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The influence of free stream turbulence on the
development of a wind turbine wake
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The wake of an isolated model-scale wind turbine is analysed in a set of inflow conditions
having free stream turbulence intensity between 3 % and 12 %, and integral time scales
in the range of 0.1–10 times the convective time scale based on the turbine diameter. It
is observed that the wake generated by the turbine evolves more rapidly, with the onset
of the wake evolution being closer to the turbine, for high turbulence intensity and low
integral time scale flows, in accordance with literature, while flows at higher integral time
scales result in a slow wake evolution, akin to that generated by low-turbulence inflow
conditions despite the highly turbulent ambient condition. The delayed onset of the wake
evolution is connected to the stability of the shear layer enveloping the near-wake, which
is favoured for low-turbulence or high-integral time scale flows, and to the stability of
the helical vortex set surrounding the wake, as this favours interaction events and prevents
momentum exchange at the wake boundary which hinder wake evolution. The rate at which
the velocity in the wake recovers to undisturbed conditions is instead analytically shown
to be a function of the Reynolds shear stress at the wake centreline, an observation that is
confirmed by measurements. The rate of production of Reynolds shear stress in the wake
is then connected to the power harvested by the turbine to explain the differences between
flows at equivalent turbulence intensity and different integral time scales. The wake
recovery rate, and by extension the behaviour of the turbine wake in high-integral time
scale flows, is seen to be a linear function of the free stream turbulence intensity for flows
with Kolmogorov-like turbulence spectrum, in accordance with literature. This relation
is seen not to hold for flows with different free stream turbulence spectral distribution;
however, this trend is recovered if the contributions of low frequency velocity components
to the turbulence intensity are ignored or filtered out from the computation.
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1. Introduction

Wind turbines are machines that present a number of peculiar characteristics regarding
their operation: first, these are situated in the lowermost portion of the atmospheric
boundary layer, and thus harvest power from turbulent, sheared inflows. Moreover, to
accommodate for the rising market demand in renewable energy, these are often grouped
in wind farms that house a large number of these machines in a finite area: as a result,
all turbines that are not situated in the first row of the wind farm experience, as incoming
flow, a combination of the wakes of upstream machines and turbulent free stream entrained
from the atmospheric boundary layer surrounding the farm. In particular, the presence of
upstream machines limits the power that a wind turbine in the back rows of a farm can
harvest, as it will harvest energy from a lower-momentum inflow (Frandsen & Barthelmie
2002; Barthelmie & Jensen 2010). For this reason, a good knowledge of the wake
generated by a wind turbine in a complex, turbulent inflow is paramount to the prolonged
development and deployment of wind energy around the world.

As mentioned, the environment in which wind turbines operate is turbulent and sheared:
this is often parametrised with the free stream turbulence intensity, defined as

I∞ =
√

u′2

U∞
, (1.1)

where U∞ is the bulk free stream speed, and
√

u′2 is the standard deviation of the velocity
time-history. Elliott & Cadogan (1990) report data showing that turbines in an on-shore
environment are subject to I∞ < 15 % for 95 % of their operating life. Similarly, Wagner
et al. (2011) and Peña et al. (2016) report that turbines at the Høvsøre on-shore testing site
experience values of I∞ between 2 % and 14 %, with a strong dependency on the wind
direction: less turbulent inflows are observed for winds arising from the ocean. Turbulence
intensity for offshore sites is usually lower, with values of I∞ comprised between 6 % and
8 % (Barthelmie et al. 2005; Türk & Emeis 2010).

Wakes of wind turbines are complex in nature, being characterised by the superposition
of a large number of events: in the simplest of descriptions, the time-averaged wake of
a wind turbine is, sufficiently far from the turbine rotor, characterised by a self-similar
velocity deficit profile having a Gaussian distribution in the stream-normal directions
(Medici & Alfredsson 2006); this is in line with the wakes generated by other
axisymmetric bluff bodies such as spheres (Uberoi & Freymuth 1970) or porous plates
(Rind & Castro 2012a; Aubrun et al. 2019; Vinnes et al. 2022). Closer to the turbine, the
actual shape of the velocity profile is dominated by the distribution of pressure around
the turbine blades: although sometimes the velocity deficit distribution is constant along
a radial direction (Medici & Alfredsson 2006; Mycek et al. 2014; Lignarolo et al. 2015),
this need not necessarily be, especially for turbines that are not operating at on-design
conditions (Vermeer, Sørensen & Crespo 2003; Carbajo Fuertes, Markfort & Porté-Agel
2018; Foti et al. 2018; Dasari et al. 2019). The transition from these arbitrary profiles
to the self-similar Gaussian ones is understood to be a function of the free stream
turbulence intensity (Medici & Alfredsson 2006; Ishihara & Qian 2018). This region of
lower velocity is separated from the surrounding free stream by an annular shear layer
which is dominated by the presence of a helical vortex structure (Lissaman 1979; Crespo
& Hernández 1996; Troldborg, Sorensen & Mikkelsen 2010; De Cillis et al. 2020): this
is analogous to the classical horseshoe vortex characteristic of finite wings generating
lift, and it takes a helical structure due to the rotation of the blades as free stream
convects these vortices downstream. The stability of this structure has been connected
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The effects of free stream turbulence on a wind turbine wake

to the onset of wake evolution (Lignarolo et al. 2014, 2015), where a strong shear layer
enveloping the wake inhibits it; moreover, the stability (or lack thereof) is also seen to
drive a low-frequency motion of the wake in the stream-normal directions, named wake
meandering (Medici & Alfredsson 2006; Heisel, Hong & Guala 2018; De Cillis et al.
2020), with this motion being favoured by unstable shear layers. In general, an increase
in the free stream turbulence intensity is seen to hasten the transition to a self-similar
velocity profile (Medici & Alfredsson 2006) and a smaller velocity deficit at a given
distance from the turbine (Christiansen & Hasager 2005; Chamorro, Arndt & Sotiropoulos
2012; Bastankhah & Porté-Agel 2014); this is seen from the point of view of a wind farm
operator as a larger distance necessary between turbines in an offshore environment, as
the lower free stream turbulence intensity of those sites does not favour wake recovery as
much as in on-shore sites (Christiansen & Hasager 2005). The stability of the shear layer
is also seen to be related to the free stream turbulence intensity, shown by Sørensen et al.
(2015) as a relationship between the breakdown of the helical vortex structure and I∞.

Often, the wake generated by the turbine is divided into a near- and a far-wake region,
with the former being characterised by the presence of the helical vortex structure and
a non-self-similar velocity profile, while the latter shows opposite characteristics. The
division of the wake into a near and far field is commonplace for wakes generated by
all bluff bodies, and goes back to the first works by Castro (1971) and Pope & Whitelaw
(1976). Attempts to define the location of the boundary between the near- and the far-wake
have been, in recent times, published by a number of authors: for instance, Sørensen et al.
(2015) defines the boundary as the point of inflection of the turbulent kinetic energy
content of some selected proper-orthogonal-decomposition (POD) modes in the turbine
wake. De Cillis et al. (2020) instead defines the boundary to be the location for which the
time-averaged turbulent kinetic energy in the wake falls below a given threshold. Wu &
Porté-Agel (2012) uses instead the change in sign in the turbulent kinetic energy advection
term. Authors such as Howard et al. (2015) and Kang, Yang & Sotiropoulos (2014) instead
connect the onset of wake meandering to the transition from near- to far-wake: Kang et al.
(2014) show, from large-eddy simulation (LES) around a turbine, that the root-vortex set
undergoes instability, starting meandering in the near-wake; as this motion reaches the
annular shear layer around the turbine, it favours its breakdown and the full transition
to a far-wake, which is confirmed by the experiments of Howard et al. (2015). Similar
results are shown by Foti et al. (2018). Neunaber et al. (2020) instead proposes a more
complex definition of the turbine wake, which places two intermediate regions, named
transition and decay regions, between the near- and far-wake; according to the authors,
the near-wake is characterised by the presence of homogeneous and isotropic turbulence
at its centre, unlike the other regions where the nacelle influence is still observed on the
turbulence statistics. In all cases, transition to the far-wake is hastened by a more turbulent
free stream. It can be understood that, given the differences between these methods, the
location of the transition each model gives is different from that of any other model. This
is to be expected as near- and far-wake are terms that describe the absence or presence
of a large set of events, which need not appear or disappear simultaneously; as such, the
distinction between near- and far-wake, and the estimation of this transition can only be
qualitative.

It can be understood that not all these phenomena in the wake are of interest to a
wind turbine operator: for this reason, engineering applications usually treat the wake
statistically in a simplified form, often ignoring some of the aspects here described.
Analytical wake models are engineering tools often used to predict the wake generated
by wind turbines; these often relate the flow velocity in the turbine wake to some global
parameters, simple to measure or estimate. The model that has seen the most widespread
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use in the literature recently is the Gaussian wake model (Bastankhah & Porté-Agel 2014):
according to this, one has that the velocity deficit in the turbine wake is given by

�U
U∞

= U∞ − U
U∞

=
(

1 −
√

1 − CT

8(σw/D)2

)
exp

(
− 1

2(σw/D)2

( r
D

)2
)

, (1.2)

σw

D
= ε + k∗ x

D
, (1.3)

where U∞ is the free stream speed, U is the velocity in the wake function of the streamwise
distance from the turbine x and the radial distance away from the turbine axis r, D is
the turbine radius, CT is the thrust coefficient, ε is a known function of CT and k∗ is
a parameter related to the spatial growth of the wake. The effect of turbulence, which
has been seen to be for other bluff-bodies that of hastening the wake development and
shortening the wake, is often represented as a change in the wake recovery rate k∗.
Niayifar & Porté-Agel (2016) report an elaboration of LES data of the wake generated
by a commercial turbine, showing a linear relationship between the free stream turbulence
intensity and the wake recovery rate, for a constant value of CT ; this is also observed
by Carbajo Fuertes et al. (2018) with field data on the wake of a turbine acquired with
light detection and ranging (LiDAR). For the similar Jensen wake model (Jensen 1983),
Peña et al. (2016) show that the wake recovery rate is a linear function of the free stream
turbulence intensity if one assumes an inflow that is modelled with Monin–Obukhov
similarity theory (Monin & Obukhov 1954). However, some works in recent literature
have outlined how the predictions of wake models can be better tuned by introducing
one additional parameter: for instance, Neunaber, Peinke & Obligado (2022) shows that
the accuracy of the predictions of commonly used wake models can be improved by
introducing a virtual origin in their equations. This practice, commonplace when treating
wakes of bluff bodies, is seldom carried out in wind engineering. In this work, the authors
measure the wakes of two model-scale wind turbines, subject to either a laminar inflow
or to the wake of an upstream machine. Their data show that the addition of a virtual
origin in analytical wake models can improve the quality of the predictions for the wake
of downstream machines, hinting to the conclusion that a virtual origin might include
information on the inflow conditions. However, data included in their paper only consist
of the wakes generated under either a laminar inflow or the wake of another turbine:
given the large range of turbulent flows that turbines experience, it is important to observe
whether a virtual origin can improve on the predictions of analytical wake models for
an arbitrary inflow condition, and what is its physical meaning. While a large body
of literature has been dedicated to understanding the effects of free stream turbulence
intensity on the wake and on analytical prediction, little has been done to characterise
the wake developed by a turbine in the presence of flows with different spectral content
of turbulence. It is well established that the distribution of inflow turbulence affects the
near-wake and the power a wind turbine generates (Sheinman & Rosen 1992; Chamorro
et al. 2015; Tobin, Zhu & Chamorro 2015; Deskos, Payne & Gaurier 2020; Li et al. 2020;
Gambuzza & Ganapathisubramani 2021) and the drag generated by turbine simulators
(Blackmore et al. 2014), with turbines being more apt at converting velocity fluctuations
into power if those are present as lower-frequency contributions. Most works in the
literature therefore highlight how a wind turbine acts as a low-pass filter when converting
inflow into mechanical power. It can thus be assumed that the wake generated by a
turbine in flows with different representations in the frequency domain are characterised
by different scales, and indeed some works report different spectral composition
between the free stream and the wake generated by the turbines (Heisel et al. 2018;

963 A19-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

30
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.302


The effects of free stream turbulence on a wind turbine wake

Tobin & Chamorro 2019). In addition, Chatterjee & Peet (2018, 2021) show that, from
LES of an infinite wind farm, the mechanism of mean kinetic energy entrainment from
the free stream to the wake is favoured in the presence of very-large-scale structures, with
sizes of approximately 10 times the turbine diameter. Their work shows that the presence
of a turbine effectively remodulates the spectral content of the wake, favouring large-scale
motions in the wake. Whether this leads to different mechanisms of wake development
is an assumption that has seldom been tested in the literature for an isolated turbine, and
indeed engineering models do assume no effect of the turbulence spectrum on the wake
evolution, with parameters such as k∗ being only a function of I∞. For this reason, this
paper aims to investigate the relationship between the changing inflow conditions to which
a turbine is subject and the mechanisms that regulate and dominate the development of this
wake. We follow on from our previous work in Gambuzza & Ganapathisubramani (2021)
and carry out an experimental study to characterise the wake of a model-scale turbine
under different inflow turbulence conditions.

This paper is structured as follows: § 2 will briefly present the experimental
methodology used to collect the data here presented, along with its shortcomings.
Section 3 will present the results obtained: this chapter is further divided into three
subsections, which will relate more in detail to the predictions of engineering models
(§ 3.1) and to the physics behind the trends observed (§§ 3.2 and 3.3). Section 4 will
summarise these findings concisely.

2. Experimental method

This paper reports the measurements of velocity in the wake of a model-scale wind
turbine, measured via planar particle image velocimetry (PIV) in a wind tunnel equipped
with an active turbulence generating grid. This section will expand on the experimental
methodology that has been employed to obtain the results reported in the remainder of the
paper, outlining the main characteristics and the limitations of the techniques employed.
Some of the techniques used in this study are described in more detail in a previous study
by Gambuzza & Ganapathisubramani (2021).

2.1. Facility
The experiments were carried out in the 3 × 2 boundary layer wind tunnel at the University
of Southampton. This is a suction wind tunnel having a rectangular cross-section of size
0.9 × 0.6 m2, and a total usable length of constant cross-section of 4.5 m. Flow is driven
by a fan placed downstream of the test section, and flow conditioning is carried out by a
set of honeycomb meshes upstream of a contraction that leads to the test section. During
the tests here described, the wind tunnel has been equipped with a turbulence-generating
active grid, designed to the specifications of Makita (1991), which is able to generate
turbulent flows with different levels of shear and free stream turbulence intensities up to
16 % (Hearst & Ganapathisubramani 2017; Li et al. 2020); no shear has been generated for
the measurements presented in this study. This grid is composed of 18 stepper motors
that independently drive 11 vertical rods and 7 horizontal rods, each moving a set of
agitator wings. The mesh spacing between rods M is 81 mm. The grid is operated by
changing the angular velocity of each rod to a random value in a predetermined interval,
with rods allowed to cruise to speed for a limited time before changing direction and
speed: this actuation procedure is described in detail by Poorte & Biesheuvel (2002) as
the double-random mode. The active grid is situated at the inlet of the wind tunnel test
section, with the rods covering the whole of the wind tunnel cross-section.
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r/rtip c/rtip β (deg) Aerofoil

0.13 0.13 58.20 NACA 63-418
0.20 0.27 35.58 NACA 63-418
0.30 0.26 24.13 NACA 63-418
0.40 0.24 16.76 NACA 63-418
0.50 0.22 11.77 NACA 63-418
0.60 0.21 8.22 NACA 63-418
0.70 0.19 5.58 NACA 63-418
0.80 0.17 3.55 NACA 63-418
0.90 0.16 1.94 NACA 63-418
1.00 0.14 0.64 NACA 63-418

Table 1. Turbine geometry, defined as the distribution of chord c, twist β and aerofoil shape along the blade
span coordinate r.

During the tests, the wind tunnel fan was operated to generate a mean free stream
speed U∞ equal to 8 m s−1. This was measured by means of a Pitot probe placed 2.5M
upstream of the active grid. To account for the change in U∞ along the test section, this
was calibrated to a Pitot placed at the same location as the turbine in an otherwise empty
test section.

2.2. Model-scale turbine
The turbine used during these tests is a speed controlled, fixed pitch model-scale wind
turbine, having a rotor of diameter D equal to 0.18 m. For this value of D and the
aforementioned constant value of U∞, the diameter-based Reynolds number of these tests
is Re = 9.6 × 104. Data reported by Chamorro et al. (2012) show that this is sufficiently
high to attain Reynolds-independent results both in the mean and the second moment
of the wake velocity signals. The turbine rotor has been directly connected to a brushed
permanent magnet DC machine that was used as a generator to brake the rotor while
operating. This was not connected to other sources of mechanical or electrical power, with
the only torque acting on the turbine shaft being the one generated by the free stream on
the turbine blades, and the power generated being transformed into heat dissipated by the
motor. The turbine nacelle was supported by an aluminium mast of diameter 15.75 mm,
which placed the centre of the rotor at the centre of the test section. The turbine was
then located at a streamwise distance of 36M = 16D downstream of the active grid. The
geometry of the blade, defined as the distribution of chord and twist along the blade span,
is reported in table 1, where rtip = D/2 is the spanwise location of the last section of the
blade. The turbine blade is designed to harvest maximum power from the incoming flow
at a tip-speed ratio λ of 4; this parameter is defined as

λ = ω rtip

U∞
, (2.1)

where ω is the turbine rotor angular velocity.

2.3. Planar particle image velocimetry
In this study, planar PIV has been employed to measure the velocity in the turbine wake
on a stream-parallel vertical plane; the out-of-plane velocity component is not measured
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0 1 2 3 4 5 6

x/D
7 8 9

–1

1

0y/D

1.00.60.2

u/U∞

1n 1f 2f 3f2n

Figure 1. Planar PIV set-up with the cameras fields of view in the near-wake (1n and 2n) and in the far-wake
(1f , 2f and 3f ), including an instantaneous estimate of the streamwise velocity in the turbine wake. All
dimensions to scale.

by this technique. The nomenclature that is used in the remainder of the paper defines
x to be the streamwise coordinate, positive in the direction of the flow, and y to be
the stream-normal, vertical coordinate, positive upwards; both are dimensional and are
adimensionalised by the turbine diameter D. The origin of this reference frame is placed
at the centre of the turbine rotor, so that x defines the streamwise distance from the
rotor-swept plane, and y measures the distance from the turbine axis of rotation. The
convention used here employs the label u for the streamwise component and v for the
vertical component of velocity; both are made adimensional by the free stream speed U∞.
Moreover, Reynolds decomposition is used to separate the velocity into a time-averaged
and a fluctuating, zero-mean component:

u(t) = u(t) + u′(t) = U + u′(t), (2.2)

where the overline denotes time-averaging, a capital letter represents a quantity constant
in time and the prime symbol denotes a signal having zero time-mean.

Figure 1 reports a schematic representation of the planar PIV set-up used during
this study. Three Imager Pro LX cameras were used to obtain the five fields of view
reported in figure 1, which were illuminated by a Litron Bernoulli PIV laser: initially,
two cameras simultaneously acquired the velocity field for streamwise distances of 1–4.2
rotor diameters downstream of the turbine; these are indicated as positions 1n and 2n in
the figure. Subsequently, these cameras were moved, and a third camera was added to
acquire between 4.1 and 9 diameters of downstream distance; these are locations 1f to
3f . All cameras fields of view have dimensions of 300 mm in the x-direction and 450 mm
in the y-direction in object-plane units, or 1.67 × 2.5 rotor diameters; all fields of view
overlap the previous and next by a strip 15 mm wide and 450 mm tall, which allows
for the statistics fields to be stitched together along the whole span of the measurement
domain. Moreover, instantaneous velocity fields are stitched between cameras 1n and 2n,
as these were acquired simultaneously, and between cameras 1f to 3f for the same reason.
Processing of the PIV particle displacement snapshots was carried out with LaVision
DaVis, specifying an initial window size of 96 × 96 px and a final window size of 48 × 48
px with a 75 % overlap between adjacent windows: this results in an overall vector spacing
of 1 velocity vector per 1.1 mm in both the x- and y-directions, or 162 vectors in one
rotor diameter. Due to the large magnification factor that had to be employed to image
the fields of view, tracking particles had a size of approximately 1 px in image-plane
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units, which lead to the phenomenon of peak-locking as described by Christensen (2004).
To alleviate the effect of this on the computed statistics, the histogram normalisation
correction algorithm presented by Hearst & Ganapathisubramani (2015) was applied to
all correlation maps in image-plane units of displacement, prior to the application of a
calibration to convert these into object-plane units of velocity. The velocity fields were
acquired at a frequency of 0.6 Hz: for a free stream speed of 8 m s−1, this corresponds to
a displacement in the free stream of 74 diameters of the wind turbine, equal to the length
of the wind tunnel test section; for this reason, the velocity realisations are assumed to
be statistically independent. Velocity snapshots were phase-locked to the instantaneous
position of the turbine rotor, to ensure a uniform distribution of all phases in the computed
statistics; this was realised by timing the laser discharge to the index signal of a rotary
encoder installed on the turbine shaft. A total of six phases were recorded, at a distance of
0◦, 20◦, 40◦, 60◦, 80◦ and 100◦ from the reference rotor position; as the turbine rotor has
three blades, the resulting velocity field is understood to be periodic to a 120◦ rotation of
the turbine rotor. A total of 300 instantaneous snapshots of velocity were acquired for each
phase: unless otherwise mentioned, statistics were computed on the full dataset consisting
of 1800 snapshots per test case. Uncertainty in the instantaneous velocity measurements
was estimated by DaVis to be equal to 1.5 % of the measured values in the near-wake
fields of view and 1.0 % in the far-wake fields, with these values being constant between
test cases. This was estimated following the method presented by Wieneke (2015).

2.4. Test cases
The turbine wake was generated under 18 different conditions: these were parametrised
with the operating tip-speed ratio of the turbine and the free stream turbulence conditions
to which the turbine was subject. The turbine was operated at three distinct values of
tip-speed ratio λ: these were λ = 1.9, for which the turbine generates low power and thrust,
and the flow around the blades is mostly stalled; λ = 3.8, for which the turbine generates
the most power; and λ = 4.7, at which the thrust generated is at its maximum. Curves of
power and thrust generated by the turbine have previously been reported by Gambuzza &
Ganapathisubramani (2021) as adimensional power and thrust coefficients (respectively
CP and CT ): these are defined as

CP = Q ω

1
2ρU∞3πr2

tip

, (2.3)

CT = T
1
2ρU∞2πr2

tip

, (2.4)

where Q is the torque generated by the rotor, ω is its angular velocity, and the product
of these quantities is the mechanical power harvested by the turbine, T is the turbine
thrust and ρ is the air density. The values of CT generated by the turbine for the
different λ at which it was operated are listed in table 2: as reported by Gambuzza &
Ganapathisubramani (2021), little effect of the free stream turbulence characteristics is
seen on these values.

The active grid has been used to generate six different free stream turbulence conditions:
in this work, these are classified based on their turbulence intensity

I∞ =
√

u′2

U∞
, (2.5)

963 A19-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

30
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.302


The effects of free stream turbulence on a wind turbine wake

λ CT

1.9 0.52
3.8 0.76
4.7 0.80

Table 2. Turbine thrust coefficient CT as a function of the tip-speed ratio λ for the operating conditions
presented in this study.

Name L M1 M2 H1 H2 H3

U∞ (m s−1) 8.0 8.0 8.0 8.0 8.0 8.0
I∞ (%) 3.0 7.5 8.8 11.5 11.3 11.6
T0 0.1 0.9 1.0 1.0 6.3 10.5

Ro — 2 5 2 40 60
Wings — P P F P P

Table 3. Free stream turbulence characteristics of the generated inflow conditions, and active grid operating
parameters (F, full wings; P, pierced wings).

and their integral time scale T0, computed as

T0 =
∫ τ0

0
ρuu(τ ) dτ, (2.6)

where ρuu(τ ) is the autocorrelation coefficient of u′(t) and τ0 is the first value of τ

for which ρuu(τ ) = 0. This last quantity is presented in the remainder of the paper as
normalised by the convective time scale D/U∞. To compute both I∞ and T0, hot-wire
anemometry was used to measure the free stream velocity in an otherwise empty test
section, on a 5 × 2 grid at the centre of the test section spanning the rotor-swept area: more
details on the hot-wire anemometry setup is included in Gambuzza & Ganapathisubramani
(2021). The characteristics of the six flows generated are summarised in table 3: these are
named L for the low-turbulence test case, M1 and M2 for the medium I∞, and H1 to H3
for the high turbulence intensity test cases.

The free stream turbulence spectra are presented in figure 2: in this, the flows are divided
in two families, one exhibiting the canonical distribution of energy in the spectrum of
Kolmogorov (1941), which are reported in figure 2(a,c) and are characterised by T0 ≤ 1,
and a second for which free stream turbulence intensity I∞ is approximately constant,
but the distribution of this does not follow that of the Kolmogorov spectrum, showing
a marked spectral gap for adimensional frequencies around 1 × 10−1 and a narrowband
contribution at low frequencies. This can be, for instance, thought to be analogous to the
meso-scale peak observed in the spectrum of the atmospheric boundary layer (der Hoven
1957; Smedman-Högström & Högström 1975), although the ratio between the frequency
of this peak and the start of the inertial subrange is approximately one order of magnitude,
instead of the three-to-four orders seen in the literature. Flows H2 and H3 are thus labelled
non-Kolmogorov-like flows in the remainder of the text. This is a desired feature, as
previous studies of wind turbine wakes in turbulence employ turbulence whose spectra
are Kolmogorov-like (Chamorro & Porté-Agel 2009; Barlas, Buckingham & van Beeck
2016; Deskos et al. 2020; Neunaber et al. 2021). As it was discussed in § 1, this is often an
assumption that is not challenged in the literature, namely that the distribution of power
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Figure 2. (a,b) Spectra of the streamwise component of free stream turbulence φu( f ) premultiplied by the
frequency axis versus adimensional frequency for flows at integral time scale T0 ≤ 1 (Kolmogorov-like flows,
a) and flows at equivalent turbulence intensity I∞ (non-Kolmogorov flows, b). (c,d) Same spectra plotted as
non-premultiplied on canonical log-log axes along with −5/3 slope (dashed grey).

in the incoming turbulence spectrum does not affect the development of a wind turbine
wake. Note that, while flows H2 and H3 exhibit a large value of T0, it would be incorrect
to assume those are the result of very-large-scale structures: assuming Taylor’s hypothesis
to hold true, an estimate for the large-eddy size can be given by

L0 = T0 D, (2.7)

which, for flow H3, results in an approximate value of 1.8 m, or twice the test-section width
and three times the test section height. It must therefore be accepted that, for flows H2 and
H3 presented here, Taylor’s hypothesis need not hold as the high integral time scale of
these flows is instead representative of a low-frequency change in the bulk free stream
velocity as seen by the turbine. In practical terms, these non-Kolmogorov-like flows are
generating by actuating the motion of the active grid agitator wings at lower speeds than
those used for Kolmogorov-like flows: this can be quantified introducing the grid Rossby
number Ro, defined as

Ro = U∞
ΩM

, (2.8)

where Ω is the mean angular velocity of the active grid rods. For the two
non-Kolmogorov-like test cases, the slow rotation of the rods translates into a slow change
of the blockage generated by the grid, which in turn induces slow changes in the bulk free
stream speed. This can be easily appreciated from the time series of velocity reported in
figure 3.
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Figure 3. Time series of free stream velocity u(t) for three selected test cases, plotted versus time normalised
by the convective time scale D/U∞.

3. Results and discussion

As briefly introduced in § 1, one of the most important parameters of the turbine wake is
the velocity deficit �U. This is defined as a function of the streamwise distance from the
turbine as

�U
U∞

= U∞ − miny(U(x, y))
U∞

, (3.1)

where the dependency of U on y is removed by taking the minimum in that direction.
This parameter is of interest to a wind farm designer as this sets the streamwise distance
between rows of turbines in a wind farm.

Figure 4 reports the trends of the velocity deficit �U for all inflow conditions analysed
in this study. In particular, figure 4(a) isolates the trends for the Kolmogorov-like flows:
it can clearly be seen that an increase in the free stream turbulence intensity generates
a monotonic decrease of the velocity deficit, and therefore a faster wake recovery and
a shorter overall wake length. This is often connected to an increase in the turbulent
mixing, favouring the homogenisation of velocity between the low-speed wake and the
higher-momentum free stream surrounding it (Medici & Alfredsson 2006; Chamorro &
Porté-Agel 2009), a behaviour that is also seen for other bluff bodies in turbulence (Hearst,
Gomit & Ganapathisubramani 2016). Figure 4(b) instead collects the family of flows at
equivalent I∞ and, even in this case, important differences between the wake velocity
profiles are seen. In particular, the wakes generated for the non-Kolmogorov-like flows H2
and H3 are seen to be only slightly different, and these appear to evolve more slowly both
with respect to the equivalent-I∞ flow H1, and more surprisingly to flow M1, which has
a much smaller value of free stream turbulence intensity. In fact, only the wake generated
under flow L, which here has been taken as the reference for a low-turbulence flow, evolves
more slowly.

Data reported in the previous figure 4 were obtained by fixing the turbine tip-speed
ratio and, ultimately, its thrust. However, figure 5 reports the value of �U/U∞ for all
flows to which the turbine has been subjected and for all three values of CT here studied;
free stream turbulence intensity is reported on the horizontal axis and free stream integral
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Figure 4. Maximum velocity deficit �U/U∞ as a function of the streamwise distance from the turbine x/D
for (a) the Kolmogorov-like flows at T0 ≤ 1 and (b) for the equivalent I∞ flows. Turbine operating at peak
power-generating λ = 3.8.
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Figure 5. Velocity deficit �U/U∞ at x/D = 8 for all operating conditions, as a function of the free stream
turbulence intensity I∞ (horizontal axis) and integral time scale T0 (colour, note the logarithmic axis), for the
turbine operating at (a) λ = 1.9, (b) λ = 3.8 and (c) λ = 4.7.

time scale is reported as the colour of the markers. The results of figure 4 can clearly be
generalised to all values of CT here studied and, thus, these are representative of a peculiar
behaviour of the wind turbine. The trend of velocity deficit with turbulence intensity,
limiting the analysis to the Kolmogorov-like flows of T0 ≤ 1, is clearly decreasing; as
no data have been acquired for values of I∞ > 12 %, it cannot be said whether this tends
asymptotically to zero or not. This is an important distinction: an asymptotic trend to zero
would suggest that the turbine wake can be arbitrarily shortened by a large enough value
of free stream turbulence. However, a trend to a small but finite value would instead hint
to a behaviour for which the mean flow in the wake is unaffected by an increase of I∞
after a certain threshold, a behaviour that is similar to what is observed for boundary
layers generated in free stream turbulence (Sharp, Neuscamman & Warhaft 2009; Dogan,
Hanson & Ganapathisubramani 2016).

Wakes of turbines are also seen to meander, that is, change their instantaneous trajectory.
This is a phenomenon that is understood to be driven primarily by instabilities in the
shear layer (Heisel et al. 2018); in the field, instantaneous changes in wind direction
also contribute to this motion, a behaviour that is not simulated here. To identify the
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Figure 6. Instantaneous trajectory of the wake yw(x) (dotted grey lines, 20 random trajectories shown per test
case), alongside mean wake trajectory (solid red line) and boundaries of the wake meandering region (dashed
red lines). Data shown for (a) inflow L, (b) M1, (c) H1 and (d) H3; turbine operating at λ = 3.8 for all four
panels.

instantaneous trajectories of the wake from the individual velocity snapshots, the method
of Howard et al. (2015) is used: in this, the instantaneous wake trajectory is determined for
each x as

yw(x, t) = argmin
y

(u(x, y, t)), (3.2)

which is then low-pass filtered to remove all contributions having a wavelength smaller
than D/2. Figure 6 reports, for each of the edge cases at λ = 3.8, 20 randomly chosen
instantaneous trajectories in dotted grey. Alongside these, the mean wake trajectory is
found by averaging the instantaneous yw in time, and the extent of the meandering region
is reported as twice the standard deviation of the instantaneous wake trajectories. Figure 7
reports instead the standard deviation of yw in time for any given value of x/D. Assuming
that the distribution of yw for a given x/D is Gaussian, the point of minimum velocity in
the wake is within the bounds⎡

⎣yw

D
− 2

√
y′2

w

D
; yw

D
+ 2

√
y′2

w

D

⎤
⎦ (3.3)

in 95 % of all observations and, therefore, this value is representative of the extent of the
wake meandering motion in space. It can be appreciated that the width of this region
increases both with distance from the turbine, a phenomenon observed for the wakes
of solid and porous disks by España et al. (2011) and in LES of wind farms by Foti
et al. (2019), and with the free stream turbulence intensity content I∞. Once again, by
limiting the analysis to the Kolmogorov-like flows and the extent of the wake meandering
region (see data reported in figure 7a), it is easy to appreciate that the extent of the
wake meandering increases with the free stream turbulence content; that is, the wake
meandering amplitude increases with increasing I∞. However, the largest increase happens
between flows L and M1, in conjunction with the increase in integral time scale of the flow
T0, suggesting that this is mostly due to the size of the eddies introduced in the free stream;
adding more turbulence without affecting its scales increases the extent of meandering
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Figure 7. Extent of the meandering region estimated as twice the standard deviation of the instantaneous wake
trajectories for (a) the Kolmogorov-like flows at T0 ≤ 1 and (b) the flows at equivalent I∞. Turbine operating
at λ = 3.8.
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Figure 8. Extent of the meandering region at x/D = 8 as a function of the inflow conditions, for (a) λ = 1.9,
(b) λ = 3.8 and (c) λ = 4.7.

by inducing shear layer instabilities (Medici & Alfredsson 2006), although its effects
are of smaller intensity when compared to those of mean-flow convection. However, the
non-Kolmogorov flows H2 and H3 are seen to result in little wake meandering whose
extent is, like for the velocity deficit, lower than that generated by flow M1 but higher than
that of the low-turbulence flow L. This is despite a large value of T0 that should suggest
eddies 5 to 10 times larger between these flows and the equivalent-I∞ flow H1; however,
one must remember the remark given in § 2.4, for which Taylor’s frozen hypothesis need
not hold for the high-T0 flows and the large value of T0 is not necessarily representative of
the large scale structure size. This can readily be seen by extracting the value of the wake
meandering amplitude at x/D = 8, which is shown in figure 8: the largest increase in
the wake meandering amplitude is observed going from I∞ = 3 % to I∞ = 7.5 %. While
the wakes generated by the two non-Kolmogorov flows are characterised by meandering,
their amplitude is only intermediate between those of flow L (I∞ = 3 %) and flow H1
(I∞ = 11.5 %), and lower than those of flows at intermediate I∞, a finding that holds true
at all values of tip-speed ratio here investigated.
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Figure 9. Adimensional wake diameter Dw/D measured at λ = 3.8, for (a) inflows with T0 ≤ 1 and (b) flows
at equivalent I∞.

In addition to the velocity deficit, the wake diameter is an important parameter as this
sets the lateral spacing between turbines in a farm; its growth in the streamwise direction
is often taken as representative of the wake recovery rate and thus of the extent of the
wake in the streamwise direction (Jensen 1983; Frandsen et al. 2006). Figure 9 reports
the wake diameter Dw measured for all investigated inflows with the turbine operating
at λ = 3.8; as the presence of the mast affects the flow for y/D < 0, this is computed
as twice the distance between the iso-line of U = U∞ and the mean wake trajectory yw,
which itself is obtained by averaging the instantaneous wake trajectories shown in the
previous figure 6. To highlight the large-scale trends, the trends of Dw are also low-pass
filtered to remove contributions with wavelengths below D/2. The most immediate result
that can be observed is that, for the investigated cases at λ = 3.8, little effect of the
inflow is seen on the initial evolution of the wake and in particular of its slope: all flows
except flow L result in wakes with similar diameters for x/D < 4. This is an important
observation, as this means that inferring the wake recovery rate k from the wake diameter
trend might lead to inaccurate estimations in the field. For the high-turbulence flow H1,
one can even observe that the trend of Dw is not linear for all values of x/D, and instead
plateaus after x/D = 7; while it could be argued that this is due to the presence of the wind
tunnel walls, this does not seem to affect the evolution of all other wakes developed under
different inflows, meaning the reason for this constant wake diameter might be found in the
turbulence enveloping the wake. Following the approach of Pope (2000), one can observe
that the momentum deficit flows is an invariant of the wake equal to the turbine thrust. The
streamwise momentum equation can be written as

T = ρ

(∫
Ai

U∞2 dA −
∫

Aw

U2 dA
)

, (3.4)

where T is the turbine thrust, ρ is the fluid density, and Ai and Aw are two sections of
a stream tube containing the wind turbine far upstream and downstream of the turbine,
respectively. As T is constant, so must be the product U2 dA on Aw; however, it can
be seen from the data presented in figures 4(a) and 9(a) that for x/D > 7, Dw and
therefore Aw are constant while U changes. It is at this point important to note that (3.4)
only holds for Aw sufficiently downstream of the turbine, so that the mean momentum
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Figure 10. Wake growth rate k found as the slope of the linear regression of Dw/D; data for (a) λ = 1.9,
(b) λ = 3.8 and (c) λ = 4.7. Data from panel (b) were already presented in figure 9.

convection U(∂U/∂x) dominates over the turbulent transport in both the streamwise and
stream-normal directions ∂u′2/∂x and ∂u′v′/∂y, respectively. Data reported in § 3.3 will
show that the case of flow H1 and λ = 3.8 is also the test case for which the terms of
the Reynolds stress tensor are the largest; this, coupled with the fact that at x/D ≥ 7,
U � U∞, driving U(∂U/∂x) to low values, makes the assumptions under which (3.4)
does not necessarily hold.

The value of k can be obtained, as a function of the free stream turbulence
characteristics, as the slope of the linear regression of Dw/D; to account for the plateau
in Dw for the test case of flow H1 and λ = 3.8, the linear regression is performed for
x/D < 5 for all test cases except for flow L. In the case of this flow, the regression is
instead performed for 4 < x/D < 6 to account for the initial plateau in Dw. Data reported
in figure 10 show that the trend of k is erratic with both turbulence intensity and integral
time scale: for the low thrust case of λ = 1.9 (figure 10a), a somewhat linear trend of k
with I∞ is seen, with a small effect of T0 on the wake expansion; this last observation
is similarly seen for λ = 3.8, for which however the trend of k with I∞ is not linear,
and the wake that experiences the largest expansion is that developed under the moderate
turbulence of flow M1.

The data presented in this section therefore show how the wake generated by the isolated
turbine is affected by both the free stream turbulence intensity I∞ and its frequency
content, which in this study has been parametrised as its integral time scale T0. However,
the approach followed in this section has not attempted to quantify these effects, nor has
it explained the physical phenomena that drive this evolution or these trends. The next
section will therefore present a parametrisation of the wake generated by the wind turbine
based on frequently used analytical wake models, which will then be leveraged in the next
sections to quantify the effects of turbulence on the wake developed by the turbine.

3.1. Quantifying the effects of turbulence
As mentioned in § 1, analytical wake models are powerful tools that are often used both
in literature and in the field to represent the complex turbine wake in a simplified fashion.
These operate by assuming the existence of a relationship between the velocity in any point
of the wake and a reduced set of parameters: for instance, the widespread Gaussian wake
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Figure 11. Determination of k∗ from PIV measurements in the mean wake. In colour, mean streamwise
velocity component; in black arrows, selected velocity profiles; in dashed red, linear regression of σw(x). Data
for flow M1, λ = 3.8.

model, developed by Bastankhah & Porté-Agel (2014), assumes that the velocity in any
point of the wake is described by the set of equations

�U
U∞

=
(

1 −
√

1 − CT

8(σw/D)2

)
exp

(
− (r/D)2

2(σw/D)2

)
, (3.5)

σw

D
= k∗ x

D
+ ε, (3.6)

where r is the radial coordinate away from the turbine axis and k∗ is a parameter that serves
the role of the wake expansion rate k in the previous section. Regarding the definition of
ε, the authors show that from considerations on the total mass flow deficit rate across the
turbine disk, one must have

ε = 0.25
√

β, (3.7)

where

β = 1
2

1 + √
1 − CT√

1 − CT
. (3.8)

However, the authors show that the Gaussian model provides estimates that better match
the LES data of turbines in the atmospheric boundary layer by assuming that ε = 0.2

√
β.

One must note that, as the authors explain, the difference between these formulations
consists in the distance necessary for the wake to equalise its pressure with the surrounding
free stream: in particular, ε = 0.25

√
β assumes that this is verified on the turbine disc,

while ε = 0.2
√

β assumes a non-zero distance is necessary to attain this.
As full knowledge of the wake geometry is known from the PIV velocity fields, one can

compute the value of k∗ for each operating condition and inflow as outlined in figure 11:
for every value of x/D, a velocity profile is obtained and fitted to a Gaussian profile, with
the standard deviation of the fitted profile being an estimate of σw(x). The value of k∗ is
then the slope of the linear regression of this last quantity. As for the previous data on the
wake diameter Dw presented in figure 9, the fitting is limited to the range 0 < y/D < 1 as
the presence of the mast has impacted the symmetry of the wake; moreover, as the velocity
profiles need not be Gaussian close to the turbine, especially at low values of I∞ (Medici
& Alfredsson 2006), σw is only computed for x/D ≥ 4.

Figure 12(a) reports, for all wakes obtained at λ = 3.8 and thus constant CT = 0.76,
the trends of velocity deficit previously reported in figure 4 where the values on the
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Figure 12. Comparison of the wake velocity deficit trends �U/U∞ with the trend predicted by Bastankhah
& Porté-Agel (2014), (a) assuming ε0 = 0.2

√
β and k∗ inferred from wake profile fitting, (b) assuming ε0 =

0.2
√

β and best-fitting k∗
0, and (c) with the trends obtained by determining the best-fit values of k∗ and x0

assuming ε0 = 0.25
√

β. Data for λ = 3.8.

horizontal axis are the distance from the turbine multiplied by the k∗ attained in each
specific operating condition: it can be appreciated that none of the curves collapse on
the prediction offered by Bastankhah & Porté-Agel (2014). Figure 12(b) instead presents
the velocity deficit trends where the distance from the turbine is normalised by k∗

0: this
parameter is determined so that the velocity trends reported minimise, in a least-square
sense, the difference with the expected trend from the Gaussian model, as it is standard
in approaching this problem in industrial settings. Instead, figure 12(c) reports the same
trends as in figure 12(a) having normalised the distance from the wind turbine by using
two parameters: a virtual origin x0 and an alternative value of k∗, which has been labelled
kfit. The formulation of (3.6) used in the remainder of this paper is therefore

σw

D
= kfit

x − x0

D
+ 0.25

√
β. (3.9)

Both the virtual origin x0 and the alternative wake recovery rate kfit have been obtained
as the two parameters that minimise the sum of squared residuals between each measured
trend of �U and the predicted curve according to (3.5), having imposed r/D = 0. The
use of a virtual origin to describe the evolution of bluff-body wakes in turbulence is
a widely employed method for other bluff bodies such as porous disks (Rind & Castro
2012a,b; Pal & Sarkar 2015), spheres (Spedding, Browand & Fincham 1996) or even when
describing wakes of bodies in turbulent boundary layers (Sakamoto & Arie 1983); this
approach has been recently shown to be valid for wakes generated by utility-scale turbines
in the atmospheric boundary layer (Neunaber et al. 2022). While the physical meaning of
the wake recovery rate is immediate, the plotted trends in figure 12(c) highlight how the
virtual origin x0 is loosely connected to the extent of the interval of x for which the velocity
deficit is constant. In this case, it can be seen that a collapse, especially for large values
of x/D, is obtained regardless of the inflow conditions, improving both on the assumption
that k∗ can be inferred from the wake diameter growth rate, and on the current industry
standard of finding the best-fit k∗ and employing no virtual origin. While this shows that
the Gaussian wake model can be tuned to predict the wakes of turbines in a wide array of
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Figure 13. Trends of (a–c) kfit and (d–f ) x0/D with the free stream turbulence properties I∞ (horizontal axis)
and T0 (colour axis). Data for (a,d) λ = 1.9, (b,e) λ = 3.8 and (c, f ) λ = 4.7.

both realistic and non-Kolmogorov-like flows, this also quantifies the effect of turbulence
on the wake generated by a wind turbine.

Figure 13 reports the values of the two parameters used, kfit and x0, for all test cases
investigated in this study. For all the turbine operating points, it can be seen that kfit
assumes a linear trend with I∞ if one limits the analysis to the Kolmogorov-like flows. This
is in good agreement with previous literature, namely the work of Niayifar & Porté-Agel
(2016) and that of Peña et al. (2016) on the Jensen wake model (Jensen 1983), where the
authors show how the linear relationship between the wake recovery rate and I∞ can be
recovered assuming the vertical velocity profile is well described by the Monin–Obukhov
similarity theory (Monin & Obukhov 1954); one must however note that no vertical
velocity profile is present in our measurements, and thus the linear relationship between kfit
and I∞ holds even outside the atmospheric boundary layer. The general trend of kfit mimics
well what is already seen on the wake velocity deficit, for instance in figures 4 and 5, where
wakes exhibiting higher values of �U far from the turbine have low values of kfit and vice
versa.

Instead, the virtual origin x0 is seen to be less affected by the free stream turbulence
conditions: generally, this value is the highest for the low-turbulence case of flow L,
regardless of the turbine thrust coefficient, and all other flows exhibit a value of x0/D �
2.5, only moderately affected by CT and free stream turbulence. It is also interesting to
note that, limiting our attention to high-turbulence flows, the value of x0 is higher for the
non-Kolmogorov flows for the two test cases at high CT than it is for the Kolmogorov-like
flow H1, while this trend appears reversed for the low-CT test case of λ = 1.9.
However, one must note that the scatter between the values of x0 obtained for flows H1,
H2 and H3 is comparable to the scatter between those of all flows of T0 = 1. It is therefore
possible that, while the inclusion of the virtual origin x0 helps in fitting the curves with
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the Gaussian wake model, the value of this parameter need not vary with inflow conditions
beyond a certain threshold of I∞.

The parametrisation of the wake in its recovery rate kfit and its virtual origin x0 also
provides a convenient separation between two regions in the wake: in the next section, we
will argue that the extent of the near-wake is loosely related to the trends of x0 and to the
stability of the helical vortex set enveloping the wake. Conversely, one can interpret the
value of kfit to be the main parameter that drives the wake evolution for large distances
downstream of the turbine, and thus to be representative of the far-wake evolution.

3.2. Influence on near-wake extent
Customarily, the wake of a wind turbine is often divided in two regions: a near-wake,
where the rotor geometry affects the local velocity field, and a far-wake which is instead
independent of the turbine geometry and self-similarity is attained (De Cillis et al. 2020);
however, seldom a quantitative definition of their extent is given. A number of methods
have been presented in the literature to estimate the location of the transition between one
region and the other, based on considerations of the turbulent kinetic energy content (Wu
& Porté-Agel 2012; Sørensen et al. 2015; De Cillis et al. 2020) or on the onset of wake
meandering (Howard et al. 2015). It can be understood that these methods only provide a
qualitative estimation of this transition, as there is no hard boundary between the near- and
the far-wake. This however does not mean there is no merit in estimating the near-wake
length, as trends of these estimations can still provide valuable information as comparison
between test cases. In this work, the definition of near-wake length is slightly changed
from the one presented by Wu & Porté-Agel (2012): having defined the turbulent kinetic
energy as

κ = 1
2

(
u′2 + v′2 + w′2

)
, (3.10)

its mean advection is

U · ∇κ = U
∂κ

∂x
+ V

∂κ

∂y
+ W

∂κ

∂z
, (3.11)

where U = (U; V; W) is the time-averaged velocity vector. Note that for steady flows, this
is equal to the material derivative of κ:

Dκ

Dt
= ∂κ

∂t
+ U · ∇κ = U · ∇κ, (3.12)

as ∂/∂t = 0 in steady-state conditions. The near-wake is then defined as the location where
Dκ/Dt > 0 and vice versa for the far-wake. Physically, the interpretations are as follows: as
a flow parcel traverses the rotor-swept plane, its turbulent kinetic energy increases under
the effect of both the circulation generated by the blades and the vorticity these shed,
either as a vortex sheet or as the system of tip- and root-vortices. As the parcel travels
downstream, it will cede this to its surrounding; therefore, a positive value of this material
derivative denotes that the evolution of the particle is driven by its interaction with the
turbine and vice versa.

As the data collected consist of the two in-plane components of velocity u and v,
it is impossible to compute the full turbulent kinetic energy as defined in (3.10) as no
information is available on w′; similarly, without W, the term relative to the advection
of κ in the z-direction cannot be computed. For this reason, the definitions in (3.11) and
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Figure 14. Trends of mean material derivative of turbulent kinetic energy Dκ/Dt for |y/D| < 1
2 as a function

of the streamwise distance from the turbine for inflows M1, H1 and H3. Turbine operating at λ = 3.8.

(3.10) have been implemented by assuming that v/w = O(1) and ∂/∂y � ∂/∂z; thus, the
turbulent kinetic energy is estimated as

κ = 1
2

(
u′2 + 2v′2

)
, (3.13)

and its material derivative is estimated as
Dκ

Dt
= U

∂κ

∂x
+ 2V

∂κ

∂y
, (3.14)

which is an assumption that holds true particularly close to the wake centre, as the wake is
somewhat axisymmetric, and gets progressively less so farther from that, as an azimuthal
velocity component is introduced as a result of the torque generated by the blades and the
assumption that v � w need not hold (Medici & Alfredsson 2006).

Figure 14 reports the trends of the material derivative of κ with distance from the
turbine; this is adimensionalised by the term D/U3∞. To reduce the effect of experimental
noise on the measurements, the trends reported have been obtained by averaging the
value of κ for |y/D| < 1/2, equivalent to limiting this analysis only to particles that
have traversed the turbine rotor. Moreover, each trend is low-pass filtered to remove
all components having a wavelength smaller than D/2. The trends highlight a clear
distinction between the two regions at positive and negative Dκ/Dt, as well as showing
that this value does not trend to a zero value at long distances from the turbine. This is
expected and is due to the natural decay of turbulence with free stream distance, proper
of both grid-generated turbulence (Kistler & Vrebalovich 1966; Hearst & Lavoie 2016)
and bluff-body wakes (Wygnanski, Champagne & Marasli 1986). Defining the value of
x at which Dκ/Dt changes sign as xκ , one can observe the trends of this parameter with
free stream turbulence characteristics in figure 15. Data for λ = 1.7 are not reported as
Dκ/Dt is negative along the whole domain and no change in sign is observed; for this
operating condition, the torque generated by the blades is marginally lower than that at
λ = 4.7 and considerably lower than that at λ = 3.8 (Gambuzza & Ganapathisubramani
2021): the circulation generated by the blades is therefore lower and so is the intensity of
the tip- and root-vortices generated by the blades. This, paired with a lower λ and therefore
more spaced vortices, might have led to a less intense interaction between the turbine and
the flow traversing the rotor-swept plane.
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Figure 15. Location of the change of sign xκ/D in the spatial mean of Dκ/Dt as a function of the free stream
turbulence intensity I∞ (horizontal axis) and integral time scale T0 (colour axis), shown for (a) λ = 3.8 and
(b) λ = 4.7.

The trends of xκ are somewhat similar to those of the virtual origin x0 reported in
figure 13(e, f ) for the two high-λ test cases: in particular, it can in both cases be seen that
the low-I∞ inflow conditions result simultaneously in a high x0 and a high xκ . Moreover,
among the three flows at I∞ ≈ 11.5 %, the Kolmogorov-like conditions of flow H1 are the
ones that result in the lowest values of both x0 and xκ . However, focusing one’s attention
only to the Kolmogorov-like flows at T0 ≤ 1, xκ shows a clear decreasing trend that is
not readily seen in the values of the virtual origin. This suggests that the changes in
value of the virtual origin are broadly affected by the same mechanisms that regulate the
near-to-far-wake transition, although x0 cannot be taken as representative of the transition
distance.

To understand the conditions that drive the evolution of the near-wake, it is useful to
observe the behaviour of the tip-vortices shed by the turbine. Vortex identification from
an instantaneous velocity snapshot can be carried out with a number of techniques; in this
work, the Q-criterion (Hunt, Wray & Moin 1988; Jeong & Hussain 1995; Haller 2005) has
been employed due to the simplicity of the underlying equations and the ease of adaptation
to planar data. For an instantaneous velocity field u(t) = (u(t), v(t)), the in-plane value of
Q is computed as

Q = −1
2

((
∂u
∂x

)2

+ 2
∂u
∂y

∂v

∂x
+
(

∂v

∂y

)2
)

, (3.15)

and vortices are individuated as continuous regions in the flow where Q > 0. Figure 16
reports the map of Q for a representative velocity snapshot obtained for the operating
conditions of λ = 3.8 and inflow L, along with the methodology used to individuate the
location and intensity of individual vortices. Given a computed map of Q, contiguous
regions of positive Q are individuated as the regions bounded by iso-lines of Q equal to
a certain threshold, which in this case has been chosen as 0.3(D/U∞)2; the iso-lines are
then approximated with the best-fitting ellipse, with the centre of the ellipse being used as
the location of the vortex and the value of Q at the centre being an indication of the vortex
intensity.

The position of the vortices is shown in figure 17 for four edge-cases, all having the
turbine operating at λ = 3.8. From these, it can be seen how the low turbulence intensity
of flow L results in a very coherent and stable train of vortices mostly concentrated around
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Figure 16. Identification of the tip-vortices location (white plus signs) from isocontours of Q-criterion (black
dotted) approximated with best-fitting ellipses (white dashed). Data displayed are those of a representative
snapshot obtained at λ = 3.8 and inflow L.
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Figure 17. Instantaneous position of the tip-vortices for inflows (a) L, (b) M1, (c) H1 and (d) H3, coloured by
their peak Q. Turbine operating at λ = 3.8. For clarity, a random subset of 1200 individual vortices is shown
for every panel.

the tip-height line at y/D = 0.5, with some small instability setting on at x/D > 3.5. For
the two Kolmogorov-like inflows at high I∞, namely M1 and H1, shear layer instability
is favoured by the high amount of free stream turbulence and the vortices positions are
more erratic: this shear layer instability in turn drives the wake meandering seen in
figure 6 for the same two test cases. The test case of the non-Kolmogorov flow H3 is
instead seen, despite the same value of I∞, to result in an initially more stable shear layer,
with the tip-vortices occupying a region close to y/D = 0.5, larger than that generated
under inflow L but visibly bounded, unlike that of the two previous flows M1 and H1;
this initial shear layer stability is possibly connected to the less intense wake meandering
observed in figure 6. The mechanisms that drive the breakdown of the tip-vortex set are
well known and extensively studied in the literature. Ivanell et al. (2010), Sarmast et al.
(2014) and Lignarolo et al. (2015) show how, at a certain distance from the turbine, the
phenomenon of leapfrogging, that is, the interaction between a vortex and the preceding
or following one, contributes to the breakdown of this structure; in particular, Ivanell
et al. (2010) shows that the additional perturbations due, for instance, to free stream
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turbulence favour the onset of leapfrogging closer to the rotor, which is further confirmed
by Sarmast et al. (2014). In the case of the results reported in figure 17, the leapfrogging
cannot be directly observed; however, it can be reasonably assumed that the more erratic
trajectory of these vortices in the case of inflows M1 and H1 does indeed favour interaction
between adjacent vortices closer to the rotor.

It has been previously reported in the literature that the presence of the helical vortex
set envelopes the wake and prevents transfer of momentum between the wake and the
surrounding free stream, thus delaying the wake evolution (Lignarolo et al. 2014, 2015;
De Cillis et al. 2020): this suggests that the initial wake evolution is hampered by the
presence of a stable shear layer and thus by a train of coherent vortices, which effectively
shield the near-wake from the free stream. This can be easily visualised, for the test cases
here reported, with quadrant analysis to characterise the events on the mean vortices
trajectory. At these locations, a v′ < 0 denotes flow crossing the vortices trajectory from
the high-momentum free stream to the wake and v′ > 0 denotes conversely motion from
the wake outwards; simultaneously, u′ > 0 indicates motion of high-momentum flow and
u′ < 0 indicates that of low-momentum flow. Wake evolution is therefore promoted either
by the sweep of high-momentum flow inside the wake, for which u′ > 0 and v′ < 0, or
by ejection of low-momentum flow from the wake, for which u′ < 0 and v′ > 0; vice
versa, wake evolution is hampered by interaction events, for which u′ and v′ have the same
sign. Thus, the individual contributions to the in-plane Reynolds shear stress u′v′ in each
quadrant can be defined as

u′v′j =
∫

Qj

u′v′ P(u′, v′) du′ dv′, (3.16)

where Qj denotes the jth quadrant and P(u′, v′) is the joint probability density function for
an event in the (u′, v′)-space. Moreover, one can define

u′v′1+3 = u′v′1 + u′v′3 (3.17)

and likewise for u′v′2+4.
The trends of the quadrant contributions on the mean vortices trajectory are reported

in figure 18, divided into events that hamper the wake evolution (figure 18a) and those
that favour it (figure 18b). By observing the trends of the second and fourth quadrant, for
which a negative value indicates more intense sweep and ejection events and therefore a
faster-evolving wake, one can see that the fast-evolving wake under flow H1 is indeed the
one that results in the largest value of u′v′2+4 and thus in the most intense interaction
between free stream and wake. For the Kolmogorov-like flows, the intensity of these
events is roughly proportional to the free stream turbulence intensity I∞; this relationship
however does not hold for the non-Kolmogorov test case of inflow H3, which is seen
instead to have a value of Q2 and Q4 events slightly lower than those of flow M1, despite
the larger I∞. By instead observing the trends of Q1 and Q3 events, it can be seen that the
relationship between events intensity and I∞ need not necessarily hold close to the wind
turbine: in fact, for small values of x/D, flow L results in interaction events that are more
intense than those developed for inflow M1 and H, despite the much less intense inflow
turbulence; this however decays rapidly and by x/D = 2, flow L is once again the one
for which the events intensity is the smallest. It is instead more interesting to observe the
intensity of interaction events for flow H3, which are seen to be more intense than those of
flow M1 along the whole of the near-wake, and larger than those of flow H1 close to the
turbine until x/D ≈ 2.25.
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Figure 18. Sum of the contributions to the Reynolds shear stress in (a) the first and third quadrant and in
(b) the second and fourth quadrant, on the mean tip-vortices trajectory. Data for inflows L, M1, H1 and H3, and
λ = 3.8.

From the data here presented, it is evident that the main cause of the delayed onset of
wake evolution has to be found in the robustness of the train of tip-vortices, which is in
turn driven by the shear layer instability. A stable shear layer inhibits sweep and ejection
events, and favours interaction events. The effect of free stream turbulence intensity I∞
on the shear layer stability is non-trivial, as it has been seen that a non-Kolmogorov-like
inflow with energy content skewed towards low-frequency contributions results in a more
stable shear layer than a Kolmogorov-like flow.

3.3. Far-wake evolution
While the stability of the enveloping helical vortex structure is consistent with the
near-to-far-wake transition, this phenomenon does not provide an explanation for the rate
at which the wake recovers, and thus for the different values of the wake recovery rate kfit
as seen in figure 13. To understand the drivers of wake evolution in the far-wake region, it
can be useful to approach the Reynolds-averaged Navier–Stokes equations, in particular,
the one that describes the evolution of the streamwise momentum component: for a steady
three-dimensional flow, this can be expressed as

U
∂U
∂x

+ V
∂U
∂y

+ W
∂U
∂z

+ ∂u′2

∂x
+ ∂u′v′

∂y
+ ∂u′w′

∂z
= − 1

ρ

∂P
∂x

, (3.18)

where the contributions due to viscosity have been neglected as the Reynolds number is
high. The momentum equation in the y-direction can be simplified (Townsend 1999) to the
expression

∂v′2

∂y
+ ∂v′w′

∂z
= − 1

ρ

∂P
∂y

. (3.19)

As for the turbulent kinetic energy computation in § 3.2, one can remedy the lack of
information on the out-of-plane components of velocity by assuming that ∂/∂y � ∂/∂z
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and v′2 � w′2. While this is a strong assumption, it can be thought as reasonable especially
close to the wake centreline: the wake generated by the wind turbine being roughly
axisymmetric, both y and z represent radial directions from the wake axis outwards. With
these assumptions, (3.18) near the wake centreline can be expressed in the simplified form:

U
∂U
∂x

= −2V
∂U
∂y

− ∂(u′2 − 2v′2)
∂x

− 2
∂u′v′

∂y
+ R, (3.20)

where R is a residual term that takes into account the differences between the left- and
right-hand sides of the equation due to the simplifying assumptions employed in this
formulation, and the −2v′2 in the second term of the right-hand side derives from (3.19):
with the simplifying assumption employed, one has

2
∂v′2

∂y
= − 1

ρ

∂P
∂y

⇒ − 1
ρ

∂P
∂x

= 2
∂v′2

∂x
+ 1

ρ

∂P0

∂x
, (3.21)

with the terms at the right-hand side of the implication sign being obtained by integrating
the left-hand side in y and then taking the derivative in x. In particular, P0 is the integration
coefficient that stems from the integration of ∂P/∂y in y and thus is constant in the vertical
direction: for this reason, its evolution in x is due to the presence of a potential pressure
gradient due to the facility, which is arbitrarily assumed to be negligible here to simplify
the analysis. The variation of the terms of (3.20) in x/D is reported, for four test cases
having λ = 3.8, in figure 19, along with the value of the virtual origin computed for
each wake. It can be seen that for the cases of high I∞ (inflows M1, H1 and H3), the
dominant term of those at the right-hand side of (3.20) is indeed the one relative to the
in-plane Reynolds shear stress, as it is often assumed for far-wakes (Tennekes & Lumley
1972), and that for x/D > x0/D, the residual R is often small enough to be negligible;
this is however not true for the case of the low I∞ of flow L, for which instead there
is a non-negligible contribution of the mean advection term V∂U/∂y. This is consistent
with results previously published in the literature, where higher Reynolds shear stresses
generated in the turbine wake result in a swifter evolution of the streamwise velocity
component (Chamorro & Porté-Agel 2010), or base flows exhibiting a larger Reynolds
shear stress upstream of the wind turbine result in a faster wake evolution despite similar
values of free stream I∞ (Zhang, Markfort & Porté-Agel 2013).

Assuming therefore that, at least for the high-I∞ flows,

U
∂U
∂x

� −2
∂u′v′

∂y
(3.22)

holds true for x/D > x0/D and on the wake centreline, one can obtain an analytical
relationship between the value of the wake recovery rate k∗ and the in-plane Reynolds
shear stress at the centreline. In fact, noting that

U
∂U
∂x

= 1
2

∂U2

∂x
, (3.23)

one can integrate (3.22) to yield∫ xfw

x0

∂U2

∂x
dx = U2

fw − U2
x0

= −4
∫ xfw

x0

∂u′v′

∂y
dx, (3.24)

where xfw is a far-downstream station, Ux0 is the value of U at the virtual origin and
likewise Ufw is the value of U downstream of the turbine. The modified formulation of
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Figure 19. Terms of (3.20), made adimensional by multiplication with D/U2∞, for the inflows (a) L, (b) M1,
(c) H1 and (d) H3, (black and red lines), along with the value of x0 (dashed vertical line); turbine operating at
λ = 3.8.

Bastankhah & Porté-Agel (2014) presented in this paper can be used to estimate the values
of U in the wake: arbitrarily choosing xfw = x0 + nD, one has

U2
fw

U∞2 = 1 − CT

8(ε0 + nk∗)2 , (3.25)

U2
x0

U∞2 = 1 − CT

8 ε2
0
, (3.26)

which, substituted in (3.24), yield

CT

8 ε2
0

− CT

8(ε0 + nk∗)2 = −4
∫ x0+nD

x0

1
U∞2

∂u′v′

∂y
dx. (3.27)

This is a quadratic equation in k∗: its positive solution is found as

k∗
est = ε0

n

(√
CT

CT + 32 IRSS ε2
0

− 1

)
, (3.28)

where IRSS refers to the integral of the Reynolds shear stress derivatives at the right-hand
side of (3.27):

IRSS =
∫ x0+nD

x0

1
U∞2

∂u′v′

∂y
dx. (3.29)

Figure 20 reports the values of the derivative of the in-plane Reynolds shear stress on
the wake centreline, here approximated as the horizontal axis having y/D = 0. It can be
seen that this quantity is, for the Kolmogorov-like flows, increasing with increasing I∞.
This relationship however does not hold for the non-Kolmogorov-like test case of flow
H3, for which the derivative of the Reynolds shear stress is the lowest of all test cases
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Figure 20. Distribution of the derivative of Reynolds shear stress on the wake centreline from the location of
the virtual origin onwards. Data for λ = 3.8.
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Figure 21. Fields of Reynolds shear stress u′v′ in the turbine wake for the test cases presented in figure 20.

here analysed. Figure 21 reports the fields of the Reynolds shear stress in the turbine wake
for the test cases corresponding to the test cases presented in figure 20: from these, it
can be appreciated that the effect of the free stream conditions on the quantity plotted
in figure 20 are indeed representative of a more general and less localised phenomenon.
Indeed, it can be appreciated that flow H1 is the test case for which the Reynolds shear
stress is the strongest for low values of x, and that the stress in the wake generated by the
test cases M1 and H3 are comparable in absolute values. Moreover, one can notice how, for
all test cases, the value of this derivative is similar once a large enough distance from the
turbine has been covered, such as for (x − x0)/D > 4, while all differences in these trends
are concentrated at small distances from the turbine. This is in accordance with (3.22)
and the data reported previously in figure 12, which shows that all streamwise velocity
deficit trends tend to the same overall shape (and therefore, the same spatial gradient in
the streamwise direction) sufficiently far from the turbine.

The values of kfit obtained from fitting the velocity deficit trends have been reported
as square markers in figure 22. Alongside these, we present the values of k∗

est obtained
by multiplying the result of (3.28) by 4, as this equation appears to underestimate the
actual values of kfit by such a factor. Focusing on the medium- and high-λ cases, it can be
appreciated that, with the single exception of the low-I∞ test case at λ = 3.8, this equation
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Figure 22. Estimation of kfit from integration of the Reynolds shear stress on the wake trajectory according to
(3.30) (round markers) and comparison with the values found by fitting the wake velocity deficit trends (square
markers). Data from (a) λ = 1.9, (b) λ = 3.8 and (c) λ = 4.7.

is able to capture both the linear trend of k∗ with I∞ and the drop in the wake recovery
rate for the non-Kolmogorov-like inflow conditions, regardless of the thrust generated by
the turbine. However, as it can be seen from figure 22(a), this relationship need not hold
for the low-CT case. In this case as well, however, the linear trend of k∗ with I∞ and the
drop for high-T0 flows are recovered. Therefore, it is reasonable to approximate the wake
recovery rate kfit as

kfit � 4
ε0

n

(√
CT

CT + 32 IRSS ε2
0

− 1

)
(3.30)

for high-thrust operating conditions and high values of I∞.
Following this, it can be understood that the driver of the mean wake velocity evolution

is the Reynolds shear stress: knowing this, it can be expected that flows with higher values
of free stream turbulence intensity result in faster-evolving wakes as they favour a larger
content of Reynolds shear stress in the wake, which explains the trend of k∗ with I∞,
seen to be linear in the literature. A large body of recent literature (Chamorro et al. 2015;
Tobin et al. 2015; Deskos et al. 2020; Gambuzza & Ganapathisubramani 2021) has shown
a relationship between the spectrum of the incoming velocity fluctuations and the power
harvested by a turbine from said incoming velocity field, with the turbine harvesting more
power for spectra biased towards lower frequency. It can therefore be assumed that as
the turbine harvests power from low-frequency velocity contributions, these will not be
present in the wake: in other words, if the turbine acts as a low-pass filter from the point
of view of harvested power, it must act as a high-pass filter from the point of view of its
wake; this is indeed observed by Tobin & Chamorro (2019), in which the velocity spectra
downstream of the turbine are biased towards higher-frequency contributions than those
upstream of it. A similar observation is reported by Heisel et al. (2018) for data acquired
in the wake of a utility-scale wind turbine. The idea that a turbine acts as to remodulate
the spectral content in its wake has been also shown from the LES data by Chatterjee &
Peet (2018, 2021), where the authors show that for an infinite wind farm, the presence of
large scales in the free stream favours the transfer of mean kinetic energy from the free
stream to the wake, thus hastening the wake recovery and changing the spectral content of
the wake. While this would suggest that flows H2 and H3 should result in a faster-evolving
wake, a number of differences are present between these works and the present study.
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For instance, in the case of these cited works, the authors present their conclusions in the
frame of an infinite turbine; it is possible that, for an isolated turbine, the mechanism of
power extraction dominates over that of mean kinetic energy entrainment. Moreover, the
length scales of the eddies generated by Chatterjee & Peet (2018) are at most of O(10D), or
equivalently corresponding to inflows with high-energy content at f D/U∞ = 10−1. The
two high-time scale flows here investigated, namely H2 and H3, instead show peaks in
the power spectral distribution at f D/U∞ = 10−2, that is, one order of magnitude lower
than what was investigated in the cited works, further suggesting that the mean kinetic
energy entrainment mechanics are affected by the free stream content of turbulence in a
non-trivial way.

As no time-resolved data are available in the wake of the turbine, the hypothesis that
spectra in the wake are biased towards high-frequency contributions cannot be verified;
however, one can quantify the dominant scales in the wake by means of two-point
correlation. Defining the two-point correlation coefficient between a fixed point (xf , yf )
and a generic point (x, y) in the domain as

Ruu = u′(xf , yf )u′(x, y)(
u′2(xf , yf ) u′2(x, y)

)1/2 , (3.31)

the value of Ruu acts, in space, as analogous to the classical autocorrelation in time
for a time-resolved, single-point measurement. Figure 23 reports the value of Ruu for
the far-wake generated by the turbine under inflows H1, which is Kolmogorov-like, and
H3, which is not; the points that are chosen as fixed are (xf /D = 5.5, yf /D = 0) as
representative of the flow in the wake, and (xf /D = 5.5, yf /D = 1) for the free stream;
moreover, the figure also reports the iso-line of Ruu = 0.75 for all cases. It can be seen
that for both the Kolmogorov-like inflow conditions of flow H1 and those of flow H3, the
correlation decreases by moving from the free stream to the far-wake: the characteristic
lengths of the presented iso-line reduce both in x and y showing a bias towards lower
wavelengths in the wake spectral composition, which can be thought of as analogous to
the bias towards high-frequency contributions observed by Tobin & Chamorro (2019).
Moreover, it can also be observed that while the changes in Ruu are limited in the vicinity
of the fixed point for the case of flow H1, the difference between the correlation maps for
flow H3 is instead more evident: this does further point towards a clear difference between
the spectra of the free stream and the wake for non-Kolmogorov flows, as the turbine has
harvested the low-frequency, high-wavelength contributions in the free stream.

To quantify this phenomenon, one can attempt to define an equivalent turbulence
intensity by purposefully filtering out the low-frequency contributions in the free stream
velocity power spectral density:

Ifilt(ffilt) =
(

1
U∞2

∫ ∞

ffilt

φu( f ) df

)1/2

, (3.32)

where ffilt is the cut-off frequency of an idealised high-pass filter. Tobin et al. (2015)
suggests, from comparison between the power spectral densities of the free stream
turbulence and the mechanical power generated by the turbine,

ffilt = 2Q
Jω

, (3.33)

where Q is the torque exerted by the turbine on the shaft, J is the rotor moment of inertia
and ω is the rotor angular velocity. Additionally, Li, Dong & Yang (2022) suggest that
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Figure 23. Two-point correlation coefficient Ruu maps in the far-wake of the turbine operating under base
flows (a,c) H1 and (b,d) H3, and iso-line of Ruu = 0.75 (black line); fixed point (a,b) xf /D = 5, yf /D = 1 and
(c,d) xf /D = 5, yf /D = 0 (white plus sign). Turbine operating at λ = 3.8.

side-to-side motions of a turbine excite wake meandering if these come at a Strouhal
number St = f D/U∞ greater than 0.1; there might thus be merit in using a constant

ffilt = 0.1
U∞
D

(3.34)

for all test cases. Lastly, if one assumes that the turbine fully converts the low-frequency
contributions to the free stream velocity into mechanical power, one could use

ffilt = argmin
0.05<St<20

( f φu( f )) (3.35)

for the non-Kolmogorov-like flows H2 and H3, and ffilt = 0 otherwise: this means that
Ifilt = I∞ for the Kolmogorov-like inflow conditions. Note that, for both flows H2 and
H3, (3.35) returns ffilt ≈ 0.1(U∞/D): for this reason, the only difference between the
approaches of (3.34) and (3.35) is on whether filtering is applied to the Kolmogorov-like
test cases.

Figure 24 shows the values of kfit obtained by fitting the velocity deficit trends of
figure 4 as a function of the filtered, equivalent free stream turbulence intensity Ifilt: the
top row employs (3.33), the middle row uses (3.34) and the bottom row uses (3.35) for
the non-Kolmogorov-like inflows only, without any filtering of the inflow for the more
canonical turbulence cases. The figure shows that, independently of the definition that one
employs for ffilt, Ifilt is lower for the non-Kolmogorov-like flows than it is for the more
canonical test cases. In particular, using the arbitrary definition of (3.35), one recovers
the linear trend of k, this time against Ifilt, which is the current state-of-the-art in the
application of analytical wake models in turbulent inflows (Niayifar & Porté-Agel 2016;
Peña et al. 2016): this is an additional indicator of a bias towards the remodulation of the
wake spectral content by the presence of the turbine, previously seen in the literature.
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Figure 24. Trends of kfit with the filtered turbulence intensity Ifilt, for (a,d,g) λ = 1.9, (b,e,h) λ = 3.8 and
(c, f,i) λ = 4.7, using three different definitions of ffilt.

4. Conclusions

This paper has presented measurements of the wake generated by a model-scale wind
turbine in a streamwise plane for streamwise distances between 1.25D and 8.75D
downstream of the rotor-swept plane. The free stream turbulence characteristics have
been changed by means of an active grid to generate a variety of flows, of which some
exhibited the canonical distribution of energy in the frequency domain of Kolmogorov,
while others presented artificial contributions at very low frequencies; all flows have been
defined by their free stream turbulence intensity I∞ and their integral time scale T0. For
Kolmogorov-like flows, it has been seen that increasing the turbulence intensity in the free
stream results in a wake whose evolution starts closer to the wind turbine rotor, whose
recovery is faster and whose overall length is smaller, as shown in previous literature on
wakes of both wind turbines and bluff bodies; highly turbulent inflows moreover induce
more intense wake meandering. Wakes in non-Kolmogorov-like turbulence evolve more
slowly, and their evolution starts further away from the turbine, than flows with equivalent
or even smaller I∞. Similarly, the amplitude of the wake meandering motion is reduced
for these inflow conditions.
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To account for these differences, analytical wake models such as the widespread
Gaussian wake model (Bastankhah & Porté-Agel 2014) must be reformulated as a function
of two parameters: a virtual origin x0 and a wake recovery rate kfit. Results show here
that kfit varies considerably with the free stream turbulence conditions, while the wake
diameter growth rate does not. With these assumptions, namely the presence of a virtual
origin and the decoupling between the wake recovery rate and the wake diameter growth,
the Gaussian wake model is excellent at predicting the minimum velocity in the wake. It
has furthermore been observed that these two parameters refer to two different regions in
the wake, as x0 is broadly influenced by the near-wake length, while kfit instead describes
the flow behaviour in the far-wake.

In particular, the length of the near-wake has been estimated in this work by
considerations on the turbulent kinetic energy distribution in the turbine wake: it has
been observed that the near-wake length is small for high free stream turbulence intensity,
and increases both with lower I∞ and for non-Kolmogorov-like flows, following a
trend similar to that of the virtual origin x0. This trend is seen to be driven by the
strength of the shear layer enveloping the wake: this is visualised as the instantaneous
location of the tip-vortices shed by the turbine in its rotation, whose trajectories are
considerably erratic for high-turbulence Kolmogorov inflows and more steady for low-I∞
and non-Kolmogorov-like inflows. This change in the onset of shear-layer instability is the
main driver of both the wake meandering observed in the far-wake and in the length of the
near-wake. It has in fact been observed that wakes whose shear layers break up sooner are
characterised, at the wake boundary, by intense sweep and ejection events, which favour
the mixing between free stream and wake by expelling low-momentum flow from the wake
and incorporating high-momentum flow from outside the wake. This behaviour is inhibited
by long-lasting shear layers: these wakes have lower intensity of sweep and ejection events
and higher intensity of interaction events, which are detrimental for the wake evolution. In
particular, close to the wind turbine, the intensity of interaction events is the largest for the
non-Kolmogorov-like flow at high I∞ than any other wake here analysed.

The wake recovery rate in the far-wake is instead seen to be dominated by the
Reynolds shear stress distribution at the wake centreline: it is seen that, for all wakes here
investigated except the limit case of low I∞ and high power, the analytical relationship
U(∂U/∂x) � −2(∂u′v′/∂y) holds true at the wake centreline. This relationship between
the mean wake velocity and the in-plane Reynolds shear stress component has been
leveraged to express an analytical relationship between the wake recovery rate kfit and
the distribution of Reynolds shear stress; experimental data show this relationship to hold
true for the cases of high turbine thrust, while it is less accurate for the low-thrust test
cases. Non-Kolmogorov-like flows are seen to result in slower-evolving wakes as these
generate a lower value of Reynolds shear stress at the wake centreline: this behaviour
is connected to the phenomenon for which the turbine is shown to harvest more power
from the non-Kolmogorov-like flows, thus harvesting a larger fraction of the incoming
turbulent kinetic energy from the free stream. This, in the literature, is seen as a bias of
the turbulence spectra in the wake towards higher frequency contributions; in this work,
this is shown as a large difference in the two-point correlation coefficient Ruu between
free stream and wake for the non-Kolmogorov-like flow, a difference which is not evident
for the classical Kolmogorov-like inflow conditions. Moreover, it has been shown that the
linear trend between the wake recovery rate kfit and the free stream turbulence intensity
I∞ can be recovered for the non-Kolmogorov-like flows if one excludes the contributions
of low-frequency components from the computation of I∞. In this work, this is shown
by defining a filtered free stream turbulence intensity Ifilt which is equivalent to I∞
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for canonical Kolmogorov inflows, and arbitrarily excludes low-frequency contributions
for non-Kolmogorov-like flows; the trend if kfit against Ifilt is linear for all operating
conditions analysed in this study. Results included in this work have also shown that
an alternative definition of Ifilt, in which all low-frequency contributions are filtered out
of both Kolmogorov- and non-Kolmogorov-like inflows is not sufficient to recover the
linear trend of kfit with Ifilt: this highlights how the wake behaviour is tied to the low-pass
characteristics of the turbine when converting turbulent velocity fluctuations to mechanical
power.

Acknowledgements. The authors would like to thank the anonymous reviewers for their input to the original
content of the manuscript, which has undoubtedly improved the quality of the final version.

Funding. This research did not receive any specific grant from funding agencies in the public, commercial or
not-for-profit sectors. The PhD scholarship for author S.G. was provided by the University of Southampton.

Declaration of interests. The authors report no conflict of interest.

Data availability statement. The instantaneous velocity snapshots acquired during this study can be found
at https://doi.org/10.5258/SOTON/D2197. The scripts necessary to reproduce the data reduction steps and the
plots presented here are accessible at https://doi.org/10.5258/SOTON/D2583.

Author ORCIDs.
Stefano Gambuzza https://orcid.org/0000-0001-9070-6901;
Bharathram Ganapathisubramani https://orcid.org/0000-0001-9817-0486.

REFERENCES

AUBRUN, S., et al. 2019 Round-robin tests of porous disc models. J. Phys.: Conf. Ser. 1256, 012004.
BARLAS, E., BUCKINGHAM, S. & VAN BEECK, J. 2016 Roughness effects on wind-turbine wake dynamics

in a boundary-layer wind tunnel. Boundary-Layer Meteorol. 158 (1), 27–42.
BARTHELMIE, R., HANSEN, O.F., ENEVOLDSEN, K., HØJSTRUP, J., FRANDSEN, S., PRYOR, S., LARSEN,

S., MOTTA, M. & SANDERHOFF, P. 2005 Ten years of meteorological measurements for offshore wind
farms. J. Sol. Energy Engng 127 (2), 170–176.

BARTHELMIE, R.J. & JENSEN, L.E. 2010 Evaluation of wind farm efficiency and wind turbine wakes at the
Nysted offshore wind farm. Wind Energy 13 (6), 573–586.

BASTANKHAH, M. & PORTÉ-AGEL, F. 2014 A new analytical model for wind-turbine wakes. Renewable
Energy 70, 116–123.
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