
114 IEEE COMMUNICATIONS LETTERS, VOL. 10, NO. 2, FEBRUARY 2006

A Novel Optimization Algorithm for
Video Placement and Routing

Tolga Bektaş, Osman Oğuz, and Iradj Ouveysi

Abstract— In this paper, we propose a novel optimization
algorithm for the solution of the video placement and routing
problem based on Lagrangean relaxation and decomposition.
The main contribution can be stated as the use of integer
programming models to obtain feasible solutions to the problem
within the algorithm. Computational experimentation reveals
that the use of such integer models help greatly in obtaining
good quality solutions in a small amount of solution time.

Index Terms— Video-on-demand, placement, routing, integer
programming, Lagrangean relaxation, decomposition.

I. INTRODUCTION

V IDEO on Demand (VoD) is a service that provides tens to
hundreds of videos (programs) to hundreds to thousands

of clients through a network. Commercial VoD services are
now available in many areas that the multimedia technologies
are developing very fast. An in-depth treatment of the subject
is given by Little and Venkatesh [5]. A central problem in
structuring a VoD system is load balancing, which can be
further separated into two subproblems as indicated by Little
and Venkatesh [5]. The first consists of deciding on program
allocation and the second is resource location and connection
establishment. For relevant studies on VoD, we refer the reader
to Kim et al. [3], Lee [4], Chan [1], Ouveysi et al. [6] and
Xue [7].

The main motivation in this paper is to develop a novel
optimization algorithm for the solution of the integer linear
programming model introduced by Ouveysi et al. [6] for the
so called Video Placement and Routing Problem (VPRP). In
the next section, we formally define the problem and present
the integer linear programming model. Section III provides the
details of the optimization algorithm, with the implementation
results on randomly generated instances given in Section IV.
Conclusions and further remarks are given in Section V.

II. PROBLEM DEFINITION AND MODEL

In defining the problem, we adhere to the notation of
Ouveysi et al. [6], given as follows. There exists a fully
meshed network modelled by an undirected graph G = (V,A),
where V = {1, 2, ..., n} is the set of nodes and A is the
set of edges including the n(n − 1)/2 links of the network.
The set of programs (videos) to be placed and routed is
denoted by P = {1, 2, ...,m}, where each program k ∈ P

Manuscript received July 18, 2005. The associate editor coordinating the
review of this letter and approving it for publication was Prof. Hamid
Jafarkhani.

T. Bektaş and O. Oğuz are with the Dept. of Industrial Engineering, Bilkent
University, Ankara, Turkey (e-mail: {tolgab, ooguz}@bilkent.edu.tr).

I. Ouveysi is an honorary fellow in the EEE Dept., University of Melbourne,
Victoria, Australia (e-mail: iradjouveysi@yahoo.co.uk).

Digital Object Identifier 10.1109/LCOMM.2006.02007.

has a capacity requirement denoted by mk and a bandwidth
requirement for transmission denoted by µk. Each node j ∈ V
corresponds to a potential location for storing the programs
with capacity denoted by Cs(j). In addition, each node has
a demand for each program. The cost of storing a program
k ∈ P at node j ∈ V is shown by sk(j) and the transmission
cost of the program on the link {i, j} ∈ A is shown by
tk(i, j). Finally, each link {i, j} ∈ A has a transmission
capacity that is denoted by Ct(i, j). Given the demand forecast
of the programs, the VPRP consists of finding a placement
scheme for the programs such that the total cost of storage
and transmission of the programs in the network is minimized
and the demand of each node for each program is satisfied.

Ouveysi et al. [6] previously proposed a model for the
VPRP, which uses a binary variable xk

ij that is equal to 1
if program k ∈ P is transmitted to node j ∈ V from node
i ∈ V and 0 otherwise and an additional binary variable yk

j

that is equal to 1 if program k ∈ P is stored at node j ∈ V
and 0 otherwise. The model (denoted by F) is as follows :

minimize
∑
k∈P

∑
j∈V

sk(j)yk
j +

∑
k∈P

∑
j∈V

∑
i∈V,i�=j

tk(i, j)xk
ij (1)

s.t. ∑
k∈P

mkyk
j ≤ Cs(j), ∀j ∈ V (2)

∑
k∈P

µkxk
ij ≤ Ct(i, j), ∀i �= j ∈ V (3)

∑
i∈V,i�=j

xk
ij + yk

j = 1, ∀j ∈ V, k ∈ P (4)

xk
ij ≤ yk

i , ∀i �= j ∈ V, k ∈ P (5)

xk
ij , y

k
j ∈ {0, 1}, ∀i �= j ∈ V, k ∈ P (6)

In this model, constraints (2) and (3) correspond to the
capacity constraints related with storage nodes and transmis-
sion links, respectively. Constraints (4) state that each node
either stores a program or receives it from another node that
stores it. Finally, constraints (5) imply that a program can
be transmitted from a node only if the program is stored at
that node. Constraints (6) impose integrality restrictions on
the decision variables. F has in general (n2m+nm)/2 binary
variables and (n2m + n2 + n)/2 constraints. As n and m
increase, the size of F will render the solution of the problem
using standard off-the-shelf software impractical. Ouveysi et
al. [6] have proposed a heuristic to solve problem F. In this
letter, we propose a novel optimization algorithm for problem
F based on Lagrangean relaxation and decomposition. Details
of our algorithm are presented in the next section.

1089-7798/06$20.00 c© 2006 IEEE

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on October 7, 2009 at 07:30 from IEEE Xplore. Restrictions apply.

BEKTAŞ et al.: A NOVEL OPTIMIZATION ALGORITHM FOR VIDEO PLACEMENT AND ROUTING 115

III. THE OPTIMIZATION ALGORITHM

Our algorithm is based on relaxing the capacity constraints
(2) and (3) in a Lagrangean fashion, by respectively associ-
ating the Lagrange multipliers βj and αij to each constraint.
As a result, we obtain the following relaxed problem (denoted
by F (β, α)):

minimize
∑
k∈P

∑
j∈V

Ak
j yk

j +
∑
k∈P

∑
j∈V

∑
i∈V,i�=j

Bk
j xk

ij − C0

s.t. (4), (5), (6)

where Ak
j = sk(j) + βjmk, Bk

j = tk(i, j) + αijµk and
C0 =

∑
j∈V βjCs(j) +

∑
i∈V

∑
j∈V αijCt(i, j). Next, we

observe that F (β, α) decomposes into |P | subproblems, one
for each program k ∈ P and each denoted by Fk(β, α). Each
subproblem has (n2 + n)/2 binary variables and (n2 + n)/2
constraints. Let v(F) denote the optimal objective function
value of problem F. Then, as a result of the decomposition,
the optimal objective function of the formulation F (β, α) can
be calculated as v(F (β, α)) =

∑
k∈P v(Fk(β, α)) − C0. We

now provide below a general outline of the algorithm that
can be used to solve problem F:

The Algorithm:
• Start with an initial vector of multipliers β1, α1. Let the

incumbent lower bound be lb = −∞, incumbent upper
bound be ub = ∞ and t = 1.

• Perform the following until gap = ub−lb
ub < 1.00 or the

maximum number of iterations have been reached.

– Solve F (βt, αt). Set lb = v(F (βt, αt)) if
v(F (βt, αt)) > lb.

– Modify the solution of F (βt, αt) into a feasible
solution F̂ (βt, αt) using the two-stage procedure
that will be described below. If v(F̂ (βt, αt)) < ub,
set ub = v(F̂ (βt, αt)).

– Update the multipliers as βt+1 = max{0, βt + st
1 ·

gt
1} and αt+1 = max{0, αt + st

2 · gt
2}, where gt

1 and
gt
2 are the subgradient vectors. The jth component

of gt
1 is defined as (gt

1)j =
∑

k∈P mkyk
j −Cs(j) and

the (i, j)th component of gt
2 is defined as (gt

2)ij =∑
k∈P µkxk

ij −Ct(i, j). In updating the multipliers,
the step-sizes st

1 and st
2 are calculated as follows [2]:

st
i = λ

1.05 · ub − v(F (βt, αt))
‖gt

i‖2
, i = 1, 2 (7)

– t ←− t + 1.

• Output ub as the best feasible solution.

In equation (7), λ is a convergence parameter. We note that
if the optimal solution to problem F is equal to that of its LP
relaxation (i.e. all the variables are relaxed to be continuous in
the interval [0,1]), then the algorithm asymptotically converges
to the optimal solution. If this is not the case, this indicates
that there exists a duality gap and the algorithm may not be
able to find the optimal solution to the problem. However, it
is often the case that the algorithm is stopped when a good
quality solution is found. The reader is referred to Held et al.
[2] for details on the convergence of the algorithm. The gap

calculated at each iteration of the algorithm shows how far
at most the current feasible solution may be away from the
optimal solution. Therefore, in the case that the algorithm is
unable to find the optimal solution, this value is an indicator
of the quality of the final solution.

At any step of the algorithm, the solution of F (βt, αt)
provides an integral solution that is feasible with respect to
constraints (4) and (5), but may not necessarily satisfy the
capacity constraints (2) and (3). This (infeasible) solution
needs to be converted into a feasible solution with respect
to problem F in order to be able to provide the algorithm
with an upper bound. Given an optimal solution ŷk

j and x̂k
ij to

F (β, α), we attempt to achieve feasibility using a two stage
procedure, described below:

1) Stage 1: The first stage consists of modifying the ŷk
j ’s

through repositioning any program that violates the capacity
constraint, such that the resulting solution satisfies constraint
(2). To achieve this, we define the set O(j, k) = {j ∈ V, k ∈
P |ŷk

j = 1}. Then, the feasibility is accomplished through the
use of the following feasibility integer programming model
(denoted by FeasY):

(FeasY) minimize
∑
k∈P

∑
j∈V

sk(j)yk
j +

∑
k∈P

∑
j∈V

Rmk
j (8)

s.t. ∑
k∈P

mkyk
j ≤ Cs(j), ∀j ∈ V

yk
j ≥ 1 − mk

j , ∀j, k ∈ O(j, k) (9)∑
j∈V

yk
j ≥ 1, ∀k ∈ P (10)

yk
j ∈ {0, 1}, ∀j ∈ V, k ∈ P

mk
j ∈ {0, 1}, ∀j, k ∈ O(j, k) (11)

In FeasY, the additional binary variable mk
j is equal to

one if program k on node j is repositioned to another node.
However, to benefit as much as possible from the current
solution, we would like the amount of modification performed
to this solution to be minimal. Therefore, each modification
is penalized in the integer program, which is reflected in
the second summation of the objective function (8) with a
penalty coefficient R. Here, R is a sufficiently large constant
(e.g. R >> maxk∈P,j∈V {sk(j)}). Constraints (9) stipulate
that if a program k already located at node j is repositioned
to another node, then yk

j = 0. Constraints (10) are used to
ensure that after the modification, each program is located on
at least one node. We also note that in FeasY, it is possible
to relax the binary variables mk

j in the interval [0, 1], since it
is easy to see that in any optimal solution to FeasY, no mk

j

will attain a fractional value. In short, the solution to FeasY
yields a placement scheme for the programs such that no node
constraint is violated.

2) Stage 2: In the second stage, we attempt to find a
feasible configuration of xk

ij variables, based on the optimal
values of the variables yk

j of FeasY. In other words, we would
like to obtain a vector of x variables satisfying the following
integer model (henceforth referred to as FeasX):

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on October 7, 2009 at 07:30 from IEEE Xplore. Restrictions apply.

116 IEEE COMMUNICATIONS LETTERS, VOL. 10, NO. 2, FEBRUARY 2006

(FeasX) minimize
∑
k∈P

∑
j∈V

∑
i∈V,i�=j

tk(i, j)xk
ij (12)

s.t.∑
k∈P

mkxk
ij ≤ Ct(i, j), ∀i �= j ∈ V : yk

i = 1, yk
j = 0

∑
i∈V,i�=j,yk

i =1

xk
ij = 1, ∀j ∈ V, k ∈ P : yk

j = 0 (13)

xk
ij ∈ {0, 1}, ∀i �= j ∈ V : yk

i = 1, yk
j = 0, k ∈ P (14)

Note that in model FeasX, the binary variables xk
ij are only

defined if yk
i = 1 and yk

j = 0. Therefore, the size of the model
is greatly reduced as compared to problem F. The optimal
solution to FeasX yields a feasible configuration of xk

ij

variables. As a result of stages 1 and 2, we obtain the optimal
objective value of the corresponding (feasible) solution for
problem F as v(FeasY) + v(FeasX) − ∑

k∈P

∑
j∈V Rmk

j .

IV. NUMERICAL RESULTS

The optimization algorithm proposed in this paper has been
implemented in C and all the tests are performed on a Sun
UltraSPARC 12x400 MHz with 3 GB RAM on randomly
generated instances. All the subproblems are solved to op-
timality using CPLEX 9.0. Parameters µk, tk(i, j), sk(j) are
randomly generated from a uniform distribution between 1
and 100. mk is modelled as mk = µkTk, where Tk is the
total transmission time for program k. In the experiments,
Tk = 10 min. for all k. Ct(i, j) values have been chosen
from the uniform distribution between maxi,j{tk(i, j)} and∑

i,j{tk(i, j)}). The capacity of each node (Cs(j)) is set
to be 40% of the total size of all the programs and the
penalty parameter R is set to 10maxk∈P,j∈V {sk(j)}. The
convergence parameter λ is initially set to 2.00 and multiplied
by 0.87 if there is not any improvement in the best known
upper bound for 5 consecutive iterations. The algorithm is
stopped when the given time limit has been reached.

We present the results in Table I, where each row contains
the average values of five randomly generated problems.
Columns n and m respectively show the number of nodes
and the number of programs, column nL denotes number
of iterations required by the algorithm, tS indicates average
time required to solve all the subproblems to optimality.
Columns tY and tX show the average time required to solve
FeasY and FeasX to optimality, respectively. Columns gi and
gf report the average initial and final gaps obtained by the
algorithm, respectively. In order to show the effectiveness of
the algorithm, we compare it with CPLEX. To be fair in
comparisons, we impose a common time limit of 300 seconds
on both algorithms, considering the dynamic nature of the
problem requiring repeated resolving to adopt to the changes
in the demand pattern and available programs. The last column
of Table I, column d, shows the average percent difference
between the best solution found by the proposed algorithm
(denoted by vopt) and that of CPLEX (denoted by vC) within
the given time limit, and calculated as vopt−vC

vopt
· 100.

As can be seen from the results given in Table I, the
proposed algorithm is able to output solutions of good quality

TABLE I

NUMERICAL RESULTS FOR THE OPTIMIZATION ALGORITHM

n m nL tS tY tX gi gf d
50 20 13.2 13.78 0.12 0.53 3.23 2.03 0.82
60 20 12.4 23.91 0.15 0.78 4.04 2.20 0.91
70 20 7 36.45 0.17 1.08 3.37 1.82 0.12
80 20 6.4 58.20 0.20 1.39 2.92 2.45 -0.30
50 30 16.4 15.93 0.18 0.97 4.01 2.70 0.98
60 30 10 30.02 0.23 1.37 3.01 2.27 0.72
70 30 6.4 52.20 0.25 2.02 2.95 2.58 -2.74
80 30 4 76.55 0.31 2.47 2.65 1.99 -5.08
50 40 10.6 26.72 0.24 1.49 4.43 2.81 0.53
60 40 7.6 40.64 0.27 2.02 2.95 2.38 -0.56
70 40 5.4 61.94 0.34 2.77 2.56 2.26 -3.63
80 40 3.4 98.26 0.41 3.43 2.15 1.72 -4.80
50 50 9.4 33.75 0.30 2.01 3.28 2.67 -0.10
60 50 5.6 58.94 0.35 2.93 3.38 2.60 -2.61
70 50 4 90.00 0.40 3.83 2.92 2.56 -3.89
80 50 3 139.18 0.47 4.89 2.24 2.02 -4.07

(typically around 2% of the optimal) in a short time. In fact,
the algorithm is capable of obtaining near-optimal solutions
even in the first iteration. The values shown under columns
tY and tX indicate that it is not computationally expensive to
obtain feasible solutions at each iteration of the algorithm. In
addition, the proposed algorithm is observed to be capable of
providing better solutions than those found by CPLEX in the
same amount of time, especially as the instances grow in size.

V. CONCLUDING REMARKS

In this letter, we have presented a novel optimization
algorithm for the resolution of the VPRP. The proposed
algorithm is different from similar existing algorithms because
we achieve the feasible solutions through the use of integer
programming techniques and this is the reason that our solu-
tion methodology would result in good quality solutions even
at the earlier iterations of the algorithm. This can be stated
as the main contribution of this paper. Our algorithm also
provides a benchmark to measure the quality of the output
results. The algorithm may be useful as a tool to VoD service
providers in efficiently planning and managing their services.

REFERENCES

[1] S.-H. Gary Chan, “Operation and cost optimization of a distributed
servers architecture for on-demand video services,” IEEE Commun.
Lett., vol. 5, pp. 384-386, Sept. 2001.

[2] M. Held, P. Wolfe, and H. P. Crowder, “Validation of subgradient
optimization,” Mathematical Programming, vol. 6, pp. 62-88, Dec. 1974.

[3] Y. K. Kim, J. Y. Kim, and S. S. Kang, “A tabu search approach for
designing a non-hierarchical video-on-demand network architecture,”
Computers and Industrial Engineering, vol. 33, pp. 837-840, Dec. 1997.

[4] J. Y. B. Lee, “UVoD: an unified architecture for Video-on-Demand
services,” IEEE Commun. Lett., vol. 3, pp. 277-279, Sept. 1999.

[5] T. D. C. Little and D. Venkatesh, “Prospects for interactive video-on-
demand,” IEEE Multimedia, vol. 1, pp. 14-24, Autumn/Fall 1994.

[6] I. Ouveysi, L. Sesana, and A. Wirth, “The video placement and routing
problem,” in E. Kozan, A. Ohuchi, (eds)., Operations Research /
Management Science at Work: Applying Theory in the Asia Pacific
Region. Kluwer Academic Publishers International Series in Operations
Research and Management Science, pp. 53–71, 2002.

[7] G. Xue, “Server cost minimization in a distributed servers architecture
for on-demand video services,” IEEE Commun. Lett., vol. 7, pp. 52-54,
Feb. 2003.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on October 7, 2009 at 07:30 from IEEE Xplore. Restrictions apply.

