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Abstract

Low-rank approximation of tensors has been widely used in high-
dimensional data analysis. It usually involves singular value decom-
position (SVD) of large-scale matrices with high computational com-
plexity. Sketching is an effective data compression and dimension-
ality reduction technique applied to the low-rank approximation of
large matrices. This paper presents two practical randomized algo-
rithms for low-rank Tucker approximation of large tensors based
on sketching and power scheme, with a rigorous error-bound analy-
sis. Numerical experiments on synthetic and real-world tensor data
demonstrate the competitive performance of the proposed algorithms.
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1 Introduction

In practical applications, high-dimensional data, such as color images, hyper-
spectral images and videos, often exhibit a low-rank structure. Low-rank
approximation of tensors has become a general tool for compressing and
approximating high-dimensional data and has been widely used in scientific
computing, machine learning, signal/image processing, data mining, and many
other fields [1]. The classical low-rank tensor factorization models include,
e.g., Canonical Polyadic decomposition (CP) [2, 3], Tucker decomposition [4–
6], Hierarchical Tucker (HT) [7, 8], and Tensor Train decomposition (TT)
[9]. This paper focuses on low-rank Tucker decomposition, also known as
the low multilinear rank approximation of tensors. When the target rank
of Tucker decomposition is much smaller than the original dimensions, it
will have good compression performance. For a given Nth-order tensor X ∈
R

I1×I2×...×IN , the low-rank Tucker decomposition can be formulated as the
following optimization problem, i.e.,

min
Y
‖X − Y‖2F , (1)

where Y ∈ R
I1×I2×...×IN , with rank(Y(n)) ≤ rn for n = 1, 2, . . . , N , Y(n) is the

mode-n unfolding matrix of Y, and rn is the rank of the mode-n unfolding
matrix of X .

For the Tucker approximation of higher-order tensors, the most fre-
quently used non-iterative algorithms are the improved algorithms for the
higher-order singular value decomposition (HOSVD) [5], the truncated higher-
order SVD (THOSVD) [10] and the sequentially truncated higher-order SVD
(STHOSVD) [11]. Although the results of THOSVD and STHOSVD are usu-
ally sub-optimal, they can use as reasonable initial solutions for iterative
methods such as higher-order orthogonal iteration (HOOI) [10]. However, both
algorithms rely directly on SVD when computing the singular vectors of inter-
mediate matrices, requiring large memory and high computational complexity
when the size of tensors is large.

Strikingly, randomized algorithms can reduce the communication among
different levels of memories and are parallelizable. In recent years, many schol-
ars have become increasingly interested in randomized algorithms for finding
approximation Tucker decomposition of large-scale data tensors [12–17, 19, 20].
For example, Zhou et al. [12] proposed a randomized version of the HOOI
algorithm for Tucker decomposition. Che and Wei [13] proposed an adaptive
randomized algorithm to solve the multilinear rank of tensors. Minster et al.
[14] designed randomized versions of the THOSVD and STHOSVD algorithms,
i.e., R-STHOSVD. Sun et al. [17] presented a single-pass randomized algorithm
to compute the low-rank Tucker approximation of tensors based on a practical
matrix sketching algorithm for streaming data, see also [18] for more details.
Regarding more randomized algorithms proposed for Tucker decomposition,
please refer to [15, 16, 19, 20] for a detailed review of randomized algorithms
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for solving Tucker decomposition of tensors in recent years involving, e.g., ran-
dom projection, sampling, count-sketch, random least-squares, single-pass, and
multi-pass algorithms.

This paper presents two efficient randomized algorithms for finding the
low-rank Tucker approximation of tensors, i.e., Sketch-STHOSVD and sub-
Sketch-STHOSVD summarized in Algorithms 6 and 8, respectively. The main
contributions of this paper are threefold. Firstly, we propose a new one-pass
sketching algorithm (i.e., Algorithm 6) for low-rank Tucker approximation,
which can significantly improve the computational efficiency of STHOSVD.
Secondly, we present a new matrix sketching algorithm (i.e., Algorithm 7) by
combining the two-sided sketching algorithm proposed by Tropp et al. [18]
with subspace power iteration. Algorithm 7 can accurately and efficiently com-
pute the low-rank approximation of large-scale matrices. Thirdly, the proposed
Algorithm 8 can deliver a more accurate Tucker approximation than sim-
pler randomized algorithms by combining the subspace power iteration. More
importantly, sub-Sketch-STHOSVD can converge quickly for any data tensors
and independently of singular value gaps.

The rest of this paper is organized as follows. Section 2 briefly introduces
some basic notations, definitions, and tensor-matrix operations used in this
paper and recalls some classical algorithms, including THOSVD, STHOSVD,
and R-STHOSVD, for low-rank Tucker approximation. Our proposed two-
sided sketching algorithm for STHOSVD is given in Section 3. In Section 4,
we present an improved algorithm with subspace power iteration. The effec-
tiveness of the proposed algorithms is validated thoroughly in Section 5 by
numerical experiments on synthetic and real-world data tensors. We conclude
in Section 6.

2 Preliminary

2.1 Notations and basic operations

Some common symbols used in this paper are shown in the following Table 1.

Table 1 Common symbols used in this paper.

Symbols Notations

a scalar
A matrix
X tensor

X(n) mode-n unfolding matrix of X
×n mode-n product of tensor and matrix
In identity matrix with size n× n

σi(A) the ith largest singular value of A
A⊤ transpose of A
A† pseudo-inverse of A
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We denote an Nth-order tensor X ∈ R
I1×I2×...×IN with entries given by

xi1,i2,...,iN , 1 ≤ in ≤ In, n = 1, 2, ..., N. The Frobenius norm of X is defined as

‖X‖F =

√√√√
I1,I2,...,IN∑

i1,i2,...,iN

x2
i1,i2,...,iN

.

The mode-n tensor-matrix multiplication is a frequently encountered operation
in tensor computation. The mode-n product of a tensor X ∈ R

I1×I2×...×IN

by a matrix A ∈ R
K×In (with entries ak,in) is denoted as Y = X ×n A ∈

R
I1×...×In−1×K×In+1×...×IN , with entries

yi1,...,in−1,k,in+1,...,iN =

In∑

in=1

xi1,...,in−1,in,in+1,...,iNak,in .

The mode-n matricization of higher-order tensors is the reordering of ten-
sor elements into a matrix. The columns of mode-n unfolding matrix X(n) ∈

R
In×(

∏
N 6=n IN ) are the mode-n fibers of X . More specifically, a element

(i1, i2, ..., iN ) of X is maps on a element (in, j) of X(n), where

j = 1 +

N∑

k=1,k 6=n

[(ik − 1)

k−1∏

m=1,m 6=n

Im].

Let the rank of mode-n unfolding matrix X(n) is rn, the integer array
(r1, r2, ..., rN ) is Tucker-rank of Nth-order tensor X , also known as the mul-
tilinear rank. The Tucker decomposition of X with rank (r1, r2, ..., rN ) is
expressed as

X = G ×1 U
(1) ×2 U

(2) . . .×N U (N), (2)

where G ∈ R
r1×r2×...×rN is the core tensor, and {U (n)}Nn=1 with U (n) ∈ R

In×rn

is the mode-n factor matrices. The graphical illustration of Tucker decom-
position for a third-order tensor shows in Figure 1. We denote an optimal
rank-(r1, r2, ..., rN ) approximation of a tensor X as X̂opt, which is the optimal
Tucker approximation by solving the minimization problem in (1). Below we

Fig. 1 Tucker decomposition of a third-order tensor.

present the definitions of some concepts used in this paper.
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Definition 1 (Kronecker products) The Kronecker product of matrices A ∈ R
m×n

and B ∈ R
k×l is defined as

A⊗B =





a11B a12B ... a1nB

a21B a22B ... a2nB

: :
. . . :

am1B am2B ... amnB




∈ R

mk×nl
.

The Kronecker product helps express Tucker decomposition. The Tucker
decomposition in (2) implies

X(n) = U (n)G(n)(U
(N) ⊗ ...⊗ U (n+1) ⊗ U (n−1) ⊗ ...⊗ U (1))⊤.

Definition 2 (Standard normal matrix) The elements of a standard normal matrix
follow the real standard normal distribution (i.e., Gaussian with mean zero and
variance one) form an independent family of standard normal random variables.

Definition 3 (Standard Gaussian tensor) The elements of a standard Gaussian
tensor follow the standard Gaussian distribution.

Definition 4 (Tail energy) The jth tail energy of a matrix X is defined as

τ
2
j (X) := min

rank(Y )<j
‖X − Y ‖2F =

∑

i≥j

σ
2
i (X).

2.2 Truncated higher-order SVD

Since the actual Tucker rank of large-scale higher-order tensor is hard to com-
pute, the truncated Tucker decomposition with a pre-determined truncation
(r1, r2, ..., rN ) is widely used in practice. THOSVD is a popular approach to
computing the truncated Tucker approximation, also known as the best low
multilinear rank-(r1, r2, ..., rN ) approximation, which reads

min
G; U(1),U(2),··· ,U(N)

‖X − G ×1 U
(1) ×2 U

(2) · · · ×N U (N)‖2F

s.t. U (n)⊤U (n) = Irn , n ∈ {1, 2, ..., N}.

Algorithm 1 THOSVD

Require: tensor X ∈ R
I1×I2×...×IN and target rank (r1, r2, . . . , rN )

Ensure: Tucker approximation X̂ = G ×1 U
(1) ×1 U

(2) · · · ×N U (N)

1: for n = 1, 2, . . . , N do

2: (U (n),∼,∼)← truncatedSVD(X(n), rn)
3: end for

4: G ← X×1U
(1)⊤ ×2 U

(2)⊤ · · · ×N U (N)⊤
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Algorithm 1 summarizes the THOSVD approach. Each mode is processed
individually in Algorithm 1. The low-rank factor matrices of mode-n unfolding
matrix X(n) are computed through the truncated SVD, i.e.,

X(n) =
[
U (n) ˜U (n)

] [S(n)

˜S(n)

][
V (n)⊤

˜V (n)⊤

]
∼= U (n)S(n)V (n)⊤,

where U (n)S(n)V (n)⊤ is a rank-rn approximation of X(n), the orthogonal

matrix U (n) ∈ R
In×rn is the mode-n factor matrix of X in Tucker decomposi-

tion, S(n) ∈ R
rn×rn and V (n) ∈ R

I1...In−1In+1...IN×rn . Once all factor matrices
have been computed, the core tensor G can be computed as

G = X×1U
(1)⊤ ×2 U

(2)⊤ · · · ×N U (N)⊤ ∈ R
r1×r2×...×rN .

Then, the Tucker approximation X̂ of X can be computed as

X̂ = G ×1 U
(1) ×2 U

(2) · · · ×N U (N)

= X ×1 (U
(1)U (1)⊤)×2 (U

(2)U (2)⊤) · · · ×N (U (N)U (N)⊤).

With the notation ∆2
n(X ) ,

∑In
i=rn+1 σ

2
i (X(n)) and ∆2

n(X ) ≤ ‖X − X̂opt‖
2
F

[14], the error-bound for Algorithm 1 can be stated in the following Theorem 1.

Theorem 1 ([11], Theorem 5.1) Let X̂ = G ×1 U(1) ×2 U(2) · · · ×N U(N) be the
low multilinear rank-(r1, r2, ..., rN ) approximation of a tensor X ∈ R

I1×I2×...×IN by
THOSVD. Then

‖X − X̂‖2F ≤
N∑

n=1

‖X ×n (IIn − U
(n)

U
(n)⊤)‖2F =

N∑

n=1

In∑

i=rn+1

σ
2
i (X(n))

=
N∑

n=1

∆2
n(X ) ≤ N‖X − X̂opt‖

2
F .

2.3 Sequentially truncated higher-order SVD

Vannieuwenhoven et al.[11] proposed one more efficient and less computation-
ally complex approach for computing approximate Tucker decomposition of
tensors, called STHOSVD. Unlike THOSVD algorithm, STHOSVD updates
the core tensor simultaneously whenever a factor matrix has computed.

Given the target rank (r1, r2, . . . , rN ) and a processing order sp :
{1, 2, ..., N}, the minimization problem (1) can be formulated as the following
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optimization problem

min
U(1),··· ,U(N)

‖X − X ×1 (U
(1)U (1)⊤)×2 (U

(2)U (2)⊤) · · · ×N (U (N)U (N)⊤)‖2F

= min
U(1),··· ,U(N)

(‖X ×1 (I1 − U (1)U (1)⊤)‖2F + ‖X̂ (1) ×2 (I2 − U (2)U (2)⊤)‖2F+

· · ·+ ‖X̂ (N−1) ×N (IN − U (N)U (N)⊤)‖2F )

=min
U(1)

(‖X ×1 (I1 − U (1)U (1)⊤)‖2F +min
U(2)

(‖X̂ (1) ×2 (I2 − U (2)U (2)⊤)‖2F+

min
U(3)

(· · ·+ min
U(N)
‖X̂ (N−1) ×N (IN − U (N)U (N)⊤)‖2F ))),

(3)
where X̂ (n) = X ×1 (U (1)U (1)⊤) ×2 (U (2)U (2)⊤) · · · ×n (U (n)U (n)⊤), n =
1, 2, ..., N − 1, denote the intermediate approximation tensors.

Algorithm 2 STHOSVD

Require: tensor X ∈ R
I1×I2×...×IN , target rank (r1, r2, . . . , rN ), and process-

ing order sp : {i1, i2, . . . , iN}

Ensure: Tucker approximation X̂ = G ×1 U
(1) ×2 U

(2) . . .×N U (N)

1: G ← X
2: for n = i1, i2, . . . , iN do

3: (U (n), S(n), V (n)⊤)← truncatedSVD(G(n), rn)

4: G ← foldn(S
(n)V (n)⊤) (% forming the updated tensor from its mode-n

unfolding)
5: end for

In Algorithm 2, the solution U (n) of problem (3) can be obtained via
truncatedSVD(G(n), rn), where G(n) is mode-n unfolding matrix of the (n−1)-

th intermediate core tensor G = X ×n−1
i=1 U (i)⊤ ∈ R

r1×r2×...×rn−1×In×...×IN ,
i.e.,

G(n) =
[
U (n) ˜U (n)

] [S(n)

˜S(n)

] [
V (n)⊤

˜V (n)⊤

]
∼= U (n)S(n)V (n)⊤,

where the orthogonal matrix U (n) is the mode-n factor matrix, and
S(n)V (n)⊤ ∈ R

rn×r1...rn−1In+1...IN is used to update the n-th intermediate core
tensor G. Function foldn(S

(n)V (n)⊤) tensorizes matrix S(n)V (n)⊤ into ten-
sor G ∈ R

r1×r2×...×rn×In+1×...×IN . When the target rank rn is much smaller
than In, the size of the updated intermediate core tensor G is much smaller
than original tensor. This method can significantly improve computational
performance. STHOSVD algorithm possesses the following error-bound.

Theorem 2 ([11], Theorem 6.5) Let X̂ = G ×1 U(1) ×2 U(2) . . . ×N U(N) be the
low multilinear rank-(r1, r2, ..., rN ) approximation of a tensor X ∈ R

I1×I2×...×IN by
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STHOSVD with processsing order sp : {1, 2, . . . , N}. Then

‖X − X̂‖2F =
N∑

n=1

‖X̂ (n−1) − X̂ (n)‖2F ≤
N∑

n=1

‖X ×n (IIn − U
(n)

U
(n)⊤)‖2F

=
N∑

n=1

∆2
n(X ) ≤ N‖X − X̂opt‖

2
F .

Although STHOSVD has the same error-bound as THOSVD, it is less com-
putationally complex and requires less storage. As shown in Section 5 for the
numerical experiment, the running (CPU) time of the STHOSVD algorithm
is significantly reduced, and the approximation error has slightly better than
that of THOSVD in some cases.

2.4 Randomized STHOSVD

When the dimensions of data tensors are enormous, the computational cost
of the classical deterministic algorithm TSVD for finding a low-rank approx-
imation of mode-n unfolding matrix can be expensive. Randomized low-rank
matrix algorithms replace original large-scale matrix with a new one through
a preprocessing step. The new matrix contains as much information as possi-
ble about the rows or columns of original data matrix. Its size is smaller than
original matrix, allowing the data matrix to be processed efficiently and thus
reducing the memory requirements for solving low-rank approximation of large
matrix.

Algorithm 3 R-SVD

Require: matrixA ∈ R
m×n, target rank r, and oversampling parameter p ≥ 0

Ensure: low-rank approximation matrix Â = Û ŜV̂ ⊤ of A
1: Ω← randn(n, r + p)
2: Y ← AΩ
3: (Q,∼)← thinQR(Y )
4: B ← Q⊤A
5: (U, S, V ⊤)← thinSVD(B)
6: Û ← QU(:, 1 : r)
7: Ŝ ← S(1 : r, 1 : r), V̂ ← V (:, 1 : r)

N. Halko et al. [21] proposed a randomized SVD (R-SVD) for matrices. The
preprocessing stage of the algorithm is performed by right multiplying original
data matrix A ∈ R

m×n with a random Gaussian matrix Ω ∈ R
n×r. Each

column of the resulting new matrix Y = AΩ ∈ R
m×r is a linear combination

of the columns of original data matrix. When r < n, the size of matrix Y
is smaller than A. The oversampling technique can improve the accuracy of
solutions. Subsequent computations are summarised in Algorithm 3, where
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randn generates a Gaussian random matrix, thinQR produces an economy-size
of the QR decomposition, and thinSVD is the thin SVD decomposition. When
A is dense, the arithmetic cost of Algorithm 3 is O(2(r + p)mn+ r2(m+ n))
flops, where p > 0 is the oversampling parameter satisfying r+p ≤ min{m,n}.

Algorithm 3 is an efficient randomized algorithm for computing rank-r
approximations to matrices. Minster et al. [14] applied Algorithm 3 directly
to the STHOSVD algorithm and then presented a randomized version of
STHOSVD (i.e., R-STHOSVD), see Algorithm 4.

Algorithm 4 R-STHOSVD

Require: tensor X ∈ R
I1×I2×...×IN , targer rank (r1, r2, . . . , rN ), processing

order sp : {i1, i2, . . . , iN}, and oversampling parameter p ≥ 0

Ensure: Tucker approximation X̂ = G ×1 U
(1) ×2 U

(2) . . .×N U (N)

1: G ← X
2: for n = i1, i2, . . . , iN do

3: (Û , Ŝ, V̂ ⊤)← R-SVD(G(n), rn, p) (cf. Algorithm 3)

4: U (n) ← Û
5: G ← foldn(ŜV̂

⊤)
6: end for

3 Sketching algorithm for STHOSVD

A drawback of R-SVD algorithm is that when both dimensions of the inter-
mediate matrices are enormous, the computational cost can still be high. To
resolve this problem, we could resort to the two-sided sketching algorithm for
low-rank matrix approximation proposed by Joel A. Tropp et al. [22]. The
preprocessing of sketching algorithm needs two sketch matrices to contain
information regarding the rows and columns of input matrix A ∈ R

m×n. Thus
we should choose two sketch size parameters k and l, s.t. , r ≤ k ≤ min{l, n},
0 < l ≤ m. The random matrices Ω ∈ R

n×k and Ψ ∈ R
l×m are fixed indepen-

dent standard normal matrices. Then we can multiply matrix A left and right
respectively to obtain random sketch matrices Y ∈ R

m×k and W ∈ R
l×n,

which collect sufficient data about the input matrix to compute the low-rank
approximation. The dimensionality and distribution of the random sketch
matrices determine the approximation’s potential accuracy, with larger values
of k and l resulting in better approximations but also requiring more storage
and computational cost.

The sketching algorithm for low-rank approximation is given in Algorithm
5. Function orth(A) in Step 2 produces an orthonormal basis of A. Using
orthogonalization matrices will achieve smaller errors and better numerical
stability than directly using the randomly generated Gaussian matrices. In
particular, when A is dense, the arithmetic cost of Algorithm 5 is O((k +
l)mn + kl(m + n)) flops. Algorithm 5 is simple, practical, and possesses the
sub-optimal error-bound as stated in the following Theorem 3. In Theorem 3,
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Algorithm 5 Sketch for low-rank approximation

Require: matrix A ∈ R
m×n, and sketch size parameters k, l

Ensure: rank-k approximation Â = QX of A
1: Ω← randn(n, k),Ψ← randn(l,m)
2: Ω← orth(Ω),Ψ⊤ ← orth(Ψ⊤)
3: Y ← AΩ
4: W ← ΨA
5: (Q,∼)← thinQR(Y )
6: X ← (ΨQ)†W

function f(s, t) := s/(t − s − 1)(t > s + 1 > 1). The minimum in Theorem
3 reveals that the low rank approximation of given matrix A automatically
exploits the decay of tail energy.

Theorem 3 ([22], Theorem 4.3) Assume that the sketch size parameters satisfy
l > k + 1, and draw random test matrices Ω ∈ R

n×k and Ψ∈ R
l×m independently

forming the standard normal distribution. Then the rank-k approximation Â obtained
from Algorithm 5 satisfies

E ‖ A− Â ‖2F ≤ (1 + f(k, l)) · min
̺<k−1

(1 + f(̺, k)) · τ2̺+1(A)

=
k

l − k − 1
· min
̺<k−1

k

k − ̺− 1
· τ2̺+1(A).

Using the two-sided sketching algorithm to leverage STHOSVD algorithm,
we propose a practical sketching algorithm for STHOSVD named Sketch-
STHOSVD. We summarize the procedures of Sketch-STHOSVD algorithm in
Algorithm 6, with its error analysis stated in Theorem 4.

Algorithm 6 Sketch-STHOSVD

Require: tensor X ∈ R
I1×I2×...×IN , targer rank (r1, r2, . . . , rN ), processing

order sp : {i1, i2, . . . , iN}, and sketch size parameters {l1, l2, ..., lN}

Ensure: Tucker approximation X̂ = G ×1 U
(1) ×2 U

(2) . . .×N U (N)

1: G ← X
2: for n = i1, i2, . . . , iN do

3: (Q,X)← Sketch(G(n), rn, ln) (cf. Algorithm 5)

4: U (n) ← Q
5: G ← foldn(X)
6: end for

Theorem 4 Let X̂ = G ×1 U(1) ×2 U(2) . . .×N U(N) be the Tucker approximation
of a tensor X ∈ R

I1×I2×...×IN by the Sketch-STHOSVD algorithm (i.e., Algorithm
6) with target rank rn < In, n = 1, 2, ..., N , sketch size parameters {l1, l2, ..., lN} and
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processing order sp : {1, 2, . . . , N}. Then

E{Ωj}N
j=1

‖X − X̂‖2F ≤
N∑

n=1

rn

ln − rn − 1
min

̺n<rn−1

rn

rn − ̺n − 1
∆2

n(X )

≤
N∑

n=1

rn

ln − rn − 1
min

̺n<rn−1

rn

rn − ̺n − 1
‖X − X̂opt‖

2
F .

Proof Combining Theorem 2 and Theorem 3, we have

E{Ωj}N
j=1

‖X − X̂‖2F

=

N∑

n=1

E{Ωj}N
j=1

‖X̂ (n−1) − X̂ (n)‖2F

=

N∑

n=1

E{Ωj}
n−1
j=1

{
EΩn

‖X̂ (n−1) − X̂ (n)‖2F

}

=
N∑

n=1

E{Ωj}
n−1
j=1

{
EΩn

‖G(n−1) ×n−1
i=1 U

(i)×n(I − U
(n)

U
(n)⊤)‖2F

}

≤
N∑

n=1

E{Ωj}
n−1
j=1

{
EΩn

‖(I − U
(n)

U
(n)⊤)Gn−1

n )‖2F

}

≤
N∑

n=1

E{Ωj}
n−1
j=1

rn

ln − rn − 1
min

̺n<rn−1

rn

rn − ̺n − 1

In∑

i=rn+1

σ
2
i (G

(n−1)
(n)

)

≤
N∑

n=1

E{Ωj}
n−1
j=1

rn

ln − rn − 1
min

̺n<rn−1

rn

rn − ̺n − 1
∆2

n(X )

=
N∑

n=1

rn

ln − rn − 1
min

̺n<rn−1

rn

rn − ̺n − 1
∆2

n(X )

≤
N∑

n=1

rn

ln − rn − 1
min

̺n<rn−1

rn

rn − ̺n − 1
‖X − X̂opt‖

2
F .

�

We assume the processing order for STHOSVD, R-STHOSVD, and Sketch-
STHOSVD algorithms is sp : {1, 2, ..., N}. Table 2 summarises the arithmetic
cost of different algorithms for the cases related to the general higher-order
tensor X ∈ R

I1×I2×...×IN with target rank (r1, r2, . . . , rN ) and the special
cubic tensor X ∈ R

I×I×...×I with target rank (r, r, ..., r). Here the tensors are
dense and the target ranks rj ≪ Ij , j = 1, 2, . . . , N .
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Table 2 Arithmetic cost for the algorithms THOSVD, STHOSVD, R-STHOSVD, and
the proposed Sketch-STHOSVD.

Algorithm X ∈ R
I1×I2×...×IN X ∈ R

I×I×...×I

THOSVD O(
N∑

j=1
IjI1:N +

∑N
j=1 r1:jIj:N ) O(NIN+1 +

N∑

j=1
rjIN−j+1)

STHOSVD O(
N∑

j=1
Ijr1:j−1Ij:N +

N∑

j=1
r1:jIj+1:N ) O(

N∑

j=1
rj−1IN−j+2 + rjIN−j)

R-STHOSVD O(
N∑

j=1
r1:jIj:N +

N∑

j=1
r1:jIj+1:N ) O(

N∑

j=1
rjIN−j+1 + rjIN−j)

Sketch-STHOSVD O(
N∑

j=1
rjlj(Ij + r1:j−1Ij+1:N ) +

N∑

j=1
r1:jIj+1:N ) O(

N∑

j=1
rl(I + rj−1IN−j) + rjIN−j)

4 Sketching algorithm with subspace power
iteration

When the size of original matrix is very large or the singular spectrum of
original matrix decays slowly, Algorithm 5 may produce a poor basis in many
applications. Inspired by [23], we suggest using the power iteration technique
to enhance the sketching algorithm by replacing A with (AA⊤)qA, where q
is a positive integer. According to the SVD decomposition of matrix A, i.e.,
A = USV ⊤, we know that (AA⊤)qA = US2q+1V ⊤. It can see that A and
(AA⊤)qA have the same left and right singular vectors, but the latter has a
faster decay rate of singular values, making its tail energy much smaller.

Algorithm 7 Sketching algorithm with subspace power iteration (sub-
Sketch)

Require: matrix A ∈ R
m×n, sketch size parameters k, l, and integer q > 0

Ensure: rank-k approximation Â = QX of A
1: Ω← randn(n, k),Ψ← randn(l,m)
2: Ω← orth(Ω),Ψ⊤ ← orth(Ψ⊤)
3: Y = AΩ, W = ΨA
4: Q0 ← thinQR(Y )
5: for j = 1, . . . , q do

6: Ŷj = A⊤Qj−1

7: (Q̂j ,∼)← thinQR(Ŷj)

8: Yj = AQ̂j

9: (Qj ,∼)← thinQR(Yj)
10: end for

11: Q = Qq

12: X ← (ΨQ)†W

Although power iteration can improve the accuracy of Algorithm 5 to some
extent, it still suffers from a problem, i.e., during the execution with power
iteration, the rounding errors will eliminate all information about the singular
modes associated with the singular values. To address this issue, we propose an
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improved sketching algorithm by orthonormalizing the columns of the sample
matrix between each application of A and A⊤, see Algorithm 7. When A is
dense, the arithmetic cost of Algorithm 7 is O((q + 1)(k + l)mn+ kl(m+ n))
flops. Numerical experiments show that a good approximation can achieve
with a choice of 1 or 2 for subspace power iteration parameter [21].

Algorithm 8 sub-Sketch-STHOSVD

Require: tensor X ∈ R
I1×I2×...×IN , targer rank (r1, r2, . . . , rN ), processing

order sp : {i1, i2, . . . , iN}, sketch size parameters {l1, l2, ..., lN}, and integer
q > 0

Ensure: Tucker approximation X̂ = G ×1 U
(1) ×2 U

(2) . . .×N U (N)

1: G ← X
2: for n = i1, i2, . . . , iN do

3: (Q,X)← sub-Sketch(G(n), rn, ln, q) (cf. Algorithm 7)

4: U (n) ← Q
5: G ← foldn(X)
6: end for

Using Algorithm 7 to compute the low-rank approximations of intermedi-
ate matrices, we can obtain an improved sketching algorithm for STHOSVD,
called sub-Sketch-STHOSVD, see Algorithm 8. The error-bound for Algorithm
8 states in the following Theorem 5. Its proof is deferred in Appendix.

Theorem 5 Let X̂ = G ×1 U(1) ×2 U(2) . . .×N U(N) be the Tucker approximation
of a tensor X ∈ R

I1×I2×...×IN obtained by the sub-Sketch-STHOSVD algorithm
(i.e., Algorithm 8) with target rank rn < In, n = 1, 2, ..., N , sketch size parameters
{l1, l2, ..., lN} and processing order p : {1, 2, . . . , N}. Let ̟k ≡

σk+1

σk
denote the

singular value gap, then

E{Ωj}N
j=1

‖X − X̂‖2F ≤
N∑

n=1

(1 + f(rn, ln)) · min
̺n<rn−1

(1 + f(̺n, rn)̟r
4q) · τ2̺+1(X(n))

≤
N∑

n=1

(1 + f(rn, ln)) · min
̺n<rn−1

(1 + f(̺n, rn)̟r
4q)‖X − X̂opt‖

2
F .

Proof See Appendix. �

5 Numerical experiments

This section conducts numerical experiments with synthetic data and
real-world data, including comparisons between the traditional THOSVD,
STHOSVD algorithms, the R-STHOSVD algorithm proposed in [14], and our
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proposed algorithms Sketch-STHOSVD and sub-Sketch-STHOSVD. Regard-
ing the numerical settings, the oversampling parameter p = 5 is used in
Algorithm 3, the sketch parameters ln = rn + 2, n = 1, 2, . . . , N , are used
in Algorithms 6 and 8, and the power iteration parameter q = 1 is used in
Algorithm 8.

5.1 Hilbert tensor

Hilbert tensor is a synthetic and supersymmetric tensor, with each entry
defined as

Xi1i2...in =
1

i1 + i2 + ...+ in
, 1 ≤ in ≤ In, n = 1, 2, ..., N.

In the first experiment, we set N = 5 and In = 25, n = 1, 2, . . . , N . The target
rank is chosen as (r, r, r, r, r), where r ∈ [1, 25]. Due to the supersymmetry of
the Hilbert tensor, the processing order in the algorithms does not affect the
final experimental results, and thus the processing order can be directly chosen
as sp : {1, 2, 3, 4, 5}.
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Fig. 2 Results comparison on the Hilbert tensor with a size of 25 × 25 × 25 × 25 × 25 in
terms of numerical error (left) and CPU time (right).

The results of different algorithms are given in Figure 2. It shows that our
proposed algorithms (i.e., Sketch-STHOSVD and sub-Sketch-STHOSVD) and
algorithm R-STHOSVD outperform the algorithms THOSVD and STHOSVD.
In particular, the error of the proposed algorithms Sketch-STHOSVD and sub-
Sketch-STHOSVD is comparable to R-STHOSVD (see the left plot in Figure
2), while they both use less CPU time than R-STHOSVD (see the right plot in
Figure 2). This result demonstrates the excellent performance of the proposed
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algorithms and indicates that the two-sided sketching method and the subspace
power iteration used in our algorithms can indeed improve the performance of
STHOSVD algorithm.

For a large-scale test, we use a Hilbert tensor with a size of 500×500×500
and conduct experiments using ten different approximate multilinear ranks. We
perform the tests ten times and report the algorithms’ average running time
and relative error in Table 3 and Table 4, respectively. The results show that
the randomized algorithms can achieve higher accuracy than the deterministic
algorithms. The proposed Sketch-STHOSVD algorithm is the fastest, and the
sub-Sketch-STHOSVD algorithm achieves the highest accuracy efficiently.

Table 3 Results comparison in terms of the CPU time (in second) on the Hilbert tensor
with a size of 500× 500× 500 as the target rank increases.

Target rank THOSVD STHOSVD R-STHOSVD Sketch-STHOSVD sub-Sketch-STHOSVD

(10,10,10) 17.18 7.49 0.92 0.86 0.98
(20,20,20) 23.13 8.87 1.25 1.05 1.48
(30,30,30) 24.91 9.35 1.66 1.53 2.16
(40,40,40) 28.05 10.41 1.94 1.44 2.11
(50,50,50) 29.44 11.39 2.07 1.67 2.43
(60,60,60) 30.14 11.07 2.37 1.90 2.77
(70,70,70) 29.44 11.18 2.57 2.10 3.02
(80,80,80) 29.65 12.30 3.05 2.54 3.75
(90,90,90) 31.11 12.80 3.80 2.80 4.33
(100,100,100) 32.22 13.51 4.04 3.07 4.61

Table 4 Results comparison in terms of the relative error on the Hilbert tensor with a
size of 500 × 500 × 500 as the target rank increases.

Target rank THOSVD STHOSVD R-STHOSVD Sketch-STHOSVD sub-Sketch-STHOSVD

(10,10,10) 2.7354e-06 2.7347e-06 2.7347e-06 1.1178e-05 2.7568e-06
(20,20,20) 1.1794e-12 1.1793e-12 1.1794e-12 7.1408e-12 1.2677e-12
(30,30,30) 4.6574e-15 3.2739e-15 3.2201e-15 4.0641e-15 2.0182e-15

(40,40,40) 4.4282e-15 3.4249e-15 2.8212e-15 2.1562e-15 1.7860e-15

(50,50,50) 4.1628e-15 3.2342e-15 2.6823e-15 2.3205e-15 1.8625e-15

(60,60,60) 4.1214e-15 3.1271e-15 2.3652e-15 2.2920e-15 1.7472e-15

(70,70,70) 4.1085e-15 3.0000e-15 2.1761e-15 2.0499e-15 1.6370e-15

(80,80,80) 4.0956e-15 3.1350e-15 1.8382e-15 1.8209e-15 1.6424e-15

(90,90,90) 4.0792e-15 3.3742e-15 1.8102e-15 1.7193e-15 1.5264e-15

(100,100,100) 4.0390e-15 3.0571e-15 1.7323e-15 1.6304e-15 1.4957e-15

5.2 Sparse tensor

In this experiment, we test the performance of different algorithms on a sparse
tensor X ∈ R

200×200×200, i.e.,

X =

10∑

i=1

γ

i2
xi ◦ yi ◦ zi +

200∑

i=11

1

i2
xi ◦ yi ◦ zi.

Where xi,yi, zi ∈ R
n are sparse vectors all generated using the sprand com-

mand in MATLAB with 5% nonzeros each, and γ is a user-defined parameter
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Fig. 3 Results comparison on a sparse tensor with a size of 200 × 200 × 200 in terms of
numerical error (first row) and CPU time (second row).

which determines the strength of the gap between the first ten terms and the
rest terms. The target rank is chosen as (r, r, r), where r ∈ [20, 100]. The exper-
imental results show in Figure 3, in which three different values γ = 2, 10, 200
are tested. The increase of gap means that the tail energy will be reduced, and
the accuracy of the algorithms will be improved. Our numerical experiments
also verified this result.

Figure 3 demonstrates the superiority of the proposed sketching algo-
rithms. In particular, we see that the proposed Sketch-STHOSVD is the fastest
algorithm, with a comparable error against R-STHOSVD; the proposed sub-
Sketch-STHOSVD can reach the same accuracy as the STHOSVD algorithm
but in much less CPU time; and the proposed sub-Sketch-STHOSVD achieves
much better low-rank approximation than R-STHOSVD with similar CPU
time.

Now we consider the influence of noise on algorithms’ performance. Specif-
ically, the sparse tensor X with noise is designed in the same manner as in
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Fig. 4 Results comparison on a 200×200×200 sparse tensor with noise in terms of numerical
error (first row) and CPU time (second row).

[24], i.e.,
X̂ = X + δK,

where K is a standard Gaussian tensor and δ is used to control the noise
level. Let δ = 10−3 and keep the rest parameters the same as the settings
in the previous experiment. The relative error and running time of different
algorithms are shown in Figure 4. In Figure 4, we see that noise indeed affects
the accuracy of the low-rank approximation, especially when the gap is small.
However, the influence of noise does not change the conclusion obtained on
the case without noise. The accuracy of our sub-Sketch-STHOSVD algorithm
is the highest among the randomized algorithms. As γ increases, sub-Sketch-
STHOSVD can achieve almost the same accuracy as that of THOSVD and
STHOSVD in a comparable CPU time against R-STHOSVD.
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5.3 Real-world data tensor

In this experiment, we test the performance of different algorithms on a colour
image, called HDU picture1, with a size of 1200× 1800× 3. We also evaluate
the proposed sketching algorithms on the widely used YUV Video Sequences2.
Taking the ‘hall monitor’ video as an example and using the first 30 frames, a
three order tensor with a size of 144× 176× 30 is then formed for this test.

Firstly, we conduct an experiment on the HDU picture with target rank
(500, 500, 3), and compare the PSNR and CPU time of different algorithms.
The experimental result is shown in Figure 5, which shows that the PSNR
of sub-Sketch-STHOSVD, THOSVD and STHOSVD is very similar (i.e.,
∼ 40) and that sub-Sketch-STHOSVD is more efficient in terms of CPU
time. R-STHOSVD and Sketch-STHOSVD are also very efficient compared to
sub-Sketch-STHOSVD; however, the PSNR they achieve is 5 dB less than sub-
Sketch-STHOSVD. Then we conduct separate numerical experiments on the
HDU picture and the ‘hall monitor’ video clip as the target rank increases, and
compare these algorithms in terms of the relative error, CPU time and PSNR,
see Figure 6 and Figure 7. These experimental results again demonstrate
the superiority (i.e., low error and good approximation with high efficiency)
of the proposed sub-Sketch-STHOSVD algorithm in computing the Tucker
decomposition approximation.

Original THOSVD (2.62; 40.61) STHOSVD (1.89; 40.65)

R-STHOSVD Sketch-STHOSVD sub-Sketch-STHOSVD
(0.61; 34.72) (0.55; 34.63) (0.84; 39.97)

Fig. 5 Results comparison on a HDU picture with a size of 1200 × 1800 × 3 in terms of
PSNR (i.e., peak signal-to-noise ratio) and CPU time. The target rank is (500,500,3). The
two values in e.g. (2.62; 40.61) represent the CPU time and the PSNR, respectively.

In the last experiment, a larger-scale real-world tensor data is used. We
choose a color image (called the LONDON picture) with a size of 4775×7155×3
as the test image and consider the influence of noise. The LONDON picture

1https://www.hdu.edu.cn/landscape
2http://trace.eas.asu.edu/yuv/index.html
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Fig. 6 Results comparison on a HDU picture with size of 1200 × 1800 × 3 in terms of
numerical error (left), CPU time (middle) and PSNR (right). The HDU picture is with target
rank (r, r, 3), r ∈ [50, 1000].
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Fig. 7 Results comparison on the ‘hall monitor’ grey video with size of 144 × 176 × 30 in
terms of numerical error (left), CPU time (middle) and PSNR (right). The ‘hall monitor’
grey video is with target rank (r, r, 10), r ∈ [5, 100].

with white Gaussian noise is generated using the awgn(X,SNR) built-in function
in MATLAB. We set the target rank as (50,50,3) and SNR to 20. The results
comparisons without and with white Gaussian noise are respectively shown in
Figure 8 and Figure 9 in terms of the CPU time and PSNR. Moreover, we also
test the algorithms on the LONDON picture as the target rank increases. The
results regarding the relative error, the CPU time and the PSNR are reported
in Tables 5, 6 and 7, respectively. On the whole, the results again show the
consistent performance of the proposed methods.
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Original THOSVD (154.95; 24.07) STHOSVD (49.34; 24.09)

R-STHOSVD Sketch-STHOSVD sub-Sketch-STHOSVD
(1.29; 21.27) (1.17; 21.09) (1.29; 23.65)

Fig. 8 Results comparison on LONDON picture with a size of 4775× 7155× 3 in terms of
CPU time and PSNR. The target rank is (50,50,3).

Noisy picture(PSNR=16.92) THOSVD (160.59; 20.54) STHOSVD (50.16; 20.54)

R-STHOSVD Sketch-STHOSVD sub-Sketch-STHOSVD
(1,25; 19.37) (1.15; 19.25) (1.45; 20.45)

Fig. 9 Results comparison on LONDON picture with a size of 4775 × 7155 × 3 and white
Gaussian noise in terms of CPU time and PSNR. The target rank is (50,50,3).

In summary, the numerical results show the superiority of the sub-sketch
STHOSVD algorithm for large-scale tensors with or without noise. We can see
that sub-Sketch-STHOSVD could achieve close approximations to that of the
deterministic algorithms in a time similar to other randomized algorithms.
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Table 5 Results comparison in terms of the relative error on the LONDON picture with a
size of 4775 × 7155× 3 as the target rank increases.

Target rank THOSVD STHOSVD R-STHOSVD Sketch-STHOSVD sub-Sketch-STHOSVD

(10,10,10) 0.019037 0.019025 0.031000 0.040006 0.020756
(20,20,20) 0.012669 0.012644 0.023467 0.027398 0.013703
(30,30,30) 0.010168 0.010124 0.018354 0.020451 0.010965
(40,40,40) 0.008630 0.008599 0.015792 0.017029 0.009443
(50,50,50) 0.007576 0.007532 0.013917 0.015333 0.008286
(60,60,60) 0.006778 0.006710 0.012967 0.013589 0.007359
(70,70,70) 0.006119 0.006049 0.011813 0.011886 0.006687
(80,80,80) 0.005532 0.005491 0.010658 0.011148 0.006123
(90,90,90) 0.005076 0.005023 0.010018 0.010378 0.005602
(100,100,100) 0.004669 0.004619 0.009249 0.009578 0.005172

Table 6 Results comparison in terms of the CPU time (in second) on the LONDON
picture with a size of 4775 × 7155 × 3 as the target rank increases.

Target rank THOSVD STHOSVD R-STHOSVD Sketch-STHOSVD sub-Sketch-STHOSVD

(10,10,10) 156.13 49.22 0.94 0.99 1.12
(20,20,20) 165.22 77.64 1.24 1.48 1.56
(30,30,30) 241.11 76.57 1.69 1.39 1.69
(40,40,40) 242.08 74.25 1.57 1.45 1.68
(50,50,50) 268.71 72.85 1.51 1.45 1.80
(60,60,60) 265.52 77.80 1.75 1.51 2.26
(70,70,70) 241.95 77.82 1.93 1.78 2.24
(80,80,80) 264.86 73.53 1.86 1.74 2.31
(90,90,90) 274.73 72.67 1.93 1.83 2.16
(100,100,100) 283.88 86.42 2.24 2.20 2.46

Table 7 Results comparison in terms of the PSNR on the LONDON picture with a size
of 4775× 7155 × 3 as the target rank increases.

Target rank THOSVD STHOSVD R-STHOSVD Sketch-STHOSVD sub-Sketch-STHOSVD

(10,10,10) 20.06 20.07 17.96 16.86 19.70
(20,20,20) 21.84 21.84 19.18 18.51 21.50
(30,30,30) 22.79 22.81 20.25 19.78 22.46
(40,40,40) 23.50 23.52 20.90 20.57 23.11
(50,50,50) 24.07 24.09 21.45 21.03 23.68
(60,60,60) 24.55 24.60 21.76 21.55 24.20
(70,70,70) 25.00 25.05 22.16 22.13 24.61
(80,80,80) 25.43 25.47 22.61 22.41 25.00
(90,90,90) 25.81 25.85 22.87 22.72 25.38
(100,100,100) 26.17 26.22 23.22 23.07 25.73

6 Conclusion

In this paper we proposed efficient sketching algorithms, i.e., Sketch-
STHOSVD and sub-Sketch-STHOSVD, to calculate the low-rank Tucker
approximation of tensors by combining the two-sided sketching technique with
the STHOSVD algorithm and using the subspace power iteration. Detailed
error analysis is also conducted. Numerical results on both synthetic and real-
world data tensors demonstrate the competitive performance of the proposed
algorithms in comparison to the state-of-the-art algorithms.
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Appendix

Lemma 1 [[25], Theorem 2] Let ̺ < k − 1 be a positive natural number and Ω ∈
R
k×n be a Gaussian random matrix. Suppose Q is obtained from Algorithm 7. Then

∀A ∈ R
m×n, we have

EΩ‖A−QQ
⊤
A‖2F ≤ (1 + f(̺, k)̟4q

k
) · τ2̺+1(A). (4)

Lemma 2 [[22], Lemma A.3] Let A ∈ R
m×n be an input matrix and Â = QX

be the approximation obtained from Algorithm 7. The approximation error can be
decomposed as

‖A− Â‖2F = ‖A−QQ
⊤
A‖2F + ‖X −Q

⊤
A‖2F . (5)

Lemma 3 [[22], Lemma A.5] Assume Ψ ∈ R
l×n is a standard normal matrix

independent from Ω. Then

EΨ‖X −Q
⊤
A‖2F = f(k, l) · ‖A−QQ

⊤
A‖2F . (6)

The error-bound for Algorithm 7 can be shown in Lemma 4 below.

Lemma 4 Assume the sketch size parameter satisfies l > k + 1. Draw random
test matrices Ω ∈ R

n×k and Ψ∈ R
l×m independently from the standard normal

distribution. Then the rank-k approximation Â obtained from Algorithm 7 satisfies

E ‖ A− Â ‖2F ≤ (1 + f(k, l)) · min
̺<k−1

(1 + f(̺, k)̟k
4q) · τ2̺+1(A).

Proof Using equations (4), (5) and (6), we have

E ‖ A− Â ‖2F = EΩ‖A−QQ
⊤
A‖2F + EΩEΨ‖X −Q

⊤
A‖2F

= (1 + f(k, l)) · EΩ‖A−QQ
⊤
A‖2F

≤ (1 + f(k, l)) · (1 + f(̺, k)̟k
4q) · τ2̺+1(A).

After minimizing over eligible index ̺ < k − 1, the proof is completed. �
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We are now in the position to prove Theorem 5. Combining Theorem 2
and Lemma 4, we have

E{Ωj}N
j=1
‖X − X̂ ‖2F

=

N∑

n=1

E{Ωj}N
j=1
‖X̂ (n−1) − X̂ (n)‖2F

=

N∑

n=1

E{Ωj}
n−1
j=1

{
EΩn
‖X̂ (n−1) − X̂ (n)‖2F

}

=

N∑

n=1

E{Ωj}
n−1
j=1

{
EΩn
‖G(n−1) ×n−1

i=1 U (i)×n(I − U (n)U (n)⊤)‖2F

}

≤

N∑

n=1

E{Ωj}
n−1
j=1

{
EΩn
‖(I − U (n)U (n)⊤)G

(n−1)
(n) )‖2F

}

≤

N∑

n=1

E{Ωj}
n−1
j=1

(1 + f(rn, ln)) · min
̺n<rn−1

(1 + f(̺n, rn)̟r
4q)

In∑

i=rn+1

σ2
i (G

(n−1)
(n) )

≤

N∑

n=1

E{Ωj}
n−1
j=1

(1 + f(rn, ln)) · min
̺n<rn−1

(1 + f(̺n, rn)̟r
4q)∆2

n(X )

=

N∑

n=1

(1 + f(rn, ln)) · min
̺n<rn−1

(1 + f(̺n, rn)̟r
4q)∆2

n(X )

≤

N∑

n=1

(1 + f(rn, ln)) · min
̺n<rn−1

(1 + f(̺n, rn)̟r
4q)‖X − X̂opt‖

2
F ,

which completes the proof of Theorem 5.
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