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Background: Transcriptomic profiling of adult tuberculosis patients has become increasingly 

common, predominantly for diagnostic and risk prediction purposes.  However few studies have 

evaluated signatures in children, particularly in identifying those at risk for developing TB 

disease. We investigated the relationship between gene expression obtained from umbilical cord 

blood and both tuberculin skin test conversion as well as incident tuberculosis disease through 

the first 5 years of life.  

Methods: We conducted a nested case-control study in the Drakenstein Child Health Study, a 

longitudinal, population-based birth cohort in South Africa. We applied transcriptome-wide 

screens to umbilical cord blood samples from neonates born to a subset of selected mothers 

(n=131). Signatures identifying tuberculin conversion and risk of subsequent tuberculosis disease 

were identified from genome wide analysis of RNA expression.  

Results: Gene expression signatures revealed clear differences predictive of tuberculin 

conversion (n=26) and tuberculosis disease (n=10); 114 genes were associated with tuberculin 

conversion and 30 genes were associated with the progression to tuberculosis disease among 

children with early infection. Co-expression network analysis revealed six modules associated 

with risk of tuberculosis infection or disease, including a module associated with neutrophil 

activation in immune response (p<0.0001) and defense response to bacterium (p<0.0001). 

Conclusions: These findings suggest multiple detectable differences in gene expression at birth 

which were associated with risk of tuberculosis infection or disease throughout early childhood. 

Such measures may provide novel insights into tuberculosis pathogenesis and susceptibility.   

Key Words: tuberculosis, pediatrics, transcriptomics 

INTRODUCTION 

Approximately one million children develop tuberculosis disease (TB) every year substantially 

contributing to global pediatric morbidity and mortality[1,2]. Most children who develop TB are 

under five years of age, an age group especially difficult to diagnose[1]. Identifying children who 

are likely to develop TB based on exposure status and underlying biology is of critical 

importance to administer targeted preventive therapy and reduce morbidity and mortality[3–5]. 

RNA transcriptional profiles have been increasingly used for diagnosis and assessment of TB 

risk among adults and children[6–9]. The relationship between maternal environment in 

pregnancy and TB risk of offspring is less well understood. Transcriptional analysis of cord 

blood may potentially provide insight into immune mechanisms that determine risk of TB 

infection in early childhood. 

Whether children differentially express genes compared to adults in relation to TB risk is 

debated[4]. Gene signatures for diagnosis of pediatric TB have shown specific transcriptomic 

profiles associated with microbiologically confirmed or clinically diagnosed TB[7]. A small 
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study in India found that children with TB had distinct gene signatures compared to signatures 

typically used in adults[9]. There are limited data on gene expression profiles predicting TB 

infection or disease in children, especially from high TB burden countries. However, both 

inherited genetic variation[10] and maternal environmental exposures (both pre-conceptionally 

and during pregnancy) are associated with offspring immunity and risk of respiratory 

infection[11–13]. Identification of gene expression signatures at birth associated with TB risk in 

childhood may assist our understanding of prenatal factors associated with offspring immunity 

allowing for strengthened strategies to prevent TB.   

We investigated the relationship between gene expression in cord blood among children who did 

and did not develop TB infection or disease during early childhood from a prospective birth 

cohort study in Cape Town, South Africa.  

METHODS 

Participants and study design 

In a prospective, South African birth cohort, the Drakenstein Child Health Study (DCHS), we 

followed children from birth through five years of age as described previously[14–17]. Briefly, 

pregnant women between 20–28 weeks gestation were enrolled at community clinics in the 

Drakenstein area. Exclusion criteria were those younger than 18 years of age or intention to leave 

the area within one year. All deliveries occurred at a central hospital, Paarl hospital, where cord 

blood was collected by trained staff. Infants were given Bacillus Calmette-Guerin (BCG) 

vaccination at birth (Denmark strain), per national policy. Active surveillance systems for lower 

respiratory tract illness and TB were established. Children were followed for TB infection and 

disease until five years of age. 

Tuberculin skin testing was done at 6, 12, 24, 36, 48, and 60 months of age, and at the time of 

lower respiratory tract infection or suspected TB as previously reported[15,16]. Tuberculin skin 

test conversion was defined as an induration reaction >10mm in children without HIV or >5mm 

in participants with HIV. Repeat testing was not conducted on children with any tuberculin 

response (i.e., >0mm induration) to minimize potential for tuberculin boosting. Children with 

positive tuberculin skin tests were further screened for TB and referred for preventive therapy.  

To diagnose TB, children with a positive tuberculin skin test or who were clinically suspected to 

have TB were investigated using induced sputum done by trained study staff in duplicate for 

smear, mycobacterial PCR (Xpert MTB/RIF; Cepheid, Sunnyvale, CA, USA) and liquid 

culture[15,18]. Chest X-rays were taken in all children suspected of TB and were read and 

reported by an experienced clinician; TB was diagnosed by experienced healthcare providers in 

local TB community clinics. We used standardized consensus definitions for diagnostic 
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classification of TB[19]; confirmed TB, unconfirmed TB, and unlikely TB. Children diagnosed 

with TB in this cohort consist both confirmed and unconfirmed TB.  

Cord blood collection, RNA isolation, and gene expression data processing 

 A subset of the cohort was selected for transcriptional profiling using biobanked umbilical cord 

blood samples as previously described[20]. Samples were collected after delivery by clamping, 

cutting, and draining umbilical cords into kidney dishes. Blood was collected, stored at -80°C in 

PAXgene RNA tubes. An IlluminaHT-12 v4 beadchip array was used to obtain row probe 

intensity values. Samples were previously randomized within batches, based on demographics 

(i.e., sex, maternal diagnoses, maternal alcohol and tobacco use, and mode of delivery) to reduce 

potential for batch effects[20]. We conducted a case-control study of all previously processed 

samples nested within the cohort. We defined cases as 1) children that converted their tuberculin 

skin test over follow-up; and 2) children diagnosed with TB. Controls were participants who did 

not develop TB or convert their tuberculin skin test over follow-up. Children with missing TB 

outcomes were excluded. 

Umbilical cord blood samples, RNA collection, and gene expression array processing were done 

as previously described[20] and are further detailed in the Supplemental Methods.  

Differential gene expression (DGE) analysis was conducted using the limma package[21]. DGE 

was used to identify genes that were significantly differentially expressed for three outcomes: (i) 

infants who did and did not convert their tuberculin skin test (TST) before three years old (the 

former herein referred to as ‘early converters’); (ii) infants who did and did not develop TB 

before five years old; and (iii) among early converters only, infants who did and did not develop 

TB by 5 years of age. We considered current maternal smoking status adjusted for HIV as a 

fourth outcome. We employed an exploratory significance threshold of =0.005 for DGE[20,22] 

and used Gene Set Enrichment Analysis (GSEA) to map genes to biological pathways [23]. A 

pathway Z-score was assigned to each sample as in [24]. Weighted gene co-expression network 

analysis (WGCNA) [25] was conducted to identify and characterize gene modules for their 

associations with each of the three TB outcomes. We used gProfiler[26] to identify enriched 

pathways within each module, and visualized these using an Enrichment Map[27]. 

CIBERSORTx was used to identify absolute abundance of immune cells using transcriptional 

data[28]. Identified genes, pathways, and modules were compared to two cohorts of pediatric TB 

patients collected in Kenya and Malawi[7]. Full details on the analytic pipeline are included in 

the Supplementary Methods.  

All computational code is available at https://github.com/CarlyBobak/TBCordBlood. Raw 

expression data are publicly available through the Gene expression Omnibus (GEO, accession 

number GSE114852)[29].  
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RESULTS 

Of 144 biobanked cord blood samples, 131 (91.0%) children had available TST and TB 

diagnosis data and were included in this analysis. Amongst these, all children were followed for 

5 years with no loss to follow-up or death.  Maternal HIV occurred in 25.2%, self-reported 

smoking in 28.2%, while prior maternal TB diagnosis was reported in 3.8% of all participants.  

The population was predominantly of low household income. In total, 25.2% were HIV-exposed, 

however no children had HIV. Median weight-for-age z-score and height-for-age z-score at 5 

years were -0.07 (IQR: -1.21, 1.64) and -0.07 (-1.21, 1.64), respectively. In total, 10 (7.6%) 

children received preventive therapy.  

Among included children, 26 (19.8%) were early converters while 14 (10.7%) developed TB 

prior to 5 years of age. Amongst converters, 10 out of 26 (38.5%) subsequently developed TB by 

5 years of age.  

There were no statistically significant differences between tuberculin converters and non-

converters in relation to maternal HIV status, maternal TB during pregnancy, self-reported 

history of maternal TB, TB in the household one year prior to enrollment, or maternal smoking 

(Table 1). There were no statistically significant differences between children who did and did 

not develop TB disease in relation to sex, birthweight, or duration of breastfeeding, while self-

reported maternal smoking during pregnancy approached statistical significance, with a higher 

percentage of smoking mothers represented among children with TB (50% versus 26.6% among 

TB progressors and non-progressors; p=0.07).  (STable 1).  

Differential gene expression reveals signatures from umbilical cord blood and infant TB 

outcomes 

We sought to identify differentially expressed genes in umbilical cord blood between infants 

who did and did not experience early TST conversion. A total of 114 genes were significant 

above the exploratory threshold of p<0.005. Of genes that met the significance threshold, the 

largest absolute log2 fold changes were for DEFA3 (p=0.004), DEFA1 (p=0.002), HLA-DQAI 

(p=0.001), and IFITM3 (p=0.004; Figure 1A; STable 2). 

Principal component analysis (PCA) of the significant genes shows a visible trend clustering 

early converters compared to participants who did not convert (Figure 1B,1C)[30]. The 

differences in PC1 were statistically significant (p=1.8x10-6)[31]. PC1 also separated TB-

progressors from non-progressors (p=0.047). PC2 demonstrated statistically significant 

differences between mothers who had and did not have a prior TB diagnosis before pregnancy 

(p=0.0052); this analysis had very small sample size of mothers in the prior TB group (n=5; 

Figure 1D). 

Median centered expression values are displayed using a heatmap with unsupervised hierarchical 

clustering in Figure 2 [32]. Clustering among early converters was present using this umbilical 
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cord gene expression signature. This finding suggests there are distinct gene expression 

differences associated with greater susceptibility to TB infection. 

When focusing our analysis on incident TB, we identified 60 genes that were statistically 

significant (p<0.005) between TB progressors and non-progressors. The most significant genes 

included SULT1A3 (p=8.05x10-5), HMBS (p=1.50x10-4), and NCOA3 (p=0.002; a full list of 

these results is shown in STable 3 and SFigure 1). 

In an analysis of TB disease in the first 5 years restricted to early TST converters, we found 30 

associated genes, where the most significant included PARP1 (p=9.84x10-5), WDR4 (p=5.34x10-

4), and KLRD1 (p=0.002; Figure 3A; STable 4). In principal component analysis (Figure 3B), 

there were clear differences along the first principal component (Figure 3C) and these 

differences were statistically significant (p=7.2x10-6). The first principal component was also 

associated with maternal smoking status (p=0.012). In an unsupervised hierarchical clustering 

analysis, we observed a strong clustering of six infants, where 5/6 of those infants had mothers 

who were current smokers at enrolment (SFigure 2). 

A DGE and subsequent GSEA revealed that pathways related to immune response, response to 

bacterium, and immune cell activation were overlapping across all TB outcomes and maternal 

current smoking status (Figures 4A/D). These pathways significantly differentiate between TB 

outcomes (Figures 4B/C). Further smoking DGE and GSEA results and an enrichment map are 

available in the Supplement (STable 5-9; SFigure 8). 

Biologically relevant modules reveal meaningful networks of gene expression for TST 

conversion and diagnosis of TB in young children 

We used WGCNA to identify interpretable, biologically relevant co-regulated gene modules. A 

total of 14 modules were identified (STables 10-11) and we evaluated module significance by 

testing for over-representation of disease-related differential gene signatures across all TB 

related outcomes and modules. We found that modules M3, M5, M7, M11, and M14 were 

significantly associated with the early conversion gene expression signature, with M11 having 

the most significant association (Figure 5A). No modules were related to the development of TB, 

but M9 was associated with development of TB among children with early conversion (SFigure 

4). 

We found a strong correlation between TST conversion and M11 gene connectivity (kME) 

(Figure 5B). The greater association between gene expression value and early TST conversion, 

the greater the connection was within the M11 module (cor=0.57, p=0.00023). The M11 

eigengene was tested for associations amongst maternal and child health characteristics. 

Significant associations were found across several characteristics including maternal prior TB 

diagnosis (p=0.01), infant birth weight (p=0.044) and early TST conversion (p=0.047) (Figure 

5C; SFigures 5-6). Children who developed TB among early converters compared to those who 

neither converted nor developed disease drove this association (p=0.036; Figure 5D).  
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We identified functionally enriched biologically interpretable pathways for each module (STable 

12). The top pathways functionally enriched in the M11 module include neutrophil 

degranulation, neutrophil activation involved in immune response, and neutrophil mediated 

immunity (all from Gene Ontology: Biological Processes(GO:BP); adjusted p-values of 1.13x10-

22, 1.29x10-22, and 2.07x10-22 respectively). Other pathways include the innate immune system 

(Reactome; 3.6x10-14), antimicrobial humoral response, and killing cells of other organisms 

(GO:BP; 7.47x10-13 and 3.05x10-12). Select pathways are visualized in Figure 6D. 

In a full enrichment map, we found overlapping pathways (M5, M9, M11, and M14) across all 

modules significantly associated with early childhood TST conversion or TB diagnosis (SFigure 

7). We also found three extracted subnetworks from the enrichment map using pathways 

functionally enriched with M11 (Figure 6). These highly linked subnetworks demonstrate major 

trends in the biological functionality associated with M11 with 6A representative of the 

defensive immune response to bacteria, 6B associated with the host interaction with symbiont 

cells, and 6C focused on the cellular response to molecules of bacterial origin.  

Using CIBERSORTx cell-type abundance estimation, we found cell-type differences between (i) 

TB progressors and early TST converters as well as (ii) TB progressors and children who did not 

TST convert. These differences were present in γδ T-cells, which were decreased in TB 

progressers (p=0.0016 and p=0.0114) and mast cells (also decreased; p=0.0292 and p=0.0006). 

Neutrophils were decreased in TB progressors compared to children who did not TST convert 

(p=0.045); this was not statistically significant when comparing TB progressors and children 

who TST converted (p=0.1073). B cells were decreased in TST converters compared to non-

converters (p=0.0396). Full CIBERSORTx results are available in Supplementary T13.  

Differentially Expressed Genes and modules in cord blood are present at the time of 

diagnosis. 

Across two independent pediatric TB cohorts which measured gene expression in whole blood at 

time of diagnosis [7], we found that 78 of 128 measured cord blood genes (60.94%) were 

differentially expressed (adjusted p<0.05). Similarly, the M11 module was both preserved and 

high quality in both the Kenyan and Malawi cohorts (preservation p=1.37x10-28 and p=7x10-20; 

quality p=3.07X10-40 and p=3.01x10-53). Additional validation can be found in Supplemental 

results and SFigure 8. 

DISCUSSION 

In this South African birth cohort study following infants through 5 years old in a high TB 

prevalence area, we found several novel gene expression profiles from umbilical cord blood that 

differentiated children at risk of TST conversion and incident TB. Several identified genes have 

established associations in TB pathogenesis, predominantly in adults [7,8,33–41]. These studies 
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have traditionally assumed gene expression changes due to TB exposure, infection, or disease. In 

this work, we show that differences in gene expression disease may occur prior to birth, 

suggesting the possibility of genetic or epigenetic predisposition or possible in utero exposure.  

The most important differentially expressed genes in each of our three signatures have been 

previously associated with TB disease in children[7,8] as well as other TB immune responses in 

adults, cell culture, and murine models[34–40]. Genes that best predicted TST conversion 

included DEFA1 and DEFA3, both proposed biomarkers for detecting TB from LTBI in children 

[7,8]; HLA-DQAI, which was associated with protection against pulmonary TB in a prior meta-

analysis of TB infection in adults[34]; and IFITM3, which is implicated in the restriction of 

mycobacterial growth[35]. Our top differentially expressed genes for TB progression include 

SULT1A3, which is associated with treatment response for TB in adults[36]; and NCOA3, which 

was differentially expressed in miRNA in adults with TB vs adults hospitalized without a TB 

diagnosis[37]. Among early TST converters, the top differentially expressed genes between 

those who did and did not progress to TB include PARP1 and KLRD1. PARP1 has been 

implicated in mouse experiments, plays a fundamental role in the host response to TB, and is 

hypothesized to contribute the sex differences in response to TB[38]. KLRD1 has been 

demonstrated to be a potential T-cell linked biomarker in the progression to TB in mice and 

macaques[39,40]. Furthermore, it has previously been associated with natural killer cell function 

in both influenza and TB [33,41].  

Of note, both PARP1 and KLDR1 have known associations with exposure to cigarette smoke, 

with PARP1 being implicated in both cellular senescence and lung DNA damage[42,43]. Active 

and passive smoking have long been associated with TB[44,45], and our previous work with this 

cohort found an association between maternal smoking and subsequent TB risk[16]. This is the 

first study to show that umbilical cord gene expression changes are associated both with maternal 

smoking status and development of TB among children with early TST conversion. The overlap 

in genes linked to smoking and TB, due to our temporal sampling method for exposure and 

diagnosis, reflects a biological mechanism that partly clarifies the link between maternal 

smoking and childhood TB outcomes. While an association between maternal smoking and TB 

progression did not reach statistical significance (p=0.07), given the small sample size of this 

study the observed differences may provide insight on the factors that increase TB risk in 

children. Further studies are needed to characterize this relationship.  

Sampling gene expression at birth provides a unique opportunity to study TB pathogenesis 

preceding exposure. We found a collection of gene signature modules which are associated with 

TB infection and disease. The most significant of these modules was M11, where pathway 

analysis indicated genes which primarily implicate neutrophil activation. Previous diagnostic 

signatures have highlighted neutrophil-driven transcriptional changes as critical in adults with 

TB[46]. Neutrophils are a critical part of innate immunity and are the primary attackers of 

bacterial infections, and thus may be important for protection against TB[47]. High neutrophil 

counts in peripheral blood were highly protective of TB among household contacts [48]. Given 
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that the M11 gene module was negatively associated with TST conversion and TB within early 

converters, this adds further evidence that neutrophil activation is important in TB protection. 

This result was further supported using cell type abundance estimates from CIBERSORTx, 

indicating that circulating neutrophils were lower among TB progressors compared to children 

who never TST converted or developed TB. 

Clusters of pathways implicated by the M11 gene module include those which are representative 

of the defensive immune response to bacteria and cellular response to molecules of bacterial 

origin. Similar pathways are often observed in gene expression studies in patients with TB[49] 

suggesting that changes in these pathways are already present at birth and may influence TB 

infection and disease in early childhood.  

Limitations of this study include the small sample size. The DGE results specifically are 

underpowered and should be interpreted cautiously. Modular support with WGCNA provides 

additional evidence that meaningful and interpretable biology is occurring during or prior to birth 

that influences early childhood TB outcomes. Future large-scale work with additional clinical 

and biological data from both mother and infant is essential for further elucidating these 

mechanisms, particularly in addressing possible confounding from unmeasured characteristics.  

Additionally, Mycobacterium TB infection is likely a heterogenous state and it’s possible some 

of our converters may have been false positives or in early stages of disease. BCG boosting 

might lead to false positive conversion results; to address this issue, we used a conservative 

conversion cutoff. Furthermore, any child with a positive skin test reaction did not have a repeat 

skin test[50]. Additionall, CIBERSORTx estimates of cell type abundances have not been 

validated on umbilical cord data and should be interpreted carefully. We are also unable to 

distinguish whether cord blood gene expression being on the causal pathway to postnatal TB 

infection or being a biomarker of other exposures that directly alter offspring infection risk (e.g., 

maternal smoking[11], HIV[12], and stress[13]).  However, these are mitigated by key strengths 

which include intensive participant follow-up and surveillance for TB infection and disease, as 

well as excellent phenotyping and cord blood RNA expression measurements. The cohort is 

representative of many populations with low-income economies, where TB continues to be a 

major cause of child illness and death. 
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FIGURE LEGENDS 

Figure 1. Differential gene expression results between infants with TST conversion and infants 

who do not convert conversion before 36 months of age. 

 
Differential gene expression results between infants with and without early TST conversion. (A) A volcano plot 

showing differentially up- and down-regulated genes between early converters and non-converting infants. (B) PCA 

using significantly differentially regulated genes from (A) where early converters are indicated in yellow and those 

who did not convert are indicated in blue. (C,D) A boxplot demonstrating statistically significant differences in the 

first principal component in (B) between (C) between infants with and without early TST conversion and (D)  

between mothers with a known prior TB diagnosis and mothers with no known prior TB diagnosis.    
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Figure 2. An unsupervised heatmap with infants who did (blue) and and did not convert their 

tuberculin skin test prior to 36 months of age (yellow). 

 

ACCEPTED M
ANUSCRIP

T



 

DOI: 10.1093/cid/ciad268   17 

An unsupervised heatmap with infants who did (blue) or did not convert their tuberculin skin test in early childhood 

(yellow). Each row represents a significantly associated gene (p-value < 0.005) and each column is one umbilical 

cord blood sample. Expression values were median centered. Both columns and rows were clustered using Canberra 

distance. 

 

Figure 3: Differential gene expression results between infants who were diagnosed with TB 

before the age of 5 from those without a TB diagnosis among those who experienced TST 

conversion before 36 months of age.   

 
The results from DGE analysis between children who were diagnosed with TB before the age of 5 among all early 

TST converters. A) The volcano plot showing the effect size by the -log10 p-value. B) The PCA using just the 
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significantly differentially expressed genes C) a boxplot showing statistically significant differences along PC1 

between children diagnosed with TB before age 5 and those who were not and D) a boxplot showing statistically 

significant differences between mothers who were smokers at the time of enrollment and mothers who were not 

smokers at time of enrollments. 
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Figure 4: Results from a pathway overlap analysis of all three TB hypotheses and HIV-adjust 

maternal smoking. Pathways were identified using GSEA[23]. (A) A Venn diagram of all 

pathways that overlapped between each DEG analysis. (B) The pathway response Z-score of the 

Defense Response pathway (GO:0006952) across TB outcomes. (C) The pathway response Z-

score of the Regulation of Immune Response pathway (GO:0002682) across TB outcomes. (D) 

A bubble plot illustrating normalized effect size (NES) and p-values of all pathways that were 

either enriched or depleted in each DEG analysis.  
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Results from a pathway overlap analysis of all three TB hypotheses and HIV-adjust maternal smoking. Pathways 

were identified using GSEA[23]. (A) A Venn diagram of all pathways that overlapped between each DEG analysis. 
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(B) The pathway response Z-score of the Defense Response pathway (GO:0006952) across TB outcomes. (C) The 

pathway response Z-score of the Regulation of Immune Response pathway (GO:0002682) across TB outcomes. (D) 

A bubble plot illustrating normalized effect size (NES) and p-values of all pathways that were either enriched or 

depleted in each DEG analysis. 
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Figure 5: Weighted Gene Co-expression Network analysis. (A) The 14 discovered gene 

expression modules and their association with early TST conversion. Error bars represent one 

standard error on either side of the mean. (B) A regression between the significance of genes in 

the M11 module with early TST conversion and the gene connectivity within the module. (C) A 

boxplot of the M11 module eigengene by maternal prior TB diagnosis. (D) A boxplot of the M11 

eigengene between early TST converters, early converters who developed TB, and children who 

did not convert their TST in early childhood and who did not develop TB within their first 5 

years of age.  
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Weighted Gene Co-expression Network analysis. (A) The 14 discovered gene expression modules and their 

association with early TST conversion. Error bars represent one standard error on either side of the mean. (B) A 

ACCEPTED M
ANUSCRIP

T



 

DOI: 10.1093/cid/ciad268   24 

regression between the significance of genes in the M11 module with early TST conversion and the gene 

connectivity within the module. (C) A boxplot of the M11 module eigengene by maternal prior TB diagnosis. (D) A 

boxplot of the M11 eigengene between early TST converters, early converters who developed TB, and children who 

did not convert their TST in early childhood and who did not develop TB within their first 5 years of age. 
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Figure 6: Three extracted subnetworks from the WGCNA enrichment results.  Nodes represent 

the biological function, where edges indicate significant overlap of genes associated with the 

biological functions. Pathways listed are from GO, Reactome, Wikipathways, and KEGG. (A) A 

subnetwork of biological pathways related to the defense response to bacteria. (B) A subnetwork 

of responses related to the interaction of the host and symbiont cells. (C) A subnetwork of 

cellular responses to molecules of bacterial origins. (D) A barplot of select pathways plotted 

against their gProfiler p-value[26]. 
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Three extracted subnetworks from the WGCNA enrichment results.  Nodes represent the biological function, where 

edges indicate significant overlap of genes associated with the biological functions. Pathways listed are from GO, 
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Reactome, Wikipathways, and KEGG. (A) A subnetwork of biological pathways related to the defense response to 

bacteria. (B) A subnetwork of responses related to the interaction of the host and symbiont cells. (C) A subnetwork 

of cellular responses to molecules of bacterial origins. (D) A barplot of select pathways plotted against their 

gProfiler p-value[26]. 

 

Table 1. Clinical measures for all included study participants (N=131) by tuberculin skin 

test conversion in infants  

  

Early TST 

Converters     

(N=26) 

Children who did 

not convert their 

TST (N=105) 

Overall        

(N=131) 
P-value 

          

Maternal Characteristics    

    Maternal HIV infected  3 (11.5) 30 (28.6) 33 (25.2) 0.12 

    Tuberculosis Treatment During 

Pregnancy 
1 (3.8) 4 (3.8) 5 (3.8) 1 

    Prior Maternal Tuberculosis  0 (0) 5 (4.8) 5 (3.8) 0.57 

    Tuberculosis in Household 1 Year 

Prior Enrollment 
2 (7.7) 14 (13.3) 16 (12.2) 0.64 

    Maternal Smoking  9 (34.6) 28 (26.7) 37 (28.2) 0.49 

    Median socioeconomic status 

score 
-0.11 (-1.58, 1.27) -0.07 (-1.63, 1.27) 

-0.11 (-1.58, 

1.26) 
0.456 

    Household income, rand per month    0.579 

       <1000 13 (50.0) 41 (39.1) 54 (41.2)  

       1000-5000 10 (38.5) 47 (44.8) 57 (43.5)  

        >5000 3 (11.5) 17 (16.2) 20 (15.3)  

Child Characteristics 

  
  

    Female sex  11 (42.3) 47 (44.8) 58 (44.3) 1.0 

    Mean Birthweight (kg) 3.07 (0.46) 3.16 (0.53) 3.14 (0.52) 0.38 

    Median Breastfeeding, months 

(min, max) 
2 (0, 7) 1 (0, 8) 1 (0,8) 0.14 
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    Tuberculosis diagnosis <5 years 

old 
10 (38.5) 6 (3.8) 16 (12.2) <0.001 

    Median weight-for-age z-scores at 

5 years of age            
-0.51 (-1.33, 0.29) -0.48 (-1.16, 0.43) 

-0.07 (-1.21, 

1.64) 
1.0 

    Median height-for-age z-scores at 

5 years of age  
-0.67 (-1.24, -0.15) -0.58 (-1.27, 0.10) 

-0.07 (-1.21, 

1.64) 
0.647 

     

          

Abbreviation: TST, tuberculin skin test. 
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