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A B S T R A C T

The urgency surrounding environmental sustainability has triggered an innovation of financing channels for
climate and environmental projects. Green bond as one such channel has garnered immense interest from
investors, with an implicit view that this fixed-income instrument is a relatively safer choice as an investment
portfolio. Yet, the uncomfortable spread of greenwashing as a marketing spin has subjected green bonds to
significant market volatility, at least as much as other financial assets or sectoral indices if not more. Whether
green bonds as a financial instrument may incur losses to the extent of the loss in various sector indices,
can be gauged by studying the nature of their contemporaneous growth. In this paper, we use daily data on
green bonds and several S&P sectoral indices and a fractionally cointegrated vector autoregression framework
(FCVAR) to study the extent to which green bonds dynamically co-move with various sectoral indices. Such a
co-movement, if any, would elicit the extent to which a variation of uncertainty would determine an investor’s
inclination to the diversification of a portfolio between an investment in a sectoral index and a green bond.
The identifying mechanism is the shock-dissipation speed, which also informs a policymaker before choosing
the right instrument to stabilise the system. We show that the system-wide shocks indeed dissipate slower
than could be predicted by a conventional cointegrated VAR system. Further, the property of the slow error
correction within the dynamic system of Green Bond and sectoral S&P indices, for instance, may demonstrate
the speed of adjustment of the global economy to sudden shocks. Rigorous predictions exercises complement
our baseline conclusions.
1. Introduction

Financing of climate and environmentally sustainable projects re-
quires huge funds,1 firstly because, firms are often slow to adapt to
a new technology despite realising the huge potential of gains from
such a strategic investment. Secondly, the spread of greenwashing2 as
a deceptive marketing spin by various corporations has subjected this
asset-backed financial instrument to a significant degree of volatility.
A study of the extent the green bond incurs contemporaneous losses or
gains with other financial assets or indices (such as S&P 500 sectoral
indices) can unravel the inherent nature of volatility of green bond.

∗ Corresponding author.
E-mail addresses: T.K.Mishra@soton.ac.uk (T. Mishra), dpark@adb.org (D. Park), mamata.parhi@roehampton.ac.uk (M. Parhi), gazi.salah.uddin@liu.se

(G.S. Uddin), stian@adb.org (S. Tian).
1 Going by the estimates of the S&P, global issuance of sustainable bonds that includes social, green and sustainability-linked bonds, can together exceed 1

trillion USD in 2021, a near-five fold increase over 2018 levels.
2 Greenwashing refers to a situation when corporations mislead investors or consumers by instilling a false belief that the product or service they offer or wish

to create, or even the organisation itself is environmentally friendly or sustainable. (https://www.globalcitizen.org/en/content/greenwashing-what-is-it-and-how-
to-avoid-it/).

To an important extent, it can also establish how, under persistent
uncertainty, disequilibrium shocks in the green bond index correct
(with slow or greater speed) while co-moving with various sectoral
indices (if at all there is any co-movement). This paper introduces a
co-movement mechanism of green bond with sectoral indices in an
environment where the shocks dissipate more slowly than the extant
literature on the subject assumes. Within such an environment we
model cointegration relationships in a way that shows nonlinear dis-
equilibrium error corrections. A forecasting exercise is carried out to
lend deeper insights into the way green bond and sectoral prices are
set to co-move together.
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The emergence of green-bond is largely a product of the supply-side
and financing constraints of corporations towards new environmentally
sustainable projects. Pham (2021) finds that the dependence between
green bond and green equity is relatively small under normal market
conditions once movements in the general stock, energy and fixed-
income markets are controlled for. Contrarily, the author finds that
green bond and green equity are more connected during extreme
market movements, where they boom and bust together. An impor-
tant finding concerns significant short-lived spillover effects between
green bond and green equity. Russo et al. (2020) in recent research
examines the main drivers of green bond and find the instrumental role
of firm-specific corporate sustainability-oriented strategy as a major
determinant. Undoubtedly, the demand-push from investors to invest in
those climate and environmental projects can make up for the financial
deficits towards a desired equilibrium. An imposing argument for the
development of the green bond market is that it can act as a bridge
between capital providers (i.e. institutional investors) and sustainable
assets (i.e. renewable energy).

One way to finance those projects is by investing in green bonds. If
a corporation is issuing a green bond to finance their climate and envi-
ronmental projects,3 there are two motives for this; (i) banks often give
etter interest rates to corporations which are environmentally con-
cious and hence it carries a reputation-value persistence, and (ii) the
orporation can also expect environmentally conscientious investors
o fund those projects who expect the ‘long-term’ return from these
nvestments as profitable and stable. The S&P 500 Green Bond Index
as been designed to track the global green bond market. While there
s no doubt that there is a strong demand for sustainable financing
nstruments that are also likely to increase, serious concerns around
he accuracy of issuer sustainability claims can have deep impacts on
he integrity and development of the sustainable finance market.

A huge growth in Environmental, Social, and Governance (ESG)
isted companies in the S&P 500, the great volume of ESG marketing
nd labelling, together with non-uniform sustainability commitments
nd reporting, have also expounded the difficulty for stakeholders to
dentify trustworthy claims — ones that are reliable and unreliable. In
ther words, this ‘greenwashing’ has become the biggest concern for
bout 44% of investors when selecting ESG investment. Historically,
henever a socially and environmentally driven innovation is made,

ts widespread misrepresentation of potential benefits from a particular
nnovation can sway investors’ sentiment so much so that the expected
ong-term gains from those environmentally sustainable projects may
isappear. In other words, contrary to common beliefs and perhaps for
he right reason, the growth in S&P 500 green bond index may not
epresent investors’ true sentiments and the fluctuations can perhaps
eflect on the dangers of ‘greenwashing’, embedding an inherent degree
f volatility in the index which is rather supposed to be long-run stable.

The question is, to what extent observed volatility in the green
ond index co-moves with various sectoral indices, such as health,
nergy, finance, and information technology4? These sectoral indices
re regularly subject to common shocks and their degree of fluctuations
an be used by investors to compare the extent of exposure to factors
Fig. 1 presents the relative weights of various sectoral indices in
he S&P 500). In the present study, we aim to investigate whether
nd to what extent the integration of green bonds into the investor’s
ortfolio provides superior returns or if it implies a trade-off between
ustainability concerns and financial performance, through the analysis
f green and conventional bond indices. Since shock propagation has an

3 Lately, companies are making more noise about ‘sustainability’ aspects of
heir growth, with 129 firms on the S&P500 citing ESG in their fourth quarter
020 earnings calls. From a mere 14 firms that touched on ESG in their Q4
arnings call two years ago to the current 129 firms is a huge leap.

4 There are eleven sectoral indices in the S&P 500. See Appendix for a
2

escription of representative sectors.
inherent memory feature, our investigation is within the long-memory
framework.

In this study, we rigorously model dynamic co-movement between
green bond prices and sectoral markets such as the renewable energy
stock market, and health and financial sectors. Our modelling paradigm
is founded on the real-life shock propagation mechanism within a
system, in that shocks converge slowly, thanks to complex interaction
within the system. Our investigation exploits the rich features of cointe-
gration, which can be used in our context to identify assets which share
a common equilibrium. We shed further light on a well-known violation
of the expectations hypothesis — the assumption of a unit root in the
sectoral prices and green bonds. We premise that the nonstationarity (in
our case, long-memory) stems from the holding premium. This may be
cointegrated with the spread. An important characteristic of our green
bond and sectoral price systems is that shocks may dissipate slowly
and these can make disequilibrium corrections slower than expected,
limiting thus the possibility of the system converging quickly to the
long-run mean.

Given the current circumstance of high dimensional nonlinearity in
economic systems around the world, it is only reasonable to expect
that the green bond market and sectoral indices may co-move but
the speed at which the joint system will be long-run stable will differ
due to the strong memory of shocks within the system. Finding a co-
movement pattern between the green bond and sectoral indices have
policy relevance because one can predict the growth of the green bond
market vis-a-vis sectoral indices. In other words, it will be interesting
to study whether there are rooms for both sectors to grow sustainably.

Further, an in-depth study of co-movement patterns of the green
bond index and representative sectoral indices can unravel important
information on the future of green bonds and especially the stability
in investors’ sentiment as the latter is being rewarded by a high and
sustainable return from an investment. Le et al. (2021) in a recent
work, study spillover connectedness among green bonds, Fintech and
cryptocurrencies. Using time and frequency domain measures, the au-
thors find that the overall connectedness of technology assets and
traditional common stocks is very high, concluding further that the
probability of contemporaneous losses is very high during turbulence in
the economy. Pineiro-Chousa et al. (2021), in another interesting piece
of research, investigates how investors’ sentiment (extracted from social
networks) determines price movements in the green bond market. The
authors find positive effects of social networks in the trajectory of green
bond growth because increasing awareness about environmental and
social causes are modelled here in the form of diffusion and strength of
the network.

A study of dynamic interdependence in a memory-driven envi-
ronment holds policy values, because evidence of a long memory
(system-wise or individual-series-wise) would indicate that the system
or the series there is a significant degree of inefficiency and this
inefficiency can be used by investors as a tool for hedging or arbitrage
opportunities in the market. This is a leading reason, why the dynamic
interdependence between the green bond and other sectoral indices
needs to be studied in a memory-embedded environment.

The rest of the paper is planned as follows. Section 2 provides a
brief review of the literature. Section 3 presents our methodological
design. Section 4 discusses data and elaborates on the results. Section 5
presents conclusions and summarises the policy relevance of our work.

2. Literature

2.1. Traditional issue with investment

A critical issue with investments in recent times concerns the fact
that incumbents are primarily the organisations that are diverting their
resources from traditional sources of energy towards cleaner energy
sources. Therefore, they have significantly higher sources of financial
availability. The incumbents may seek alternative financing options
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Fig. 1. Comparison of S&P 500 Sectoral Weights.
Source: https://www.spglobal.com/spdji/en/
landing/investment-themes/sectors/
such as bond and equity issues. On the other hand, the SMEs are
newcomers with primarily small- and medium-sized operations and
services, lacking the availability of such investment opportunities. Fur-
thermore, due to the relatively less age of the SMEs compared with
the incumbents, raising finances to support R&D activities is chal-
lenging. Therefore, it is necessary for governmental organisations and
regulatory agencies, especially in developing economies, to introduce
new means of financing options for both SMEs and the incumbents
that may facilitate the transition process towards cleaner sources of
energy. Green Equity (GE) and Green Loan (GL), in this regard, are
of remarkable interest for humans, organisations, and institutions to
expand their investments dedicated to mitigating the impact of climate
uncertainty and the prospective healthcare and economic costs.

The development of new green investments across developed and
emerging economies is clearly indicative of a significant intensity of
new investments in renewables in developing economies. More specif-
ically, the growth of new investments is higher in Asia with both
China and India among the forefronts of emerging economies and in
the transition process towards cleaner sources of energy. Partly due
to the requirement of conformity to the United Nations’ Sustainable
Development Growth plan and partly due to their realisation of their
own social responsibility, lately, organisations have been incorporating
sustainable and green approaches, assimilating them into their sustain-
able development commitments. Cortellini and Panetta (2021) provide
an excellent systematic review of the literature on green bonds.

2.2. Green bond types and investible opportunity

Depending on the form of green bonds, such as the use-of-proceeds
bonds (or plain vanilla bonds), project bonds, and securitised bonds,
there are implications for legal recourse in case the issuer defaults
(Jones et al., 2020). The distinction among types of green bonds
is also central to understanding why many corporations recourse to
greenwashing practices. For instance, there is a difference between use-
of-proceeds revenue bonds and securitised bond, where for the former,
the proceeds are normally earmarked for green projects in the portfolio
of an issuer. The recourse is limited to the issuer’s revenue generation.
For the latter, the bond is collateralized by one or more revenue-
producing green projects. In this case, project revenue is used to repay
the bond.

When one looks at an investible opportunity in green bonds and
compares it against other available asset types such as the conventional
financial stock markets and health-related stocks, a natural question
3

arises on whether and to what extent shareholders benefit from green
bonds. Tang and Zhang (2020) have shown that green bonds have expe-
rienced significant geographical diversification spreading from Europe
to numerous emerging economies (in particular, China and Malaysia).
The authors have found that stock prices positively respond to green
bond issuance, although there was no evidence of a significant premium
for green bonds. This suggests that the positive stock returns around
green bond announcements are not fully driven by the lower cost
of debt. The authors conclude from their investigation that a firm’s
issuance of green bonds is generally beneficial to its existing sharehold-
ers. Zerbib (2019), Larcker and Watts (2020), and Jones et al. (2020)
among others, also emphasise the central and growing importance of
green bonds as an imperative investible proposition. The research in
these and related work shows that there is an inclination of corpora-
tions to treat ecological deficit with debt as their pro-environmental
preferences on bond prices drive them to charge higher premiums from
green bond investments.

2.3. Extant research taxonomy in green bonds and the context of our
contribution

Since research on green bonds is still developing, in the past five
years or so the research has mainly focused on four thematic areas:
(i) the performance of the green bond market, (ii) the reaction of the
stock market to green bond investment, (iii) the supply side dynamics
of green bonds, and (iv) the interdependence or connectedness of green
bonds with various sectors. Following (Cortellini and Panetta, 2021), in
Fig. 2, we have represented a research taxonomy of green bonds since
2016. An impressive discussion of contributions about each thematic
area can be found in Cortellini and Panetta (2021).

The current paper is heavily inclined towards the theme of the
interconnectedness of the green bond market with other sectors. It also
contributes to the strand of literature that focuses on the reaction of the
stock market to green bond investment and growth. Extant research
on methodological implementation while studying dynamic intercon-
nectedness between green bond and other sectors, regularly employ
multivariate generalised autoregressive conditional heteroscedasticity
(GARCH) or dynamic conditional correlations GARCH, a number of
research also focuses on copula-based methods, wavelet correlation
approach and structural vector autoregression (VAR) estimation. A
number of recent research have investigated the relationship between
green bonds and sectors such as renewable energy. Liu et al. (2020), for
instance, employ a time-varying copula model to estimate the dynamic

https://www.spglobal.com/spdji/en/landing/investment-themes/sectors/
https://www.spglobal.com/spdji/en/landing/investment-themes/sectors/
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Fig. 2. Whither the trend? .
Source: Cortellini, G. and I.C. Panetta (2021). Green Bond: A Systematic
Literature Review for Future Research Agendas. Journal of Risk and
Financial Management 14: 589.

relationship between the two, whereas (Hammoudeh et al., 2020)
employs a time-varying Granger causality test to model the relationship
between green bonds, clean energy, CO2 emission allowance. In related
research, Nguyen et al. (2020) use a rolling window wavelet estima-
tion to demonstrate that the interdependence between green bonds
and clean energy is high, but it is weak with respect to stocks and
commodities markets. Overall, the existing research shows that green
bonds can serve as an effective hedging tool in the financial market.

An innovative feature of our approach is to design a memory-
embedded VAR approach to model dynamic interdependence between
green bond and various sectors. This way we offer new insights into
the nature of connectedness between these sectors as well as the
reaction of stock market to green bond — the two important thematic
areas of research in green bond literature. The rigorous empirical
dissection of green bonds and their dynamic co-movement pattern
with various financial instruments across sectors is rather sparse. The
nascent literature has begun to understand the efficacy of green bond
data, identifying to the extent greenwashing has more or less deceived
investors’ sentiments. A key proposition which underlines our empirical
investigation is that greenwashing might have infused nonzero mean
noises and greater standard deviations in green bonds to an extent
that the observed volatility may be contemporaneously correlated with
other financial instruments, which are not environmentally sustainable.
Another possible leading reason for the lack of a robust body of
literature on green bonds’ co-movement is a general lack of an un-
derlying theory. Why would green bonds co-move with other financial
instruments and what this would mean for the future of green bonds
or for that matter for non-environmentally sustainable financial assets,
will continue to remain a debatable theoretical and empirical question.
Yet, some emerging empirical work showing the spillover effects of
various financial assets and green bonds, provide good arguments that
the green bond and the chosen assets may alternately work as net giver
and net receiver of shocks (Pineiro-Chousa et al., 2021). In our work,
we elicit the fact that downplaying the significance of memory may
bias our inferences on the direction and magnitude of interdependence
between green bond and other sectors. A measurable part of policy
ineffectiveness can be attributed to this missing memory — a feature
that can also mask the true response of a stock market to green bond
investment.

3. Methodology

Since our objective is to investigate if there are co-movement pat-
terns between the green bond and sectoral indices and to the extent,
the level of uncertainty and long-memory control of this pattern, a
4

natural way to study this is to employ a cointegration technique within
a memory-driven framework. While the conventional approach is to
treat a time series to be either stationary (with an integration order (𝑑))
or nonstationary (𝑑 ≥ 1), we premise that shocks do not die out so fast
given the complexity of the interaction of a variable within a system as
well as the arrival of new shocks (the timing of which are unknown). In
other words, a time series can be allowed to be fractionally integrated,
representing various degrees of ‘memory’ of shock persistence. Such a
differential convergence speed of shocks can impact our inferences on
’disequilibrium correction’ as the speed at which errors are corrected
from the system, can determine the nature of stability of the system
as well. Keeping this important trait in mind, we advance the use of
a fractionally cointegrated VAR (FCVAR) model to have a profound
understanding of the dynamics of the cointegration relationship of
green bonds with sectoral indices and a measure of uncertainty.

Before we employ FCVAR, we need to check first whether the
individual series in question display long memory. We briefly present
the methodology in the ensuing section.

(a) Long-memory: Source and Estimation

(i) Source of long-memory in Green Bond: Although there is a
robust body of work related to the measurement of long-memory and its
implications in economics and financial time series, it is not a common
parlance in environmental time series, such as the applications to Green
Bond. An imposing question is what theoretical justification one can
provide for long memory in the Green Bond series? Apart from the
econometric methodological interests, identification of the source of
long memory in an economic, financial and/or environmental series
such as the Green Bond, is very important.

By its very nature of construction, the S&P Green Bond index tracks
the green bond market at the global level. The index adopts stringent
standards while incorporating those bonds whose proceeds are actually
used to fund environmentally friendly projects. Econometrically, the
nature of aggregation of various corporations’ bonds while creating the
index can be a potential source of long memory.

Let us denote the by 𝑧𝑖, the 𝑖 > 1 a number of corporations’ bonds.
Over time, 𝑡, 𝑦𝑖 evolves following a path-dependent or an autoregressive
(AR) process:

𝑦𝑖,𝑡 = 𝛼𝑖,1 + 𝛼𝑖,2𝑦𝑖,𝑡−1 + 𝑢𝑖,𝑡 (1)

𝛼𝑖,2 is either 0 or 1. If we allow 𝛼𝑖,2 to follow a 𝛽(𝑢, 𝑣) distribution,
then 1

𝑁
∑𝑁

1 𝑦𝑖,𝑡 = 𝑌𝑡 ∼ 𝐼(𝑑), that is the aggregate 𝑌𝑡 can be distributed
as an I(d) process. Note however that the AR coefficient, 𝛼𝑖,2 varies
over 𝑖. For when 𝛼𝑖,2 ≈ 0, this can be referred to as a ‘random’
component, whereas 𝛼𝑖,2 ≈ 1, we can call it a ‘regular’ component.
In case the distribution of 𝛼𝑖,2 follows a 𝐵𝑒𝑡𝑎(𝑢, 𝑣) distribution across
various components, then the Green Bond index, 𝑦𝑡 = 𝑁−1 ∑𝑁

𝑖=1 𝑦𝑖,𝑡 can
be shown to be fractionally integrated of order 𝑑 = 1 − 𝑣 if 𝑁 is large.

(ii) Estimation of Long-memory:
Let us denote the green bond index time series (or other sectoral

indices) as 𝑦𝑡 (for 𝑡 = 1,… , 𝑇 ). We model 𝑦𝑡 as an 𝐼(𝑑) process or
integration of order d in the sense that we may need to difference (a
possible non-stationary) 𝑦𝑡 series (Green Bond series, for instance) 𝑑𝑡ℎ
times to make it stationary:

(1 − 𝐿)𝑑𝑦𝑡 = 𝜓(𝐿)𝜀𝑡 (2)

In Eq. (2) (1 − 𝐿)𝑑 is the difference operator of order 𝑑 with time lag
denoted by 𝐿, such that when 𝑑 = 1, (1−𝐿)1𝑦𝑡 = 𝑦𝑡−𝑦𝑡−1 = 𝛥𝑦𝑡. 𝜓(𝐿𝑗 ) is
the coefficient of the error term (𝜀) at each specific time period 𝑡−𝑗 with
∑∞
𝑗=0 |𝜓(𝐿

𝑗 )| <∞, 𝑗 = 0, 1, 2,… . 𝜀𝑡, the error term is assumed to follow
a distribution with zero mean and constant variance: 𝜀𝑡 ∼ 𝑖𝑖𝑑(0, 𝜎2).
We treat beyond convention and allow 𝑑 to be of fractional, rather
than of integrated order. Granger and Joyeux (1980) discusses details
of the rich dynamics of shock convergence of this assumption — one
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Table 1
Implications of 𝑑 values for stability of a series.
𝑑 Type of memory (Non)Stationarity Convergence Variance Shock duration

𝑑 < 0 Long Stationary Mean-convergence Finite Long
𝑑 = 0 Short Stationary Mean-convergence Finite Short
0 < 𝑑 < 0.5 Long Stationary Mean-convergence Finite Long
0.5 ≤ 𝑑 < 1 Long Non-stationary Mean-convergence Infinite Long
𝑑 = 1 Permanent Non-stationary, Non-convergence Infinite Permanent

unit root process
𝑑 > 1 Permanent Non-stationary Non-convergence Infinite Permanent, growing effects

over time
t
(

that approximates real-life dynamics robustly. The shock propagation
mechanism can be visualised by allowing a power series expansion (see
Eq. (4)) based on (1 − 𝐿)−𝑑 in Eq. (3):

𝑡 = (1 − 𝐿)−𝑑𝜓(𝐿)𝜀𝑡 (3)

where 𝛾0 ≡ 1 and

𝛾𝑗 =
(𝑑 + 𝑗 − 1)(𝑑 + 𝑗 − 2)⋯ (𝑑 + 2)(𝑑 + 1)(𝑑)

𝑗!
(4)

where 𝛾𝑗 ≅ (𝑗 + 1)𝑑−1 given that 𝑑 < 1 and 𝑗 is large.
A fractionally integrated process can be represented as an infinite

rder moving average (MA(∞)) process such that

𝑡 = (1 − 𝐿)−𝑑𝜀𝑡 = 𝛾0𝜀𝑡 + 𝛾1𝜀𝑡−1 + 𝛾2𝜀𝑡−2 +⋯ (5)

n Eq. (5), the impulse response coefficients of 𝑦𝑡, i.e. 𝛾𝑗 , reveal how
ast or slow shocks dissipate over time depending on the magnitude of
he coefficient, 𝛾. Table 1 describes various shock convergence patterns
nd their implications for the stability of the time series in question. In

We estimate 𝑑 using Shimotsu (2010) (details in the empirical sec-
ion). For dynamic estimates of memory, we perform a rolling window
stimation of Shimotsu (2010).

b) Understanding dynamic interdependence of green bond with sectoral
ndices: A memory-driven approach

Does green bond cointegrate with various sectoral indices? If so,
t what rate do disequilibrium errors correct to produce a stable co-
oving relationship? To this effect, a fractionally cointegrated vector

utoregressive (FCVAR) model, proposed by Johansen (2008) and Jo-
ansen and Nielsen (2012), is very useful. The FCVAR is designed to de-
ect equilibrium relationships between fractionally integrated variables.

restricted version, the cointegrated vector autoregressive (CVAR)
odel (Johansen, 1995) can detect an equilibrium relationship be-

ween variables that are integrated of order one, i.e. exhibit unit root
ehaviour, where deviations from this relationship are not integrated.
n contrast, the fractionally cointegrated VAR model can detect rela-
ionships between variables that are integrated of a fractional order,
ith deviations that can also be fractionally integrated but of a lower
rder than the variables themselves. This allows for the study of re-
ationships with deviations that correct more slowly than with the
VAR.

The FCVAR model is formulated as follows:

𝑑 (𝑌𝑡 − 𝜌) = 𝛼𝛽′𝐿𝑑 (𝑌𝑡 − 𝜌) +
𝑝
∑

𝑖=1
𝛤𝑖𝛥

𝑑𝐿𝑖𝑑 (𝑌𝑡 − 𝜌) + 𝜀𝑡 (6)

where 𝑌𝑡 is a 𝐾-dimensional 𝐼(𝑑) time series at time 𝑡 of green bond
and other sectoral indices. In the above, 𝑖 stands for numbers of short-
run dynamics with 𝑖 = 1, 2,… , 𝑝; 𝛤𝑖 is the coefficient of each temporal
lagged 𝑌𝑡; 𝛱 is a parameter matrix identified by two parameters, viz.
𝛱 = 𝛼𝛽′. 𝛼 and 𝛽 are 𝐾 × 𝑟 matrices, 𝛽 identifies the cointegrating rela-
tionship(s) among variables in 𝑌𝑡, and 𝛼 defines the adjustment speed
towards the long-run equilibrium of each variable in 𝑌𝑡. 𝑟 is the rank of
𝑌𝑡, and its value indicates the number of cointegration(s) in the model
with 0 ≤ 𝑟 ≤ 𝐾. 𝛥𝑑 and 𝐿𝑏 represent fractional difference operator with

𝑑

5

order 𝑑 and the fractional lag operator with 𝑏, respectively, where 𝛥 =
1−𝐿𝑑 = (1−𝐿)𝑑 and 𝐿𝑏 = 1−𝛥𝑏. 𝑑 and 𝑏 could be either integer or frac-
tional values.5 𝜀𝑡 is a 𝐾-dimensional identically independent distributed
error term with zero mean and constant variance–covariance matrix
(𝜀𝑡 ∼ 𝑖𝑖𝑑(0, 𝛺)). The inclusion of a constant, i.e. 𝛽′𝜌, in the long-run
relationship(s) in 𝛽′𝐿𝑏𝛥𝑑−𝑏𝑌𝑡 captures unobserved explanatory powers
in the identified relationship(s). An innovative feature of the FCVAR
is that it allows multiple time series to be fractionally integrated with
order 𝑑 and fractionally cointegrated to order 𝑑−𝑏. A simple assumption
one can follow is to set 𝑑 = 𝑏 to ensure short-memory stationarity in
the cointegrating relationship(s). For estimation, maximum likelihood
(ML) estimators can provide reliable estimates of the FCVAR model
parameters (Johansen and Nielsen, 2012).6

Similar to the CVAR model, the significance of FCVAR model pa-
rameters can be tested by hypothesis testing (Jones et al., 2014). The
framework of hypothesis testing on long-run parameters, i.e., 𝛽 and 𝛼,
can be formulated as

𝛽 = 𝜔𝜆 (7)

𝛼 = 𝜏𝜃 (8)

With respect to the test on 𝛽 (Eq. (7)), 𝜔 is a 𝐾 × 𝑞 matrix of
identifying restriction(s) on the cointegrating relationship(s), and 𝜆 is
a 𝑞× 𝑟 matrix defining free varying parameter(s). 𝑞 is the number of re-
striction(s) associated with 𝛽-related hypothesis tests. In a context when
each cointegrating relationship is imposed with the same restriction,
the degree of freedom of the hypothesis test is equal to (𝐾 − 𝑞)𝑟. If the
number of cointegrating relationships is greater than one, viz. 𝑟 > 1,
different restrictions could be imposed on different columns of 𝛽. 𝛽 can
then be re-expressed as a row vector, i.e., 𝛽 = (𝜔1𝜆1, 𝜔2𝜆2,… , 𝜔𝑟𝜆𝑟).
Each column of 𝛽 is the product between 𝜔𝑖 and 𝜆𝑖, where 𝜔𝑖 is a
𝐾 × 𝑞𝑖 matrix and defines the imposed restriction on the column 𝑖 of
𝛽; 𝜆𝑖 is a 𝑞𝑖 × 1 matrix and defines the free varying parameter on the
column 𝑖 of 𝛽. In that case, the degrees of freedom of the hypothesis
test is ∑𝑟

𝑖=1(𝐾 − 𝑟 − 𝑞𝑖 + 1). Concerning the test on 𝛼 as in Eq. (8),
𝜏 is a 𝐾 × 𝑙 matrix that defines restriction(s) on disequilibrium error
corrections of target variables, and 𝜃 is a 𝑙 × 𝑟 matrix representing free
varying parameter(s) with 𝑙 ≥ 𝑟. 𝑙 stands for the number of restriction(s)
associated with 𝛼-related hypothesis tests. Its degree of freedom is
(𝐾 − 𝑙)𝑟.

The FCVAR model can also deal with the endogeneity concern that
arises from simultaneity issues in the form of bi-directional relation-
ships in green bonds and other sectors’ price systems. Further, the
presence of a constant term while obtaining the long-run relationship
in the system can as well address the problem of omitted variables
(although partially). There may also be a problem of overidentification in
the cointegration relationship. This issue can be addressed by studying
the significance of model parameters and wherever required, imposing
zero restrictions on insignificant ones. In our estimation, we test for
weak-exogeneity in the long-run parameters of the FCVAR system,

5 Their values should be positive to ensure that the integration order of
arget series would not be affected by applying the fractional lag operator
𝐿𝑑) (Tschernig et al., 2013).

6 See Jones et al. (2014) for details.
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i.e., 𝛼 and 𝛽, by testing for zero restriction on its feedback coefficient in
he 𝛼-matrix. If 𝛼 coefficient of the variable is not significantly different
rom zero, we treat it as weakly-exogenous, indicating that it con-
ributes nothing to restore the long-run equilibrium after disequilibrium
as pervaded the system.

At the same time, whether a variable in the system forms long-run
ointegrating relationship(s) is concluded by testing for zero restric-
ions on its feedback coefficient in the 𝛽-matrix. If 𝛽 coefficient of the
ariable is restricted to zero, the variable would not enter the coin-
egrating relation(s). In addition, the FCVAR estimation is conducted
y using a grid search in our case, through which the (parameter)
dentification problem discussed in Carlini and Santucci de Magistris
2019) is resolved (Nielsen and Popiel, 2018).

. Data and preliminary observations

.1. Data

We use a daily dataset (28/07/2009–28/07/2021) for green bonds
s well as some of the selected S&P 500 sectoral indices, viz., Energy,
ealth, Financials, and Information Technology.7 The S&P Green Bond
S Dollar Index is designed to measure the performance of US dollar-
enominated, green-labelled bonds from the S&P Green Bond Index.
lthough the market size of green bonds is relatively small compared
ith the boom of cryptocurrencies since 2013, both are evoking the

mmense interests of investors. Among sectoral indices, for instance,
he financial technology index tracks the performance of financial
echnology companies that are publicly traded in the U.S. Hence, this
roxy represents the performance of an asset in the 4th industrial
evolution. We also use Bloomberg Barclays’s MSCI green bond index
s an alternative measure for Green Bond to reflect investment in
nvironmental sustainability projects.8 A description of the data is
n Appendix A. Important to note that due to data availability issues,
he starting date for this data is April 1, 2014. The US Economic
olicy Uncertainty has also been used to study, how the co-movement
atterns between the green bond and various sector indices differ
ver variations in uncertainty. The latter is one important source of
nformation asymmetry in the market and the use of the uncertainty
ndex in our estimation enables an informed inference on co-movement
eterogeneity and investment choice between the green bond and
ectoral indices.

In Table 2 we present descriptive statistics. It appears that the
ean price index for green bond is 108.289 with a standard deviation

f 6.494, where a significant difference exists between the minimum
96.553) and maximum (124.305). The differences are larger for the
loomberg MSCI Green Bond index (standard deviation of 7.79; min-

mum = 81.916 and maximum = 122.306). Table 2 also summarises
escriptive statistics for other sectoral indices plus a measure of policy
ncertainty (usepupo) to paint the broader picture of underlying un-
ertainty in the economy. Specifically, S&P Financials comprises those
ompanies included in the S&P 500 that are classified as members of
he Global Industry Classification Standard (GICS) financials sector. All
omponents of the S&P 500 are assigned to one of the eleven Select
ector Indices, which seek to track major economic segments and are
ighly liquid benchmarks.

7 There are 11 S&P 500 sectoral indices, viz., Health Care, Consumer
iscretionary, Energy, Financials, Industrials, Commodity Services, Materials,
onsumer Staples, Information Technology, Utilities, and Real estate. In the
ppendix, we have presented detailed definitions of these and other sectoral

ndices.
8
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Many thanks to a referee for suggesting this variable.
Fig. 3. Temporal Pattern of Green Bond and sectoral price for energy and financials.

4.2. Mitigating the effects of cycles and trends

The presence of periodic fluctuations, such as seasonality and cycli-
cality, can mask the true nature of the movement of the data, in our
case, green bond and other sectoral indices (Canepa et al., 2020).
The repeated fluctuations, defined as business cycles can describe the
periodic behaviour of the data (Hodrick and Prescott, 1997). To free
our variables from possible cyclical movements in the mid/long-runs,
which may otherwise obscure the true nature of the dynamics of time
series and its persistence, we remove business cycles from our raw data
using the recently developed Hamilton filter method (Hamilton, 2018).
The Hamilton filter method decomposes a time series into cyclical
and trend components.9 Despite the popularity of the Hodrick–Prescott
(H–P) filter in this direction (Hodrick and Prescott, 1997), Hamilton
criticises the technique to be flawed misrepresenting the underlying
data-generating process.

Fig. 3 (upper panel) presents a time series plot of the green bond
(and Hamilton-filtered data of the green bond). Similarly, The lower
panel in Fig. 3 similarly presents time series plots for the clean energy
index of S&P 500 along with the plot using the Hamilton filtered data.
Both Figures reveal significant variations over time, although the clean
energy index shows a promising trend of growth from 2014. To what
extent does the green bond (or clean energy index — a proxy for
environmental sustainability) co-moves with various sectoral indices
such as health, energy, finance, and information technology? Fig. 4

9 We use these transformed data for the rest of the empirical analyses.
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Table 2
Descriptive statistics.

Variable Mean p50 Std. Dev Min Max p25 p50 p75 Interquartile range

Green Bond 108.289 108.494 6.494 96.553 124.305 102.596 108.494 113.768 11.172
MSCI Green Bond 103.999 102.672 7.790 81.916 122.306 97.944 102.672 108.116 353.070
Sector: Health 767.871 803.990 309.749 318.500 1534.570 444.555 803.990 1002.730 558.175
Sector: Energy 495.086 501.970 99.253 179.940 737.090 438.580 501.970 558.110 119.530
Sector: Financials 331.026 318.120 112.854 151.850 637.750 217.590 318.120 427.165 209.575
Sector: Info. Technology 896.463 700.270 561.705 307.860 2713.400 467.635 700.270 1199.870 732.235
US Policy Uncertainty 121.626 97.210 88.085 3.320 807.660 65.770 97.210 146.690 80.920
t
u
s
d
p
f
1
(

Fig. 4. Temporal Pattern of Green Bond and sectoral price for health and information
technology.

(upper panel) shows that the sectoral energy price index appears to
strongly co-move with the green bond index, while the lower panel of
Fig. 4 depicts a similar pattern although there is a substantial difference
in the price variations. Fig. 5 presents the pattern of co-movement
between S&P green bond and Bloomberg MSCI green bond indices.
Once again, we find a visible pattern of strong connectedness in their
trends.

5. Empirical results

Our findings are mainly presented in the following two aspects.
First, the presence of the long-memory feature of our empirical dataset
is demonstrated by the fractional integration order of our included
variables. Having the long memory in univariate series is a prerequisite
to verify whether the FCVAR model is appropriate to our data. The
second part of the results discusses the determination of equilibrium
green bonds and sectoral indices.
7

t

Fig. 5. Temporal Pattern of Green Bond and MSCI Green Bond.

5.1. Which integration order works better?

(i) Stationarity and unit root tests
Before one estimates a fractionally cointegrated VAR system, it is

important to ensure that our data are truly characterised by long-
memory. It is possible that the series in question may be fractionally
integrated if it rejects the null hypothesis of both stationary and unit
root tests at the same time. In inherent reason is that a fractionally
integrated series does not have a unit root, although it is still likely
to be non-stationary (Jones et al., 2014). To ensure this, we have
conducted Kwiatkowski–Phillips–Schmidt–Shin (KPSS) stationarity test
and the Augmented Dickey–Fuller (ADF) for unit root of each series,
respectively. Table 3 reports these results. We observe that all series
reject the null hypothesis of stationarity using the KPSS test. Further,
using the ADF test we reject the null hypothesis of a unit root. From
Table 3, we can conclude that all series in our system are of fractional
integration order (𝑑).

(ii) Are Green Bond and Sectoral Indices inefficient? Evidence using long-
memory features

(a) Static estimation of memory: inefficiency in a static sense
To lend quantitative evidence that our green bond index and var-

ious sectoral indices are inefficient markets, we do not demonstrate
that these indices possess long-memory features (that is, characterised
by fractional integration order, 𝑑). Accordingly, we have estimated
he fractional integration parameter, 𝑑, of the individual series by
sing (Robinson, 1994) semiparametric procedure as well as the two-
tep exact local Whittle estimator (2ELW) and ‘2ELW’ estimator with
emeaned and detrended data (Shimotsu, 2010). In Table 4, we have
resented Robinson’s estimates for various bandwidths (0.5 to 0.9) and
ind that the estimated value of 𝑑 for the green bond index is less than
. Given the length of the data and a preliminary simulation exercise
results of which are available upon request), we have chosen 0.7 as
he optimal bandwidth. The estimated 𝑑 for this bandwidth is 0.954,
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s

Table 3
Stationarity and unit root tests.

Green Bond Clean Energy Health care Energy Financial Industrial Information Tech EPU

KPSS Test 0.208** 0.162** 0.250*** 0.171** 0.677*** 0.229*** 0.131* 1.255***
ADF Test −1.311 −3.755** −4.102*** −3.886** −3.148* 1.708 −3.222* −3.664**

Note: (i) *: 10% significance level; **: 5% significance level; ***: 1% significance level. (ii) Information criteria (IC) have been used to select lags.
Table 4
Robinson’s semiparametric estimates of ’memory’ (d).

Greenbond MSCI Index All Other Variables

Power Ords Est d Std Err Est d Std Err Variable Est d Std Err

0.50 55 0.959 0.080 0.502 0.071 Health Sector 0.975 0.023
0.55 83 0.999 0.067 0.622 0.059
0.60 125 0.957 0.052 0.422 0.051 Energy Sector 0.874 0.023
0.65 187 0.928 0.041 0.402 0.044 Financial Sector 0.960 0.023
0.70 279 0.954 0.035 0.275 0.033
0.75 419 0.979 0.031 0.215 0.029
0.80 627 0.966 0.025 0.210 0.022
0.85 937 0.968 0.020 0.222 0.022
0.90 1401 0.923 0.017 0.198 0.015 Info Tech Sector 0.970 0.023

US: Policy Uncertainty 0.587 0.023

Note: (a) The standard errors are calculated by (4𝜓)−1∕2 where 𝜓 = 𝑁𝐵 and 𝑁 is the number of observations.
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which is also statistically significant. For several sectoral indices and
uncertainty index, we have also estimated 𝑑 at this bandwidth and
the results show that except for the energy index, for all variables, the
𝑑 < 1.

In a nutshell, our static 𝑑 estimation is consistent with the findings
in the last section. A fractionally integrated series would be non-
stationary (i.e., rejection of the KPSS test) if its 𝑑 is greater than 0.5,
while it would not have a unit root (i.e. rejection of the ADF test) if
its 𝑑 value is also less than 1. At the same time, even if a series does
not reject the null hypothesis of the ADF test, it can still be fractionally
integrated when its 𝑑 value is either greater than 1 or very close but
not equal to 1.10

(b) Dynamic inefficiency? Dynamic rolling window estimation
A policy-relevant question then arises: is the evidence of ineffi-

ciency, demonstrated by long-memory parameters, dynamic in nature?
In other words, inefficiency may not strictly be a static phenomenon.
As new information arrives in the market, for instance, the rising
level of policy uncertainty or important data on the seriousness of
climate disasters where policymakers are keen to reverse the trend of
the impending environmental problems, this may make the nature of
inefficiency dynamic. That is, with the arrival of more information,
it is possible that the estimated degree of inefficiency ’in the static
sense’ may dynamically converge to a more efficient state, something
that the conventional financial theoretic literature floats the idea about
the efficiency of a market; with the arrival of new information, the
current value of the system may capture the relevant information about
the past, one that will be useful to predict the future. Further, to
study if, over our period of study, the Green Bond market has been
asymptotically efficient. One way to estimate this is to employ a rolling
window estimation of the memory parameter. Arguably, this is also
an innovative feature of our empirical exploration. We formalise our
theory in the following way.

Recall that ‘memory’, 𝑀 is a function of some known factors (𝑍)
and some unknown or unobserved factors (𝜖) at the time, 𝑡. Assuming
time to be finite (𝑡 tends to 𝑇 , a finite (large) number), then tempo-
ral change in ‘memory’ (to broadly represent, the inefficiency in our

10 The ADF test previously employed is built based on a standard left-
ided unit root test where the null hypothesis suggests unit root (i.e., 𝑑 = 1)

against the alternative hypothesis of 𝑑 < 1. Corresponding inferences may be
unreliable in the condition when 𝑑 > 1.
8

system), would converge in probability, to (�̄�), holding other things
constant:

𝑀𝑡 = 𝑓 (𝑋𝑡, 𝜖𝑡) (9)

lim
𝑡→𝑇

𝑑(𝑀𝑡)
𝑑𝑡

→ �̄� (10)

To lend insights into the above proposition, we have estimated 𝑑
or Green Bond, in a rolling-window environment.11 We perform this
stimation using a two-step exact local Whittle estimator of Shimotsu
t al. (2005). An initial 3-year window setting was used although
smaller window setting also produces similar results thus showing

nvariance of our finding of long memory, on average, for all years.12

For the green bond index, the 𝑑 value is estimated on a rolling basis
until approaching the end of the sample. We accordingly generate 𝑑
eries for this variable with the daily frequency where each observation
enotes the 𝑑 estimate of the corresponding window. A complete illus-

tration of the time-varying 𝑑 for all variables using different estimators
is reported in Fig. 6. It is clear that dynamic estimates show long
memory over a different time period and for all bandwidths, although
the estimates hobble around 0.5 to 1.5 depending on the low and
higher bandwidth (a lower bandwidth reflects more noise and a higher
bandwidth removes those noises by trading-off more data, in terms
of averaging). To summarise, our rolling window estimation does not
provide any evidence of asymptotic stability of inefficiency over time,
despite some periods, where we find estimates of memory are fairly
stable but start diverging for other periods. It is not difficult to imagine
that such a nature of dynamic inefficiency often results from market-
related noises, which are not randomly distributed with zero mean and
constant variance. From the rolling-window estimates of 𝑑, the average
𝑑 or �̄� (memory) is found to be 0.78 and the ‘memory of the memory’
stimation (that is, the relative speed of acceleration or deceleration to
̄ is found to be at 0.65. This implies that the innate tendency of the
reen bond series predicts a stable pattern, although shocks will take
ime to taper off or converge to the mean.

.2. FCVAR results: The system dynamics

So far, we have discussed whether a fractional integration order (or
hort/long memory) describes the nature of growth trajectories of green

11 Estimation for other variables are available with the authors. We do not
present the results here to save space.

12 The results are available upon request.
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Fig. 6. Dynamics of Rolling-window 𝑑 Estimates Green Bond.

bonds and various other sectoral indices. It was clear, from both static
and dynamic analyses of long-memory estimates, that a shock in these
variables would take a long time to taper off. This implies, for instance,
if the green bond series is combined with other variables in a system to
describe dynamic interdependence/co-movement, the shocks will take
a long time to stabilise, making the system vulnerable to the arrival of
new shocks into the system.

In the context of our research, this would imply that investors who
are looking to hedge for green bonds or other sectoral indices as a
hedge against the green bond would require a deeper understanding
of the shock propagation mechanism within the system. Since the way
shocks move and prolong determine the welfare costs in a society, the
technologies (in other words, policy instruments) that are needed to
control such nature of shocks, need to be contextually designed. To shed
deeper insights into this, in this section, we present and discuss results
from FCVAR estimation of a number of models.

We begin with a baseline model that comprises green bonds, en-
ergy sectoral index and economic policy uncertainty. We undertake a
forecasting exercise to depict the predictive power of the model we
have estimated. Further analyses are carried out on various FCVAR
estimations involving other sectoral indices, such as health, financials
and information technology price index. Finally, we perform sensitivity
analyses by first using an alternative indicator of the green bond, viz.,
Bloomberg Barclays MSCI Global Green Bond Index and second, by
comparing results between pre- and post-COVID samples. The out-
of-sample forecasting exercise is performed for each category of the
FCVAR model pertaining to baseline and various other sectors (from
(i) to (iv). Table 9 summarises the forecast evaluation for the baseline
FCVAR model, whereas Table 15 summarises the results for the rest of
the sector-specific FCVAR run.

(i) Green Bond, Sectoral Energy Price Index and Policy Uncertainty inter-
dependence

The primary step for the FCVAR estimation involves the selection of
the system lag order and the model rank. To determine the number of
system lag order (𝑝), we follow Jones et al. (2014) to select the optimal
number using a series of Likelihood Ratio (LR) tests through a ‘general
to specific’ strategy. Specifically, the LR test starts from a generous lag
order, viz. 𝑝 = 8, by assuming that the short-run dynamics of housing
prices and macroeconomic factors exist within eight quarters. For each
LR test, the null hypothesis is that the coefficient of the highest lag
order (𝑝) is not significant (𝐻0 ∶ 𝛤𝑝 = 0), against the alternative
hypothesis in favour of the significance of 𝛤 (𝐻 ∶ 𝛤 ≠ 0). If 𝐻
9

𝑝 1 𝑝 0
Table 5
Lag-order selection — FCVAR.

k r d LogL LR pv AIC BIC pmvQ

4 3 0.597 31077.24 11.43 0.247 −62056.48 −61760.61 0
3 3 0.606 31071.52 24.71 0.003 −62063.04* −61821.52 0
2 3 0.571 31059.17 215.09 0 −62056.33 −61869.15* 0
1 3 0.983 30951.62 132.62 0 −61859.25 −61726.41 0
0 3 0.965 30885.31 0 0 −61744.63 −61666.13 0

associated with a specified 𝑝 is accepted, that 𝑝 should be dropped, and
the model will then be re-estimated with a smaller 𝑝 until 𝐻0 of the new

can be significantly rejected. In each LR test, the Ljung–Box Q-test is
pplied to examine if the residuals are serially correlated.13 If its null
ypothesis of no autocorrelation is rejected, we will also have to drop
hat specified 𝑝 and move one step back in the model specification. To
onfirm the 𝑝 that we finally choose is the best among all qualified ones,
hich should both have a significant coefficient and no autocorrelation

n the residuals, we use the information criteria (IC) where the optimal
should have a minimum IC.

After choosing an optimal 𝑝, we determine the number of ranks
𝑟𝑎𝑛𝑘) in the FCVAR system, i.e. the number of long-run cointegrating
elationships. Following the literature (e.g., Johansen, 1995), 𝑟𝑎𝑛𝑘 is
elected using a series of Likelihood Ratio (LR) tests where we sequen-
ially test null hypotheses 𝐻𝑟

0 ∶ 𝑟𝑎𝑛𝑘 = 𝑘 for 𝑘 = 0, 1,… , 𝐾 against the
ame alternative hypothesis implying the full rank, i.e. 𝐻𝑟

1 ∶ 𝑟𝑎𝑛𝑘 = 𝐾.
is the total number of variables and equals to the full rank in the

ystem. The selected rank order is the one that first accepts its corre-
ponding 𝐻𝑟

0. Moreover, it is known that parameters of cointegrating
elationship(s), viz. 𝛼 and 𝛽, cannot be separately identified without
ormalisation restrictions for the matrix 𝛱 in Eq. (6). To uncover the
etermination of equilibrium in the green bond market, we impose an
dentification restriction that normalises 𝛽 with regard to green bond
rices.

To specify the green bond price equation of the FCVAR model, we
irst select the system lag order (𝑘). The results are reported in Table 5,
uggesting that the optimal 𝑘 = 3 given its significant coefficient, no
erial correlation in the corresponding residuals, and the lowest Akaike
nformation criteria (AIC) value. For this chosen lag of the system, the
stimated memory (𝑑 = 0.606), implies that the system has a long
emory that is mean-convergent or can be long-run stable, given other

hings are constant. With the selected system lag order, we then test the
ank in the green bond function by conducting a series of LR tests. The
esults are presented in Table 6 where the first two null hypotheses
i.e., 𝑟𝑎𝑛𝑘 = 0 and 𝑟𝑎𝑛𝑘 = 1) are significantly rejected against the same
lternative hypothesis of 𝑟𝑎𝑛𝑘 = 3, viz. the full rank. Then, updated
ull hypotheses with higher ranks continue to be tested. Given that our
ain focus is the determination of green bond prices, we would like

o keep as many factors as possible in the cointegrating relationship
ormalised by 𝐺𝑟𝑒𝑒𝑛𝑏𝑜𝑛𝑑. We eventually accept the null hypothesis
f 𝑟𝑎𝑛𝑘 = 2 with 𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.354, indicating two cointegrating
elationships in the green bond equation. Thus, the FCVAR model
or the green bond function is specified as 3 short-run terms and 2
anks. The corresponding estimates are reported in Eq. (15) with the
ointegrating relations identified by Eqs. (12) and (13).

Specifically, the estimated parameters of each variable for the error
djustment speed (𝛼) in the cointegrating relationship are shown in a
atrix form on the right-hand side of Eq. (11). The column vector 𝜈𝑡,

.e., [𝜈1𝑡 𝜈2𝑡]′, stands for the two long-run cointegrating relations, which
re normalised with regard to clean energy prices. The two relations
re defined by 𝜈𝑡 = 𝛽′𝐿𝑑 (𝑌𝑡 − 𝜌) = 0.14 A striking feature of our

13 The number of lags in the Ljung–Box Q test is chosen as 12. We also tried
other lag orders such as 4, 8, and 16, and the test results are qualitatively the
same.

14 Estimated coefficients of the short-run terms ({𝛤𝑖}4𝑖=1) are suppressed as
our research focus is the long-run relationships. They are available from the

authors upon request.
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Table 6
Rank tests — FCVAR.
𝑅𝑎𝑛𝑘 𝑑 𝐿𝑜𝑔 − 𝐿 𝐿𝑅𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 𝑃 -value

0 0.430 31062.711 17.623 0.04
1 0.402 31066.477 10.09 0.039
2 0.574 31070.363 2.318 0.354
3 0.606 31071.522 – –

FCVAR estimation is that the cointegration order, i.e. system 𝑑, is a
raction of 0.574 with a standard error of 0.029, demonstrating gradual
djustment of the green bond index over time. The fractional 𝑑 in the
reen bond price equation further confirms the inefficiency of the green
ond market, showing a predictable pattern of its price dynamics with
trong autocorrelation (e.g., Case and Shiller, 1989; Larsen and Weum,
008). Based on the Ljung–Box Q-test statistic (𝑄�̂�), it appears that the
esiduals are white noise, indicating that the FCVAR estimation of the
reen bond function is correctly specified. FCVAR estimation:

𝑑
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

𝑔𝑟𝑒𝑒𝑛𝑏𝑜𝑛𝑑
𝑒𝑛𝑒𝑟𝑔𝑦
𝐸𝑃𝑈

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

1.549
1.795
1.179

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

= 𝐿𝑑
⎡

⎢

⎢

⎣

−0.001 −0.001
0.011 −0.002
0.238 0.094

⎤

⎥

⎥

⎦

[

𝜈1𝑡
𝜈2𝑡

]

+
4
∑

𝑖=1
𝛤𝑖𝛥

𝑑𝐿𝑖
𝑑
(𝑌𝑡 − �̂�) + �̂�𝑡

(11)

𝑑 = 0.574
(0.029)

, 𝑄𝜀(12) = 358.611
(0.996)

, 𝐿𝑜𝑔𝐿 = 31070.363

𝑟𝑒𝑒𝑛𝑏𝑜𝑛𝑑∗ = 1.101 − 0.007 × 𝑒𝑛𝑒𝑟𝑔𝑦𝑖𝑛𝑑𝑒𝑥𝑡 + 0.063 × 𝐸𝑃𝑈𝑡 + 𝜈1𝑡 (12)

𝑛𝑒𝑟𝑔𝑦𝑃 𝑟𝑖𝑐𝑒∗ = 1.111 + 0.379 × 𝐸𝑃𝑈𝑡 + 𝜈1𝑡 (13)

The cointegrating relations normalised in Eqs. (12) and (13) re-
pectively demonstrate the driving force for variations in green bond
rices by energy sector price fluctuations and uncertainty levels in the
ong-run steady state. As shown in Eq. (12), changes in the sectoral
nergy index exert a negative impact (0.007) on green bonds, while
he coefficient for uncertainty is positive, (0.063). Further, Eq. (13)
resents a cointegrating equation for the impact of EPU on energy
rices, which is positive, as expected. The implications of these coin-
egration relations are that with a rising level of uncertainty (EPU),
nergy prices may increase, thanks to the persistence of asymmetric
nformation and negative signal to the market. As well, we find that
s EPU rises, people tend to invest more in green bonds, as traditional
ssets become too risky as a safe investment alternative. The negative
ffects of the sectoral energy index on green bonds demonstrate that
hey are substitutes. In other words, if there is a unit rise in prices
f sectoral energy, investors may like to invest more in the index to
everage profit and hence will be less inclined to invest in green bonds,
eeping the level of uncertainty constant. Our results resonate with the
xtant literature, such as (Reboredo, 2018) and Reboredo and Ugolini
2020) (see Table 7) .

Our next strategy is to test various hypotheses for this model. The
esults are shown in the hypothesis test table (Table 8). First, as a test of
odel specification check, we test whether our VAR system is charac-

erised by long memory. In other words, we check if FCVAR instead
f CVAR (with 𝑑=1) is adequate. We strongly reject the hypothesis
uggesting that the FCVAR model is a more appropriate specification
han the CVAR model. We next test for the absence of a green bond,
hich is a hypothesis that imposes zero restriction on the coefficient of

he green bond index in the long-run equilibrium. The LR test statistic
s 3.968, which is statistically significant. Thus, we strongly reject
he null hypothesis that the green bond is absent from the long-run
quilibrium. Further, because there are no other 𝛽 hypotheses that are
elevant to this model, we move to tests of weak exogeneity on the
10

coefficients to determine whether or not the variables respond to c
ong-run disequilibrium errors. As an example, consider the test 𝐻𝛼

hat green bond, in this case, the first variable, is weakly exogenous.
s evident from Table 8, the high LR statistic of 15.738 and 𝑝-value =
, we strongly reject this hypothesis.

With the non-rejected hypotheses, we have re-estimated the model.
he results are in the appendix. The signs and magnitudes of the esti-
ated coefficients are similar to the ones obtained in the unrestricted
odel. Furthermore, the residuals appear to be white noise with a p-

alue value of 0.152 for the Ljung–Box Q test. The interpretation of the
ong-run equilibrium is the same as in the unrestricted model. Namely,
e find that green bond price decreases in response to an increase in

he sectoral index of energy and increases with a rise in uncertainty.

a) Forecast Evaluation

To what extent, do the results obtained using our FCVAR model
ossess good predictive power? To assess the forecast performance of
CVAR and CVAR models, the data was partitioned into two parts,
𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 and 𝑡𝑒𝑠𝑡 𝑝𝑒𝑟𝑖𝑜𝑑. 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 was based on the
ample span between 28.07.2009 and 28.07.2019 and 𝑡𝑒𝑠𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 for
orecast performance evaluation was set to period between 29.07.2019
nd 28.07.2021. Out-of-sample forecasting is a dynamic form of fore-
ast methodology where posteriors are used as priors in generating
ext-step ahead forecast so that we can compare results that establish
he reliability of the estimated FCVAR models relative to the conven-
ional Cointegrated VAR (CVAR) model. As is well-known statistical
ests of a model’s forecast performance are commonly conducted by
plitting a given data set into an in-sample period, used for the initial
arameter estimation and model selection, and an out-of-sample period,
sed to evaluate forecasting performance. Modellers often exploit em-
irical evidence based on out-of-sample forecast performance as it is
onsidered more reliable than evidence based on in-sample performance.
his is because the in-sample forecast can be more sensitive to outliers
nd data mining. Further, out-of-sample forecasts also better reflect the
nformation available to the forecaster in ‘real time’.

The steps taken are as follows. Once FCVAR and CVAR models have
een estimated, a set of consecutive forecasts with 30-day horizon are
enerated on each day in the 𝑡𝑒𝑠𝑡 𝑝𝑒𝑟𝑖𝑜𝑑. Forecasting errors are then
alculated for each forecast horizon considered. Relative forecasting
erformance (𝑅𝐹𝐸) of each Green Bond Model 1 (Green bond, energy
rice, uncertainty) and Green Bond Model 2 (Green bond, health price
nd uncertainty) FCVAR and CVAR models were then assessed by cal-
ulating the percentage change between their RMSFE values as defined
elow:

𝐹𝐸 = 100 ×

{

𝐹𝐶𝑉 𝐴𝑅𝑅𝑀𝑆𝐹𝐸
𝐶𝑉 𝐴𝑅𝑅𝑀𝑆𝐹𝐸

− 1

}

(14)

Here a negative 𝑅𝐹𝐸 indicates the relative forecasting performance
superiority of the FCVAR model with respect to CVAR model, and a
positive value indicates the superiority of the CVAR model over the FC-
VAR counterpart. Six out-of-sample forecast windows were considered
for forecast evaluation of Model 1 and Model 2: 1-step/1-day ahead,
5-step/1-week ahead, 10-step/2-weeks ahead, 20-step/1-month ahead,
30-step/1.5-month ahead and 40-step/2-months ahead forecasts.

The magnitudes of RMSFE values of Model 1 and Model 2 reported
in section (𝑎) and (𝑏) of Table 9 which report goodness of fit between
orecasted and actual values to suggest that FCVAR methodology pro-
ides superior forecast estimation compared to CVAR approach for all
orecast horizons considered in this study. Results also demonstrate
hat Model 2 benefits from FCVAR modelling the most out of the
wo variables considered for forecast evaluation. Looking at section
𝑎) of the table, the accuracy of the Model 2 FCVAR model does
ot deteriorate at the same rate it does in the case of Model 1. For
xample, while RMSFE values for the 1-step ahead forecast of Model 1
nd Model 2 are 1.286 and 1.321 respectively the gap widens in the
ase of the 40-steps ahead forecast where they are 5.287 and 4.671.
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Table 7
Hypothesis tests.
𝐻𝑑
𝑆 The fractional order, 𝑑, equals to one. 𝐻𝛼

𝑆1 Green bond is weakly exogenous.
𝐻𝛽
𝑆1 Green bond does not enter the cointegrating relationship. 𝐻𝛼

𝑆2 Energy price is weakly exogenous.
𝐻𝛽
𝑆2 Energy price 𝐻𝛼

𝑆3 EPU is weakly exogenous.
cointegrating relationship.

𝐻𝛽
𝑆3 Energy price does not enter the cointegrating relationship. 𝐻𝛼

𝑆4 Energy price is weakly exogenous.
𝐻𝛽
𝑆4 EPU does not enter the cointegrating relationship. 𝐻𝛼

𝑆5 EPU is weakly exogenous.
Table 8
Results of a hypothesis test: Green bond, energy index and uncertainty.

𝐻𝑑
𝑆 𝐻𝛽

𝑆1 𝐻𝛽
𝑆2 𝐻𝛽

𝑆3 𝐻𝛽
𝑆4 𝐻𝛽

𝑆5 𝐻𝛽
𝑆6 𝐻𝛽

𝑆7

df 1 1 5 1 1 1 1 1
LR Statistic 15.333 3.968 22.124 2.101 38.325 67.830 71.107 118.443
P-Value 0.000*** 0.081* 0.000*** 0.120 0.000*** 0.000*** 0.000*** 0.000***

𝐻𝛼
𝑆1 𝐻𝛼

𝑆2 𝐻𝛼
𝑆3 𝐻𝛼

𝑆4 𝐻𝛼
𝑆5 𝐻𝛼

𝑆6

df 1 1 1 1 1 1
LR Statistic 15.738 6.844 35.301 17.400 2.604 36.467
P-Value 0.000*** 0.032** 0.000*** 0.000*** 0.250 0.000***

Note: (a) *: significant at the 10% level, **: significant at the 5% level, ***: significant at 1% level; (b) df denotes the degree of freedom; (c) LR is the abbreviation for the
Likelihood Ratio test.
Table 9
RMSFE values and relative performance of FCVAR and CVAR models for Green Bond Model 1 and Green Bond Model 2.
Model Forecast Horizon

T+1 T+5 T+10 T+20 T+30 T+40

(a) Magnitudes of FCVAR RMSFE values
Model 1 1.286 2.386 3.221 4.433 5.245 5.287
Model 2 1.321 2.363 3.198 4.055 4.599 4.671

(b) Magnitudes of CVAR RMSFE values
Model 1 1.310 2.528 3.541 5.155 6.714 8.087
Model 2 1.336 2.561 3.696 5.571 7.592 9.431

(c) RFE - FCVAR vs CVAR
Model 1 −1.77% −5.61% −9.06% −14.01% −21.88% −34.61%
Model 2 −1.13% −7.74% −13.50% −27.21% −39.42% −50.48%

Note: (i) Model’s forecasting performance is measured by the RMSFE values. (ii) Section (a) reports the RMSFE values for the multivariate FCVAR models of Model 1 and Model 2.
(iii) Section (b) reports the RMSFE values for the multivariate CVAR models of Model 1 and Model 2. (iv) Section (c) reports the relative performance of the FCVAR with respect
to CVAR model in terms of RMSFE values of Model 1 and Model 2; negative values signify FCVAR model superiority and vice versa.
The increasing spread between the two models indicates that using
proposed market variables in the FCVAR framework is able to replicate
Model 2 dynamics better than the dynamics in Model 1.

Relative forecasting performance presented in section (𝑐) of Table 9
demonstrates the level of improvement FCVAR methodology delivers
over its CVAR counterpart. In both Model 1 and Model 2 cases, FC-
VAR models yield more accurate forecasts compared to CVAR models.
Results indicate that the accuracy increases with the forecast horizon,
suggesting that the FCVAR approach is better suited to replicate the
long-run equilibrium relationship that exists amongst the variables in
the system. Overall, our results indicate that the CVAR model performs
significantly worse in forecasting. In other words, the FCVAR method-
ology is superior in capturing long-term green bond index trends.
This is due to the model’s ability to better approximate the long-run
equilibrium that exists between the variables compared to the CVAR
technique. This leads to the accuracy in forecasts, as demonstrated
using the Green Bond index.
(ii) Interdependence in Green Bond, Sectoral Health Price Index, and Policy
Uncertainty

We begin with the system where Green Bond is assumed to co-move
with Sectoral Health Price and Policy Uncertainty. We find that this
system elicits one cointegration rank where the estimated value of the
system ‘memory’ (d) is 0.478. This is a mean-reverting long-memory
process, demonstrating that in the long run, this dynamic system is
likely to stabilise; a further predictive implication that the system can
co-move with stability. The unrestricted FCVAR estimation also pro-
vides the value of 𝑑 = 0.766 < 1 and Eq. (17) provides the cointegration
11
Table 10
Rank selection — FCVAR.

Rank d Log-likelihood LR Stat 𝑃 -value

0 0.487 32509.04 19.734 0.02
1 0.478 32516.355 5.103 0.277
2 0.490 32518.572 0.668 0.414
3 0.501 32518.906 – –

relationship. We observe that in the cointegration relationship, a rise
in health index price will have a negative impact on the Green Bond
price — which is natural as Green Bonds and Other sectoral indices are
not complementary. An investment in a green project will potentially
diversify an investor’s fund from another financial instrument (in this
case, the health index). Further, with rising uncertainty (EPU), we also
observe that investors will be more inclined to invest in green projects;
further eliciting a general investment sentiment that during uncertain
times, stick to an investment with an expected stable or secured return
(see Table 10).

FCVAR estimation:

𝛥𝑑
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

𝑔𝑟𝑒𝑒𝑛𝑏𝑜𝑛𝑑
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𝐸𝑃𝑈

⎤

⎥

⎥

⎦

−
⎡
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1.549
1.680
1.275

⎤
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⎥

⎦

⎞

⎟

⎟

⎠

= 𝐿𝑑
⎡

⎢

⎢

⎣

−0.001
0.005
0.559

⎤

⎥

⎥

⎦

[

𝜈1𝑡
𝜈2𝑡

]

+
4
∑

𝑖=1
𝛤𝑖𝛥

𝑑𝐿𝑖
𝑑
(𝑌𝑡 − �̂�) + �̂�𝑡

(15)

𝑑 = 0.766, 𝑄𝜀(12) = 307.211, 𝐿𝑜𝑔𝐿 = −2298.015

(0.029) (0.804)
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Table 11
Lag-order selection — FCVAR.

k r d b LogL LR pv AIC BIC pmvQ

4 3 0.943 0.943 39080.22 51.26 0 −78062.44* −77766.57 0
3 3 0.859 0.859 39054.59 63.98 0 −78029.18 −77787.66 0
2 3 0.778 0.778 39022.6 232.57 0 −77983.2 −77796.02* 0
1 3 0.856 0.856 38906.32 544.8 0 −77768.64 −77635.8 0
0 3 0.863 0.863 38633.92 0 0 −77241.84 −77163.34 0

Table 12
Rank selection — FCVAR.

Rank d b Log-likelihood LR 𝑃 -value

0 0.802 0.802 39005.644 33.917 0.018
1 0.769 0.769 39019.624 5.957 0.751
2 0.779 0.779 39022.318 0.57 0.901
3 0.778 0.778 39022.602 – –

𝑔𝑟𝑒𝑒𝑛𝑏𝑜𝑛𝑑∗ = 1.133 − 0.241 × ℎ𝑒𝑎𝑙𝑡ℎ𝑖𝑛𝑑𝑒𝑥𝑡 + 0.075 × 𝐸𝑃𝑈𝑡 + 𝜈1𝑡 (16)

(iii) Interdependence in Green Bond, Sectoral Financial Price Index, and
Policy Uncertainty

With respect to the relationship between green bonds, the sectoral
financial index and uncertainty, we also observe interesting patterns.
Recall that the S&P 500 Financials comprises those companies included
in the S&P 500 that are classified as members of the Global Industry
Classifications financials sector. Our premise is that the green bond in-
dex would co-move with the price variations in the financial index and
the impact magnitude can be moderated by the presence of uncertainty.

Tables 11 and 12 present lag and rank selection of the FCVAR model
comprising of the green bond, financials and uncertainty variables.
Using BIC criteria we select 2 lags of the FCVAR system (Table 11)
where the estimated memory parameter is 𝑑 = 0.778. Table 12 reports
ank selection results. We find that our system has one cointegrating
ank as the 𝑝-value for rank = 1 is 0.751 and thus we reject rank
= 0 against rank = 1. Finally, we perform unrestricted FCVAR using
the selected lags and the rank of the system. Eqs. (14) and (15)
present these results. The system 𝑑 = 0.769 with a 𝑝-value = 0.021,
implying significance of the long memory of the FCVAR system. The
cointegration equation shows that green bond is positively affected by
price variations in the financial index as well as uncertainty, similar to
the results we obtained for the energy index.

FCVAR estimation:

𝛥𝑑
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⎣
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⎥
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⎦
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⎟

⎟
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⎡

⎢

⎢

⎣

0.001
−0.005
0.026

⎤

⎥

⎥

⎦

[

𝜈1𝑡
𝜈2𝑡

]

+
4
∑

𝑖=1
𝛤𝑖𝛥

𝑑𝐿𝑖
𝑑
(𝑌𝑡 − �̂�) + �̂�𝑡

(17)

𝑑 = 0.769
(0.021)

, 𝑄𝜀(12) = 327.221
(0.904)

, 𝐿𝑜𝑔𝐿 = −2400.019

𝑟𝑒𝑒𝑛𝑏𝑜𝑛𝑑∗ = 1.152 − 0.331 × 𝑓𝑖𝑛𝑎𝑛𝑐𝑒𝑖𝑛𝑑𝑒𝑥𝑡 + 0.262 × 𝐸𝑃𝑈𝑡 + 𝜈1𝑡 (18)

(iv) Green bond, sectoral Information Technology index and uncertainty

We also use sectoral information technology index to form cointe-
grating relationship with green bond and uncertainty. The lag selection
of the FCVAR shows four lags are optimal (Table 13) and those lags
help us choose one cointegration rank (Table 14). The results of the
unrestricted FCVAR estimation with four lags and 1 cointegrating rank
for this FCVAR system is summarised in Eqs. (16) and (17). The system
memory (𝑑 = 0.415) and the cointegration relationship show that a rise
in information technology price index increases green bond prices but
an increase in uncertainty increases green bond prices.
12
Table 13
Lag-order selection — FCVAR.

k r d b LogL LR pv AIC BIC PmvQ

4 3 0.444 0.444 −31678.62 36.88 0 63455.25* 63751.12 0
3 3 0.410 0.41 −31697.06 32.79 0 63474.13 63715.65 0
2 3 0.590 0.59 −31713.46 109.87 0 63488.92 63676.10* 0
1 3 0.457 0.457 −31768.4 465.01 0 63580.79 63713.63 0
0 3 0.885 0.885 −32000.9 0 0 64027.8 64106.3 0

Table 14
Rank selection — FCVAR.

Rank d b Log-likelihood LR statistic 𝑃 -value

0 0.271 0.271 −31700.634 44.019 0
1 0.425 0.425 −31683.62 9.99 0.041
2 0.415 0.415 −31679.319 1.389 0.239
3 0.444 0.444 −31678.625 – –

FCVAR estimation:

𝛥𝑑
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⎟
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⎢

⎢

⎣

−0.010 −0.001
−0.235 0.017
0.223 0.026

⎤

⎥

⎥

⎦

[

𝜈1𝑡
𝜈2𝑡

]

+
4
∑

𝑖=1
𝛤𝑖𝛥

𝑑𝐿𝑖
𝑑
(𝑌𝑡 − �̂�) + �̂�𝑡

(19)

𝑑 = 0.415
(0.030)

, 𝑄𝜀(12) = 366.520
(0.980)

, 𝐿𝑜𝑔𝐿 = −2598.020

𝑔𝑟𝑒𝑒𝑛𝑏𝑜𝑛𝑑∗ = 1.122 − 0.001 × 𝑖𝑛𝑓𝑜𝑡𝑒𝑐ℎ𝑖𝑛𝑑𝑒𝑥𝑡 + 0.38 × 𝐸𝑃𝑈𝑡 + 𝜈1𝑡 (20)

𝐼𝑛𝑓𝑜𝑡𝑒𝑐ℎ∗ = 1.250 − 2.143 × 𝐸𝑃𝑈𝑡 + 𝜈1𝑡 (21)

In Table 15, we have summarised the forecast performances for
various models, viz., the FCVAR estimation with the health price index,
financial price index, and information technology price index, respec-
tively. It is evident (by looking at the negative values and comparing
the detailed specification in Table 9) that FCVAR models – across
specifications of sector inclusion – significantly outweigh the compet-
ing CVAR models for all time horizons (one day to 40 days ahead
forecasts).

5.3. Robustness

In this section, we study the robustness of our results by employing
two changes to our baseline regression setting. First, we use an alter-
native proxy for green bonds. In particular, we use Bloomberg Barclays
MSCI Global Green Bond Index for this purpose.15 The MSCI Green
Bond Index is a robust measure of the global market for fixed-income
securities issued to fund projects with direct environmental benefits. To
adhere to established green bond principles, an independent research-
driven methodology is used to evaluate index-eligible green bonds. The
index was created in November 2014, with index history backfilled to
January 1, 2014. Our second strategy is to compare results between the
pre- and post-COVID periods.

(i) Using an alternative measure of green bond: the Bloomberg Barclays
MSCI Global Green Bond Index

As an alternative proxy for S&P’s green bond index, we have used
Bloomberg Barclays MSCI Global Green Bond Index to study the ro-
bustness of our results. Accordingly, we design the following FCVAR
system: a system made of the MSCI green bond index, the sectoral

15 Many thanks to an anonymous referee to suggest the use of this measure
as a robustness exercise.
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𝑀

Table 15
RMSFE values and relative performance of FCVAR and CVAR models for different systems.
Model Forecast Horizon

T+1 T+5 T+10 T+20 T+30 T+40

(a) RFE - FCVAR vs CVAR (Financial Price)
Model 3 −1.59% −4.98% −8.11% −12.15% −18.80% −31.60%

(b) RFE - FCVAR vs CVAR (Information Tech.)
Model 4 −1.87% −5.91% −8.29% −13.86% −20.64% −33.66%
(c) RFE - FCVAR vs CVAR (MSCI Green Bond)
Model 5 −1.60% −4.87% −7.32% −14.62% −21.55% −34.09%

Note: (i) We report the relative performance of the FCVAR with respect to the CVAR model in terms of RMSFE values of Model 3 (model with financial
price index) and Model 4 (model with information technology price index); negative values signify FCVAR model superiority and vice versa. (ii) Model
5 corresponds to the results for MSCI green bond as an alternative proxy for a green bond.
Table 16
Lag-order selection — FCVAR.

k r d LogL LR pv AIC BIC PmvQ

4 3 0.472 27734.10 23.07 0.006 −56697.62* −57060.79 0
3 3 0.537 27710.25 38.32 0 −56539.33 −57110.06 0
2 3 0.515 27536.32 222.24 0 −56445.22 −57144.08* 0
1 3 0.918 27266.11 159.17 0 −56238.01 −56994.18 0
0 3 1.001 27149.38 0 0 −55933.78 −56907.36 0

Table 17
Rank tests — FCVAR.

Rank d Log-likelihood LR 𝑃 -value

0 0.498 27455.138 25.332 0.035
1 0.501 27638.605 6.397 0.350
2 0.522 27745.362 2.400 0.402
3 0.539 28091.113 – –

energy index and uncertainty. As is the rule, we first select the system
lag order (𝑘). We select 𝑘 = 2 using BIC criteria (see Table 16).
Next, the rank test (in Table 17) provides us with one rank of the
FCVAR system as the 𝑝-value for rank = 1 is 0.350. At this rank, the
𝑑=0.501 shows a long memory but with the mean-convergent property.
The unrestricted FCVAR results are not significantly different from
the baseline results (Eq. (11)) with the S&P green bond index. We
find that the estimated system-wide 𝑑=0.509 shows the persistence of
shocks and information asymmetry but a possibility that the system
will stabilise within a short time duration. Further, the sign and impact
magnitudes of the sectoral energy price index and that of the policy
uncertainty on MSCI green bond are not significantly quantitatively
different from the baseline regression. An out-of-sample forecasting
exercise has also been carried out for this FCVAR run. The results are
reported in (see Table 15) (Model 5). The negative values, which appear
to grow in longer time horizons, clearly prove that FCVAR is the better
method than the competing CVAR model to describe the dynamics of
such an interdependent system.

FCVAR estimation:
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]
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𝛤𝑖𝛥

𝑑𝐿𝑖
𝑑
(𝑌𝑡 − �̂�) + �̂�𝑡

(22)

𝑑 = 0.509
(0.021)

, 𝑄𝜀(12) = 333.514
(0.887)

, 𝐿𝑜𝑔𝐿 = 32408.214

𝑆𝐶𝐼𝑔𝑟𝑒𝑒𝑛𝑏𝑜𝑛𝑑∗ = 1.133 − 0.009 × 𝑒𝑛𝑒𝑟𝑔𝑦𝑖𝑛𝑑𝑒𝑥𝑡 + 0.074 × 𝐸𝑃𝑈𝑡 + 𝜈1𝑡
(23)

∗
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𝐸𝑛𝑒𝑟𝑔𝑦𝑃 𝑟𝑖𝑐𝑒 = 1.129 + 0.298 × 𝐸𝑃𝑈𝑡 + 𝜈1𝑡 (24)
(i) Sub-sample analyses: Pre- and Post-COVID period comparison

In this section, we present results from a sub-sample regression
for the baseline model (S&P 500 green bond, sectoral energy, and
EPU) for pre-COVID (29/07/2008 to 29/01/2020) and post-COVID
(30/01/2020–28/07/2021). We followed the World Health Organiza-
tion (WHO) declaration of the outbreak as a public health emergency
of international concern on 30 January 2020). For the sake of brevity
and minimising repetition, we have presented below the cointegration
equations and the system representation of the unrestricted FCVAR
for both pre-COVID (Eqs. (25)–(27)) and post-COVID (Eqs. (28)–(30)).
Cautions need to be taken to lend reliable interpretability of results
given the length of samples for the two periods: we have 2742 daily
observations in the pre-COVID period and 390 daily observations in
the post-COVID period. Considering Eqs. (25) and (28) for pre- and
post-COVID estimates of 𝑑, an indicator of system-wide memory or per-
sistence of shocks, we detect a distinguishable pattern: the pre-COVID
estimates of 0.422 is significantly smaller than the post-COVID estimate
(0.814). In other words, the post-COVID system estimation depicts the
presence of greater depth of information asymmetry and instability, a
feature that might help investors to diversify their portfolio from a risky
asset to green bond. In addition, we also notice from Eqs. (26) and
(29), respectively for the two pre and post-COVID period cointegration
equations, that policy uncertainty (EPU) has greater positive effects in
the post-COVID on green bond than it is for the pre-COVID sample.
This is expected because policy uncertainty is observational high in the
post-COVID period. This state of proliferated uncertainty would have
larger effects on green bond investment in the form of diversification
of an investor’s portfolio.

(a) FCVAR estimation (Pre-COVID sample):
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(25)

𝑑 = 0.422
(0.021)

, 𝑄𝜀(12) = 333.514
(0.887)

, 𝐿𝑜𝑔𝐿 = 32408.214

𝑔𝑟𝑒𝑒𝑛𝑏𝑜𝑛𝑑∗ = 1.111 − 0.004 × 𝑒𝑛𝑒𝑟𝑔𝑦𝑖𝑛𝑑𝑒𝑥𝑡 + 0.065 × 𝐸𝑃𝑈𝑡 + 𝜈1𝑡 (26)

𝐸𝑛𝑒𝑟𝑔𝑦𝑃 𝑟𝑖𝑐𝑒∗ = 1.001 + 0.121 × 𝐸𝑃𝑈𝑡 + 𝜈1𝑡 (27)

(b) FCVAR estimation (Post-COVID sample):
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𝑖=1
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𝑑 = 0.814
(0.033)

, 𝑄𝜀(12) = 415.501
(0.802)

, 𝐿𝑜𝑔𝐿 = 41409.110

𝑔𝑟𝑒𝑒𝑛𝑏𝑜𝑛𝑑∗ = 1.687 − 0.012 × 𝑒𝑛𝑒𝑟𝑔𝑦𝑖𝑛𝑑𝑒𝑥𝑡 + 0.097 × 𝐸𝑃𝑈𝑡 + 𝜈1𝑡 (29)

𝐸𝑛𝑒𝑟𝑔𝑦𝑃 𝑟𝑖𝑐𝑒∗ = 1.774 + 0.303 × 𝐸𝑃𝑈𝑡 + 𝜈1𝑡 (30)

5.4. Non-technical exposition of results

We present in this section, a non-technical implication of the es-
timated FCVAR results by eliciting the interpretability of results in
two important aspects. First, the implications of system-wide mem-
ory (a result of unrestricted FCVAR estimation) and the meaning of
various cointegrating relationships. Second, we distinguish our results
across sectors (viz., health, information technology, and financial sector
indices).

The main idea of our memory-embedded VAR estimation was to
model short and long-run relationships among green bonds, sector-
specific indices and policy uncertainty. The results are intended to
help us understand the magnitude of system-wide shocks, so much so
that their rates of dissipation (i.e., the time to be taken to completely
disappear from the system) will inform policymakers to chart out the
effectiveness of intervention plans. In our baseline FCVAR model (viz.,
with S&P green bond, sectoral energy price index, and economic policy
uncertainty), we have a system memory (𝑑=0.574, which means that
this 3-variables system will require a policy intervention (technically,
an error-correction term), to stabilise the system in the long-run. The
estimates of 𝑑=0.574, which is clearly less than 1, implies that it is
indeed possible to regain the stability of this system in a way that can
help the long-term growth of green bonds. The magnitude of this shock
is not very different from our re-estimation of the same 3-variable sys-
tem but now replacing S&P green bond with Bloomberg Barclays’ MSCI
green bond index. The results are presented in Section 5.3 (Eq. (22)),
which shows that the estimated 𝑑=0.509. This estimate depicts a bit
smaller persistence than that of the baseline model, yet both are within
the range between 0.5 to 1, depicting the presence of longer-term
memory but the ability of the system to attain stability with proper
policy interventions.

How different are the results across sectors? A primary assumption
of the green bond dynamic system is that this environmentally sus-
tainable investment strategy will experience greater growth at a time
when there is higher policy uncertainty. Because uncertainty can infuse
greater air of volatility in various sectoral indices, the estimates of
FCVAR across sectors are expected to be characteristically affine, albeit
with some differences in magnitudes. It is indeed the case, for instance,
the estimation of system-wide memory with respect to the sectoral
health price index, financial price index, and information technology
is 0.766, 0.769, and 0.415, respectively. Whilst we observe greater
persistence, in other words, the possibility of the system taking a
longer period of time to stabilise (for health and financial sectors), we
find a relatively shorter time period to stability for the information
technology sector. This result is also commensurate with the larger
literature (Reboredo, 2018).

6. Concluding remarks and policy implications

Sustainability agenda, in a number of policy forums, have reinforced
the need for rigorous empirical investigations to enable academics,
investors and policy practitioners with a clear pathway of risk-return
trade-off. More importantly, financing ‘green’ projects preserve value
for the future bequest of welfare. In the face of nascent literature on
the identification of the dynamic relationship between green bonds and
various sectoral performances, this paper proposes a robust empirical
mechanism and argues for its implications for investment strategy and
policies. Indeed, investment strategy in green bonds has implications
for portfolio diversification and risk management. Our contribution
embeds the dynamic role of uncertainty — an imposing concern in
14
investment decisions in modern-day times, in shaping the green bond
and sectoral performance interdependence.

A primary hypothesis, the first one to test in the extant literature,
is that the green bond index can co-move with sectoral indices as the
latter are subject to market forces, and so is the green bond, despite
its sustainable image. As uncertainty grows, the expectation is that the
green bond index will react positively, because investors can take green
bonds as a safe hedge against uncertainty rise. Because uncertainty may
exert negative effects on sectoral indices, such as health care, financials,
and the energy sector, among others, we expect that volatility in these
indices may also increase investment in green bonds, producing a
positive relationship. Our FCVAR estimation for a green bond, energy
price and uncertainty depicted expected patterns. A suit of robustness
exercise lent validity to our claims. An important finding of our work
is also that in the green bond and the VAR system of green bond
with sectoral indices and uncertainty, in both cases, we find strong
long-memory features, although they depict the possibility of long-run
mean convergence. The conclusion is that the system is inefficient and
an investor can still use this inefficiency degree to choose among a
portfolio of investments — with the sectoral indices or with the green
bond.

What implications do our results have for policy and practitioners,
such as investors? With regard to the policy, there are two immediate
implications. First, a non-accountability of the magnitude of memory in
an interactive system such as ours downplays the convergence speed
of shocks within the system. Eventually, such an omission costs the
timing requirement to stabilise shocks with policy interventions, such
as governmental incentives for proactive investment in green bonds.
Just because the growth of green bonds is tightly interlinked with the
growth of various assets or stocks as attractive investible opportunities,
a true understanding of the nature of this interdependence, in partic-
ular, the dissipation rate of system-wide shocks is central to effective
strategic policy planning. An investor will be very keen to know the
number of days or months a shock within such a system is going to
disappear so that he can plan his investment portfolio by diversification
needs.

Further, the fact that the price of green bonds is supposedly less
volatile than that of other sectoral indices (non-green sectors), invest-
ment in a green bond can be an important hedging opportunity. Indeed,
if one finds a long-run equilibrium relationship between green bonds
and other sectoral indices, it may raise a few concerns on the likely
volatility of green bonds — one that literature has shown, is due to
extensive greenwashing. If we consider the interdependence between
green bonds and other sectoral indices (such as health, information
technology, and others) investors who intend to invest at various
time horizons can engage in diverse investment portfolios and hedging
choices. Our results, especially the sub-sample analyses have shed
light on the differential magnitude of system-wide shock persistence
considering before and after COVID, showing the greater degree of
shock persistence (relative to pre-COVID scenario) will create intense
information asymmetry, encouraging risk-averse investors to consider
green bond investment seriously.
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Appendix A. Alternative measure of green bond and S&P sectoral
indices

We present here the definition of an alternative measure of Green
Bond and selected sectoral indices. For the latter, we have used
definitions of S&P 500.
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• Bloomberg Barclays MSCI Green Bond Index

he Bloomberg Barclays MSCI Green Bond Index is an objective and
obust measure of the global market for fixed-income securities. To
easure it, an independent research-driven methodology is used to

valuate index-eligible green bonds with the objective to ensure that
hey adhere to established Green Bond Principles and to classify bonds
y their environmental use of proceeds.

• Information Technology

This sector comprises companies that develop or distribute tech-
ological items or services (such as computers, microprocessors, and
perating systems) and includes internet companies. This sector has
xperienced a paradigmatic change in recent years because of the rapid
ise in technology-based companies.

• Health care

This sector consists of companies such as medical supply, phar-
aceutical, and scientific-based operations or services that aim to

mprove the human body or mind. Familiar names include Johnson
Johnson, a medical device and pharmaceutical company that owns

ylenol, and Abiomed, which manufactures medical implant devices.
f course, Cannabis companies are a new, but rapidly growing, part
f the healthcare sector. Currently, the more well-known ones include
anopy Growth Corp. and Aurora Cannabis, with market caps of $23
illion and $12 billion, respectively.

• Financials

The financial sector includes all companies involved in finance,
nvesting, and the movement or storage of money. This covers banks,
redit card issuers, credit unions, insurance companies, and mortgage
eal estate investment trusts (REITs). Companies within this sector are
sually relatively stable, as many are mature, well-established firms.
anks in this sector include Bank of America Corp, JPMorgan Chase &
o., and Goldman Sachs. Other notable sector names include Berkshire
athaway, American Express, and Aon plc.

• Energy

The energy sector consists of all companies that play a part in the
il, gas, and consumable fuels business. This includes companies that
ind, drill, and extract the commodity. It also includes the companies
hat refine the material and companies that provide or manufacture the
quipment used in the refinement process. Companies such as Exxon
obil and Chevron extract and refine gas, while companies like Kinder
organ transport fuel to gas stations.

ppendix B. Supplementary data

Supplementary material related to this article can be found online
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