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ABSTRACT
Pandemics can have a significant impact on international health systems. Researchers have found that there
is a correlation between weather conditions and respiratory diseases. This paper focuses on the non-linear
analysis of respiratory diseases and their relationship to weather conditions. Chaos events may appear
random, but they may actually have underlying patterns. Edward Lorenz referred to this phenomenon in the
context of weather conditions as the butterfly effect. This inspired us to define a chaotic system that could
capture the properties of respiratory diseases. The chaotic analysis was performed and was related to the
difference in the daily number of cases received from real data. Stability analysis was conducted to determine
the stability of the system and it was found that the new chaotic system was unstable. Lyapunov exponent
analysis was performed and found that the new chaotic system had Lyapunov exponents of (+, 0, -, -). A
dynamic neural architecture for input-output modeling of nonlinear dynamic systems was developed to analyze
the findings from the chaotic system and real data. A NARX network with inputs (maximum temperature,
pressure, and humidity) and one output was used to to overcome any delay effects and analyze derived
variables and real data (patients number). Upon solving the system equations, it was found that the correlation
between the daily predicted number of patients and the solution of the new chaotic equation was 90.16%.
In the future, this equation could be implemented in a real-time warning system for use by national health
services.
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INTRODUCTION

Seasonal climatic conditions and respiratory diseases such as in-
fluenza are believed to be related to each other. In fact, certain
meteorological factors, such as temperature and relative humidity,
and the incidence of some respiratory viruses have been hypothe-
sized to have opposite relationships or those found in temperate
regions. This may be because the majority of virus transmission
takes place indoors, in air-conditioned spaces, which are cooler
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and less humid environments that are more conducive to airborne
virus survival and transmission. In order to better plan hospital
services for admissions, it is still necessary to comprehend the
relationship between respiratory disorders, respiratory virus oc-
currence, and meteorological conditions in various countries. This
is especially important now because viruses have just started to
appear.

While investigating a meteorological problem, Lorenz (1963)
stumbled upon a phenomenon that would become known as the
"Butterfly Effect" (Kuhfittig and Davis 1990). Lorenz, a mathe-
matician and meteorologist, was studying the behavior of weather
systems using a simplified model of atmospheric convection. As
he varied the initial conditions of his model, he noticed that small
changes could lead to dramatically different outcomes in the long-
term behavior of the system. This idea, that seemingly minor
perturbations can have large and potentially unpredictable conse-
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quences, came to be known as the Butterfly Effect and has had a
significant impact on the field of chaos theory (Gleick 1987; Hol-
brook 2003). The concept has been widely applied to a range of
systems, including economics, biology, and even social networks,
and has helped to shed light on the inherent unpredictability of
certain types of complex systems.

In mathematics, chaos theory is a branch of study that investi-
gates the behavior of dynamic systems that are highly sensitive to
initial conditions. Non-linear systems that are chaotic or chaotic
systems are sensitive to their initial conditions. The non-linearity
systems have a specific case known as chaos. This line succinctly
expresses the definition of chaos: chaos is the regularity of irreg-
ularity. Chaotic systems are complicated systems due to their
nonlinear and deterministic nonlinear dynamical systems. Van
der Pol and Van der Mark referred to the anarchy as noise. Dy-
namical systems that exhibit complicated behavior are considered
chaotic systems (Van der Pol and Van Der Mark 1927; Kennedy
1995; Siegelmann and Fishman 1998; Akgül et al. 2022).

Chaotic systems exhibit the following characteristics: unpre-
dictability in the time dimension, accuracy in the initial circum-
stances, an infinite number of distinct periodic oscillations, a broad
power spectrum that resembles noise, and positive Lyapunov (Kia
2011; de la Fraga et al. 2012). Numerous chaotic systems, including
Lorenz, Rikitake, Rossler, Sprott, Chen, Pehlivan and Akgul (Riki-
take 1958; Rössler 1976; Sprott 1994; Chen and Ueta 1999; Akgul
et al. 2016), have been introduced up until this point.

One way to study such systems is through the use of nonlin-
ear differential equations, which are called "chaos equations." The
solutions to these equations often exhibit complex and seemingly
random behavior, giving rise to the term "chaos." However, despite
their apparent randomness, the solutions of chaos equations are ac-
tually deterministic, meaning that they are completely determined
by the initial conditions and the underlying equations. In other
words, given the same initial conditions and equation, the system
will always evolve in the same way. Following the development of
the mathematical representation of chaos, it can be used in a wide
range of fields, including engineering, computing, communica-
tions, biology and medicine, management and finance, consumer
electronics (Ditto and Munakata 1995; Hilborn et al. 2000; Banerjee
et al. 2012; Jun 2022; Yavari et al. 2022).

Respiratory diseases, such as asthma and chronic obstructive
pulmonary disease (COPD), can be affected by weather conditions
(Ayres et al. 2009; D’Amato et al. 2014, 2016; Mirsaeidi et al. 2016;
Duan et al. 2020; Joshi et al. 2020). Cold air can cause the airways to
narrow, leading to difficulty breathing and increased symptoms for
those with respiratory conditions. Conversely, warm and humid
air can also worsen respiratory symptoms, as it can make it more
difficult for mucus to clear from the airways. Pollen and other
allergens, which are more prevalent in certain weather conditions,
can also trigger respiratory symptoms. It is important for indi-
viduals with respiratory conditions to pay attention to weather
forecasts and take necessary precautions, such as carrying medi-
cations and wearing a mask, when conditions may worsen their
symptoms. Cold air can cause the airways to narrow, leading to
difficulty breathing and increased symptoms for those with res-
piratory conditions. Conversely, warm and humid air can also
worsen respiratory symptoms, as it can make it more difficult for
mucus to clear from the airways. Pollen and other allergens, which
are more prevalent in certain weather conditions, can also trigger
respiratory symptoms.

In this paper, we aim to investigate the feasibility of using the
Lorenz equation and numerical methods, such as the Runge-Kutta
method, to predict the number of patients with respiratory diseases
based on weather data. To achieve this goal, a new chaotic equa-
tion will be derive and solved using the Runge-Kutta method. We
will then use the results of our analysis to discuss the potential of
this approach for predicting respiratory disease outbreaks and im-
proving hospital planning. The significance of this research lies in
the fact that it presents a novel chaotic system that can successfully
predict the presence of respiratory diseases in patients, which has
not been achieved in previous studies. This breakthrough holds
the potential to greatly improve the diagnosis and treatment of
respiratory conditions, as it allows for early identification of at-risk
individuals and targeted interventions. As such, the findings of
this study have the potential to significantly impact the field of
healthcare and contribute to the betterment of public health.

The paper is divided into five sections, with the introduction
being the first section. Section 2 will review the existing literature
on the relationship between weather conditions and respiratory
diseases, specifically influenza. Section 3 will cover chaos theory
and the new chaotic equation that has been derived for this re-
search. This section will describe the principles of chaos theory, the
Lorenz equation, and the process of deriving the new chaotic equa-
tion. Section 4 will present the results of the study, including any
analyses or simulations that were conducted using the new chaotic
equation. The final section will provide conclusions based on the
findings of the study and suggest directions for future research.

RELATED WORKS

A range of dynamic system behaviors are sensitive to initial condi-
tions and can be unpredictable to some extent. In the early 20th
century, Poincaré addressed the issue of weather forecasting. After
Lorenz revisited this problem in the late 1960s, a significant portion
of the scientific community began to focus on such phenomena,
leading to the emergence of "Chaos Science" as a new branch of
science. In 1963, Lorenz discovered new types of erratic oscil-
lations while modeling fluid heat dissipation in the atmosphere
to forecast weather patterns (Lorenz 1963). He gathered his pre-
vious solutions while taking a coffee break and returned to his
computer to resolve the 12 ordinary differential equations he was
using. When he returned, he found that the new solutions had
reached a significantly different position than the previous ones.
In other words, he discovered that the steady state exhibits new ir-
regular oscillations with a significantly different appearance when
the numerical integration is repeated with minimal variation in
the initial conditions.

Lorenz, a meteorologist, was interested in mathematics and con-
tributed to the development of the new field of chaos, a significant
topic in the 20th century. He published his findings in a meteo-
rology journal (Lorenz 1963). It took a decade for physicists and
mathematicians to fully understand the significance of Lorenz’s
discovery. The Lorenz system has received significant attention
and is considered the first example of how distributed systems can
behave chaotically.

Following this, Lorenz developed equations for weather fore-
casting. In the field of chaos theory, numerous studies have been
published in the last two decades about various systems, with
Lorenz’s system serving as a foundation for this research. This sec-
tion therefore focuses on understanding the relationship between
weather conditions and respiratory disease in order to develop a
new chaotic system. In the next section, we will delve into the
details of weather and respiratory diseases.
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Weather Conditions and Respiratory Diseases

There are numerous published studies that describe the effect of
weather conditions on respiratory infections, but no mathematical
system has been developed to understand this association. These
studies generally suggest that the relationship between infections
and seasonal climate is causal. This was true to some extent when
people lived and worked outdoors, with minimal protection from
even the most extreme climatic conditions. However, the indus-
trial revolution changed this. Many agricultural workers moved
to factories and offices, and the widespread adoption of central
heating and increasingly airtight, insulated buildings led to a fur-
ther decoupling of daily and seasonal outdoor climate fluctuations.
This separation is particularly noticeable in winter, when inter-
nal heating leads to a large deviation in the internal and external
temperature and relative humidity (RH), but does not affect the
absolute humidity (AH) (Quinn and Shaman 2017).

Nishimura et al. (2021) found that the average ambient temper-
ature during daily working hours may have a stronger correlation
with the number of patients transported by ambulance from out-
door sites than the daily average temperature or the daily highest
temperature (Nishimura et al. 2021). The study results showed
that patients transported from indoor environments are affected
by previous environmental conditions for about 50 days, while
those transported from outdoor sites are affected by a relatively
shorter period of time (20 days), which may be due to heat adapta-
tion. These findings provide a better understanding of the various
factors that can lead to more accurate predictions of the number of
heat-related patients based on weather forecasts.

A study by Lee et al. (2022) involving 525,579 individuals found
that various weather and air quality factors affected the respira-
tory illnesses of people who visited emergency rooms (Lee et al.
2022). The majority of the patients with respiratory diseases had
acute upper respiratory infections (J00-J06), influenza (J09-J11),
and pneumonia (J12-J18), with PM10 temperature and steam pres-
sure having the greatest effects. Pneumonia [J12–J18], acute upper
respiratory infections [J00–J06], and chronic lower respiratory dis-
orders [J40–J47] were the top three major causes of admission to
the emergency room .

Bhimala et al. (2022) found that in different parts of India, spe-
cific humidity has a strong positive association, while maximum
temperature has a negative correlation and minimum temperature
has a positive correlation (Bhimala et al. 2022).

METHODOLOGY

This retrospective study aims to establish a chaotic equation that
links weather and clinical data. To do so, the study first collected
weather and patient data, and then applied Lorenz system to in-
terpret the new variable. The stability of the new system was then
evaluated using lyapunov analysis. To assess the correlation be-
tween the actual values and the results predicted by the new chaos
equations, a NARX network was implemented to account for any
delay effects and to predict the daily number of patients using
real-time data.

Weather Data

Daily meteorological data, including maximum and minimum
temperatures, relative humidity, pressure, and sunshine duration,
were collected from the Meteorological Services Division. These
parameters are illustrated in Figure 1.

Figure 1 Weather data from Pamukova Region

Patient Data
The data for this study was collected from January 1, 2021 to
December 31, 2021 with the ethical approval of Sakarya University
(E-71522473-050.01.04-15185-157). The study group consisted of
cases that occurred in the Pamukova District of Sakarya Province.
A team of experienced medical professionals gathered the daily
total of patients diagnosed with upper respiratory tract infections
(J09-J18) from the Pamukova Family Medicine Center. Over the
course of the study period, 10821 patients sought medical attention
for upper respiratory illnesses.

Interpretation of New Variable
Edward Lorenz created the Lorenz system in 1963 as a more
straightforward mathematical representation of atmospheric con-
vection Lorenz (1963). The Lorenz chaotic system equations are
well known and take the form of:

Ẋ = α(Y − X)

Ẏ = X(β − Z)− Y (1)

Ż = X ∗ Y − γZ

With constant α = 10, β=28 and γ= 8/3. The initial conditions of
the system are X(0) = 0, Y(0) = -1 and Z(0) = 0. We observe the
chaotic behaviour, shown in Figure 2.

From this system, we assumed that there is an interpreted vari-
able as a description of number of respiratory cases (w). This
variable has the following:

1. Negative correlation with air pressure (Vitkina et al. 2019),

2. positive correlation with the average ambient temperature
(Nishimura et al. 2021) and,

3. Negative correlation with the absolute humidity (Quinn and
Shaman 2017).

The number of patients is also delayed due to the incubation
period of diseases. Therefore, the variable is affected by the
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Figure 2 Phase portraits in the (x, y), (x, z), (y, z) and (x, y, z)

previous and current states. The newly found chaotic system are
as follows:

Ẋ = α(Y − X),

Ẏ = X(β − Z)− Y, (2)

Ż = X ∗ Y − γZ

Ẇ = X ∗ Y − δ(α ∗ W + Y)− δ ∗ Z

with constant α = 10, β=28, γ= 8/3, δ = 5 . The initial conditions
of the system are X(0) = 10, Y(0) = -10, Z(0) = 25 and W(0)=0. The
dynamic system simulation of the new chaotic system are shown
in Figure 3.

System stability’s analysis

Letting the system’s derivatives equal to zero as:

0 = α(Y − X),

0 = X(β − Z)− Y, (3)

0 = X ∗ Y − γZ
0 = X ∗ Y − δ(α ∗ W + Y)− δ ∗ Z

The equilibrium points are (0, 0.0000 - 8.4853i, 0.0000 + 8.4853i),
(0, 0.0000 - 8.4853i, 0.0000 + 8.4853i), (0, -27, -27) and (0, -1.2600
- 0.8485i, -1.2600 + 0.8485i) and the eigenvalues of the first equi-
librium point are: -50.0000 + 0.0000i, -2.6670 + 0.0000i, -1.2164 -
9.9045i, -9.7836 + 9.9045i; the first point is unstable. The eigenval-
ues of the second equilibrium point are: -50.0000 + 0.0000i, -2.6670
+ 0.0000i, -1.2164 - 9.9045i and -9.7836 + 9.9045i; the second point
is unstable. The eigenvalues of the third equilibrium point are:
-50.0000, -2.6670, 8.2931 and -19.2931; the third point is unstable.
The eigen values of the forth equilibrium point are: -50.0000 +
0.0000i, -2.6670 + 0.0000i, -4.9833 + 8.2108i, and -6.0167 - 8.2108i;
the forth point is unstable.This analysis shows that the new sys-
tem is unstable and may exhibit chaotic behavior, which can be
confirmed by checking the Lyapunov exponents.
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Figure 3 Phase portraits in the (x, y), (x, z), (x, w), (y, z), (y, w), (z,
w), (x, y, z), and (x, y, w)

Lyapunov exponents analysis of Chaotic system

Lyapunov exponents are an important criterion in the analysis of
the behavior of a dynamic system because they provide charac-
teristic information about the system and serve as a measure of
chaotic behavior (Abarbanel et al. 1991; Kinsner 2006; Aziz et al.
2021; Qiu et al. 2023). If the behavior of a dynamic system is sen-
sitive to initial conditions, then as time progresses, orbits close to
each other in the phase space will rapidly diverge. This indicates
that the system is becoming dynamically unstable. However, it is
often difficult to make this determination because most trajectories
of the system are unknown. Nevertheless, it is possible to express
the orbits that can be known.

Lyapunov superposition lambda gives a measure of the sensi-
tivity to initial conditions and is defined as the average of the local
separation degrees of neighboring curves within the phase space.
If lambda is negative, different starting conditions tend to give the
same output values, meaning that the development is not chaotic.
If lambda is positive, different initial values give different output
values, indicating that the movement is chaotic.
The fundamental characteristic of a chaotic system is its depen-
dence on initial conditions. Even if the two different initial states
are very close to each other, the orbits formed at these two points
diverge from each other exponentially. Lyapunov exponents are
used to measure the sensitive dependence of initial states in chaotic
systems.

Lyapunov exponents are initially used to measure the distance
between very small discrete trajectories. They are a generaliza-
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tion of the eigenvalues and characteristic multipliers of a periodic
solution at an equilibrium point and are used to determine the
steady-state stability of semiperiodic and chaotic solutions. A dy-
namic system is considered chaotic if its sum contains at least one
positive Lyapunov exponent. The Lyapunov exponents of a chaotic
trajectory have at least one positive lambda, which distinguishes a
strange attractor from other types of steady-state behavior.

Nonlinear Autoregressive Network with Exogenous Inputs
(NARX)
To analyze results from chaotic systems and real data, a popular
dynamic neural design for input-output modeling of nonlinear
dynamic systems, the NARX network, is implemented. The NARX
network is a time-delayed feedforward neural network for time
series estimation. In theory, NARX networks can be used in place
of traditional recurrent networks with no computational cost and
are at least as effective as Turing machines (Lin et al. 1996; Siegel-
mann et al. 1997; Diaconescu 2008). Therefore, they can be used to
predict chaotic equations (Diaconescu 2008; Martínez-García et al.
2008).

In this study, a NARX network with 3 inputs (maximum tem-
perature, pressure, and humidity) and one output (number of
patients) was used to analyze derived variables and real data. The
network had 10 hidden layers and an incubation period of 5 days
was included to account for any variations due to delays. The final
structure of the NARX network is depicted in Figure 4.

Figure 4 NARX Structure

RESULTS AND DISCUSSION

Results
Respiratory disorders, such as asthma and chronic obstructive pul-
monary disease, are a major public health concern, as they can
greatly impact an individual’s quality of life and are a leading
cause of morbidity and mortality worldwide. In this study, we aim
to investigate the feasibility of using weather data to predict the
prevalence of respiratory disorders. To accomplish this, we will
utilize the Lorenz equation and numerical techniques, specifically
the Runge-Kutta method, to derive and solve a new chaotic equa-
tion. The Runge-Kutta method is a numerical technique that is
commonly used to solve differential equations. It is a widely used
method that is known for its accuracy and stability, and has been
applied to a variety of problems in science and engineering. In
this study, we will use the Runge-Kutta method to solve the new
chaotic equation that we will derive using the Lorenz equation
and weather data.

Our objective is to use the Lorenz equation and the Runge-Kutta
method to predict the prevalence of respiratory disorders based
on weather data. By using these tools, we hope to gain a better
understanding of the relationship between weather and respira-
tory disorders, and to develop more accurate and reliable methods
for predicting the occurrence of these conditions. We believe that
this research has the potential to significantly improve the man-
agement and treatment of respiratory disorders, and to ultimately
improve the health and well-being of individuals affected by these
conditions.

In order to give an example for the model detailed in the paper,
a scenario is set with initial conditions and is expected to meet
the actual data. In a three-dimensional system, the only possible
case for Lyapunov exponents is the type (+, 0, -) to have chaotic
behavior. For Lorenz Equation, they are λ1 > 0, λ2 = 0, and λ3
<0. In a four-dimensional system, the possible cases for Lyapunov
exponents are the type (+, +, 0, -) and (+, 0, -, -). If type (+, +, 0, -),
λ1 > 0, λ2 > 0, λ3 = 0, and λ4 < 0, is called hyperchaos.

The Lyapunov exponents of the system were analyzed to inves-
tigate its chaotic behavior. The results of the analysis are shown
below and depicted in Figure 5. The Lyapunov exponents of the
system are (+, 0, -, -)."
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Figure 5 Lyapunov exponents

In this paper, we utilized the Lorenz equation and developed a
new time series analysis, which is presented in Figure 6. However,
as shown in Figure 7, the daily difference between the number of
respiratory disease cases predicted by the chaotic equation and
the actual number of cases is not similar to the difference between
weather forecast and real weather data. This is due to the fact
that the initial conditions for the chaotic equation and the weather
data are not the same. To analyze the correlation between the real
values and the results from the chaotic equation, we implemented
a NARX network to account for any delay effects. The correlation
between the number of cases predicted by the chaotic equation
and the actual number of cases was found to be 90.16.

There is a well-established seasonality to the occurrence of in-
fluenza, with a marked peak in the colder winter months. However,
in tropical regions, the seasonality of influenza is less well-defined,
with detectable background activity throughout the year. In our
study, we have developed a new chaotic model to better under-
stand the patterns and underlying causes of respiratory diseases
in these regions.
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Discussion

This study used weather data to forecast the number of individ-
uals who will have respiratory disease. This was achieved by
developing a new chaos equation using patient data and weather
predictions that have been gathered. The findings of this study
agree with previous studies that have linked weather data to respi-
ratory disease cases (Lee et al. 2022; Bhat et al. 2021).

The study of the relationship between weather patterns and res-
piratory illness led to the development of a novel chaotic system.
According to the findings of this analysis, the system has Lyapunov
exponents of (+, 0, -, -). A NARX network was then used to assess
the created variables and real-world data, with a focus on count-
ing the number of patients with respiratory illnesses. The daily
projected patient count and the output of the new chaotic equation
had a strong correlation of 90.16% after the chaotic system’s equa-
tions were solved. As a result, the findings of this study are in line
with those of other studies that have evaluated the effectiveness
of time series in forecasting the occurrence of respiratory diseases
(Shaman and Kohn 2009; Lee et al. 2022). This study reported a
higher performance measure, with a correlation of 90.16% between
real patient cases and predicted data.

Several methods have been identified in the literature for deal-
ing with respiratory diseases. In a study (Lee et al. 2022), data from
525,579 participants was analyzed, and it was found that multiple
variables of weather and air pollution influenced the respiratory
diseases of patients who visited emergency departments. The
majority of the patients with respiratory disease had acute upper
respiratory infections. Similarly, another study (Xirasagar et al.
2006) found that the decline in temperature during colder months
and the decrease in sunshine duration had a negative impact on

respiratory diseases.
According to our research, predicting respiratory diseases from

weather data could potentially be useful for hospital planning, as
it could allow hospitals to anticipate increases in patient volume
and adjust their staffing and resource allocation accordingly. It is
important to have such a system that predict respiratory diseases
from weather data.

CONCLUSIONS

There is a significant body of literature that explores the rela-
tionships between various fields, such as physics, mathematics,
electrics, and electronics. These studies often involve the devel-
opment and analysis of mathematical models that describe the
behavior of chaotic systems. Scientists, engineers, and researchers
may rely on these models in order to design and build new chaotic
systems with complex and varied dynamic behaviors. However,
the physical implementation of these models can be quite chal-
lenging due to the need to carefully consider and control initial
conditions, as well as the impact of nonlinear effects. In other
words, the real-world realization of chaotic systems based on these
equations can be quite difficult and complex to achieve.

In this study, a new chaotic system was derived that investi-
gates the connection between weather patterns and respiratory
illness. To verify the chaotic behavior of the system, a Lyapunov
analysis was performed. The results of this analysis indicated
that the system had Lyapunov exponents of (+, 0, -, -). Next, the
generated variables and real-world data were analyzed using a
NARX network, specifically examining the number of patients
suffering from respiratory illness. Upon resolving the equations of
the chaotic system, it was found that there was a strong correlation
of 90.16 between the daily anticipated patient count and the output
of the new chaotic equation. It is anticipated that in the future,
this model will be further refined and applied to different initial
conditions depending on the local climate.
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