standing challenge

(a) Complexity.

(b) Complexity per logical qubits.

FIGURE 8: The complexity and the normalized complexity of
Quantum-GRAND-aided inverse-encoder-based decoder for
quantum polar codes.

in fault-tolerant quantum computation. So far, progress has
been made mostly for quantum topological error correc-
tion codes (QTECCs) [9], because the locality of stabilizer
measurements ensures that errors only propagate to a fixed
number of qubits, thus minimizing the error proliferation
phenomenon. However, quantum polar codes may provide
an alternative solution to this problem as a benefit of the
systematic structure of the quantum encoder and decoder,
making it simpler to model and to predict the error prolifer-
ation within the quantum error correction circuit. Therefore,
in our future research we will also consider the utilization of
Quantum-GRAND-aided QSC decoding for quantum polar
codes under realistic fault-tolerance assumptions.
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